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Chapter 1

Introduction

1.1 Background

Autonomous driving (AD) has been advancing significantly over the last few decades. It
is impossible not to wonder why it has been a major research interest all around the globe.
Moving people and things from point to point is an essential part of daily life, and the major
share of such needs are met by on-road transportation. While on-road transportation is
essential, according to the world health organization (WHO), approximately 1.3 million
people die each year as a result of road accidents [7]. Adding injuries and economical loss
to this, the number gets even bigger. A recent technical report published by the national
highway traffic safety administration (NHTSA) reveals that 94% of traffic accidents result
from human errors [8]. AD systems are currently in development, aiming to mitigate these
accidents. Additionally, as illustrated in Figure 1.1, the implementation of autonomous
driving technology is anticipated to bring about numerous other benefits. They include
environmental gains, higher productivity and greater independence [5]. In the case of
widespread AD deployment, the annual social benefits due to it are expected to cross $800
billion by 2050. This includes gains from congestion reduction, accident reduction, lower
energy consumption and increased productivity by utilising time otherwise spent in driving
[9].

1.2 History of autonomous driving

The first mention of autonomous driving machines can be dated back to the 1500s. The
original concept for an autonomous vehicle was created decades before the first automobile.
Leonardo da Vinci invented a cart that could move without being pulled or pushed in the
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Fig. 1.1 The advantages of autonomous driving (adapted from [1])

1500s [10]. Power was given by highly compressed springs, and the steering was pre-set so
that the cart could follow a specified path. This item is also occasionally referred to as the
original robot.

In 1925, inventor Francis Houdina achieved a remarkable feat by driving a radio-
controlled car through the streets of Manhattan, notable for its absence of a human driver
behind the wheel. This car’s capabilities included the ability to start the engine, shift gears,
and even sound the horn [10]. This vehicle gave a glimpse into the autonomous future, but it
was swiftly shut down after the driver lost control twice and collided with another automobile.
The industry didn’t give up on remote-controlled cars despite this early setback.

General Motors developed the first self-driving car model at the 1939 World’s Fair [10].
This pioneering vehicle was an electric car that operated by running on magnetized metal
spikes embedded in the roadway and was controlled through radio-controlled electromagnetic
fields. In 1958, this model became a reality [10]. The vehicle was equipped with sensors that
could identify the current moving through a wire buried in the pavement. The direction of
the steering wheel could be altered by adjusting the current, allowing it to move either to the
left or to the right.

During the height of the space race in 1961, scientists began contemplating the challenge
of landing vehicles on the moon’s surface. As a result, James Adams developed the Stanford
Cart, a vehicle equipped with cameras and designed to autonomously identify and track a
line on the ground [11]. Cameras, a crucial component of modern autonomous vehicles, were
used for the first time in these vehicles.

Building upon this idea, the Tsukuba Mechanical Engineering Lab in Japan advanced the
concept in 1977 by introducing a camera system that transmitted information to a computer.
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This computer processed images of the road, paving the way for the testing of the first
autonomous passenger car capable of reaching speeds of up to 20 mph [12].

By incorporating neural networks into image processing and steering controls, Carnegie
Mellon University started developing self-driving cars in 1990 [13]. In 1995, researchers
from Carnegie Mellon accomplished a remarkable feat by driving their self-driving vehicle,
named NavLab 5, a distance of 2,797 miles from Pittsburgh to San Diego. Although the
vehicle was otherwise autonomous, it was responsible for managing its own speed and
braking [13].

The autonomous vehicle sector was booming by the early 2000s. Several competitions
were sponsored by defense advanced research projects agency (DARPA), the research branch
of the U.S. Department of Defense, to advance autonomous vehicles. They staged a com-
petition in 2004 wherein vehicles had to cross 150 miles of arid terrain on their own [10].
No vehicles finished the course. In 2007, a 60-mile urban setting was replicated for the
challenge; this time, four cars completed the journey [10].

Major automakers like Ford, Mercedes-Benz, and BMW, as well as ride-hailing services
like Uber, started competing with self-driving technology by the middle of the decade [11].
True autonomy turned out to be trickier to attain than first anticipated, and many of these
businesses eventually shut down. Notably, Uber declared in 2020 that they were abandoning
their efforts to create self-driving cars due to concerns about safety, legal action, and financial
loss [14].

With their Full Self-Driving package, which enables autonomous hands-free operation for
highway and freeway driving, Tesla is the firm that will be the closest to releasing autonomous
vehicles on the market as of 2021 [11]. The vehicles aren’t autonomous, though, by any
standard. In reality, Tesla was requested by the German authorities to stop using this phrase.

There are currently no commercially accessible completely autonomous vehicles, not
even among these ground-breaking inventions. However, hundreds of autonomous cars are
already in use in significant areas like mining. In under 7 years of operation as of May
2021, Caterpillar’s autonomous trucks have securely transported more than 3 billion tonnes
of material [11]. The success of autonomous vehicles in the mining sector offers some
encouragement for the challenges that lie ahead for these vehicles.
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1.3 State of the art and general challenges in Autonomous
Driving

The development of deep learning, advances in computer vision due to it, and the availability
of novel sensor modalities, including lidar, all sparked interest in AD research and its
commercial use. The emergence of AD with various degrees of automation was also prompted
by a rise in the public interest and market potential [5]. Such degrees of automation are
standardised by the Society of Automotive Engineers (SAE) as depicted in fig 1.2.

Fig. 1.2 The 6 Levels of Vehicle Autonomy (reproduction from [2])

The five degrees of driving automation established by SAE start at Level 0. This category
denotes a complete lack of automation. Level one systems are the most basic and include
stability control, anti-lock braking, and adaptive cruise control. Level two is a level of partial
automation that integrates advanced aid technologies like emergency braking and accident
avoidance. Level two automation became a practical technology as a result of industry
experience and the body of knowledge in the field of vehicle control. Being able to drive
hands-free on closed highways is becoming an expected level 2 (fig. 1.2) feature in modern
automobiles. Above this point, the true challenge begins [5].

Level three automation represents conditional automation, where under normal conditions,
the driver can divert their attention away from driving tasks but must remain prepared to
promptly intervene in case of an emergency. Moreover, level three autonomous driving
systems are limited to specific operational design domains (ODDs), primarily encompassing
highway driving scenarios. In these constrained highway conditions, Audi asserts its position
as the first automaker to achieve level three automation in a production vehicle.
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However, transitioning from automated mode to manual mode poses a significant chal-
lenge. Recent research on this subject has identified an elevated risk of collisions with nearby
vehicles during the takeover process. An unresolved issue pertains to the heightened accident
risk associated with this transition [5].

Even though highway AD up to level 3 is on the verge of being a reality, there are
multiple domains in which autonomous driving is still facing challenges to guarantee safety.
At level four and level five, no degree of human attention is required. Level four, however,
can only function in specific ODDs with specialized infrastructure or comprehensive maps.
If the car leaves specified regions, it must automatically park itself to end the trip. The level
five completely automated system can function in any type of road network and any kind
of weather. As of now, achieving level four or level five driving automation in production
vehicles remains unattainable. Moreover, a recent announcement from the Toyota Research
Institute underscores that no company within the industry has made significant progress
toward realizing level five automation [5].

Fig. 1.3 What’s next for autonomous vehicles - A McKinsey survey (reproduction from [3])

Driving automation at levels four and up on urban road networks is an unsolved and
difficult issue. The environmental factors, which include everything from the weather to
the nearby population’s behavior, are exceedingly unpredictable. This is reflected in fig.1.3,
according to this McKinsey survey, level 4 AD in highways is expected by 2025 and urban
AD is expected to take another 3 years to realize. A third of the causes behind such a delay is
due to technical challenges that hinder the safety guarantee [3]. Additionally, system flaws
result in accidents. For example, one of the AD cars in the Hyundai competition crashed due
to rain [15], Google’s AD car struck a bus while changing lanes because it underestimated
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the velocity of a bus [16], also Tesla’s Autopilot collided with a white truck after failing to
recognize it, killing the driver [17].

Deaths brought on by underdeveloped technology reduce public support for AD. A recent
survey [18] found that the majority of the consumers are concerned about the safety of the
technology and desire substantial control over its creation and application. On the other hand,
AD vehicles that are overly cautious can come across poorly. Another set of difficulties arises
from ethical quandaries. How should the system respond in the event of an accident, which
is unavoidable? Regarding this subject, experimental ethics have been suggested [5].

Another challenge is the certification of risk and reliability. AD systems must be designed
with high redundancy to reduce the likelihood of a catastrophic failure, just like in aircraft.
Although there are interesting projects in this area, such as DeepTest [19], neither the rule-
makers nor the industry have yet developed the design-simulation-test-redesign certification
system.

The complexity of an already challenging problem is increased by several optimization
objectives like time to destination, fuel efficiency, comfort, and ride-sharing optimization.
Consequently, the safe execution of all dynamic driving responsibilities within strict parame-
ters remains a formidable challenge when operating beyond a well-defined geofenced region
[5].

1.4 Challenges in autonomous driving from motion plan-
ning and control perspective

The major blocks in any autonomous driving stack can be roughly represented as shown in
fig. 1.4. Everything starts with a set of sensors including cameras, LiDARs, GPS etc. The
sensors observe the surroundings and find the car’s position using localization. Sensors also
detect and predict the positions and trajectories of other agents around the ego car. With
its own position and other agent details, a path planner creates a global path for the AD
to achieve its motion target. The next step is the motion planning and control (MP&C).
The task of the MP&C is to create and achieve a motion plan which follows the target as
accurately as possible. Sometimes the MP&C can also modify the global path locally to
achieve targets such as obstacle avoidance. Our research focuses on the MP&C side of
autonomous driving. The challenges faced by AD in this domain are discussed in this section.
It is also interesting to mention that there have been some interesting works on end-to-end
autonomous driving using deep learning methods. Such an approach often connects the
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sensing section to actuators directly with an end-to-end deep learning model. Fig 1.5 shows
the key differences between these two approaches.

Fig. 1.4 How Control Works for Self-Driving Cars (reproduction from [4])

As discussed in section 1.3, even though highway AD up to level 3 is on the verge of being
a reality, there are multiple domains in which autonomous driving is still facing challenges to
guarantee safety. Most of these challenges can be characterized by the presence of an external
agent that disturbs such stable autonomous driving. In the case of highway driving at high
speeds, the disturbance could be sudden cut-ins or obstacles that partly cover the driving area.
Once you leave the highway, any task that includes interaction with decision-making agents
such as pedestrians, cyclists, or other cars are currently considered as challenging. All these
scenarios call for fast controllers that can deal with such disturbances without compromising
safety. Since AD promises and needs to deliver a higher level of safety than human driving,
guaranteeing safety under such scenarios is of utmost importance.

Once any of the above-mentioned tasks are formulated into a control problem, it can
be seen that they are nonlinear control problems. The vehicle models that can accurately
represent high-speed driving are nonlinear. So are the models that can represent decision-
making agents such as pedestrians that respond to the car’s actions. The controllers should
also be able to accept certain risk levels while guaranteeing safety, just like us human drivers
does. The current control implementations that deal with such scenarios often simplify these
problems to linear formulations.

Table 1.1 compares various controller types that are presently used to control self-
driving cars. The classical control contains methods such as proportional integral derivative
(PID) controllers. These are easy to implement linear controllers that consume very low
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computational resources. They are capable of handling single input single output (SISO) and
are not capable of handling constraints. Such limitations make it necessary to approximate all
the nonlinear models and constraints present in the original AD control problem into linear
models. Such approximations make a classical control solution inaccurate for AD control.
Such approximations, also being far from accurate, calls for higher safety margins. This
leads to slower and conservative control behaviour. An accurate controller that can process
such non-linearity and stochastic constraints without approximations could provide similar
safety margins at higher speeds. This is where a nonlinear model predictive control (MPC)
that can process stochastic models shines as the best choice of control.

MPC belongs to the second category in the table 1.1. Modern control solutions such
as MPC can handle multiple input multi output (MIMO) systems. They can also contain
nonlinear models and constraints in its formulation. Such controllers can also be used for
both discrete and continuous control formulations. Such benefits make them much more
accurate than classic control solutions. This comes at the cost of challenging computational
problems that are at times difficult to solve in a timely manner for fast real-time systems like
AD.

There is a third category of control that is a deep learning based. These methods have
shown great results under certain limited driving conditions. Since they are learning-based,
the training data has a great influence on their performance. Also, the resulting models are
black-box models. This makes it often difficult to predict the reasons behind the actions of
the system. AD being safety-critical, and having the threat of injury, being unable to analyze
causes of collisions or unexpected actions makes it extremely difficult to use such black
box models in production. In this study, the nonlinear MPC formulations that are a part of
modern control methods are chosen as our control method of choice.

Fig. 1.5 Flow diagrams of generic and end-to-end self driving (reproduction from [5])
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Table 1.1 Comparison between various control methods

Classical control Modern control Deep learning
SISO MIMO MIMO
Linear Linear and non linear Learning based

Continuous Continuous and discrete Black box model
Unconstrained Constrained -

Fast computation Computationally challenging -
Less accurate Accurate Training data dependant

Most of the literature on nonlinear MPCs uses a continuation-based method such as
interior point or continuation/ generalized minimal residual method (C/GMRES) to quickly
solve the optimal control problem. Even though they process the nonlinear components
pretty well, they often approximate the stochastic constraints with other continuous functions.
Such an approximation makes them behave conservatively in the presence of stochastic
elements such as pedestrians in the driving scenario. Another drawback of continuation-
based optimizers is that they are continuation based as the name itself implies. They track
the past solutions to quickly converge to the next solution. This fact makes them unreliable
at unexpected changes in driving scenarios.

Randomized MPC (RMPC) (2.2) is a type of nonlinear MPC that uses a randomized
optimization algorithm. Since RMPC pick the minimum cost sample among randomly
sampled candidate solutions, it does not bias the solution towards past solutions. With the
right samples, it is possible to arrive at a semi-global solution that could be away from the
past minimum point. A method to represent the stochastic constraints without modifications
based on the number of samples that violate the constraints is also proposed. Hence, RMPC
is expected to provide a better performance in comparison to continuation-based nonlinear
MPCs. RMPC also has certain drawbacks that are identified and solved in this work. They
are the noisiness of the input signal, slow computational time at high sample sizes and a lack
of parameter selection methodology. Solutions to all three of these challenges are proposed
in chapter 3. Hence, the RMPC proposed in this work overcomes the major drawbacks of
existing nonlinear controllers and realizes safe AD. This work also addresses the current
implementation challenges faced by RMPC.

1.5 Goal of research

Various challenges faced by AD have been discussed, particularly in the control perspective
in section 1.4. Reflecting on our motivation (1.1), our research goal is set as follows. The
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safety levels of autonomous driving need to be raised to guarantee safe operation in various
environments. RMPC with its various advantages is a strong candidate as a fast and flexible
nonlinear controller, but largely unexplored towards this goal. This study has shown that
the advantages of RMPC are particularly suited to tackle challenging tasks in AD control.
That too at a higher safety level in comparison to the current state of the art control solutions.
This work starts by addressing the issues that are thought to be preventing RMPC from being
widely used. As seen in fig 1.6, this includes noisy input signals, high computational burden,
lack of a parameter selection methodology, method of expressing stochastic constraints and
the capability to supplement other optimization methods.

Fig. 1.6 Challenges in realizing AD using RMPC

Following this, this work demonstrates that RMPC can realize safe AD during various
challenging driving tasks. Examples of high-speed obstacle avoidance, considerate interaction
with a crossing pedestrian and a sudden cut-in scenario during highway driving as some
examples where RMPC has shown to be safer and better in performance. In the task of
enabling reliable high-speed obstacle avoidance, the research goals are threefold. Firstly,
sampling from the frequency domain has been implemented that gives smoother random
samples in comparison to sampling in the time domain. Second, the symmetry property of the
samples is leveraged to implement the algorithm in parallel in multiple graphics processing
unit (GPU) cores. This reduces the computational complexity dramatically. The third goal of
this task is to propose a systematic parameter selection methodology for RMPC. In the task
of considerate interaction with pedestrians, safe autonomous driving has been enabled among
dynamic agents in urban AD. A sample-based representation of collision risk constraint
is proposed, this enables the tuning of the risk levels the controller admits. This part also
proposes a novel stochastic pedestrian model in this section, this model allows us to model
the interaction between the car and pedestrian. It also enables us to put a cost on the internal
confusion levels of the pedestrian, thereby enabling considerate driving. The last task that
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is demonstrated is the handling of sudden cut-ins in highway driving. In this task, RMPC
is combined with a continuation-based optimizer. Under sudden state changes, when the
continuation-based optimisation becomes unstable, RMPC helps to bring the optimizer back
to stability faster and provide safe control inputs in its place. Throughout this work, the
RMPC framework is built from its basic form. This has been done to make sure that this
work act as a reference to the researchers and practitioners who would like to explore RMPC
and its possibilities.

