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Abstract—This paper describes a novel sufficient condition
concerning approximations with reservoir computing. Recently,
reservoir computing using a physical system as the reservoir
has attracted attention. Because many physical systems are
modeled as state-space systems, it is necessary to guarantee
the approximations given by reservoirs represented as nonlin-
ear state-space systems. There are two problems with existing
approaches: a reservoir must have a property called fading
memory and must be represented as a set of maps between input
and output signals on the bi-infinite-time interval. These two
conditions are too strict for reservoirs represented as nonlinear
state-space systems as they require the reservoir to have a
unique equilibrium state for the zero input. This paper proposes
an approach that employs operators from right-infinite-time
inputs to right-infinite-time outputs. Furthermore, we develop
a novel extension of the Stone–Weierstrass theorem to handle
discontinuous functions. To apply the extended theorem, we
define functionals corresponding to operators and introduce a
metric on the domain of the functionals. The resulting sufficient
condition does not require the reservoir to have fading memory or
continuity with respect to inputs and time. Therefore, our result
guarantees the approximations with very common reservoirs and
provides a rationale for physical reservoir computing. We present
an example of a physical reservoir without fading memory. With
the example reservoir, the reservoir computing model successfully
approximates NARMA10, a benchmark task for time series
predictions.

Index Terms—Machine learning, neural network, nonlinear
dynamical system, reservoir computing.

I. INTRODUCTION

RESERVOIR computing (RC) is a machine learning
method for dynamical system approximation and time-

series analysis. The concept of RC is derived from recurrent
neural networks (RNNs) [1], [2] and is based on the idea
of reducing computational costs by updating only certain
parameters during the training process [3]–[7]. An RC model
consists of a dynamical system called a reservoir and a static
function called a readout. The output of an RC model is
obtained by mapping the reservoir output by the readout.
If the reservoir is sufficiently complex, the RC model can
approximate a system by adjusting only the readout parameters
[4].

In general, a randomly generated RNN is used as the
reservoir. However, because the reservoir is fixed during the
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training process, a physical system that cannot be adjusted
may also be used as the reservoir. Recently, physical RC,
which uses a physical system as the reservoir, has received
considerable attention [8]–[12]. This is expected to provide
a superior physical reservoir to a RNN implemented on a
general-purpose computer in terms of processing speed and
energy consumption [8], [13]. Because many physical sys-
tems are modeled as state-space systems, it is necessary to
guarantee the approximations given by reservoirs represented
as nonlinear state-space systems.

The universality of RC models lies in their ability to
approximate an arbitrary system with arbitrary accuracy. Grig-
oryeva et al. [14] guaranteed the universality of an echo
state network (ESN) [3], which is an RC model composed
of a RNN reservoir and a linear readout. Gonon et al. [15]
guaranteed the universality of the three classes of RC models
for stochastic inputs (one composed of a linear reservoir and a
polynomial readout, one composed of a state-affine reservoir
and a linear readout, and an ESN). These results relate to
specific RC models and are not applicable to RC models
with general nonlinear reservoirs. Maass et al. [4] dealt with
a more general reservoir represented by a set of operators
between inputs and outputs defined on the bi-infinite-time
(BIT) interval R. We call these BIT operators. They showed
that two properties, namely fading memory and the separation
property, are sufficient reservoir conditions for the universality
of an RC model with a polynomial readout.

Fading memory is a property of a dynamical system. Al-
though its definition varies across different studies [4], [16]–
[18], it can basically be stated as follows: if two inputs are
close enough to each other for a sufficiently long time, the
outputs for these inputs become arbitrarily close to each other.
In other words, fading memory is the special continuity of the
output with respect to “recent” inputs. We call a system or
operator approximated by RC a “target.” Fading memory is im-
portant for uniformly approximating the target over an infinite-
time interval. In many cases, fading memory is required not
only for the reservoir, but also for the target [4], [14]. This is
because the uniform approximation of discontinuous functions
is very difficult. In contrast, Gonon et al. [15] did not require
fading memory in either the target or the reservoir because
they evaluated the approximation error in terms of the p-norm
(p <∞) instead of the uniform norm.

When applying the result of Maass et al. [4] to reservoirs
represented as nonlinear state-space systems, two problems

0000–0000/00$00.00 © 2021 IEEE



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

are encountered. The first is that fading memory is too strict
for a general nonlinear state-space system because, in many
cases, it is violated by multiple equilibrium states for the zero
input. For example, suppose that two inputs converge to 0 and
the state trajectories for these inputs converge to two different
equilibrium states. The difference between the two inputs will
then converge to 0, but the difference between the outputs may
not, which violates fading memory.

The second problem is that a general nonlinear state-space
system cannot be represented as BIT operators. To represent a
state-space system as well-defined BIT operators, it is impor-
tant to assume that the system determines a unique bounded
state trajectory for a BIT input. A state-space system satisfying
this assumption is said to have the echo state property (ESP)
[3]. In the discrete-time case, fading memory is derived from
ESP [3]. Therefore, ESP causes the same problem as fading
memory, i.e., the requirement of a unique equilibrium. This is
also confirmed in the continuous-time case as follows: if the
system has multiple equilibria, state trajectories remaining at
each equilibrium exist for the zero input, which violates the
ESP.

This paper proposes a novel universality result of RC with
a polynomial readout that avoids these two problems. Instead
of BIT operators, we use right-infinite-time (RIT) operators
to express a reservoir. An RIT operator is a map from RIT
inputs to RIT outputs and can be defined by the input–
output relationship of a state-space system with an initial state.
Therefore, unlike BIT operators, the uniqueness of outputs
is automatically satisfied, independent of ESP. We guarantee
universality by converting the RIT operators into functionals
and applying the Stone–Weierstrass theorem. Unlike BIT
operators, this conversion does not require the time invariance
of RIT operators. To apply the Stone–Weierstrass theorem,
we define a metric on the functional domain, which is a set
of inputs defined on time intervals of various lengths.

Representation by the RIT operators does not change the
fact that fading memory is required for a reservoir. To avoid
this problem, we extend the Stone–Weierstrass theorem to
handle discontinuous functionals, because functional continu-
ity is deeply related to the fading memory of the operators.
Our main theorem guaranteeing the universality of RC is a
corollary of the extended theorem. As the condition of our
main theorem, we propose a novel property of reservoirs
named the neighborhood separation property. The neighbor-
hood separation property does not require the operators in a
reservoir to have the fading memory property.

For RC with a polynomial readout, we guarantee universal-
ity for the uniform approximation of an operator with fading
memory. Our contribution is to deal with the following cases:

(i) the reservoir is represented by a set of RIT operators;
(ii) operators in the reservoir do not have fading memory.

These contributions introduce many advantages to the use of a
reservoir represented by a state-space system. First, (i) allows
the reservoir to vary with time. Second, the combination of
(i) and (ii) allows the reservoir to have multiple equilibrium
states for the zero input. Furthermore, the novel reservoir
condition, i.e., the neighborhood separation property, which
we propose to achieve (ii), does not even require the reservoir

output to be continuous with respect to time or the input. This
allows discontinuous output functions. Therefore, our result
can be applied to very common reservoirs and is particularly
significant in the field of physical RC, in which reservoirs are
not easily adjustable.

The structure of this paper is as follows. Section II discusses
the previous work of Maass et al [4], RC in the form of RIT
operators, the conversion of RIT operators into functionals,
and the metric on the domain of functionals. Section III
introduces the extension of the Stone–Weierstrass theorem,
presents a novel sufficient reservoir condition, and provides
an example of a physical reservoir without fading memory.
Section IV concludes the paper.
Notation: Let R+ = [0,∞) and R− = (−∞, 0]. For any
i ∈ N, we define a norm ∥·∥ on Ri as the Euclidean norm.
For any functions f1, f2 from a domain E to R, we define
the sum f1 + f2 and the product f1f2 of f1 and f2 as

(f1 + f2) (x) =f1(x) + f2(x),

(f1f2) (x) =f1(x)f2(x) (x ∈ E) .
(1)

For any f : E → R and c ∈ R, we define the product cf of
f and c as

(cf1) (x) = cf1(x) (x ∈ E) . (2)

For any f1, . . . , fi : E → R, we define a function
(f1, . . . , fi) : E → Ri as

(f1, . . . , fi) (x) = (f1(x), . . . , fi(x)) (x ∈ E) . (3)

For δ > 0, we define the δ-neighborhood Nδ(x) ⊂ E of x ∈ E
as

Nδ(x) = {x′ ∈ E |d(x, x′) < δ } , (4)

where d : E ×E → R+ is a metric on E. For any t ≥ 0 and
a function v on a real interval, we denote the restriction of v
to the interval [−t, 0] as v[t].

II. RC REPRESENTED BY RIGHT-INFINITE-TIME
OPERATORS

A. Reservoir Computing Model

For a transition function ϕ : Rr × Rn × R → Rr and
an output function ψ : Rr × Rn × R → Rm, we define a
continuous-time n-input m-output state-space system (ϕ, ψ)
as follows:

ẋ(t) =ϕ(x(t), u(t), t),

y(t) =ψ(x(t), u(t), t),
(5)

where x(t) ∈ Rr, u(t) ∈ Rn, y(t) ∈ Rm are the state, input,
and output at time t, respectively. For a solution of (5) to
exist, we assume that ϕ is locally Lipschitz continuous on
Rr × Rn × R. We consider a RC model with system (ϕ, ψ)
and a static function p : Rm → R as the reservoir and the
readout, respectively. The output of the RC model at time t is
defined as ŷ(t) = p(y(t)).

