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Abstract

The analysis of video attribute recognition can be divided into two classes: Ob-
jective Attribute Recognition (OAR) and Subjective Attribute Recognition (SAR).
The OAR is primarily concerned with recognizing tangible and stable characteris-
tics, such as actions, objects, or scenes in a video. However, SAR is significantly
more challenging since the attributes are defined by human perceptual cognition
and are influenced by individual experiences or emotions. Subjective attributes
such as image quality, aesthetics, and video popularity, are even difficult to define
and recognize. The objective of this thesis is to investigate ground-truth genera-
tion, attribute recognition, and model explanations for subjective attributes. With
this target, this thesis proposes two subjective video datasets, two training ap-
proaches, and one explainable module for SAR.

This thesis contains six chapters.
Chapter 1 describes the background and motivation of the work. The overview

of the proposed methods is also concluded.
Chapter 2 introduces the related studies about OAR and SAR. Specifically,

research relevant to ground-truth generation, subjective attribute recognition, and
explainable artificial intelligence are presented.

To enhance the performance of SAR, this thesis addresses two practical chal-
lenges. Chapter 3 introduces an improved dataset labeling method designed for
video violence recognition. Chapter 4 provides a training approach for improv-
ing the recognition accuracy of social relation atmosphere. Chapter 5 offers an
improved model understanding method for explaining the inner procedures of 3D
Convolutional Neural Networks (CNNs). By focusing on these three key difficul-
ties of SAR, the recognition can be finally enhanced.

Chapter 3 introduces the process of constructing a clean dataset with reliable
and stable ground truth. Currently, data annotations are often provided as single
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labels with majority voting. The annotators give an absolute value for the objec-
tive attribute. However, the subjective data do not have an exact ground truth. This
chapter solves the problem by introducing a pairwise comparison method. The
pairwise comparison can reduce the ambiguity and divergence in the annotating
process. This chapter takes violence extent analysis as an example and provides a
new dataset with subjective violence extent labels. Consequently, a rank learning
method is specially designed to estimate the violence extent. Considering the vio-
lence extent of each video is a relative attribute and can be compared, the proposed
method can learn the relationship between videos at the same level and different
levels.

Chapter 4 introduces an efficient way to recognize and represent subjective
attributes. End-to-end network is a commonly used method to recognize videos.
However, the features directly extracted from the networks are not specific enough
to represent the data. A new dataset is first created with both subjective social rela-
tion atmosphere attribute and objective social relationships attribute. A 3D expla-
nation module proposed in Chapter 5 is used as a plug-in module in this chapter.
The module can be used to extract the most important regions for recognizing so-
cial relationships. A framework is proposed to leverage the important information
from social relationships to enhance social relation atmosphere recognition. In
this way, the recognition of subjective attributes is increased by importing useful
objective information. The fused features are more representative than features
directly extracted from end-to-end neural networks.

Chapter 5 introduces a spatial-temporal concept-based explanation method for
explaining neural networks. Currently, video-based explanation methods mainly
focus on pixel-level interpretation. None of them are able to produce a high-level
explanation. An STCE (Spatial-Temporal Concept-based Explanation) frame-
work is proposed for interpreting 3D CNNs and explaining them by introduc-
ing human-understandable concepts. The concepts are grouped by supervoxels
extracted from videos. The framework evaluates the importance score for each
concept. The high score represents the network that pays more attention. The
proposed framework is utilized in Chapter 4 as a plug-in module to help recog-
nize the subjective attributes.

Chapter 6 gives the summary and prospect of this thesis.
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Chapter 1

Introduction

1.1 Background and Motivation

The recognition of video attributes can be divided into two classes: Objective
Attribute Recognition (OAR) and Subjective Attribute Recognition (SAR). Ob-
jective attributes refer to the characteristics that will not be influenced by human
perception or personal biases, such as cars and airplanes. They can be measured
and evaluated. Subjective attributes, in contrast, are vaguely defined and primar-
ily based on self-perceived knowledge. They are easily influenced by personal
viewpoints, educational background, individual experience, and other factors. On
the other hand, subjective attributes may be evaluated differently from person to
person, and there is no exact numerical value for subjective characteristics. For
example, estimating the interestingness or popularity of a video belongs to SAR.

With the rapid development of multimedia and computer vision technologies,
it has become easier for people to gain access to an abundance of videos. Estimat-
ing subjective attributes in video data can be useful in many real-world applica-
tions [1, 2] and has garnered considerable interests. However, due to uncertain and
ambiguous properties of subjective attributes, less research has been conducted on
the issue of SAR. The challenges of recognizing subjective attributes range from
labeling, training, and explaining.

As shown in Figure 1.1, an underlined annotation indicates the objective at-
tribute in a movie segment; social relationships between two people. The so-
cial relationships are pre-defined in the scenario and can be uniquely determined
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Figure 1.1: Example video frames of SAR and OAR. The frames are from two
movie clips. An underlined annotation indicates the objective social relationship.
The other annotations indicate the subjective social relation atmosphere. Both two
people in the two video examples are in the same social relationship: “friend”, but
the social relation atmospheres are different.

when given sufficient information. The other annotations indicate the subjective
attribute; social relation atmosphere. Obviously, it is difficult for annotators to
precisely describe the ground truth of the social relation atmosphere. Thus, pro-
viding a reliable annotation for the subjective attributes becomes a major problem.

On the other hand, by observing the samples in Figure 1.1, we can see that
even though the objective attribute is the same in various videos, the subjective
attributes may still be different. Identifying subjective attributes is a significantly
more challenging task. We need to take into account not only human interac-
tions and facial expressions, but also the surrounding environment and numerous
attributes. However, the performance of current end-to-end Convolutional Neu-
ral Networks (CNNs) is insufficient for recognizing subjective attributes. Thus,
effective methods of recognition are urgently required.

Finally, video data contains complex spatial-temporal information, which re-
quires high computation costs. On the other hand, the decision procedure of SAR
is complex and opaque. Providing an explainable framework for recognition can
help investigate SAR in depth and bring machines one step closer to human cog-
nition. The research questions of SAR can be summarized as the following three
questions:

1. How to construct a clean dataset and provide stable and reliable annotations
for subjective attributes.
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2. How to improve the accuracy of SAR and generate targeted features.

3. How to explain the inner procedure of 3D CNN.

This thesis digs into these issues by solving two real-world SAR tasks. As dis-
cussed above, a labeling method is introduced to reduce the ambiguity of subjec-
tive attributes. Consequently, a relative fusion framework that employs multiple
objective attributes is presented to help recognize subjective attributes. Lastly, a
high-level explanation module is proposed to look into the decision procedure of
3D CNNs, which can be used to enhance the SAR performance.

1.2 Research Overview and Thesis Structure

1.2.1 Research Overview

There has been a lot of effort in SAR. However, the performance of annotation,
recognition, and explanation can still be greatly improved, as previously stated. To
address these three issues, three frameworks are presented in this thesis: Ground-
truth generation (Chapter 3), subjective attribute recognition (Chapter 4), and
spatial-temporal model explanation (Chapter 5). The first question raised in Sec-
tion 1.1 is primarily covered in Chapter 3, the second question in Chapter 4, and
the third question in Chapter 5.

A large-scale dataset is a crucial component of machine learning algorithms.
Crowdsourcing is a popular way of collecting and annotating data because of its
low cost, high speed, and diversity of viewpoints [3, 4]. Following crowdsourcing,
majority voting is currently considered the optimal technique to obtain a single la-
bel from multiple labels [5, 6, 7]. However, the biggest obstacle to majority voting
is quality control [8]. Due to the lack of expertise and large bias between anno-
tators, the labels are inconsistent and noisy, so the quality of labels can be low.
Since providing annotations for subjective attributes is a more abstract task, uti-
lizing crowdsourcing with multiple single labels is not suitable. Thus, a pairwise
comparison labeling method is proposed in this thesis to reduce the bias between
labels.

In Chapter 3, a particular SAR task is explored, which is the violence extent
of violent videos. As shown in Figure 1.2, traditional crowdsourcing annotation

3



Figure 1.2: Examples of single label and pairwise comparison.

Figure 1.3: Simplified illustration of the proposed rank learning method for rec-
ognizing video violence extent in Chapter 3.

prefers single labels. However, when labeling violence extents, the boundaries be-
tween different violence extents are very unclear. Individual experiences, cultural
backgrounds, and beliefs may influence the labels of various annotators, which
result in distinct labels. It is difficult to arrive at a stable judgment on “Which
violent level the video belongs to”. On the other hand, comparing two videos
about which one is more violent is easier to answer. Given a sufficient number of
comparisons, the judgment will become more stable than the single label [9, 10].
Therefore, in order to provide a reliable and stable annotation for subjective vi-
olence extent, the ground truth is given by pairwise comparison in Chapter 3. A
new violent video dataset is also proposed.

In contrast to the regular video classification task, in which the labels are in-
dependent, the violence levels between each pair of videos have a strong corre-
lation. Thus, in Chapter 3, different from the end-to-end classification method, a
rank learning-based method is specifically designed for automatically estimating
the violence extent. A simplified illustration of the proposed method is shown in
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Figure 1.4: Simplified illustration of the proposed feature fusion method in Chap-
ter 4.

Figure 1.3. The proposed rank learning module uses pairs of videos as input to
learn the relationship between two videos according to the level of violence they
belong to. Based on the predicted violence score, the videos can be classified into
different levels. Thus, by making the most of the relationship between videos, the
accuracy can be further improved.

In Chapter 3, a unique SAR method is developed for the violence extent es-
timation. However, there are still many subjective attributes that are independent
and can not be measured using the rank learning-based method. A general SAR
method is urgently needed. With the development of large-scale datasets, deep
neural networks [11] become the first choice for representing images or videos.
However, an end-to-end single-column network takes singular information as in-
put without paying special attention to subjective attributes. To address this prob-
lem, a relative feature fusion method is proposed in Chapter 4.

A simplified illustration of the proposed method is shown in Figure 1.4. Each
video contains both subjective and objective attributes. The proposed explana-
tion module detects the most important information in the raw video for recog-
nizing the objective attribute. The irrelevant pixels are masked and features are
extracted from the masked video. A second network is used to extract features for
SAR. Heterogeneous information is leveraged to make the final prediction. The
proposed method utilizes objective information to supplement SAR, which can
provide more representative features than an end-to-end neural network. Since
there is no existing dataset that contains labels on both subjective and objective
attributes, a new dataset is constructed with both attributes.

Although the proposed method with deep learning technologies shows out-
standing performance, the network itself is still a black box, making the prediction
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Figure 1.5: Simplified illustration of the proposed explanation method in Chap-
ter 5.

procedure opaque. Understanding the inner principle of deep neural networks is
essential for further enhancing the performance of video recognition as well as
SAR. Current research on 3D CNN interpretation remains mired in pixel-level
explanation, making it still difficult for humans to comprehend.

In Chapter 5, a high-level explanation module is proposed to explain the pre-
diction for video recognition. A simplified illustration is shown in Figure 1.5.
Raw videos are segmented into multiple supervoxels. They are video clips that
are easy to be visualized and understood. The proposed explanation module cal-
culates the importance score for each supervoxel based on the classification result.
The high score supervoxels indicate the network relies more on these parts to make
judgments. With only the most important video information, the network can still
recognize the masked video as the true prediction. The proposed method not only
can make the video recognition procedure more intelligible but also can be used
to improve SAR. It is utilized in Chapter 4 as a plug-in module.

1.2.2 Thesis Structure and Chapter Relationship

This thesis is composed of six chapters.
Chapter 1 provided an overview of the background of this thesis, and discussed

the existing insufficiency and motivation of this thesis. In addition, a general
overview of each proposed strategy was also presented.

Chapter 2 introduces the studies related to ground-truth generation, subjective
attribute recognition, and explainable artificial intelligence.

Chapter 3 introduces a violent video dataset with a subjective violence extent
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annotation. The annotation is performed by pairwise comparison. It mainly solves
the question: How to construct a clean dataset and provide stable and reliable
annotation for subjective attributes. Besides, designed for the rating estimation
dataset, a rank-learning method that can learn the contrastive relationship is pro-
posed. This chapter provides a better dataset annotating method.

Chapter 4 introduces a dataset and proposes a relative feature fusion method
for recognizing subjective attributes. A dataset with both subjective and objec-
tive attributes is proposed. Instead of using raw video data as input, only the key
information is preserved, and the key information from the objective attribute is
employed to assist the SAR. The fused features provide a more representative
representation. It mainly solves the question: How to improve the accuracy of
subjective video attribute recognition and generate targeted features. This chap-
ter provides a better training method.

Chapter 5 proposes a spatial-temporal concept-based explanation method. The
high-level concepts are easy to understand and the visualizations are consistent
with human cognition. It mainly solves the question: How to explain the in-
ner procedure of 3D CNN. This chapter provides a better model understanding
method.

Chapter 6 concludes the thesis by reviewing the research contribution and pro-
poses future work for this thesis.

Chapter 3 to Chapter 5 are the core chapters of this thesis. With these three
core chapters, the subjective video attributes can be better recognized. The rela-
tionships and contributions of each chapter are illustrated in Figure 1.6.
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Chapter 2

Related Work

2.1 Objective and Subjective Video Attribute Recog-
nition

Video recognition refers to the procedure of automatically analyzing and compre-
hending the contents of video data, which is a significant research area in com-
puter vision. Depending on the subject of analysis, video recognition can be di-
vided into two classes: Objective Attribute Recognition (OAR) and Subjective
Attribute Recognition (SAR).

OAR is the process of identifying or classifying tangible objects or entities in a
video. The recognition is based on standardized criteria and will not be affected by
personal opinions or evaluations. It includes object detection [12, 13, 14], object
segmentation [15, 16, 17], human skeleton detection [18, 19], and so on. Exam-
ples of OAR are shown in Figure 2.1a, Figure 2.1b, and Figure 2.1c. Since the
recognition results are consistent and impartial, the ground truth can be measured
and uniquely confirmed.

SAR, on the other hand, focuses on providing analysis based on personal opin-
ions or feelings. Individual experiences, personal emotions, cultural backgrounds,
or biases can influence the recognition results. Since judgment can vary from
individual to individual, there is no exact ground truth regarding subjective at-
tributes. Most of the existing subjective recognition methods mainly concentrate
on image-based analysis, such as image aesthetics assessment [20, 21, 22], image
memorability prediction [23, 24], and so on. However, due to the complexity and
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(a) Objective detection (b) Video segmentation

(c) Key points (d) Visual-perceptual load when driving

Figure 2.1: Example of objective [28] and subjective video recognition. (a) Ob-
ject detection. (b) Semantic segmentation. (c) Key points of the human body. (d)
Visual-perceptual load when driving, which indicates the amount of visual infor-
mation received when driving [29].

abundant temporal information of video data, analyzing subjective attributes in
videos still remains a challenging task. Only a few studies focus on subjective
video recognition [1, 25, 26, 27]. An example is shown in Figure 2.1d; The esti-
mation of the visual-perceptual load when driving is subjective and based on the
vast driving environment. There is no ground truth.

The research on SAR is of great social value, since first, it can be used to sim-
ulate human cognition and can even achieve recognition ability beyond humans.
For example, Palmer et al. [29] automatically detected the visual-perceptual load
when driving, which estimated the visual information received by drivers when
driving. It can compensate for the limitations of human perception. With cogni-
tive abilities that surpass the humans, recognizing subjective attributes in videos
also has numerous practical applications. By understanding and ranking the in-
terestingness of videos [1, 30, 31], video search and recommendation systems
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can provide more personalized results. Recognizing subjective human emotion
has numerous applications in human-computer interaction and health monitoring
[32, 33, 34, 35]. Human beauty and attractiveness recognition can be utilized in
make-up evaluation, facial image enhancement, or social network recommenda-
tion applications [36, 37].

