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Abstract

An internal endoscope (endoscope) is a medical tool to observe the human body. In

contrast to medical imaging modalities, endoscopy entails real-time visualization of the

patient’s internal organs via an endoscopic device, which necessitates direct observation

by the physician. There are several types of endoscopes, and they can be categorized

according to the examination site or the specific area of the body being examined.

This thesis focuses on GastroIntestinal (GI) tract endoscopy. The GI tract, also known

as the digestive tract, is a long muscular tube that extends from the mouth to the anus.

It includes several organs that work together to break down food, absorb nutrients, and

eliminate waste. These organs include the mouth, esophagus, stomach, small intestine,

large intestine, rectum, and anus. However, various diseases may disrupt the GI tract’s

normal functions. These diseases can range from minor conditions, such as acid reflux

and constipation, to more severe conditions, such as inflammatory bowel disease and

cancer.

GI tract endoscopy involves the examination of the digestive system using an endo-

scope. Common GI tract endoscopic procedures include upper endoscopy, colonoscopy,

and endoscopic retrograde cholangiopancreatography. Many GI tract disorders are ex-

amined and treated by using endoscopy. For example, the diagnosis and treatment of

inflammatory changes, ulcers, and tumors in the GI system, and cardia incontinence all

require the use of the endoscope.
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Although an endoscope is a valuable diagnostic and therapeutic tool for many med-

ical conditions, it has potential limitations and risks. One limitation of endoscopy is it

carries the risk of complications, including bleeding, infection, perforation, and adverse

reactions to anesthesia or sedation. Furthermore, traditional endoscopy relies heavily

on the endoscopist’s experience and skill to detect and diagnose lesions or abnormalities

accurately. However, even experienced endoscopists can miss small or subtle lesions,

leading to missed detection or delayed treatment. To avoid the possibility of missed

detection or delayed treatment, computer-aided endoscopy systems are considered nec-

essary to provide support for physicians.

Computer-aided endoscopy systems can meet many of the physician’s needs in en-

doscopy, including the classification of endoscopic images and localization of lesions.

These systems can help to improve the accuracy and efficiency of classification and lo-

calization, reducing the risk of errors and improving patient outcomes. However, some

challenges to the development of these systems remain, including detecting newly ap-

pearing lesions and classifying diseases without visible lesions.

This work aims to improve computer-aided endoscopy systems by investigating deep

learning-based detection and localization methods. This thesis includes two topics; 1)

Newly appeared perforation detection and localization, and 2) Early-stage esophagus

achalasia (achalasia) diagnosis.

The first topic pertains to perforation detection and localization from colonoscopy

videos. While previous studies have primarily focused on the detection of polyps, this

research emphasizes the detection and localization of a relatively rare but potentially

serious complication of Endoscopic Submucosal Dissection (ESD): perforation. ESD per-

foration can have severe consequences for patients if not detected promptly. Thus, the

need for an accurate and efficient computer-aided intervention system for perforation

detection is of utmost importance. Chapter 3 describes a novel training method for per-

foration detection and localization model. The proposed method combines two distinct
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loss functions, specifically designed to enhance the model’s detection and localization

accuracy. Furthermore, it is expected to solve the data imbalance problem in the task.

Experimental evaluations demonstrate that the proposed method achieves remarkable

performance in accurately and efficiently detecting and localizing perforations from

colonoscopy images.

The second topic concerns the early-stage diagnosis of esophageal achalasia from

esophagoscopy videos using deep learning-based methods. Esophageal achalasia is a

primary esophageal motility disorder disease requiring endoscopic evaluation. How-

ever, the sensitivity of esophagoscopy for diagnosing early-stage achalasia remains rel-

atively low, with less than half of patients being correctly identified. Thus, there is

a pressing need for a quantitative diagnostic system to assist physicians in accurately

diagnosing achalasia from esophagoscopy videos. Chapter 4 proposes a novel classifi-

cation architecture, developed to aid physicians in early-stage achalasia diagnosis. This

method focuses on the extraction of multi-scale features, leveraging them to identify

the most informative characteristics. The experimental results validate the effectiveness

of the proposed approach, showcasing its ability to classify achalasia images precisely.

This thesis centers on the investigation and development of a computer-aided en-

doscopy system. The primary objective of this research is to propose a novel method

for perforation detection and localization, aiming to facilitate computer-aided interven-

tion in the context of endoscopic procedures. Additionally, this thesis introduces an

endoscopy image classification method designed for Computer-Aided Diagnosis (CAD)

purposes within computer-aided endoscopy procedures. Through ongoing research and

advancements, the envisioned outcome is the eventual realization of a comprehensive

and advanced computer-aided endoscopy system in the future.
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Chapter 1

Introduction

1.1 Endoscopy

1.1.1 History

Endoscopy has a rich and captivating history that can be traced back to ancient times [10].

The use of tubes to explore the body’s orifices can be attributed to the ancient Greeks

and Romans. However, it was not until the late 1800s that the first modern endoscope

was invented [10]. In 1868, Adolf Kussmaul and Johann Jacob Brünning conducted

the first recorded medical procedure using an endoscope, employing a long, rigid tube

with a mirror to examine a patient’s stomach [10]. Another significant milestone in

endoscopy was the introduction of laparoscopy, or the endoscopic examination of the

peritoneal cavity, which was first attempted by George Kelling in 1901 and referred to as

‘Celioscopy’ [10]. The development of flexible endoscopes in the late 1950s revolution-

ized the examination of the digestive tract, enabling easier and more comprehensive

procedures [10]. Advances in technology and materials have since continued to en-

hance endoscopic procedures, leading to improved safety and effectiveness.

The evolution of endoscopic cameras has paralleled the advancements in endoscopic

1
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equipment, witnessing significant progress since their inception in the early 20th cen-

tury. Initially, endoscopes relied on mirrors and light sources to reflect body images

directly to the physician’s eye [10]. Subsequently, the introduction of color video cam-

eras further enhanced the clarity and quality of endoscopic images [10]. In the 1990s,

the advent of digital imaging technology revolutionized endoscopy by enabling the cap-

ture and storage of images in electronic format for subsequent analysis and review [11].

This technological breakthrough laid the foundation for the development of computer-

aided endoscopy systems, leveraging advanced algorithms to analyze images and assist

physicians in making accurate diagnoses.

Nowadays, the endoscope is a common and essential tool in the diagnosis and treat-

ment of gastrointestinal diseases. It is used to examine and treat conditions such as

ulcers, inflammation, cancer, and blockages in the digestive tract [12–15].

1.1.2 Surgical and internal endoscopies

Surgical and internal endoscopies are two different techniques used for examining and

treating medical conditions inside the body.

Surgical endoscopy [16], also known as laparoscopy or keyhole surgery, involves

making small incisions in the body and inserting a laparoscope, a thin tube with a cam-

era and light source, and other surgical instruments to access and treat the internal

organs. The laparoscope transmits images of the inside of the body to a monitor, al-

lowing the surgeon to see and operate on the organs without making a large incision.

Surgical endoscopy is often used for procedures such as gallbladder removal, hernia

repair, and removal of tumors in the digestive system.

Internal endoscopy [17], on the other hand, involves inserting an endoscope, a long,

flexible tube with a camera and light source, through natural openings in the body,

such as the mouth, anus, or nose, to examine and treat the internal organs. Internal
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endoscopy diagnoses and treats gastrointestinal disorders, respiratory diseases, and uri-

nary tract problems. Examples of internal endoscopy procedures include colonoscopy,

upper endoscopy, bronchoscopy, and cystoscopy.

The main difference between surgical and internal endoscopies is how the scope is

inserted into the body. In surgical endoscopy, small incisions are made to insert the

scope and other surgical instruments, while in internal endoscopy, the scope is inserted

through natural openings in the body. Additionally, surgical endoscopy procedures re-

quire general anesthesia to ensure that the patient is completely comfortable and still

during the procedure. It may be performed under local anesthesia, conscious sedation,

or general anesthesia, depending on the complexity of the procedure, the patient’s med-

ical condition, and other factors [17]. This research aims to develop a computer-aided

internal endoscopy system; surgical endoscopy is not included in the study of this thesis.

Therefore, the endoscopy referred to in this thesis pertains solely to internal endoscopy.

1.1.3 Structure of internal endoscope

An internal endoscope [10] is a medical instrument used to visually examine the inside

of a body cavity or organ. It typically consists of a long, flexible tube with a camera and

light source at the end. The tube is usually made of a flexible material such as rubber or

plastic. It may be inserted through a natural opening in the body (such as the mouth,

anus, or urethra) or a small incision.

The camera at the end of the endoscope captures images of the inside of the body,

which are transmitted to a monitor for viewing by the physician. The light source

illuminates the area being examined, allowing the physician to see any abnormality or

area of concern. Figure 1.1 shows a GastroIntestinal (GI) tract endoscope, and Fig 1.2

shows the necessary components for an endoscope.
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Figure 1.1: GastroIntestinal endoscope tower including (top to bottom) monitor, camera
processor, light source, and digital capture system. [1]
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(a) (b)

(c) (d)

Figure 1.2: Components for an endoscope. (a) External anatomy of an Olympus flexible
video endoscope. (b) Small animal gastrointestinal endoscope with 140-cm working
length, 7.8-mm diameter, and 2.8-mm channel. (c) Fiberscope with the endoscopic
camera attached to the eyepiece. (d) Endoscope light source with the integrated air
pump. [1]

1.1.4 Endoscopic procedure

During an endoscopic procedure, the patient is typically given a local anesthetic to numb

the area being examined. If the examination requires sedation or general anesthesia,

the patient may be asked to fast for several hours beforehand. The endoscope is inserted

into the body through a natural opening, such as the mouth, anus, nostril, or a small
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incision. The endoscope is gently guided through the body, and the doctor is able to

view the images captured by the camera on a monitor [18].

Endoscopic procedures can be used to examine various body parts, including the GI

tract, the respiratory system, and the urinary tract, among others. Depending on the

examined area, the procedure may take a few minutes to an hour or more [18]. The

physician may take tissue samples or perform biopsies if necessary during the procedure.

In some cases, treatments can be performed through the endoscope, such as removing

polyps or performing surgery [19]. After the procedure, the patient may be monitored

briefly to ensure no complications and be given instructions for follow-up care [18].

1.2 GastroIntestinal (GI) tract endoscopy and disease

1.2.1 GI tract

GI tract function

Medical discourse regarding the gastrointestinal (GI) tract is an expansive domain within

medical research and clinical practice. It encompasses the investigation, diagnosis, and

treatment of disorders pertaining to the digestive system, which includes the esoph-

agus, stomach, small intestine, large intestine, rectum, and anus [20]. The GI tract

assumes a vital role in the digestion and absorption of food, and any disturbances or

ailments affecting this intricate system can give rise to a range of symptoms and health

complications [20].

The GI tract is an elongated, muscular tube that originates from the mouth and ter-

minates at the anus. Its principal function revolves around the breakdown and process-

ing of food, nutrient absorption, and waste elimination. Comprised of various organs,

these components work in unison to accomplish the aforementioned tasks. Notable

constituents include the mouth, pharynx, esophagus, stomach, small intestine, large
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intestine, rectum, and anus.

Each of these organs possesses distinct structures and functionalities. For instance,

the mouth encompasses teeth, the tongue, and salivary glands, which collectively facili-

tate mechanical and chemical food breakdown. The stomach secretes acid and enzymes

to further aid in food digestion, whereas the small intestine is responsible for nutrient

absorption, and the large intestine primarily absorbs water and electrolytes [21].

Anatomy of GI tract

The GI tract is divided into two main parts: the upper GI tract and the lower GI tract.

Each part is composed of several distinct organs. The upper GI tract includes the mouth,

esophagus, stomach, and duodenum (the first part of the small intestine). The lower

GI tract includes the remaining parts of the small intestine, the large intestine, and the

anus. The large intestine is further divided into the cecum, colon, rectum, and anal

canal. Figure 1.3 shows the anatomical view of the GI tract. Each of these organs has

a unique structure and function that allows for the efficient digestion and absorption of

food [22].

The initial mechanical and chemical breakdown of food takes place in the mouth,

pharynx, and esophagus. Subsequently, the stomach carries forward this process by

further breaking down the food through the action of acids and enzymes. The small

intestine assumes a crucial role in the absorption of nutrients, while the large intestine

functions in the reabsorption of water and electrolytes, as well as the formation of feces

for subsequent elimination.

The architectural configuration of the GI tract comprises four distinct layers: the

mucosa, submucosa, muscularis propria, and serosa. The innermost layer, known as the

mucosa, encompasses specialized epithelial cells that actively secrete enzymes and mu-

cus, contributing to digestive processes. The submucosa layer encompasses a network
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Figure 1.3: Upper and lower human gastrointestinal tract. [2]
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of blood vessels, lymphatic vessels, and nerves, facilitating the essential functions of

the GI tract. Meanwhile, the muscularis propria orchestrates peristalsis, a coordinated

rhythmic contraction and relaxation of muscles that propels food along the GI tract.

Lastly, the serosa, positioned as the outermost layer, provides crucial support and pro-

tection to the overall structure of the GI tract.

1.2.2 GI tract endoscopy

An endoscope is a valuable tool in diagnosing and treating a wide range of GI disorders,

including ulcers, polyps, tumors, inflammation, and bleeding [23]. With advanced

technologies, such as high-definition cameras and Computer-Aided Diagnosis (CAD),

endoscopy has become an even more effective diagnostic and therapeutic tool [24]. En-

doscopy allows for the visualization of the entire GI tract, enabling doctors to obtain

tissue samples for biopsy and perform restorative procedures such as the removal of

polyps or placement of stents [23]. The use of endoscopy has significantly improved

patient outcomes by allowing for earlier detection of GI disorders, reducing the need

for more invasive procedures, and improving the accuracy of diagnoses. Endoscopy is

a routine part of modern gastroenterology practice and has become an essential tool in

the management of GI disorders. Figure 1.4 shows some GI tract endoscopy images.

In addition to visualization, endoscopy also enables the collection of tissue samples

for biopsy and the removal of abnormal tissue or growths, such as polyps, through mini-

mally invasive techniques [25, 26]. This characteristic allows diagnosing and managing

a wide range of GI tract diseases, including Inflammatory Bowel Disease (IBD), Barrett’s

esophagus, peptic ulcer disease, celiac disease [27], and GI cancers [12, 28–31].

In a word, an endoscope is an essential tool for diagnosing and managing GI tract

diseases. Its importance lies in its ability to provide direct visualization of the GI tract,

enabling accurate diagnosis and targeted treatment while minimizing patient discom-
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Figure 1.4: Examples of endoscopy images.

fort and risk of complications.

However, the GI tract endoscopy still has some risk of complications. One of the most

common complications of endoscopy is bleeding, which can occur when the endoscope

is inserted or removed or when tissue is biopsied or removed. The risk of bleeding is

higher in patients taking blood-thinning medications or with certain underlying medical
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conditions, such as liver disease or bleeding disorders. Another potential complication

is perforation, which occurs when the endoscope punctures the wall of the GI tract. Per-

foration can lead to infection, sepsis, and other serious complications and may require

emergency surgery to repair [18]. To minimize the risk of complications and improve

the accuracy of endoscopy, this research aims to construct a computer-aided endoscopy

system in this thesis to assist physicians during GI tract endoscopic procedures.

1.2.3 GI tract disease

The primary aim of this research is to establish a comprehensive computer-supported

endoscopy system that encompasses both diagnostic and interventional capabilities.

This study will focus on the development of two distinct components: an endoscopy-

based Computer-Aided Diagnosis (CAD) system and a computer-aided intervention sys-

tem. The rationale behind this approach stems from the recognition of certain diseases

within the GI tract that necessitate endoscopic examination but pose challenges in terms

of accurate detection. Specifically, two GI tract conditions, namely colorectal polyp and

achalasia, will serve as the focal points of investigation.

Both colorectal polyps and achalasia require endoscopic evaluation for accurate di-

agnosis and subsequent intervention. Computer-aided diagnosis and intervention sys-

tems have shown tremendous potential for application in both of these diseases, provid-

ing valuable assistance to clinicians during endoscopic procedures. Besides, the endo-

scopic intervention for colorectal polyps and the diagnosis of achalasia pose significant

challenges to medical professionals. As shown in Fig 1.4, the presence of blood and

polyps during the intervention for colorectal polyps can obscure the detection of asso-

ciated complications, while the initial stages of achalasia may not exhibit prominent

manifestations. Consequently, the naked eye observation of physicians alone is inad-

equate for accurately distinguishing between these two conditions. As a result, both
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the interventional treatment of colorectal polyps and the diagnosis of achalasia neces-

sitates the incorporation of a computer-aided endoscopy system. Due to the limitations

of visual examination alone, the interventional treatment of colorectal polyps and the

diagnosis of achalasia necessitate the utilization of a computer-aided endoscopy sys-

tem. The following section will provide a brief introduction to colorectal polyps and

achalasia.

Colorectal polyp

Colorectal polyps [32] are growths that develop on the lining of the colon or rectum.

These growths can be raised or flat and vary in size from small, less than a centimeter, to

large, several centimeters in diameter. Some polyps are benign (non-cancerous), while

others can become cancerous if left untreated [32]. Symptoms of colorectal polyps

may not be noticeable, but they can include rectal bleeding, changes in bowel habits,

abdominal pain, and anemia. However, most people with polyps do not experience any

symptom [33].