In supervised learning, the RC model is used to approximate
a given target system. RC provides an approximation by
training only the readout p, which is the static part of the
model. Hence, RC has the advantage of low computational cost
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for training. We discuss the approximations of single-output
systems, but the results can easily be extended to multiple-
output systems because an m∗-output system can be treated
as m∗ single-output systems.

In this paper, the RC model with reservoir (ϕ, ψ) is said to
be universal if, for any target system, there is a polynomial
readout p such that the RC model approximates the target.
Additionally, if an RC model with a reservoir is universal, then
we say the reservoir is universal. In this paper, we propose a
novel sufficient condition for the reservoir to be universal.

B. Previous Work

For comparison with our result, we explain the work of
Maass et al. [4] relating to inputs and outputs defined on R.
Let A ⊂ Rn be compact and K ≥ 0. We define a set UB of
BIT inputs as follows:

UB = {u : R → A | ∀t1, t2 ∈ R,
∥u(t1)− u(t2)∥ ≤ K |t1 − t2|} .

(6)

Let Y B be the set of functions from R to R. Maass et al.
[4] represent the reservoir and the target as operators from
UB to Y B . We call these “BIT operators” because they are
maps between signals defined on the BIT interval R. For an
operator F and an input signal u, we write the output signal
and its value at time t as Fu and Fu(t), respectively. Maass
et al. [4] assume that BIT operators have two properties called
time invariance and fading memory. Time invariance is defined
as follows. An operator F : UB → Y B is said to be time-
invariant if the following holds:

∀t ∈ R,∀u1, u2 ∈ UB , (∀τ ∈ R, u2(τ) = u1(τ − t))

⇒ (∀τ ∈ R, Fu2(τ) = Fu1(τ − t)) .
(7)

Time invariance means that a temporal shift of the input also
shifts the output. Fading memory is defined as follows:

Definition 1. A BIT operator F : UB → Y B is said to have
fading memory if the following holds:

∀u1 ∈ UB ,∀ε > 0,∃δ > 0,∃T > 0,∀u2 ∈ UB ,

max
τ∈[−T,0]

∥u1(τ)− u2(τ)∥ < δ ⇒ |Fu1(0)− Fu2(0)| < ε.

(8)

Fading memory means that if two input signals are close
shortly before time 0, the outputs at time 0 are also close,
independent of the distant past.

In the work of Maass et al. [4], an m-output reservoir is
represented as a set F of m operators. To be universal, the
reservoir F must have the following separation property:

Definition 2. Let a reservoir F be a set of operators from UB

to Y B . The reservoir F is said to have the separation property
if F satisfies the following:

∀u1, u2 ∈ UB ,∃F ∈ F,
(∃τ ≤ 0, u1(τ) ̸= u2(τ)) ⇒ Fu1(0) ̸= Fu2(0).

(9)

The separation property means that the reservoir gives
different outputs to different inputs. Suppose that the reservoir
does not have the separation property, i.e., the reservoir returns

the same output to two different inputs. Then, the RC model
cannot approximate a target that returns different outputs to
those inputs. Hence, the separation property is necessary to
achieve universality. Note that (8) and (9) are the conditions
for the output at time 0 because time invariance is assumed,
and time 0 is chosen as a representative time.

The result of Maass et al. [4] can be described as follows:

Theorem 1 ( [4]). Let a reservoir F be a set of time-invariant
operators from UB to Y B with fading memory. Suppose that
F has the separation property. Then, for any time-invariant
operator F ∗ : UB → Y B with fading memory and for any
ε > 0, there exist i ∈ N, F1, . . . , Fi ∈ F, and a polynomial
p : Ri → R that satisfy the following:

∀u ∈ UB ,∀t ∈ R, |F ∗u(t)− p(F1u(t), . . . , Fiu(t))| < ε.
(10)

The natural number i is used to express that, even if the
cardinal number of reservoir outputs m = |F| is infinite,
approximation is possible with a finite number of elements
in F. If m is finite, we can set i = m. Therefore, Theorem 1
means that, for any target F ∗, there is some readout p such that
the RC model F̂ u(t) = p(F1u(t), . . . , Fmu(t)) approximates
F ∗, i.e., the reservoir F is universal.

To apply Theorem 1 to the reservoir (ϕ, ψ), we must
represent the input–output relationship of the reservoir by
operators. For this representation, the following is important:

Definition 3. A system (ϕ, ψ) with a compact state set X ⊂
Rr is said to have ESP if, for any BIT input ∈ UB , there is
a unique state trajectory x : R → X satisfying (5) for any
t ∈ R.

This definition is a continuous-time version of the ESP
described in [3]. A simple example of a system with ESP
is the case where ϕ(x, u, t) = −x+u (x, u, t ∈ R). Then, the
bounded state trajectory for u ∈ UB is uniquely defined as

x(t) =

∫ t

−∞
exp(τ − t)u(τ)dτ (t ∈ R) . (11)

Suppose that the system (ϕ, ψ) with a compact state set
X ⊂ Rr has ESP. This means that the output for any given
input is unique. Therefore, the input–output relationship of the
system (ϕ, ψ) is represented by m BIT operators F1, . . . , Fm :
UB → Y B defined as follows:

Fi : u 7→ yi
(
u ∈ UB , i ∈ {1, . . . ,m}

)
,

(y1(t), . . . , ym(t)) = ψ(x(t), u(t)) (t ∈ R) ,
(12)

where x : R → X is a state trajectory satisfying (5) for any
t ∈ R. Theorem 1 is applied to the reservoir (ϕ, ψ) by setting
F = {F1, . . . , Fm}. Similarly, the target F ∗ can be defined by
a state-space system.

C. Right-Infinite Time Operators

As in the previous subsection, to apply the result of Maass
et al. [4], we need to represent the reservoir by BIT operators.
Without ESP, the reservoir may not be represented by well-
defined operators because it can have multiple state trajectories
and outputs for a single input. However, ESP is too strict
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for the use of a general nonlinear state-space system as a
reservoir. For example, in the case of a time-invariant system,
ESP requires a unique equilibrium state x ∈ X that satisfies
ϕ(x, 0) = 0. If the reservoir has multiple equilibrium states,
the state trajectories remaining at each equilibrium state exist
for the zero input, which violates the ESP.

For the uniqueness of outputs, we fix the state of the system
(ϕ, ψ) at time 0 and deal with the input–output relationship
after time 0. This input–output relationship is represented by
RIT operators, which are maps between signals defined on
R+. We define a set U of RIT inputs as

U = {u : R+ → A | ∀t1, t2 ≥ 0,

∥u(t1)− u(t2)∥ ≤ K |t1 − t2|} .
(13)

Let Y be the set of functions from R+ to R. Let x0 ∈ Rr

be the state of the system (ϕ, ψ) at time 0. The input–output
relationship of the system (ϕ, ψ) is represented by m RIT
operators F1, . . . , Fm : U → Y defined as follows:

Fi : u 7→ yi (u ∈ U, i ∈ {1, . . . ,m}) ,
(y1(t), . . . , ym(t)) = ψ(x(t), u(t)) (t ∈ R+) ,

(14)

where x : R+ → Rr is a state trajectory satisfying x(0) = x0
and (5) for any t ∈ R+.

We represent the reservoir as a set F of RIT operators. If
the reservoir is the system (ϕ, ψ), we set F = {F1, . . . , Fm},
where F1, . . . , Fm is defined in (14). The universality of a
reservoir is defined as follows:

Definition 4. Let a reservoir F be a set of operators from U
to Y , and let F∗ be a set of target operators from U to Y . The
reservoir F is said to be universal for uniform approximations
of an operator in F∗ if, for any operator F ∗ ∈ F∗ and ε > 0,
there exist i ∈ N, F1, . . . , Fi ∈ F, and a polynomial p : Ri →
R that satisfy

∀u ∈ U,∀t ≥ 0, |F ∗u(t)− p(F1u(t), . . . , Fiu(t))| < ε. (15)

The universality property means that any operator output
can be approximated by a polynomial of the reservoir output.

D. Functionals

To guarantee reservoir universality, we use the following
theorem:

Theorem 2 (Stone–Weierstrass theorem [19]). Let E be a
compact metric space and F be a set of continuous functions
from E to R. Suppose that, for any distinct x1, x2 ∈ E, there
is some f ∈ F that satisfies f(x1) ̸= f(x2). Then, for any
continuous function f∗ : E → R and for any ε > 0, there
exist i ∈ N, f1, . . . , fi ∈ F , and a polynomial p : Ri → R
that satisfy

∀x ∈ E, |f∗(x)− p(f1(x), . . . , fi(x))| < ε. (16)

Equations (15) and (16) are similar, but f1, . . . , fi are maps
to real numbers, whereas F1, . . . , Fi are maps to functions.
Hence, we convert operators into maps from functions to real
numbers, which we call functionals.