2.2 Ground-Truth Generation

The remarkable success of deep learning in computer vision is significantly in-
fluenced by the expansion of large-scale labeled datasets [38, 39, 40], such as
ImageNet [41] and UCF-101 [42]. Typically, a dataset consists of data samples
and their ground truth. However, as mentioned before, providing ground truth for
subjective attributes is a challenging task. In this section, related work about a
common labeling technique, majority voting with single label, and an innovative
technique, pairwise comparison will be introduced.

2.2.1 Single Label with Majority Voting

With the rapid expansion of crowdsourcing platforms such as Amazon Mechani-
cal Turk1, the use of crowdsourcing to collect or analyze data in various research
fields has increased exponentially [8]. In 2016, over 40% of the behavioral stud-
ies published in Journal of Consumer Research were collected and analyzed by
using crowdsourcing Websites. The widespread use of crowdsourcing enables
researchers to collect data in a shorter amount of time and at a lower cost. In or-
der to aggregate a single label from multiple labels, majority voting is a common
technique in most current subjective attribute datasets.

Datta et al. [43] collected 3, 581 photos from an online photo-sharing com-
munity Photo.net2. The registered members of the Website, which include both
amateur and professional photographers, were asked to rate the overall aesthetic
score of each image on a scale from one to seven. Thus, the average score is
calculated as the aesthetic score. AVA (Aesthetic Visual Analysis) is also a novel
aesthetic image dataset containing over 250, 000 images with numerous aesthetic

1https://www.mturk.com/ (Accessed: 2023/09/01)
2https://www.photo.net/ (Accessed: 2023/09/01)
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scores for each image [44]. The meta-data were collected from a social network
DPChallenge3. To evaluate the aesthetic extent of each image, individual votes
from crowdsourcing were collected. On a scale from one to ten, each image was
annotated with an average of 210 votes. The final score for each image was deter-
mined by averaging the scores from each vote.

However, using the single label with majority voting will cause three problems
when labeling subjective attributes. Firstly, since the workers in the crowdsourc-
ing platforms are non-professional and have a wide variety of educational back-
grounds and levels of experience, the annotations are much noisier than those
obtained from specialists [3]. Since there is no assurance that all workers will
complete the annotations to a high standard of quality, low-quality votes will de-
crease the reliability of annotations. Secondly, it is challenging to precisely define
the partition of the extent since subjective attributes do not have an underlying
ground truth. For example, various workers may assign varying aesthetic scores
for images. Last but not the least, due to the subjectivity of the attributes, the
boundaries between different scores are not clear, which makes individual voting
difficult. Thus, directly using single label with majority voting is not suitable for
collecting ground truth for subjective attributes.

2.2.2 Pairwise Comparison

To solve the problems mentioned in 2.2.1, the pairwise comparison method is in-
troduced here for subjective attributes analysis. Annotators are presented with two
images and asked which image is better or worse on the properties. The prefer-
ence decision is a semantically rich method for humans to observe and evaluate
objects in the world [45]. The common pipeline to provide a rank list is: (1) Col-
lect abundant pairwise comparisons, and (2) Employ a rating method [46, 47] to
obtain the rank.

Jiang et al. [1] collected 1, 200 videos from YouTube 4. Ten evaluators partic-
ipated in pairwise comparison procedures to assess which video is more interest-
ing. The “interestingness” score of each video was determined by averaging the
ratings of all annotators. Dubey et al. [48] proposed the Place Pulse 2.0 dataset,

3https://www.dpchallenge.com/ (Accessed: 2023/09/01)
4https://www.youtube.com/ (Accessed: 2023/09/01)
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which quantified the six perceptual dimensions of the urban environment. The
dataset contains 110, 988 Google Street View5 images and provides an evaluation
of the safety, liveliness, boredom, wealth, depression, and beauty of 56 cities.
They created a crowdsourced online game and collected over 1.16 million times
of pairwise comparisons from 81, 630 online volunteers in three years. Based on
the comparison results, TrueSkill [46] algorithm was employed to generate a rank
score for each image.

Kiapour et al. [49] not only created an online game called Hipster Wars to
collect pairwise comparison results on clothing outfits styles but also evaluated
the effectiveness of pairwise comparison. Using Amazon Mechanical Turk1, an-
other single-value vote was also conducted. Each subjective attribute’s extent was
divided into ten levels. Five annotators were asked to evaluate the extent of a par-
ticular style in each image. Compared to the ranking results obtained from pair-
wise comparison, the average scores obtained from single votes were considerably
noisier. The disparity was very large in single-vote comparisons, but consistent in
pairwise comparisons. Thus, they concluded that pairwise comparison is suitable
for providing reliable and stable ground truth for subtle and subjective attributes.
Kiapour et al. [49] also employed the TrueSkill algorithm to gather the final rating
from all comparisons.

Other than the TrueSkill algorithm, there are many pairwise comparison meth-
ods for generating rating scores, such as the Bradley-Terry model [50], Glicko
rating system [51], PageRank [52], and so on. Ponomarenko et al. [53] collected
53, 000 times of comparisons on image quality and used the Glicko model to es-
timate the ground truth for each image. Li et al. [54] assessed image beauty with
the Bradley-Terry model.

Among the various pairwise ranking methods, TrueSkill remains the most
popular for primarily three reasons: Firstly, it is fast in computation speed with
comparable high accuracy [55, 56]. It can converge significantly more quickly
than other algorithms, making it efficient to evaluate large-scale datasets. The
second is its flexibility. In its algorithm, the skill of each player is assumed as
a Gaussian distribution, which considers the instability and uncertainty of each
player. This makes the ground truth obtained from TrueSkill more stable [57].
Finally, it can update scores based on comparison results in real-time [49]. This

5https://www.google.com/maps (Accessed: 2023/09/21)
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allows for continuous monitoring of extent levels, which makes it possible to cap-
ture temporal variations and improve the comparison order arrangement. Based
on the listed advantages, TrueSkill is selected as the pairwise comparison method
for the violence extent analysis presented in Chapter 3.

2.3 Subjective Attribute Recognition

Following the successful construction of a dataset, the next step is to automat-
ically recognize videos. A look back at the evolution of traditional end-to-end
video recognition is first given. Then related work regarding feature fusion is
introduced.

2.3.1 End-to-End Video Recognition

Recognizing and understanding human interactions in video data is of great im-
portance for human-computer interaction, health care, video surveillance, au-
tonomous driving, and many other real-world applications. Traditional recog-
nition methods first extract hand-crafted features, such as Histograms of Oriented
Gradient (HOG) [58], improved Dense Trajectory (iDT) [59], and Space-Time
Interest Point (STIP) [60] to represent data. Then a classifier is used to classify
the data based on the features. However, such “hand-crafted” features require
heavy human labor and domain expert knowledge to be improved [61]. In recent
years, due to the increased computational power and availability of large-scale
datasets, deep learning has achieved great success, and extracting features with a
deep learning method is gaining increasing attention.

Unlike image classification methods which only consider spatial information,
video-based recognition should deal with both spatial and temporal information.
3D Convolutional Neural Networks (CNNs) are introduced to recognize human
action. A 3D CNN is constructed by applying convolution using a 3D kernel. Ji
et al. [62] proposed a 3D CNN that includes one hardwired layer, three convolu-
tional layers, two subsampling layers, and one fully connected layer. The input
is seven continuous frames with a size of 60 × 40 pixels each. The hardwired
layer can be used to generate information from multiple channels of input frames,
ensuring that the following layers can obtain data about gray, gradient, and op-

14



tical flow. Following their work, Tran et al. [63] proposed a Convolutional 3D
(C3D) network that does not need any preprocessing. The designed C3D network
consists of eight convolutional layers, five max-pooling layers, and two fully con-
nected layers. Compared to low-level hand-crafted features, the features extracted
from C3D contain abundant high-level semantic information.

Although end-to-end networks show superior performance in action recogni-
tion and other video recognition tasks, there are still some drawbacks. Firstly, the
features extracted directly from the last layer may not be the optimal representa-
tion for a given task [64]. Particularly for subjective attributes, current networks
are generally trained for action recognition and perform poorly on subjective at-
tribute recognition. Secondly, a deeper network will improve the accuracy of
recognition, but it is time-consuming and challenging to train. In order to address
these two issues, researchers are increasingly developing methods for fusing fea-
tures from other related networks.

2.3.2 Feature Fusion

As stated previously, supplementary information has been widely implemented
in a variety of recognition tasks in order to improve recognition accuracy and
the specificity of features. In literature, various types of additional features are
utilized, such as information from different convolutional layers, different models,
or different tasks.

Simonyan et al. [65] integrated deep features from both spatial and temporal
CNNs to recognize human actions more accurately. The spatial stream generates
information from still images, while the temporal stream generates motion infor-
mation from optical flow. Song et al. [66] fused low-level, middle-level, and
high-level features using a dimension-matching function to ensure the dimensions
became the same before feature fusion. Jiang et al. [67] compressed face hallu-
cination by employing CNN-, GAN-, and RNN-based underlying super-resolvers
to generate candidate Super-Resolution (SR) results. Xu et al. [68] combined
visual, textual, and audio information from video data to identify emotions in so-
cial networks. Bakkali et al. [69] proposed a two-stream neural architecture that
leverages textual contents and visual features to perform the classification of doc-
ument images. Wu et al. [70] claimed that hand-crafted histogram features could
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be complementary to CNN features and help increase the person re-identification
accuracy.

Based on the superior performance of feature fusion, subjective attribute recog-
nition could also be improved by fusing related information. Thus, feature fusion
will be applied in Chapter 4 to enhance the recognition of the subjective social
relation atmosphere. More specifically, this is the first attempt to fuse features
from the objective task with the subjective task.

2.4 Explainable Artificial Intelligence

Despite the widespread adoption of CNNs, the decision procedure of the net-
work still lacks transparency and interpretability, making it difficult to enhance
the performance further. Hence, there has been considerable interest in providing
explanation and interpretability for CNNs over the last few years. Explainable
Artificial Intelligence (XAI) investigates the relationship between input images or
videos and output predictions. Recent studies have achieved outstanding success
in explaining 2D image classification CNNs [71, 72]. On the other hand, due to
the high computation cost and complexity of video data, the explanation of 3D
video recognition CNNs is relatively less studied. In this section, related works
about interpretation for 2D CNNs and 3D CNNs are reviewed.

2.4.1 Interpretation for 2D CNNs

Given an input image and a trained 2D CNN, the objective of the explanation
method is to quantify the contribution of each element in the input. On the basis
of which attribute the explanation model evaluates, there are mainly two types
of techniques: input and concept attribution. The input attribution explains the
CNN prediction outcomes in terms of the significance of the input image pix-
els. Concept attribution, on the other hand, identifies the contribution of human-
understandable concepts to the predicted class of an image.

Input attribution

The input attribution method is the most commonly used in recent literature.
Activation-based methods, such as Class Activation Mapping (CAM) [71], Grad-
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CAM [73], Grad-CAM++ [74], and Score-CAM [75], generate weights by uti-
lizing the activations or gradients from intermediate layers of the neural network,
then project the feature maps back to the input size in order to produce a heatmap.
Perturbation-based methods [76, 77, 78, 79, 80] focus on perturbing the input
image pixels using occlusion, mask, or generative algorithms. The importance
of each pixel is quantified according to the output changes. Since the semantic
meanings of pixels are diverse and highly dependent upon one another, explana-
tion methods based on input attribution may result in contradictory explanations
for different data instances in the same class [72].

Concept attribution

To address this issue, recent research employs human-friendly concepts to in-
terpret 2D CNN predictions. The concepts are generated from training data or
user-interested data. Kim et al. [72] defined a Concept Activation Vector (CAV)
to represent every concept. The importance of the concept is evaluated based on
the changes in target images toward the direction of the concept. Ghorbani et al.
[81] defined the concept as superpixel segmentation extracted from input images
in order to compute CAVs without human supervision. Based on [72], Goyal et
al. [82] utilized a conditional Variational AutoEncoder (VAE) model to measure
the causal effect of different concepts. Ge et al. [83] discussed the structural re-
lationships between concepts with a Graph Neural Network (GNN)-based graph
reasoning network, so that both visual and structural clues can be used for expla-
nation.

2.4.2 Interpretation for 3D CNNs

The goal of interpretation for 3D CNNs is to investigate the essential regions in
both spatial and temporal dimensions of video data. Only a few methods visualize
the prediction process of 3D CNNs. Several methods understand videos using
2D local input attribution techniques initially designed for images by introducing
a temporal domain. Srinivasan et al. [84] utilized the Layer-wise Relevance
Propagation (LRP) [85] to interpret the action recognition based on handcrafted
features and Fisher vector. Hartley et al. [86] improved the 2D Superpixels
Weighted by Average Gradient (SWAG) [87] to the video version by averaging
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and smoothing a saliency map at the superpixel level. Li et al. [88] introduced
a smoothness loss function to smooth the perturbation results in both spatial and
temporal dimensions.

However, these methods are only able to provide coarse video regions that lack
exact semantic meaning. To my knowledge, no research has yet been proposed on
the concept attribution for 3D action recognition CNNs. Hence, the fundamental
idea of Chapter 5 is to provide a concept-based high-level interpretation for video
understanding. The proposed structure can be utilized to interpret and improve
subjective attribute recognition.
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Chapter 3

Ground-Truth Generation

3.1 Overview

This chapter focuses on generating a reliable ground truth for the subjective extent
attribute. Specifically, the subjective violence extent of videos is analyzed. With
the advent of multimedia, social media usage among adolescents has increased
dramatically. According to Common Sense census [89, 90, 91], children aged 0

to 8 spend more than 3 hours with screen media every day, and those aged 13

to 18 spend about 9 hours with media, including television, video games, and
Internet. However, many videos released on TV or the Internet are unsuitable for
children, since they may include violent, bloody, or adult content. These videos
may lead to a bad influence on children’s behaviors and development. A number
of studies has proven that increasing violent media exposure will result in not
only short-term but also long-term harmful effects on youth [92]. Eron’s [93]
and Anderson’s [94] experiments indicate that children who watch violent TV
programs or play violent video games in early formative age tend to have a high
probability to perform aggressive behavior in their later life, including criminal
behavior, spousal abuse, and assault [95]. Therefore recognition of violent video
is of the essence in multimedia recommendation [96, 97] and multimedia content
understanding [98].

Currently, visual violence studies mainly concentrate on scene detection or
action recognition, such as explosion, blood, or fight detection. Generally in vio-
lence analysis approaches, extracting features from videos is the first step, includ-
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ing either local features or global features. Chen and Hauptmann [99] extracted
Motion SIFT (MoSIFT) to detect distinctive local features by combining the local
appearance and temporal information in surveillance video. De Souza et al. [100]
presented a violence detector Space-Time Interest Points (STIP) [60] mainly in
sports videos. Hassner et al. [101] extracted global features Violent Flows de-
scriptor (ViF) for crowd violence detection. Local features are commonly fol-
lowed by a coding method to represent the video, such as bag-of-visual-words
[102]. Finally, these features will be used for classification by using a linear Sup-
port Vector Machine (SVM) [103].