The causes of colorectal polyps are not completely understood, but certain factors

have been identified as increasing the risk of developing them. One of the main risk fac-

tors is age, as the likelihood of developing polyps increases with age. Other risk factors

include a family history of polyps or colorectal cancer, personal history of IBD [34], and

certain genetic conditions [33, 35]. Lifestyle factors also play a role in the development

of colorectal polyps. A diet high in fat and low in fiber has been linked to an increased

risk of developing polyps. Smoking, heavy alcohol consumption, and lack of physi-

cal activity are also associated with higher risk. Additionally, obesity and diabetes have

been linked to an increased risk of colorectal cancer, which may develop from untreated

polyps. Furthermore, some medications such as NonSteroidal Anti-Inflammatory Drugs

(NSAIDs) [36] and Hormone Replacement Therapy (HRT) [37] have been linked to an
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increased risk of polyps [33, 35].

Colorectal polyps can have different consequences, depending on their type and

size [38, 39]. Adenomatous polyps [40] are the most common type of polyps found

in the colon and rectum. They are considered to be pre-cancerous, meaning that if

left untreated, they can develop into colorectal cancer. The risk of developing cancer

increases with the size and number of adenomatous polyps. Serrated polyps [41] are

another type of polyps found in the colon and rectum. While some serrated polyps

are benign, others can also be pre-cancerous and develop into colorectal cancer over

time. Large polyps [42] or those with an irregular shape are more likely to develop

into cancer, which can spread to other body parts if not detected and treated early. If a

polyp is found during a colonoscopy, it is usually removed during the same procedure

to prevent it from developing into cancer.

The primary treatment for colorectal polyps is the removal of the polyp during a

colonoscopy. There are different methods for the removal of colorectal polyps, includ-

ing snare resection, Endoscopic Mucosal Resection (EMR), and Endoscopic Submucosal

Dissection (ESD) [39, 43, 44]. Snare resection is a method where the polyp is removed

by cutting it off with a wire loop. EMR [45] and ESD [46] are advanced techniques that

remove larger polyps. EMR involves injecting a solution under the polyp to lift it away

from the colon’s wall before removing it. ESD is a technique that removes even larger

polyps by dissecting the tissue underneath the polyp. After removing a polyp, the physi-

cian will recommend follow-up colonoscopies to monitor for the recurrence of polyps.

The recommended interval for follow-up colonoscopies depends on the size and num-

ber of polyps removed and the patient’s personal and family history of colorectal cancer.

In some cases, if the polyps are too large or cannot be removed during a colonoscopy,

surgery may be required. Surgery is also necessary if the polyp is cancerous and cancer

has spread beyond the colon or rectum [47].
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Figure 1.5: Esophageal achalasia [3]. Comparison of the difference between normal
esophageal and achalasia.

Achalasia

Achalasia [48] is a chronic gastrointestinal disease. A standard definition of achalasia is

the inability of the Lower Esophageal Sphincter (LES) to relax without peristalsis [49].

Figure 1.5 shows the difference between normal esophageal and achalasia. The annual

incidence of achalasia is approximately 1 in 100, 000 people worldwide, with an overall

prevalence of 9 to 10 in 100, 000 people [50]. It is caused by the degeneration of the

nerve cells in the esophagus and the LES, leading to a loss of peristalsis in the esophagus

and a failure of the LES to relax during swallowing. The condition affects people of all
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ages but is most commonly diagnosed in middle-aged and older adults.

Generally, as achalasia progresses, the esophagus dilates and eventually curves. The

development of achalasia is accompanied by three types: the straight type, the sigmoid

type, and the advanced sigmoid type [51]. Early-stage achalasia often refers to the

straight type achalasia, which has poor esophageal dilation and is difficult to be detected

by examination.

Dysphagia is the most common symptom of achalasia and may be gradual or sudden

in onset [49]. It typically occurs with both solids and liquids and may be associated

with the sensation of food being stuck in the chest. Regurgitation of undigested food

may also occur, which may be accompanied by coughing and choking. Chest pain or

discomfort is another common symptom of achalasia, which is often mistaken for angina

or other cardiac conditions [49]. Heartburn, a burning sensation in the chest, may also

be present, especially after meals or when lying down. Weight loss is another common

symptom of achalasia and may be due to the patient’s reluctance to eat or difficulty

in consuming enough calories [49]. Chronic coughing or choking while eating may

also lead to pneumonia or other respiratory infections. In rare cases, patients may

experience hoarseness, loss of voice, or even lung problems due to aspiration of food or

liquid into the lungs [49].

The exact cause of achalasia is still unknown. However, it is thought to be due to

the loss of neurons in the esophageal myenteric plexus, which controls the coordinated

contraction and relaxation of the esophageal muscles [52]. This loss of neurons may

be due to an autoimmune response or a viral infection, but more research is needed

to confirm this. Additionally, there may be a genetic component to the development of

achalasia, as it can sometimes run in families. Other potential risk factors for achalasia

include exposure to certain chemicals and radiation therapy for cancer.
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1.3 Endoscopy applications

Section 1.2.3 provided a comprehensive and foundational overview of two prominent

areas in this thesis: the intervention of colorectal polyps and the diagnosis of acha-

lasia, both of which fall within the realm of endoscopy applications. Regarding the

intervention of colorectal polyps, particular attention is given to the detection and man-

agement of perforations that may arise during Endoscopic Submucosal Dissection (ESD)

procedures. The identification of perforations poses significant challenges due to fac-

tors such as the presence of polyps and obscuring elements like blood, impeding visual

recognition by medical practitioners. Similarly, diagnosing achalasia presents inher-

ent complexities as early manifestations of this condition often lack explicit features,

making it difficult for physicians to differentiate based solely on endoscopic images.

Recognizing the crucial importance of accurate discrimination between perforation and

achalasia, the development of a computer-aided endoscopy system emerges as an indis-

pensable and highly demanding research pursuit. Constructing a system that leverages

advanced computational techniques to discern and classify these conditions holds sub-

stantial potential for enhancing clinical practice. This section provides a comprehensive

introduction and elucidation of the specific applications of endoscopy, encompassing

the intervention of colorectal polyps and diagnosing achalasia.

1.3.1 Endoscopic Submucosal Dissection (ESD)

ESD [46] is a minimally invasive endoscopic technique used to remove early-stage Gas-

troIntestinal (GI) tumors by dissecting the mucosal and submucosal layers of the af-

fected tissue. ESD has gained popularity as an alternative to surgical resection for

early-stage GI tumors due to its high efficacy, low complication rate, and organ preser-

vation. The ESD procedure is performed using a flexible endoscope equipped with

various accessories, such as a high-frequency electrosurgical knife, endoscopic scissors,
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and a suction device. Figure 1.6 shows the different equipment for ESD. It has been

successfully applied in treating various GI tumors, including gastric, esophageal, and

colorectal cancers.

ESD is currently a common treatment for colorectal polyps [53]. Compared to

conventional endoscopic resection techniques, such as EMR, it offers several advan-

tages [54–56]. It allows for en-bloc resection of lesions, meaning the entire lesion can

be removed in one piece. This characteristic is particularly important for the accurate

pathological assessment of the lesion and reduces the risk of residual or recurrent dis-

ease. It also enables the removal of larger lesions than EMR. The en-bloc resection of

larger lesions with ESD provides a definitive treatment. It avoids piecemeal resection,

which can be associated with higher rates of incomplete resection, recurrence, and the

need for additional treatments. Furthermore, ESD can be applied to lesions located in

difficult anatomical locations, such as the gastroesophageal junction, and can be used

for the resection of lesions that involve submucosal invasion or that have fibrosis or

scarring. Besides, it provides a high degree of precision in resection, as the operator

has greater control over the dissection plane and can more accurately distinguish be-

tween tumor and normal tissue. Finally, ESD is associated with lower complication rates

than other endoscopic techniques, such as surgery or EMR. Despite its benefits, ESD is

a complex and technically challenging procedure that requires extensive training and

experience to perform safely and effectively.

ESD procedure

The procedure of ESD [5] involves the use of a flexible endoscope with a high-definition

camera and specialized instruments to dissect and remove the lesion from the submu-

cosal layer of the GI tract. Figure 1.7 briefly described the ESD procedure using dia-

grams and endoscopic images.
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Figure 1.6: ESD knives. [4]
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(a) Depicting mucosal pre-cut (b) Illustrating submucosal injection

(c) Making an incision in the mucosal layer

(e) Depicting additional injections into the 
submucosal layer

(d) Depicting the dissection of the submucosal layer

(f) Depicting the removal of the lesion

Figure 1.7: Diagrams and images depicting each stem of self-completion endoscopic
submucosal dissection. m; mucosa, sm; submucosa, mp; muscularis propia. [5]

ESD begins with thoroughly examining the GI tract using the endoscope to identify

the target lesion. Once the lesion is identified, a solution is injected into the submucosal

layer to create a cushion that helps to protect underlying structures and facilitate dis-

section. Next, a small incision is made in the mucosa surrounding the lesion using an

electrocautery knife or needle. A specialized instrument dissects the submucosal layer

and isolates the lesion. The lesion is then removed using a snare or other specialized

instrument, and the site is closed using clips or other hemostatic devices [5].

ESD requires specialized training and expertise, as the procedure is technically chal-
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lenging and carries a risk of complications such as bleeding, perforation, and infec-

tion [5]. However, ESD offers several advantages over traditional surgical methods,

including reduced morbidity and mortality, shorter hospital stays, and improved cos-

metic outcomes. As such, ESD has become an important tool in the management of

early-stage gastrointestinal neoplasms [54].

ESD complications

While ESD offers several advantages over traditional surgical resection, it also has limi-

tations.

One limitation is that it is a technically demanding procedure that requires spe-

cialized training and experience [5]. In order to perform ESD safely and effectively,

endoscopists must have a thorough understanding of the anatomy and pathology of the

GI tract, as well as the necessary technical skills to manipulate the endoscope and the

surgical instruments.

Another limitation is that it is not suitable for all types of GI tumors [54]. For

example, large or advanced tumors may not be amenable to ESD, and surgical resection

may be necessary in these cases. Additionally, it may not be appropriate for tumors

located in difficult-to-access areas of the GI tract or associated with high rates of local

recurrence or distant metastasis.

Furthermore, ESD is associated with certain risks and complications, including bleed-

ing, perforation, and postoperative stricture. The flush knife may accidentally pierce the

colonic wall and cause a perforation on it. Thus, it requires physicians to have high-level

endoscopic skills. If perforation occurs, the patient might need emergency open surgery

since it can easily cause peritonitis [46]. Some perforation images are displayed in the

third row of Fig. 1.4.
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1.3.2 Achalasia diagnosis and treatment

Achalasia diagnosis

The diagnosis of achalasia is based on the patient’s clinical history, physical examination,

and a combination of radiological and endoscopic investigations [57].

The patient’s history usually includes symptoms of dysphagia, regurgitation, chest

pain, weight loss, and heartburn, which may have been present for a long time [57].

Patients with achalasia often complain of difficulty swallowing both liquids and solids,

with the sensation of food sticking in the chest or throat. Symptoms are usually pro-

gressive and worsen over time [57].

Physical examination may reveal features of malnutrition or dehydration, such as

dry mucous membranes or decreased skin turgor [58]. The chest may be resonant to

percussion, and lung auscultation may reveal diminished breath sounds in the affected

lung. Abdominal examination may reveal a palpable epigastric mass, representing the

dilated esophagus [58].

Radiological investigations play a crucial role in diagnosing achalasia [59]. A bar-

ium swallow study is an initial investigation that may show a characteristic ‘bird beak’

appearance at the Lower Esophageal Sphincter (LES) level. The test involves swallow-

ing barium; images are taken using fluoroscopy to visualize the esophagus and stomach.

In addition, a chest X-ray may reveal a widened mediastinum, indicative of an enlarged

esophagus [59].

Esophageal manometry is the gold standard for diagnosing achalasia [60]. It in-

volves the placement of a catheter with pressure sensors in the esophagus to measure

the pressure changes during swallowing. In achalasia, there is a lack of peristalsis in the

distal esophagus, and the LES fails to relax with swallowing, resulting in elevated LES

pressures [60, 61].

Endoscopy is another diagnostic modality that is used in the evaluation of acha-
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lasia [62]. It is performed to exclude other causes of dysphagia, such as esophageal

cancer, and assess the severity of esophageal dilation. During endoscopy, a flexible

scope is passed through the mouth and into the esophagus, and the LES is visualized.

Endoscopic ultrasound may also be used to measure the thickness of the esophageal

wall and assess the involvement of the adjacent lymph nodes [63].

Among all diagnosis methods, esophagoscopy is a necessary achalasia diagnosis

method, which can rule out esophageal squamous cell carcinoma complicated with

achalasia or secondary achalasia associated with malignancy [57].

Achalasia treatment

There is no cure for achalasia, but several treatment options are available to manage

the symptoms [64], including medications [65], endoscopic therapy [66], surgery [67],

and PerOral Endoscopic Myotomy (POEM) [68].

Medications such as nitrates and calcium channel blockers can help to relax the LES

and improve the movement of food and liquid through the esophagus [65]. However,

the effects of these medications are often limited and may need to be more sustainable

in the long term. Endoscopic therapy for achalasia involves using minimally invasive

procedures to dilate or disrupt the LES, thereby reducing the resistance to the flow of

food and liquid [66]. Endoscopic Pneumatic Dilation (PD) involves using a balloon

to dilate the LES. In contrast, endoscopic Botulinum Toxin Injection (BTI) involves the

injection of a toxin to paralyze the LES muscles. However, the effects of these proce-

dures may be short-lived, and repeated treatments may be required. Surgery is the most

invasive approach to treating achalasia and is usually reserved for patients who have

not responded to other treatments or have complications such as esophageal perfora-

tion [67]. The most common surgical procedure for achalasia is laparoscopic Heller

myotomy [69], which involves cutting the LES muscles to reduce their resistance to the
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flow of food and liquid.

POEM is minimally invasive and has a lower risk of complications than other meth-

ods of treating achalasia [68]. It is associated with shorter hospital stays, faster recovery

times, and lower rates of reflux symptoms. It has been shown to be an effective treat-

ment for achalasia, with success rates ranging from 80–90 % in clinical studies [68].

It is a minimally invasive endoscopic procedure developed as an alternative treatment

for achalasia. Figure 1.8 shows the procedure of POEM. It involves using an endoscope

to create a submucosal tunnel through the esophageal wall and then myotomy of the

circular muscle fibers of the LES. This results in the disruption of the muscle fibers re-

sponsible for the resistance of the LES, thereby allowing for easier passage of food and

liquids through the esophagus. The POEM procedure begins with the administration

of general anesthesia. Once the patient is sedated, an endoscope is inserted through

the mouth and into the esophagus. A submucosal tunnel is then created by injecting

fluid under the mucosa and dissecting along the length of the esophagus, guided by

endoscopic visualization. The myotomy is then performed using an endoscopic knife to

cut through the circular muscle fibers of the LES, starting approximately 2–3 cm above

the gastroesophageal junction and extending for several centimeters. However, POEM

carries some risks and potential complications, such as bleeding, infection, perforation,

and reflux symptoms. In addition, it is a technically challenging procedure that requires

specialized training and experience to be performed safely and effectively.

1.4 Goal

Computer-aided diagnosis and intervention techniques have been used in medical imag-

ing owing to the advancements in imaging technology. These technologies have a long

history, dating back to the late 1950s, and have been continuously developed over the

last 70 years [70, 71]. Although these technologies serve distinct purposes, they are
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Figure 1.8: Steps in per-oral endoscopic myotomy. (A) Entry to the submucosal space
is made after the submucosal injection with saline. (B) The submucosa is progressively
dissected distally along the muscular layer, using spray coagulation at 50 W (ERBE
VIO300D), creating a submucosal tunnel extending beyond the gastroesophageal junc-
tion. (C) Myotomy of the circular esophageal and gastric muscle bundles is performed
under direct vision. (D) After the myotomy has been successfully completed, the mu-
cosal entry site is closed with hemostatic clips from the distal to the proximal end of the
mucosal fenestration. [6]

both based on pattern recognition technology and, thus, share similar means of appli-

cation. They have been extensively applied to various medical images, including Com-

puted Tomography (CT), Magnetic Resonance Imaging (MRI), X-ray, and endoscopic

images [72–75]. The main categories of computer-aided diagnosis and intervention

applications include image processing and analysis, surgical planning and guidance,
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monitoring and surveillance. As the accuracy of pattern recognition methods is a key

determinant of the overall accuracy of computer-aided diagnosis and intervention sys-

tems, this research aims to improve the accuracy of these systems by developing more

precise pattern recognition methods.

This research mainly focuses on computer-aided diagnosis and intervention for Gas-

troIntestinal (GI) tract diseases. The GI tract [20] is a complex system involved in di-

gesting and absorbing nutrients. However, the normal functions of the GI tract may be

disrupted by a variety of diseases. These diseases can range from minor conditions, such

as acid reflux and constipation, to more severe conditions, such as Inflammatory Bowel

Disease (IBD) [76] and cancer. Common GI tract diseases include GastroEsophageal

Reflux Disease (GERD) [77], peptic ulcers [78], celiac disease [27], Irritable Bowel

Syndrome (IBS) [79], ulcerative colitis [80], diverticulitis [81], and colon cancer [82].

These diseases can cause many symptoms, such as abdominal pain, bloating, diarrhea,

constipation, nausea, vomiting, and weight loss. Treatment options vary depending

on the type and severity of the disease and may include medication, lifestyle changes,

and surgical procedures. Therefore, developing computer-aided endoscopy systems for

GI tract diseases is an important area for research. This thesis endeavors to develop

computer-aided diagnosis and intervention methods that effectively detect and classify

GI tract diseases that present challenges in physician diagnosis. Specifically, the focus

of this thesis is directed towards two GI tract diseases, namely perforations, and achala-

sia. Perforation is an acute complication that can occur during Endoscopic Submucosal

Dissection (ESD). Perforations can be challenging to detect as they can be very small or

concealed by blood and polyps. On the other hand, achalasia is a condition that lacks

clear lesions and features, making it difficult for physicians to diagnose, especially in its

early stages. Based on the identified deficiencies in current approaches, this thesis aims

to address two research questions:
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1. How can real-time detection technology be developed and applied to acute dis-

eases within computer-aided endoscopy systems?