A functional is a map from finite-length input signals to real
numbers. We define a set V of left-infinite-time (LIT) inputs
as follows:
V = {v : R− → A | ∀t1, t2 ≤ 0,

∥v(t1)− v(t2)∥ ≤ K |t1 − t2|} .
(17)

The domain of the functional is defined as follows:

V res =
{
v[t] | v ∈ V, t ≥ 0

}
, (18)

where v[t] is the restriction of v noted in the introduction.
To convert operators into functionals, the operators need to

be causal. Causality is defined as follows:

Definition 5. An RIT operator F : U → Y said to be causal
if F satisfies

∀u1, u2 ∈ U,∀t ≥ 0,

(∀τ ∈ [0, t] , u1(τ) = u2(τ)) ⇒ Fu1(t) = Fu2(t).
(19)

Causality means that the outputs are unaffected by future
inputs. Hence, operators representing the system (ϕ, ψ) are
causal. If an operator F : U → Y is causal, the value of
the input u ∈ U on [0, t] uniquely defines Fu(t). This means
that a causal operator maps a finite-length input signal to a
real number like a functional. In this paper, we consider only
causal operators.

To explain the correspondence between operators and func-
tionals, we define some maps. Let λ : V res → R+ be a
map returning the domain length for an input. For example,
λ(v) = 1 for v : [−1, 0] → A. We define a map σ : V res → U
as follows:

σ : v 7→ u (v ∈ V res) ,

u(τ) =

{
v(τ − t) (0 ≤ τ < t) ,

v(0) (τ ≥ t) ,

(20)

where t = λ(v). The map σ shifts an input so that it starts at
time 0 and continuously extends it onto R+. We define a map
S : V res → U × R+ as follows:

S(v) = (σ(v), λ(v)) (v ∈ V res) (21)

The upper part of Fig. 1 represents the map S. In this
subsection, we change the domain and range of an operator
F : U → Y as follows:

F : U × R+ → R

∈ ∈ ∈

u × t 7→ Fu(t)
. (22)

This is because Y is a set of functions from R+ to R. The
correspondence between operators and functionals is defined
as follows:

Definition 6. A causal RIT operator F : U → Y and a
functional f : V res → R are said to correspond to each other
if the following holds:

f = F ◦ S. (23)

The following proposition holds for (23):

Proposition 1. For any functional f : V res → R, there is a
unique causal RIT operator F : U → Y satisfying (23).
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Fig. 1. Example of correspondences by maps σ and S̄ in the case of the
input dimension m = 1.

Proof of Proposition 1. Let f : V res → R be an arbitrary
functional. First, we prove that there is some causal operator
F : U → Y satisfying (23). Let S̄ : U × R+ → V res be the
left inverse of S defined as follows:

S̄ : (u, t) 7→ v (u ∈ U, t ≥ 0) ,

v(τ) = u(τ + t) (−t ≤ τ ≤ 0) .
(24)

As shown in the lower part of Fig. 1, the map S̄ shifts the
input u to the left by t and restricts the domain to [−t, 0]. The
following operator F : U → Y satisfies (23):

F = f ◦ S̄. (25)

The operator F in (25) is causal because S̄(u, t) depends only
on the value of u on [0, t].

Next, we prove that there is a unique causal operator F :
U → Y satisfying (23). Suppose that the causal operators
F, F ′ : U → Y satisfy (23). As shown in Fig. 1, the map S̄
is not the right inverse of S, i.e., S ◦ S̄ ̸= idU×R+ . However,
F ◦ S ◦ S̄ = F holds because F is causal. Composing (23)
with S̄, we have (25). The same holds for F ′. Hence, we have

F = F ′ = f ◦ S̄, (26)

which proves Proposition 1.

Proposition 1 means that (23) defines bijection from opera-
tors to functionals. The proof of Proposition 1 implies that (23)
and (25) are equivalent. Hence, (25) defines the inverse of the
bijection defined by (23). Unlike BIT operators, RIT operators
do not need time invariance to correspond to the functional.
In the first place, RIT operators do not have the concept of
time invariance. Using this correspondence between operators
and functionals, we apply Theorem 2 and guarantee reservoir
universality.

E. Metric

Theorem 2 requires the functionals to have the properties
of continuity and domain compactness. Therefore, a metric
on V res is needed. A simple method for defining the distance

between two inputs of different lengths is to extend the
shorter input with zero inputs to match the length of the
longer one and use the uniform norm [18]. However, this
method cannot distinguish between two zero inputs of different
lengths. Hence, this method requires the system (ϕ, ψ) to
return a constant output for the zero input. This means that
either the state trajectory for the zero input must remain at
the initial state x0 or the output function ψ must be constant.
We propose a novel metric that eliminates the need for this
assumption.

For w : R+ → (0, 1] and t ≥ 0, we define the weighted
norm ∥v∥w of v : [−t, 0] → Rn as

∥v∥w = sup
τ∈[−t,0]

∥v(τ)∥w(−τ). (27)

For w and θ : R+ → R+, we define the distance d(v1, v2)
between v1, v2 ∈ V res as

d(v1, v2) =
∥∥∥v[tmin]

1 − v
[tmin]
2

∥∥∥
w
+ |θ(t1)− θ(t2)| , (28)

where t1 = λ(v1), t2 = λ(v2), and tmin = min {t1, t2}. We
assume the following for the pair (w, θ):

Assumption 1.
(i) w : R+ → (0, 1] is a non-increasing function that is

integrable on [0,∞).
(ii) θ : R+ → R+ is a strictly increasing, bounded, and

continuous function.
(iii) For any v1, v2 ∈ V , t1 ≥ 0, and t2 ≥ t1,∥∥∥v[t2]1 − v

[t2]
2

∥∥∥
w
≤
∥∥∥v[t1]1 − v

[t1]
2

∥∥∥
w
+ 2 [θ(t2)− θ(t1)] .

(29)

The first term of (28) compares the inputs on the intersection
of their domains. From condition (i) of Assumption 1, the
function w assigns greater weight to the difference in the
newer part of the inputs. The second term of (28) compares the
length of the two inputs via the function θ. From condition (ii)
of Assumption 1, when the two inputs are longer, the distance
caused by the length difference is smaller. Inequality (29) in
condition (iii) is the transformation of the following triangle
inequality between v[t1]1 , v[t2]2 , and v[t2]1 :

d
(
v
[t2]
1 , v

[t2]
2

)
≤ d
(
v
[t1]
1 , v

[t2]
2

)
+ d
(
v
[t1]
1 , v

[t2]
1

)
. (30)

The triangle inequality is necessary for d to be a metric.
The following two propositions hold:

Proposition 2. The map d : V res × V res → R+ is a metric
on V res.

Proposition 3. Suppose that a pair (w′, θ′) satisfies Assump-
tion 1. Let d′ be another metric on V res defined by (w′, θ′) as
in (28). Then, metrics d and d′ on V res are equivalent, i.e., for
any ε > 0 and v1 ∈ V res, there is some δ > 0 that satisfies
the following for any v2 ∈ V res:

d(v1, v2) < δ ⇒ d′(v1, v2) < ε, (31a)
d′(v1, v2) < δ ⇒ d(v1, v2) < ε. (31b)

The proofs are given in Appendices A and B. From Propo-
sition 3, the distances defined by any pair (w, θ) satisfying
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Assumption 1 are equivalent. Therefore, the continuity of
functionals on V res and the compactness of sets in V res do
not depend on the selection of (w, θ).

We prove that there is a pair (w, θ) that satisfies Assumption
1. Clearly, there is some w that satisfies condition (i). Let
w : R+ → (0, 1] satisfy condition (i). We define θ : R+ → R+

as

θ(t) = K

∫ t

0

w̄(τ)dτ,

w̄(τ) =

{
w(0) (0 ≤ τ < T ) ,

w(τ − T ) (τ ≥ T ) ,

(32)

where T =M/ (2K) and M ≥ 0 is the maximum difference
between the two input values defined as

M = max
a1,a2∈A

∥a1 − a2∥ . (33)

Because w is integrable on R+ and returns a positive value,
θ satisfies condition (ii). Next, we prove that the pair (w, θ)
satisfies condition (iii). Because the Lipschitz constant of v1−
v2 is 2K or less, if t2 − t1 ≤ T , then∥∥∥v[t2]1 − v

[t2]
2

∥∥∥
w
−
∥∥∥v[t1]1 − v

[t1]
2

∥∥∥
w
≤ 2K (t2 − t1)w(t1).

(34)
Because w̄(τ) ≥ w(t1) (t1 ≤ τ ≤ t2), we have

2 [θ(t2)− θ(t1)] = 2

∫ t2

t1

Kw̄(τ)dτ ≥ 2K (t2 − t1)w(t1).

(35)
These statements imply (29).

If t2 − t1 > T , then (33) implies∥∥∥v[t2]1 − v
[t2]
2

∥∥∥
w
−
∥∥∥v[t1]1 − v

[t1]
2

∥∥∥
w
≤Mw(t1). (36)

Because w̄(τ) ≥ w(t1) (t1 ≤ τ ≤ t1 + T ), we have

2 [θ(t2)− θ(t1)] = 2

∫ t2

t1

Kw̄(τ)dτ

> 2

∫ t1+T

t1

Kw̄(τ)dτ

≥ 2KTw(t1) =Mw(t1).

(37)

These statements imply (29). Therefore, the pair (w, θ) sat-
isfies condition (iii). For example, the following pair (w, θ)
satisfying Assumption 1 is obtained from (32):

w(t) = exp(−t) (t ≥ 0) ,

θ(t) =

{
Kt (0 ≤ t < T ) ,

K (T + 1− exp(T − t)) (t ≥ T ) .

(38)

In the next subsection, we deal with functional continuity and
domain compactness with respect to the metric d discussed in
this subsection.