1.6 Organisation of the thesis

The rest of this thesis is organized as follows. Chapter 3 identifies and addresses major
bottlenecks in using RMPC to address challenging control problems in AD. This includes
the input signals being noisy, RMPC being not useful at higher sample counts because of
the computational burden and an efficient method of parameter selection for RMPC. The
effectiveness of RMPC is demonstrated by high-speed obstacle avoidance driving of a radio-
controlled (RC) car. In chapter 4, a method of representing stochastic constraints in an RMPC
framework is presented. This is demonstrated by enabling human-like considerate driving in
an interactive scenario between a crossing pedestrian and a self-driving car. Even though
RMPC can handle most of the nonlinear control problems well, there are certain cases where
a common gradient-based optimisation provides a stable and smooth solution. In chapter
5, a combination of such a commonly used nonlinear MPC framework with the RMPC is
proposed. In the following chapter 6, a summary with some concluding remarks is presented
along with some possible directions for future work.
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Chapter 2

Model predictive control (MPC)

Model Predictive Control (MPC), as referenced in [20–22], stands out as a widely employed
control strategy for addressing multi-variable constrained control challenges. Despite its
initial introduction dating back to [23] in the 1960s, MPC’s substantial adoption and ex-
pansion in practical applications primarily stemmed from advancements in computational
capabilities. This includes the works such as [24, 25] in the late 1970s, which have inde-
pendently laid a strong foundation for MPC theory. They were able to effectively regulate
complex tasks with the new digital controllers, showcasing a huge economic potential. Model
predictive heuristic control (MPHC), which was first introduced by [24] in 1978, already
had all the characteristics of an MPC, including an explicit process model, impulse response
functions (IRFs) that describe the process, a receding horizon, input and output constraints,
and an iterative determination of the controls (value of the manipulated variable u). But [24]
didn’t assert to have the best optimum controls. Instead, until the future controls satisfied
the constraints, they were determined repeatedly. Heuristic was used to emphasize the lack
of defined control law. The process sector, with its multiple input multiple output (MIMO)
systems, noticeable delays, and lengthy processing times, was the target market for the
technology [24]. Even the idea of identifying the process model online was investigated, but
only for adjustments to the set points. Dynamic matrix control (DMC) was developed by
[25] from Shell Oil Company around the same period. To forecast the behavior of a catalytic
cracking unit in the future, the DMC employed a piecewise linear model. The controller was
able to understand the plant’s time delay and dynamic system behavior as a result. Cutler and
Ramaker adjusted the model coefficients based on the discrepancy between the previously
anticipated output and the current measured output using a receding prediction horizon. They
demonstrated that DMC outperforms traditional cascaded PID control and claimed that DMC
has been used at Shell Oil since 1974 to solve control issues. The primary distinction be-
tween DMC and MPHC is the calculation of optimal control variables. However, the control
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problem’s matrix formulation limits DMC to linear process models. Both of these efforts
set the stage for the widespread and quick adoption of MPC in the petrochemical process
sector. The sampling periods were many hours even with linear models [26]. To enable
the technology to be applied in industry, the first emphasis was on making the controller
design simple and developing a thorough theory [24, 25, 27]. MPC’s potential was not just
dependent on prediction, but also on the capability of using non-linear models, both of which
were unsupported by conventional control. The process model formulation, including the
impulse response formulation (IRF) [105], piecewise linear step response functions [25],
ARMA models [28, 29], and state space formulations [30], was a hot topic at the inception
of the MPC theory. One of the main factors contributing to MPC’s quick success was its
flexibility in the model formulation options.

Because the majority of chemical engineering processes were open-loop stable, the
earliest techniques simply ignored model uncertainties and process instabilities [23]. The
research community around Manfred Morari focused particularly on MPC robustness and
stability beginning in the late 1980s [31–35].

The (linear) estimation problem might be stated as a quadratic programming problem
[36] with a finite horizon, i.e. a fixed moving window, which proved advantageous computa-
tionally. The "explicit MPC" that was introduced by computation pushing [37] switches the
computation to large a priori optimization [38].

With the turn of the 2000 and the increasing capability of computers, research switched
towards application. The trend was moving away from problems with many control variables
and lengthy computation requirements and toward issues with few control variables and
significantly shorter computation time requirements.

Within MPC, "model" refers to the foundational representation of the system’s dynamics
under control. This representation facilitates forecasting future states of the controlled
system. Furthermore, MPC continuously monitors the system’s state during each control
cycle, granting it the ability to adapt to real-time environmental variations. A graphical
representation of a discrete MPC system is shown in fig.2.1. Please note that the green
line representing predicted output is discrete in the formulation. The primary advantage
of Model Predictive Control (MPC) lies in its ability to optimize the present time period
while simultaneously considering future time periods. It achieves this by optimizing over a
finite time horizon but implementing only the current time period’s control actions before
iteratively re-optimizing, in contrast to a linear-quadratic regulator (LQR). MPC also has
the ability to predict future events and take control actions in response. PID controllers lack
this ability to predict. Even though the models used by MPC can represent both complex
and simple dynamic systems, such additional complexity is not necessary to control simple
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systems adequately. In such cases, generic PID controllers will suffice. Typically, large time
delays and higher order dynamics necessitate a controller like MPC.

Fig. 2.1 A discrete time MPC scheme

2.1 Linear and nonlinear model predictive control

Although many real-world processes are not inherently linear, they often exhibit approximate
linearity within a limited operating range. Consequently, linear Model Predictive Control
(MPC) methods are commonly applied in the majority of practical applications. In these
cases, the MPC’s feedback mechanism plays a crucial role in compensating for prediction
errors stemming from the inherent mismatch between the model and the actual process. One
advantage of using linear models in MPC is the application of the superposition principle
from linear algebra. This principle allows the combined effect of changes in multiple
independent variables to be computed, enabling the prediction of the response of dependent
variables within the framework of model predictive controllers that rely on linear models.
As a result, the control problem is simplified into a series of efficient and dependable direct
matrix algebra calculations.

When linear models are unable to accurately capture real-world nonlinearities, several
approaches can be employed. One method involves mitigating the nonlinearity by transform-
ing the process variables, both before and after the linear MPC model, as suggested by [39].
Another approach is to utilize nonlinear MPC (NMPC) [39], which directly incorporates a
nonlinear model into the control application. This nonlinear model can take the form of a
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high-fidelity dynamic model based on fundamental mass and energy balances or be derived
from empirical data fitting techniques, such as artificial neural networks [40].

NMPC uses nonlinear system models to make predictions. The iterative solution of
optimal control problems on a finite prediction horizon is required in NMPC, just as it is in
linear MPC. While these problems are convex in linear MPC, they aren’t necessarily convex
in nonlinear MPC [41]. Both the NMPC stability theory and the numerical solution face
difficulties as a result of this.

The numerical solution of NMPC optimum control problems is usually based on direct
optimal control methods. These are based on Newton-type optimization algorithms in one
of three variants: direct single shooting, direct multiple shooting, or direct collocation. The
fact that successive optimal control problems are similar to one another is often leveraged
by NMPC algorithms. This permits the usage of an appropriately shifted guess from the
previously computed optimal solution to efficiently initialize the Newton-type solution
technique. Such initialization saves significant computing time [42]. The similarity of
subsequent problems are further exploited by path following algorithms (or "real-time
iterations"), which never attempt to iterate any optimization problem to convergence, but
instead, take a few iterations towards the solution of the most recent NMPC problem before
moving on to the next, which has been properly initialized; see, for example, [42].

With advancements in controller hardware and computational algorithms, such as precon-
ditioning, NMPC is increasingly being applied to applications with high sampling rates, such
as in the automotive industry, or even when the states are distributed in space (Distributed pa-
rameter systems)[43]. NMPC has recently been utilized for real-time control of autonomous
systems in various scenarios, such as optimal trajectory planning and tracking of aircraft
[44].

2.2 Randomized MPC

A variation of MPC known as randomised MPC (RMPC) [45–49] makes use of a randomised
optimisation technique. The production of samples is the first step in this optimisation
technique. In the solution space, Ns sample sequences with length N are created at random.
The next stage is to determine the plant’s future state, assuming it adopts each of these sample
sequences. At this stage, the samples that are impractical are filtered out using the constraints
that have been provided. This is followed by the cost calculation of each of the samples
using a cost function. The first input in the lowest cost series is then chosen, and it serves as
the ego car’s input. For each control cycle, the controller repeats these actions. Among the
previous works on RMPC, [46] applies RMPC to control a stochastic linear system and [48]
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uses RMPC to guide an autonomous vehicle. A study on effect of sample size while solving
a convex programs with uncertainty using a randomized approach is discussed in [49].

The ability to adjust the number of samples, denoted as Ns, provides us with the flexibility
to strike a balance between computational demands and accuracy. Despite its straightforward
implementation, RMPC delves into the global solution space and conducts rigorous checks to
ensure constraint satisfaction during each iteration. The work in [45] demonstrates the infinite
horizon stability of RMPC, while [47] establishes its optimality. However, a challenge in
RMPC application persists in the absence of a clear optimality index, resulting in a semi-
optimal status. Additionally, the randomness inherent in sampling can impact the smoothness
of control inputs, presenting another challenge.





Chapter 3

Real-time Autonomous Driving using
Randomized Model Predictive Control

3.1 Introduction

Real-time management of the motion control issue has proven to be difficult. However, MPC
effectively addresses it because of the benefits described in section 2. When it comes to
motion control issues, autonomous driving is on the challenging end of the scale. It needs
precise control inputs to be calculated in real time because, it is very dynamic and safety-
critical. In real-time implementations, it has been difficult to compute the steps necessary for
the MPC to solve the model-based optimization problem. Utilizing Randomized MPC is one
strategy to overcome the computational complexity (RMPC) (section 2.2).

On the other hand, path planning and path following can be considered as two separate
tasks in the behavior control of an autonomous vehicle. They are performed alternately.
Because the planner must take into account safety limits like collision avoidance and speed
restriction, planning has to be repeated. This goes in addition to the primary target of path
planning for maintaining a lane, overtaking, etc. In robotics and automotive applications,
numerous path planning strategies have been effectively demonstrated, as seen in [50–53].
While [50] presents a survey on MP&C strategies for urban self driving vehicles, [52] and
[53] put forward techniques for path planning by utilizing bezier curves and rapidly exploring
random tree (RRT)s, respectively. A motion planner for non-holonomic mobile robots that is
based on recursive subdivision of a collision-free path produced by a lower-level geometrical
planner that disregards the motion constraints is presented by [51]. The next stage is to
precisely follow the modified path that the car has prepared. A controller must keep track
of the car’s current condition and give the right steering and acceleration instructions for
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accurate path following. There have also been many works on path following [54, 55, 20–
22]. Different control techniques, such as proportional-integral-derivative (PID) control,
state feedback controllers, MPC, and others, can be used to perform path following control.
The MPC-based strategy is described in depth in [20] and [21]. Some advances in path
following under sliding effects and reflection of driver characteristics in path following
can be found in [54] and [55], respectively. A common strategy in the literature is to
separate the path planning and tracking operations. It follows that if vehicle dynamics
limitations are taken into account independently for each stage, then this consideration
becomes redundant. It is obvious that combining these two into a single problem formulation
reduces the computational load by eliminating redundant vehicle dynamics calculations. The
term simultaneous motion planning and control (SMPLC) problem is frequently used to
describe such conjoined issues [56–58].

During the studies on SMPLC by the writers in [56] and [57], a number of difficulties
were discovered with real-time SMPLC implementation. The main difficulty was brought on
by how difficult it was to solve an SMPLC problem computationally.Some notable examples
that had demonstrated real time steering control with non-linear MPC are [22] and [59]. The
work [22] has reported an average computation time of more than 150 ms, restricting the
speed of their stable experiment at 7 m/s. While, [59] exhibits a processing time of 60ms on
average (using pre-calculated invariant sets), allowing for the avoidance of several obstacles
at a speed of 14m/s. Both [22] and [59] demonstrate obstacle avoidance while driving on
a straight road. Finding an ideal solution in real-time was challenging due of the stringent
time constraints involved with a safety-critical problem like autonomous driving. Even
sampling-based optimization approaches like RMPC were unable to achieve the required
control frequency with a conventional central processing unit (CPU) based implementation.
Another problem was also discovered while simulating RMPC for vehicle control. It was
discovered that the sampling process’ randomness had a negative effect on how smoothly the
car was driven. This will be highlighted further when the RMPC is applied to passenger cars
rather than autonomous robots. This necessitates the utilization of a smoothing approach
during the sampling phase in order to maintain the smoothness of the control action.

The observer would become aware of the parallelism the RMPC framework by looking at
it more closely. The sequence of processes like series creation and calculation of cost could
be performed on all sample points simultaneously. The parallel processing capability of a
Graphics Processing Unit (GPU) is closely related to this exciting characteristic of RMPC.
GPUs are currently attracting interest from every application with a abundant parallelism.
GPUs are interesting because they have a much larger computational throughput than CPUs,
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which are designed for higher latency. This gives GPUs a tremendous potential to speed up
applications with a lot of parallel processing [60].

Two categories can be made out of earlier works on sampling-based MPC. Construction
of a sampling-based MPC solver falls under the first category [45, 61, 62]. The second is
a study that focuses on the implementation of sampling-based MPC [63–67]. In the first
category, [61] developed a method that searches the control space by seeding a tree from
the previous best sample and expanding it in a manner similar to rapidly exploring random
tree (RRT). The paper [45] suggested a sampling-based MPC employing a potential field
model of obstacles for one-leg robot navigation. The authors asserted that they could only
increase performance at the expense of computational burden, even if implementation is not
the main focus of this work. The paper [62] applied a modified version of RMPC to the drive
of high-speed RC cars, which enabled faster real-time computation.

In the second category, the cmanagement of a drinking water network is discussed in
[63]. A GPU-based implementation was suggested due to the network’s size and plenty of
configurable parts. Even though the problem size is large, this application adopted longer
control intervals than the case of managing a car due to its slow dynamics. In [64], Using an
embedded GPU, the authors were able to successfully manage a mobile robot for obstacle
avoidance. Here, the robot speed was very low and the robot dynamics were considered as
a point mass model. Various methods for nonlinear model predictive control that utilizes
GPU are presented in these papers [65] and [66]. The application domain of the optimization
algorithms was very different from the control of an autonomous vehicle, and they were not
sampling-based in nature. Finally, in the survey paper [67], A summary of different MPC
parallel implementations was given. The issues that MPC currently confronts are covered
in detail in this work, along with how parallel computing aids in their resolution. This
study comes to the conclusion that while most GPU-based solutions are faster at performing
calculations, they have a significant overhead in terms of memory transfers and kernel
construction. Any improvement over the CPU case is negligible for common use cases if the
time of overheads and calculation are combined.

Because no earlier works specifically addressed autonomous driving using RMPC, the
authors investigated the feasibility of RMPC for autonomous driving [56]. The paper
[56] has utilized RMPC in simulation to achieve obstacle avoidance driving of a car. This
research offered several suggestions for smoothening the randomness using frequency domain
sampling. This approach demonstrated more smooth steering input, but the controller could
only drive in a straight line at a fixed speed. Additionally, only a simulation using pre-
calculated inputs was used to confirm the effectiveness. In addition , this study came to the
conclusion that greater computational power is required in order to use the RMPC in real-
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time, despite the ego car being represented with a bicycle model. In our earlier works, this
requirement for computational improvement was also explored. [68] and [69]. Computation
speed of linear MPC problems was accelerated using GPU in [68], however, this was limited
to linear MPC problems. On the other hand, [69] highlighted some preliminary results
showcasing the GPU’s potential to speed up RMPC. Additionally, this study was restricted
to simulations and constant speed straight-line driving. Based on these considerations, this
work addresses the RMPC as a solution for autonomous driving control. First, it extends
the previous works [56] and [69] with an updated vehicle model, thereby eliminating the
restrictions of driving only in straight path and maintaining a steady speed. The randomization
issue is then resolved using frequency domain sampling, and the RMPC is put into use
along with the new sampling technique. Second, the suggested RMPC with frequency
domain sampling is excecuted on GPU. Each sample is handled by a distinct GPU thread
simultaneously in order to transfer the algorithm to the GPU. With this increased computing
capability, RMPC is able to process more samples or even take into account a longer
prediction horizon within strict real-time constraints. The proposed GPU implementation
idea removes the requirement for large data transfers between the GPU and CPU. By not
dividing the MPC into subproblems, this approach also minimizes the kernel generation
overhead. This eliminates the time overhead problems that are frequently experienced in
GPU-based systems [67]. Third, a distinct approach of step-by-step parameter selection
for RMPC is proposed. Simulations and experimentations show how this new sampling
technique paired with GPU realization enhances the control performance. An RC car with
the same kinematics as a typical road car that is 1:10 scale is used to show the validity of the
ideas that are suggested.

This study not only contributes to improving autonomous driving control but also high-
lights the potential of RMPC, frequency-domain sampling, and GPU implementation in
various applications requiring fast real-time control of mechanical systems.