2. How can computer-aided endoscopy systems be extended to address diseases that

lack clear lesions?

In response to these questions, two specific research topics have been formulated: the

development of perforation detection and localization methods, and the design of acha-

lasia classification methods, both aimed at constructing a computer-aided endoscopy

system to meet clinical demands.

1.5 Research overview

1.5.1 Research motivations and topics

The work in this thesis aims to enhance the efficacy of computer-aided endoscopy sys-

tems by exploring accurate computer-aided diagnosis and intervention systems. Cur-

rent research on endoscopic computer-aided diagnosis and intervention systems for the

GastroIntestinal (GI) tract has significantly advanced. However, the primary focus of

computer-aided diagnosis and intervention development has been detecting lesions,

such as polyps and ulcers, which are relatively easy to annotate and have a large sample

size available for validation. Despite these advancements, current computer-aided diag-

nosis and intervention systems face several challenges in clinical applications, including

achieving real-time processing and analysis of high-resolution endoscopic images and

videos.

While much of the current research on real-time image processing and analysis has

focused on chronic diseases, such as polyps, Barrett’s esophagus, and Inflammatory

Bowel Disease (IBD), it is important to focus on acute diseases that arise in real-time
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to prevent further patient harm. Thus, there is a growing need for real-time acute

disease detection methods. Moreover, accurate and reliable classification algorithms

are required for various GI tract diseases, especially those without visible lesions. Most

existing research is based on disease diagnosis relying on clear lesion detection, which

depends on a vast amount of data with clear annotations. However, diseases such as

esophageal achalasia (achalasia), which does not have a large amount of data or a

clear lesion to be annotated, have yet to be explored. Consequently, the following two

main weaknesses of the current computer-aided diagnosis and intervention systems are

focused in this thesis:

1. Lack of real-time detection technology applied to acute diseases.

Regarding the improvement of computer-aided intervention systems, real-time

detection and localization methods of newly appeared lesions, particularly acute

trauma, which can have serious consequences within minutes are developed. While

lesions such as polyps may take months to years to grow and develop, acute

trauma necessitates immediate detection. This weakness leads to the first research

question in this thesis: how can real-time detection technology be developed and

applied to acute diseases within computer-aided endoscopy systems?

Topic 1: Perforation detection and localization

To solve this question, the first topic is newly appearing perforation detection and

localization. Unlike other research, this thesis focuses on detecting and localizing

a complication in the Endoscopic Submucosal Dissection (ESD): perforation, in-

stead of polyps. Perforation of ESD is generally due to improper handling by the

physician or the patient’s special circumstances. As one of the complications of

ESD, it can have serious consequences if not detected in time. Therefore, physi-

cians need a computer-aided intervention system to prevent them from missing
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ESD perforations. This research aims to construct a computer-aided intervention

method to support physicians in ESD. A training method for object detection and

localization model which significantly improves the detection accuracy of perfora-

tions in colonoscopy images is proposed in Chapter 3.

A training method for an improved version of You Only Look Once (YOLOv3) [83]

is proposed by using Generalized Intersection over Union (GIoU) [84] and Gaus-

sian affinity loss [85] for perforation detection and localization in colonoscopic

images. In this method, the object functional contains the GIoU loss and Gaussian

affinity loss. A training method is proposed for the architecture of YOLOv3 with

the presented loss function to detect and localize perforations precisely. Experi-

mental results demonstrate that YOLOv3 trained by the presented loss functions

are very effective in perforation detection and localization. The presented method

can quickly and precisely remind physicians of perforation occurring in ESD.

2. Limited application to diseases without clear lesions.

Regarding the development of Computer-Aided Diagnosis (CAD) systems, this re-

search focuses on designing methods for diagnosing diseases without clear lesions.

While current research has mainly focused on diagnosing diseases based on clear

lesion detection, this approach is limited by the availability of a large number of

data with clear annotations. For example, diseases such as esophageal achalasia,

which do not have a visible lesion to be annotated and lack sufficient data, pose

a challenge for CAD research. In order to address this limitation, the research

question that arises is: how can computer-aided endoscopy systems be extended

to address diseases that lack clear lesions?
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Topic 2: Early-stage achalasia diagnosis

The second topic is early-stage achalasia diagnosis. In this research topic, a clas-

sification method for achalasia diagnosis problems is proposed. Early diagnosis

of achalasia can prevent esophageal cancer occurrence and reduce the risk of Per-

Oral Endoscopic Myotomy (POEM) complications. Esophagoscopy is a necessary

achalasia diagnosis method, which can rule out esophageal squamous cell carci-

noma complicated with achalasia or secondary achalasia associated with malig-

nancy [57]. However, esophageal contraction or dilation is not very conspicuous

in early-stage achalasia. Physicians may not accurately diagnose early-stage acha-

lasia with inconspicuous contraction or dilation; it is common for the correct di-

agnosis to be delayed by 2 or 3 years from the onset of symptoms [57]. Therefore,

there is a demand for a video-based CAD system to support physicians. A method

for esophagoscopy image classification is proposed in Chapter 4.

In this thesis, a Serial Multi-scale Network (SMN) for achalasia classification from

esophagoscopy images is proposed. The SMN can extract multi-type and scale

features from esophagoscopy images. The proposed method is trained and evalu-

ated with two datasets extracted from several esophagoscopy videos of achalasia

patients. The evaluation results reveal that the proposed method can achieve high

accuracy in diagnosing achalasia. Furthermore, a real-time computer-aided acha-

lasia diagnosis system is developed based on the proposed method. Experiments

demonstrate that the proposed system can diagnose achalasia from esophagoscopy

videos.
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1.5.2 Interconnection of the two research topics

The objective of this research is to develop a computer-aided endoscopy system, which

entails the development of both computer-aided diagnosis and intervention systems.

Two research topics in this thesis have been pursued to accomplish this objective:

Computer-aided intervention for perforation and CAD for achalasia. Although perfo-

ration and achalasia are distinct medical issues that can arise during endoscopic proce-

dures, their studies are closely related. The research on perforation detection and acha-

lasia diagnosis shares common interests and approaches since they involve endoscopic

procedures. In the context of endoscopy, the same imaging tests and techniques utilized

for diagnosing achalasia can also aid in identifying perforation, allowing for prompt

intervention and treatment. Besides, during the ESD, the presence of blood and polyps

can hinder the detection of perforations. Similarly, the early stages of achalasia may not

exhibit prominent manifestations. Therefore, relying solely on visual observation by

physicians is insufficient for accurate differentiation between these two conditions. The

incorporation of a computer-aided endoscopy system is necessary for both the perfora-

tion detection and the achalasia diagnosis. Thus, both research areas aim to enhance

the quality and safety of endoscopic procedures.

Furthermore, developing computer-aided endoscopy systems can also benefit both

research areas. These systems can aid in perforation detection by providing real-time

feedback to the endoscopist and highlighting potential signs of perforation, such as air

bubbles or fluid leakage. Similarly, these systems can assist in identifying achalasia

and improve the accuracy of diagnosis by analyzing endoscopic images and videos.

Figure 1.9 shows the relationship between the two research topics. Advances in one

area can inform and enhance the other, leading to improved patient outcomes and safer

computer-aided endoscopic procedures.
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Figure 1.10: Overview of the chapters of this thesis.

1.6 Structure of the thesis

This thesis consists of four chapters. An overview of the relationship between each

chapter is illustrated in Fig. 1.10. Furthermore, Fig. 1.10 illustrates the novelty of each

method in this thesis.

Chapter 1 provided the background information and motivations of the author’s re-

search as the introduction. Chapter 2 introduces the related works and technologies

of computer-aided diagnosis and intervention. Chapter 3 describes the background in-

formation and methods for perforation detection and localization. Chapter 4 provides

background information on early-stage achalasia diagnosis and presents a novel classi-

fication method for it. Chapter 5 provides a conclusion and description of the future

work.



Chapter 2

Related Works

2.1 Computer-aided endoscopy procedure

Computer-aided endoscopy procedure refers to using computer technology to assist

physicians in performing endoscopic procedures. This technology includes various tech-

niques, such as image enhancement, image recognition, and real-time navigation, to

improve the accuracy and efficiency of endoscopic procedures. One important com-

ponent of computer-aided endoscopy procedure is Computer-Aided Diagnosis (CAD),

which involves using computer algorithms to analyze endoscopic images and provide

automated diagnoses of GastroIntestinal (GI) tract diseases. CAD can aid physicians in

detecting lesions, identifying abnormal tissue, and characterizing pathology. In addi-

tion to CAD, computer-aided intervention is an important aspect of computer-aided en-

doscopy procedures. Computer-aided intervention involves using computer technology

to guide therapeutic procedures, such as lesion resection or ablation, and minimize the

risk of complications. Computer-aided intervention can also help ensure the complete

resection of lesions and reduce the need for repeat procedures. This section introduces

computer-aided diagnosis and intervention in detail.

33
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2.1.1 Computer-Aided Diagnosis (CAD)

CAD is a technology in the field of gastroenterology that is revolutionizing the way

endoscopy is performed [86]. Researchers began developing computer algorithms to aid

in medical diagnosis. The first application of CAD was in radiology, where researchers

developed algorithms to detect and classify abnormalities in X-rays and other medical

imaging studies.

In the mid-1980s, medical physicists and radiologists began to focus on the aspects

of CAD [70]. These systems were designed to assist radiologists in detecting and classi-

fying various diseases, including cancer and cardiovascular disease. Over time, CAD

systems have been developed for other medical specialties, including gastroenterol-

ogy [70]. In recent years, there has been a significant increase in the use of CAD systems

for GI tract endoscopy, as researchers have developed algorithms to assist in detecting

and characterizing gastrointestinal diseases, such as polyps and cancer [87, 88].

The growth in deep learning algorithms and the availability of large datasets has

facilitated the development of more efficient and accurate diagnostic models, leading

to the rise of CAD systems. In the past, traditional machine learning methods such as

Linear Discriminant Analysis (LDA) [89–91] and Support Vector Machines (SVMs) [92,

93] were proposed for diagnosis. However, recently, there has been a shift towards

incorporating deep learning techniques for diagnosis tasks, with Convolutional Neural

Networks (CNNs) being a popular choice in related research studies [94–97].

CAD has been used in various fields of medicine, including radiology, pathology,

dermatology, and ophthalmology, among others. CAD systems have been developed to

assist clinicians in detecting, interpreting, and diagnosing medical images by providing

automated analysis and diagnostic assistance.

In radiology, CAD systems have been developed to help radiologists detect and clas-

sify various diseases, such as pulmonary embolism, and cardiovascular diseases [98].
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In pathology, CAD systems can assist pathologists in diagnosing various diseases, in-

cluding cancer [99]. They can analyze tissue samples and provide automated detection

and classification of abnormal cells, helping pathologists to identify and classify malig-

nant cells more accurately. In dermatology, CAD systems can assist dermatologists in

diagnosing various skin diseases, including skin cancer [100]. They can analyze skin

images and provide automated detection and segmentation of lesions, helping derma-

tologists to detect and diagnose skin cancer and other skin diseases more accurately

and quickly. In ophthalmology, CAD systems can assist ophthalmologists in diagnosing

various eye diseases, such as glaucoma, diabetic retinopathy, and age-related macular

degeneration [101]. CAD systems can analyze retinal images and provide automated

detection and segmentation of abnormalities, helping ophthalmologists to detect and

diagnose eye diseases more accurately and early.

CAD systems for GI tract endoscopy use advanced algorithms and machine learning

techniques to analyze the images captured during endoscopic procedures, providing

real-time assistance to clinicians in diagnosing and treating GI disorders. They can de-

tect abnormalities that may be missed by the human eye, such as tiny lesions or subtle

changes in tissue texture, allowing for earlier and more accurate detection of GI disor-

ders [70]. In addition, CAD systems can assist with therapeutic procedures, helping clin-

icians to target the affected area accurately and reducing the risk of complications [70].

The use of CAD in GI tract endoscopy can improve patient outcomes, reduce the need

for more invasive procedures, and lower healthcare costs. The technological advance-

ments in recent years have facilitated the integration of embedded systems into CAD,

which enables the use of CAD more conveniently and efficiently. Figure 2.1 shows a

currently developing CAD system example using an Nvidia Jetson [102].

EndoBRAIN is an example of CAD application in the GI tract [103]. It uses advanced

artificial intelligence and machine learning techniques to help gastroenterologists diag-

nose and classify various GI lesions in real-time during endoscopic procedures. A team
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Figure 2.1: Instance of a Computer-Aided Diagnosis (CAD) system currently under de-
velopment.

of researchers has developed the system to aid in the detection of early-stage GI cancers,

precancerous lesions, and other abnormal findings during endoscopy [103].

The EndoBRAIN series includes multiple versions that are designed to assist with

specific tasks, such as detecting lesions, identifying early-stage cancers, and predicting

the likelihood of histological diagnosis. As an illustration, EndoBRAIN EYE [104] can

detect lesion candidates, including polyps or cancer. EndoBRAIN [103] can provide

a real-time prediction of pathological findings for both tumors and non-tumors. In

addition, EndoBRAIN PLUS [104] has the ability to predict pathological findings in

real-time for non-tumors, adenomas, and invasive carcinomas. EndoBRAIN UC [105]

can predict the presence or absence of mucosal inflammatory activity in real-time. The

software is compatible with various endoscope models and is constantly updated and

improved to enhance its performance and functionality.

EndoBRAIN works by analyzing the endoscopic images and videos in real-time and

providing the endoscopist with immediate feedback on the presence of abnormal find-

ings such as polyps, ulcers, and other lesions [106]. The system can also classify these

lesions based on their appearance and provide the endoscopist with a diagnosis or a

recommended course of action. It has been shown to be highly accurate in detecting

and classifying various gastrointestinal lesions, and has the potential to significantly
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improve the accuracy and efficiency of endoscopic procedures [107]. It can thus help

improve patient outcomes and reduce the risk of missed or misdiagnosed lesions by

providing real-time feedback and support to endoscopists.

2.1.2 Computer-aided intervention

Computer-aided intervention refers to using computer technology to assist medical pro-

fessionals during various procedures and surgeries. It aims to improve the accuracy

and safety of these procedures, reduce the risk of complications, and improve patient

outcomes.

Computer-aided intervention systems can be used in various medical fields, includ-

ing neurosurgery, cardiovascular surgery, orthopedic surgery, and endoscopy. In en-

doscopy, they aid physicians in various tasks, such as lesion detection, diagnosis, and

treatment [108–110]. These systems use advanced imaging and computer algorithms

to help physicians identify and locate abnormalities in the GI tract in real-time.

One example of computer-aided intervention is image-guided surgery [111, 112],

which uses advanced imaging techniques such as MRI, CT, and ultrasound to create

a three-dimensional image of the patient’s anatomy. This image can then guide the

surgeon during the procedure, allowing for more precise placement of instruments and

minimizing damage to surrounding tissues.

Another example of computer-aided intervention is robotic surgery [113, 114], which

uses robotic arms to perform surgeries with greater precision and control. The sur-

geon controls the robot using a computer console, which provides a magnified, three-

dimensional view of the surgical site. This allows for smaller incisions, less blood loss,

and faster recovery times for patients.

Computer-aided intervention also has applications in radiation therapy [115], where

it can be used to precisely target cancerous tumors while minimizing damage to sur-
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rounding healthy tissue. In this case, computer technology creates a customized treat-

ment plan based on the patient’s anatomy and tumor characteristics.

In the context of endoscopy for GI tract diseases, Computer-aided intervention sys-

tems can assist in detecting and classifying abnormalities, such as polyps or tumors [116,

117]. They can help reduce the risk of missed diagnoses or delayed treatment by auto-

matically identifying potential abnormalities. Additionally, they can help to streamline

the workflow of endoscopic procedures by automatically identifying images that require

further review or intervention [118–120].

All in all, computer-aided intervention represents a promising frontier in healthcare,

with the potential to revolutionize the way we diagnose and treat a wide range of

conditions.

2.2 Image processing and related technologies

2.2.1 Image processing

History

The development of image processing can be traced back to the early 1900s, when the

first photographic images were captured [121]. In the 1920s and 1930s, advances in

electronics and computing led to the creation of devices that could capture and pro-

cess images electronically, such as television cameras and image scanners [121]. In the

1950s and 1960s, computer technology continued to advance, leading to the develop-

ment of digital computers and the first digital image processing systems [121].

In the 1970s and 1980s, image processing became increasingly important in fields

such as medical imaging, remote sensing, and computer vision [122]. During this time,

new techniques and algorithms were developed for processing and analyzing images,

such as image segmentation, feature extraction, and pattern recognition.
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In the 1990s and 2000s, the development of powerful computers and Graphics Pro-

cessing Units (GPUs) enabled the use of more complex image processing techniques,

such as deep learning and neural networks [123]. These techniques have revolution-

ized the field of image processing, allowing for more accurate and efficient analysis of

large amounts of data.

Today, image processing is used in a wide range of applications, from medical di-

agnosis and treatment to surveillance and security. The field continues to evolve, with

new techniques and algorithms being developed to handle increasingly complex images

and data sets.

Related technologies

Image processing has been revolutionized in recent years by the development and appli-

cation of advanced technologies such as Artificial Intelligence (AI), Augmented Reality

(AR), and Virtual Reality (VR).