F. Completion

To apply Theorem 2, the domain V res of functions must
be compact. However, the domain V res of functionals is not
compact because, for any v ∈ V , an element v[t] of V res

does not converge on V res as t → ∞. Because v[t] is the

restriction of v ∈ V to [−t, 0], it is natural to define v[t] → v
as t→ ∞. Therefore, we complete V res by summing V . Note
that V res ∩ V = ∅ because V res is the set of functions on a
finite interval, but V is the set of functions on R−.

We extend the metric d onto V . We define the distance
between v1 ∈ V res and v2 ∈ V as

d(v1, v2) =
∥∥∥v1 − v

[t1]
2

∥∥∥
w
+ θ(∞)− θ(t1), (39)

where θ(∞) = limt→∞θ(t) and t1 = λ(v1). We define the
distance between v1, v2 ∈ V as

d(v1, v2) = ∥v1 − v2∥w , (40)

where the weighted norm ∥v∥w of v ∈ V is defined as

∥v∥w = sup
τ≤0

∥v(τ)∥w(−τ). (41)

By the above extension of d, Propositions 2 and 3 hold on
V res ∪ V . This can be proved in the same way by defining
λ(v) = ∞ and v[∞] = v for any v ∈ V . Hereafter, we use
d as the metric on V res ∪ V . The following two propositions
hold:

Proposition 4. The set V is compact.

Proposition 4 is proved in the same way as Lemma 1 of
[16].

Proposition 5. The set V res ∪ V is compact.

The proof is given in Appendix C. For any v ∈ V , a
function v[t] ∈ V res converges to v as t → ∞. Therefore,
from Proposition 5, the set V res∪V is a compact metric space
of accumulation points of V res.

We define the value of the functional f : V res → R on V
added to the domain by completion as follows:

f(v) = lim
i→∞

f
(
v[i]
)

(v ∈ V ) . (42)

In this subsection, let an operator F : U → Y correspond
to the functional f . As explained in the remainder of this
subsection, it is important for the convergence of the limit in
(42) that the operator F has fading memory defined as follows:

Definition 7. A RIT operator F : U → Y is said to have
fading memory if F satisfies

∀ε > 0,∃δ > 0,∃T ≥ 0,∀u1, u2 ∈ U,∀t1, t2 ≥ T,

max
τ∈[−T,0]

∥u1(τ + t1)− u2(τ + t2)∥ < δ

⇒ |Fu1(t1)− Fu2(t2)| < ε.

(43)

The difference from the fading memory (8) of BIT operators
is that (43) is the condition for outputs at arbitrary times t1
and t2. This is because RIT operators do not have the concept
of time invariance, and time 0 cannot represent any other time.

The following assumptions about the operator F are closely
related to the continuity of the functional f .

Assumption 2.
(i) ∀ε > 0,∀u1 ∈ U,∀t ≥ 0,∃δ > 0,∀u2 ∈ U,

max
τ∈[0,t]

∥u1(τ)− u2(τ)∥ < δ ⇒ |Fu1(t)− Fu2(t)| < ε.

(ii) The image F (U) is equicontinuous.
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(iii) The operator F has fading memory.

Condition (i) means that Fu(t) is continuous with respect
to the value of u on [0, t]. This implies that Fu(t) does not
depend on the value of u after t. Hence, causality is derived
from condition (i). Then, the following two propositions hold:

Proposition 6. If the operator F satisfies conditions (i) and
(ii) of Assumption 2, the functional f : V res → R is
continuous.

Proposition 7. If the operator F satisfies condition (iii) of
Assumption 2, i.e., F has fading memory, the value of f on V
can be defined as (42), and f : V res ∪ V → R is continuous
at any v ∈ V .

The proofs are given in Appendices D and E. From Propo-
sition 7, if F has fading memory, we can continuously define
an output of f for a LIT input v ∈ V as a limit of outputs for
a finite-length input in V res. A continuous functional from
LIT inputs to real numbers can be converted into a time-
invariant BIT operator with fading memory [16]. Therefore, an
RIT operator with fading memory defines the time-invariant
BIT operator with fading memory via the functional. In
the remainder of this paper, let the domain of functionals
corresponding to an operator with fading memory be V res∪V
and the value of the functionals on V be defined by (42).

From Propositions 6 and 7, if the operator F satisfies
Assumption 2, the functional f is continuous on the compact
set V res ∪ V , i.e., f is uniformly continuous. The converse is
also true, as shown by the following proposition:

Proposition 8. If and only if the operator F : U → Y satisfies
Assumption 2, the functional f : V res → R is uniformly
continuous.

The proof is given in Appendix F.

G. Application of Stone–Weierstrass Theorem

We define the separation property of a reservoir as follows:

Definition 8. Let a reservoir F be a set of operators from U
to Y with fading memory, and let F be a set of functionals
from V res ∪V to R corresponding to each operator in F. The
reservoir F is said to have the separation property if, for any
distinct v1, v2 ∈ V res ∪ V , there is some f ∈ F that satisfies
f(v1) ̸= f(v2).

Unlike Definition 2, this separation property is expressed
by functionals, but the meaning is the same, i.e., different
inputs give different outputs. Let F∗ be the set of operators
F : U → Y satisfying Assumption 2. Then, the following
theorem guarantees reservoir universality in Definition 4:

Theorem 3. Suppose that a reservoir F ⊂ F∗ has the
separation property. Then, the reservoir F is universal for
uniform approximations of an operator in F∗.

Theorem 3 gives the same result as Theorem 1 for a
reservoir represented by RIT operators.

Proof of Theorem 3. Let F be a set of functionals from
V res ∪ V to R corresponding to each operator in F and

f∗ : V res ∪ V → R be a functional corresponding to F ∗.
From Proposition 5, the set V res ∪ V is compact. From
Propositions 6 and 7, functionals in F and f∗ are continuous
on V res ∪ V . Because F has the separation property, for any
distinct v1, v2 ∈ V res ∪ V , there is some f ∈ F that satisfies
f(v1) ̸= f(v2). Therefore, from Theorem 2, there exist i ∈ N,
f1, . . . , fi ∈ F , and a polynomial p : Ri → R that satisfy

∀v ∈ V res ∪ V, |f∗(v)− p(f1(v), . . . , fi(v))| < ε. (44)

From (25), we can obtain (15) by substituting v = S̄(u, t) ∈
V res into (44), which proves Theorem 3.

III. RESERVOIR WITHOUT FADING MEMORY

A. Extension of the Stone–Weierstrass Theorem

Theorem 3 is still not sufficient to allow us to use a general
nonlinear state-space system as a reservoir. This is because
Theorem 3 requires the operators in a reservoir to have fading
memory (condition (iii) in Assumption 2). For the fading
memory of operators, it is still important that a system (ϕ, ψ)
has a unique equilibrium state. For example, we consider the
following time-invariant case:

ϕ(x, u) = −x (x+ 1) (x− 1) + u,

ψ(x, u) = x (x ∈ R, u ∈ R) .
(45)

This system has two stable equilibria and one unstable equi-
librium. Let the state at time 0 be x0 = 0 and the RIT operator
representing the system be F . We show that F does not have
fading memory. We define two inputs u1 and u2 as follows:

u1(t) = exp(−t), u2(t) = −exp(−t) (t ≥ 0) . (46)

The state trajectories for u1 and u2 converge to stable equi-
libria 1 and −1, respectively. Hence, we have

lim
t→∞

|Fu1(t)− Fu2(t)| = 2. (47)

Let ε < 2 be a positive number. Because u1(t) − u2(t)
converges to 0 as t → ∞, for any δ > 0 and T ≥ 0, there is
some t ≥ T satisfying the following:

max
τ∈[−T,0]

∥u1(τ + t)− u2(τ + t)∥ < δ

∧ |Fu1(t)− Fu2(t)| ≥ ε.
(48)

This violates the fading memory of F .
Theorem 3 is proved using Theorem 2. Because Theorem 2

requires continuity of functionals, operators in the reservoir
must satisfy Assumption 2, including fading memory. To
guarantee the universality of a reservoir composed of operators
without fading memory, we extend Theorem 2 as follows to
handle discontinuous functionals:

Theorem 4. Let E be a compact metric space and F be a set
of bounded functions from E to R. Suppose that the following
holds for any distinct x1, x2 ∈ E:

∃δ > 0,∃i ∈ N,∃f1, . . . , fi ∈ F ,

(f1, . . . , fi) (Nδ(x1)) ∩ (f1, . . . , fi) (Nδ(x2)) = ∅.
(49)
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Then, for any continuous function f∗ : E → R and for any
ε > 0, there exist i ∈ N, f1, . . . , fi ∈ F , and a polynomial
p : Ri → R that satisfy the following:

∀x ∈ E, |f∗(x)− p(f1(x), . . . , fi(x))| < ε. (50)

The function (f1, . . . , fi) and the neighborhood Nδ are
defined in the introduction.

Proof of Theorem 4. Let B(E) and C(E) be the sets of
bounded and continuous functions from E to R, respectively.
Because E is compact, C(E) ⊂ B(E) holds. Let R[F ] ⊂
B(E) be the polynomial ring in F over the field R, i.e.,
R[F ] is the minimum set satisfying

(i) F ⊂ R[F ] and e ∈ R[F ], where e ∈ C(E) is a constant
function that returns a value of 1.

(ii) ∀f1, f2 ∈ R[F ],∀c ∈ R,
f1 + f2 ∈ R[F ], f1f2 ∈ R[F ], cf1 ∈ R[F ].

