#### **1** Supplementary Methods

#### 2 **Data information**

| 3 | The mRNA-seq and clinical annotation data analyzed in Supplementary Fig. S2a were downloaded from |
|---|---------------------------------------------------------------------------------------------------|
|   |                                                                                                   |

- 4 the TARGET data matrix (https://target-data.nci.nih.gov/Public/OS/), and among all cases, 101 had
- 5 mRNA-seq data and 17 were excluded because of a lack of prognostic data for survival analysis. We
- 6 extracted the transcripts per kilobase million (TPM) of each case using R software (version 4.1.2; The R
- 7 Foundation, Vienna, Austria) and performed Kaplan-Meier analysis using GraphPad Prism 6 software.
- 8 The cases were divided into *CD109*-high and -low groups on the basis of the cut-off value: the mean of

9 TPM.

- 10 We analyzed publicly available single-cell RNA-seq dataset GSE152048 [25]. We generated t-SNE
- 11 plots using Cell Ranger 6.1.2 and Loupe Browser 6.0.0 (10x Genomics, Inc, Pleasanton, CA, USA) and

12 annotated cell clusters based on the canonical markers used in a previous study [25].

13

#### 14 IL-6 stimulation of MG-63 cells

- 15 In Supplementary Fig. S3c, MG-63 cells were treated with 50 ng/mL IL-6 (Bio-Techne, Minneapolis,
- 16 MN, USA) for the indicated times before lysis.

# 1 Supplementary Tables

### 2 Supplementary Table S1 Antibodies used for western blot analysis

## 3 (a) Primary antibodies used for western blot analysis

| Primary antibody (clone name /           | Dilution | Vendor                     |
|------------------------------------------|----------|----------------------------|
| catalogue number)                        |          |                            |
| Anti-CD109 (C-9)                         | 1:500    | Santa Cruz Biotechnology   |
|                                          |          | (Dallas, TX, USA)          |
| Anti-β-actin (AC-74)                     | 1:20000  | Merck (Darmstadt, Germany) |
| Anti-SMAD2 (D43B4)                       | 1:1000   | Cell Signaling Technology  |
|                                          |          | (Danvers, MA, USA)         |
| Anti-phospho-SMAD2 (138D4)               | 1:1000   | Cell Signaling Technology  |
| Anti-SMAD2/3 (D7G7)                      | 1:1000   | Cell Signaling Technology  |
| Anti-phospho-SMAD3 (EP823Y)              | 1:2000   | Abcam (Cambridge, UK)      |
| Anti-SMAD1 (rabbit polyclonal antibody)  | 1:500    | Cell Signaling Technology  |
| Anti-phospho-SMAD1/5/9 (D5B10)           | 1:1000   | Cell Signaling Technology  |
| Anti-phospho-ERK1/2 (20G11)              | 1:1000   | Cell Signaling Technology  |
| Anti-ERK1/2 (rabbit polyclonal antibody) | 1:1000   | Cell Signaling Technology  |
| Anti-phospho-STAT3 (D3A7)                | 1:2000   | Cell Signaling Technology  |
| Anti-STAT3 (79D7)                        | 1:2000   | Cell Signaling Technology  |

# 4

## 5 (b) Secondary antibodies used for western blot analysis

| Secondary antibody                                  | Vendor                         |
|-----------------------------------------------------|--------------------------------|
| Horseradish peroxidase-conjugated rabbit anti-mouse | Agilent (Santa Clara, CA, USA) |
| polyclonal antibody                                 |                                |
| Horseradish peroxidase-conjugated swine anti-rabbit | Agilent                        |
| polyclonal antibody                                 |                                |

### 1 Supplementary Table S2 Antibodies used for immunohistochemistry

| (a) Thinki y antibodies used for initiationistoenemistry |           |          |                          |  |
|----------------------------------------------------------|-----------|----------|--------------------------|--|
| Primary antibody (clone)                                 | Retrieval | Dilution | Vendor                   |  |
| Anti-CD109 (C-9)                                         | pH 9      | 1:100    | Santa Cruz Biotechnology |  |
| Anti-phospho-SMAD1/5/8                                   | pH 9      | 1:50     | Merck                    |  |
| (rabbit polyclonal)                                      |           |          |                          |  |