The fields of AI and image processing are closely intertwined [124], with significant

impacts on each other in recent years. AI for image processing is a subfield of AI that

focuses on the development of algorithms and models capable of analyzing, understand-

ing, and manipulating visual data such as images and videos. The objective is to create

automated systems that can interpret and process visual information in a manner sim-

ilar to human perception. AR [124] is a technology that superimposes digital content

onto the real world, often using a live video feed from a camera. In image processing,

AR is employed to recognize and track objects in real-time and overlay digital content

onto them. On the other hand, VR [125] is a technology that simulates an environ-

ment that can be experienced through a headset or other devices. In image processing,

VR is utilized to create immersive 3D environments and interactive visualizations. The

combination of these advanced technologies has resulted in significant advancements in
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image processing, enabling more accurate and efficient analysis of complex image data.

The research in this thesis is based on the development of AI technologies in the field of

image processing.

2.2.2 Artificial Intelligence (AI)

AI for image processing, also known as computer vision, is a field of artificial intelligence

that focuses on enabling computers to interpret and understand digital images and

videos [124]. It involves developing algorithms and techniques that enable computers

to analyze, recognize, and manipulate digital images and videos.

The applications of AI for image processing are numerous and diverse. They range

from simple tasks, such as image enhancement and noise reduction [126, 127], to more

complex tasks, such as object detection and recognition, scene understanding, and even

autonomous driving [128–130].

It has numerous real-world applications across various industries. In healthcare, it is

used for medical imaging analysis, such as detecting tumors [131] in medical scans. In

the automotive industry, it is used for autonomous driving [128], where AI is trained to

recognize and interpret traffic signals, road markings, and other objects in real-time. In

security and surveillance, it is used for facial recognition, object tracking, and activity

recognition [132–134].

One of the most widely used approaches in AI for image processing involves neural

networks, which are designed to simulate the functioning of the human brain and its

complex network of interconnected neurons. In this thesis, neural network techniques

are utilized as a fundamental aspect of the research.
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2.2.3 Neural network

History

The history of neural networks can be traced back to the 1940s, when the first artificial

neurons were modeled. These early models were simple and consisted of only a few

interconnected neurons. In the 1950s and 1960s, researchers began to explore more

complex neural networks, with the development of the perceptron algorithm by Frank

Rosenblatt in 1957 being a key breakthrough [135].

However, progress in the field slowed down in the 1970s and 1980s due to several

limitations, including the lack of powerful computing resources and the difficulty in

training deep neural networks. It was not until the 1990s that neural networks expe-

rienced a resurgence in popularity, with the development of new techniques such as

the backpropagation algorithm and the invention of the Convolutional Neural Network

(CNN) by Yann LeCun and colleagues [136].

Since then, the field of neural networks has continued to grow and evolve, with

deep learning algorithms becoming increasingly popular and achieving excellent per-

formance in many applications. Today, neural networks are used in a wide range of

fields, including computer vision, natural language processing, and robotics.

Perceptron

The perceptron is a type of artificial neural network developed in the late 1950s and

early 1960s by Frank Rosenblatt [135]. It was designed to mimic the behavior of a

single neuron in the brain and was one of the earliest and most widely studied machine

learning models. It works by taking in multiple inputs, each of which is assigned a

weight that determines its relative importance. These weighted inputs are combined

and passed through an activation function that produces an output. The output can be

either binary (0 or 1) or continuous, depending on the type of activation function used.
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It was notable for its ability to learn and improve its performance through a process

known as supervised learning. During training, the perceptron adjusts its weights based

on the error between its output and the desired output. This allows it to gradually learn

to correctly classify inputs and make more accurate predictions.

The perceptron and its variants have been used in a variety of applications, including

image and speech recognition, natural language processing, and predictive analytics.

While it has limitations in its ability to solve complex problems, the perceptron remains

an important model in the field of machine learning. It has paved the way for more

sophisticated neural network architectures.

Neocognitron

The Neocognitron is a type of artificial neural network that Kunihiko Fukushima first

proposed in 1980 [137]. It is inspired by the visual cortex in the human brain, specif-

ically the way in which the cortex processes visual information. It is a hierarchical

network consisting of multiple layers of neurons, with each layer performing a differ-

ent type of processing. The first layer of neurons in the network receives input from

the image, and subsequent layers build on this representation to identify increasingly

complex patterns and features. One key feature of the Neocognitron is its use of locally

connected and shared weights, which allows it to detect patterns regardless of their

position within the image. This makes the network well-suited for image recognition

tasks where the position and orientation of the object may vary.

The Neocognitron was originally proposed as a form of unsupervised learning, where

the network is trained without needing labeled data. However, later versions of the

network incorporated supervised learning techniques, where labeled data is used to

train the network. It has been applied to various image recognition tasks, including

handwriting recognition and facial recognition. It has also been used as a building
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block in more complex neural networks, such as CNNs [138], which have become a

popular tool for image recognition in recent years.

Deep learning

Deep learning [139] is a subfield of machine learning that involves training neural net-

works with multiple layers to learn from data and make predictions or decisions. The

term ‘deep’ refers to using multiple layers in the network, allowing it to learn increas-

ingly complex representations of data.

A Deep Neural Network (DNN) [140] is a type of neural network that consists of

multiple layers of interconnected nodes or neurons. Each layer performs a different

transformation on the data, with the output of one layer becoming the input of the next.

The number of layers in a DNN can range from a few to hundreds or even thousands,

and the parameters of the network are learned through a process called backpropaga-

tion.

DNN can handle large amounts of data and automatically extract complex features

without requiring manual feature engineering. This can be particularly useful in fields

like computer vision and natural language processing, where traditional methods strug-

gle to extract meaningful features from raw data. Also, deep learning models can be

trained to perform end-to-end learning, meaning that they can take raw input data

and directly produce an output without requiring intermediate steps. This can result in

faster and more accurate predictions. Furthermore, deep learning models can continue

to improve as more data is fed into them, which makes them well-suited for applications

where the data distribution can change over time. This is known as online learning, and

it allows deep learning models to adapt and improve their predictions over time without

requiring retraining on the entire dataset.
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Typical methods

Several types of neural networks are commonly used in image processing, including

feedforward networks, CNNs, and Recurrent Neural Networks (RNNs) [141]. Feedfor-

ward networks [142] are simple neural networks that process inputs in a single pass

through a series of layers, each consisting of a set of neurons. CNNs are specifically de-

signed for image processing tasks, and typically involve multiple layers of convolution

and pooling operations that extract features from the image. There are many variants

of CNN, and ResNet [143] is one of the classic examples. RNNs, on the other hand,

are used for tasks such as sequence prediction, and can be applied to image processing

tasks by treating an image as a sequence of pixels. There are also more recent architec-

tures, such as Transformers [144], which have shown excellent performance in image

recognition.

In addition to these neural network architectures, several common techniques are

used in image processing with neural networks, including data augmentation, transfer

learning, and adversarial training. Data augmentation involves generating new train-

ing images by applying random transformations to existing images, such as rotations

or flips, in order to increase the diversity of the training set. Transfer learning [145]

involves using a pre-trained neural network as a starting point for a new image process-

ing task, allowing the network to leverage its previously learned features. Adversarial

training, such as Generative Adversarial Network (GAN) involves training two neural

networks simultaneously, with one network generating images and the other trying to

distinguish between real and generated images to improve the realism and diversity of

the generated images. Figure 2.2 shows the architectures of different neural networks.
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Figure 2.2: Architectures of different typical neural networks.
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Chapter 3

Perforation Detection and Localization:

A Novel Training Strategy for

Perforation Localization Model

3.1 Overview

This chapter aims to address the research question: How can real-time detection tech-

nology be developed and applied to acute diseases within computer-aided endoscopy

systems? Specifically, the focus of this chapter is on the detection and localization of per-

forations that can occur during Endoscopic Submucosal Dissection (ESD) procedures, a

minimally invasive treatment for colorectal polyps [4]. ESD procedures carry the risk of

physicians unintentionally causing perforations in the intestinal wall, leading to acute

complications. These perforations may be small and easily overlooked by physicians,

but failing to detect them can result in severe consequences such as peritonitis and sig-

nificant harm to patients. Timely detection of these perforations can help physicians

avoid their enlargement and mitigate potential risks. However, real-time detection and

47
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localization of perforations of various sizes and types pose significant challenges. To

tackle this research question, a computer-aided intervention system is developed based

on a proposed methodology. This system aims to effectively detect and localize perfo-

rations during ESD procedures, thereby addressing the identified challenge of real-time

detection.

This chapter introduces a novel training method for the object detection method

YOLOv3 [83] by combining Generalized Intersection over Union (GIoU) and Gaussian

affinity losses for perforation detection and localization in colonoscopic images. A train-

ing method for combing the two loss functions in the architecture of YOLOv3 to detect

and localize perforations precisely is proposed. To qualitatively and quantitatively eval-

uate the presented method, a dataset is also created from ESD videos. Evaluation of the

proposed method on the dataset is performed to show its performance. This chapter is

based on a paper entitled “Gaussian Affinity and GIoU-based Loss for Perforation De-

tection and Localization from Colonoscopy Videos” [146] published in the International

Journal for Computer Assisted Radiology and Surgery in 2023.

3.2 Purpose

As introduced in Section 1.3.1, Endoscopic Submucosal Dissection (ESD) is a treatment

for colorectal polyps. Due to the minimally invasive characteristic, it can replace classi-

cal surgeries in the future. However, the flush knife may accidentally pierce the colonic

wall and cause a perforation on it [46]. Figure 3.1 shows examples of perforations in

ESD. Thus, ESD requires physicians to have high-level endoscopic skills. If perforation

occurs in ESD, the patient might need emergency open surgery since it can easily cause

peritonitis [46].

To support physicians in ESD, a computer-aided intervention system that can pre-

vent perforation by predicting perforation frames is required. However, it is difficult
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Figure 3.1: Perforation examples. All perforations are marked with a red box.

to predict the perforation. This research aims to build a computer-aided intervention

system that prevents physicians from missing or enlarging perforations by powering

off the flush knife. Figure 3.2 illustrates a computer-aided intervention system that

this research aims to develop. Currently, the development of the computer-aided inter-

vention system aims to detect and localize perforations promptly and quickly in ESD.

These characteristics prevent physicians from missing perforations. Furthermore, once

the computer-aided intervention system detects perforation during ESD, the system will

power off the flush knife to prevent the perforation from expanding. Thus, fast and

precise perforation detection and localization are necessary for the computer-aided in-

tervention system. This chapter presents a method for perforation detection and local-

ization from colonoscopy videos.
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Perforation

Perforation Scene
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Figure 3.2: Computer-aided intervention system that supports physicians in the ESD.
The system contains two main functions: 1) Prevent physicians from missing perfora-
tions, and 2) Prevent physicians from enlarging perforations.

3.3 Related works

You Only Look Once (YOLO) [147] is a series of widespread object detection and local-

ization methods, which has been widely used in polyp detection and localization [148–

153]. Researchers have used an improved version of YOLO (YOLOv3) [83] to detect

and localize perforations from colonoscopy videos in previous research [154]. Although

there are other state-of-the-art variants of YOLO [155, 156], all of them aim to reduce

the calculation time and the number of parameters, none of them has a significant



3.3. RELATED WORKS 51

improvement in accuracy than YOLOv3. The experimental results indicated that the de-

tection and localization accuracy of a trained YOLOv3 could not satisfy clinical require-

ments, mainly since the sensitivity of detection results always stays at a low level [154].

Although researchers have designed several loss functions for the YOLOv3 training,

e.g., focal loss [157] and distance-IoU loss [158], they were not designed to improve

the detection accuracy of the YOLOv3, and none significantly improve its localization

accuracy.

Data imbalance is a common challenge in deep learning, where the number of in-

stances in different classes is significantly imbalanced, leading to biased model pre-

dictions. Since perforation is a side effect that occurs during Endoscopic Submucosal

Dissection (ESD), the doctor will terminate the ESD process after the perforation has

occurred. Therefore, the number of perforated images is very small compared to the

number of non-perforated images, which cause serious data imbalance problem in per-

foration detection and localization task. Advanced algorithms provide valuable solu-

tions for addressing the data imbalance problem in deep learning, but they also come

with their own advantages and disadvantages. Ensemble learning [159, 160], such as

bagging and boosting, offers the advantage of improved classification performance by

combining multiple models. It can effectively handle data imbalance by leveraging di-

verse perspectives from different models. However, ensemble methods can be computa-

tionally expensive and require additional resources for training and inference. Transfer

learning [145, 161], on the other hand, leverages pre-trained models to extract rele-

vant features for the imbalanced dataset, which can significantly improve performance.

However, it may not always transfer well to the target domain, and the choice of the

pre-trained model needs careful consideration. Cost-sensitive learning [162, 163] as-

signs different misclassification costs to different classes, which can effectively address

the data imbalance problem. However, defining appropriate cost ratios can be challeng-

ing and requires domain expertise. Active learning [164] reduces the labeling effort by
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selecting informative samples for labeling, but it relies on an effective sampling strategy

and may not be suitable for all applications.

3.4 Contributions

This work proposes a loss function composed of Generalized Intersection over Union

(GIoU) [84] loss and Gaussian affinity loss [85] in addition to the original loss to train

the architecture of the object detection method YOLOv3 [83] for perforation detection

and localization from colonoscopy images. The novel point of this method is combining

both GIoU loss and Gaussian affinity loss in one training with two steps. The YOLOv3

consists of the architecture, prediction step, and training step [83]. In the proposed

method, the original architecture and prediction step of the YOLOv3 are used, but the

training steps are different from the original YOLOv3 by using new loss functions. The

training step combines the Gaussian affinity loss and binary cross-entropy loss. Further-

more, evaluation is performed on a dataset extracted from 49 colonoscopy videos.

To enhance object localization accuracy, the training process incorporates the GIoU

loss [84]. It exhibits notable advantages over alternative localization loss functions.

It excels in providing a more precise and informative assessment of the localization

quality. Unlike conventional losses like Mean Squared Error (MSE) [165] or softmax

loss [166], GIoU loss considers the predicted bounding box’s coverage and overlap with

the ground-truth box, accounting for both the intersecting and enclosing areas. This

comprehensive approach renders GIoU loss more resilient to object size variations and

aspect ratio variations. Additionally, GIoU loss effectively penalizes inaccurate predic-

tions, promoting enhanced localization accuracy. GIoU loss is also adept at handling

scenarios involving overlapping or crowded objects, where conventional losses may en-

counter challenges. By evaluating the intersection and union of bounding boxes, it of-

fers a more comprehensive assessment of localization performance. It has been proved



3.4. CONTRIBUTIONS 53

that Fast R-CNN [167] trained by GIoU loss achieved a higher localization accuracy than

other loss functions [84].

As for the data imbalance problem, the Gaussian affinity loss [85] is added to the

proposed loss function. It offers distinct advantages compared to other methods for

addressing the data imbalance problem in deep learning. One key advantage is its

ability to handle data imbalance without requiring explicit re-sampling or weighting

schemes. By modeling the relationships between samples using Gaussian affinity, this

loss function can effectively capture the inherent structure and distribution of the data,

thus promoting better discrimination between minority and majority classes. Gaussian

affinity loss also introduces a soft margin for decision boundaries, allowing for more

flexible and smooth classification. This property enables the model to assign appropriate

probabilities to samples, improving generalization and better calibration. Moreover, it

encourages the clustering of samples within each class, facilitating better intra-class

compactness and inter-class separability. These advantageous features make Gaussian

affinity loss a promising solution for handling data imbalance in medical images.

While the GIoU loss has been previously utilized in various detection and localiza-

tion methodologies, its combination with the Gaussian affinity represents a novel and

promising approach, particularly when applied within the YOLOv3 framework. This

innovative fusion of the GIoU loss and the Gaussian affinity has the potential to unlock

additional benefits and advancements in the context of YOLOv3, leading to improved

performance and enhanced capabilities in detection and localization tasks. By leverag-

ing the complementary strengths of these two loss components, the proposed approach

aims to exploit the synergistic advantages and achieve superior results in terms of accu-

racy and effectiveness.

In summary, the main innovation points can be summarized in threefold.

1. The novelty of this research lies in the integration of two distinct loss functions,
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namely the GIoU loss and the Gaussian affinity loss. By combining these two

loss functions, improvements in both detection and localization accuracy can be

achieved. The proposed method adopts a two-step training approach, where the

two loss functions are combined within a single training process. To implement

these novel loss functions in the YOLOv3 framework, a single-layer perception

is introduced. This novel combination of loss functions and the incorporation

of a single-layer perception in YOLOv3 constitute the key contributions of this

research, leading to enhanced performance in terms of both detection and local-

ization accuracy.

2. Designing a novel architecture with YOLOv3 and a single-layer perceptron: To im-

plement the proposed method, the YOLOv3 architecture is used as the backbone,

which has not been done before for perforation detection and localization from

colonoscopy images. In addition, a single-layer perceptron is introduced after the

YOLOv3 to classify each detection region of an image as one image.

3. Experimental evaluation on a new dataset: A new dataset extracted from 49

colonoscopy videos is created for evaluation, which is the first dataset of its kind.

The proposed method is evaluated on this dataset to show its efficiencies.

3.5 Proposed method

3.5.1 Overview

In this chapter, a novel training method for the YOLOv3 [83] to detect and localize per-

foration is proposed. The proposed method uses the same architecture with YOLOv3

to predict the location, object score, and class scores from an input image I. The
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Figure 3.3: Overview of the proposed method for perforation detection and localization
using the YOLOv3 architecture as the backbone and a single-layer perceptron for output
object score. The architecture is trained using a combination of GIoU and Gaussian
affinity losses.

trained model of the proposed method follows the same prediction step of the origi-

nal YOLOv3 [83]. However, in the training step of the proposed method, a different

loss function is proposed to train the YOLOv3. Concretely, the Generalized Intersection

over Union (GIoU) loss and Gaussian affinity loss are introduced in addition to the orig-

inal object loss and class loss to calculate the proposed loss function. Figure 3.3 shows

the overview of the proposed method. The proposed method combines the YOLOv3,
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Figure 3.4: Structure of the YOLOv3. In the figure, numbers above and below square
boxes represent the spatial resolutions and number of filters, respectively. Numbers
above the upsampling block represent its target size. ‘Res ×1’ means one residual unit.