We define the norm of f ∈ B(E) as

∥f∥ = sup
x∈E

|f(x)| . (51)

We define the distance between f1, f2 ∈ B(E) as ∥f1 − f2∥.
The following holds for the closure R[F ] of R[F ].

∀f1, f2 ∈ R[F ],∀c ∈ R,
f1 + f2 ∈ R[F ], f1f2 ∈ R[F ], cf1 ∈ R[F ].

(52)

The result of Theorem 4 is equivalent to C(E) ⊂ R[F ].
Let f∗ be an arbitrary function in C(E). Theorem 4 is

proved using the following three lemmas.

Lemma 1. For f1, . . . , fi ∈ R[F ], we define fmax =
max {f1, . . . , fi} and fmin = min {f1, . . . , fi} as follows:

fmax(x) = max {f1(x), . . . , fi(x)} ,
fmin(x) = min {f1(x), . . . , fi(x)} (x ∈ E) .

(53)

Then, fmax, fmin ∈ R[F ].

For the proof of Lemma 1, see p.138 of [19].

Lemma 2. For any a, b ∈ E, there is some f ∈ R[F ] that is
continuous at a and b and satisfies f(a) = f∗(a) and f(b) =
f∗(b).

Proof of Lemma 2. If a = b, a constant function f =
f∗(a)e ∈ R[F ] satisfies the condition. If a ̸= b, from the
condition of Theorem 4, there exist δ > 0, i ∈ N, and
f1, . . . , fi ∈ F that satisfy

(f1, . . . , fi) (Nδ(a)) ∩ (f1, . . . , fi) (Nδ(b)) = ∅. (54)

We define Y ⊂ Ri as

Y = (f1, . . . , fi) (E). (55)

Because f1, . . . , fi is bounded, Y is compact. We define Ya,
Yb ⊂ Y ⊂ Ri as

Ya = (f1, . . . , fi) (Nδ(a)),

Yb = (f1, . . . , fi) (Nδ(b)).
(56)

Because Ya ∩ Yb = ∅, Urysohn’s lemma implies that there is
a continuous function g : Y → R satisfying

g(y) = f∗(a) (y ∈ Ya) ,

g(y) = f∗(b) (y ∈ Yb) .
(57)

We define the function f ∈ B(E) as

f(x) = g((f1, . . . , fi) (x)). (58)

From (56) and (57), the function f is continuous at a and b
and satisfies f(a) = f∗(a) and f(b) = f∗(b).

We now prove that f ∈ R[F ]. Let ε be an arbitrary positive
number. Because g is continuous on the compact set Y ⊂ Ri,
Theorem 2 implies that there is a polynomial q : Ri → R that
satisfies

∀y ∈ Y , |g(y)− q(y)| < ε. (59)

We define f ′ ∈ R[F ] as

f ′(x) = q((f1, . . . , fi) (x)). (60)

From (59), ∥f − f ′∥ < ε holds. Therefore, f ∈ R[F ].

Lemma 3. For any a ∈ E and ε > 0, there is some f ∈ R[F ]
that is continuous at a and satisfies f(x) < f∗(x)+ε (x ∈ E)
and f(a) = f∗(a).

Proof of Lemma 3. From Lemma 2, for any b ∈ E, there is
some fb ∈ R[F ] that is continuous at a and b and satisfies
fb(a) = f∗(a) and fb(b) = f∗(b). Because f∗ and fb are
continuous at b, there is some δb > 0 that satisfies fb(x) <
f∗(x) + ε (x ∈ Nδb(b)). The family {Nδb(b) |b ∈ E } is an
open cover of the compact set E. Therefore, there exist i ∈ N
and b1, . . . , bi ∈ E such that

{
Nδb1

(b1), . . . , Nδbi
(bi)
}

covers
E. The function f = min {fb1 , . . . , fbi} is continuous at a and
satisfies f(x) < f∗(x) + ε (x ∈ E) and f(a) = f∗(a). From
Lemma 1, f ∈ R[F ].

Theorem 4 is proved using the above lemmas. From Lemma
3, for any a ∈ E and ε > 0, there is some fa ∈ R[F ] that is
continuous at a and satisfies fa(x) < f∗(x) + ε (x ∈ E) and
fa(a) = f∗(a). Because f∗ and fa are continuous at a, there
is some δa > 0 that satisfies fa(x) > f∗(x)−ε (x ∈ Nδa(a)).
The family {Nδa(a) |a ∈ E } is an open cover of the compact
set E. Therefore, there exist i ∈ N and a1, . . . , ai ∈ E such
that

{
Nδa1

(a1), . . . , Nδai
(ai)

}
covers E. The function f =

max {fa1 , . . . , fai} satisfies f∗(x) − ε < f(x) < f∗(x) + ε
(x ∈ E), i.e., ∥f∗ − f∥ < ε. From Lemma 1, f ∈ R[F ].

From the above, for any f∗ ∈ C(E) and ε > 0, there is
some f ∈ R[F ] that satisfies ∥f∗ − f∥ < ε. Therefore, C(E)
is included by the closure of R[F ], i.e., R[F ] itself, which
proves Theorem 4.

B. Universality

To state the main theorem in this section, we explain some
properties of operators. An operator F : U → Y is said to be
bounded if the image F (U) is uniformly bounded.

Lemma 4. If an operator F : U → Y satisfies Assumption 2,
F is bounded.
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Proof of Lemma 4. The statement is clear from Propositions
6 and 7, together with the compactness of V res ∪ V .

The following introduces a novel concept on a set of
operators:

Definition 9. Let F be a set of causal operators from U
to Y , and let F be a set of functionals from V res to R
corresponding to each operator in F. The set F is said to have
the neighborhood separation property (NSP) if the following
holds for any distinct v1, v2 ∈ V res ∪ V :

∃δ > 0,∃i ∈ N,∃f1, . . . , fi ∈ F ,

(f1, . . . , fi) (Nδ(v1) ∩ V res)

∩(f1, . . . , fi) (Nδ(v2) ∩ V res) = ∅.
(61)

The set Nδ(v) is a δ-neighborhood of v ∈ V res ∪ V ,
but only its intersection with V res is used. Therefore, (61)
does not depend on the value of f ∈ F on V . Hence, the
NSP can be defined for F, even if there is some f ∈ F
without fading memory. The separation property of Definition
8 guarantees that distinct points correspond to different values.
In contrast, the NSP of Definition 9 guarantees that the images
of neighborhoods of distinct points are disjoint from each
other. The NSP is a stronger condition than the separation
property. However, the following lemma holds for the NSP:

Lemma 5. Suppose that a set F of operators from U to Y
satisfying Assumption 2 has the separation property. Then, the
set F has the NSP.

Proof of Lemma 5. Let F be a set of functionals from V res∪
V to R corresponding to each operator in F. Because F has the
separation property, for any distinct v1, v2 ∈ V res ∪ V , there
is some f ∈ F that satisfies f(v1) ̸= f(v2). Because the op-
erator corresponding to f satisfies Assumption 2, Proposition
8 implies that the functional f is continuous. Hence, we have

∃δ > 0, f(Nδ(v1) ∩ V res) ∩ f(Nδ(v2) ∩ V res) = ∅, (62)

which proves Lemma 5.

Therefore, the NSP is a weaker condition than the combi-
nation of the separation property and Assumption 2.

The main theorem in Section III is as follows:

Theorem 5. Suppose that a set F of bounded and causal
operators from U to Y has the NSP. Then, the reservoir F is
universal for uniform approximations of an operator in F∗.

In Theorem 3, the reservoir F must have the separation
property, and operators in F must satisfy Assumption 2. In
Theorem 5, the reservoir F must have the NSP, and operators
in F must be bounded. From Lemmas 4 and 5, the condition of
Theorem 5 is obtained from that of Theorem 3. Moreover, not
only does the condition of Theorem 3 explicitly not include
the three conditions of Assumption 2, but it does not actually
require them. Therefore, Theorem 5 requires the operators in
the reservoir to have neither fading memory nor continuity
with respect to inputs and time.

Proof of Theorem 5. Let F be a set of functionals from
V res to R corresponding to each operator in F, and let

f∗ : V res ∪ V → R be a functional corresponding to F ∗.
From Proposition 5, the set V res ∪V is compact. Because the
operators in F are bounded, the functionals in F are also
bounded. From Propositions 6 and 7, the functional f∗ is
continuous on V res ∪ V . Because the operators in F do not
always have fading memory, we cannot define the value of
f ∈ F on V by (42). Therefore, we define the value as

f(v) = 0 (v ∈ V ) . (63)

For v ∈ V res ∪ V , we define a functional gv : V res ∪ V → R
as

gv(v
′) =

{
d(v, v′) + 1 (v′ ∈ V ) ,

0 (v′ ∈ V res) .
(64)

Because the functional gv is continuous on the compact set
V , gv is bounded on V res ∪V . We define a set G of bounded
functionals as

G = {gv |v ∈ V res ∪ V } . (65)

Lemma 6. For any distinct v1, v2 ∈ V res ∪ V , the following
holds:

∃δ > 0,∃i ∈ N,∃f1, . . . , fi ∈ F ∪ G ,

(f1, . . . , fi) (Nδ(v1)) ∩ (f1, . . . , fi) (Nδ(v2)) = ∅.
(66)

Proof of Lemma 6. For δ > 0, we define sets V1(δ), V res
1 (δ),

V2(δ), and V res
2 (δ) as

V1(δ) = Nδ(v1) ∩ V, V res
1 (δ) = Nδ(v1) ∩ V res,

V2(δ) = Nδ(v2) ∩ V, V res
2 (δ) = Nδ(v2) ∩ V res.