3.2 Problem setting

3.2.1 Task description

In-order to demonstrate RMPC and its improvements, a collision avoidance task as shown in
Fig. 3.1 is chosen. There is an ego car controlled by the controller following a pre-defined
reference path xre f . The reference path, expressed in a local coordinate frame attached to the
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Fig. 3.1 Target environment

car (Σl(t)) as seen in Fig. 3.2 is defined as follows [68];

l
χre f (t) = {l pre f ,i(t)|i = 0,1, · · · ,Np} (3.1)

l pre f ,i(t) = {lxp
re f ,i(t),

lyp
re f ,i(t)}. (3.2)

Here, lχre f (t) is the reference path at time t, it contains Np path nodes l pre f ,i(t), where
l pre f ,i(t) denotes the relative position of the path node, lxp

re f ,i(t) and lyp
re f ,i(t), from the car’s

origin. The symbol l indicates local coordinate frame attached to the car and the symbol p
indicates the path. Here the deviation of the car from the reference path, ye(t), is computed
as the distance from the car to Op(t), the origin of the path coordinate frame Σp(t) at the
time of t, which is computed by applying the suitable interpolation between path nodes.
The car ideally should drive along the center-line of this 6m wide path. It starts at the
point (dego

re f (t = 0),ye(t = 0),θe(t = 0)) = (0,0,0), which is the origin. Variable t is the time
index, dego

re f represents the distance covered by ego car along the reference path and ye, θe

represent lateral error and yaw error of ego car from the reference path. The car should also
make necessary steering maneuver not to collide with the L parked cars on both sides of the
street whose position is represented by (oi

re f ,o
i
e), i ∈ {1,2, · · · ,L} for the ith parked car. The

controller controls the ego car motion by providing speed and steering angle commands.
The simultaneous motion planning and control (SMPLC) approach is used to approach

this problem. An MPC with the required constraints serves as the controller. There is no need
to plan a path first and then follow it in order to avoid obstacles because SMPLC combines
planning and tracking into one problem while taking constraints and the car dynamic model
into account.

An equivalent bicycle model (section3.2.2) is used to represent the dynamics of the car.
The point-mass model was used in earlier works that implemented MPC for navigation using
GPU to make the issue simpler. The preferred model is an equivalent bicycle model, given
the faster rate of motion. This framework makes use of some input and safety constraints,
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Table 3.1 Definition of parameters and variables

C f Cornering stiffness - Front tire N/rad
Cr Cornering stiffness - Rear tire N/rad
m Mass of the vehicle kg
Iz Yaw moment of inertia kgm2

l f Distance from gravity to front axis m
lr Distance from gravity to rear axis m
δ Steering angle rad
V Forward velocity of vehicle (const.) m/s
ρ Curvature of reference path 1/m

as demonstrated in section 3.2.3, to maintain a safe distance from the obstructions and the
sidewalls.

The nonlinear optimization problem is solved using a sample-based approach for reliable
real-time performance. The sample-based approach used in this study is referred to as RMPC
and has recently gained more popularity.

Methods based on random sampling frequently result in random variations in the control
input. For tasks requiring precision, like driving, this is not advised. Preliminary findings
from the co-earlier author’s work [56] point to a significant benefit of frequency domain
sampling for smooth driving control. An inverse discrete cosine transform (IDCT) was used
in the frequency domain sample generation process in [56]. We show how the IDCT method
operates on a GPU while smoothly operating our radio-controlled car.

3.2.2 State space equation for car dynamics

The vehicle behavior in this paper is assumed to be represented by an approximate bicycle
model with its coordinate system along the reference path (Fig. 3.2). The state equation of
this model is expressed as follows [70].

[
˙lvY

ṙ

]
=

−
a11
lvX

a12
lvX
− lvX

− a21
lvX l

a22
lvX

[ lvY

r

]
+

[
b1

b2

]
δ , (3.3)

where

a11 = (C f +Cr)/m, a12 =−(l fC f − lrCr)/m,

a21 = (l fC f − lrCr)/Iz, a22 =−(l2
fC f + l2

r Cr)/Iz,

b1 =C f m, b2 = l fC f /Iz.
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Fig. 3.2 Car represented using an approximate bicycle model.

where lvX and lvY represents the longitudinal and the lateral velocity in local coordinate frame,
respectively. These values are available from the Carsim software used for simulation or the
motion capture system where the RC car experiments were conducted. Please refer to Table
3.1 for other variables. The nonlinear state equation that is given above is further transformed
into an approximate bicycle model with it’s coordinate system along the reference path. With
the assumption of vehicle speed V being constant within prediction horizon , the slip angle
of the vehicle β and θe to be small enough, the dynamics of the lateral tracking error ye and
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the angle θe are summarized as follows (discretized with forward Euler’s Method):

x(k+1) = Ad(k)x(k)+Bd(k)ut(k)+Wd(k)ρ(k), (3.4)

y(k) =Cx(k), (3.5)

x(k) =
[

ye(k) ẏe(k) θe(k) θ̇e(k) δ (k)
]T

(3.6)

ut(k) = δ
∗(k) (3.7)

Ad(k) =


1 ∆t 0 0 0
0 1− a11

V (k)∆t a11∆t a12
V (k)∆t b1∆t

0 0 1 ∆t 0
0 − a21

V (k)∆t a21∆t 1+ a22
V (k)∆t b2

0 0 0 0 1−α∆t


(3.8)

Bd(k) =
[

0 0 0 0 ∆t
]T

(3.9)

Wd(k) =
[

0 (a12−V 2(k))∆t 0 a22∆t 0
]T

(3.10)

C =

[
1 0 0 0 0
0 0 1 0 0

]
. (3.11)

Where ρ represents the curvature of the reference path at the nearest point and δ ∗ represents
the tire angle reference. Actual tire angle δ is considered to have a first order delay from
δ ∗ to represent physical delay in steering system. Readers are referred to our previous work
[68] for further details.

3.2.3 Input and safety constraints

There are two constraints in this formulation, one is the hard constraint to ensure feasible
input commands and the other one is to prevent entry into the prohibited area.

The range of control input ut and its rate of change ∆ut are constrained as follows to
maintain physical limits of steering system and to prevent urgent steering action, respectively.

| ut | < 0.1745 (≈ 10 [degrees]) (3.12)

| ∆ut | < 0.35 radians/sec (≈ 20 [degrees/sec]) (3.13)
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Fig. 3.3 Potential field of sidewalls.

For each parked car, an ellipse around them defines the prohibited area with a safety margin.
This area for ith parked car is expressed by an inequality(

dego
re f (t)−oi

re f

ri
a

)2

+

(
ye(t)−oi

e

ri
b

)2

> 1

∀i ∈ {1,2, · · · ,L} (3.14)

where L is the number of cars parked, (oi
re f ,o

i
e) is the position of i th parked car. The length

of the major and minor axis of the ellipse around ith parked car are ri
a and ri

b, respectively.
The areas beyond sidewalls are also expressed as prohibited areas represented with a

logarithmic function as explained in the next subsection (3.19).

3.2.4 Cost function and reference state

The controller’s objective is to keep the car in the middle of the road and avoid hitting any
obstacles. When examining the given case in greater detail, it becomes clear that there is a
conflict between the requirements to follow the street center and avoid obstacles. In addition
to avoiding obstacles, it’s crucial to maintain a safe distance from them rather than taking
the route that passes closest to the obstruction. By including a potential field term in the
cost function, this is met. Weight parameters are used to balance terms that adhere to the
reference path and terms that avoid colliding. Finally, to maintain a safe distance from the
side walls, another potential field is also added.

The cost function J(ut) for an input series ut = [u(0|t),u(1|t), · · · ,u(N − 1|t)] to be
optimized at time t is
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J(ut) =
N−1

∑
k=1

s0(k|t)
(
φ

T (k|t)Qφ(k|t)+∆u(k|t)T R∆u(k|t)
)

+φ
T (N|t)Q f φ(N|t)

+Qobs

N−1

∑
k=1

s jP
j

obs(k|t)+Qwall

N

∑
k=1

Pwall(k|t) (3.15)

where φ(k|t) =y(k|t), (3.16)

∆u(0|t) =0, ∆u(k|t) = |u(k|t)−u(k−1|t)|1
∀k ∈ {1,2, · · · ,N−1}, (3.17)

where N, φ and ∆u represents prediction horizon length of MPC, state error and the time
difference in control input, respectively. The representation u(k|t) is the value of u at
prediction horizon step k at time t. Q = diag(Qye ,Qθe) and R being weight parameters,
balance the control performance to the effort. Q f acts on the last step in the prediction
horizon as a penalty to the residue.

This framework enables us to follow any reference path xre f that is needed, the reader
can refer to our previous work [68] for a detailed study on the path tracking performance
of this dynamic model. Further details on the weight parameter matrices and the terms
si(k|t), s0(k|t) can be found in author’s previous work [56]. When the ego car approaches
a parked car i, the switching parameter si approaches to 1. This makes the repulsive force
more significant. Otherwise, following the reference state is of higher priority.

Qobs and Qwall works as weight parameters for the potential field around parked cars and
sidewalls. Potential function around jth parked car is expressed by P j

ob j:

P j
ob j(k|t) =C j exp

(
−(

dego
re f (k|t)−o j

re f

r j
a

)2− (
ye(k|t)−o j

e

r j
b

)2

)
(3.18)

where [dego
re f (k|t),ye(k|t)] are the ego car position along reference path predicted for prediction

horizon step k at time t. C j, r j
a and r j

b allows obstacle-specific adjustments in potential field
area and magnitude. While r j

a and r j
b adjusts the proportions of the elliptical obstacle area
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around the obstacle, C j adjusts it’s potential. Side walls have their own potential field Pwall:

Pwall(k|t) =(log |ywl|+ log |ywr|)
− (log(ywl− ye(k|t)+ log(ye(k|t)− ywr)) (3.19)

where ywl = 3,ywr =−3 are side wall locations. Pwall is designed to increase steeply close
to the walls, as shown in fig 3.3. With assumption that the car is travelling parallel to the
side walls, it is sufficient to use a simpler log function for Pwall while P j

ob j needs a slightly
complex exponential representation.

3.2.5 Formulation of input optimization problem

The optimization problem to be solved in every control step in order to generate optimum
control input series can be formulated as follows:

given

x(0|t) = x(t), xre f , (3.20)

find

u(k|t), (k ∈ {0,1, · · · ,N−1}) (3.21)

which minimize

J(ut = {u(k|t)}), (k ∈ {0,1,2, · · · ,N−1}) (3.22)

subject to

Input constraints (3.12), (3.13)

Prohibited area constraint (3.14), (3.19)

Car dynamics (3.4). (3.23)

3.3 Frequency domain sampling for semi optimal solution

The issue at hand is a non-linear optimization problem that needs to be resolved in real-time.
A non-linear vehicle model and non-linear constraints on safe driving are both present.
Approximating the non-linear constraints for the solver in some way is a typical method to
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find the solution [62]. This paper tries to eliminate these approximations by the application of
a random sample based approach. This method is proven to provide a semi optimal solution
which is close enough to the optimal solution, once the necessary sample size is considered
[47]. The generation of samples initiates the process of this optimization technique. A
predetermined distribution of random numbers is used to select Ns sample sequences with
length N. The car’s future trajectory must then be determined, assuming it will adhere to
each of these model sequences. The samples that are impractical are now removed using
constraint-based filtering. There is a threat to safety if the majority of the samples are
discovered to be impractical. The controller should then either request manual driving or
switch to an emergency stop mode. This comes after using a cost function to determine the
cost related to each sample. The element at the start of the lowest cost series is then chosen,
and it serves as the ego car’s input. For each control cycle, the controller repeats these steps.

3.3.1 Generating smoother input samples by sampling in the frequency
domain

It is anticipated that randomly generating samples will also generate randomness in the
control input. This randomness is not advised for safe driving performance because the given
control input directs the car’s steering. The samples produced by the suggested sampling
technique are produced in the frequency domain. An Inverse Discrete Cosine Transform is
then used to transform these into the time domain (IDCT). It is possible to get samples that
drive the car more smoothly by following this process.

The generation of samples is thoroughly described in the following set of equations.

uIDCT (0|t) = u(t−1) (3.24)

uIDCT (k|t) = uIDCT (k−1|t)+∆uIDCT (k|t),
∀k ∈ {1, · · · ,N} (3.25)

∆uIDCT (t)T = γDUIDCT (t)T (3.26)

UIDCT ( f |t)

{
∼U (−1,1) if f ≤ Fc/o

= 0 other
. (3.27)
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Here, D ∈ RN×N is the coefficient of IDCT, f is the index representing the frequency
component and N is the prediction horizon length. Each element of D is calculated as follows:

Dii ji =

√
2
N

kii cos
(
(ii−1)( ji−1/2)π

N

)
,

ii ∈ {1,2, · · · ,N}, ji ∈ {1,2, · · · ,N} (3.28)

where ki (ii = 1,2, ...,N) is a normalizing factor that has two values

ki =


1√
2

ii = 1

1 ii ̸= 1

 . (3.29)

UIDCT (t) is sampled from a uniform distribution U ranging (-1,1) in this case. γ is a
parameter that can be used to adjust the resulting input rate of change according to (3.13).
Fc/o is a cut-off threshold that prevents higher frequency components in the resulting input
sequence. The smaller the Fc/o the smoother in the resulting input series. Unless specified, an
Fc/o of 15 is used in this paper. If any of the element ut generated in (3.25) is found to violate
the constraint (3.12), a new random number is generated to replace the UIDCT ( f |t) until ut

satisfies (3.12). The control performance with and without IDCT can be seen in Fig. 3.4
(Ns=500). The graphs show visible improvement in control signal smoothness and steering
performance. In summary, the contents of IDCT is essentially random number generation
followed by some matrix multiplications and series making. The following sections will
demonstrate how the above-mentioned operations were efficiently ported to GPU.

3.3.2 Validation of proposed sampling method

Before using RMPC for real experiments, its performance is evaluated in simulation-based
experiments. Since the experiments are performed in a 1:10 scale car, a high fidelity car
simulator is necessary for simulations. Carsim by Virtual Mechanics Inc. is used owing
to its excellent vehicle and environment models. The controller issues an updated control
input in every control cycle. In the simulation experiments, the control interval dT is
set as 0.1 seconds. The prediction horizon length is set as N = 50. This means that the
controller calculates the optimal input considering vehicle behavior predictions of 5 seconds
into the future. The following combination of parameters resulted in the best possible
tracking performance. Q f = 1, Q = diag(10,10), R = 3000, Qobs = 3000 and Qwall = 5,
respectively. The parameter γ is set to 1. The parked cars are at the positions o1 = (50,0.85)
and o2 = (80,−0.85), respectively. Since the optimization is based on random samples, there



32 Real-time Autonomous Driving using Randomized Model Predictive Control

X displacement (m)

Y
 d

is
p
la

c
e
m

e
n
t 

(m
)

(d
e
g
re

e
)

(d
e
g
re

e
)

S
te

e
ri
n
g
 A

n
g
le

Y
a
w

Fig. 3.4 Comparison of control performance - IDCT vs No IDCT

is an obvious question of its closeness to the global optimum. There have been some previous
works [47] that quantifies the minimum sample size for the solution to be global with a
defined probability level. Referring to [47], it is calculated that a sample size of Ns > 458
is necessary for the solution to have confidence level of 99%(αbelieve = 0.01). Hence, the
controller is tested at a sample size of Ns = 500. Fig. 3.5 demonstrates the performance.
Tracking performance is very accurate without any intrusion to the obstacle area which is
prohibited. While the author’s previous works [56] were limited to the performance of the
controller at sample sizes less than 500, this paper tries to go beyond this number. Even
though Ns = 500 provides sufficient performance at the simulation conditions, sample sizes
beyond 500 are found to provide better controller performance. This can be seen in Fig. 3.5,
where at 1000 samples, the control performance is clearly superior than at 500 samples. The
majority of control tasks have multiple control variables and stricter constraints. Such cases
would clearly demand a higher number of samples to be processed in real-time. Another
interesting trend in the case of driving is related to driving speed. The faster the car is, the
shorter the control interval has to be. Both these conditions demand higher computational
performance. But due to hardware limits, the sample size Ns < 500 was the limit that a CPU
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Fig. 3.5 Control performance at various sample sizes

based implementation could process in real-time. This limitation in computation power was
also expressed in [56] and [62].