Existing visual violence detection research is only limited to objective scene
or action detection, instead of subjective video-level content analysis. However, in
reality, different scenes or actions may cause different violence extent for a video,
which is the key challenge for rating media violence. In this case, this research
focuses on subjective violence rating prediction.

However, such a requirement can not be met by existing datasets, none of
which provides a violence extent label. To this end, here, a novel dataset is first
constructed with violence extent labels. As introduced in 2.2.2, the pairwise com-
parison method is used to provide ground truth for violence extent.

The major contributions of this dataset construction are as follows:

• Designed for subjective violence rating analysis, a fine-grained violent video
dataset called Human Violence Dataset is constructed. The dataset consists
of 1, 930 human-involved violent videos collected from YouTube 1 movie
trailers. Each video is annotated with six objective violent annotations. The
subjective violence levels are given by pairwise comparison. The stabil-
ity and convergence of TrueSkill [46] in the Human Violence Dataset are
proven.

• A two-step method is developed for violence rating prediction. A two-
stream neural network is fine-tuned on the Human Violence Dataset and
used to extract features for each video. By using different pooling and nor-
malization methods, various representations of two-stream features are as-
sessed and the advantage of average pooling is validated. Videos are repre-
sented by the best combined two-stream features. Then a rating estimation

1https://www.youtube.com/ (Accessed: 2023/09/01)
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machine is proposed to learn the level relationship between different violent
videos. The proposed method is experimentally shown to be able to predict
violence ratings better than classification methods. The visualization of fea-
ture maps and prediction results are also presented.

3.2 Related Work

3.2.1 Violent Video Dataset

In literature, there already exist some datasets for violent video analysis. Hockey
fight dataset [104], crowd violence dataset [101], and Violent Scenes Dataset
(VSD) 2014 [105], for example, are the most commonly used datasets. Detailed
information of these three datasets are introduced below and summarized in Ta-
ble 3.1.

Hockey Fight dataset

In 2011, Nievas et al. [104] created a dataset containing 1, 000 short clips col-
lected from hockey games of the National Hockey League. All the videos were
annotated with two categories: “fight” or “non-fight”. There are a total of 500
violent videos and 500 non-violent videos. Each video contains 50 frames with a
resolution of 720× 576 pixels.

Crowd Violence dataset

In 2012, Hassner et al. [101] created a dataset for crowd violence detection
in video surveillance systems. 246 real-world video clips were collected from
YouTube 1 with a resolution of 320 × 240 pixels. The duration of videos is from
1 second to 6 seconds. Half of the dataset are violent, while the others are non-
violent.

Violent Scenes dataset

In 2014, Schedl et al. [105] produced a dataset for violent scene detection based
on Hollywood movies. This dataset is composed of three parts: (1) Hollywood
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Table 3.1: Comparison of different violent video datasets.

Dataset Annotations Clips Resource # of violent videos Violent level

Hockey Fight [104] Fight / Non-fight 1, 000 Hockey games 500 —

Crowd Violence [101] Violent / Non-violent 246 YouTube 123 —

VSD 2014 [105] 7 visual + 3 audio labels 31 movies Hollywood movies 15% violent scenes —

Proposed 6 subjective + violence 1, 930 Promotion videos 1, 930
√

training dataset, (2) Hollywood test dataset, and (3) YouTube dataset. The Holly-
wood dataset contains 24 movies (In total, 50 hours and 2 seconds) and 7 movies
(In total, 13 hours and 53 minutes), respectively. The YouTube dataset contains
86 video clips (In total, 2 hours and 3 minutes) from YouTube 1. The Holly-
wood dataset has around 15 %, and the YouTube dataset has around 44 % violent
scenes, respectively. This Violent Scenes dataset has been used in the MediaEval
2014 workshop [106]. Many researches use this dataset for violent scene detection
tasks.

3.2.2 Media Rating Systems

In order to protect children and provide appropriate media for different age groups,
many countries have established organizations for media ratings, including film,
game, and music rating. Here, Eirin in Japan and MPAA in the United States are
introduced below.

Eirin

Eirin is the abbreviation for Film Classification and Rating Organization in Japanese,
an independent and non-governmental organization. It was established in 1949

and the classification criteria changed several times over the years [107]. Cur-
rently, films in Japan are classified into four classes: G (Suitable for all ages),
PG12 (Parental guidance requested for teenagers under twelve), R15+ (Restricted
to teenagers over fifteen), and R18+ (Restricted to person aged 18 and above).
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MPAA

MPAA is the abbreviation for Motion Picture Association of America, who works
for film classification and rating in the United States. Its purpose is to provide
parents with information about movies so that they can decide whether the movie
can be watched by their children or not [108]. Different from Eirin in Japan,
MPAA classifies films into five categories: G (General viewing), PG (Parental
guidance needed), PG-13 (Some videos are inappropriate for children under 13),
R (Restricted, parental guidance required for teenagers under 17), and NC-17 (No
one under 17 admitted). Primary factors that may influence the rating include
violence, language, theme, drug abuse, sensuality, and nudity [109].

3.2.3 Visual Violence Analysis

Violence detection is not a novel problem, which has mainly been considered as a
task to detect flame or blood flow in previous research. Many research focuses on
explosion or blood detection. Chen et al. [110] proposed a bloody frame detection
approach to determine violent scenes in movies. Giannakopoulos et al. [111]
extracted 12 kinds of audio features to detect audio violence, such as shots and
screams. Later studies began to focus on detecting violent interaction behaviors,
for instance, fighting actions between people. De Souza et al. [100] extracted
Space-Time Interest Points (STIP) to distinguish violent activities from regular
activities in sports video. Datta et al. [112] defined an Acceleration Measure
Vector (AMV) to detect human violence in video, such as fist fighting, kicking,
or hitting. Improved dense trajectories [59] is also a widely used feature when
detecting violence motion [113, 114].

More recently, researchers have paid more attention to deep learning methods
when detecting violence. In MediaEval challenges2, several groups [115, 116,
117] utilized Convolutional Neural Networks (CNNs) to extract features. Li et
al. [118] combined CNN features, audio features, and motion features to repre-
sent violent video. Several researchers also used convolutional Long Short Term
Memory (convLSTM) for violence detection. Dong et al. [119] and Hanson et al.
[120] used it to capture spatio-temporal features.

2http://www.multimediaeval.org/ (Accessed: 2023/09/15)
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Figure 3.1: Overview of proposed dataset annotation method. With a group of
violent videos as input, the videos are ranked according to the violence extent.
The final output is the violence level of each video.

Different from previous datasets which contain both violent and non-violent
videos, the proposed dataset focuses only on violent videos. Since the number of
violent videos in previous datasets is not enough, 1, 930 violent video clips were
collected. More specifically, in order to figure out the cause of violence, each
video is labeled with six objective attributes. The violence rating of each video
is also studied particularly. Table 3.1 also compares the proposed dataset with
existing violent video datasets.

Existing media rating systems take both visual and auditory information into
consideration, while here, only visual information is focused on. Moreover, this
thesis focuses on short movie clips without context or story. In this case, four
or five categories are too precise, so three categories are considered sufficient
for visual distinguishment. Videos in the dataset are annotated with a violence
extent on three levels. Since violence extent is a subjective attribute, a pairwise
comparison method is employed to provide ground-truth annotations. Different
from previous violent scene detection approaches, exact actions or scenes are not
detected in a violent video. As shown in Figure 3.1, by contrast, with a video clip
as input, the output of the proposed method is the violence extent of the video.
Considering the outstanding performance of CNN in violence detection, a two-
stream network is used to extract features from violent videos. Most existing
research treat violence recognition as a classification problem, while here, the
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relationship between different violence levels are learned.

3.3 Human Violence Dataset

The process of collecting the dataset was carried out by two graduate students with
a crosscheck mechanism. The current dataset contains 1, 930 violent video clips
collected from movie promotion videos on YouTube 1. Considering the copyright
of the video, the collected dataset is only used for research and is not published.
Each clip has a length of 30 to 100 frames. The frame rate and resolution of
video clips are 30 frames per second (fps) and 1, 280 × 720 pixels, respectively.
Additionally, each clip was manually labeled with six objective fine-grained visual
attributes. Furthermore, by utilizing the pairwise comparison method, each video
was also annotated with one subjective violence extent label. In the following, the
details of the dataset creation process will be described.

3.3.1 Data Collection

In order to collect videos with various violent scenes and actions, movie promo-
tion videos were chosen as raw video content because they contain multiple scenes
in short time periods. The collection began by selecting action movies released in
the last ten years. Then the movie trailers published on YouTube 1 by the corre-
sponding official movie companies were downloaded. In total, 1, 020 raw videos
were gathered. As shown in Figure 3.2, the duration of each video is mainly
around 2 to 3 minutes. Considering the complexity of violence extent, each video
clip should contain only a single scene and a complete action. In this case, a seg-
mentation tool [121] was used to divide the videos into over 25, 000 shots. Further,
very short clips that did not contain a whole action, clips with multiple scenes, as
well as those clips without human-involved violence were manually removed.

In total, 1, 930 human-involved violent video clips were collected. During
the labeling process, some other forms of violence without human involvement,
such as firearms, fire, or explosion were also included. However, these objective
violence attributes have been well-studied in prior research and are also very con-
sistent in different videos. In contrast, most of the violence is accompanied by
human interactions. With different interactions between people, violence extent
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Figure 3.2: Statistics of video clip length of collected movie trailers.

of videos differs from each other. Sometimes even subtle differences may lead
to completely different violence levels of videos. Considering these challenges,
human-involved visual violence is only focused on in this thesis.

3.3.2 Objective Violent Attribute

Annotations include two parts: Objective violence attributes and Subjective vi-
olence ratings. The selected six objective attributes are closely related to the
violence extent. The annotation procedure is finished by two annotators inde-
pendently. The following explains the definition of each attribute:

• Combat Mode (CM): There are five subcategories in this attribute: (1) Only
attacker appears in the video clip, (2) Only victim appears, (3) One person ver-
sus one person, (4) One person versus a group of people, and (5) A group of
people versus another group of people.

• Physical Contact (PC): There are two subcategories in this attribute: (1) A
person brings a part of his/her body into contact with another person, and (2)
Others.
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Table 3.2: Fine-grained violent attributes and corresponding labels of six video
examples in the proposed Human Violence Dataset.

Attributes Combat Mode Physical Contact Weapon Possession Weapon Direction Blood Explosion

Video 1 Attacker —
√

Other directions — —

Video 2 One vs. One —
√

Opponent — —

Video 3 One vs. One
√ √

Opponent Static —

Video 4 One vs. Group
√ √

Opponent — —

Video 5 Attacker —
√

Act towards the screen — —

Video 6 Victim — — — —
√

(a) Video 1 (b) Video 2 (c) Video 3

(d) Video 4 (e) Video 5 (f) Video 6

Figure 3.3: Video examples and labels in the proposed Human Violence Dataset.
(a) A group of men hold guns, (b) A man attacks another man with a bottle, (c) A
man is injured by a knife, (d) A man fights with another two men with a gun on
his hand, (e) A woman shoots towards the screen, (f) A group of men are blown
up in an explosion. (a) and (b) have the lowest violence level. (c) and (d) have a
moderate violence level. (e) and (f) have the highest violence level.
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• Weapon Possession (WP): There are three subcategories in this attribute: (1)
No weapon appears in the video clip, (2) A weapon appears, but is not used, and
(3) A weapon is used.

• Weapon Direction (WD): A weapon appears in a video, and three subcate-
gories that represent the direction of weapons are annotated: (1) Act on the
opponent, (2) Act towards the screen, and (3) Others.

• Blood: There are three subcategories in this attribute: (1) No blood, (2) Static
blood, and (3) Flowing blood.

• Explosion: There are two subcategories in this attribute: (1) No explosion, and
(2) Explosion.

Figure 3.3 shows examples of violent videos for each attribute and Table 3.2
shows the corresponding labels in the dataset.

3.3.3 Subjective Violence Rating

As introduced in 2.2.2, pairwise comparison can be used to constrain the instabil-
ity of subjective attributes rating. Here, the TrueSkill [46] algorithm is employed
to annotate the ground-truth violence level. TrueSkill was originally a Bayesian
rating system designed for video game matchmaking. When using TrueSkill,
for each video, the violence extent will be considered as a Gaussian distribution
N (µ, σ), where µ represents the current estimate of the violence, and σ represents
the current uncertainty of the estimate. Every time two videos are compared, the
more violent one is decided. After each comparison, µ and σ are updated accord-
ing to the following equations. Following Herbrich [46], µ = 25 and σ = 25/3

are set as initial values for each video before any comparison. The following
describes the update process:
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c
,
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)]
, (3.4)

c2 = 2β2 + σ2
win + σ2

lose, (3.5)

where function v(θ) = N (θ)/Φ(θ) and w(θ) = v(θ) ·(v(θ)+θ). They are defined
by using the Gaussian Probability Density Function (PDF) N (θ) and Cumulative
Distribution Function (CDF) Φ(θ).

After sufficient comparisons, µ and σ will become stable. According to [29,
48], comparison times around 24 to 36 per video provide a stable ranking. The
predicted violent score for each video is calculated as µ− 3σ. By sorting violent
scores, the violence extent ranking for each video is obtained.

When labeling violence extent, 1, 459 videos with an attribute of WP (2) and
(3) subcategories are selected, because videos belonging to these two categories
are balanced. Each video is randomly compared to other videos 36 times without
any overlap. Graphic User Interface (GUI) was implemented to compare videos
efficiently, a snapshot of which is shown in Figure 3.4. Each time it shows two dif-
ferent violent videos randomly and ask the annotator which video is more violent.
The observer can only choose one violent video, and it is recorded.

In this experiment, in total, 26, 262 times of different comparisons were col-
lected in about three months by the author to maintain the consistency of the
judgment criteria. After all comparisons were performed, TrueSkill violent scores
were calculated for each video. Figure 3.5 shows the histogram of violent extent
scores after all comparisons. A higher score represents a higher violent extent.
These videos are then divided into three levels according to their TrueSkill scores.
In practice, the TrueSkill scores averaged over five runs were used as the final
score, after proving the stability and convergence of the TrueSkill method.
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Figure 3.4: Graphical User Interface for pairwise comparison. Two videos are
compared on which one is more violent by evaluators.

Figure 3.5: Histogram of TrueSkill scores after all comparisons.
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Table 3.3: Accuracy of violent level similarity.

Level Samples 1 2 3 4

1 487 97.33% 96.92% 96.92% 96.92%

2 486 93.83% 93.83% 93.42% 93.83%

3 486 96.50% 96.91% 96.50% 96.91%

All 1, 459 95.89% 95.89% 95.61% 95.89%

3.3.4 Dataset Evaluation

The violence level calculated through TrueSkill is used as the ground-truth anno-
tation in the following experiments. In this case, the stability and convergence
of the TrueSkill algorithm are proved in the proposed dataset, and below a more
convincing violence level annotation is provided. Detailed proofs are shown.