GIoU and Gaussian affinity loss functions. This section introduces these methods and

the proposed training method, respectively.

3.5.2 Object detection and localization method: YOLOv3

Architecture

The architecture of YOLOv3 is illustrated in Fig. 3.4 [83]. It comprises feature-extraction

and prediction parts. Inside YOLOv3, DarkNet53 extracts features of an RGB three-

channel image I ∈ [0, 255]H×W×3 for its prediction. In the processing of the YOLOv3,

an input image I is divided into Si × Si regions at three scales, where i = 1, 2, 3 are the

indices of these scales. These regions are referred to as cells. YOLOv3 outputs B object

candidates for three scales in each cell. Thus, it outputs tensors Ti ∈ RSi×Si×B(4+1+C)(i =

1, 2, 3) that contain object locations txijk
, tyijk , twijk

, thijk
, object scores toijk , and class

scores tcijkl for j = 1, 2, ..., Si × Si, k = 1, 2, ..., B, and l = 1, ..., C.
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Next, post-processing is applied to the output tensors Ti, i = 1, 2, 3 for object candi-

dates prediction. By using elements in the output tensors, YOLOv3 predicts object scores

σ(toijk), class scores σ(tcijkl), and bounding boxes consisting of a center point (bxijk
, byijk),

a width bwijk
, and a height bhijk

, for i = 1, 2, 3, j = 1, 2, ..., Si × Si, k = 1, 2, ..., B, and

l = 1, ..., C. The dimension clusters from the ground truths are defined as anchors to

predict the bounding box location. The YOLOv3 uses grid-cell coordinates (gxij
, gyij),

which express the grid-corner of the j-th cell in the i-th scale, by defining the top left

corner of I as the origin grid-cell coordinate. The width pwik
and height phik

of the k-th

anchor of the i-th scale were predefined. By using predicted object coordinates, the

YOLOv3 outputs a bounding box by

bxijk
= σ(txijk

) + gxij
, (3.1)

byijk = σ(tyijk) + gyij , (3.2)

bwijk
= pwik

etwijk , (3.3)

bhijk
= phik

ethijk , (3.4)

where e is Napier’s constant, and σ(·) is sigmoid function. The YOLOv3 further predicts

the object score σ(toijk) and class scores σ(tcijkl) for the bounding box using logistic

regression, to decide whether an object exists and classify the object of the l-th class,

respectively. By expressing all the parameters of the YOLOv3 as a parameter vector θ,

it can be defined as a function f(I;θ) that outputs Si × Si × B bounding boxes, object

scores, and class scores for each scale.
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Prediction

The YOLOv3 selects objects from all predicted bounding boxes in the post-processing

through its prediction step. In the prediction step, it first applies thresholding of scores

γ = σ(toijk)σ(tcijkl) by a hyperparameter τ to the predicted bounding box. Here, In-

tersection over Union (IoU) IoU(R,R∗) = |R∩R∗|
|R∪R∗| is introduced between a predicted

region R and a ground truth R∗, where |·| expresses the number of pixels in a region.

The YOLOv3 uses the Non-Maximal Suppression (NMS) method [168] to remove ex-

cessively overlapped boxes to select the best box for the object. It calculates the IoU

between all predicted bounding boxes for the same target object in three scales, and re-

moves one bounding box when the IoU is greater than a threshold. Here, the threshold

is set as 0.5. Finally, the YOLOv3 outputs selected bounding boxes with object scores

and category scores. For each output bounding box, its localization is re-scaled from the

grid coordinate into the coordinate of the input image I.

Training

For an input image I, the YOLOv3 uses a training step with different post-processing

from that of the prediction step. By using the output tensors Ti, i = 1, 2, 3, the YOLOv3

first applies a threshold η to select bounding boxes that have higher object scores than

η. Furthermore, the YOLOv3 finds the best location of each object by calculating IoU

between a predicted region and a ground-truth region. The function 1
obj
ijk = 1 when

the predicted bounding box is the best bounding box for an object, otherwise, 1obj
ijk = 0.

Furthermore, 1noobj
ijk = 1 − 1

obj
ijk . The YOLOv3 trains the architecture through a loss

function composed of three different losses. By using ground truth t∗xijk
, t∗yijk , t∗wijk

, and
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t∗hijk
, the box loss is defined as

LB(tx, t
∗
x, ty, t

∗
y, tw, t

∗
w, th, t

∗
h)

=
3∑

i=1

S2
i∑

j=1

B∑
k=1

1
obj
ijk

( ∣∣∣txijk
− t∗xijk

∣∣∣2 + ∣∣∣tyijk − t∗yijk

∣∣∣2 + ∣∣∣twijk
− t∗wijk

∣∣∣2 + ∣∣∣thijk
− t∗hijk

∣∣∣2),
(3.5)

to evaluate the difference between a predicted box and a ground-truth box. Next, object

loss evaluates the difference between the object score and the probability of the object

existing in the box. The object loss is defined as

LH (σ(to)) =−
3∑

i=1

S2
i∑

j=1

B∑
k=1

(
1
obj
ijk log(σ(toijk))− 1

noobj
ijk log(1− σ(toijk))

)
. (3.6)

Finally, class loss evaluates the cross-entropy error between the likelihood of the pre-

dicted and the ground-truth classes. By using the ground truth t∗cijkl, the class loss is

defined as

LC(tc, t
∗
c) =−

3∑
i=1

S2
i∑

j=1

B∑
k=1

C∑
l=1

1
obj
ijk

(
t∗cijkl log(σ(tcijkl))− (1− t∗cijkl) log((1− σ(tcijkl))

)
.

(3.7)

By using the box loss, object loss, and class loss of input I, the YOLOv3 loss functional

can be defined as

L (f(I;θ)) = αLB(tx, t
∗
x, ty, t

∗
y, tw, t

∗
w, th, t

∗
h) + LH (σ(to)) + LC(tc, t

∗
c), (3.8)

where the parameters are set as S1 = 7, S2 = 14, S3 = 28, B = 3, C = 2, η = 0.5, and α is

the hyperparameter of the box loss to prevent model instability. By using a training set
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{In}Nn=1 with ground truths, the model optimizes θ by solving

arg min
θ

E
n
[L (f(In;θ))] . (3.9)

3.5.3 Generalized Intersection over Union (GIoU)

In the proposed method, GIoU [84] is introduced to measure the difference between

predicted and ground-truth bounding boxes based on IoU. The GIoU loss takes into

account not only the overlap between the boxes but also their differences in size, shape,

and position. This means that it penalizes inaccurate predictions that deviate from the

ground-truth in terms of these factors, leading to more precise localization of the object

of interest. Compared to other loss functions used in object detection tasks, the GIoU

loss has been shown to achieve higher localization accuracy, making it a popular choice

for improving object detection performance. Therefore, by incorporating the GIoU loss

in the training process, the proposed method can leverage this strength to improve the

localization accuracy of perforation detection in colonoscopy images.

IoU is a practical evaluation metric to evaluate the overlap rate between a detected

region R and the ground-truth region R∗. However, it cannot be used as a loss function

because it is infeasible to measure the difference when R and R∗ are not overlapped.

GIoU measures the difference between two non-overlapping bounding boxes by defining

the smallest region S(R,R∗) that contains both R and R∗. For an input image I, by using

S(R,R∗), GIoU(R,R∗) can be defined as

GIoU(R,R∗) = IoU(R,R∗)− |R ∪R∗/S(R,R∗)|
|S(R,R∗)|

, (3.10)

which is able to measure the difference between R and R∗ for optimization. Figure 3.5

shows the difference between GIoU loss and IoU calculation in three examples.
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Figure 3.5: Three examples to calculate GIoU loss of a bounding box and a ground-truth
box. The corresponding formulas show the difference between the IoU, GIoU, and GIoU
loss.

3.5.4 Gaussian affinity loss

Gaussian affinity loss [85] is introduced to improve the imbalance problem between

perforation and non-perforation classes. It can help address the problem of data imbal-

ance in object detection tasks by enforcing a margin between the predicted likelihood

and the ground-truth label. In classification problems, class imbalance can occur when

there are significantly more examples of one class than another. This can cause the

model to be biased towards the majority class and may result in poor classification ac-

curacy for the minority class. In object detection, the Gaussian affinity loss computes the

similarity between the predicted likelihood and the ground-truth label using a Gaussian

kernel. The width of the kernel is set based on the number of examples in the minority

class, with a larger width used for classes with fewer examples. By using a wider kernel
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for the minority class, the model is penalized more for misclassifying examples from the

minority class, thus improving the classification accuracy for that class.

The original Gaussian affinity loss has been proposed for training Convolutional

Neural Networks (CNNs) in image classification. Setting pairs (Ii, yi) of an input image

Ii ∈ [0, 255]H×W×3 and its class index yi ∈ {1, 2, . . . , C} for i = 1, 2, . . . , N , the last layer

but the output layer of CNN gives a feature vector fi ∈ RD of Ii. At the output layer of a

CNN, an activation function is applied such that the softmax function gives a likelihood

of input for the j-th class by using an inner product of a weight vector wj ∈ RD and fi

for j = 1, 2, . . . , C. Instead of likelihoods to each class, a Gaussian similarity for the j-th

class is defined as

s(fi,wj) = exp

(
−∥fi −wj∥2

ρ

)
, (3.11)

where ρ is a hyperparameter. As written in Ref. [85], the typical advantages of using

this Gaussian similarity for the training of a CNN are the followings: (i) Enhancing mar-

gin maximizing among different class clusters, (ii) Enhancing intra-class compactness,

and (iii) Enabling simultaneous classification and clustering in a single object function.

Furthermore, by using several weight vectors {wj,m}Mm=1 for each class, an extended

Gaussian similarity is given by

s(fi, {wj,m}Mm=1) = max
m

{
exp

(
−∥fi −wj,m∥2

ρ

)}
, (3.12)

for multi-centered learning. Here, M = 2 in this work.

By using the Gaussian similarity, the max-margin loss is given by

LM

(
fi, {wj,m}C,M

j,m=1

)
=

C∑
j

max
{
0, λ+ s

(
fi, {wj,m}Mm=1

)
− s

(
fi, {wyi,m}Mm=1

)}
for j ̸= yi,

(3.13)
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where a hyperparameter λ enforces the margin among classes.

Setting enter vectors vj =
1
M

∑M
m=1 wj,m for j = 1, 2, . . . , C,

µ =
2

C2 − C

∑
j<j′

∥vj − vj′∥2 , (3.14)

to be the average distance among all classes in the feature space for j, j′ ∈ {1, 2, . . . , C}

with a condition j ̸= j′. Then, a diversity regularizer is defined as

R
(
{wj,m}C,M

j,m=1

)
= E

[(
∥vj − vj′∥2 − µ

)2]
s.t. j < j′, (3.15)

that ensure equidistant weight vectors in a feature space.

By using the max-margin loss and the diversity regularizer, the Gaussian affinity loss

is defined as

LM

(
fi, {wj,m}C,M

j,m=1

)
+R

(
{wj,m}C,M

j,m=1

)
. (3.16)

3.5.5 Proposed training method

In the training step, a two step training method is proposed for a model with a Single

Layer Perceptron (SLP) added after the YOLOv3 architecture. The SLP is only used

in the training steps to calculate the Gaussian affinity loss, but not in the prediction

step. Figure 3.6 shows the architecture of the SLP. All object scores are extracted from

the output tensors Ti, i = 1, 2, 3. By using the object score toijk , the input vector of

the SLP is defined as pijk = [toijk,−toijk]
⊤. The output layer of the SLP contains two

parameters. By expressing all parameters in the SLP as ω, the SLP is defined as a

function g(I;ω). For output feature vectors fijk = g(I;ω), weight vectors wj,m are

defined for j = 1, 2, ...C,m = 1, 2. The first step of training is to calculate the Gaussian

affinity loss in the SLP to optimize the weight vectors. The updated wj,m is used to

calculate the affinity loss for the second training step. The second step of training is to
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Figure 3.6: Architecture of additional single layer perception for Gaussian affinity loss.

calculate the loss function of YOLOv3 using the Gaussian affinity loss with the updated

wj,m and the GIoU loss to optimize the θ.

GIoU loss For an input image I, Rijk is a region represented with a center point

[bxijk
, byijk ]

⊤, width bwijk
, and height bhijk

. By using the ground-truth region R∗
ijk of Rijk,

the GIoU loss is defined as

LG(R,R∗) =
3∑

i=1

S2
i∑

j=1

B∑
k=1

1
obj
ijk

{
1−GIoU(Rijk, R

∗
ijk)
}
. (3.17)

Gaussian affinity loss For an input image I, by using the wj,m in the SLP, the Gaussian

affinity loss is defined as

LA(fijk, {wj,m}C,M
j,m=1) =

3∑
i=1

S2
i∑

j=1

B∑
k=1

1
obj
ijkLM(fijk, {wj,m}C,M

j,m=1) +R({wj,m}C,M
j,m=1),

(3.18)

where parameters are set as ρ = 10 and λ = 0.75. By using the loss in Eq. (3.18), the

SLP and the YOLOv3 are trained.
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Table 3.1: Training steps for the proposed method.

Training steps Object functional Optimized parameters Freeze parameters
First step arg min

ω
E
n
[LSLP(f(In;ω))] ω θ

Second step arg min
θ

E
n
[LYOLO(f(In;θ))] θ ω

Loss function in two steps Table 3.1 shows two training steps of the proposed method.

In the first training step, the proposed method calculates the loss function

LSLP (g(I;ω)) = LA

(
fijk, {wj,m}C,M

j,m=1

)
, (3.19)

for the SLP. In the second step of the proposed method, the loss is calculated using

Eqs. (3.6), (3.7), (3.17), and (3.18) for YOLOv3. In Eq. (3.8), box loss, object loss, and

class loss can be independently replaced by other loss functions. By using Eqs. (3.6),

(3.7), (3.17), and (3.18), the Gaussian affinity and GIoU-based losses can be defined as

LYOLO(f(I;θ)) = β1LG(R,R∗) + β2

(
LA

(
fijk, {wj,m}C,M

j,m=1

)
+ LH (σ(to))

)
+ LC(tc, t

∗
c),

(3.20)

where δ1 and δ2 are the hyperparameters for preventing model instability. Here, the box

loss in Eq. (3.8) is replaced by the GIoU loss. Furthermore, the Gaussian affinity loss is

added to it.

3.6 Experiments and results

3.6.1 Dataset

The source of the dataset is 49 colonoscopy videos of 17 patients in the digestive cen-

ter of the Showa University Northern Yokohama Hospital. To protect the participants’
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safety and human rights, this clinical research has been reviewed by the Showa Univer-

sity Research Ethics Review Committee (19h049) and Nagoya University Ethics Review

Committee (357, hc21-05). Expert endoscopists annotated frames with perforation in

these videos. Based on these annotations, perforation and non-perforation frames were

extracted from colonoscopy videos by 30 and 1 fps, respectively, due to the imbalance

between the number of them. All the extracted images were resized to 256 × 256 pix-

els with the Lanczos interpolation method. Among all annotated images, an engineer

manually annotated the perforations with bounding boxes in 2, 599 perforation frames.

Such images annotated with bounding boxes are called position-annotated images here-

after. All the resized images were splitted into training, validation, and test data without

patients’ duplication. The test data were further split into the detection and localiza-

tion test data, respectively, for the evaluation of the detection and localization results.

Training, validation, and localization test data only contain positions annotated and

non-perforation images. The detection test data contain a large number of perforation

images without position annotation. All images in the training, validation, and test data

were split into four folds for cross-validation experiments without patients’ duplication.

3.6.2 Implementation details

The presented method was implemented by using the PyTorch framework [169]. By

using the proposed loss functions, the batch size was set to 32, used Adam [170] as

optimizer function, and set the initial learning rate to be 1.0 × 10−3. YOLOv3 was

trained for 300 epochs on NVIDIA Tesla V100 PCIe 32 GB with CUDA 10.0. For compar-

ison, ResNet-50 [143] and DenseNet [171] were implemented for perforation detection,

and Fast R-CNN [167], RetinaNet [172], Gaussian-YOLOv3 [156], and YOLOv4 [155]

were implemented for perforation detection and localization. Furthermore, the MSE

loss [165] and the softmax loss [166] were used to replace the object loss in Eq. (3.8)
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to train the YOLOv3 with the same setting with the proposed method for comparison.

Fine-tuning was applied to the weights of the pre-trained backbone [83] for YOLOv3.

All parameters in the SLP were randomly initialized. The last training model of all

methods was selected as the model for evaluation.

3.6.3 Detection and localization results

Quantitative evaluations Different evaluation terms were used for the evaluation of

detection and localization results. YOLOv3 predicts N bounding boxes and object scores

for a colonoscopy image. This image is defined as a predicted positive image when

N > 1 and one object score is more significant than a threshold τp = 0.5, and a predicted

negative image, otherwise. Accuracy, sensitivity, F1-score, and Area Under the Curve

(AUC) were used to measure the detection accuracy of all trained models for evaluating

the detection performance. To evaluate perforations localization performance, an IoU

threshold τIoU = 0.5 was set. A true positive image Itp is detected when IoU(R,R∗) ≥ τIoU

and Itp is classified as a predicted positive image, where R and R∗ are the predicted

region and its ground-truth region in this image. On the other hand, a false positive

image Ifp is detected when IoU(R,R∗) < τIoU and Ifp is classified as a predicted positive

image. On the contrary, a false negative image Ifn is detected when IoU(R,R∗) ≥ τIoU

and Ifn is classified as a predicted negative image. Mean Average Precision (mAP) [173]

is used to evaluate the localization accuracy of all methods. It evaluates a model’s

classification and localization accuracy by utilizing precision and recall of test results.