3.4 Implementation using GPU

3.4.1 Computational steps involved

The process of calculating the optimum control input can be expressed in a sequence of 6
steps as described by Table 3.2. Once the present state variables are obtained from the car,
the controller performs steps 1 to 6. The final step does a minimization of all the samples
based on a cost function and comes up with the best sample sequence. The second element
in this sequence will be the optimum input for the car in the next step. This will be then sent
to the car. This process is repeated in every control cycle. The following subsections are
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Table 3.2 Steps in computation

Step Function Equation reference
1 Random Number Generation (3.27)
2 IDCT (3.26)
3 Series Generation (3.25)
4 State Matrix Calculation (3.4)
5 Cost Calculation (3.15)
6 Minimization of cost −

Algorithm 1 Randomized MPC
1: for Every time step do
2: Generate Ns input samples of length N acc. to 2.
3: Initialize state matrix.
4: for Sample = 1,2, . . . ,Ns do
5: for Length = 1,2, . . . ,N do
6: Calculate the extended state matrix acc. to 1.
7: end for
8: end for
9: for Sample = 1,2, . . . ,Ns do

10: for Length = 1,2, . . . ,N do
11: Calculate the cost for each sample acc. to 3.
12: end for
13: end for
14: Find minimum cost sample Smin.
15: Return second element of Smin as next control input.
16: end for

dedicated to the detailed contents of these steps and the methods in moving them to support
parallel computation using GPU.

3.4.2 CPU baseline

In order to have a better understanding about the improvements by parallel computing, The
controller was first implemented using a CPU based algorithm. The steps are expressed in
Algorithm 1. The CPU used in this study is a 2.2GHz Intel Core i5. CPU program uses
a random device function of the C++ Numerics library [71] to generate random numbers.
Please note that the steps from 2 to 5 in Table 3.2 are performed on every element, one
element at a time using two ’for loops’. First one is a ’for loop’ that index the sample number
Ns, the second one for the length of the sample N. This makes up Ns×N calls to the CPU
one after the other.
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Fig. 3.6 CPU vs GPU architecture

3.4.3 Code design for GPU

The MPC algorithm’s various steps were segmented into six distinct phases, as outlined in
Table 3.2. These phases underwent a thorough examination to identify potential enhance-
ments through adaptation to a 2560-core GPU (specifically, the NVidia GeForce GTX1080
running at 1.7GHz). The fundamental hardware distinction between CPUs and GPUs is
illustrated in Fig. 3.6, as described in [72]. Unlike a typical CPU, which possesses numerous
fast arithmetic logic units (ALUs) sharing a common cache memory and being controlled by
a unified controller, GPUs feature thousands of ALUs, each equipped with its own controller
and cache memory. Given that all the ALUs within a GPU can simultaneously execute a
thread of operations in parallel, the primary implementation concept involves assigning a
sample point to each GPU thread, as depicted in the illustrative representation shown in
Fig. 3.7. Random samples are stored within an array of size Ns×N, and an equivalent
number of GPU threads are allocated as a block, sized at Ns×N.

The first step of random number generation is performed with Pseudo-random number
generation function in CURAND library [73], which is a part of NVidia’s compute unified
device architecture (CUDA) library [72]. Step 2 that performs the IDCT operation (As seen
in (22)) and Step 5 that calculates cost (As seen in (10)), are independent at each discrete
sample points. Being independent, they can use as many GPU threads as the hardware allows
simultaneous operation. Matrix multiplication operations associated with Step 2 can also use
the maximum possible capacity of GPU. These steps while using one sample point per GPU
thread gives Ns×N times faster computation. The remaining steps in the computation like
Steps 3 and 4 depend on previous prediction horizon/series value to compute next. These
steps have to be performed in N steps, calculating all Ns samples at a given time using Ns
number of threads. Even here Ns times improvement in computational time is obtained over
CPU.
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Fig. 3.7 GPU implementation image

As described in the survey paper [67], the majority of GPU based implementations are
faster in calculation but suffer from a high overhead of memory transfer time and kernel
creation time. The GPU implementation presented here avoid these problems in following
ways:

• By generating the random numbers within the GPU memory (step 1 in table 3.2), all
the steps of computation are kept within the GPU and its memory. Only the present
state of the car is transferred to GPU and the optimum input is sent back.

• Certain problem-parallel approaches in literature splits the MPC to smaller problems
by dividing the prediction horizon and assign each section to different GPU kernels.
Thanks to the random sample based method, our data-parallel approach does not split
the MPC into subproblems, limiting the kernel creation time to the minimum.

3.5 Evaluation using RC car

It is anticipated that using GPU, control signals of the same quality as those produced by
CPU will require significantly less computation time. This has a number of advantages when
used for vehicle control. Previous simulation-based works did not account for localization,
error estimation, or communication delay delays. By relying solely on simulations, model
errors and various other noises were also disregarded. As a result, extensive testing of the
controller is done with an RC car in environments that are as close to real life as possible.

3.5.1 Experiment setup

The RC car used is a Tamiya 1:10 scale car as shown in Fig. 3.8. The control pulse width
modulation (PWM) signals are sent from the control PC via Wi-Fi to the on-board "Raspberry
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Fig. 3.8 RC car with attached computer and markers for localization

Pi" computer in the vehicle. The framework for communication is ROS. A camera-based
motion capture system called "Motive" is used to capture the position of the car in real-time.
The maximum control frequency is less than the 200Hz frequency at which the motion
capture system operates. The length N of the prediction horizon is set at 30. (to predict 3
metres ahead).

3.5.2 Benefits of running higher control frequency

Running the controller at a higher frequency is one benefit of using a GPU to perform
computations more quickly. As a result, obstacle avoidance is made possible at speeds faster
than the CPU. Under the condition of N = 30, and minimum Ns of 500, the maximum control
frequency using CPU is 30Hz. This controller is found to work fine at a speed of 3.6 km/h1.
However, it is discovered that the CPU-based system strikes the obstacles at a speed of 5.1
km/h. This is because CPU-based implementations are limited to operating at a certain
control frequency. The GPU performs smooth avoidance up to a speed of 11.5 km/h while
operating at 200 Hz and 1000 samples. The details of the experiment is shown in Fig. 3.9
and the video [75].

1In a real car, this correspond to 3.6×10 = 36km/h [74].
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Table 3.3 Cost function at different sample sizes

Sample Number Cost (×104) Improvement over CPU (%)
100 16.30 _
500 13.62 16.4

1000 12.43 23.7
5000 11.19 31.4

10000 10.37 36.4
20000 9.77 40.1
30000 9.70 40.5

Fig. 3.9 Speed limit comparison

3.5.3 Benefits of running higher sample counts

The ability to consider more samples at each control interval is another benefit of using the
faster computation speed. A larger sample size is anticipated to bring the solutions closer to
the global optimum, as was previously discussed in section 3.3.2 The control frequency in the
RC car tests was set to 100Hz, and the sample size was increased. The results are indicated
in Table 3.3 and Fig. 3.10. Only 100 samples can be processed in real time by the CPU
at 100Hz. The GPU based controller can have lower cost values by using more real-time
samples. Higher sample sizes show a low reduction in cost value, but the car behavior is still
noticeably smoother and maintains a better safety distance.
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Fig. 3.10 Sample size comparison

Fig. 3.11 Tracking performance at various prediction horizon lengths

3.6 Discussion on parameter selection for RMPC

RMPC controllers are characterized by the samples used and the frequency at which they
are updated. The samples are characterized by the number of samples Ns and length of each
sample N. Let us denote the control interval as dT . The selection of these parameters is not
as easy as it seems due to their relationship with each other. Increasing Ns or N forces dT
to increase. For a fixed N, there could be multiple combinations of Ns and dT that satisfy
computational limits.

The recommended procedure to identify these parameters starts with the identification of
N. N is decided first because of it’s unique effect on control behavior. Value of N has to be
bounded with both upper and lower limits as seen in Fig. 3.11. On the other hand, acceptable
values of Ns and dT could only be bounded on one side, minimum Ns and maximum dT .

N can be identified with a few experiments as demonstrated in Fig. 3.11. The values
for Ns and dT are chosen intuitively for this step. It can be seen that the RC car, while
performing the obstacle avoidance task as explained in Section 3.5, has an optimal range of
prediction horizon length N for best tracking performance. Here, the best N value was found
to be 30 steps.

Once the value of N is identified, it is recommended to choose the optimal dT corre-
sponding to the speed of the system. Rule of thumb is that a car moving at double speed
will cover double the distance in the given time. Hence control frequency should also be
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doubled. It is always recommended to have some tolerance in the dT value considering the
computational time slightly varies depending on situation.

After choosing the N and dT , it is recommended that the maximum sample number
is chosen considering given computational resources. This is because the cost function is
found to decrease monotonously as the sample size increases as seen in table 3.3. This
method of selection was employed during parameter selection for the RC car experiments
and simulations presented in this work.

3.7 Modification for cooperation with speed control on
curved roads

The simulations and experiments covered up until section 3.6 deal with an obstacle avoidance
task on a straight road at constant speed. It is determined that this task is the best option for
demonstrating the impacts of different control parameters and computational speed on the
suggested RMPC controller.

This controller performs flawlessly on all types of roads, even those with sharp turns.
The ego car can be seen making a sharp turn while facing a parked car at the curve’s exit in
Fig. 3.12. Control parameters have been selected to match section 3.3.2. It is seen that the
ego car avoids collisions with ease.

With the addition of a speed controller that slows the vehicle down when higher steering
angles are ordered, the constant speed premise is replaced. The input vector (3.7) becomes

ut(k) = [δ ∗(k),v(k)]T (3.30)

Where,

v(k) =C f (δ
∗
avg(k)), δ

∗
avg(k) =

1
n

n

∑
ima=1

δ
∗(k− ima).

C f is a cubic function of δ ∗avg. δ ∗avg is averaged over n steps in the past (here, n = 10). k
represents the control step and the index ima is used for indexing the moving average. In Fig.
3.12, the speed profile during collision avoidance is seen to be smooth. Speed control can be
easily replaced with any other type of controller because the proposed lateral controller is
independent. Please take note that in the example provided, the RMPC is only in charge of
steering angle; the vehicle speed will be a state variable for the RMPC.
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Fig. 3.12 Path tracking with curves and speed control
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3.8 Conclusion

A randomized nonlinear model predictive controller for autonomous driving has been pre-
sented in this chapter, with a focus on the obstacle avoidance task. Despite the nonlinear
nature of the vehicle model and the obstacle constraints, the proposed scheme allowed
for direct consideration of nonlinear constraints by employing a randomized optimization
method. The IDCT method was used to create random samples from the frequency domain
for optimization. This avoids unfavorable control input oscillation, which is particularly
crucial for autonomous driving. This chapter also looked into the effects of using a graphics
processing unit to implement randomized MPC. The real-time performance ceiling was
raised by using GPU. Additionally, a method for randomized MPC parameter selection has
been discussed. The proposed scheme and improvements were confirmed in simulation
and experiments using an RC-car. In comparison to a CPU-based controller, the RC-car
experiment has demonstrated higher driving speeds and better control performance. Other
types of control systems that require high control performance under nonlinear constraints
can use our suggested GPU implementation scheme.



Chapter 4

Design of Considerate Autonomous
Driving Using Pedestrian-Aware Model
Predictive Control

4.1 Introduction

Self driving on closed highways has reached very close to realization. Major automobile
makers are set to provide autonomous driving on such highways in the 2020’s. Autonomous
driving on the highway can be controlled if certain attributes are fixed, such as compliance
to traffic rules and lane navigation. There have been previous works that express them
mathematically as deterministic functions or constraints built on vehicle state perceived by
various sensors. Some achievements can be found in [22] and [76–78]. The works [76] and
[77] proposed rule-based highway autonomous driving (AD) solutions, while [22] and [78]
propose model predictive control solutions to highway AD. Considering the fact that majority
of our everyday driving includes driving on roads in shopping and residential areas, fully
autonomous driving in downtown areas is much more difficult than on the highway. It is still
a challenging task because the driving environment is often shared with other agents like
pedestrians. Even if the priorities of pedestrians and cars in shared scenarios are generally
defined by rules, such negotiations are very common, particularly in residential areas, parking
lots, and so on [79]. While considering developing markets like China and India [80], such
interactions are very much part of daily life. In China, the person who comes to the way
first has the legal right of way. This means that the motorist does not need to yield to the
pedestrian [81].
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Fig. 4.1 Control architecture for considerate driving

It is generally very hard to predict the movement of pedestrians mathematically. The
action of the pedestrian, however, can sometimes be implicitly controlled by changing the
action of the ego vehicle. This can be regarded as a behavioral interaction between the
car and pedestrians. Behavioral interaction implies that a driver tries to convey his or her
intentions to pedestrians by doing an action for the purpose of achieving a reaction that the
driver expects [82]. Such behavioral interaction reflects the balance between the driver’s
own intention to keep driving and their consideration of the comfort of the pedestrians. For
example, human drivers often reduce the speed in advance for a pedestrian who intends to
cross so that he/she may cross before the driver proceeds. In the same way, human drivers
often accelerate and pass a yielding pedestrian when they expect us to pass. In both cases,
it can be seen that the consideration of the pedestrian’s stressless decision-making made
it easier to reach a fast behavioral consensus. In this paper, autonomous driving that can
realize such behavioral interaction is defined as “Considerate Driving”, where the driver is
considerate towards the comfort of the pedestrians and drives accordingly. In comparison
to being conservative and yielding all the time, or being aggressive to force a pedestrian to
yield, it is better to be considerate. This achieves a safe behavior consensus faster, thereby
enabling the car to realize natural driving. Generally speaking, the car makes the pedestrian’s
decision-making easier by reducing his or her internal confusion level.
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To enable stressless behavioral interaction, an index to measure the comfort level of the
pedestrian during the negotiation is needed. The comfort levels are generally related to how
confused the pedestrian is. The confusion levels inside a traffic participant has been studied
by author’s previous works [6] and [83]. These works has proven the parameter “entropy”
to be an effective measure of internal confusion of human traffic participants. The term
“decision entropy” is used in this work to represent the internal confusion of the pedestrian.
Trying to minimize the entropy of pedestrians as a part of car’s control objective is expected
to enable faster behavior consensus and thereby facilitate faster interactions. Calculating the
decision entropy necessitates a pedestrian model that explicitly provides the decision making
process with probabilistic measure for different possible predefined motion modes.

In this paper, a novel pedestrian-aware MPC approach has been proposed considering the
vehicle-pedestrian interaction in a shared road environment. The major contributions can be
summarized as follows:

• Proposes a novel multi-mode probability weighted ARX (PrARX) model [6] that
includes the interaction behavior between car and pedestrian.

• Proposes an MPC framework that can realize considerate driving using the proposed
pedestrian model.

• The level of aggressiveness and the level of consideration to pedestrian’s decision
making comfort are tunable.

• Optimization method being random sample based, is compatible with accelerated
computation on GPUs, hence scalable to multiple pedestrians.

The proposed PrARX model considers multiple pedestrian modes, hence predicts multiple
future pedestrian trajectories with corresponding probabilities in each step. A risk parameter
that is tunable based on collision probability helps to customize the level of risk that the
controller can take, making it more personal to different drivers. The pedestrian’s decision
entropy is introduced as a component of the MPC cost function. By varying the weight
on this entropy cost, the vehicle behaves considerately making the pedestrian’s decision
making easier. The MPC problem is formulated and solved using a randomized optimization
algorithm ([47, 56, 84]). Driving is a task where safety is crucial, so real-time computation
is required. The calculation time required to determine the cost corresponding to samples
for each mode a pedestrian can use is one anticipated bottleneck of the suggested method.
Our earlier research [69] has shown that using a GPU rather than a CPU can increase the real
time calculation limit for the randomized algorithm. The proposed MPC has been created to
use a GPU for computation.
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The remaining part of this paper is organized as follows. In section 4.2, we discuss the
relevant related works. An overall control architecture for considerate driving is explained in
4.3. This section also discusses the interactive situation addressed in this work. In 4.4, the
dynamic models used to represent the car and the pedestrian behavior are described. The
sections 4.5 and 4.6 explain how the safety constraints are formulated, and how the decision
entropy of the pedestrian is incorporated into the MPC, respectively. Section 4.7 discusses
how the pedestrian-aware MPC problem is formulated to consider the probabilistic nature of
the collision avoidance. In section 4.8, extensive simulations are carried out to demonstrate
the novelty of our proposed controller.

4.2 Related Works

4.2.1 Considerate driving

The term considerate driving as proposed here has been noted in [85] and [86]. [85] defines
considerate driving as a form of prosocial behavior. While prosocial behaviors are defined
as “broad range of actions intended to benefit one or more people other than oneself” [87].
Prosocial driving is defined as “driving behaviors that potentially protect the well being of
passengers, other drivers, and pedestrians, and that promote effective cooperation with others
in the driving environment” [88]. While the previously mentioned works discuss considerate
driving by human drivers, [86] discusses a considerate system design approach for the driving
environment with interactions among the ego-car and the other traffic participants. This work
follows the definition of considerate driving from [85].