(67)

Because F has the NSP, we have

∃δ > 0,∃i ∈ N,∃f1, . . . , fi ∈ F ,

(f1, . . . , fi) (V res
1 ) ∩ (f1, . . . , fi) (V res

2 ) = ∅.
(68)

We need to prove that gv1
∈ G satisfies

∃δ > 0, gv1(V1(δ)) ∩ gv1(V2(δ)) = ∅. (69)

If v1, v2 ∈ V , (69) holds because the restriction of gv1 to V
is continuous and satisfies gv1(v1) ̸= gv1(v2). If v1 ∈ V res,
we have V1(δ) = ∅ for δ < θ(∞)− θ(t1). Hence, (69) holds.
If v2 ∈ V res, (69) can be shown in the same way.

From the definition of gv1 , for any δ > 0, we have

gv1(V
res
1 (δ)) = gv1(V

res
2 (δ)) = {0} ,

gv1(V1(δ)), gv1(V2(δ)) ⊂ [1,∞) .
(70)

Therefore, we have

gv1(V
res
1 (δ)) ∩ gv1(V2(δ)) = ∅,

gv1(V1(δ)) ∩ gv1(V res
2 (δ)) = ∅.

(71)

From (68), (69), and (71), there is some δ > 0 satisfying

(f1, . . . , fi, gv1) (Nδ(v1)) ∩ (f1, . . . , fi, gv1) (Nδ(v2)) = ∅.
(72)

From Theorem 4 and Lemma 6, there exist j ∈ N,
f1, . . . , fj ∈ F ∪ G , and a polynomial p′ : Rj → R that
satisfy

∀v ∈ V res ∪ V, |f∗(v)− p′(f1(v), . . . , fj(v))| < ε. (73)
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Fig. 2. Structure of the ith subsystem of the reservoir.
Fig. 3. Discrete-time input ud and continuous-time input u for test.

Fig. 4. Reservoir states x1, x14, x27, x40 for test input. Fig. 5. Target output y∗ and RC model output ŷ for test input.

Let i be the number of functionals contained in F among
f1, . . . , fj . Without loss of generality, we can assume that
f1, . . . , fi ∈ F and fi+1, . . . , fj ∈ G . We define a polynomial
p : Ri → R as

p(x1, . . . , xi) = p′(x1, . . . , xi, 0, . . . , 0) (x1, . . . , xi ∈ R) .
(74)

For v ∈ V res, fi+1(v), . . . , fj(v) = 0 holds. Therefore, from
(25), we obtain (15) by substituting v = S̄(u, t) ∈ V res and
(74) into (73). Theorem 5 has been proved.

C. Example

We present an example of a successful reservoir without
fading memory. Consider a reservoir that consists of 40
subsystems, where the ith subsystem is defined as follows for
1 ≤ i ≤ 40:

ẋi =vi,

v̇i =
1

m

[
kaxi

(
l√

x2i + h2
− 1

)
− civi + Fi

]
,

Fi =


kb (x2 − x1) + 40u− 10 (i = 1),

kb (xi+1 + xi−1 − 2xi) (2 ≤ i ≤ 39),

kb (x39 − x40) (i = 40),

(75)

where xi, vi ∈ R are the states, u ∈ [0, 0.5] is the input, and
h, l, m, ci, ka, kb ∈ R are positive constants. We define the
state vectors x, v ∈ R40 and the reservoir output y ∈ R40 as
follows:

x = (x1, . . . , x40) , v = (v1, . . . , v40) , y = x. (76)

Each subsystem is a spring–mass–damper system. As shown
in Fig. 2, a spring with a natural length l and coefficient ka

connects a point of mass m to a fixed fulcrum. The mass point
moves on a straight rail at a distance h from the fixed point
while subject to viscous friction ci. The states xi and vi are the
position and velocity of the mass point. The mass point in the
ith subsystem is connected to the mass points in the (i− 1)th
and (i+ 1)th subsystems by a spring with a constant kb. The
variable Fi is the force that a mass point receives from other
mass points and the input.

We set the constants as follows:

h = 1.2, l = 1.3, m = 1, ka = 0.05, kb = 3,

ci =

{
0.3 (1 ≤ i ≤ 39),

2 (i = 40).

(77)

The spring in the ith subsystem has a natural length of l when
x2i = l2 − h2 = 1/4. Therefore, for the zero input, (x, v) =
(1/2, 0) and (x, v) = (−1/2, 0) are stable equilibrium states,
where 1 = (1, . . . , 1) ∈ R40. Hence, the reservoir does not
have fading memory, like the example in Section III.A. We set
the initial state of the reservoir as x(0) = 1/2 and v(0) = 0.

We use a neural network as the readout p : R40 → R.
Because the neural network is a continuous function, it can
be replaced by polynomials. The neural network p has three
hidden layers with 60 nodes. As activation functions, we use
rectified linear units (ReLU) in the hidden layers and the
identity function in the output layer. The output of the RC
model is defined as follows:

ŷ = p(y). (78)

As the approximation target, we use the following discrete-
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time system:

y∗(t+ 1) =0.3x∗1(t) + 0.05x∗1(t)

[
10∑
i=1

x∗i (t)

]
+ 1.5z∗9(t)ud(t) + 0.1,

x∗i (t+ 1) =

{
y∗(t+ 1) (i = 1)

x∗i−1(t) (2 ≤ i ≤ 10)
,

z∗i (t+ 1) =

{
ud(t) (i = 1)

z∗i−1(t) (2 ≤ i ≤ 9)
,

(79)

where x∗i (t) ∈ R (1 ≤ i ≤ 10) and z∗i (t) ∈ R (1 ≤ i ≤ 9) are
the states, and ud(t) ∈ [0, 0.5] and y∗(t) ∈ R are the input and
output, respectively. The states x∗i and z∗i are the memory of
the past output and input, respectively. We set the initial state
of the target (79) as x∗i (0) = 0.3798 (1 ≤ i ≤ 10) and z∗i (0) =
0.25 (1 ≤ i ≤ 9). The number 0.3798 is the limit of the output
y∗ for a constant input of 0.25. The target (79) proposed by
Atiya et al. [20] is generally called NARMA10 and is widely
used as a benchmark task for time series predictions.

For the training process, we generate an independent and
identically distributed input sequence ud(t) (t ∈ Z+) sam-
pled from the uniform distribution on [0, 0.5], where Z+ =
{0, 1, 2, . . .}. We define the continuous-time input u : R+ →
[0, 0.5] to the reservoir as follows:

u(t) =

{
ud(0) (0 ≤ t < 1),

ud(⌊t⌋) + α(t) (1 ≤ t),

α(t) = (ud(⌊t⌋ − 1)− ud(⌊t⌋)) exp
(
10

t− ⌊t⌋
t− ⌊t⌋ − 1

)
,

(80)

where ⌊·⌋ is the floor function. As shown in Fig. 3, the
continuous-time input u is a step function-like form defined
by the discrete-time input ud. We do not use the step function
itself because it is not continuous. Let ŷ : R+ → R and
y∗ : Z+ → R be the output of the RC model and target for
the input u and ud, respectively. We train the readout p to
minimize the following loss function:

L(p, ud) =
1

N

N∑
t=0

(
ŷ(t)− y(t)

∗)2
, (81)

where N = 50000. We test the trained RC model using
another input ud generated in the same way as that used in
the training process. The inputs, reservoir states, and outputs
in the test are shown in Figs. 3–5, respectively. The value of
the loss function L is 2.5× 10−4 in the test. From Fig. 5, the
value of the loss function L is small compared with the range
of outputs and so the approximation is successful.

IV. CONCLUSION

For RC with a polynomial readout, we have guaranteed the
universality of a uniform approximation of an operator with
fading memory in the case where the reservoir is represented
by a set of RIT operators without fading memory. To achieve
this, we converted the RIT operators into functionals and
applied the extended Stone–Weierstrass theorem. For the appli-
cation of the Stone–Weierstrass theorem, we defined a metric

on the functional domain, which is a set of inputs defined on
time intervals of various lengths. We have proposed a novel
sufficient reservoir condition, NSP, which requires neither the
fading memory of a reservoir nor the continuity of the reservoir
output with respect to inputs and time. Therefore, our result
can be applied to very common reservoirs, such as nonlinear
time-variant state-space systems with multiple equilibria and a
discontinuous output function. This is particularly significant
in the field of physical RC, in which reservoirs are not easily
adjustable. We presented an example of a physical reservoir
without fading memory from which the RC model successfully
approximates NARMA10, a benchmark task for time series
prediction.

APPENDIX A
PROOF OF PROPOSITION 2

Let v1, v2, and v3 be arbitrary elements of V res. Clearly d
satisfies

d(v1, v2) = d(v2, v1). (82)

Therefore, without loss of generality, we can assume that times
t1 = λ(v1), t2 = λ(v2), t3 = λ(v3) ∈ R+ satisfy t1 ≤ t2 ≤
t3.