Table 3.2 shows the performance of the proposed method and other object detection

and localization models. Table 3.3 compares test results of YOLOv3 trained by different

losses.

Student’s t-test [174] was used to verify whether the results of the proposed method

are statistically significant. Table 3.2 reported that the trained YOLOv3 and the trained
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Table 3.2: Comparison with different methods on the created dataset. Bold numbers
show the best score of each metric.

Methods Accuracy Sensitivity F1-score AUC mAP [%]
ResNet [143] 0.661 0.691 0.476 0.730 --
DenseNet [171] 0.691 0.308 0.307 0.663 --
Fast R-CNN [167] 0.857 0.567 0.639 0.718 56.8
RetinaNet-50 [172] 0.738 0.328 0.358 0.725 57.5
YOLOv4 [155] 0.724 0.652 0.513 0.703 73.8
Gaussian-YOLO [156] 0.626 0.287 0.255 0.668 62.2
YOLOv3 [83] 0.835 0.459 0.554 0.834 74.6
Proposed method 0.881 0.713 0.727 0.869 87.9

Table 3.3: Comparison with YOLOv3 trained by different loss functions. Bold numbers
show the best score of each metric.

Loss functions Accuracy Sensitivity F1-score AUC mAP [%]
Original loss 0.835 0.459 0.554 0.834 74.6
MSE [165] +αLB + LC 0.835 0.364 0.496 0.778 73.2
softmax [166] +αLB + LC 0.866 0.459 0.604 0.853 69.8
MSE [165] +αLG + LC 0.846 0.389 0.529 0.788 83.5
softmax [166] +αLG + LC 0.875 0.490 0.636 0.859 80.9
Proposed method 0.881 0.713 0.727 0.869 87.9

Fast R-CNN have the best localization and detection performance, respectively, among

all methods except the proposed method. Thus, the YOLOv3 [83] and Fast R-CNN [167]

were used for comparisons in the Student’s t-test. Table 3.4 shows the accuracy and mAP

of the proposed method, YOLOv3, and Fast R-CNN of four folds cross-validation on the

created dataset. Figure 3.7 shows the distribution of the accuracy and mAP of methods

in Table 3.4. For the Student’s t-test, the accuracy and mAP of each fold were used as a

sample. In the pair between the proposed method and the trained YOLOv3, the p-values
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Table 3.4: Performances of cross-validation experiments. Bold numbers show the best
score of each metric.

Methods Fold 1 Fold 2 Fold 3 Fold 4
accuracy mAP [%] accuracy mAP [%] accuracy mAP [%] accuracy mAP [%]

Fast R-CNN [167] 0.857 56.8 0.832 53.9 0.771 49.9 0.739 45.4
YOLOv3 [83] 0.835 74.6 0.831 75.2 0.754 68.7 0.788 71.2
Proposed method 0.881 87.9 0.884 84.0 0.798 76.3 0.813 78.1

pay = 0.0029 and pmy = 0.0039 were computed for accuracy and mAP, respectively, of

the cross-validation experiments. In the other pair between the proposed method and

the trained Fast R-CNN, the p-values paf = 0.0163 and pmf
= 0.000096 were calculated

for accuracy and mAP, respectively. The p-values of the two pairs are all shown to be

lower than 0.05. Thus, the null hypothesis can be rejected, and there are significant

differences between the proposed method and the other two methods on perforation

detection and localization. Table 3.4 shows that the proposed method has the best

performance in all experiments, demonstrating that the proposed method’s results are

statistically significant on perforation detection and localization.

To evaluate the detection speed of the presented method, a 30 second-long video

was created showing three new perforations appearing with 30 fps. Table 3.5 illustrates

how long it took for models to detect a newly appearing perforation.

Qualitative evaluations Figure 3.8 visualizes part of the perforation detection and lo-

calization results on the created dataset, Fast R-CNN [167], RetinaNet [172], YOLOv3 [83],

YOLOv4 [155] and the proposed method are applied for comparison.



70 CHAPTER 3. PERFORATION DETECTION

(a) Distribution of the accuracy of methods in Table 3.4

(b) Distribution of the mAP of methods in Table 3.4

Figure 3.7: Box plot of the results of four folds cross-validation experiments.
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Table 3.5: Detection speed of different methods. The numbers in the table report the
frame when the corresponding method detects the perforation.

Methods First perforation Second perforation Third perforation
Fast R-CNN [167] 1 3 1
RetinaNet-50 [172] 3 3 2
YOLOv4 [155] 2 4 3
Gaussian-YOLO [156] 4 5 3
YOLOv3 [83] 3 3 1
Proposed method 1 3 1

3.6.4 Ablation study

Trade-off parameters β1 and β2 The influence of β1 and β2 that are used to balance

the box loss and object loss in Eq. (3.20) were investigated. Figure 3.9 shows the

accuracy and mAP when YOLOv3 was trained by the proposed loss functions using

different β1 and β2. Figure 3.9 demonstrates that the model performs best on the created

dataset when β1 = 0.5 and β2 = 1. Thus, these values were selected for all loss functions

in the YOLOv3 training.

Comparison with losses The influence of two-component in the proposed loss func-

tions were investigated. The original loss functions of YOLOv3 were used as the base-

line, and different combinations of the proposed loss function were compared. Table 3.6

compares the performance of YOLOv3 trained by different loss functions.
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Groundtruth FastR-CNN RetinaNet YOLOv3 YOLOv4 Proposed method

Figure 3.8: Qualitative results of different methods. The top of each column in the
figure is the method for detecting and localizing this column. Each box in ground-truth
images indicates a perforation, and all boxes in the other columns show all perforations
detected and localized by the corresponding methods.
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(a) Accuracy and mAP with different β1 when β2 = 1
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(b) Accuracy and mAP with different β2 when β1 = 0.5

Figure 3.9: Comparison accuracy and mAP of YOLOv3 trained by different β1 and β2.
In the figures, 0 in the results axis means gradient vanish or explosion occurred in the
training process. The y-axis stand for values of accuracy or mAP.
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Table 3.6: Ablation study of different loss function combinations. Bold numbers show
the best score of each metric. Numbers after plus mark shows the difference between
the proposed method and the YOLOv3 of each metric.

Methods Accuracy Sensitivity F1-score AUC mAP [%]
YOLOv3 [83] 0.835 0.459 0.554 0.834 74.6
YOLOv3+affinity 0.868 0.694 0.701 0.862 72.9
YOLOv3+GIOU 0.856 0.474 0.595 0.845 87.2
Proposed method 0.881(+0.046) 0.713(+0.254) 0.727(+0.173) 0.869(+0.035) 87.9(+13.3)

3.7 Discussions

3.7.1 Justification for the viability of the proposed method

In this research, a novel method was proposed to improve the detection of perfora-

tions and localization accuracy in colonoscopy images. Experimental results indicate

that the proposed method yields accurate perforation detection and localization, even

with limited training data. The proposed method employs a combination of Generalized

Intersection over Union (GIoU) loss and Gaussian affinity loss in the training process.

This combination is motivated by the fact that these two loss functions complement

each other in addressing different aspects of the object detection and localization task,

leading to better performance. Specifically, GIoU loss is utilized for bounding box re-

gression and measures the similarity between the predicted and ground-truth boxes,

which considers differences in size, shape, and position. It has been demonstrated to

achieve higher localization accuracy than other loss functions in object detection tasks.

On the other hand, Gaussian affinity loss is a hybrid loss function that measures the

similarity between the predicted likelihood and the ground-truth class label, which en-

forces a margin between them to mitigate the effects of class imbalance. In object

detection tasks, Gaussian affinity loss has significantly improved classification accuracy

when dealing with imbalanced classification problems. By combining both loss func-
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tions, the proposed method can take advantage of each strength to improve the overall

accuracy of perforation detection and localization in colonoscopy images.

The integration of the GIoU loss with the Gaussian affinity introduces a novel and

promising methodology, especially when deployed in conjunction with the YOLOv3

framework. This amalgamation of the GIoU loss and the Gaussian affinity opens up

new avenues for advancing detection and localization techniques, offering the potential

for improved performance and heightened capabilities within the context of YOLOv3.

By capitalizing on the complementary attributes of these two loss components, the pro-

posed approach strives to leverage their synergistic advantages and attain superior re-

sults in terms of accuracy and effectiveness. This innovative combination holds promise

for enhancing the overall quality and efficacy of detection and localization tasks.

3.7.2 Results analysis

Table 3.2 reported that the proposed method produced the highest accuracy, sensitiv-

ity, F1-score, Area Under the Curve (AUC) result, and mean Average Precision (mAP)

among all detection and localization methods. Compared with the original YOLOv3, the

proposed method improved 0.254 sensitivity and 13.3% mAP. Table 3.2 illustrated that

the presented loss function could improve the perforation detection and localization

ability of the YOLOv3 by a large margin. Table 3.3 compared the performances of the

architecture of the YOLOv3 trained by different object losses. The combination of the

Gaussian affinity loss and original object loss could significantly improve the detection

accuracy and sensitivity of the YOLOv3. Figure 3.8 showed that the proposed method

could precisely detect and locate the perforation in many challenging frames without

multiple detections. Table 3.5 showed that the proposed method had the fastest detec-

tion speed among all methods, it could detect all three perforations in 3 frames with

30 fps, demonstrating that the proposed method could detect perforations in 0.1 sec.
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Table 3.6 demonstrated every component in GIoU and Gaussian affinity loss function

provided good influences on the YOLOv3. The experiment results demonstrated that

the proposed method could detect and localize perforations quickly and precisely, it

could detect and localize perforations with 0.881 accuracy to prevent physicians from

missing or enlarging perforations in Endoscopic Submucosal Dissection (ESD). Further-

more, with 0.1 sec detection speed, it could be used in real-time.

3.7.3 Implications

The accurate and rapid detection and localization of perforations during ESD proce-

dures are crucial for ensuring patient safety and positive treatment outcomes. Failure

to promptly detect or misdiagnose a perforation can lead to serious complications, such

as peritonitis, abscess formation, and sepsis. Thus, improving the accuracy of perfo-

ration detection and localization is of paramount importance in clinical practice. The

proposed method, which combines the GIoU and Gaussian affinity loss functions, en-

ables the construction of a computer-aided intervention system capable of accurately

and quickly detecting and localizing perforations during ESD procedures. This system

can play a crucial role in enhancing computer-aided endoscopy procedures, enabling

physicians to make more informed decisions regarding patient care.

3.8 Summary

This chapter aims to address the research question of how real-time detection technol-

ogy can be developed and applied to acute diseases within the context of computer-

aided endoscopy systems. Specifically, the focus is on the detection and localization of

perforations during Endoscopic Submucosal Dissection (ESD) procedures. Perforations

can have severe consequences if left undetected, but their real-time detection poses
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challenges. Thus, the primary objective of this research was to develop a computer-

aided intervention system to assist physicians from missing acute perforations in ESD.

To achieve this objective, a two-step optimization process using a YOLOv3 model was

proposed, which utilized Generalized Intersection over Union (GIoU) and Gaussian

affinity loss functions to automate the detection and localization of perforations from

colonoscopy videos. The proposed loss functions combined the object and class loss

functions of the original YOLOv3’s objective function. Images extracted from colonoscopy

videos were collected to create a dataset for the experiment. The proposed method

achieved good perforation detection and localization performance, even with limited

samples, compared to other methods. The experimental results demonstrated that the

proposed method could create an accurate and fast computer-aided intervention sys-

tem to support physicians during ESD procedures. The proposed computer-aided in-

tervention system could be highly beneficial for the development of computer-aided

endoscopy systems.
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Chapter 4

Early-stage Achalasia Diagnosis: A

Serial Multi-scale Network for

Achalasia Image Classification

4.1 Overview

This chapter engages in a scholarly exploration of the research question: How can

computer-aided endoscopy systems be extended to address diseases that lack clear le-

sions? In response to this query, the chapter introduces a research topic focused on the

diagnosis of esophageal achalasia (achalasia). Achalasia [48] is a primary esophageal

motor disorder characterized by insufficient relaxation of the Lower Esophageal Sphinc-

ter (LES) and the absence of esophageal peristalsis, as verified through manometric

evaluation [49, 175]. Due to the propensity of patients with achalasia to present

with atypical symptoms, the accurate diagnosis is frequently delayed by 2–3 years

from the onset of symptoms [57]. Consequently, achalasia serves as an apt exempli-

fication of a disease lacking clear lesions. Particularly in the early stages of achala-

79
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sia, both esophagoscopy and radiology are only capable of identifying approximately

half or fewer of patients with early-stage achalasia [57]. Hence, the development of a

Computer-Aided Diagnosis (CAD) system is urgently needed to facilitate the identifica-

tion of early-stage achalasia by physicians. In light of these considerations, this chapter

presents a method that demonstrates the efficacy of computer-aided endoscopy systems

in diagnosing diseases without clear lesions.

This chapter introduces a method for early-stage achalasia diagnosis, a Serial Multi-

scale Network (SMN). The proposed method contains two main components, a Dense-

pooling Net, and a Serial Multi-scale Dilated (SMD) encoder. The Dense-pooling Net

is constructed using a Convolution Neural Network (CNN) with dense mixed-pooling

connections to extract features from esophagoscopy images. The SMD encoder is de-

signed based on a dilated encoder composed of four residual-style dilated convolution

blocks. The dilated encoder and spatial attention modules are combined to focus on ex-

tracting features needed from esophagoscopy images. The proposed method is trained

and evaluated with a dataset that was extracted from several esophagoscopy videos of

achalasia patients. Furthermore, a real-time computer-aided achalasia diagnosis sys-

tem is developed with the trained network. This chapter is based on a paper entitled

“Oesophagus Achalasia Diagnosis from Esophagoscopy Based on a Serial Multi-scale

Network” [176] published in the Computer Methods in Biomechanics and Biomedical

Engineering: Imaging & Visualization in 2023.

4.2 Purpose

As introduced in Sections 1.2.3 and 1.3.2, regardless of the stage at which achalasia is

diagnosed, its treatment is the same as PerOral Endoscopic Myotomy (POEM) [177].

Thus, early diagnosis can not reduce the cost of the treatment. However, diagnosing

achalasia earlier is very meaningful, since it carries a risk of complications, including
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(a) Functional stenosis of the 
esophagogastric junction

(b) Wrapping around the 
esophagogastric junction 

(c) Abnormal contraction of the 
esophageal body 

(d) Mucosal thickening and 
whitish change

(e) Dilation of the esophageal lumen (f) Liquid and/or food remnant

Figure 4.1: Endoscopic findings in esophageal achalasia. [7]

aspiration pneumonia and oesophageal cancer [178]. Early diagnosis of achalasia can

also prevent esophageal cancer occurrence, and reduce the risk of POEM complications.

About 65% to 90% of patients can be effectively treated with Pneumatic Dilation (PD),

Heller esophagotomy, or POEM once it is correctly diagnosised [59, 179, 180].

According to the Japanese guidelines for esophageal achalasia [7], the endoscopic

evaluation of early-stage achalasia involves the assessment of specific findings, which

include: (a) Functional stenosis of the EsophagoGastric Junction (EGJ), (b) Wrapping

around EGJ, (c) Abnormal contraction of the esophageal body, (d) Mucosal thickening

and whitish change, (e) Dilation of the esophageal lumen, and (f) Liquid and/or food

remnant. Figure 4.1 shows the characteristics physicians use to diagnose early-stage
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Figure 4.2: CAD system that aids physicians in the diagnosis of achalasia. Specifically,
it provides physicians with a classification of each frame to facilitate diagnosis.

achalasia. According to the guidelines, achalasia diagnosis requires physicians to exer-

cise judgment based on multiple features, presenting a significant challenge. Therefore,

there is a demand for a CAD system to support physicians in identifying early-stage

achalasia by classifying each frame into achalasia or non-achalasia image. The purpose

of this research is to develop a method to classify achalasia images from esophagoscopy

images to implement a CAD system. Figure 4.2 describes the computer-aided diagnosis

system that this research aims to develop. This chapter presents a method for achalasia

image classification from esophagoscopy images.
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4.3 Related works

Deep learning has been widely used in Computer-Aided Diagnosis (CAD) through med-

ical images in recent years. Many deep learning methods, e.g., ConvMixer and Su-

pervised Contrastive [181, 182] have been proposed for cancer and bleeding diagno-

sis. However, achalasia does not have distinctive lesions, unlike cancer or bleeding.

Physicians distinguish achalasia from esophagoscopy images by observing abnormal

contraction and dilation of the esophageal body and lumen, respectively [183]. Mu-

cosal thickening, liquid or food remnant, and whitish change or pinstripe pattern are

also helpful in achalasia diagnosis [183]. Thus, a method that can capture multi-type

and multi-scale features is necessary for achalasia diagnosis. Since methods for cancer

and bleeding diagnosis are designed for detecting typical lesions, which locate in part

of esophagoscopy images, they may not capture multi-type and multi-scale features ob-

served in the entire esophagoscopy images, leading to a wrong diagnosis.

In recent years, several advanced deep learning architectures have emerged, focus-

ing on extracting multi-features and pushing the boundaries of representation learning.

One notable architecture is the U-Net [184], widely used in image segmentation tasks.