4.2.2 Prediction models

The most important component to enable considerate driving is an accurate behavior predic-
tion model with two essential features. Firstly, it must include the dynamics of interaction
between pedestrian and another agent, as seen in [89–94]. Secondly, the structure of the
model should enable entropy calculation during decision making, as seen in [95, 96, 6, 83].
Among the works on interaction between pedestrian and another agent, [89] presents a
novel dynamic bayesian network (DBM) for pedestrian path prediction, [90] approaches the
same task as an unsupervised learning problem. Growing hidden Markov models (GHMMs)
and bayesian human motion intentionality predictor (BHMIP) are used along with a social
forces based motion model in [91] and [92], respectively. Both the works claims to yield
a significant performance gain in comparison with the standard constant velocity-based
models. In order to predict human crowds behavior, [93] develops an approach that models
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the joint distribution over future trajectories of all interacting agents in the crowd, through a
local interaction model that they train using real human trajectory data. An long short term
memory (LSTM) model is proposed by [94] for such crowd interactions.

Earlier works on pedestrian model with car interaction can be broadly divided into
three categories based on the modeling methods used. They are physics-based methods,
pattern-based methods and planning-based methods [97]. Recent advances in modeling of
human behavior using neural networks [98, 99], are found to perform well in prediction
accuracy. The neural network based techniques are usually referred to as “black-box” models.
This is due to the fact that artificial intelligence (AI) developers cannot fully explain some
decisions taken by the neural network. This makes them particularly problematic during cause
investigations of incidents involving autonomous vehicles and their liability determination
[100]. This motivates us to use a subset of physics based methods. Physics-based models
are further divided into single mode and multi-mode models [97]. Since it is known that the
multi-mode model can represent the decision making by focusing on the mode switching
condition, the multi-mode model is considered as a behavior model in this paper. The
models proposed in our own previous works [95, 96] and [101–103], employed probabilistic
functions to predict the assorted paths that the pedestrian might choose. This was achieved
with the use of interacting multiple-model kalman filters (IMM-KF). While [95] and [96] use
IMM-KF for human trajectory prediction, [101] highlights the advantages of multiple models
in a kalman filter for prediction. A recursive bayesian filter based approach to pedestrian path
prediction at short time horizons is proposed by [102]. A combined intention recognition and
path prediction is proposed by [103] using an IMM filter. Even though the decision making
in terms of modes and their probabilities were explicitly accessible, these models did not
consider the pedestrian-vehicle behavioral interaction. Another multi-mode model method
that has interaction [89] uses two simple models of stop and go, which is insufficient for an
accurate representation of pedestrian dynamics.

Based on these considerations, a multi-mode probability weighted ARX (PrARX) model
[6] is adopted for pedestrian crossing behavior modeling under the influence of a car in
this paper. Real-world vehicle-pedestrian interaction data is used to identify this model
[104]. The identified PrARX model gives explicit access to pedestrian decision making
in terms of modes and their probabilities. Each of the modes considered also includes the
pedestrian-vehicle interaction in them. With this model, it becomes possible to calculate
the predicted mode probabilities and entropy within long prediction horizons at a small
computational cost.
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Fig. 4.2 Target use case that contains one vehicle and one pedestrian.

4.2.3 Controller design

An MPC that can consider probabilistic scenarios is necessary to incorporate with the pro-
posed pedestrian model. Due to the inability to address probabilistic elements, a conventional
MPC considers the worst case scenario and hence acts conservatively. MPC with probabilistic
scenarios can perform in a less conservative way without compromising the safety of pedes-
trians. To the best of our understanding, there has not been enough number of significant
works addressing shared road driving with pedestrians using MPC containing probabilistic
elements. Our own previous works [95] and [96] have tried to address such a problem using
an IMM-KF model for pedestrian behavior. The work [96] employed a random sample based
optimization [69] with a sampling-based representation of probabilistic constraints. The
work [95] proposed an alternate method of optimization using IPOPT optimizer [105] by
creating a novel formulation for the probabilistic constraints. Both of these works lacked the
pedestrian-vehicle interaction dynamics inside the pedestrian model, hence unaware of the
vehicle’s influence on pedestrians. In this work, along with the proposed PrARX pedestrian
model, a pedestrian-aware MPC framework is proposed. The sampling-based solver and a
sampling-based representation of probabilistic constraints are chosen for the MPC.

4.3 Control architecture for considerate driving

The control architecture of the proposed MPC controller is explained in Fig. 4.1. The
behavior of the ego vehicle and the traffic participants in its vicinity are predicted by their
corresponding models. The interaction between them is also considered since the pedestrian
model includes the ego car’s state. The variable u represents the control input that is
obtained by optimizing the cost function J in real-time. The cost function J contains safety
constraints along with decision entropy and reference path and speeds. The prediction
models including interaction act as constraints in the optimization. The proposed MPC
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framework with pedestrian model described by PrARX model is expected to realize a natural
consensus between car and pedestrians. To demonstrate this, a shared-road driving situation
is considered where a car has to negotiate a crossing pedestrian as shown in Fig. 4.2. The ego
car intends to drive straight keeping a reference velocity vref as close as possible. The road
under consideration is narrow (3m wide) which is typical for a suburban road for one-way
traffic [106]. The road being narrow, steering action is almost negligible. The pedestrian
starts from one side of the road and his/her intention is identified as trying to cross to the
other side (identification of this intention is considered as external to this framework, hence
not in the scope of this work). Pedestrians crossing path is also assumed to be straight, but
his/her motion is influenced by the car. The ego car is capable of estimating pedestrian’s
crossing dynamics. Since the influence of the ego car on the pedestrian’s motion is modeled,
the controller tries to make the pedestrian’s crossing as easy as possible by minimizing the
decision entropy of the pedestrian. Since the pedestrian behavior is modeled with multiple
models, the predicted trajectory following each mode is different. They are highlighted as
arrows of different colors in Fig. 4.2.

4.4 Modeling of pedestrian and vehicle for state prediction

Pedestrians being the most vulnerable traffic participants, predicting their motion accurately
can greatly improve the safety in intelligent transportation. As the pedestrians are most
dynamic in nature, their ability to suddenly and randomly switch direction and speed makes
their predictions difficult. Such dynamics makes it inaccurate to represent it using a single
dynamic model. Instead, a multi-mode approach is used, which identifies and combines
several basic models as a PrARX model. This framework has been proven to be useful to
obtain correct estimation and prediction of human decision making [6, 83]. This section
explains the details of the chosen dynamic models and path prediction using them.

4.4.1 Data for pedestrian model identification

Clean and continuous data which is free of noise is always recommended to be used as an
input to the PrARX model identification phase. Vehicle-Crowd Interaction (VCI) - CITR
Dataset [104] is used in this work, which is available in open source from the Ohio state
university. This data set was collected from controlled experiments executed in a university
parking lot. Experiment participants were instructed to cross a road from a particular starting
area to a goal area. A manually driven golf cart approaches perpendicular to the crossing
participants and create an interaction scenario. A drone at a fixed distance above experiment
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Fig. 4.3 Sample profiles from the data.

area was used to record the interaction data by logging positions of each entity. The details
of the experiment, along with videos and filtered data can be found in [104] and their GitHub
repository [107]. The data set contains position and velocity data along x and y axis for the
pedestrians. For the car, position along x and y axis, longitudinal velocity and heading angle
are available. Among the 6 scenarios available in the data set we choose only the ”Lateral
interaction (Unidirectional)" data as seen in Fig. 4.2. This contains the data for 32 pedestrians
split into 8 scenes that are 20 seconds long.

From this data, the following variables are calculated as input and output:

Input variables1.

• ζ1: 1/T TC (Inverse of time to collision) [1/s]

• ζ2: Pedestrian velocity [m/s]

1The variable U is also used to represent control inputs in chapter 3 and 5.
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• ζ3: Car velocity [m/s]

Output variable

• up: Pedestrian acceleration [m/s2]

The sample profiles of these data are shown in Fig.4.3. The x axis shows the steps in time,
and the y axis shows 1/TTC, pedestrian velocity, vehicle speed, recursive term, and pedestrian
model output acceleration from top to bottom. We will explain the vertical red line and the
term ’Mode’ later in this chapter.

4.4.2 Pedestrian modeling by PrARX model

In this work, a Probability weighted ARX (PrARX) model is used as a pedestrian model,
wherein the multiple ARX models are composed by the probabilistic weighting functions.
The PrARX model is defined by the form

up
k = fPrARX(r

p
k )+ ek, (4.1)

where k ≥ 0 denotes the sampling index, uk ∈ Rq is the pedestrian acceleration, ek is an error
term. rk is a regressor vector containing by input ζk ∈ Rp and past outputs.

rp
k =

[
up

k−1 · · · up
k−na

ζk−1
⊤ · · · ζk−nb

⊤
]⊤

(4.2)

where rk ∈ Rn, n = q ·na + p ·nb, ζk = [ζ1k, · · · ,ζ3k]
⊤ ∈ R3 is the input variable vector

with number of inputs p = 3. Number of outputs q = 1. For simplicity, na and nb are set as 1
for a first order ARX model. fPrARX(rk) is a function of the form

fPrARX(rk) =
M

∑
i=1

µiθ
T
i ϕk, (4.3)

where ϕk = [rT
k 1]T ∈ Rn+1. θi ∈ R(n+1)×q ( i = 1, · · · ,M ) is an unknown parameter matrix

of each mode. M is the number of modes and is supposed to be known. µi denotes the
probability that the corresponding regressor vector rk belongs to the mode i, and is given by
the softmax function as follows:

µi =
exp(ηT

i ϕk)

∑
M
j=1 exp(ηT

j ϕk)
, (4.4)

ηM = 0,
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Fig. 4.4 Sample model of the single output PrARX model with 3 modes (reproduction of
fig.1 in [6]).

where ηi ( i = 1, · · · ,M−1 ) is an unknown parameter that characterizes the probabilistic
partition between regions corresponding to each mode.

The sample model is shown in Fig.4.4. This model is the single output PrARX model
with three modes (the red lines associated with the outputs shows the linear model). The
model parameters are given by

θ1 = [0.5 −5]T , θ2 = [−0.1 3]T ,

θ3 = [−0.4 15]T , (4.5)

η1 = [−3 45]T , η2 = [−1.5 30]T ,

η3 = [0 0]T .

It can be seen that the three ARX models are smoothly connected at U = 10 and 20. These
connecting points, i.e., the partitions can be calculated from the η1 and η2. Since the
partitions defined by η is the switching point of pedestrian’s dynamic model, the parameter
η in given PrARX model characterizes the decision making in the pedestrian. (See [6] for
details). In order to identify the parameters in the given PrARX model, the steepest descent
method is used. The cost function is de fined as the square norm of the output. Details
of the identification scheme can be found in author’s previous work [6]. The pedestrian is
assumed to move straight parallel to the y axis shown in Fig. 4.2. Hence, the pedestrian state
is updated using a point mass model. Once the pedestrian acceleration yk is calculated using
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Fig. 4.5 Mean standard errors at various mode numbers
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Fig. 4.6 Fit of PrARX model on data

PrARX model (4.1), the pedestrian state is updated as follows:

ξ
p
k+1 = Aξ

p
k +Bup

k ,

A =

[
1 ∆T

0 1

]
, B =

[
∆2

T/2
∆T

]
(4.6)

ξ
p
k =

[
yp

k vp
k

]⊤
represents the state of the pedestrian, index p refers to pedestrian. yp

k , vp
k

and up
k represent the position, the velocity and the acceleration of the pedestrian along y-axis,

at step k respectively. The time interval corresponding to one control step is represented by
T . The pedestrian is assumed to move along y-axis, hence the pedestrian position along the
x-axis (xp

k ), is considered to be constant.
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Fig. 4.7 Segmentation of the data in 3D

Table 4.1 Identified parameters

θ

Mode (i) θi1 θi2 θi3 θi4 θi5
1 −4.82e−4 0.03 -0.05 0.97 1.61e−4
2 0.02 -0.15 -0.08 0.95 -0.06
3 0.02 -0.02 -0.02 0.95 0.18

η

Mode (i) ηi1 ηi2 ηi3 ηi4 ηi5
1 0.07 8.61 -8.37 -0.50 -2.82
2 3.24e−4 -0.76 -0.56 -0.42 .59

4.4.3 Verification of proposed model

The data from VCI-CSTR data set as discussed in section 4.4.1 was used to identify the
parameters for the PrARX pedestrian model. The given data is randomly divided into two,
for training and testing. Generally speaking, it is desirable that the number of modes is as
small as possible from the viewpoint of computational complexity. In addition, as seen in Fig.
4.5 the difference of the mean square error between the two-mode model and the three-mode
model is much larger than that between the three-mode model and the four-mode model.
Therefore, it can be concluded that the optimal number of the modes here is three. In the
remaining part of this paper, the number of modes is considered as three. In the previously
discussed Fig.4.3, the input and estimated output according to 3 modes are shown, the vertical
red lines indicates the mode switching time. The list of identified parameters for the three
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Fig. 4.8 State transition in the model

mode model are listed in Table 4.1. Figure 4.6 shows the fitting of the data regenerated by
the model on the original training data. They coincide well with each other, and the mean
standard error (MSE) value was 0.0013. The identification process does not contain any
intentional scheme to find each mode and separations between modes. The parameters in the
PrARX model was automatically found by applying identification scheme. Nevertheless, the
data was clearly separated into three clusters as shown in Fig.4.7. The behavioral meaning
behind these modes are as explained below:

• BLACK: The black points belong to Mode 1. This mode is active at higher car
velocities. This mode represents the pedestrian’s yielding behavior to the car (hence
low pedestrian velocities).

• RED: The red points belong to Mode 2. This mode is only active at low car velocities.
In this mode, Pedestrian decides and starts to cross the road. Pedestrian acceleration is
found to be positive in this mode.

• BLUE: The blue points belong to Mode 3. This mode is significant in higher pedestrian
velocities. This mode shows pedestrian’s steady state crossing behavior, once he/she
reaches maximum walking pace. This is also the predominant mode once the pedestrian
or the car passes each other.

The transitions between these three modes are illustrated in Fig.4.8. Such transitions specified
by η can be interpreted to represent the decision making aspect of the pedestrian. Further-
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more, having the probability measure along with every discrete state, the decision entropy
can be easily quantified.

4.4.4 Longitudinal vehicle model

Due to the constrained lane width in the shared road scenario, it is noticed that the driver
hardly steers the car to miss a pedestrian. Instead, he or she slows down the car when a
danger is approaching or speeds up and overtakes a pedestrian before getting too close. As a
result, only the longitudinal dynamics of the ego car is taken into account in this work. At
the specified speeds, the longitudinal dynamics of the ego car can be adequately expressed
by a point mass model similar to eqn. 4.6.

Xc
k+1 = AXc

k +Buc
k (4.7)

Xc
k =

[
xc

k vc
k

]⊤
represents the vehicle state. xc

k, vc
k and uc

k represent the position, velocity and
acceleration of ego car along x-axis, at step k respectively. The time interval corresponding
to one control step is represented by T . The car position along y-axis, yc

k, is considered to be
constant.

4.5 Safety constraints

4.5.1 Collision avoidance with pedestrian

In order to prevent the collision between the vehicle and the pedestrian, the distance between
them must be kept over a specified safety distance dmin. In Section 4.4.3, M predicted
trajectories are considered corresponding to M pedestrian model. Note that those trajectories
have different occurrence probabilities as mentioned in Section 4.4.3. When estimating
the collision risk, it is needed to predict the pedestrian behavior. In the pedestrian model
described in Section 4.4.2, probabilistic weighting of multiple modes We used the PrARX
model to express pedestrian behavior. When considering the collision risk, it is not possible
to predict the average behavior of each mode hence certain dangerous behavior can be missed.
On the other hand, we could use a Markov process for mode transition. In such a case,
verifying all transition possibilities of a mode sequence will be difficult to implement in
real-time control from the point of view of computational complexity. Therefore, in this
study, the prediction horizon in model predictive control is kept short and the mode of choice
is assumed to be constant in this interval. Prediction is limited to M scenarios, which is the
number of modes in the pedestrian model. Then, the risk is estimated by using the maximum
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occurrence probability of the relevant mode at the step where the collision is most probable.
This is predicted as the representative value of the probability of occurrence of the scenario.

The chance of collision at time t, Pcol
t , can be estimated as follows:

Pcol
t =

M

∑
m=1

Dm
t ,

Dm
t = µ

m
kmax|tC

m
kmax|t ,

kmax = argmax
k∈(0,N−1)

µ
m
k|tC

m
k|t ,

(4.8)

where µm
k|t and Cm

k|t are the mode probability and collision indicator at time t, corresponding
to prediction step k and the pedestrian mode m. The bar subscript ∗k|t indicates information
about the k-th prediction step of the prediction horizon at time t. The collision indicator can
receive the value of 0 or 1 as follows:

Cm
k|t =

1 if dm
k|t−dmin ≤ 0

0 if dm
k|t−dmin > 0

, (4.9)

where dm
k|t is the distance between the pedestrian and the vehicle at given time t corresponding

to prediction step k and the pedestrian mode m. The car’s state at time t is predicted for N
future steps assuming the car follows a given input sequence. Pedestrian states corresponding
to the car’s action are also predicted for N future steps, with M such states of the pedestrian
corresponding to the M modes. The choice of safety distance dmin is discussed in Section
4.8.