We prove that d satisfies

d(v1, v2) = 0 ⇔ v1 = v2. (83)

In (83), it is clear that the left-hand side is obtained from the
right-hand side. We prove that the right-hand side is obtained
from the left-hand side by considering the contraposition. If
v1 ̸= v2, either t1 ̸= t2 or ∃τ ∈ [−t1, 0] such that v1(τ) ̸=
v2(τ), or both. If t1 ̸= t2 holds, then because θ is strictly
increasing, we have

d(v1, v2) ≥ θ(t2)− θ(t1) > 0. (84)

If there is some τ ∈ [−t1, 0] satisfying v1(τ) ̸= v2(τ), we
have

d(v1, v2) ≥
∥∥∥v1 − v

[t1]
2

∥∥∥
w
> 0. (85)

Therefore, d satisfies (83).
We prove that d satisfies the following triangle inequalities:

d(v1, v2) + d(v2, v3) ≥ d(v3, v1), (86a)
d(v2, v3) + d(v3, v1) ≥ d(v1, v2), (86b)
d(v3, v1) + d(v1, v2) ≥ d(v2, v3). (86c)

The weighted norm ∥·∥w satisfies∥∥∥v2 − v
[t2]
3

∥∥∥
w
≥
∥∥∥v[t1]2 − v

[t1]
3

∥∥∥
w
. (87)

Therefore, (86a) is proved because

d(v1, v2) + d(v2, v3)

=
∥∥∥v1 − v

[t1]
2

∥∥∥
w
+ θ(t2)− θ(t1)

+
∥∥∥v2 − v

[t2]
3

∥∥∥
w
+ θ(t3)− θ(t2)

≥
∥∥∥v1 − v

[t1]
2

∥∥∥
w
+
∥∥∥v[t1]2 − v

[t1]
3

∥∥∥
w
+ θ(t3)− θ(t1)

≥
∥∥∥v[t1]3 − v1

∥∥∥
w
+ θ(t3)− θ(t1) = d(v3, v1).

(88)
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Inequality (86b) is proved in the same way as (86a). From the
condition (iii) of Assumption 1, (86c) is proved because

d(v3, v1) + d(v1, v2)

=
∥∥∥v[t1]3 − v1

∥∥∥
w
+ θ(t3)− θ(t1)

+
∥∥∥v1 − v

[t1]
2

∥∥∥
w
+ θ(t2)− θ(t1)

≥
∥∥∥v[t1]2 − v

[t1]
3

∥∥∥
w
+ 2 [θ(t2)− θ(t1)] + θ(t3)− θ(t2)

≥
∥∥∥v2 − v

[t2]
3

∥∥∥
w
+ θ(t3)− θ(t2) = d(v2, v3).

(89)

From (82), (83), and (86), the map d is a metric on V res.

APPENDIX B
PROOF OF PROPOSITION 3

Propositions (31a) and (31b) can be proved in the same way.
Hence, we only prove (31a) here. To prove (31a), we need to
show that

∀ε > 0,∀v1 ∈ V res,∃δ > 0,∀v2 ∈ V res,∥∥∥v[tmin]
1 − v

[tmin]
2

∥∥∥
w
< δ ⇒

∥∥∥v[tmin]
1 − v

[tmin]
2

∥∥∥
w′
<
ε

2
,

(90)

and

∀ε > 0,∀v1 ∈ V res,∃δ > 0,∀v2 ∈ V res,

|θ(t1)− θ(t2)| < δ ⇒ |θ′(t1)− θ′(t2)| <
ε

2
,

(91)

where t1 = λ(v1), t2 = λ(v2), and tmin = min {t1, t2}.
First, we prove (90). Because limt→∞ w′(t) = 0, for any

ε > 0, there is some T ≥ 0 satisfying Mw′(T ) < ε/2, where
M ≥ 0 is defined in (33). We define a real number R =
w′(0)/w(T ). Let v2 be an arbitrary element of V res, and let
v = v

[tmin]
1 −v[tmin]

2 . Suppose tmin ≤ T . Because w and w′ are
decreasing functions, w(T ) ≤ w(−τ) and w′(−τ) ≤ w′(0)
holds for any τ ∈ [−tmin, 0]. Hence, we have

∥v∥w′ ≤ sup
τ∈[−tmin,0]

v(τ)w′(0)

= R sup
τ∈[−tmin,0]

v(τ)w(T )

≤ R ∥v∥w .

(92)

Therefore, δ < ε/ (2R) satisfies (90).
Suppose tmin > T . From the definition of the norm ∥·∥w′ ,

we have

∥v∥w′ = max

{∥∥∥v[T ]
∥∥∥
w′
, sup
τ∈[−tmin,−T ]

∥v(τ)∥w′(−τ)

}
.

(93)
In the same way as (92), the following holds for the first term
inside the max operator of (93):∥∥∥v[T ]

∥∥∥
w′

≤ R
∥∥∥v[T ]

∥∥∥
w
≤ R ∥v∥w . (94)

From the definition of M and T , the following holds for the
second term inside the max operator of (93):

sup
τ∈[−tmin,−T ]

∥v(τ)∥w′(−τ) ≤Mw′(T ) <
ε

2
. (95)

Therefore, δ < ε/ (2R) satisfies (90).

Next, we prove (91). We define θ′(∞) = limt→∞θ
′(t).

Because the function θ : R+ → [0, θ(∞)) is continuous
and strictly increasing, it has the continuous inverse θ−1 :
[0, θ(∞)) → R+. Because the function θ′ : R+ → [0, θ′(∞))
is also continuous, the composition θ′ ◦ θ−1 : [0, θ(∞)) →
[0, θ′(∞)) is continuous, i.e.,

∀ε > 0,∀α1 ∈ [0, θ(∞)] ,∃δ > 0,∀α2 ∈ [0, θ(∞)] ,

|α1 − α2| < δ ⇒
∣∣θ′ ◦ θ−1(α1)− θ′ ◦ θ−1(α2)

∣∣ < ε

2
.

(96)

Considering α1 = θ(t1) and α2 = θ(t2), (91) holds.
From (90) and (91), we have

d(v1, v2) =
∥∥∥v[tmin]

1 − v
[tmin]
2

∥∥∥
w
+ |θ(t1)− θ(t2)| < δ

⇒ d′(v1, v2) =
∥∥∥v[tmin]

1 − v
[tmin]
2

∥∥∥
w′

+ |θ′(t1)− θ′(t2)| < ε,

(97)

which proves Proposition 3.

APPENDIX C
PROOF OF PROPOSITION 5

We prove that any infinite sequence (vi)i∈N ∈ V res ∪ V
contains a subsequence converging on V res ∪ V . We define
Na1 and Na2 ⊂ N as

Na1 = {i ∈ N |vi ∈ V } , Na2 = {i ∈ N |vi ∈ V res } . (98)

At least one of the subsequences (vi)i∈Na1
and (vi)i∈Na2

of
(vi)i∈N is an infinite sequence. If the sequence (vi)i∈Na1

∈ V
is infinite, there is a subsequence of (vi)i∈Na1

converging on
V because V is compact.

Suppose that the subsequence (vi)i∈Na2
∈ V res is infinite.

We define the sequence (ti)i∈Na2
∈ R+ as ti = λ(vi) and the

sequence (ṽi)i∈Na2
∈ V as

ṽi(τ) =

{
vi(τ) (−ti ≤ τ ≤ 0),

vi(−ti) (τ < −ti).
(99)

Because the set V is compact, there exist Nb ⊂ Na2 and ṽ ∈ V
that satisfy

lim
i→∞,i∈Nb

d(ṽ, ṽi) = 0. (100)

If (ti)i∈Nb
is not bounded, we have

∃Nc1 ⊂ Nb, lim
i→∞,i∈Nc1

ti = ∞. (101)

If (ti)i∈Nb
is bounded, we have

∃Nc2 ⊂ Nb,∃t ≥ 0, lim
i→∞,i∈Nc2

ti = t. (102)

We prove that if (101) holds, the subsequence (vi)i∈Nc1
∈

V res converges to ṽ ∈ V . From the definition of ṽi, vi(τ) =
ṽi(τ) (τ ∈ [−ti, 0]) holds. Hence, for any t′ ≤ ti,∥∥∥∥ṽ[t′] − v

[t′]
i

∥∥∥∥
w

=

∥∥∥∥ṽ[t′] − ṽ
[t′]
i

∥∥∥∥
w

≤ ∥ṽ − ṽi∥w . (103)

From (103), the distance d(ṽ, vi) satisfies

d(ṽ, vi) =
∥∥∥ṽ[ti] − vi

∥∥∥
w
+ θ(∞)− θ(ti)

≤∥ṽ − ṽi∥w + θ(∞)− θ(ti)

=d(ṽ, ṽi) + θ(∞)− θ(ti).

(104)
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If i → ∞ and i ∈ Nc1, ṽi → ṽ and ti → ∞ hold. Therefore,
d(ṽ, vi) converges to 0.

We prove that if (102) holds, the subsequence (vi)i∈Nc2
∈

V res converges to ṽ[t] ∈ V res. From (103), the distance
d
(
ṽ[t], vi

)
satisfies the following:

d
(
ṽ[t], vi

)
=
∥∥∥ṽ[tmin] − v

[tmin]
i

∥∥∥
w
+ |θ(t)− θ(ti)|

≤ ∥ṽ − ṽi∥w + |θ(t)− θ(ti)|
=d(ṽ, ṽi) + |θ(t)− θ(ti)| ,

(105)

where tmin = min {t, ti}. If i→ ∞ and i ∈ Nc2, then ṽi → ṽ
and ti → t hold. Therefore, d

(
ṽ[t], vi

)
converges to 0.

From the above, any infinite sequence (vi)i∈N ∈ V res ∪ V
contains a subsequence converging on V res∪V , which proves
Proposition 5.