It features a U-shaped encoder-decoder structure with skip connections, allowing for the

extraction of both high-level and low-level features. However, U-Net may struggle with

capturing fine details and handling class imbalance in certain scenarios. Another power-

ful architecture is the Residual Neural Network (ResNet) [185], which introduced skip

connections to address the vanishing gradient problem. It has shown remarkable perfor-

mance in image classification, enabling the training of extremely deep networks. How-

ever, as the depth increases, ResNet can be more prone to overfitting, and training such

networks may require substantial computational resources. The Transformer [144],

originally designed for natural language processing, has also been successfully applied

to vision tasks with models like Vision Transformers (ViTs) [186]. ViTs have shown
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excellent performance in image recognition but may struggle with capturing spatial in-

formation, especially for tasks that require precise localization [186]. Additionally, they

typically require large amounts of training data to achieve optimal performance. While

these advanced deep learning architectures offer powerful multi-feature extraction ca-

pabilities, they come with trade-offs such as handling fine details, managing class im-

balance, overfitting, computational demands, and spatial understanding, which should

be carefully considered when applying them to specific tasks and datasets.

4.4 Contributions

This work proposes an automated classification method named Serial Multi-scale Net-

work (SMN) for achalasia diagnosis from esophagoscopy videos. The novelty of this

method is that it proposes a novel architecture that extracts multiple types and scale fea-

tures for achalasia diagnosis. The proposed network was trained with a private dataset

extracted from esophagoscopy videos collected from achalasia and non-achalasia pa-

tients. The proposed method and state-of-the-art image classification methods are quan-

titatively compared on this dataset. The diagnosis accuracy is experimentally evaluated

with 50 esophagoscopy videos. Furthermore, a CAD system using the proposed method

is implemented for real-time processing from esophagoscopy videos, which has been

used in clinical experiments. However, the experiment results can not be provided here

because of permission to publish clinical results is not obtained.

The proposed method contains two main components: a Dense-pooling Net and a

Serial Multi-scale Dilated (SMD) encoder. The Dense-pooling Net which is a Convo-

lution Neural Network (CNN) with dense mixed-pooling connections [187] is used to

extract feature maps from an esophagoscopy frame. Dense-pooling connections have

emerged as a robust mechanism in feature extraction architectures, showcasing notable

advantages over alternative methodologies. Notably, it facilitates seamless informa-
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tion propagation throughout the network by establishing direct connections between

all layers. Unlike conventional architectures incorporating skip connections or resid-

ual connections, dense-pooling connections enable the efficient flow of gradients and

features from earlier layers to subsequent ones. Consequently, this fosters improved

information flow, enabling the integration of low-level and high-level features across

diverse network depths. Moreover, dense-pooling connections enhance gradient flow

and alleviate the vanishing gradient problem by establishing multiple paths for gradi-

ent propagation. Consequently, training becomes more efficient and stable, potentially

leading to accelerated convergence and optimized network performance. Additionally,

dense-pooling connections promote feature reuse and facilitate the development of rich

and comprehensive feature representations. Since all layers are directly connected, each

layer can access and leverage features from preceding layers, facilitating the generation

of expressive and discriminative feature maps. This, in turn, can enhance the network’s

discriminative power and generalization capabilities. The Dense-pooling Net aims to

preserve the spatial resolution of features and more details of the esophageal.

Since achalasia diagnosis requires multi-scale feature detection, an SMD encoder is

proposed. It uses the dilated convolution [188] to generate features with multiple re-

ceptive fields outside the Dense-pooling Net. The dilated convolution can capture multi-

scale contextual information. By introducing dilated convolutions, which incorporate

gaps or skips between convolutional kernel elements, these networks can effectively ex-

pand the receptive field without sacrificing spatial resolution. This characteristic allows

them to capture both local and global contextual information, enabling the extraction

of features at multiple scales. Dilated convolutions further reduce the computational

cost by employing sparse sampling patterns, effectively increasing the receptive field

without a proportional increase in parameters. This makes dilated convolutional net-

works more computationally efficient compared to traditional convolutional networks

with larger kernels or pooling layers. Additionally, dilated convolutions preserve spatial
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information, which is particularly beneficial in tasks where precise localization is impor-

tant, such as object detection and segmentation. They can maintain fine-grained details

while simultaneously capturing global context, leading to more accurate predictions.

The SMD encoder also contains spatial attention modules [144, 189]. The spatial

attention module is a powerful component that enables selective focusing on informa-

tive spatial regions within an input feature map. By learning attention maps, where

higher weights are assigned to relevant regions and lower weights to less informative

regions, the spatial attention module effectively guides the network’s attention toward

important visual cues. This mechanism allows the model to concentrate its resources

on discriminative regions, resulting in improved feature representation and enhanced

overall performance. Furthermore, the spatial attention module can handle varying

spatial sizes and aspect ratios. It achieves this by adaptively resizing and reshaping the

attention maps to match the spatial dimensions of the input feature maps. This adap-

tive behavior ensures that the module can effectively capture spatial dependencies and

attend to relevant regions irrespective of size or aspect ratio. The spatial attention mod-

ule also enhances interpretability by highlighting the regions that contribute most to the

model’s predictions. This interpretability aspect helps understand the decision-making

process and provides valuable insights into the model’s reasoning. In the proposed

method, incorporating the spatial attention module in the SMD encoder enables the

classification of esophagoscopy images by selecting the most informative features from

different scales of features.

In short, the contributions can be summarized in three-fold:

1. Novel architecture for achalasia classification from esophagoscopy videos, which

includes a Dense-pooling Net and an SMD encoder to extract different textures

and scales of features from esophagoscopy images. The proposed method achieves

a good performance of achalasia diagnosis on both image and video datasets.
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Figure 4.3: Illustration of the proposed Serial Multi-scale Network (SMN).

2. Collection of image and video achalasia datasets from several esophagoscopy

videos to validate the proposed method. Implementation and comparison of mod-

ern data augmentation methods on the image dataset for achalasia classification.

3. Construction of a CAD system with the proposed method using the NVIDIA Jetson

Xavier NX Developer Kit [102]. Experiments reveal that the constructed CAD

system can process esophagoscopy video in real-time.

4.5 Proposed method

4.5.1 Overview

Here, a method called Serial Multi-scale Network (SMN) for classifying esophagoscopy

images is proposed. Figure 4.3 shows the illustration of the SMN. It consists of a Dense-

pooling Net, a Serial Multi-scale Dilated (SMD) encoder, and a classification part. The

classification part comprises a global average pooling layer and a fully connected layer,

which receives the output of the SMD encoder for calculating classification probabilities.
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The inputs of the SMN are esophagoscopy images extracted from esophagoscopy videos.

The outputs of the SMN are two probabilities that stand for achalasia and non-achalasia

of one input image, respectively.

4.5.2 Dense-pooling Net

A Convolutional Neural Network (CNN) with dense-pooling connections, which is called

Dense-pooling Net was proposed to extract multi-type and multi-scale features from the

input images. Dense-pooling connection is a type of connection in CNNs that have been

shown to improve performance in image classification tasks. It connects all previous

layers in a feedforward manner to the current layer, allowing the network to learn both

local and global features. In dense-pooling connections, the output feature maps of all

previous convolutional layers are concatenated and then passed through a pooling layer,

which reduces the spatial resolution of the feature maps. The resulting feature maps

are then passed to the next convolutional layer. For a dense-pooling layer, let X be an

input feature of size C ×H ×W , where C is the number of channels and H and W are

the height and width of the input, respectively. W1
m and bm are the weight matrix and

bias term for the m-th convolutional filter, respectively, and p is the number of filters in

the layer. The output of the dense-pooling layer is

Yp
i,j = maxm∈[0,p)((W

1
m)

TXi,j+m + bm), (4.1)

where i and j are the spatial coordinates of the output. The max operator computes

the maximum value of the convolutional filter outputs at each spatial location. By

incorporating dense-pooling connections into the network architecture, the network is

able to capture both local and global features, which can lead to better performance on

image classification tasks.

Figure 4.4 shows the architecture of the proposed Dense-pooling Net. In the pro-



4.5. PROPOSED METHOD 89

Mixed pooling (𝑥 × 𝑥)

𝑥 × 𝑥 average pooling

𝑥 × 𝑥 max pooling

1 × 1 convolution 

3 × 3 convolution 
+ batch normalization

Concatenate

Mixed pooling

2 × 2

4 × 4

8 × 8
Add

32

64326464

Input
Image

96128128128

224 256256 256

32 323

Output
features

5 × 5 convolution 
+ batch normalization

Figure 4.4: Architecture of the proposed Dense-pooling Net. White boxes represent
feature maps or input images. The numbers below boxes are numbers of kernel or color
channels. Dense pooling connections are represented as pink connections, which are
implemented as a combination of mixed pooling. The architecture of a mixed pooling
connection is illustrated on the bottom left, where x× x represents the size of the filter
used in a mixed pooling.

posed network, four serial connected residual blocks [185] are used as the backbone.

Dense pooling connection [187] based on the multi-scale spatial information in the net-

work and the bottleneck layer for feature extraction is used. As shown in Fig 4.4, dense

pooling connections connect four residual blocks with different filter sizes. Mixed pool-

ing [187] is further used instead of max-pooling or average-pooling to keep the spatial

information in the dense pooling connections. The proposed CNN can capture features

with less spatial information loss by using dense pooling connections and mixed pool-

ing. The residual style in the proposed CNN can prevent overfitting in the training
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procedure. This network is expected to extract esophageal features with residual style,

dense pooling connection, and mixed-pooling. The Dense-pooling Net also preserves the

color and pattern details of mucosal in the feature maps. The resized esophagoscopy

image is directly input into the Dense-pooling Net, and the output of this network is a

256 channel feature map.

4.5.3 Serial Multi-scale Dilated (SMD) encoder

Here, an SMD encoder is proposed to distribute representations for detecting multi-

type and multi-scale features from the feature map. The dilated convolution [188] is

introduced to understand the SMD encoder better. It increases the receptive field by

introducing gaps or dilations between the filter weights, effectively skipping some input

values. Let W2 be a filter or kernel tensor of size C ′ × kh × kw, where C ′ is the number

of output channels and kh and kw are the height and width of the kernel, respectively.

For the input feature X, the output tensor Yd of a dilated convolution operation with

dilation rate d can be computed as:

Yd
c′,i,j =

C∑
c=1

kh−1∑
n=0

kw−1∑
s=0

Xc,i+d·n,j+d·s ·W2
c′,n,s,c, (4.2)

where c′ is the output channel index. The summation is performed over all input chan-

nels c and all spatial locations n and s covered by the filter. The input at location

(i+ d · n, j + d · s) is multiplied by the filter weight at position (n, s, c), with the dilation

rate d determining the spacing between the filter weights. By increasing the dilation

rate, the receptive field of the filter can be increased without increasing the number of

parameters.

The SMD encoder is designed based on a dilated encoder [190, 191] that extract

features for object detection and localization in the You Only Look One-level Feature
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(YOLOF) method [191]. It consists of a Projector and four residual dilated blocks. The

Projector, which is designed for channel dimension reduction, has the same structure in

the Feature Pyramid Networks (FPN) [192]. As for the residual dilation block [188]

with different dilation rates, it generates output features with multiple receptive fields

in 3 × 3 convolutional layers, covering many object scales. The dilated encoder design

enables it to detect objects on multiple-level instead of single-level features. The resid-

ual dilated block utilizes dilated convolution to increase the receptive field of input fea-

tures. The YOLOF uses the residual style to ensure the encoder can obtain a multi-scale

receptive field. Experiments have proved that the dilated encoder can detect multi-scale

features from feature maps [191]. However, for achalasia diagnosis, the network must

detect inconspicuous features and pinstripe patterns from the background, which may

be missed by the dilated encoder. To solve this problem, the SMD encoder is proposed

here.

Figure 4.5 illustrates the structure of the proposed SMD encoder. Kernels are en-

larged in the projector from 1 × 1 and 3 × 3 to 3 × 3 and 5 × 5, respectively. Many

researchers have demonstrated that a few convolution layers with large kernels have

a better effective receptive field [193, 194]. A large receptive field is expected to

help detect contraction or dilation of the esophageal. Besides, when the view of the

esophagoscopy is tiny, large kernels can extract more features of the mucosal. Four

residual dilated blocks are serially connected to the projector. All residual dilated blocks

are modified by removing the last convolution layers. The dilation rates are set from the

first to the last residual dilated blocks to 0, 2, 4, and 8 in order. Then, the spatial atten-

tion module [144, 189] is introduced, which helps the encoder focus on the meaningful

features in the feature map. It makes the encoder distinguish the difference between

inconspicuous features such as whitish change or pinstripe pattern from the normal mu-

cosal. Spatial attention modules are added in the last two residual dilated blocks. The

input of the SMD encoder should be the feature map output from the Dense-pooling
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Figure 4.5: Structure of the Serial Multi-scale Dilated (SMD) encoder. White boxes
represent feature maps. 1×1, 3×3 and 5×5 represent the filter size of the corresponding
convolution layer. Block×2 stands for two same successive blocks. The architecture of
a spatial attention module is illustrated on the bottom right. In the spatial attention
module, x× x denotes x× x pooling. Furthermore, a batch normalization layer [8] and
a ReLU layer [9] are introduced after all convolution layers.

Net. The output of the SMD encoder is a 512 channel feature map.

4.6 Experiments and results

4.6.1 Dataset

Ethics approvals

To protect the participants’ safety and human rights, this clinical research has been

reviewed by the Fukuoka University Medical Ethics Review Committee (U19-09-008)



4.6. EXPERIMENTS AND RESULTS 93

Table 4.1: Numbers of different types of images in training, validation, and test data in
the image dataset.

Dataset Train Validation Test

Type WLI NBI WLI NBI WLI NBI

Achalasia images 95,582 45,562 19,753 11,135 33,319 20,056
Non-achalasia images 50,043 73,768 14,526 19,914 11,881 18,409
Total 145,625 119,330 34,279 31,049 45,200 38,465

and Nagoya University Ethics Review Committee (hc21-06). Informed consent was

obtained from all subjects by the form or opt-out on the Website.

Image dataset

Esophagoscopy videos were collected from patients in the Fukuoka University Faculty

of Medicine with Institutional Review Boards (IRB) approval for network training and

testing. In this dataset, all achalasia images and videos are collected from patients

with straight-type achalasia, which contain early-stage achalasia patients. Expert en-

doscopists annotated all achalasia frames in collected videos under the same standard,

but not specifically with early-stage achalasia. Based on these annotations, achalasia

and non-achalasia frames were extracted from esophagoscopy videos by 30 fps. Images

in the dataset consists of Narrow Band Imaging (NBI) [195] and White Light Imaging

(WLI) [196]. All the extracted images were resized to 224× 224 pixels with the Lanczos

interpolation method [197]. All images with strong specular or serious blur were manu-

ally removed for the training set. All resized images were split into training, validation,

and test data randomly without patient duplication. Table 4.1 shows the number of

extracted WLI and NBI images in training, validation, and test data.
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Video dataset

To evaluate whether the proposed method can be applied in clinical situations, 50

esophagoscopy videos were collected from different patients in the Fukuoka University

Faculty of Medicine with IRB approval. All videos in the video dataset were collected

from different patients in the image dataset. Expert physicians annotated the class each

video belongs to instead of annotating all achalasia frames under the same standard

of annotation in the image dataset. Among all videos, 25 videos were annotated as

achalasia videos, and others were annotated as non-achalasia videos.

4.6.2 Implementation details

For the training process, the minibatch size was set to 64 to train the method for 300

epochs on NVIDIA Tesla V100 PCIe 32 GB with CUDA 10.0. Binary-cross entropy was

used as the loss function and Adam [170] as the optimizer function. The initial learn-

ing rate for training was set as 1.0 × 10−3. The proposed method was implemented

with Keras [198]. For evaluation, the proposed method and other state-of-the-art meth-

ods were trained using the created image dataset in the same condition. For all train-

ing images, resize, Zero-phase Component Analysis (ZCA) whitening [199] were ap-

plied as preprocessing. Horizontally and vertically flips were randomly applied, and

cutout [200] was applied for data augmentation for training the proposed method. The

CAD system was implemented with an NVIDIA Jetson Xavier NX developer kit [102]

which carries a trained SMN.
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Table 4.2: Quantitative evaluations in different methods on the image dataset.

Method Accuracy Precision Recall Specificity AUC score

ResNet50 [185] 0.695 0.839 0.645 0.783 0.802

DenseNet121 [201] 0.760 0.890 0.711 0.846 0.893

U-Net Contracting path [184] 0.687 0.834 0.635 0.778 0.867

ConvMixer [182] 0.611 0.766 0.562 0.696 0.625

Supervised Contrastive [181] 0.535 0.838 0.336 0.884 0.676

Gated-Attention [202] 0.632 0.775 0.595 0.697 0.706

Proposed method (SMN + cutout) 0.874 0.903 0.899 0.830 0.945

4.6.3 Results

Quantitative evaluation on image dataset

For evaluating the classification accuracy of all trained models, accuracy, precision, re-

call, specificity, and Area Under the Curve (AUC) of Receiver Operating Characteristic

(ROC) were measured. An image was judged as a positive predicted image when the

predicted achalasia probability of an image is greater than a threshold τp. On the con-

trary, an image was defined as a negative predicted image when it is lower than or equal

to the threshold. A true positive/negative sample was defined as an achalasia/non-

achalasia image correctly classified as a positive/negative predicted image. On the con-

trary, when it was not correctly classified, it was defined as false positive/negative sam-

ple. For comparison with other classification methods, the threshold was set as τp = 0.5,

a common setting for binary image classification. Table 4.2 shows the quantitative eval-

uation results of all trained methods using the created image dataset. Figure 4.6 shows

examples that the proposed method classified successfully and failed.
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Figure 4.6: Examples of the test data that the SMN classifies.

Quantitative evaluation on video dataset

An SMN trained with cutout was used to diagnose all videos in the video dataset. The

trained SMN classified every frame in one video. Another threshold τf was introduced

for video classification. When the proportion of predicted achalasia frames among all
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Table 4.3: Performance of video classification in different τf by using the SMN.