Remark 1 Even if the collision indicator returns a value of 1 for a particular pedestrian
mode m, it does not imply that the pedestrian and the vehicle actually collide. Additionally,
the mode probability, which is derived from the PrARX, must be considered.

In order to prevent the vehicle from colliding with the pedestrian, the safety constraint is
imposed on the chance of collision (4.8) as below:

Pcol
t ≤ r, (4.10)

where r ∈ (0,1) specifies an allowed risk threshold. Generally speaking, large r might lead
to a high chance of collision. Small r, however, might lead to a conservative behavior of the
vehicle. The effect of the parameter r on the behavior of the vehicle is investigated in Section
4.8.
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4.5.2 Velocity and acceleration constraints

The velocity and acceleration constraints of the vehicle are specified as follows:.

vmin ≤ vc
k ≤ vmax, amin ≤ uc

k ≤ amax. (4.11)

Here, vmax is set at 8m/s to match with the speed limits on the roads where such interactions
were observed, vmin is set as 0m/s to avoid driving in reverse. Limits on acceleration amin

and amax are set at 3m/s2 and −3m/s2, these numbers are typical for passenger cars in such
scenarios [108].

4.6 Decision Entropy
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Fig. 4.9 Effect of the car on pedestrians decision entropy
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This work uses a quantitative index, “decision entropy” to evaluate the vagueness in
pedestrian’s decision. Decision entropy was previously proposed to successfully represent
vagueness in human decision making [83]. Since the decision entropy is calculated from
probabilities of the available modes that an agent can choose, the usage of PrARX model
facilitates easy definition of this decision entropy. This is due to the fact that the PrARX
model always provide the probability of the pedestrian to choose each one of the defined
modes. Decision entropy is defined as follows:

H(rk) =
M

∑
i=1

µi log(µi), (4.12)

where H(rk) is the decision entropy of the pedestrian at sample index k corresponding to
the regressor vector rk. M is the number of modes and µi denotes the probability that the
corresponding regressor vector rk belongs to the mode i (eq.(4.4)). The larger the decision
entropy is, the more the vagueness in the decision making is. This entropy is added as a
new cost into the MPC cost function as explained in section 4.7.1. With the help of PrARX
model, the MPC controller is able to find the action of the ego vehicle, which minimizes the
pedestrian’s entropy levels, and thereby, is able to provide a stressless interaction between car
and pedestrian. Figure 4.9 shows the pedestrian’s entropy levels at two common interaction
scenarios. Fig. 4.9a shows an example scenario in which a car slows down to give priority to
pedestrians. In this case, we can see that the pedestrian’s decision entropy decreases from
around Step 15 as the vehicle approaches, but there is a steeper drop in entropy as the vehicle
decelerates significantly. Similarly, Fig. 4.9b shows a situation in which the car accelerates
and passes first. Here, by increasing the vehicle speed, the pedestrian’s decision entropy
can be reduced. In this case, it can be said that it became easier for pedestrians to make a
decision to wait. (In this case, Mode 1, pedestrian is yielding).

4.7 Realization by pedestrian-aware model predictive con-
trol

n this section, we are developing a Model Predictive Control (MPC) speed controller for
a vehicle that can safely navigate a shared road environment, which includes pedestrians.
The key feature of this controller is its ability to handle the uncertainties associated with the
pedestrian’s behavior within the prediction horizon of the controller. The MPC minimizes
a cost function which includes the decision entropy of the pedestrians, and calculates the
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optimal control input. The MPC also keeps the collision probability below a specified risk
threshold r.

4.7.1 Problem formulation

To address this challenge, we employ models for the vehicle, pedestrian, and safety constraints
to frame the receding horizon control problem. At each time step, we tackle a finite time
horizon optimal control problem, seeking to generate a sequence of control inputs that
minimize a predefined cost function. The first control input from this sequence is then
implemented on the vehicle. This process is reiterated with updated measurement data in the
subsequent time step. Below, we provide an explanation of how the optimization problem is
formulated at each time step.

given: Xc
t , ξ

p
t , vref and µ

m
t ,

find: uk|t , k = 0, . . . ,N−1.

Which minimizes:

Jcost = Φ(Xc
N|t ,vref)+

N−1

∑
k=0

M

∑
m=1

µ
m
k|tL

m(Xc
k|t ,uk|t). (4.13a)

Φ(Xc
N|t ,vref) = Sc(vc

ref− vc
N|t)

2, (4.13b)

L m(Xc
k|t ,uk|t ,ξ

p
k|t) = Qc(vc

ref− vc
k|t)

2 +Rc(uk+1|t−uk|t)
2

+Ec(µ
m
k|t log(µm

k|t))
2 +Bm(Xc

k|t ,ξ
p
k|t),

(4.13c)

Bm(Xc
k|t ,ξ

p
k|t) = Pc exp

(
−α

(
dm

k|t−dmin

))
. (4.13d)

Subject to:

Xc
k+1|t = FXc

k|t +Guk|t , k = 0, . . . ,N−1 , (4.13e)

ξ
p
k+1|t = Fξ

c
k|t +Gyk|t , k = 0, . . . ,N−1 , (4.13f)

Safety constraint for collision avoidance

Pcol
t ≤ r (re f er (4.8) in 4.5.1), (4.13g)

vmin ≤ vc
k ≤ vmax, amin ≤ uk ≤ amax, (4.13h)

Xc
0|t = Xc

t , ξ
p
0|t = ξ

p
t , (4.13i)

where N = 20 shows the step count in the prediction horizon, T = 0.1 (s) gives the time step
of each interval, dmin represents the safety distance. α = 10 is defined as a constant, Sc, Qc,
Rc, Pc and Ec are parameters of weight, and dm

k is the distance between the pedestrian and
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the vehicle at time k given that the pedestrian is following the Mode m. The bar subscript
∗k|t indicates a variable related to the k-th prediction step of the prediction horizon at time
t, as described in Section 4.5. Note that each individual pedestrian’s predicted trajectory
owns its unique probability µm

t calculated from the PrARX model. Hence, if the constraint
of distance between pedestrian and vehicle is violated as per Mode m whose probability µm

t

is very small, this implies that the probability of collision between pedestrian and vehicle is
also negligible.

4.7.2 Semi-global optimal solution using a randomized approach

The predicted motion of the pedestrian is a result of the weighted composition of the
output of multiple modes. The problem of optimization in use should also consider such
pedestrian modes directly. Having authored some previous works about developing real-time
sample-based optimization using GPU [75], such sample-based optimization method was
exploited for this problem. The past work [56] has demonstrated that a sample based method
can provide accurate solutions for nonlinear problems without needing a linearization or
approximations. Also, it is proven by [47] that a sample count more than a certain number
guarantees provided solution to be sufficiently near to the global optimum. The detailed steps
involved in this optimization process are as follows.

Algorithm 2 Sample-based optimization
1: Generate Ns number of of control input series.
2: for Series = 1,2, . . . ,Ns do
3: for Modes = 1,2, . . . ,M do
4: Calculate the predicted positions of car and pedestrian based on the control input

series and M possible pedestrian modes.
5: Calculate mode probabilities and entropy.
6: Calculate the cost (4.13a) and and the chance-constraint (4.13g) corresponding

to each series.
7: end for
8: end for
9: Filter and remove the samples having a probability of collision higher than r.

10: Find the minimum cost control input series. The first element of this is passed to the
system.

The first step is that of generating Ns number of control input series ui
IDCT following

(3.24-3.29) in section 4.7.3. It is also to be confirmed that such series do not cross the
physical maximum acceleration bounds of given car. Then the extended state matrices are
computed for each of the series according to the vehicle dynamic model (4.7). The pedestrian
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path is also predicted using the pedestrian’s model (4.6). This step is performed M times for
the M number of modes that may be followed by the pedestrian within the horizon. After, the
cost function (4.13a) is computed for each individual control input series corresponding to
all given models. In order to get the optimum sample, there is a step of filtering the samples
that have a higher probability of collision than r. The first element of the control input series
with minimum cost is the control input to be chosen. This is implemented to the controlled
car. These steps are performed repeatedly in every control step (Algorithm 2).

4.7.3 Sampling of random input in the frequency domain

Random number based sample generation cannot ensure that the samples produced are
smooth enough to be preferred for driving a car. The samples that are being used here were
first created in the frequency domain and then transformed into the time domain. Inverse
Discrete Cosine Transform is used for this (IDCT). This method of generation produces
samples that are smoother, and consequently, driving performance is smoother. The author’s
earlier works contain the benefits from the viewpoint of control performance [56]. The details
of generation of input series ui

IDCT using IDCT transform are explained in detail in section
3.3. In this work, the smoothing factor Fc/o is assumed to be 10.

4.8 Simulation results

MATLAB is used to conduct simulations evaluating the effectiveness of the proposed frame-
work. The sample count Ns in Section 4.7.2 is decided to be 200 samples. In the simulations
discussed below, the pedestrian is assumed to wait at one side of the given road, 5 m ahead of
the vehicle. Pedestrian has an intention to cross the road. The target speed of the vehicle is set
to be 2 m/s (7.2 km/h) unless mentioned otherwise, which is typical for a narrow residential
street under consideration. The pedestrian starting point is kept 3.5 m away from the car
center along the y-axis. This has been chosen to create a transition in interaction behavior as
seen in Fig. 4.10(a) and Fig. 4.12(a). The pedestrian has a chance to change the intention at
any time by responding to the car’s behavior. As for the pedestrian model, the parameters
shown in section 4.4.3 were used for simulations. The same parameters are also used for the
pedestrian model within MPC. The closest distance between the car and pedestrian in the
training data is observed to be 1 m in the lateral direction and 2 m in the forward direction.
Considering that the car is roughly 2 m wide, the origin of the car is set in the front and the
safety distance dmin is set as 2 (m) as seen in Fig. 4.2 to maintain these limits.
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(a) Car speed profile

(b) PrARX mode probabilities

Fig. 4.10 Interaction at different risk threshold r

4.8.1 Test scenario 1: Different levels of allowed risk threshold

In this test scenario, the risk threshold r is varied and the performance of the controller is
observed. The entropy weight is set at Ec = 3. In a deterministic case where the uncertainty
in prediction models is not considered, the vehicle will either keep a fixed speed expecting the
pedestrian to not cross or it will assume the pedestrian to cross and wait indefinitely. Because
of the behavior of the pedestrian being highly dynamic, however, the vehicle must anticipate
sudden changes in the intention of the pedestrian and act accordingly. This is necessary to
keep the collision risk lower than a certain amount. In Fig. 4.10, Fig. 4.10(a) shows the car
velocities at different values of r. Fig. 4.10(b) shows the PrARX mode probabilities at two of
those cases. In Fig. 4.10(a), It can be seen that the car passes the pedestrian first at a higher
risk threshold, but decides to wait for the pedestrian at a lower risk threshold. It can also be
seen that the car reacts earlier to the pedestrian’s presence as the risk threshold gets lower.
At a higher risk threshold r, the vehicle is seen to accelerate. This is a risky choice, but, as
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seen in Fig. 4.10(b) this influences the pedestrian to choose the yielding mode of motion and
wait for the car to pass first. By taking a higher risk, this action enables faster passing. The
possibility of changing risk threshold r allows this framework to be personalized to suit the
driving styles of different drivers.

While choosing r, it is necessary to consider the upper limit to r after which the car can
be found to violate the safety distance. Such values of r are usually very high, as seen in
Fig. 4.11 at an entropy level of Ec = 20. At r = 0.9, there is a safety distance violation. The
maximum limit on r should be identified on a case by case basis.

Fig. 4.11 shows the interaction at Ec = 20, where r = 0.9 and 0.6. The horizontal
axis in each figure is the control step index, and the vertical axis is the y coordinates of
the pedestrian, the speed of the vehicle, and the distance between the pedestrian and the
vehicle, respectively. Looking at Fig. 4.11(a) and Fig. 4.11(b), the pedestrian is passing
the y coordinates of the vehicle while the vehicle is almost stopped near Step 47. It can be
confirmed that the pedestrian crosses first in either setting. On top of that, when r = 0.9, the
approach distance is less than dmin (even in this case, the safety probability constraint (eqn.
4.10) is satisfied). ), higher risk-taking behavior is observed. The setting of the upper limit of
r must be determined while considering other performance specifications.

4.8.2 Test scenario 2: Different levels of weight on pedestrian’s entropy

In this section, the risk parameter r is set to be constant as r = 0.2. The investigation is on the
difference of the performance due to varying cost on pedestrian’s decision making entropy.
The effect without considering the entropy is realized by simply setting the parameter Ec = 0
in (4.13a). The figures Fig. 4.12 and 4.13 corresponds to car velocities of 2 and 2.5 m/s,
respectively.

The figures Fig. 4.12(a)-4.12(c) and Fig. 4.13(a)-4.13(c) show the speed of the car,
decision entropy and distance between car and pedestrian. In the Fig. 4.12, by assigning a
higher weight on the entropy, the car decelerates to a full stop to enable easy decision making
of the pedestrian. On the contrary, when there is no cost on entropy, the car accelerates before
the pedestrian gets close. This makes the passing faster with minimum deviation from the
target velocity. Obviously, the pedestrian goes through a harder decision-making process
because of the sudden acceleration of the car.

On the contrary in Fig. 4.13, at a higher weight on entropy, the car is found to accelerate
and pass the pedestrian first. It might sometimes seem to sacrifice the safety, however,
even in this case, a firm consensus is made between car and pedestrian. This is reflected as
reduced entropy in Fig. 4.13(c). This behavior is acceptable and has the benefit of stressless
interaction.
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(a) profile of pedestrian

(b) Car speed profile

(c) Distance between car and pedestrian

Fig. 4.11 Safety distance violation at high risk threshold (Ec = 20)

These comparisons show the considerate driving behavior that was enabled by the addition
of entropy cost in this framework. In both cases, the minimum safety distance is not violated,
as can be seen in the distance plot in Fig. 4.12(c) and 4.13(c).

The Fig. 4.12(d), 4.12(e), 4.13(d) and 4.13(e) show car acceleration and the mode
probabilities of the pedestrian’s dynamic modes in the control duration which is calculated
from the PrARX model. As seen in Fig. 4.12(e) and 4.13(e), at a higher weight on entropy,
the pedestrian behavior modes are strongly separated, indicating lesser internal confusion.
It is also clear in Fig. 4.12(d) and 4.13(d) that the car’s acceleration is steeper and clearer
at a higher entropy cost. This is expected to clearly convey the decision of the car to the
pedestrian early, so that he/she can make clear decisions and prepare for the interaction. This
again indicates clear communication of intention, identical to considerate driving by humans.
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4.8.3 Comments on computational performance

The mean computation time taken by the proposed MPC controller per step is 120 (ms)
running in MATLAB. Keep in mind that the proposed controller’s structure lends itself very
well to parallel processing. Consequently, implementing the proposed controller in GPU, as
discussed by [69], can result in a significant reduction in the calculation time.
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(a) Car speed profile

(b) Pedestrian’s decision entropy

(c) Distance between car and pedestrian

(d) Car acceleration

(e) PrARX mode probabilities

Fig. 4.12 Various plots with and without entropy at Car velocity = 2m/s
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(a) Car speed profile

(b) Pedestrian’s decision entropy

(c) Distance between car and pedestrian

(d) Car acceleration

(e) PrARX mode probabilities

Fig. 4.13 Various plots with and without entropy at Car velocity = 2.5m/s
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4.9 Conclusion

This chapter has presented a randomized nonlinear model predictive controller for au-
tonomous driving that considers the interaction between the car and pedestrians. The
pedestrian’s motion including the response to the vehicle’s actions was identified as a PrARX
model from real driving experiment data. The proposed model considers multiple modes that
the pedestrian can follow at a given time with their respective probabilities.

The proposed pedestrian model being probabilistic and the MPC being able to accom-
modate it, this framework has guaranteed safe navigation with a considerate interaction
while driving around a pedestrian in a shared road situation. This enables the anticipation of
potential collision risk and to react accordingly. The framework that is proposed also allows
the use of a tunable risk threshold that allows the car’s risk-taking behavior to be personalized
for different drivers compared to a fixed response of a conventional deterministic MPC.
Considering the pedestrian’s decision making entropy as a component of the cost function,
this framework achieves quick motion consensus with the pedestrian, followed by considerate
and human-like driving.

Despite the nonlinear nature of the vehicle model and the obstacle constraints, the
proposed scheme allowed for direct consideration of nonlinear constraints by employing a
randomized optimization method. The IDCT method was used to create random samples
from the frequency domain for optimization. This avoids unfavorable control input oscillation,
which is crucial in autonomous driving.

The proposed scheme and improvements were confirmed in simulations using MATLAB.
The simulations demonstrate the effect of tunable risk threshold and weight on entropy
making the driving considerate and arguably, more human-like.

This work will be extended to contain and consider multiple agents such as cyclists and
pedestrians in the same framework without ignoring their interaction with one another.