## 2 (a) Primary antibodies used for immunohistochemistry

3

# 4 (b) Secondary antibodies used for immunohistochemistry

| Secondary antibody                               | Vendor  |
|--------------------------------------------------|---------|
| EnVision+ System-HRP Labeled Polymer Anti-Rabbit | Agilent |
| EnVision+ System-HRP Labeled Polymer Anti-Mouse  | Agilent |

# 1 Supplementary Figure legends

| 2  | Supplementary Fig. S1Histological analyses of human osteosarcomas.                                        |
|----|-----------------------------------------------------------------------------------------------------------|
| 3  | (a) Number of cases with PS, IS, and TS for CD109. (b) Representative histological images of human        |
| 4  | osteosarcoma at low magnification. H&E staining (top panels) and immunohistochemical staining with        |
| 5  | anti-CD109 antibody (bottom panels) in the same area in the serial section. Each case corresponds to      |
| 6  | that with the indicated intensity score in Fig. 1b. Arrowheads indicate neoplastic osteoids or bones. PS, |
| 7  | proportion score; IS, intensity score; TS, total score; H&E, hematoxylin and eosin.                       |
| 8  |                                                                                                           |
| 9  | <b>Supplementary Fig. S2</b> <i>In silico</i> analyses of publicly available data of osteosarcoma.        |
| 10 | (a) Overall survival based on CD109 mRNA expression was analyzed by the Kaplan-Meier method               |
| 11 | using public RNA-seq data from the TARGET osteosarcoma project. (b) t-SNE plots using publicly            |
| 12 | available data of 11 osteosarcoma lesions. RUNX2 and CD109 expressions are shown in the lower             |
| 13 | panels. N.S., not significant; OS, osteosarcoma; MSC, mesenchymal stem cell.                              |
| 14 |                                                                                                           |
| 15 | <b>Supplementary Fig. S3</b> CD109 expression and ERK1/2 or STAT3 phosphorylation in human                |
| 16 | osteosarcoma cell lines.                                                                                  |
| 17 | (a) Time course of ERK1/2 phosphorylation after BMP-2 stimulation in CD109 knockdown and control          |
| 18 | MG-63 cells using siRNAs targeting CD109. (b) Relative densitometric intensities of immunoblot bands      |

| 1  | for ERK1/2 phosphorylation. (c) Time course of STAT3 phosphorylation after IL-6 stimulation of              |
|----|-------------------------------------------------------------------------------------------------------------|
| 2  | CD109 knockdown and control MG-63 cells. (d) Time course of STAT3 phosphorylation in CD109                  |
| 3  | knockdown and control MG-63 cells after TGF- $\beta$ stimulation. (e) Relative densitometric intensities of |
| 4  | immunoblot bands for STAT3 phosphorylation induced by IL-6 (left) or TGF- $\beta$ (right). siControl,       |
| 5  | Control siRNA; siCD109, siRNA targeting CD109.                                                              |
| 6  |                                                                                                             |
| 7  | Supplementary Fig. S4 CD109 does not promote cell migration of human osteosarcoma cells                     |
| 8  | without the addition of BMP-2.                                                                              |
| 9  | (a) Representative images of <i>in vitro</i> wound healing assays in CD109-knockdown and control MG-63      |
| 10 | cells without the addition of BMP-2 ( $n = 3$ per group). Bottom panels show images taken at 24 h after     |
| 11 | wound creation. Dotted lines indicate the edge of the wound area. (b) Percentage of the unfilled wound      |
| 12 | area at each time point (6, 12 and 24 h after wound creation) was calculated as described in the            |
| 13 | Materials and Methods section. Error bars indicate standard deviation. siControl, Control siRNA;            |
| 14 | siCD109, siRNA targeting CD109; N.S., not significant.                                                      |













#### Supplementary figure. S3







(-) 1/4 1/2

1

3

# Supplementary figure. S4



