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Abstract—Driving style assessment plays an important role in 
intelligent transportation system (ITS) applications, such as 
driving feedback provision and usage-based insurance. Many 
previous studies used supervised algorithms to profile drivers. 
However, this cannot be applied to large-scale unlabeled driving 
data, which are increasingly prevalent in the ITS context. This 
paper proposes a framework that combines lateral and 
longitudinal accelerations to assess a driver’s driving style using 
an unsupervised approach. The framework first detects risky 
acceleration maneuvers using a statistical method based on the G-
G diagram that shows combinations of lateral and longitudinal 
accelerations. Hierarchical clustering was used to classify the 
average driving behavior of drivers into high-, medium-, and low-
risk groups. Further, a unique Gaussian mixture model is trained 
for each driver to score their driving style and decompose risky 
acceleration maneuvers into several risk components. Finally, the 
spatio-temporal characteristics are extracted to provide implicit 
factors on the risky behavior of drivers. The proposed method was 
applied to a large-scale dataset obtained by in-vehicle data 
recorders. The results demonstrate the necessity to combine the 
two axes of acceleration for driver behavior assessment. The 
proposed method can model individual driving styles effectively 
from the driver’s G-G diagram, enabling applicability to large-
scale unlabeled data for driving style assessment. The extraction 
of spatio-temporal characteristics can improve the interpretability 
of the results obtained using machine learning algorithms. All 
these results can be used to create a driver’s risk profile and 
provide tailored feedback for improving driving safety. 

Index Terms—Driving style assessment, G-G diagram, large-
scale driving data, risk profile, unsupervised approach 

I. INTRODUCTION 
Driving style, which has been defined in the literature as the 

way a driver habitually drives a car [1], [2], has a significant 
impact on road safety and fuel consumption [3]. It has been 
reported that inappropriate driving behavior is the main reason 
for accidents [4]. Drivers’ aberrant driving behaviors can also 
lead to an increase in fuel consumption and vehicle emissions 
[5]. In addition, drivers’ different driving styles play an 
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important role in the stability of traffic flow [6], [7]. It has been 
shown that the formation and propagation of traffic oscillations 
are related to the variation in drivers’ driving styles, particularly 
in the absence of lane change [7].  

Recently, the use of various sensors, such as accelerometers, 
gyroscopes, and GPS in driving recorders and smartphones 
have facilitated the collection of large-scale driving data. This 
has provided a wealth of information on the daily driving 
behavior of drivers. The data obtained from these sensors, also 
referred to as naturalistic driving data in the literature [8], 
recorded the driver’s driving behavior, such as the speed and 
acceleration, in an unobtrusive environment. These data 
contribute to a more accurate and objective evaluation of 
driver’s driving behavior. 

Analyzing a driver’s driving style based on these data plays 
an important role in several applications that are used to 
improve a driver’s driving behavior to reduce traffic accidents 
and fuel consumption, including driving feedback provision 
and usage-based insurance (UBI). A driving education program 
that provides tailored feedback on the on-road performance of 
drivers can improve road safety and fuel consumption 
effectively [9], [10]. Additionally, insurance companies are 
adopting UBI schemes wherein the premium amount is 
determined based on the driver’s driving behavior. In UBI 
schemes, high-risk drivers are penalized by increasing the 
premium amount, whereas low-risk drivers are provided 
incentives by reducing the premium amount. Hence, UBI 
schemes encourage drivers to adopt a safe and eco-friendly 
driving style. 

A good and accurate assessment of a driver’s driving style 
underpins these applications. There are generally two popular 
methods to assess a driver’s driving style in the literature. One 
popular method is to classify drivers into several homogeneous 
groups based on their driving behavior. However, this 
classification approach may overlook the heterogeneity in the 
driving styles of the drivers because they generally exhibit 
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diverse styles owing to their different characteristics, such as 
personality and driving experience. Another popular approach 
is to score the driver’s global driving style (e.g., overall 
performance of a driver) or specific driving style (e.g., 
acceleration maneuvers), or both. Each driver can be scored 
differently, which represents the individual driving risk. 