Chapter 5

Combination of RMPC with Gradient
Based MPC for Fail-Safe Driving at
Sudden Changes in Driving Scenario

5.1 Introduction

Autonomous driving (AD) research has long been complicated by dynamic situations with
frequent changes in the driving scenario.For handling the unexpected changes, most of the
controllers depend on traditional control methods that consist of speed control based on
PID , emergency stop and simple steering control [109, 110]. Many of these techniques
are restricted to single input single output (SISO) systems due to their inability to deal
with constraints. Model Predictive Control (MPC) is one of the popular control methods
for multiple input multiple output (MIMO) systems that can handle a variety of state and
control input limitations [20, 21, 23, 111]. As a result, MPC has a significant potential for
approaching such challenges and better reflecting real-world settings. While [20] and [21]
presents the basic principles behind MPC, [23] provides a survey on the theory and practice
of MPC. A comparison between MPC and PID is presented in [111].

Various kinds of MPC and MPC calculation algorithms contain their own set of benefits
and drawbacks. The concept of such a blending is intriguing since it allows each individual
to optimize their strengths while limiting their weaknesses. The paper [112] gives an idea
about the combination of different MPC methods,it also explains the advantages of merging
two explicit and online MPC approaches to get beyond their respective constraints on online
computation time and storage space.shifting between various cost functionals in order to
enhance performance has addressed in various research studies in the context of MPC
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[113, 114]. The paper [115] proposes softly switched MPC (SS-MPC) as a method for
creating a smooth transition in between the two MPCs by creating several intermediate
MPCs. Hard switching (a switch without any intermediary switching process) on the other
hand, is likely to result in a large overshoot of state or output and a sudden change of control
input. One drawback is that soft switching takes so long to fully engage the new controller,
making it unsuitable for scenarios that need quick switching. Apart from that, a lot of earlier
studies have focused on merging MPC with another controller, such as PID and feedback
linearization [116, 117] to improve performance .Meanwhile, as far as the authors are aware,
combining optimization approaches to address MPC problems is a relatively new concept,
with few academic studies on the subject to date.

The adaptive cruise control (ACC) problem is used in this study to demonstrate how a
combination of MPC optimization methods surpasses each individual method when there
is an unexpected change in the driving situation. Since major part of our daily driving is
spent following a leading car, ACC is expected to be the basic component of self driving
systems of level 1 to level 5. The use of an ACC system improves the flow of traffic while
ensuring safe and reliable highway driving [118, 119]. Even if basic ACC is comparatively
easier control problem to solve, it has been highlighted that providing safe and optimal
control under sudden changes such as a cut-in is challenging and often computationally
infeasible for real-time solutions [119]. The ACC problem is treated as a nonlinear MPC
problem in this study, and the controller takes into account limitations that cause nonlinearity
in the system. The C/GMRES algorithm has been used in the optimization phase of the
non-linear MPC. C/GMRES works effectively with high computation speed and generates
smooth solution [42].On the other hand, it has the drawbacks of a considerable divergence
from ideal circumstances and a high likelihood of constraint infringement when the system
is suddenly changed. This is especially crucial in ACC situations where the most common
cut-in disturbance is present. Randomized MPC is another prominent method of nonlinear
MPC optimization (RMPC). While C/GMRES records the local optimal solution, RMPC
uses input series sampling to generate a semi-global optimal solution, making it resistant to
rapid changes in driving conditions. Although a bigger sample size enhances performance, it
is limited by calculation time [75]. Another difficulty with this method is the random noise
that appears in its solution. In RMPC-based solutions, the Inverse Discrete Cosine Transform
(IDCT) [56] is used to minimise noise.The resulting smoothness, on the other hand, cannot
be compared to C/GMRES.

This work makes a significant addition by introducing a novel methodology that combines
two optimization approaches, C/GMRES and RMPC, in a way that they compliment each
other, producing a superior overall controller for the task in hand. As a result, the suggested
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controller is named a combined MPC. Providing a solution that fluctuates smoothly over
time, C /GMRES is used as the principal optimizer, with RMPC that supports during rapid
changes in driving scenarios. A suitable switching mechanism is included in the suggested
combination to provide a smooth transition between the two. The switching method also
enable to switch in time before there is a failure in the main optimization method. It’s
also important to know the correct time to go back to the main optimizer (C/GMRES). By
evaluating the results given by both methods, the proposed controller address this.

The following chapters of this paper are arranges as follows. The driving environment,
state space equation for vehicle dynamics, and formulation of the finite-horizon optimization
issue are all demonstrated in section 5.2. It is followed by the calculation by individual
optimization methods in the section 5.3. The suggested controller’s algorithm is explained
in Section 5.4, which also includes switching conditions between the two optimization
methods. The simulation results are then presented in the next section 5.5, demonstrating the
performance gain achieved by combining C/GMRES with RMPC. The final chapter is the
conclusion.

5.2 Problem setting

5.2.1 Task description

The control task in this study is the aggressive cut-in while driving on the highway. Because
of the abrupt change in the status of the system during the cut-in, this task is absolutely
intriguing. The target driving environment is portrayed in Figure 4.1.The following are the
details of the cut-in situation discussed in this study. According to the ACC car following
model, a controller-controlled ego car follows a leading car travelling at a steady speed of
80 km/h. The "two-second rule" [120] allows the ego car to keep a safe distance from the
leading car. In other words, the relative distance between the two cars is equal to the ego car’s
velocity v[m/s] multiplied by 2[s], which is 44.4[m] in this situation. At t = 15[s], a third
car cuts in and takes over as the new leading car, resulting in a 25[m] reduction in relative
distance.The third car is travelling at a steady velocity of 55 [km/h], which is significantly
slower than the velocity of the first car. The change in velocity of the leading vehicle during
the rapid cut-in is depicted in Fig. 5.2.

The controller should be controlling the ego car in such a way that it maintains the
same pace as the leading vehicle while maintaining a proper safe distance. When dealing
with curves or lane changes, it is expected that the drivers will take the correct steering
actions. As a result, only the vehicles’ longitudinal movement is taken into account. The car
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Fig. 5.1 Target environment

Fig. 5.2 Lead vehicle velocity during the sudden cut-in
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dynamics are expressed in this study using a point-mass model.In order to assure the safety
and acceptability of control input, this model utilizes some inequality constraints (see section
refsec:constraints).

5.2.2 Inputs from the controller and car dynamic equations

The denotations like d, vl , v, and a are the relative distance between the leading car and
the ego car, the leading car’s velocity, the ego car’s velocity, and the ego car’s acceleration,
respectively. Acceleration is utilised as a control input unless specified:

u = a = v̇, (5.1)

The state equation and state vector are written as follows throughout this paper:

ẋ = f (x,u) = [vl− v,a]T , (5.2)

x = [d,v]T , (5.3)

5.2.3 Constraint formulation for input bounding and safe driving

To guarantee that the input and safety are feasible, the following input and safety constraints
are applied: 

5≤ d ≤ 250 [m]

0≤ v≤ 25 [m/s]

−8≤ a≤ 8 [m/s2]

(5.4)

Owing to the maximum detection range, 250[m], of a long-range radar for ACC [121], it
is believed that the relative distance (d) has an upper bound.

We implement a barrier function in the equation of cost of the C/GMRES and RMPC as
a soft constraint to tackle represent constraints (5.4) [122, 123].

Dummy variables as part of the control input are another approach for C/GMRES
to impose inequality restrictions. The inequality constraints (5.4) are turned to equality
constraints using dummy variables, which C/GMRES can handle with directly [42]:
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C(x,u) =

 (a− ā)2 +ud1
2 +(amax− ā)2

(v− v̄)2 +ud2
2 +(vmax− v̄)2(

d− d̄
)2

+ud3
2 +
(
dmax− d̄

)2

= 0, (5.5)

Here, ud1,ud2 and ud3 represent dummy variables. For a given χ ∈ {d,v,a}, χ̄ is defined as:
χ̄ = 0.5(χmin + χmax), where χmin and χmax indicates minimum and maximum values for
corresponding variables. The variable C(x,u)1 is used to calculate the Hamiltonian as shown
in 5.19.

5.2.4 Formulation of the optimal control problem with a finite-horizon

In each control cycle, the finite-horizon optimum control issue for ACC can be written as
below:

given x(t),xre f (t) find {u(k|t)}0:N−1

that minimizes

J({u(k|t)}0:N−1) = φ(N|t)T S f φ(N|t)+
N−1

∑
k=0

L(x(k|t),u(k|t))h,

with φ(N|t) = x(N|t)− xre f (N|t),
subject to

x(0|t) = x(t),

x(k+1|t) = x(t)+ f (x(k|t),u(k|t))h, ∀k ∈ {0, · · · ,N−1}.

(5.6)

The control input and state at the k-th step of the prediction horizon at time t are denoted
by u(k|t) and x(k|t), respectively. x(k|t) contains d(k|t) and v(k|t), u(k|t) contains a(k|t).
The count of prediction steps is N, which is a constant and h represents the control interval.
The terminal cost (which is connected with weight matrix S f ) is represented by the first term
in the cost function J, while the sum of stage costs is the second term represented by L. The
details of L can be found in 5.8 and 5.20.

Reference state corresponding to the k-th step is represented by:

xre f (k|t) = [dre f (k|t),vre f (k|t)]T , (5.7)

1The variable C is also used in 3.5 and 4.9 as a state multiplier and collision indicator, respectively.



5.3 Solving the optimal control problem with finite horizon using individual methods of
optimization 77

The reference velocity vre f (k|t) equivalent to the leading car’s velocity , therefore relative
velocity will be zero. Because the "two-second rule" [120] governs the recommended safety
distance in driving, the reference distance is defined as dre f (k|t) = τvre f (k|t), with τ = 2[s].
The first element of the optimal series of input u(t) = u∗(0|t) determines the system’s actual
control input.

5.3 Solving the optimal control problem with finite horizon
using individual methods of optimization

For nonlinear optimum control problems, C/GMRES and RMPC are common optimization
approaches. In C/GMRES, inequality constraints are often implemented two distinct ways:
by using dummy variables to change inequality constraints to equality constraints, or by using
a barrier function as a soft constraint in the cost function. The usage of a barrier function in
RMPC is to handle system constraints. The procedure of Inverse Discrete Cosine Transform
(IDCT) can be used to minimise noise in RMPC-based solutions.

5.3.1 C/GMRES method with barrier function for constraints

Stage cost in (5.6) is defined by:

L(x(k|t),u(k|t)) =φ(k|t)T Qφ(k|t)+u(k|t)T Ru(k|t) (5.8)

+Bar(x(k|t),u(k|t)),

with φ(k|t) = x(k|t)− xre f (k|t), ∀k ∈ {0, · · · ,N−1}.
Q and R are weighting matrices. Barrier function for the inequality constraints is given by:

Bar(x,u) = Bd(x,u)+Bv(x,u)+Ba(x,u), (5.9)

where

Bχ(x,u)=

−κ log[(χ−χmin)(χmax−χ)] if χmin ≤ χ ≤ χmax,

β1eα1(χmin−χ)+β2eα2(χ−χmax) otherwise,

Here, χ ∈ {d,v,a}, χmin and χmax are the minimum and the maximum of corresponding vari-
ables. κ , α1, β1, α2 and β2 are constants. We assume same weight for all three components
of the barrier function since it provides satisfactory results in simulation. Note that, It is due
to nonlinear barrier function, the finite-horizon optimal control issue is nonlinear. These are
defined as follows:
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x(k|t) = xk and u(k|t) = uk. The Hamiltonian function using the co-state λk is specified
as:

H(xk,uk,λk) = L(xk,uk)+λ
T
k f (xk,uk) (5.10)

where f (xk,uk) is the state equation. The necessary conditions for optimality, known as the
Karush–Kuhn–Tucker (KKT) conditions, are given by:

x0 = x(t), λN = Φ(xN)
T ,

xk+1 = xk + f (xk,uk)h,

λk = λk+1 +Hx(xk,uk,λk+1)
T h,

Hu(xk,uk,λk+1) = 0,

∀k ∈ {0, · · · ,N−1} (5.11)

where, Φ represents the terminal condition of the co-state and Hx and Hu represents partial
derivatives of the Hamiltonian with respect to x and u, respectively2. The vector Ucgmres(t) is
defined by:

Ucgmres(t) = [uT
0 (t) uT

1 (t) · · ·uT
N−1(t)], (5.12)

If x(t) and Ucgmres(t) are given, {xk}0:N and {λk}0:N are determined. Thus, (5.11) can be
regarded as an equation of Ucgmres:

F(Ucgmres(t),x(t)) = 0, (5.13)

where vector F(Ucgmres(t),x(t)) presents error in optimality condition, given by:

F(Ucgmres(t),x(t)) :=

 Hu(x0,λ1,u0)
...

Hu(xN−1,λN ,uN−1)

 (5.14)

Accordingly, ||F ||= 0 is satisfied if the solution is locally optimal, where ||F || is the norm
of vector F .

If the initial solution Ucgmres(0) that satisfies F(Ucgmres(0),x(0)) = 0 can be determined,
then Ucgmres(t) can be traced by the integration of U̇cgmres(t) that satisfies the condition:

Ḟ(Ucgmres(t),x(t)) =−ζ F(Ucgmres(t),x(t)) (ζ > 0), (5.15)

2The variable H is also used to represent entropy in 4.12.
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where ζ is a positive constant. Equation (5.15) is equivalent to a linear algebraic equation for
U̇cgmres:

FUU̇cgmres =−ζ F−Fxẋ (5.16)

The linear equation (5.16) effectively solved using the generalized minimal residual method
(GMRES) method [124] if FU a non-singular matrix. Ucgmres(t) can be updated by integrating
obtained U̇cgmres, which is nothing more than the application of continuation method. It
should be emphasised that when the problem changes discontinuously, C/GMRES does
not promise a local optimal solution.It finds the solution in real time without iteration for
convergence to the local optimal, which is employed in the typical MPC scheme, using the
continuation approach.To converge to the local optimal solution, specific control periods are
required. As a result, abrupt state shifts can lead to significant deviations from optimality
requirements.

The normal MPC scheme, on the other hand, improves the solution until the KKT
requirements are met in each control cycle. Sudden state shifts are no longer an issue when
the KKT requirements are met. However, it takes a lot of time to iterate until the solution
converges to an ideal value in each cycle, and it frequently violates the time-limit, or control
interval. In AD applications, it ranges from 0.01[s] to 0.1[s]. As a result, C/GMRES with
high computing speed is a promising method for NMPC in AD applications, even though it
does not provide full optimality as described previously.

5.3.2 C/GMRES method using dummy variables for constraints

Only In this section, the input vector is defined by:

u = [a, ud1, ud2, ud3], (5.17)

and define:

L(x(k|t),u(k|t)) =φ(k|t)T Qφ(k|t)+u(k|t)T Ru(k|t)
−g1ud1−g2ud2−g3ud3, (5.18)

with φ(k|t) = x(k|t)−xre f (k|t), ∀k ∈ {0, · · · ,N−1}. In order to explain hard constraints, the
dummy variables ud∗ are called slack variables. The slack variables ud∗ takes negative values
under constraint violation, hence subtracted in the cost function.
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Because of the nonlinear equality constraint shown by Eq. (5.5), the finite-horizon
optimal control problem is nonlinear . gi (i = 1,2,3) > 0 are weighting coefficients, and
Q and R are weighting matrices. The Lagrange multiplier associated with the equality
constraint is denoted as µk, and the costate is denoted as λk. The Hamiltonian currently has
the following form:

H(xk,uk,λk,µk) = L(xk,uk)+λ
T
k f (xk,uk)+µ

T
k C(xk,uk). (5.19)

The sum of stage costs is represented by L, as seen in 5.6.
Please refer [42] for the details of the necessary conditions for optimality and the defini-

tion of F(U(t),x(t)) in the case with equality constraints.

5.3.3 RMPC using the IDCT process

In the framework of MPC, let us define:

L(x(k|t),u(k|t)) =φ(k|t)T Qφ(k|t)+∆u(k|t)T R∆u(k|t)
+Bar(x(k|t),u(k|t)), (5.20)

with φ(k|t) = x(k|t)− xre f (k|t), ∀k ∈ {0, · · · ,N−1}.
Eq. (5.9) the barrier function, which adds nonlinearity to the system. ∆u is the time

difference between control inputs, which is specified as,

∆u(0|t) = |u(0|t)−u(t−1)|1,
∆u(k|t) = |u(k|t)−u(k−1|t)|1 ∀k ∈ {1, · · · ,N−1}. (5.21)

When the required sample size is considered, the implementation of a sample-based
technique has been shown to offer a semi-optimal solution that is close enough to the optimal
solution [47]. The production of samples is the first step in the RMPC process. After selecting
Ns sampled input series of length N from a specified distribution of random integers, the
future trajectory for each of these sampled input series is determined. At this step, some
filtering is done to eliminate infeasible samples. This is done after the cost of each sample
has been calculated. The sample series with the lowest cost is then identified, and the first
element of the matching input series is used as the ego car’s input. These steps are carried
out again and again for each control cycle.
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The Inverse Discrete Cosine Transform (IDCT) is used to smooth out RMPC-based input
because randomly generating samples causes significant noise in the control input and smooth
control input is preferable in the application of vehicle control [56]. Instead of being directly
sampled in the time domain, IDCT samples are created from the frequency domain. The
sampled input series using IDCT, ui

IDCT (t) (i ∈ {1,2, · · · ,Ns}), are computed as described in
section 3.3.