TrueSkill stability in Violent Video dataset

First, the stability of TrueSkill on the proposed dataset is tested. The change
of comparison orders is expected not to influence the final violence extent level.
In the TrueSkill algorithm, each time only one set of video pairs Pi is compared
randomly. Let Li = {L1

i , L
2
i , ..., L

q
i |q = 1, 2, ..., Q} represent the violence level of

each video calculated by Pi, where Q is the video numbers. The sequence of all
comparisons can be represented as S = {P1, P2, ..., Pn|n = 1, 2, ..., N}, where
N equals to 26, 262, here. The final violence level calculated from sequence S

can be represented as L = {L1, L2, ..., Lq|q = 1, 2, ..., Q}. Then the comparison
order list S is randomly changed by using a rand() operation, where the elements
in the list will be changed randomly. In this case, a new comparison order list
Sk = {rand(P1, P2, ..., Pn)|n = 1, 2, ..., N} is obtained. Then, the violence level
Lk is calculated for each video according to Sk. By investigating the violence
level similarity between L and Lk, we can confirm if the comparison orders will
influence the predicted violence extent levels.

The accuracy of violent level similarity when changing comparing orders is
shown in Table 3.3. The table includes both the accuracy of three separate levels
and the total accuracy. The comparison order is changed four times randomly.
From the results, we can conclude that when changing comparison orders, the
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violence level will have around 96% similarity between different sequences. It in-
dicates the violence rating calculated by TrueSkill is nearly independent of com-
parison order.

TrueSkill convergence in Violent Video dataset

Next, the convergence of TrueSkill in the proposed dataset is tested. At present,
each video is compared 36 times with other videos. Let each video be compared
to other videos t times, the violence level calculated after t times per video can be
represented as Lt = {L1

t , L
2
t , ..., L

q
t |q = 1, 2, ..., Q}, where Q is the video num-

bers. The violence level of each video is expected to become stable as the number
of comparison times increases, which means the violence levels obtained from two
consecutive comparison results should be highly similar after sufficient compar-
isons. The convergence score of TrueSkill is the similarity between the predicted
violence level in Lt and Lt+1, which can be defined as:

Scoret =

∣∣q ∈ Q : Lq
t = Lq

t+1

∣∣
Q

∈ [0, 1]. (3.6)

Based on previous research [29, 48], the TrueSkill score converged after around
t = 30 times comparisons for each video. To better observe the trend from non-
convergence to convergence, t is set from 20 to 35 here. Figure 3.6 shows the
results of the convergence score. After about 28 times comparisons per video, the
violence level for each video became stable.

According to previous proof, changing comparison orders will cause a distur-
bance to the final rating. In order to obtain a more convincing violence level, the
procedure is repeated five times and TrueSkill scores are calculated for each time.
The average value of five scores is treated as the final score for each video. Fig-
ure 3.6 also shows the average convergence scores after five times. By averaging
multiple results, the violence level is more accurate and has a higher convergence
rate. In this case, the violence level obtained from five times average is selected as
the final ground-truth violence rating for the following experiments. Level 1 con-
tains 487 videos with TrueSkill scores ranging from −4.7693 to 14.9794. Level 2
contains 486 videos with scores from 14.9841 to 23.9908. Level 3 contains 486

videos with scores from 24.0114 to 37.5025.
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Figure 3.6: Convergence of TrueSkill score. The similarity between consecutive
timings are calculated.

Figure 3.3 also shows six video examples from three violence levels.

3.4 Proposed Method

This section proposes a violence rating prediction method designed for recogniz-
ing subjective extent. Figure 3.7 illustrates the pipeline of the proposed method.
The input is violent video clips and the output is violence levels. The method
is composed of two main steps: (1) Fine-tuned two-stream network used to ex-
tract features for each video, and (2) Rank learning machine trained to predict the
violence rating for a test video.

3.4.1 Two-Stream Network Based Feature Extraction

Two-stream network [65] has shown great success in many computer vision tasks,
especially in action recognition. It consists of a spatial stream and a temporal
stream. The input of the spatial stream is a single image frame, while the input of
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Figure 3.7: Pipeline of the proposed method. Videos a, b, and c are training
videos used to train the rank learning machine. Three different colors are used to
represent two-stream features extracted from videos in different violence levels.
Video d is a test video. The violence level of the test video can be predicted by
calculating its ranking score by using the trained rank learning machine.

the temporal stream is a stack of 10 optical-flow frames. A two-stream network
is fine-tuned using the Human Violence dataset introduced in Section 3.3, and
is used to extract features. Given a raw video i of size H × W× 3 × F, where
H [pixels] represents the height of the video, W [pixels] represents the width of the
video, and F represents the number of frames. Each raw video is down-sampled
to be used as the input of the two-stream networks. The number of the down-
sampled video frames is set as N selected from the whole number of frames F ,
making the input sizes of RGB frame and optical flow become H × W× 3 ×
N and H × W× 10 × N, respectively. Then, two-stream features fs and ft are
extracted from the Rectified Linear Unit (ReLU) layer following the seven Fully
Connected (FC) layers. Both fs and ft have the size of H ′ ×W ′× C ×N, where C
is the channel numbers of the extracted layers, H ′ is the height of the feature map,
and W ′ is the width. These parameters depend on the video size and the network.

A max pooling or a sum pooling operation is then performed over fs and ft

on C-dimension. The feature can be further denoted as f ′
s and f ′

t . Then the two-
stream features are normalized and concatenated as the final representation for
each video denoted as f = [B(f ′

s);B(f ′
t)]. Here, B denotes two normalization

methods: L2 normalization and Square Root (SR) with L2 normalization. This
concatenated feature f will be used to predict the level in the following step.

Right now, video i can be represented as (fi, li), where fi is the two-stream
feature and li is the ground-truth violence rating. Here, videos are divided into
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three levels: L1, L2, and L3, where L1 < L2 < L3. The purpose of this research is
to predict the violence level l of a test video with feature f ∗. In previous research,
multi-class classification was the most commonly used method. However, classifi-
cation methods take each sample separately and can not distinguish the difference
between different violent levels, such as: L1 < L2, L2 < L3, L1 < L3. In order
to make the best of these inner relationships, a rank machine is introduced here to
learn the relationship between different violent levels and predict the violent rank.

In the learning stage, let’s denote the training dataset which contains V videos
as D = {(f1, l1), (f2, l2), ..., (fv, lv)|v = 1, 2, .., V }. For every two different
videos, there are two kinds of relationship according to their violence labels: or-
dered relationship and similar relationship. Ordered relationship is defined as
O = (fi,fj), if li > lj , which means video i have a higher violence level than
video j. Similar relationship is defined as S = (fi,fj), if li = lj , which means
video i and video j are in the same violence level. The purpose here is to learn a
ranking function:

r(fi) = w⊺fi, (3.7)

where w⊺ is a coefficient vector. This ranking function should make the maximum
number of the following constraints satisfied:

∀(i, j) ∈ O : w⊺fi > w⊺fj, (3.8)

∀(i, j) ∈ S : w⊺fi = w⊺fj. (3.9)

Solving this problem is an NP hard problem. Following the work done by
Parikh [45] and Joachims [122], two non-negative slack variables ξ and γ which
are similar to SVM are introduced to approximate the results. Equation 3.8 and
Equation 3.9 are converted into solving the following optimization problem:
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minimize :

(
1

2
∥w⊺∥2 + C

(∑
ξ2ij +

∑
γ2
ij

))
(3.10)

s. t. w⊺fi ≥ w⊺fj + 1− ξij;∀(i, j) ∈ O, (3.11)

|w⊺fi −w⊺fj| ≤ γij;∀(i, j) ∈ S, (3.12)

ξij ≥ 0; γij ≥ 0, (3.13)

where C is a trade-off constant to maintain the balance between maximizing the
margin and meeting the margins of the pairwise label. The Newton method will
be used to calculate w⊺.

3.4.2 Violence Rating Prediction

The ranking function r(fi) with learned w⊺ can be utilized to calculate the vi-
olence score for each video. Dataset D = {(f1, l1), (f2, l2), ..., (fv, lv)|v =

1, 2, ...V } can be represented as D′ = {(w⊺f1, l1), (w
⊺f2, l2), ..., (w

⊺fv, lv)|v =

1, 2, ..., V }. In the following, three different methods are introduced to predict the
violence level with a violence score.

Minimum distance prediction

For each violence level, the ranking score with feature f can be represented as:

Sk =
1

Nk

∑
lv=Lk

w⊺fv (k ∈ {1, 2, 3}, v ∈ {1, 2, ..., V }) (3.14)

where Nk represents the number of violent videos in level Lk, k denotes the cor-
responding violence level in the task. The violence level for a new video with
feature f ∗ can be calculated as:

L∗ = argmink(w
⊺f ∗ − Sk)

2(k ∈ {1, 2, 3}). (3.15)
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Minimum mean distance prediction

The violence scores for violent videos in each level can be assumed as a Gaussian
distribution:

Fk(w
⊺fk) = N (µk, σk) (k ∈ {1, 2, 3}), (3.16)

where µk is the mean value of the Gaussian distribution, and σk is the standard
deviation. Given a new video with feature f ∗, the violence level can be calculated
as:

L∗ = argmink(w
⊺f ∗ − µk)

2(k ∈ {1, 2, 3}). (3.17)

Maximum Gaussian likelihood prediction

The ranking scores in each level also follow a Gaussian distribution N (µk, σk).
The rating level of a new video can be predicted by computing the maximum
likelihood of the rating scores, which can be represented as:

L∗ = argmaxk P (w⊺f ∗|µk, σk)(k ∈ {1, 2, 3}). (3.18)

3.5 Experiments

In order to evaluate the effectiveness of the proposed method, experiments im-
plemented in MATLAB are conducted. In total, 1, 459 videos are used with
75% as training data, and the rest as test data. Three networks are used as the
backbone Convolutional Neural Network (CNN) and compared: Alexnet [11],
VGG16 [123], and ResNet-50 [124]. The structures of these three networks are
shown in Figure 3.8, Figure 3.9, and Figure 3.10, respectively. These networks
are pre-trained on ImageNet [41] followed by fine-tuning on the proposed dataset.
Alexnet has 5 convolutional layers and 3 FC layers, followed by ReLU. VGG16
has 13 convolutional layers and 3 FC layers. Max-pooling is performed over a
2 × 2 pixels window with stride 2. All hidden layers use ReLU as an activa-
tion function. ResNet-50 is a 50 layers residual network. Each stream is trained
separately. Softmax scores of two streams are combined by averaging fusion [65].

All images are resized to 256 × 342 pixels beforehand. When implementing
VGG16 and ResNet-50, a 224×224 pixels sub-image is cropped from the selected
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Figure 3.8: Network structure of Alexnet.

Figure 3.9: Network structure of VGG16.

image randomly. When using Alexnet, a 227×227 pixels sub-image is cropped. In
the training stage, for the spatial network, one frame is randomly chosen from each
video and resized to the required size. For the temporal network, 10 continuous
optical-flow frames are randomly chosen from each video. In the test stage, for the
spatial network, the middle frame of the video is used. For the temporal network,
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Figure 3.10: Network structure of ResNet-50.

Figure 3.11: Network structure of Two-Stream Convolutional Network.

the middle 10 continuous optical-flow frames are used. The learning rate for two
streams starts from 10−3, and is reduced by a factor of 10 every 30 epochs until the
90th epoch. When using Alexnet and VGG16, a dropout layer is added after FC
layer for two streams. According to the good practices in [125, 126], the dropout
ratio for the spatial network is set as 0.8, and the temporal network 0.9.

3.5.1 Evaluation of Two-Stream Network

In general, deep learning methods perform better than traditional methods, and
with the increase of the network depth, the accuracy becomes higher. First, two
experiments are conducted: (1) Improved Dense Trajectories (IDT) [59] is used
to extract trajectory features, and (2) Two-stream network is used for violence
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Table 3.4: Evaluation of classification methods and deep features.

Method End-to-End
Feature

Pooling Raw L2-norm SR + L2-norm

IDT 49.17% —

Alexnet

Spatial Network 39.84%
Average 39.29% 39.84% 40.93%

Max 40.11% 41.21% 38.46%

Temporal Network 41.75%
Average 40.48% 41.23% 42.03%

Max 42.31% 44.78% 42.03%

Two-stream Network 46.40%
Average 44.23% 46.70% 46.70%

Max 45.33% 45.33% 46.15%

VGG16

Spatial Network 42.86%
Average 45.60% 47.80% 46.98%

Max 45.05% 45.88% 46.70%

Temporal Network 46.43%
Average 47.53% 49.18% 47.53%

Max 42.31% 47.80% 48.90%

Two-stream Network 50.28%
Average 47.25% 51.65% 51.10%

Max 49.18% 51.10% 50.27%

ResNet-50

Spatial Network 44.23%
Average 41.48% 43.96% 48.63%

Max 42.03% 46.70% 48.08%

Temporal Network 48.90%
Average 46.70% 47.53% 50.27%

Max 49.18% 49.73% 49.45%

Two-stream Network 50.82%
Average 49.73% 49.73% 53.02%

Max 49.18% 50.82% 48.90%

classification. The structures of two-stream convolutional network is shown in
Figure 3.11.

In IDT, four different descriptors are computed: Histogram of Oriented Gra-
dient (HOG) [58], Histogram of Flow (HOF) [127], Motion Boundary Histogram
(MBH) [128], and trajectory. Here, trajectory length is set as 3 frames, and in
total 402 dimensional features are calculated for each video. The dimensions are
decreased to 201 by using Principal Component Analysis (PCA), and fisher vector
is used to encode the features. Finally, a linear SVM is used for classification. The
accuracy of IDT was 49.17% as shown in Table 3.4.
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Figure 3.12: Visualization of feature maps from different layers using VGG16.
(a) Original violent frame and optical-flow frame, (b)–(f) Feature maps extracted
from Conv1-2, Conv2-2, Conv3-3, Conv4-3, and Conv5-3 layers. We can see that
deeper convolution layers can provide more typical features.

The end-to-end results of the two-stream network are also included in Ta-
ble 3.4. A deeper network can better predict violence rating. ResNet-50 showed
the best performance. IDT performed worse than VGG16 and ResNet-50. A two-
stream network can learn from both image information and motion information.
The result validates that it can provide more violent representations than trajectory
features. Figure 3.12 visualizes the feature maps of two streams using VGG16.
For each convolutional layer, the mean value of each channel is calculated and the
most active channel is visualized with a pseudocolor image. We can see that the
shallower layers mainly provide edge or texture patterns, while the deeper layers
can provide more discriminative information such as a gun shot.

3.5.2 Evaluation of Deep Features

CNN representation has been proven to be a powerful descriptor in previous re-
search [129, 130]. As mentioned above, deeper layers can produce more charac-
teristic features than shallower ones. The activations extracted from the FC layer
with a linear SVM usually show outstanding performance [131]. Normally the ex-
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tracted features are normalized to small scale such as 0 to 1, in order to maintain
the balance and prevent numerical difficulties before classification.

Here, a fine-tuned two-stream network is used as a feature extractor and fea-
tures are extracted from the ReLU7 layer. As mentioned in 3.4.1, N is set as the
number of frames for each video. Two pooling operations and two normaliza-
tion operations are conducted on the extracted features. Since violent activity is
a continuous action, violent extent judgment depends on the information from all
frames in a single video. Average pooling will better utilize all violence features
than max pooling in this case. Finally, violence level is predicted by feeding the
features into a linear SVM.

Table 3.4 shows the evaluation results of different pooling and normaliza-
tion methods for the spatial network and the temporal network. For each pool-
ing method, the best-performed normalization method in each single stream is
concatenated as two-stream features, and fed into a linear SVM. Table 3.4 also
evaluates the performance of two-stream features. The results prove that aver-
age pooling can retain more violence information and can predict better in all
three networks, while normalization methods do not make much difference. Fur-
thermore, the combined two-stream features perform better than end-to-end two-
stream results.