τf 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Accuracy 0.66 0.78 0.88 0.94 0.96 0.94 0.92 0.86 0.78 0.66
Precision 0.60 0.69 0.81 0.89 0.93 0.96 1.00 1.00 1.00 1.00
Recall 1.00 1.00 1.00 1.00 1.00 0.92 0.84 0.72 0.56 0.32
Specificity 0.32 0.56 0.76 0.88 0.92 0.96 1.00 1.00 1.00 1.00

frames in a video is greater than the τf , the video was predicted as an achalasia video.

For evaluation, accuracy, precision, recall, and specificity were measured. Table 4.3

shows the diagnosis results for different τf values. It shows that the SMN performs well

in achalasia diagnosis when the threshold τf = 0.55.

Furthermore, to prove whether the proposed method can be applied in clinical situ-

ations, the capture and process speed of the system were tested by connecting with an

endoscopy instrument. The experiment results demonstrate that the proposed CAD sys-

tem can stably output diagnosis results in only 0.138± 0.040 seconds. Figure 4.7 shows

one example in the video dataset diagnosed using the CAD system. The CAD system

temporarily uses a threshold τf = 0.55 for the diagnosis of achalasia videos in clinical

experiments.

4.6.4 Ablation study

Effectiveness of Dense-pooling Net in the SMN

The performance when using ResNet-50, DenseNet, and encoder part of U-Net instead

of the Dense-pooling Net in the proposed architecture were compared. Dense-pooling

Net without dense pooling in the SMN was also compared to investigate if the dense

pooling structure is helpful. Table 4.4 reports the quantitative evaluation results. It

demonstrates that the SMN using the Dense-pooling Net performs best.
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Figure 4.7: Output of the CAD system with one video input from the video dataset.
In one output frame, a bar shows the ratio of achalasia and non-achalasia (normal)
probabilities in the red and blue parts, respectively, in real-time.

Table 4.4: Performance comparison with different networks instead of Denes-pooling
Net in the SMN.

Network Accuracy Precision Recall Specificity AUC score

ResNet50 [185] 0.375 0.542 0.129 0.808 0.713

DenseNet121 [201] 0.681 0.758 0.733 0.589 0.826

U-Net [184] 0.816 0.862 0.846 0.763 0.843

Denes-pooling Net w/o dense pooling 0.824 0.859 0.866 0.749 0.921

Denes-pooling Net 0.870 0.877 0.926 0.771 0.938

Effectiveness of the SMD encoder in the SMN

To validate that all improvements made for the SMD encoder have a good influence,

the original dilated encoder in the YOLOF, and SMD encoder without different im-
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Table 4.5: Performance comparison with difference encoders in the SMN.

Encoder Accuracy Precision Recall Specificity AUC score

Dilated encoder [188] 0.772 0.822 0.819 0.689 0.824

SMD encoder w/o attention module 0.860 0.873 0.913 0.766 0.926

SMD encoder 0.870 0.877 0.926 0.771 0.938

Table 4.6: Comparison of different data augmentation methods for training the SMN.

Method Accuracy Precision Recall Specificity AUC score

SMN 0.870 0.877 0.926 0.771 0.938

SMN + cutmix 0.112 0.172 0.103 0.128 0.043

SMN + mixup 0.213 0.271 0.138 0.345 0.112

SMN + cutout 0.874 0.903 0.899 0.830 0.945

provements as the encoder part were compared in the SMN. Table 4.5 shows the per-

formances of SMNs using different encoders. It shows that all modifications in the SMD

encoder have a good influence on achalasia frame classification.

Effectiveness of cutout data augmentation

The effectiveness of different modern data augmentation methods on achalasia and

non-achalasia esophagoscopy images were investigated. The performance of different

data augmentation methods such as cutmix [203], mixup [204], and cutout [200] were

compared. Table 4.6 shows the performance of different data augmentation methods

on the image dataset. It shows that cutout can largely improve the precision, specificity,

and AUC of the SMN with almost the same accuracy.
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Table 4.7: Ablation study of different components in the SMN.

Method Accuracy Precision Recall Specificity AUC score

Denes-pooling Net 0.764 0.811 0.821 0.663 0.870

SMD encoder 0.653 0.700 0.798 0.397 0.702

SMN 0.870 0.877 0.926 0.771 0.938

Comparison with different components in the SMN

The influence of two components in SMN proposed in this chapter were investigated.

Table 4.7 shows the performance of different components in the SMN. It shows that all

components in the SMN provide a good influence on the achalasia image classification.

4.7 Discussions

4.7.1 Rationale for the feasibility of the proposed method

This research proposed a novel Serial Multi-scale Network (SMN) architecture com-

prising dense-pooling connections, dilated convolutions, and spatial attention modules.

The integration of these techniques in the network yielded improved classification accu-

racy. Specifically, the dense-pooling connections enabled the preservation of spatial res-

olution and facilitated capturing more detailed information about the input data, thus

enhancing classification accuracy. Dilated convolutions, on the other hand, increased

the receptive field of the Convolution Neural Network (CNN) without introducing addi-

tional parameters, thereby enabling the network to capture features at different scales

and sizes. This feature enhanced the accuracy of classification by allowing the network

to better perceive the complexity and heterogeneity of the input data. Furthermore,

the spatial attention modules enabled the network to selectively concentrate on crucial
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regions of the input data, resulting in improved classification accuracy by enhancing

the network’s ability to distinguish between different classes. The combination of these

three techniques in the proposed architecture enhanced classification accuracy by en-

abling the network to capture features at multiple scales and sizes while simultaneously

concentrating on important regions of the input data. The dense-pooling connections

facilitated the preservation of fine-grained information, while the dilated convolutions

enabled the capturing of features at different scales. Meanwhile, the spatial attention

modules selectively concentrated on crucial regions of the input data. Together, these

techniques enabled the proposed method to accurately classify achalasia images.

4.7.2 Results analysis

Table 4.2 showed that the proposed method produced the highest accuracy, precision,

recall, and Area Under the Curve (AUC) score, which illustrates that it has the best

ability to diagnose achalasia from still images among all methods evaluated in the ex-

periments. The proposed method provided the highest AUC score showing it is the

most suitable method for achalasia diagnosis among all methods evaluated in this chap-

ter, which are automatically performed by computers. The diagnostic specificity of the

proposed method was lower than the Supervised Contrastive method. However, it had a

low recall, which illustrates that this method can not classify achalasia images precisely.

Table 4.3 showed that the SMN is very sensitive to achalasia frames: the SMN classified

nearly all achalasia frames, but misclassified many non-achalasia frames into achala-

sia frames. By selecting a suitable threshold τf , the SMN can provide high accuracy on

esophagoscopy video diagnosis. This characteristic shows that the proposed method has

the potential to provide high accuracy in clinical situations. Table 4.4 showed the SMN

using ResNet50 instead of the Dense-pooling Net, which also provides higher specificity

than the proposed method, but with low precision and recall. Physicians believe pre-
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cision, recall, and specificity are equally crucial in disease diagnosis [205]. However,

there is a problem with the proposed method is that it diagnoses achalasia by calculat-

ing the ratio of achalasia frames in a limited time. Inexperienced endoscopists may not

be able to provide stable esophagoscopy videos for diagnosis. An esophagoscopy video

with many noise frames may not be diagnosed by calculating the ratio of achalasia

frames.

4.7.3 Clinical feasibility analysis

In order to aid physicians in diagnosing achalasia, a Computer-Aided Diagnosis (CAD)

system must fulfill several crucial requirements. The foremost requirement is accuracy,

as the CAD system must accurately detect and classify esophagoscopy frames as either

normal or indicative of achalasia. False positives could lead to unnecessary diagnostic

procedures, while false negatives could delay the diagnosis and treatment of achalasia,

both of which would have negative effects on patient care. Furthermore, the CAD sys-

tem must be capable of processing esophagoscopy videos in real-time or near-real-time

to enable physicians to make timely and informed decisions about patient care. Addi-

tionally, the system should be user-friendly and easy to operate. Experimental results

have shown that the proposed method can accurately and efficiently classify achalasia

images. Moreover, the CAD system can display classification results in a manner that

is easy for physicians to interpret. Therefore, the proposed CAD system has the poten-

tial to improve the efficiency and accuracy of achalasia diagnosis, ultimately leading to

better patient outcomes. This system could play a crucial role in enhancing computer-

aided endoscopy procedures and enable physicians to make more informed decisions

regarding disease diagnosis.
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4.8 Summary

This chapter addresses the research question of extending computer-aided endoscopy

systems to diseases lacking clear lesions, focusing specifically on the diagnosis of esophageal

achalasia. The distinctive nature of achalasia, marked by atypical symptoms and the

lack of clear lesions, necessitates the adoption of a Computer-Aided Diagnosis (CAD)

system to facilitate accurate diagnosis by physicians. To this end, an automated method

was proposed for achalasia diagnosis called Serial Multi-scale Network (SMN) was pro-

posed. This method employs a Dense-pooling Net for feature extraction from esophagoscopy

frames and a Serial Multi-scale Dilated (SMD) encoder to detect subtle features in the

input data. Two datasets, an esophagoscopy image dataset, and an esophagoscopy

video dataset were created, for model training and testing purposes. Subsequently, a

CAD system was implemented using the proposed SMN method. Experimental results

indicate that the proposed method outperforms other existing methods for image-based

achalasia diagnosis. Additionally, the proposed method was shown to be highly accurate

in diagnosing achalasia from esophagoscopy videos. These results demonstrate that the

proposed method can be utilized to construct an accurate CAD system for achalasia di-

agnosis. As part of future work, a more robust method for achalasia diagnosis that can

be applied to classified frames should be developed. Furthermore, the CAD system has

the potential to contribute to the development of computer-aided endoscopy procedures

in the future.
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Chapter 5

Conclusions and Future work

5.1 Conclusions

This thesis presented research on machine learning-based computer-aided diagnosis

and intervention methods for GastroIntestinal (GI) tract endoscopic videos.

In Chapter 1, the research goal of this thesis was introduced: computer-aided en-

doscopy system development. This research focused on the design of GI tract disease de-

tection, localization, and diagnosis methods for developing computer-aided endoscopy

systems. Computer-aided endoscopy procedures have become increasingly important in

the field of GI tract disease management. However, certain limitations still require at-

tention in computer-aided endoscopy systems. The real-time processing and analysis of

high-resolution endoscopic images and videos is a significant challenge. Furthermore,

there is a need for more precise segmentation and classification algorithms for various

GI tract lesions, particularly for diseases that do not have visible lesions. Thus, to solve

these two weak points of computer-aided endoscopy system, this thesis proposed GI

tract disease classification and localization methods with higher accuracy, which meet

the real clinical demand. This thesis contained two topics; 1) Newly appearing perfo-

105
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ration detection and localization, and 2) Early-stage esophagus achalasia (achalasia)

diagnosis.

In Chapter 2, this thesis provides an overview of relevant studies and advancements

in the field of computer-aided endoscopy systems. In the context of computer-aided

endoscopy procedures, Computer-Aided Diagnosis (CAD) plays a crucial role in facili-

tating the detection and diagnosis of various GI tract diseases, including polyps, ulcers,

and cancers. Additionally, computer-aided intervention systems are designed to sup-

port the planning and execution of minimally invasive treatments, such as Endoscopic

Submucosal Dissection (ESD) and ablation therapy. The integration of image process-

ing techniques and related technologies, particularly neural networks, is of paramount

importance in computer-aided endoscopy systems. In line with this, the present thesis

proposes two novel methods that leverage neural networks for computer-aided inter-

vention and diagnosis, respectively.

In Chapter 3, a method using a Gaussian affinity loss and Generalized Intersection

over Union (GIoU) loss to train YOLOv3 in addition to the original YOLOv3’s objective

function for perforation detection and localization from colonoscopy videos was pro-

posed. To evaluate the effectiveness of the proposed method, a dataset was created by

extracting images from colonoscopy videos. Experimental results showed that the pro-

posed method achieved good perforation detection and localization performance, even

with a limited sample size, compared to state-of-the-art methods. This approach can

potentially develop an accurate and fast computer-aided intervention system that can

assist physicians during ESD procedures.

In Chapter 4, a novel automated method called Serial Multi-scale Network (SMN)

was proposed for diagnosing achalasia using esophagoscopy images. This proposed

method employed a Dense-pooling Net to extract features from esophagoscopy frames

and a Serial Multi-scale Dilated (SMD) encoder to detect inconspicuous features. To

validate the proposed method, two datasets extracted from esophagoscopy videos of
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achalasia patients were used for training and evaluation. The results demonstrated that

the proposed method achieved high accuracy in achalasia diagnosis. Moreover, based

on the proposed method, real-time computer-aided achalasia diagnosis systems were

developed and experiments showed promising results for the diagnosis of achalasia

from esophagoscopy videos. This research highlighted the potential of the proposed

achalasia diagnosis method for clinical applications.

The first topic focused on the contribution of engineering methods to the medical

image-processing field, which could lead to the development of an effective computer-

aided intervention system for assisting physicians in avoiding missed perforations in

ESD. The second topic, on the other hand, contributes to both the engineering and clin-

ical medicine fields. The CAD systems implemented for diagnosing achalasia demon-

strated their feasibility in assisting physicians during real esophagoscopy procedures.

5.2 Future work

5.2.1 Computer-aided intervention system for perforation predic-

tion

In this thesis, the significance of early detection and localization of perforations during

Endoscopic Submucosal Dissection (ESD) procedures to avoid potentially serious com-

plications such as peritonitis was emphasized. Developing a computer-aided detection

and localization system that can prevent perforations from occurring is a promising ap-

proach to improving patient safety during ESD procedures. Predicting the movements

of the physician during the procedure is a crucial step in achieving this goal.

Previous studies on human movement prediction [206–210] have demonstrated the

feasibility of predicting the movements of the flush knife during an ESD procedure.

Machine learning has been applied to predict human movement in a variety of con-
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texts [211], and semi-adaptable neural networks have been proposed to provide real-

time uncertainty bounds for human motion prediction [212]. Video prediction [213–

218] has also been explored as a possible solution for predicting perforation occur-

rences.

Therefore, in the future, a predictive model that can anticipate the movements of the

physician and the flush knife during ESD procedures to prevent perforations from oc-

curring should be challenged. Using machine learning and video prediction techniques,

a reliable and accurate system could be realized to improve patient safety during ESD

procedures.

5.2.2 Multiple GI tract disease diagnosis CAD system

In this thesis, one of the research topics was early-stage achalasia diagnosis. Two meth-

ods were proposed aiming at early diagnosis of achalasia, a disease of the GI tract that

lacks obvious foci, thereby rendering early diagnosis challenging. The proposed meth-

ods are expected to aid physicians in accurately diagnosing the disease. However, not

only achalasia, but also numerous other GI tract diseases are difficult to diagnose, and

currently, no CAD system has been developed for them. For instance, celiac disease [27]

is challenging to diagnose through endoscopy since the small intestine may appear nor-

mal, despite the presence of the disease. Furthermore, the damage to the intestinal

lining may be patchy and unevenly distributed, making detection difficult during the

examination. Consequently, confirming the diagnosis may require a biopsy of several

areas of the small intestine. Moreover, a false negative result may occur if the patient

has already initiated a gluten-free diet, causing the damage to the intestinal lining to

have healed and no longer be detectable during the endoscopy.

The proposed CNN and SMN in this thesis have demonstrated significant potential

in diagnosing diseases that rely on multiple features for diagnosis. Thus, further en-
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hancements to the proposed methods and training on a wider range of diseases could

meet the diagnostic requirements for numerous GI tract diseases. Expanding the data

type and ensemble learning [219] method makes it possible to construct a multiple GI

tract diagnosis CAD system. Future CAD systems capable of diagnosing multiple GI tract

diseases through endoscopy may not remain a mere aspiration.

5.2.3 Computer-aided physician training system

The presented research aimed to develop a computer-aided endoscopy system to sup-

port unskilled physicians in classifying and localizing of GI tract diseases. In addition to

directly assisting them with diagnosis or treatment, helping train unskilled physicians

is also a viable function of computer-aided endoscopy systems. As a result, computer-

aided physician training systems for GI tract diseases have emerged as an important

area of research. Such a system could leverage the proposed methods to offer feedback

and guidance to the physicians as they practice their diagnostic skills. It could also pro-

vide a database of endoscopic images and videos for physicians to hone their diagnostic

skills, annotated using the proposed methods.

By using computer-aided training systems, physicians can gain familiarity with var-

ious diagnostic scenarios and acquire the skills needed to identify the signs and symp-

toms of different diseases more effectively. These systems can provide access to high-

quality training materials and diagnostic tools, facilitating the training of more physi-

cians and ensuring that patients receive the care they need. Therefore, in future re-

search, the development of a computer-aided physician training system will be consid-

ered a crucial research topic.
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5.3 Future perspective

In the future, computer-aided endoscopy systems will undoubtedly play an important

role in modern medicine. In the distant future, the integration of computer-aided en-

doscopy with other technologies, such as Virtual Reality (VR) and Augmented Reality

(AR), could enhance the visualization of the GI tract and enable physicians to interact

with the images in a more immersive way. This could improve diagnosis and interven-

tion planning, as well as enhance the training of medical professionals. Furthermore, it

is possible that computer-aided diagnosis and intervention for the GastroIntestinal (GI)

tract could become more widely available and accessible in the future, with the develop-

ment of portable or even handheld devices. This could increase access to medical care

for patients in remote or underserved areas and facilitate quicker and more efficient

diagnosis and intervention in emergency settings. As diagnostic efficiency increases,

hospital appointments will become more convenient. In addition, it is conceivable that

in the near future, applications such as computer-autonomous surgery and medical di-

agnostic systems for personal use will become a reality.
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