5.4 Solving the optimal control problem with finite horizon
using combined MPC

In this part, a controller is introduced that uses barrier functions to handle inequality con-
straints and integrates RMPC with C/GMRES. In essence, it entails deciding which optimiza-
tion approach is used to update control input by switching conditions. The ego car receives
the acceleration command as control input by the Eq. (5.1).

Algorithm 3 Combination of C/GMRES and RMPC
1: Set global variable sw.
2: sw← 0.
3: for Every time step do
4: Calculate ucgmres and ||F || by section 5.3.1.
5: u← ucgmres
6: if ||F || ≥ Fth then
7: sw← 1
8: end if
9: if sw=1 then

10: Calculate urmpc by section 5.3.3.
11: u← urmpc
12: if |ucgmres|1 ≤ 8 and |urmpc−ucgmres|1 ≤ η

13: and ||F ||< Fth then
14: sw← 0
15: u← ucgmres
16: end if
17: end if
18: Return u as the next control input.
19: end for

The switching method between C/GMRES and RMPC is described by the Algorithm 3.
Here, the threshold value Fth and the comparison between ||F || is to determine whether or
not a change in the state of the system is "sudden". A change is "sudden" in this work, if it
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causes ||F || to be greater than Fth. If the leading car steadily increase or reduce its velocity,
resulting in ||F || substantially more than zero but still less than the threshold value Fth, is not
considered "sudden". The variable sw in the Algorithm 3 stands for switch. While sw = 0
indicates that the input is based on C/GMRES, sw = 1 indicates that the input is based on
RMPC. The variable sw is first set to 0. When ||F || exceeds Fth, the value of sw starts to be
1 and the controller shifts from C/GMRES to RMPC (see line 6-8, Algorithm 3). Even if
||F || falls below Fth in some subsequent control intervals, sw, as a global variable, can stay
at 1 unchanged and RMPC-based input can still be used throughout this time. Only when
the i f condition in lines 12 and 13 of the Algorithm 3 is satisfied, namely C/GMRES-based
input satisfying the inequality constraint on control input, C/GMRES and RMPC producing
solutions that are close to each other, and ||F || smaller than the threshold value Fth, does
the value of sw return to 0, indicating that the controller switches from RMPC to the main
optimizer C/GMRES. The final condition is that ucgmres does not deviate too far from the
optimal value. The difference between C/GMRES-based input and RMPC-based input
(|urmpc−ucgmres|1≤ η) offers a smooth transition from RMPC to C/GMRES. This criterion
helps to reduce the large spikes in control input that can occur due to hard switching between
various optimization methods. Due to line 9, Algorithm 3, C/GRMES input is calculated in
every control cycle, but RMPC-based input computation is performed only when sw = 1.
C/GMRES uses the control input that is given to the ego car in the previous control cycle as
initial guess to construct a local optimal solution, with the exception of the first control cycle,
where initial guess is set to 0.

The use of a barrier function as a soft constraint in this research analyses the combination
of RMPC and C/GMRES. It is also possible to combine RMPC with C/GMRES, which
employs dummy variables to explain harsh limitations, but a suitable technique is necessary to
update the value of dummy variables in the input vector when RMPC updates the acceleration
component during the cut-in.

5.5 Simulation results and related discussion

In this work, the simulations are implemented using C++ and MATLAB on an Intel®Core™i5-
7200U CPU.

5.5.1 Individual optimization methods

The results of simulation with C/GMRES is shown in Fig. 5.3, with related parameters
shown in Table 5.1. ||F ||, the norm of the vector F , represents the deviation from optimality
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Table 5.1 Parameters for simulation (C/GMRES)

Variable G/GMRES with C/GMRES with
barrier functions dummy variables

N 20 20
h 0.1[s] 0.1[s]
ζ 5 1
Q diag(10,10) diag(1,1)
S f diag(50,1000) diag(10,10)
R 50 diag(1,0.001,0.001,0.001)
g1,g2,g3 0.1,0.1,0.1
κ,α1,β1,α2,β2 0.1,0.1,10,0.1,10

Table 5.2 Parameters for simulation (RMPC)

Variable Variable
N 20 Q diag(10,10)
h 0.1[s] S f diag(10,100)
Ns 500 R 10
γ 1 κ,α1,β1,α2,β2 0.1,1,100,1,100

conditions. The value of ||F || equals 0 when the solution is locally optimal. The lower the
value of ||F ||, the closer to optimal the solution is. As seen in the Fig. 5.3, control inputs
given by C/GMRES are smooth. Nonetheless, a sudden cut-in at time t = 15[s] causes a
significant jump in the ||F || value, this means that the solution goes far from optimal. In case
of C/GMRES framework, either methods of implementation of the inequality constraints
violates the constraint on acceleration (-8 ≤ a ≤ 8 [m/s2]). It demonstrates that both ap-
proaches to handling inequality constraints are ineffective at preventing constraint violation
in the face of abrupt state changes. A potential solution to address this concern involves
transitioning from C/GMRES to an alternative optimization method that achieves optimal
solutions more rapidly, all while maintaining adherence to system constraints. Subsequently,
when conditions align favorably, reverting to C/GMRES can facilitate a smooth and efficient
switching process.

The simulation results of the RMPC are displayed in Fig. 5.4 with parameter values
summarized in Table 5.2. All system constraints are satisfied, as seen in Fig. 5.4. It is because
the sample generation step removed the impractical sampled input series. By adjusting the
cut-off frequency Fc/o, the IDCT process makes the RMPC solution smoother, but the random
sample generation prevents the noise in the control input from being completely eliminated.
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Fig. 5.3 Results of simulation with C/GMRES

5.5.2 The combined MPC

When sudden cut-in occurs at t = 15[s], the controller switches from C/GMRES to RMPC.
When preset criteria are met, it switches back from RMPC to C/GMRES.

Table 5.1 and Table 5.2 contain the parameters needed to calculate C/GMRES-based
input (ucgmres) and RMPC-based input (urmpc). Based on the ||F || profile of C/GMRES
shown in Fig. 5.3, the threshold value Fth is set at 1000. The control interval h is set as 0.1[s].

The following explanation describes how to choose a suitable η and the gap limit between
RMPC-based input and C/GMRES-based input. The behaviour of urmpc, ucgmres, as well
as their gap in the given time, is depicted in Fig. 5.5 in the scenario when RMPC-based
input is continued to be applied after the cut-in, implying that control input does not transfer
from RMPC to the main optimizer, C/GMRES. Since they are determined with distinct
formulas of stage cost in the cost function, urmpc and ucgmres may differ. It is feasible to
analyse how a spike can be created by switching from RMPC to C/GMRES with respect
to a given value of η using Fig. 5.5. The input gap |urmpc− ucgmres|1 which is recorded
once every control cycle has a local minimum of roughly 0.011 [m/s2] at t = 17.1[s] in this
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Fig. 5.4 Results of simulation with RMPC

case. To allow for an early transfer from RMPC to C/GMRES, η should be greater than
0.011. Otherwise,it prolongs the period in which RMPC-based input is applied, which is
less smooth than C/GMRES-based input. In addition, Fig. 5.6 shows how different η values
affect the transition from RMPC-based to C/GMRES-based input. Because a small value
of η means that RMPC-based input and C/GMRES-based input are close to each other, the
spike generated by switching tends to be lessened as η value decreases. For these reasons, a
gap restriction of multiple 0.1 η would be a reasonable candidate. Note that this η value may
not be a universal value, and η should be fine-tuned according to the task and its formulation.

The solutions provided by C/GMRES, RMPC, and the combined MPC are compared in
Fig. 5.7 .Here, The combined MPC η is set to = 0.3, and the Fc/o of the IDCT process is set
to 5. The profile of ||F || of the combined MPC is depicted in Fig. 5.8. The designed switch-
ing mechanism updates control input using the RMPC method rather than the C/GMRES
approach when ||F || exceeds Fth . As a result, the C/GMRES problem is addressed using a
combination of the two different optimization strategies. As RMPC-based input is only used
for a short period of time, C/GMRES is the major optimization approach.

5.5.3 Discussion

The proposed combination of RMPC with C/GMRES is observed to outperform the individual
methods. Since the framework uses C/GMRES as the major optimizer, the smoothness of
control input is often increased compared to when RMPC is used completely. On the other
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Fig. 5.5 Effect of η investigation on potential spike’s intensity

Fig. 5.6 Impact of various values of η on the transition between RMPC and C/GMRES-based
input
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Fig. 5.7 Comparison of Individual optimization methods with the combined MPC

Fig. 5.8 Combined MPC’s ||F || profile
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Fig. 5.9 Computation time consumed for input calculation

hand, in the sudden change scenarios where C/GMRES is found to violate constraints,
the combined framework stays within constraint limits by switching to RMPC. Such a
temporary switch to RMPC also guides the C/GMRES to the optimal solution and thereby
stabilizes it faster. As a result, the combined MPC can produce reliable performance without
compromising smoothness. Considering the fact that the safety guarantee and smooth driving
are significant factors for successful self-driving, the authors believe that the proposed
framework is of great interest.

Moreover, in practical implementation of the combined MPC, computational load is a
significant concern. Fig.5.9 illustrates the computation time required for input calculation
per control cycle. Notably, C/GMRES-based input calculation occurs in every control
cycle. However, the introduction of RMPC for additional control input calculation results
in a temporary increase in computation time, particularly following sudden cut-in events.
Fortunately, the calculation time remains within manageable limits, ensuring that the problem
can be solved within the control interval h. This underscores the practical feasibility of the
combined MPC approach in real-world applications. Future endeavors will focus on further
enhancements in this aspect, aiming to optimize computational efficiency.
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5.6 Limitations

Nonetheless, there are significant limitations to this study that will need to be addressed in
future research. The nature of soft constraints results in one defect. The combined MPC’s
C/GMRES-based input value and RMPC-based input value are both the consequence of
using the barrier function as a soft constraint in the cost function. Soft constraints, on the
other hand, can be solved by definition, despite the fact that they guarantee the existence of
a solution. This is demonstrated in section 5.5.1,where the C/GMRES employing barrier
function violates the acceleration limitation. It’s also a major issue because the soft constraint
may create violations of the safe relative distance condition, resulting in collisions. This
occurs when the cut-in becomes considerably more aggressive, such as when the third car
cuts in at a significantly low velocity than the initial leading car, and/or when the relative
space between the cars decreases as a result of the quick cut-in. Even though RMPC can
eliminate all infeasible sample series during sample generation, it cannot guarantee that a
solution exists. In future work, the problem of the existence of a practicable solution will be
better investigated, with more ACC trials demonstrating the limits of the proposed approach
by altering the velocity of the two leading vehicles and the drop in relative distance due to
cut-in. Furthermore, how to choose values of parameters such as η and Fth with respect to
diverse driving environments is meant to be included in future work.

In conclusion, the application of the proposed MPC controller extends beyond addressing
sudden cut-in scenarios. It proves valuable for a wide range of nonlinear optimal control
problems, including situations involving abrupt shifts in the system’s state. Here, the
synergistic combination of C/GMRES and RMPC proves to be more effective than relying
on each optimization method independently.
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5.7 Conclusion

In this chapter, we introduce a model predictive controller that integrates C/GMRES and
RMPC methodologies to design a fail-safe controller capable of responding effectively to
abrupt changes in driving scenarios. To illustrate the efficacy of this controller, we examine its
performance in managing the adaptive cruise control system during sudden cut-in scenarios.
While C/GMRES excels in continuous driving situations, it struggles to handle unexpected
cut-in events, resulting in significant deviations from optimal conditions and breaches of
input constraints. Conversely, RMPC demonstrates resilience in the face of sudden changes,
albeit with some residual noise in its solutions, despite efforts to enhance smoothness using
IDCT. Given the strengths and weaknesses of both methods, our proposed controller operates
on the principle of selecting the most suitable optimization method for updating control
inputs over time. During continuous driving, it leverages C/GMRES-based inputs. However,
when a sudden cut-in event occurs, it seamlessly transitions to RMPC-based inputs and
reverts to C/GMRES when specific predefined conditions are met. These conditions ensure
a smooth and efficient shift between RMPC and C/GMRES methods. Furthermore, our
analysis confirms that the computational time required to update control inputs using the
proposed controller remains sufficiently low to enable real-time control implementation.
Consequently, the proposed controller stands as a practical solution that can be effectively
deployed in real-world automotive experiments. Additionally, we acknowledge the need
for addressing issues related to the availability of feasible solutions, fine-tuning parameters
to suit varying driving conditions, and exploring further applications for this innovative
controller, all of which constitute avenues for our future research efforts.



Chapter 6

Conclusion and future work

6.1 Conclusion

This research has realized higher safety levels in challenging AD tasks using randomized
model predictive control (RMPC). RMPC was demonstrated as a powerful tool for achieving
nonlinear real-time control targets in autonomous driving (AD) at higher levels of safety.
This work started with the identification of major bottlenecks in the application of RMPC
to address challenging control problems in AD. In chapter 3, all such bottlenecks were
addressed. This includes the following :

• The input signals tend to be noisy since they are originating from the random sampling.
This has been addressed with a smoother frequency domain sampling.

• RMPC was not useful at higher sample counts because of the computational burden.
This was addressed by a parallel implementation running on GPU.

• RMPC adds complexity to normal MPC in terms of extra variables such as the number
of samples. This work proposes an efficient method for parameter selection for RMPC.

It was also demonstrated that RMPC can safely perform high-speed obstacle avoidance
driving with an RC car. Chapter 3 is also expected to work as a reference for the readers
while deciding whether RMPC is a good controller choice for their problem at hand.

In chapter 4, an interaction problem between a crossing pedestrian and a self-driving
car is presented. The pedestrian being modelled by a novel PrARX model, this framework
enabled human-like considerate driving. This was achieved using the proposed method of
representing stochastic constraints in an RMPC framework. Considering the entropy of
pedestrian’s decision-making in the cost function, this frame work achieve early motion
consensus and hence enable safer interaction. While being human-like in comparison to
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traditional control solutions, the behavior of the proposed RMPC is also tuneable to suit the
driving style of different drivers.

Even though RMPC can handle most of the non-linear control problems well, there are
certain cases where a common gradient-based optimisation provides a stable and smooth
solution. In chapter 5, a combination of such a commonly used nonlinear MPC framework
with RMPC is proposed. The base controller being gradient-based, violates safety constraints
under discontinuity. The presented method of supplementing such discontinuous cases with
RMPC guarantees safety in all conditions. The sudden switching to RMPC at discontinuity
and the switch back once the situation is stable are both presented.

The authors believe that the proposed tools and methods will help to expand the usage of
RMPC as a powerful solution for nonlinear optimum control problems.

6.2 Future work

Due to limited time, many different applications and real-world experiments based on RMPC
have been left for our future work. Future works will contain certain theoretical investigations
and implementation techniques to tackle different control challenges. Experiments with real
cars are also planned to ensure the usability of these techniques in real-world self-driving.

The authors share a strong interest in exploring better sampling strategies to cover the
solution space of interest with fewer samples. In the RMPC implementations in this paper, the
sampling was performed by random numbers generated uniformly in the respective solution
spaces. This leads to equally dense sampling in the complete space. This can be replaced
with some heuristics on how to sample. Such heuristics can be created based on the nature of
the particular control problem, for example, while driving at top speed, acceleration samples
can be avoided for speed control of a car. There is also a possibility of sampling at varying
densities in different parts of the solution space. This is particularly relevant while processing
multiple input systems, where different inputs can be sampled with different strategies and
then combined to form better coverage. Such a sampling ensure deep coverage at solution
spaces of interest without compromising the inclusion of parts of the solution space.

The authors think that the flexibility in choosing sample sizes in RMPC will enable
the use of MPC in computing platforms that are considered too slow to run a real-time
nonlinear MPC. This idea will be explored on some common low-cost processors that do not
support floating-point calculations. This work is also motivated by the intention to explore
the possibility running MPC in a typical automotive ECU. Even though MPC in a low-cost
micro-controller is often considered impossible, the authors expect RMPC to change this
belief.
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Even though RC car experiments with RMPC have been demonstrated in this work, real
car experiments haven’t been carried out. This will be a fascinating aspect of future work. It
will include real car experiments for the problem statements in chapters 3-5. The intention is
to compare RMPC implementation with current state of the art for the respective tasks. This
could establish a comparison in performance and computational resource requirements at the
same time.
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