3.5.3 Evaluation of Proposed Method

Now let us evaluate the proposed method. The best performed two-stream fea-
tures in Table 3.4 are used to train the rank learning machine proposed in 3.4.1.
Three different methods are conducted to predict violence rating. The comparison
results between the proposed method and existing methods are summarized in Ta-
ble 3.5. We can see that predicting violence rating by calculating maximum Gaus-
sian likelihood performs best. Using mean distance prediction also performs bet-
ter than classification methods. This is because the ground-truth violence scores
are predicted by TrueSkill [46] and estimated as Gaussian distribution. So Gaus-
sian distribution can better match the relationship of rating difference. However,
the minimum distance prediction method performs worse. This can be hypoth-
esized that because learning rank relationship is complicated, directly using the
rank score difference can not reflect the inner relationship.
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Table 3.5: Evaluation of the proposed method.

Methods Alexnet VGG16 ResNet-50

Chance rate 33.33% 33.33% 33.33%

Two-stream End-to-end 46.40% 50.28% 50.82%

Two-stream feature + SVM 46.70% 51.65% 53.02%

Minimum distance prediction 40.38% 45.60% 49.45%

Mean distance prediction 49.18% 53.37% 57.69%

Maximum Gaussian likelihood 51.10% 53.85% 57.97%

Table 3.6: Confusion matrix of VGG16. Horizontal axis is the predicted label.
Vertical axis is the true label. (a) Confusion matrix of end-to-end two-stream
network, (b) Confusion matrix of the best performed two stream features with an
SVM classifier, (c) Confusion matrix of the proposed method using the maximum
likelihood estimation method.

End-to-end Level 1 Level 2 Level 3
Level 1 0.4672 0.459 0.0738
Level 2 0.314 0.4793 0.2066
Level 3 0.124 0.314 0.562

(a) End-to-end

SVM Level 1 Level 2 Level 3
Level 1 0.6311 0.2459 0.123
Level 2 0.4463 0.3388 0.2149
Level 3 0.1488 0.2727 0.5785

(b) SVM

Proposed Level 1 Level 2 Level 3
Level 1 0.6639 0.2623 0.0738
Level 2 0.438 0.3471 0.2149
Level 3 0.1405 0.2562 0.6033

(c) Proposed method

Table 3.6 shows three confusion matrices of using VGG16 network. The ma-
trices prove that the proposed method can better predict violence rating in all three
levels. Especially, the prediction accuracy in level 1 and level 3 are improved a lot.
However, the videos in level 2 have the lowest prediction accuracy in all methods.
Videos in level 1 have a high possibility to be predicted as level 2, while videos
in level 3 are more likely to be judged as level 2 than level 1. This can be hy-
pothesized that videos in level 1 and level 3 usually have a strong evidence, while
videos in level 2 do not have a clear boundary with the nearby two levels.

Figure 3.13 shows some prediction examples using the proposed method. In
each level, videos in the box of the same color with the ground-truth level color are
the successful examples. However, there are still some failures. For example, the
first failure example in level 1 is a man hitting the head of a woman with a kettle.
It is a low violence video according to its TrueSkill score, while it is considered
as level 2. This could be because the proposed method does not detect exact
objects in the video, so it may fuse the kettle with some other aggressive weapons,
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leading the attacking behavior to become a high violence action. By observing
the remaining failure examples and their TrueSkill scores, we can see that the
boundaries between videos that have close scores are very unclear. Sometimes
the actions are very similar, and only the direction of the weapon or the frequency
of using the weapon has a slight difference. So it is hard to predict the level of
videos near the border. These examples are consistent with the above confusion
matrices.

3.6 Summary

This chapter focused on providing reliable ground truth for the subjective violence
attribute. A new dataset was constructed. The proposed Human Violence Dataset
consists of 1, 930 violent videos. Besides, six objective violence attributes and one
subjective violence rating level were annotated to each video. Based on TrueSkill
[46] pairwise comparison algorithm, the violence extent can be measured. The
ground truth was evaluated in both stability and convergence.

Designed for this dataset, a rank learning-based method was proposed to esti-
mate the violence extent of each video. It is mainly composed of two parts: (1)
Visual features are extracted using a fine-tuned two-stream network. Spatial fea-
tures and temporal features with different pooling and normalization methods are
investigated, and (2) Violence rating prediction machine is learned by utilizing
deep features and pairwise relationship between videos.

Experimental results on violence rating prediction showed that the proposed
method performed better than existing classification methods. This indicates that
the proposed method better reflects the relationship between different violence
levels and can produce more representations for violent videos.

The main advantage of the proposed method over the previous studies is that
it focuses on video-level analysis instead of single scene-level detection. On the
other hand, the subjective violence rating label is mapped to a ranking problem
with pairwise comparison. The ground-truth violence rating provided by multi-
time comparisons is more reliable than a single-score evaluation. Finally, the
proposed method is suitable for predicting subjective attributes which have an
inner extent relationship.
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Chapter 4

Subjective Attribute Recognition

4.1 Overview

In this chapter, a detailed task to investigate subjective attribute recognition; social
relation atmosphere recognition is introduced. Social relation atmosphere plays
an important role in the human society. It refers to the integration of multiple cues
in social relationships, such as communication states, interpersonal interactions,
emotional expressions, and body language of humans. By automatically recogniz-
ing the social relation atmosphere in social media, machines can interpret human
behaviors more precisely, provide more semantic information, and develop more
intelligent applications.

In recent years, some research focuses on recognizing objective social rela-
tionships from images and videos. Existing techniques on image-based data pri-
marily utilize multiple visual cues. Sun et al. [132] divided social life into 5 do-
mains and 16 social relationships based on Burgental’s social psychology theory
[133]. Age, gender, and head position were employed as intermediate attributes
to aid in the prediction of both social domains and relationships. Similar to this,
Goel et al. [134] believes that intermediate attributes are helpful for understanding
social relationships. They first generated a Multi-Network Convolutional Neural
Network (MN-CNN) for extracting body attributes and human activity represen-
tation. The relationship is then depicted using a structured graph. More recently,
rather than directly concatenating multi-source attributes, Wang et al. [135] pro-
posed a Deep Supervised Feature Selection (DSFS) framework to abstract the
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Figure 4.1: Examples of different social relationships and social relation atmo-
spheres. The underlined labels identify social relationships from the ViSR dataset.
The other labels indicate the social relation atmosphere in the proposed annota-
tions. The definition of social relation atmosphere between individuals is closely
related to social relationships and other social clues.

attributes as a subset of discriminative features.
Compared to image-based analysis, a video-based scenario has received less

attention. Considering the vast amount of information in video, research on video
data focuses more on extracting spatial-temporal information. Liu et al. [136] pro-
posed a Multi-scale Spatial-Temporal Reasoning (MSTR) framework to discover
both local and global representations from the spatial-temporal domain. Addition-
ally, audio information is an essential supplementation to video. Lv et al. [137]
introduced a multi-stream model that integrated spatial, temporal, and audio char-
acteristics for identifying social relationships in videos.

Although objective social relationship recognition has been widely studied,
none of the existing research pays attention to the subjective social relation at-
mosphere analysis. However, this faces some obstacles. First, there is no well-
annotated dataset. Existing datasets only consider social relationships. In real-
ity, people with different relationships have distinct social relation atmospheres,
which is a significant challenge. Second, because video data contain redundancy
and noise, a person can appear in any spatial-temporal location and from various
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angles, making it difficult to track the essential semantic information from video.
To this end, this chapter focuses on social relation atmosphere analysis and

extracting essential visual information from video. As illustrated in Figure 4.1,
the social relation atmosphere among the same relationships may differ, whereas
the same atmosphere may be produced by different relationships. In general, neg-
ative relationships tend to create a negative atmosphere, and positive relationships
tend to produce a positive atmosphere. Social relationships and social relation
atmosphere are closely related because both attributes take into account human
interactions, facial expressions, and the surrounding environment. Thus, social
relationships could provide additional information regarding the social relation at-
mosphere. Here, first, annotations for the social relation atmosphere is introduced.
Four kinds of labels are prepared and new labels are annotated for each video in
addition to the existing Video Social Relation (ViSR) Dataset [136]. Secondly,
a method for identifying the subjective social relation atmospheres is proposed
based on the Relevant Visual Concepts (RVC) from the objective social relation-
ship task. Specifically, to avoid video redundancies, an explainable module pro-
posed in Chapter 5 is employed for extracting the most crucial spatial-temporal
visual information from videos. Finally, the proposed method is evaluated using
popular 3D CNNs and the results are visualized.

To summarize, the contributions of this chapter include:

• Four subjective social relation atmosphere attributes are annotated on the
ViSR dataset. To the best of my knowledge, this is the first attempt to un-
derstand the social relation atmosphere in videos.

• Relationship between subjective and objective attributes is investigated. The
most significant video volumes from the social relationship recognition task
can be used to supplement social relation atmosphere recognition.

• Effectiveness of the proposed framework is evaluated on three 3D CNNs
[63, 138, 139]. Both quantitative and qualitative results indicate that the
proposed method outperforms the end-to-end 3D CNNs.
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4.2 Related Work

4.2.1 Social Understanding

Computer scientists and psychologists have paid considerable attention to the
study of social understanding for many years. Popular research topics include
gaze detection [140, 141, 142], facial expression recognition [143, 144], group
activity recognition [145, 146, 147], and so on. In recent years, there has been
an explosion of interest in recognizing social relationships through multimedia.
Recognition in still images has achieved remarkable success, whereas recogni-
tion in video is still limited. In contrast to image-based methods that heavily rely
on various semantic attributes, it is challenging to extract specific clues from the
video data, such as actions or body part positions. In this case, existing video-
based approaches prioritize spatial-temporal information more.

Lv et al. [137] introduced a multi-stream model. Initially, a spatial CNN is
used to discover video scenes and people representations from images. In the
second step, a temporal segment CNN [125] is used to extract action features. Fi-
nally, GoogleNet [41] is applied to learn audio features using the audio spectrum.
Each network is trained independently. In a late fusion approach, the prediction
score from each stream is combined to generate the final decision for social rela-
tionships. However, they only considered global and local features, disregarding
the relationships between characters, objects, and scenes in the video.

Liu et al. [136] proposed a Multi-scale Spatial-Temporal Reasoning (MSTR)
framework to integrate the spatial and temporal features of a person or an object
from videos. Using a Mask R-CNN [148], the people and objects in a video
clip are first cropped. To investigate the interaction between various individuals
and objects, triple graphs are constructed. An Inter-Person Graph is constructed
to capture the interactions from different individuals. An Intra-Person Graph is
designed for the same individual, and a Person-Object Graph is designed for the
co-existence of persons and objects. In addition, 3D CNN is utilized to extract
global features from the original video frames. The social relationship in a video
is predicted by combining features from multiple graphs.

Most of these works deal with objective social relationships, and none consider
the social relation atmosphere between people, which is vital for future human
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interaction applications. Therefore, the subjective social relation atmosphere is
investigated in this chapter.

4.2.2 Video-Based Social Relationship Dataset

Existing social relationship recognition datasets are predominantly image-based,
while video-based datasets are uncommon. The most popular video datasets are
the Social Relation in Videos (SRIV) dataset [137], MovieGraphs dataset [149],
and Video Social Relation (ViSR) dataset [136]. Detailed information of these
three datasets are introduced below.

Social Relation in Videos dataset

Social Relation in Videos (SRIV) dataset was created in 2018 by Lv et al. [137]
and contains 3,124 videos. The videos were collected from 69 TV dramas and
movies. Each video clip has a duration between 5 and 50 seconds. The dataset
is labeled with eight subjective relations according to [150] and eight objective
relations based on the study in [151]. In this dataset, 16 subclasses are defined in
total.

MovieGraphs dataset

Vicol et al. [149] proposed the MovieGraphs dataset in 2018. The dataset con-
sists of 7, 637 clips collected from 51 movies with abundant annotations. Each
clip is labeled with four components: (1) Graph representing characters’ detailed
attributes, interactions, relationships, and time stamps, (2) Situation label summa-
rizing the interactions, (3) Scene label indicating the location of the action, and
(4) Multi-sentence, natural language description of the clip. Within these labels,
over 50 kinds of social relationships are annotated.

Video Social Relation dataset

The ViSR dataset was created in 2019 by Liu et al. [136]. It comprises 8, 240

video clips collected from over 200 movies with a wide variety of types. The
length of each clip is around 10 ∼ 30 seconds. The dataset is annotated with
eight types of social relationships derived from the domain-based theory [133];
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Figure 4.2: Example of video frames from the ViSR dataset with eight types of
social relationships.

“leader-subordinate”, “colleague”, “service”, “parent-offspring”, “sibling”, “cou-
ple”, “friend”, and “opponent”.

4.3 Social Relation Atmosphere Dataset

4.3.1 Overview

As introduced in 4.2.2, ViSR [136] is the latest dataset with the most number of
video clips for social relationship research, so it is chosen as the basic dataset in
this chapter. Each video was originally labeled with eight social relationships.
Figure 4.2 displays examples of the relationships. The videos are collected from
movies with a resolution of 1, 280× 720 pixels. Based on the ViSR dataset, here,
each individual video segment is annotated with four kinds of social relation at-
mosphere labels. In the following, details of the labeling process are described.

4.3.2 Social Relation Atmosphere Annotation

Previous studies [32, 33, 152, 153] only analyzed social relationships, while ignor-
ing the physical or emotional interactions between people and their surrounding
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environment. Considering this, here, a new definition of social relation atmo-
sphere is proposed. This aims to describe the overall conversational environment
between two individuals on the basis of various visual cues, such as dialogue emo-
tions, action activity, social status, and so on. According to the research by Toyoda
et al. [154], the dialogue atmosphere with voice information can be defined by six
characteristics: “cheerful”, “serious”, “miscommunication”, “excited”, “close”,
and “counterpart”. However, since this thesis focuses on video frame data with-
out voice or text analysis, the “miscommunication” attribute is difficult to analyze
in the video, so it is discarded in the experiments. On the other hand, among all
the 8, 240 video segments, only 318 segments show the “cheerful” attribute, and
over 75% of these “cheerful” segments behave similarly to the “excited” attribute.
As shown in the far right of Figure 4.3, the individuals show rich body movements
and happy facial expressions. In this case, the attributes “cheerful” and “excited”
overlap. Thus, only the “excited” label is retained which contains more video seg-
ments and rich situations including “cheerful”. Therefore, the annotation of social
relation atmosphere in video data is annotated down to four attributes, with each
attribute labeled independently. The annotations are performed by two annotators.
Below are the definitions of the four attributes.

• Excited: The individuals are pleased with one another or are enthusiastic about
their surrounding environment. Typically, the characters tend to have large
movement ranges or expressive facial expressions.

• Serious: The individuals behave and express themselves in a considered man-
ner. The characters usually have no or very few facial expressions during the
conversation. The interactions between two people are sincere and earnest.

• Close: The individuals are familiar with one another and maintain a friendly re-
lationship. They usually have pleasant expressions on their face and speak with
a smile. The gesture interactions between characters are kind and harmonious.

• Counterpart: During the conversation, the characters are dressed similarly, are
of the same generation, or have the same social standing.