APPENDIX D
PROOF OF PROPOSITION 6

Let v1 be an arbitrary element of V res. We prove that f is
continuous at v1. Let ε be an arbitrary positive number. From
condition (ii) of Assumption 2, we have

∃δ1 > 0,∀v2 ∈ V res,

|t1 − t2| < δ1 ⇒ |Fu2(t1)− Fu2(t2)| <
ε

2
,

(106)

where u2 = σ(v2), t1 = λ(v1), and t2 = λ(v2). From
condition (i) of Assumption 2, we have

∃δ2 > 0,∀v2 ∈ V res,

max
τ∈[0,t1]

∥u1(τ)− u2(τ)∥ < δ2 ⇒ |Fu1(t1)− Fu2(t1)| <
ε

2
,

(107)

where u1 = σ(v1). Because the Lipschitz constants of u1 and
u2 are K or less, for any u2 ∈ U , we have

max
τ∈[0,t1]

∥u1(τ)− u2(τ)∥

≤ max
τ∈[−tmin,0]

∥u1(τ + t1)− u2(τ + t2)∥+K |t1 − t2|

≤ 1

w(t1)

∥∥∥v[tmin]
1 − v

[tmin]
2

∥∥∥
w
+K |t1 − t2| ,

(108)

where tmin = min {t1, t2}. Because the function θ is strictly
increasing and continuous, we have

∃δ3 > 0,∀t2 ≥ 0,

|θ(t1)− θ(t2)| < δ3 ⇒ |t1 − t2| < min

{
δ1,

δ2
2K

}
.

(109)

Let us define δ > 0 as

δ = min

{
w(t1)

2
δ2, δ3

}
. (110)

Then, from (108) and (109), we have

d(v1, v2) < δ

⇒
(
|t1 − t2| < δ1, max

τ∈[0,t1]
∥u1(τ)− u2(τ)∥ < δ2

)
.

(111)

Therefore, from (106) and (107), we have

d(v1, v2) < δ ⇒ |Fu1(t1)− Fu2(t2)| < ε. (112)

Because Fu1(t1) = f(v1) and Fu2(t2) = f(v2), f is
continuous at v1, which proves Proposition 6.

APPENDIX E
PROOF OF PROPOSITION 7

The fading memory of F is equivalent to

∀ε > 0,∃δ > 0,∃T ≥ 0,∀v1, v2 ∈ V res,(
λ(v1), λ(v2) ≥ T, max

τ∈[−T,0]
∥v1(τ)− v2(τ)∥ < δ

)
⇒ |f(v1)− f(v2)| < ε.

(113)

We use the following lemma:

Lemma 7. Any v ∈ V and sequences (vi)i∈N, (v′i)i∈N ∈ V res

converging to v satisfy

lim
i→∞

|f(vi)− f(v′i)| = 0. (114)

Proof of Lemma 7. Let the sequences (ti)i∈N and (t′i)i∈N ∈
R+ be defined as ti = λ(vi) and t′i = λ(v′i), respectively.
Let ε be an arbitrary positive number. Because F has fading
memory, (113) implies

∃δ > 0,∃T ≥ 0,∀i ∈ N,(
ti, t

′
i ≥ T, max

τ∈[−T,0]
∥vi(τ)− v′i(τ)∥ < δ

)
⇒ |f(vi)− f(v′i)| < ε.

(115)

Because θ(∞) − θ(ti) ≤ d(v, vi) → 0 as i → ∞, we have
ti → ∞ as i → ∞. In the same way, we have t′i → ∞ as
i→ ∞. Hence, we have

∃k ∈ N,∀i > k, ti, t
′
i ≥ T. (116)

Because
∥∥v[ti] − vi

∥∥
w
< d(v, vi) → 0 as i → ∞, we have

the following as i→ ∞ with i > k:

max
τ∈[−T,0]

∥v(τ)− vi(τ)∥ ≤ 1

w(T )

∥∥∥v[T ] − v
[T ]
i

∥∥∥
w

≤ 1

w(T )

∥∥∥v[ti] − vi

∥∥∥
w
→ 0.

(117)

In the same way, we have

max
τ∈[−T,0]

∥v(τ)− v′i(τ)∥ → 0 (i > k, i→ ∞) . (118)

From (117), (118), and the triangle inequality, we have

max
τ∈[−T,0]

∥vi(τ)− v′i(τ)∥ → 0 (i > k, i→ ∞) . (119)

From (115), (116), and (119), we have

∀ε > 0,∃k ∈ N,∀i > k, |f(vi)− f(v′i)| < ε, (120)

which proves Lemma 7.

To prove Proposition 7 using Lemma 7, we first prove that
the right-hand side of (42) converges. We have λ

(
v[i]
)
= i

and

∀T ≥ 0,∀i, j ≥ T, max
τ∈[−T,0]

∥∥∥v[i](τ)− v[j](τ)
∥∥∥ = 0. (121)

Because F has fading memory, (113) leads to

∀ε > 0,∃T ≥ 0,∀i, j ≥ T,
∣∣∣f(v[i])− f

(
v[j]
)∣∣∣ < ε. (122)

Therefore,
(
f
(
v[i]
))

i∈N is a Cauchy sequence in R and
converges.
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Next, we prove that if the value of f on V is defined as
(42), f is continuous on V . Let v be an arbitrary element of V
and (vi)i∈N ∈ V res ∪ V be an arbitrary sequence converging
to v. If vi ∈ V , there is some ti ∈ R+ satisfying

d
(
vi, v

[ti]
i

)
< 2−i,

∣∣∣f(vi)− f
(
v
[ti]
i

)∣∣∣ < 2−i. (123)

Let us define a sequence (v′i)i∈N ∈ V res as

v′i =

{
vi (vi ∈ V res) ,

v
[ti]
i (vi ∈ V ) .

(124)

We have the following as i→ ∞:

d(v, v′i) ≤ d(v, vi) + d(vi, v
′
i) < d(v, vi) + 2−i → 0, (125)

|f(vi)− f(v′i)| < 2−i → 0. (126)

From (125), v′i ∈ V res converges to v like v[i] ∈ V res. Hence
From Lemma 7 and (42), f(v′i) → f(v) holds. Therefore,
from (126), f(vi) → f(v) holds, which proves Proposition 7.

APPENDIX F
PROOF OF PROPOSITION 8

From Propositions 6 and 7, if F satisfies Assumption 2, the
value of f on V can be defined as (42) and f is continuous on
the compact set V res∪V . Hence, the functional f is uniformly
continuous on V res ∪ V .

We now prove that if f is uniformly continuous on V res, F
satisfies Assumption 2. Let ε be an arbitrary positive number.
There is some γ > 0 satisfying

∀v1, v2 ∈ V res, d(v1, v2) < γ ⇒ |f(v1)− f(v2)| < ε. (127)

First, we prove condition (i) of Assumption 2. Let u1 be an
arbitrary element of U and t ≥ 0 be an arbitrary time. Because
w is a map to (0, 1], for any u2 ∈ U , we have

d(v1, v2) ≤ max
τ∈[0,t]

∥u1(τ)− u2(τ)∥ , (128)

where v1 = S̄(u1, t) and v2 = S̄(u2, t). Therefore, from
f(v1) = Fu1(t), f(v2) = Fu2(t), and (127), condition (i)
holds.

Next, we prove condition (ii) of Assumption 2. Let t1 ≥ 0
be an arbitrary time. Because θ is continuous, there is some
δ > 0 satisfying

∀t2 ≥ 0, |t1 − t2| < δ ⇒ K |t1 − t2|+ |θ(t1)− θ(t2)| < γ.
(129)

As the Lipschitz constant of elements in U is K or less, for
any u ∈ U and t2 ≥ 0 satisfying |t1 − t2| < δ, we have

d(v1, v2) = sup
τ∈[−tmin,0]

∥u(τ + t1)− u(τ + t2)∥w(−τ)

+ |θ(t1)− θ(t2)|
≤K |t1 − t2|+ |θ(t1)− θ(t2)| < γ,

(130)

where v1 = S̄(u, t1), v2 = S̄(u, t2), and tmin = min {t1, t2}.
Therefore, from f(v1) = Fu(t1), f(v2) = Fu(t2), and (127),
condition (ii) holds.

Finally, we prove condition (iii) of Assumption 2. Let δ =
γ/3. Let T ≥ 0 satisfy |θ(∞)− θ(T )| < γ/3. Suppose that
u1, u2 ∈ U and t1, t2 ≥ T satisfy

max
τ∈[−T,0]

∥u1(τ + t1)− u2(τ + t2)∥ < δ. (131)

Then, from condition (iii) of Assumption 1, we have

d(v1, v2) =
∥∥∥v[tmin]

1 − v
[tmin]
2

∥∥∥
w
+ [θ(tmax)− θ(tmin)]

≤
∥∥∥v[T ]

1 − v
[T ]
2

∥∥∥
w
+ 2 [θ(tmin)− θ(T )]

+ [θ(tmax)− θ(tmin)]

< max
τ∈[−T,0]

∥u1(τ + t1)− u2(τ + t2)∥

+ 2 [θ(∞)− θ(T )] < γ,

(132)

where v1 = S̄(u1, t1), v2 = S̄(u2, t2), tmax = max {t1, t2},
and tmin = min {t1, t2}. Therefore, from f(v1) = Fu1(t1),
f(v2) = Fu2(t2), and (127), condition (iii) holds, which
proves Proposition 8.
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