Figure 4.3 to Figure 4.10 illustrate examples of each attribute. Below each im-
age, the original social relationship labels are also highlighted. From the sample

53



video frames, we can see that the same social relationship may present a differ-
ent social relation atmosphere, while the characters belonging to the same social
relation atmosphere may form different social relationships. This indicates that
the social relationships and social relation atmosphere tasks are closely related
but distinct. The distribution of the social relation atmosphere labels is shown in
Figure 4.11.

4.4 Proposed Method

4.4.1 Overview

This section introduces the details of the proposed Relevant Visual Concept (RVC)
for social relation atmosphere recognition. The pipeline is shown in Figure 4.12.
Given a video dataset with both social relationship and social relation atmosphere
labels, the social relation atmosphere is identified by utilizing the visual concepts
from the social relationship recognition task as supplementary information. It
consists of two steps: (1) Videos in training data are segmented into multiple su-
pervoxels. The supervoxels are grouped into different visual concepts, such as
“grass” or “head”. A 3D explanation module computes a rank for each concept
according to its importance when CNN predicts the social relationship, where a
higher rank indicates that the concept is more important for social relationship
recognition; and (2) Every video in the dataset is segmented into supervoxels. By
matching each supervoxel to the concept calculated in Step 1, each supervoxel is
classified into one concept. The video is saved as a masked video that only con-
tains the highest-ranking concepts. A trained social relationship network is used
to extract features from the masked video. Another trained social relation atmo-
sphere network is used to extract features from raw videos. The final prediction is
based on the combination of the two features.

4.4.2 3D Explanation Module

The purpose of the 3D explanation module is to extract the important regions for
recognizing social relationships. For each social relation atmosphere attribute, let
V = {(v1, y1R, y1A), (v2, y2R, y2A), ..., (vn, ynR, ynA)|n = 1, 2, ..., N} be the training
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Figure 4.3: Example of excited video frames.

Figure 4.4: Example of not-excited video frames.

Figure 4.5: Example of counterpart video frames.

Figure 4.6: Example of not-counterpart video frames.
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Figure 4.7: Example of close video frames.

Figure 4.8: Example of not-close video frames.

Figure 4.9: Example of serious video frames.

Figure 4.10: Example of not-serious video frames.
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Figure 4.11: Distribution of the Social Relation Atmosphere Dataset.

Figure 4.12: Overview of the proposed Relevant Visual Concept (RVC)-based
method for recognizing social relation atmosphere.
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video data in the ViSR dataset, which contains N videos. vn is the n-th video,
ynR ∈ (1, 8) is the social relationship label, and ynA ∈ (0, 1) is the binary label for
the social relation atmosphere.

Supervoxel representation

First, a 3D Simple Linear Iterative Clustering (SLIC) [155] is used to divide
videos into multiple spatial-temporal supervoxels. A 3D CNN FR is trained from
scratch on (vn, y

n
R) to classify social relationships and used as a feature extractor.

Each supervoxel is resized to the standard input size of the network. The empty
regions in every frame are filled with average image value, as depicted in grey in
Figure 4.12. The feature vectors are extracted from the top layer in FR for each
supervoxel.

Concept-based ranking

After extracting the deep features, supervoxels in social relationship class ynR are
categorized into distinct concepts. Similar supervoxels are grouped into a concept.
To determine which concept the network pays more attention to when predicting
social relationships, the importance rating is evaluated for each concept. By uti-
lizing the explanation module proposed in Chapter 5, the importance rank of each
concept in class ynR can be determined.

4.4.3 Relevant Visual Concept Extraction

After obtaining the concept ranking in the training data with social relationship
label ynR, the high-ranked spatial-temporal volumes is highlighted on the raw video
data to extract relevant social relationship visual concepts. The c-th concept for
class ynR can be represented as (ry

n
R

c ,f
ynR
c ), where ry

n
R

c is the importance rank of the
concept and f

ynR
c is the feature vector of the cluster center.

Let T = {(t1, y1R, y1A), (t2, y2R, y2A), ..., (tx, yxR, yxA)|x = 1, 2, ..., X} represent
the whole video data, which includes the test video. tx is also segmented into P

supervoxels. The p-th segment sxp can be represented as tx masked with a mask
mx

p :

sxp = mx
p ⊙ tx. (4.1)
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(a) Raw video frame (b) Masked frame with the Top 1 important
visual concept as visible part.

(c) Masked frame with the Top 2 important
visual concept as visible part.

(d) Masked frame with the Top 3 important
visual concept as visible part.

Figure 4.13: Example of adding visual concept step by step. In (b), only the
supervoxels that belong to the Top 1 rank concept are visible. Other irrelevant
parts are masked with grey. (c) and (d) are masked frame examples of the Top 2
and the Top 3 visual concepts.

As demonstrated by Equation 4.2, each supervoxel is assigned to the closest
concept c by calculating the distance between it and each cluster center.

c∗ = argmin
c

D(FR(s
x
p),f

ynR
c ), (4.2)

where FR(s
x
p) is the feature vector of sxp extracted by social relationship CNN FR.

Assume that a blank video volume has the same size as tx. When supervoxels
from different concepts are added to the blank video, the visible regions of the
video can be generated as a spatial-temporal volume:

Dq
x =

q∑
j=1

Mx
j ⊙ tx, (4.3)
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where Mx
j is the sum of supervoxel masks that belongs to concept j, and q is the

number of visible concepts.
As shown in Figure 4.13, supervoxels are added based on their rankings to a

blank video one by one. The intermediate video examples in Figure 4.13(b)–(d)
represent Dq

x with different values of q. When the highest-ranked supervoxels are
added to a blank video, a masked video that conveys the most important infor-
mation for recognizing social relationships is obtained. Right now, video with a
mask can be represented as (Dq

x,f
x
R), where fx

R = FR(D
q
x) is the feature vector

extracted by FR. fx
R is the explainable visual concept feature used as supplemen-

tary information for the following social relation atmosphere recognition.

4.4.4 Social Relation Atmosphere Prediction

A 3D CNN FA is trained from scratch on (vn, y
n
A) to classify the social relation

atmosphere. For each video tx, fx
A = FA(tx) is the feature vector extracted with

social relation atmosphere CNN FA. Finally, feature fx
R is fused with fx

A to rec-
ognize the social relation atmosphere.

4.5 Experiments

To evaluate the proposed relevant feature fusion method for recognizing social
relation atmosphere, experiments were performed.

4.5.1 Implementation Details

Dataset

The proposed method is evaluated on the ViSR dataset [136] with social relation
atmosphere attributes. The current dataset contains 8, 240 videos. 70% are used
as training data, 10% are used as validation data, and the rest 20% are used as test
data.
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3D CNN

To evaluate the effectiveness of the extracted Relevant Visual Concept (RVC),
experiments on three standard 3D CNN architectures: Convolutional 3D (C3D)
[63], Residual 3D (R3D)-18 [138], and Inflated 3D (I3D) [139] networks are
performed. Each is trained from scratch. Following [63], video frames are re-
sized into 128× 171 pixels. Random horizontal flipping and random cropping are
applied for data augmentation. The training video frames are randomly cropped
to the standard input size of 112× 112 pixels, while the test video frames are cen-
ter cropped. In the training stage, 16 continuous frames are randomly chosen as
input. In the test stage, the middle 16 continuous frames are fed into the network.
All the CNNs are optimized using Stochastic Gradient Descent (SGD) with the
momentum set to 0.9. The total number of iterations is 150 epochs, the batch size
is 64, and the learning rate starts from 0.01 for the first 50 epochs and decreases
by a factor of 10 for every 50 epoch. The accuracy derived from the end-to-end
CNN is considered as the baseline in the experiments.

3D explanation module

The standard settings in [156] are followed in order to ensure that the 3D expla-
nation module is sufficient to extract RVCs. 200 videos from the training set were
randomly selected to generate concepts per class. Three different resolution lev-
els are employed to segment videos. Each video is segmented into 15, 50, and 80

supervoxels, separately. Similar supervoxels within a single video are eliminated.
The number of clusters for each class is set to 25, with each cluster representing
a concept. Only 40 supervoxels are retained in each concept. The activation for
each supervoxel is extracted from the top layer. For C3D, the features from the
last fully connected layer (FC7) are extracted. The global average pooling layer
is used to extract features for R3D and I3D. Furthermore, 50 groups of random
videos are generated from the HMDB database [157], which are used to differen-
tiate the concept voxels and calculate concept activation vectors. All experiments
are implemented in TensorFlow framework with two 24G NVIDIA RTX 3090
GPUs.
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Feature fusion

The social relationship features extracted from RVCs with social relation atmo-
sphere features are concatenated using the concatenation fusion method. The con-
catenation of deep features extracted from various CNNs has been proven to be a
credible method for enhancing recognition accuracy [158].

Concatenation fusion

The two features are fused using concatenation, represented as ffuse = [fx
R;f

x
A].

4.5.2 Quantitative Analysis

The social relationship recognition accuracy on the ViSR dataset by using C3D,
R3D, and I3D were 27.35%, 30.26%, and 33.11% respectively, which are com-
parable to the standard 3D CNN performance [159]. This ensures that the social
relationship network is efficient, allowing us to extract valuable RVCs. The pro-
posed method is quantitatively evaluated in the following three aspects.

Evaluation of RVCs

In the experiments, q was set to 5. According to Ghorbani et al. [81], the top 5
important Relevant Visual Concepts are sufficient to characterize the raw videos.
Each spatial-temporal volume Dq

x is a masked video that represents the essential
social relationship information. Dq

x is fed into FR to extract features. The fused
features ffuse are fed into a linear SVM to make the final prediction. To evaluate
the proposed Top 5 Relevant Visual Concepts, let’s first compare it with three dif-
ferent methods:

• End-to-end model: The recognition accuracy obtained from the end-to-end
social relation atmosphere model is used as the baseline.

• Atmosphere + Relation: The social relationship features are extracted from the
entire raw videos, and concatenated with the social relation atmosphere features
to make the predictions.
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Table 4.1: Recognition accuracy [%] by using C3D network.

C3D Excited Serious Close Counterpart
Baseline (End-to-End) 72.77 80.72 75.13 54.76
Atmosphere+Relation 75.56 81.50 75.32 55.79
Atmosphere+Least 5 72.58 79.56 73.25 53.06

Proposed (Atmosphere+Top 5) 77.32 81.93 75.68 59.19

Table 4.2: Recognition accuracy [%] by using R3D network.

R3D Excited Serious Close Counterpart
Baseline (End-to-End) 73.01 81.81 75.19 55.91
Atmosphere+Relation 75.74 82.47 75.68 59.49
Atmosphere+Least 5 73.92 80.65 74.53 56.22

Proposed (Atmosphere+Top 5) 76.90 84.05 76.47 66.04

Table 4.3: Recognition accuracy [%] by using I3D network.

I3D Excited Serious Close Counterpart
Baseline (End-to-End) 75.50 83.74 77.93 62.40
Atmosphere+Relation 76.22 84.41 78.53 64.22
Atmosphere+Least 5 73.01 83.62 75.20 61.86

Proposed (Atmosphere+Top 5) 78.90 85.81 79.56 66.65

• Atmosphere + Least 5: The social relationship features are extracted from the
five visual concepts with the least ranking.

• Atmosphere + Top 5: The proposed method; The social relationship features
are extracted from the five visual concepts with the highest ranking.

The results are shown in Table 4.1, Table 4.2, and Table 4.3 by using C3D,
R3D, and I3D, respectively. The social relationship features extracted from whole
videos are shown to help improve the social relation atmosphere accuracy, which
means social relationship tasks can provide useful information. Moreover, the
proposed method performs the best, and shows a higher accuracy than using the
whole video. It indicates that the most important RVCs which preserve the core
information of social relationships can be discovered in the proposed method. Fur-
thermore, when the least significant concepts are used, the recognition accuracy
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decreases and even falls below the baseline. This demonstrates that some of the
information in the raw videos is invalid and that not all of the data from the social
relationships can be utilized to improve the social relation atmosphere. By utiliz-
ing the 3D explanation module, meaningless information can also be excluded.

Evaluation of concept numbers

The top 5 RVCs have been shown to be capable of representing the necessary
information for the social relationship recognition task. Here, comparison exper-
iments are further performed with varying numbers of concepts to explore how
many concepts are sufficient to maintain the performance. Based on the initial
five concepts with the highest rankings, let’s add the next four Top N important
concepts (N = 6, 7, 8, 9), and observe the cumulative effect. Table 4.4, Table 4.5,
and Table 4.6 present the recognition accuracy by using C3D, R3D, and I3D, re-
spectively. For each model, the bold with underline is the highest accuracy in each
social relation atmosphere attribute. We can observe that with a different number
of concepts, there is a slight perturbation in recognition accuracy. However, there
is no specific best choice of concept numbers. This could be because the portion
of useful information in each video differs. However, for each attribute, the ma-
jority of the highest accuracy is derived from the top six or seven RVCs. Instead,
as more concepts are added, the accuracy begins to decline. This reflects that only
very few RVCs (e.g. six or seven) are sufficient to maintain the information from
the social relationship recognition task. The RVCs with a ranking of nine begin to
contain some invalid information.

Evaluation of fusion methods

Finally, let’s investigate the impact of fusion methods to determine whether they
affect the performance of social relation atmosphere recognition. Besides the con-
catenation operation, max fusion, and mean fusion are compared.

• Max fusion: The two features are fused using max pooling, represented as
ffuse = max(fx

R,f
x
A).
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• Mean fusion: The two features are fused using mean average pooling, repre-
sented as ffuse = mean(fx

R + fx
A).

Table 4.4, Table 4.5, and Table 4.6 also present the recognition accuracy with
different fusion methods. The accuracy in bold denotes the highest accuracy in
each fusion method. Concatenation fusion performs the best of the three fusion
techniques, followed by mean fusion and max fusion. This is because concate-
nation fusion retains all information from both social relationships and social re-
lation atmosphere, whereas max fusion and mean fusion reduce the dimension
of the features. However, it is evident that all the recognition accuracy performs
better than the baseline and raw video feature fusion. This indicates that the pro-
posed method not only can explore the most important visual concepts from social
relationships but is also stable for any fusion method.

Consequently, based on three quantitative analyses, we can conclude that the
proposed method is the most effective at identifying the social relation atmo-
sphere. Using six or seven RVCs may enhance the accuracy, but more concepts
will also result in more redundant information. The fusion methods will not influ-
ence the performance of the proposed method.

4.5.3 Qualitative Analysis

In order to qualitatively evaluate the proposed method, the masked video frames
are visualized with different importance ranks. The advantage of the concept-
based representation is high-level and human-understandable. Figure 4.14 and
Figure 4.15 visualize two videos in the dataset. The social relationship of two
individuals in Figure 4.14 is “sibling”. And the two individuals in Figure 4.15
are “friend”. In each figure, the first row is the raw video frames. The second
row is the masked video frames with the most five important concepts, such as
“face” and “hair”. The third row is the masked video frames with the most nine
important concepts. The fourth row is the masked video frames with the least
five important concepts, such as “trees” and “grasses”. We can see that the most
important concepts mainly concentrate on humans and their interactions, while
Figure 4.14d and 4.15d are primarily located in the background. We can also
observe that the top 9 masked videos contain too much abundant information in
some cases, which may lead to lower accuracy. This explains why the highest
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accuracy appears in the different concept numbers in 4.5.2 and why the accuracy
decreases with a large number of concepts. However, the existing segmentation
method is not specifically designed for person-centered action. Thus, we can see
from the visualization results that some supervoxels are still rough.

4.6 Summary

In this chapter, the improvement of subjective recognition accuracy as well as
the generation of representative features were investigated. A novel Relevant Vi-
sual Concept (RVC)-based method was proposed for identifying subjective social
relation atmosphere. Social relationship features were extracted to enhance the
performance of social atmosphere recognition. In contrast to previous research
that directly fuses features from raw videos, the proposed method innovatively
extracts the most important spatial-temporal volume in the raw video data in or-
der to represent the objective social relationships attribute. Videos are segmented
into multiple supervoxels and similar supervoxels are clustered as a concept. A
3D explanation module proposed in Chapter 5 is utilized to provide a rank for
each concept according to the contribution when the network makes a prediction.
The videos are masked with only high-ranked concepts. Deep features extracted
by social relationship CNN on the important visual concepts are used as relevant
features. Then the subjective social atmosphere features are obtained with the
objective social relationship feature as the final representation.

To evaluate the proposed method, based on the ViSR dataset, four social at-
mosphere labels were annotated to each video. Extensive experiments on this new
dataset with three different 3D CNNs demonstrated that the proposed method per-
formed better than the end-to-end prediction and raw video feature fusion. Finally,
the detected video concepts were visualized with different numbers of important
concepts. The visualization results also indicate the proposed 3D explanation
module can disclose the most essential and least important regions for social rela-
tionships. In conclusion, the recognition of subjective attributes can be enhanced
by utilizing objective relative features as supplementary information.
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(a) Raw video frames

(b) Extracted top 5 important masked video frames

(c) Extracted top 9 important masked video frames

(d) Extracted least 5 important masked video frames

Figure 4.14: Masked videos frames with different numbers of concepts and dif-
ferent important ranks.
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(a) Raw video frames

(b) Extracted top 5 important masked video frames

(c) Extracted top 9 important masked video frames

(d) Extracted least 5 important masked video frames

Figure 4.15: Masked videos frames with different numbers of concepts and dif-
ferent important ranks.
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Chapter 5

Spatial-Temporal Model
Explanation

5.1 Overview

After constructing a subjective violence extent dataset and proposing a feature
fusion method for subjective social relation atmosphere recognition, explaining
Convolutional Neural Networks (CNNs) becomes the top priority because it can
help understand the inner decision procedure of CNNs and help improve the
recognition accuracy further. CNNs have been widely used in various computer
vision tasks, such as image classification [160, 161, 162], semantic segmenta-
tion [163, 164], object detection [165, 166], and so on. Despite the fact that CNN
models show competitive performance in these tasks, current neural networks are
still regarded as black boxes. Due to the large number of parameters and high
nonlinearity [167], the underlying prediction mechanism is opaque. This reduces
the reliability of neural networks in high-stakes real-world applications such as
autonomous driving and medical image analysis [168, 169]. In recent years, Ex-
plainable Artificial Intelligence (XAI) has become a popular topic to help com-
prehend model predictions and increase the credibility of CNNs.

In general, the explanation methods can be divided into local and global meth-
ods. Local methods concentrate on understanding predictions on individual data
instances, while global methods attempt to explain the overall logic of the target
CNNs at the class or dataset level. This chapter focuses on the global explanation,
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which is crucial to comprehend the overall behavior of the black boxes.
There are already some methods that provide explanations for 2D image clas-

sification CNNs [78, 87, 170, 171, 172], but most of them are local techniques.
Zhou et al. [71] generated a Class Activation Map (CAM) using global average
pooling for each image to highlight the discriminative regions that are used for
the 2D CNN to predict class. Ribeiro et al. [170] proposed Local Interpretable
Model-agnostic Explanations (LIME) to interpret the model by approximating the
predictions in a local similarity neighborhood of a target image. However, these
methods are not only limited to a single prediction, but they are also difficult
for humans to comprehend. The highlighted regions are pixel-level, devoid of
human-understandable semantic interpretation. More recently, interpretation with
high-level concepts has attracted considerable attention. Kim et al. [72] intro-
duced Concept Activation Vectors (CAVs) which use the directional derivatives to
quantify the importance of the network prediction to user-defined concepts. Based
on this, Ghorbani et al. [81] proposed ACE (Automatic Concept-based Explana-
tion) to discover the relationship between image segments and image classification
prediction.

Despite solid achievements in 2D image classification interpretation, only a
few studies have attempted to interpret 3D action recognition CNNs, primarily
due to the huge computational cost and rich spatial-temporal content of video
data. Existing 3D explanation methods are mainly extended from 2D local ex-
planation methods. Stergiou et al. [173] proposed Saliency Tubes, which ap-
plied Grad-CAM [73] to 3D CNNs. The activation maps of the 3D CNN’s final
convolutional layer are combined to produce heatmaps of input videos. Li et
al. [88] adopted Extremal Perturbations (EP) [76] to the video case by adding a
spatial-temporal smoothness constraint. However, these methods have two major
drawbacks: (1) Discriminative 3D regions are based on a single frame and lack
spatial-temporal consistency, and (2) Regions are pixel-level and lack high-level
semantic information.

To address these issues, here, 2D ACE [81] is extended to 3D and a high-
level global interpretation is proposed. For each class, videos are segmented into
multiple spatial-temporal supervoxels. Similar supervoxels are grouped to form
a meaningful concept. The proposed method can assign a score for each con-
cept according to its contribution when the network makes a prediction. When
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interpreting the decision procedure of 3D action recognition CNNs, instead of
highlighting essential pixels for a single video, it can answer two fundamental
questions at the class level: which objects or motions in the video are significant
for a particular action recognition class and which object or motion is the most
crucial clue in this class.

The contributions of this chapter include:

1. Spatial-temporal Concept-based Explanation (STCE) for 3D CNNs is pro-
posed. The discriminative regions are spatial-temporal continuous and human-
understandable. STCE is among the first to achieve action recognition inter-
pretation based on high-level video supervoxels.

2. The proposed method is validated using 3D CNNs on the Kinetics-700 [174]
and KTH [175] datasets. Both qualitative and quantitative results demonstrate
that it can explain the 3D action recognition CNNs consistent with human cog-
nition.

3. The proposed STCE can be used as a plug-in module for interpreting and en-
hancing the procedure of subjective video attribute recognition.

4. The source code is publicly available1, making this work serve as a starting
point in the research area of 3D XAI.

5.2 Proposed Method

In this section, the details of the proposed Spatial-Temporal Concept-based Ex-
planation (STCE) method are introduced. Given a video classification dataset and
a 3D CNN that has been trained using the dataset, the network is interpreted by in-
vestigating the most important spatial-temporal volumes from the training videos.
The pipeline is shown in Figure 5.1. The procedure consists of two steps: (1) Raw
videos are first segmented into multi-resolution spatial-temporal volumes. The
green, blue, and orange colors shown in step (1.1) indicate that videos are seg-
mented into 15, 50, and 80 supervoxels, respectively. A 3D CNN trained on the
dataset is then used to extract the feature vector of each supervoxel, and (2) Super-
voxels are grouped into different clusters. Each cluster is a meaningful concept,
such as “hand”, “sausages”, or “grass”. STCE finally evaluates the importance

1https://github.com/yingji425/STCE (Accessed: 2023/09/04)
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Figure 5.1: Overview of the proposed Spatial-Temporal Concept-based Explana-
tion (STCE) method. The input is videos from the same class. The video shown
here is from the “cooking sausages” class.

score of each concept with respect to the class it belongs. Within the prediction-
making procedure, the network pays more attention to the concepts with high
scores.

5.2.1 Supervoxel Representation

Let V = {(v1, y1), (v2, y2), ..., (vn, yn)|n = 1, 2, ..., N} be an action recognition
dataset which contains N videos. vn is the n-th video with a label yn ∈ (1, Y ).
Each video is first segmented into supervoxels. In contrast to previous research
[176, 177], which simply divided videos into segments with equal time intervals,
the proposed method uses 3D Simple Linear Iterative Clustering (SLIC) [155]
to divide videos due to its superior performance in video segmentation [178]. In
this case, videos are segmented into meaningful spatial-temporal volumes, such
as a wheel of a moving car or a swinging arm. Since a video contains information
ranging from fine-grained still texture to coarse-grained continuous action motion,
each video is segmented three times with different levels of resolution to preserve
the hierarchical information. For each video vn, [ssmall

n , smiddle
n , slargen ] contains
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different size of segments. To avoid calculational cost for redundant supervoxels,
the similarity between every two supervoxels is calculated. When the Jaccard
index score [179] between two supervoxels is larger than a threshold (set to 0.5 in
the experiments), these two segments are recognized as similar pairs. Duplicate
segments will be removed, and only the most distinguishable supervoxels will
remain.

A 3D CNN is trained from scratch on V and is used as a feature extractor.
Each supervoxel is resized to the standard input size of the network. The empty
regions in each frame are filled with average image value, as depicted in grey
in Figure 5.1. The feature vectors are extracted from the top layer l for each
supervoxel.

5.2.2 Concept-Based Explanation

After extracting the deep features, supervoxels of class y are categorized into dis-
tinct concepts. By calculating the Euclidean distance between every pair of su-
pervoxels, similar supervoxels are grouped as a single concept. To preserve the
distinctiveness between different clusters, only a small number of segments (40
in the experiment) that are close to the center of each concept are retained. The
remaining segments are discarded. Videos in class y can be represented as C

groups of concepts, where Conceps = {conceptc |c = 1, 2, .., C}, and each con-
cept conceptc contains 40 supervoxels. syc represents all the segments belonging
to the c-th concept.

To determine which concept the network pays more attention to when making
the prediction, the importance rating for each concept is evaluated. To this end,
a Concept Activation Vector (CAV) [72] is caculated to characterize the concept.
The pipeline to generate the vector vl

c is illustrated in Figure 5.2. All the segments
syc are put into the trained CNN as positive samples, while a group of random
videos from irrelevant datasets is used as negative samples. Using the 3D CNN,
features are extracted from both concept supervoxels and random videos. A linear
classifier is learned to separate the positive and negative samples. The vector vl

c

orthogonal to the decision boundary is used to represent the c-th concept.
In order to figure out the impact of the conceptc given to a video vn from class

y, the idea from [72] is followed to calculate the gradient of logit with respect to
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Figure 5.2: Pipeline to generate a Concept Activation Vector (CAV). The inputs
are concept supervoxels and the same number of random videos. The direction of
the red arrow is orthogonal to the decision boundary of the classifier. The vector
vl
c is used to represent the concept.

the activations of vn in layer l. Thus the importance score of a particular concept
can be computed as:

Ic,y,l(vn) = lim
ϵ→0

pl,y(fl(vn) + ϵvl
c)− pl,y(fl(vn))

ϵ
= ∇pl,y(fl(vn)) · vl

c, (5.1)

where fl(vn) is the feature vector of the input video, pl,y is the logit for the video
vn from class y, and vl

c is the concept vector.
When Ic,y,l(vn) is greater than zero, it indicates that this concept positively

affects the CNN’s prediction for video vn. If Ic,y,l(vn) is less than zero, the concept
has a negative impact.

For one class with K input videos, the directional derivatives for each video is
calculated. The total importance score for one concept is defined as:

Sc,y,l =
|vn ∈ V : Ic,y,l(vn) > 0|

K
∈ [0, 1]. (5.2)

For each concept conceptc, the score Sc,y,l computes the proportion of input
videos that are positively influenced by the concept, where a higher S indicates the
most concerning part for a 3D CNN to recognize the video. By sorting the scores,
the importance rank of each concept for class y can be determined. Unlike pre-
vious research, which assessed the importance score of each pixel, the proposed
method interprets the CNN using concepts with videos from the entire class.
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5.3 Experiment

In this section, empirical evaluations of the proposed STCE interpretation method
for the 3D CNNs are presented. 5.3.1 describes the dataset and system set-up,
5.3.2 introduces evaluation metrics for the experiments, 5.3.3 presents the quanti-
tative results of adding and removing concepts, and 5.3.4 interprets the CNN by
visualizing the concept frames compared to raw videos. Finally, 5.3.5 discusses
the influence of different parameters.

5.3.1 Implementation Details

Datasets

The proposed method is evaluated on two popular datasets: Kinetics-700 human
action recognition dataset [174] and KTH Action dataset [175].

The Kinetics dataset contains 700 action classes. The proposed STCE inter-
prets the performance of CNN at the class level. Thus, ten classes are randomly
selected from the raw dataset to conduct the interpretability experiment. As train-
ing data, a total of 6, 846 videos are utilized, while as test data, 480 videos are
utilized. The video clips have variable high resolutions.

The current KTH dataset includes six types of human actions: walking, jog-
ging, running, boxing, hand waving, and hand clapping. In total, the dataset con-
tains 2, 391 video sequences. Each video has a low resolution of 160×120 pixels.
The experiment setup by Liu et al. [180] is followed, 80% of the dataset (1, 528
videos) are used for training, and the remaining 20% (863 videos) are used for
validation.

3D CNN

Experiments are conducted on three standard 3D CNN architectures: Convolu-
tional 3D (C3D) [63], Residual 3D (R3D)-18 [138], and Inflated 3D (I3D) [139]
networks. Each is trained from scratch. Following Tran et al. [63], video frames
in the Kinetics dataset are resized into 128×171 pixels. Due to the low resolution,
videos in the KTH dataset are resized to 120×120 pixels. Random horizontal flip-
ping and random cropping are applied for data augmentation. The training video
frames are randomly cropped to the standard input size of 112× 112 pixels, while
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the test video frames are center cropped. In the training stage, 16 continuous
frames are randomly chosen as input. In the test stage, the middle 16 continuous
frames are fed into the network. All the CNNs are optimized using Stochastic
Gradient Descent (SGD) with a momentum set to 0.9. The total number of iter-
ations is 150 epochs, the batch size is 64, and the learning rate starts from 0.01

for the first 50 epochs and decreases by a factor of 10 for every 50 epoch. The
accuracy derived from the end-to-end CNN is considered as the baseline in the
experiments.

STCE configuration

After training a 3D CNN, the next step is to interpret the prediction procedure.
200 videos were randomly selected from the training set to generate concepts per
class. Three different resolution levels were set to segment the videos. Each video
was segmented into 15, 50, and 80 supervoxels, separately. Similar supervoxels
within a single video were eliminated. The number of clusters for each class was
set to 25 with each cluster being a concept. Only 40 supervoxels were retained
in each concept. The activation for each supervoxel was extracted from the top
layer l. For C3D, the features from the last Fully Connected layer (FC7) were
extracted. The global average pooling layer was used to extract features for R3D
and I3D networks. Furthermore, 50 groups of random videos were also generated
from the Human Metabolome Database (HMDB) [157]. The random videos were
used to differentiate the concept voxels and calculate concept activation vectors,
as described in Figure 5.2. All experiments were implemented in the TensorFlow
framework with two 24G NVIDIA RTX 3090 GPUs.

5.3.2 Evaluation Overview

This section introduces the evaluation procedure for the experiment. The concepts
calculated in 5.2.2 are validated on the test data. After calculating the importance
score Ic,y,l with training data, the c-th concept for class y can be represented as
(ryc ,f

y
c ), where ryc represents the importance rank of the concept, and f y

c is the
feature vector of the clustering center that has the same dimension as the super-
voxel’s activation. To quantitatively evaluate the influence of each concept, the
recognition accuracy is evaluated by adding and removing video concepts one by
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Figure 5.3: Example of adding concepts from a blank video. The sample frame is
from the “checking watch” class. In each step, supervoxels belonging to a specific
concept are added to the existing video. For example, the first video represents
adding supervoxels belonging to the “watch” concept. The second video repre-
sents adding supervoxels that belong to the “left hand” concept to the first video.

Figure 5.4: Example of removing concepts from a test video. The sample frame
is extracted from the “delivering mail” class. In each step, all supervoxels from
one concept are removed from the raw video.

one from the test video.
For each test video tx, the video is also segmented into P supervoxels. The

p-th segment sxp can be represented as tx masked with a mask mx
p :

sxp = mx
p ⊙ tx. (5.3)

As demonstrated by Equation 5.4, each supervoxel is assigned to the closest
concept c by calculating the distance between it and each clustering center:

c∗ = argmin
c

D(fx
p ,f

y
c ), (5.4)

where fx
p is the feature vector of sxp .

Let’s assume that a blank video volume has the same size as the test video
tx. When supervoxels from different concepts are added to the blank video, the
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Table 5.1: Recognition accuracy of adding concepts using the Kinetics dataset.
The baseline is the end-to-end accuracy [%] by 3D CNNs.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 22.29 34.79 43.33 50.83 58.54

79.58Random 21.88 33.33 39.79 49.17 55.83
Least 23.33 30.63 37.29 45.83 52.29

R3D
Top 11.67 23.96 32.92 39.38 46.67

75.62Random 10.63 21.25 32.50 37.71 41.25
Least 9.79 16.04 26.04 33.13 41.46

I3D
Top 23.33 37.92 46.88 54.38 61.88

85.63Random 25.83 37.50 46.04 52.71 56.67
Least 25.42 37.50 47.29 51.46 55.83

visible regions of the video can be generated as a spatial-temporal volume:

Rq
x =

q∑
j=1

Mx
j ⊙ tx, (5.5)

where Mx
j is the sum of supervoxel masks that belongs to concept j. q is the

number of concepts that will be set in the following experiments.
As shown in Figure 5.3, supervoxels are added to a blank video one by one.

The intermediate examples are Rq
x with different values of q. When adding all the

supervoxels from tx, the blank video will be the same as the test video tx.
In contrast, when supervoxels are removed from raw video tx, the visible re-

gions are represented as (1−Mx
j )⊙ tx. Figure 5.4 demonstrates the procedure of

removing different concepts.

5.3.3 Quantitative Analysis

In this experiment, q in Equation 5.5 was set to 5, which indicates at most five
different concepts will be removed from the raw video. For each test video, when
adding and removing the concept, the spatial-temporal volume Rq

x is fed into the
CNN and a prediction is made.
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Table 5.2: Recognition accuracy of removing concepts in the Kinetics Dataset.
The accuracy decreases the most when the most significant concepts are removed.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 74.38 60.21 55.42 47.50 43.54

79.58Random 74.38 64.38 59.38 51.88 45.00
Least 75.21 66.04 60.21 53.75 47.71

R3D
Top 69.79 66.25 50.83 39.58 24.38

75.62Random 72.29 64.38 51.04 39.79 28.13
Least 73.33 64.38 51.67 42.29 28.13

I3D
Top 74.58 65.63 58.96 49.79 41.88

85.63Random 78.33 70.83 60.42 53.75 43.96
Least 80.21 71.25 65.00 57.92 46.25

Table 5.1 represents the experimental results of adding concepts using the Ki-
netics dataset. For each model, the first row represents the accuracy of adding
concepts with the highest scores, the second raw, adding concepts with random
scores, and the third row, adding concepts with the lowest scores. We can see that
adding the most important concepts can lead to higher recognition accuracy for
the CNNs, whereas the concepts with the lowest importance score can offer very
little information. In addition, after adding five important concepts, the accuracy
exceeds 70% of the baseline for C3D and I3D, and 60% of the baseline for R3D.

Table 5.2 demonstrates the influence of removing concepts. It is evident that
removing the essential concepts results in a reduction in accuracy. Especially for
R3D, the accuracy is only 30% of the baseline after removing five concepts. These
experimental results indicate the proposed STCE is capable of revealing which
concept the CNN focuses on and how much role it plays during the prediction.

5.3.4 Qualitative Analysis

In order to qualitatively evaluate the proposed model, video frames of the de-
tected concepts are visualized in Figure 5.5. In particular, the most and the least
significant concept examples from the “bending back” class are illustrated in the
Kinetics dataset. Figures 5.5a and 5.5b present the supervoxel frames belonging
to the top two important concepts. The highest importance score is close to 1,
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(a) Importance score = 0.94 (b) Importance score = 0.89

(c) Importance score = 0.26 (d) Importance score = 0.25

Figure 5.5: Visualization of four concepts from the “bending back” class using the
C3D network. The first row of each subfigure is highlighted supervoxel frames.
The second row is video frames from raw videos. (a) and (b) are the most two
important concepts for CNN prediction. (c) and (d) are two concepts with the
least significance.

indicating that this concept positively influenced nearly all of the test videos in
this class. The first row of each figure shows the highlighted regions, while the
second row displays the corresponding raw video frames. It is evident that the
dominant actions are body parts and bending actions for predicting the “bending
back” class.

Similarly, two groups of supervoxel frames belonging to the least important
concepts are presented in Figures 5.5c and 5.5d. In contrast, these highlighted
regions are primarily located in the background and lack significance. The visu-
alization results interpret what the 3D CNN focuses on when recognizing actions.
It is obvious that the concepts are intuitive and consistent with human understand-
ing. The remarkable consistency of both quantitative and qualitative results con-
firms that the proposed STCE is effective for interpreting 3D CNNs.
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Table 5.3: Recognition accuracy of adding concepts on the KTH dataset with
Standard setting.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 21.21 23.52 29.43 39.17 46.23

91.31Random 19.35 23.52 25.26 28.27 32.91
Least 17.27 18.77 20.97 25.26 31.87

Table 5.4: Recognition accuracy of removing concepts on the KTH dataset with
Standard setting.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 89.92 84.94 81.11 76.83 70.45

91.31Random 90.50 89.80 86.67 82.04 74.74
Least 90.50 89.80 89.46 86.44 81.23

5.3.5 Discussion

In this section, the influence of various parameter settings is examined. The num-
ber of concepts and supervoxels is mainly explored through comparative exper-
iments on the KTH dataset. In particular, two types of parameter settings are
explored for extracting important concepts.

• Standard setting: This setting is the same as experiments on the Kinetics-700
dataset in 5.3.3. Each video is divided into 15, 50, and 80 segments, separately.
The number of concept clusters is set to 25.

• Small setting: STCE is also conducted with small parameters because the KTH
dataset has a relatively low resolution. In this instance, each video is segmented
into 15, 30, and 60 segments, respectively. All the supervoxels in the same class
are clustered into 15 concepts.

Table 5.3 and Table 5.4 illustrate the accuracy of action recognition with the
standard setting, while Table 5.5 and Table 5.6 show the accuracy with the small
setting. We can see that both settings are consistent with the tendency demon-
strated in 5.3.3. However, we can also see that despite the fact that adding con-
cepts will undoubtedly improve accuracy, the accuracy only reaches 50% of the
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Table 5.5: Recognition accuracy of adding concepts on the KTH dataset with
Small setting.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 35.46 54.35 66.63 69.52 73.81

91.31Random 27.69 43.92 59.68 67.44 71.84
Least 22.94 34.07 48.44 65.82 68.37

Table 5.6: Recognition accuracy of removing concepts on the KTH dataset with
Small setting.

Model Concepts 1 2 3 4 5 Baseline

C3D
Top 89.69 86.10 78.10 66.86 59.68

91.31Random 90.50 88.88 78.68 73.93 69.18
Least 91.43 89.92 85.75 78.91 71.73

baseline in the standard setting. The phenomenon is the same when concepts are
removed from the test video. On the other hand, the small setting can improve the
effectiveness of concepts more than the standard setting, which reaches 80% of
the baseline. Here, the “jogging” class is taken as an example, and their statistical
charts are shown in Figure 5.6 and Figure 5.7. From these statistical charts, we
can conclude that for low-resolution datasets, the CNNs obtain more information
from large-scale concepts.

To more intuitively visualize the difference between two settings, Figure 5.8
shows the concept results with both settings extracted from the “boxing” class
from the same raw video. Due to the low resolution and large blank background,
it is evident that most of the essential regions for the KTH dataset are located
on human body parts. This means that using the standard setting will result in
quite a number of backgrounds, which can not improve the recognition accuracy.
When using a small setting, the clustered concepts are easier to recognize. For
comparison, the concept from the “checking watch” class in the Kinetics dataset is
also visualized in Figure 5.9. Since the high-resolution dataset contains abundant
information such as watch bands, hands, desks, and watches, even small concepts
are sufficient to provide enough information.
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(a) KTH standard setting (b) KTH small setting

Figure 5.6: Performance of adding concepts using Standard and Small settings in
the “jogging” class from the KTH dataset.

(a) KTH standard setting (b) KTH small setting

Figure 5.7: Performance of removing concepts using Standard and Small settings
in the “jogging” class from the KTH dataset.

5.4 Summary

In this chapter, a Spatial-Temporal Concept-based Explanation (STCE) method
for interpreting 3D CNN was proposed. In contrast to the prior pixel-level strat-
egy which focuses on a single instance, the proposed method is the first attempt
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(a) Raw video frames

(b) Concept supervoxel frames excrated using the Standard setting

(c) Concept supervoxel frames extracted using the Small setting

Figure 5.8: Concept frames from the “boxing” class in the KTH dataset with
Standard and Small settings.

to offer a human-understandable high-level explanation. Concretely, first, videos
from an entire class are segmented and clustered into concepts. Each concept com-
prises similar meaningful supervoxels. Then, importance scores for each concept
are calculated. Extensive experiments on three different 3D CNNs demonstrated
the efficiency of the proposed STCE. Later, the detected concepts were visualized
according to the scores, where the most and the least essential concepts were con-
sistent with human perception. Finally, the choice of various parameters for the
low-resolution dataset was investigated. The number of concepts and clusters did
not affect the tendency reported in the experiments. Thus the proposed method
successfully disclosed the prediction mechanism under the 3D CNN.
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(a) Raw video frames

(b) Concept supervoxel frames using Standard setting

Figure 5.9: Concept frames from the “checking watch” class in the Kinetics-700
dataset with the Standard setting.
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Chapter 6

Conclusion and Future Plan

6.1 Conclusion

The main objective of the work introduced in this thesis was to recognize subjec-
tive video attributes. In contrast to objective attributes, which can be definitively
determined, subjective attributes are intangible and reliant on personal opinions,
lacking a ground truth. When annotating subjective attributes, the annotations of
various individuals are easily influenced by their individual experiences, cultural
backgrounds, and subjective factors. When recognizing subjective attributes, the
features extracted from end-to-end neural networks are not representative enough.
When explaining subjective attributes, there is no high-level explanation for 3D
Convolutional Neural Networks (CNNs). The difficulties in recognizing subjec-
tive attributes are from labeling, and training to explaining. Thus, three research
questions were raised in Chapter 1:

1. How to construct a clean dataset and provide stable and reliable annotation
for subjective attributes.

2. How to improve the accuracy of subjective video attribute recognition and
generate targeted features.

3. How to explain the inner procedure of 3D CNN.

Chapter 3 mainly tackled the first question, Chapter 4, the second question,
and Chapter 5, the third question.
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In Chapter 3, different from previous objective violent object or action detec-
tion, the analysis of subjective video violence ratings was explored. To provide
a reliable and stable violent dataset with subjective annotation, the TrueSkill [46]
pairwise comparison was used to obtain the ground-truth violence score for each
video. The convergence and stability of the TrueSkill score have been verified.
On the other hand, designed for recognizing the subjective extent attribute, a rank
learning method was proposed. The proposed method could learn the relationship
between videos from different levels or the same level. With the proposed method,
we can recognize violence extent better than by taking the classification approach.

In Chapter 4, the subjective attribute recognition on social relation atmosphere
recognition was explored. Since end-to-end neural networks show low accuracy
on subjective recognition, feature fusion was used to increase the discrimination
of deep features. For each video data, both subjective and objective attributes
exist simultaneously. The relationship between both attributes was investigated
and the possibility of using objective attributes to help enhance the recognition
of subjective attributes was explored. A Relevant Visual Concept (RVC) mod-
ule was proposed for analyzing social relation atmospheres. The most significant
video volumes from the social relationship recognition task are used to supple-
ment social relation atmosphere recognition. The combined features were shown
to represent subjective attributes better than end-to-end networks.

In Chapter 5, a global STCE (Spatial-Temporal Concept-based Explanation)
method was proposed for interpreting 3D CNNs. In this method, (1) Videos are
represented with high-level supervoxels, which are clustered as a concept. This is
straightforward for humans to understand, and (2) Interpretation framework calcu-
lates a score for each concept, which reflects its significance in the CNN decision
procedure. The explanation module allows us to investigate the impact of the con-
cepts on a target task in-depth, such as social relation atmosphere recognition in
Chapter 4.

In summary, two subjective datasets were constructed for analyzing video vi-
olence rating and social relation atmosphere, and two training approaches were
proposed for recognizing the extent attributes and general subjective attributes,
respectively. Finally, a plug-in explanation module was proposed for interpreting
and enhancing the procedure of subjective video attribute recognition.
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6.2 Limitation and Future Plan

The questions investigated in this thesis may pave the way for further subjective
attribute recognition. In this section, potential new research ideas are discussed
based on the findings of this thesis.

Advanced dataset

The currently proposed datasets were constrained by the limited number of videos
and manpower. Especially the size of the violent video dataset presented in Chap-
ter 3 is insufficient for popular deep neural networks. Using crowdsourcing ef-
fectively is one way to improve the data collection and annotation process. To
improve the reliability of crowdsourcing, a golden standard from experts can be
used. Annotations that deviate excessively from the standard will be eliminated.
At the same time, a setwise comparison can also be proposed so that three or
more videos can be compared simultaneously. Large-scale datasets with stable
annotations will be a priority for subjective attribute recognition.

Multimodal recognition

When recognizing video violence extent and social relation atmosphere, the pro-
posed work primarily concentrated on utilizing visual information with basic neu-
ral networks. However, in reality, textual, auditory, and other relevant data also
play important roles in video. The integration of information from multiple modal-
ities can improve the accuracy and understanding of subjective attributes. Textual
and auditory information as well as physiological information could be collected
for comprehensive subjective attribute recognition.

Vision transformer for video recognition

The recognition approaches proposed in the thesis are CNN-based deep learn-
ing architectures, which operate on the whole video. However, more recently,
Vision Transformers (ViTs) have outperformed CNNs in multiple tasks because
they are patch-based processing methods. Since ViTs process the entire video as
a sequence of patches, applying ViT for subjective attribute recognition makes
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it possible to analyze the contextual relationship between different regions and
better generate explainable attention maps.

Explainable AI for subjective attributes

An explanation module was proposed in Chapter 5 and has been utilized in Chap-
ter 4. However, the current explainable artificial intelligence is not specially de-
signed for subjective attributes. The hints for analyzing subjective attributes are
always concealed in human interactions. Thus, in Chapter 5, the segmented super-
voxels had a significant impact on the explanation. In this case, a human-centered
or action-centered segmentation method can be developed so that supervoxels can
more accurately represent subjective attributes. The explanations can emphasize
more on identifying emotions, sentiments, or other subjective attributes.

Nevertheless, the work presented in this thesis has established the groundwork
for the discussed future work, and I eagerly anticipate future research that further
improves the recognition of subjective attributes in video data.
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