Several parameters, such as speed, acceleration, jerk, speed 
difference and time gap, have been used for driving style 
assessment in the literature. Among them, acceleration has been 
more frequently selected as the metric for driving style 
assessment [3] because of its representativeness of a driver’s 
driving style. Acceleration can reflect the driver’s intentions 
and preferences directly [11] and was considered as the only 
parameter that purely described one’s driving style [12]. 
Previous studies have indicated that longitudinal and lateral 
accelerations are representative of a driver’s actions and can be 
used to distinguish drivers’ driving styles [13], [14]. The two 
axes of accelerations can be considered as a direct reflection of 
the driver’s maneuvers, which are selected based on his or her 
perceived risk for controlling the vehicle. Moreover, the 
heterogeneity in drivers’ acceleration styles has a significant 
impact on road safety, fuel consumption [3], [15], and the 
stability of traffic flow [16]. Additionally,  collecting accurate 
acceleration parameters with conventional data acquisition 
systems (DAS) appears to be much easier compared to other 
parameters (i.e., time gap and speed difference). Hence, the 
modelling method based on acceleration parameters can be 
widely applied to the driving behavior analysis for ITS. 
Therefore, the current study focused on modelling a driver’s 
acceleration style using lateral and longitudinal acceleration 
parameters. 

While many studies assumed the longitudinal and lateral 
accelerations as independent variables, a method that combines 
both parameters to characterize a driver’s driving style in the 
literature is the G-G diagram. The shape of the G-G diagram for 
a common driver was observed to be rhomb [13], [17], showing 
that the magnitude of the longitudinal acceleration likely 
correlated with that of lateral acceleration. Hence, it is possible 
that the combination of safe longitudinal and lateral 
accelerations defined in previous studies is risky for drivers [17]. 
The G-G diagram has been proven to be an intuitive and 
effective way to characterize vehicle-driver performances in 
[13]. Hence, several studies have utilized the G-G diagram to 
classify drivers’ driving styles [18]–[20] and score their 
individual driving behavior [17]. However, the classification 
thresholds were determined based on the labeled data obtained 
from on-road experiments. Regarding large-scale naturalistic 
driving data, it is time-consuming to label all the collected data. 
Further, it is open to the subjective assessment of individuals 
[21]. Additionally, several previous researches encoded the 
shape of the G-G diagram manually to characterize individual 
driving/riding styles [13], [17], [22], which are also subject to 
human judgement. 

Machine learning algorithms have been adopted in 
numerous studies to assess the driving behavior of drivers. 
Many of them used supervised algorithms to model a driver’s 
driving style [23]–[25], which required a labeled dataset. 

However, in the context of ITS, large-scale unlabeled driving 
data have become increasingly prevalent. As mentioned in [21], 
one of the main challenges in driving behavior analysis for ITS 
is the increasing prevalence of big data. Unsupervised machine 
learning algorithm has been considered as a promising 
approach to process these large-scale data since it does not 
require a labeled dataset. However, unsupervised algorithms 
have been relatively less used in assessing the driving styles, 
particularly in modeling individual driving styles in previous 
research. Additionally, to the best of our knowledge, none of 
the previous studies used unsupervised machine learning 
algorithms to develop a framework for the assessment of a 
driver’s driving style based on the G-G diagram. The utilization 
of unsupervised approach can address the aforementioned 
issues in previous research which are related to the G-G 
diagram. Further, it makes it possible to apply the G-G diagram 
to large-scale naturalistic driving data to effectively assess a 
driver’s driving style. 

Furthermore, the spatio-temporal context of the risky 
driving behavior of drivers has rarely been considered in 
previous studies. However, the spatio-temporal distributions of 
these behaviors can provide implicit factors on a driver’s risky 
driving patterns, such as road topology and intentional behavior. 
This can facilitate the interpretation of the model. Additionally, 
providing context information to drivers contributes to safe 
driving. As such, they can avoid challenging circumstances 
(e.g., driving at night and risky behavior hotspots) to reduce 
risky maneuvers. 

The purpose of this paper is to develop a framework that 
combines lateral and longitudinal accelerations to assess a 
driver’s driving style based on large-scale unlabeled driving 
data. Unsupervised machine learning algorithms are utilized to 
address the aforementioned issues that hinder the application of 
G-G diagrams to large-scale driving data. The spatio-temporal 
context is incorporated into the framework to improve the 
interpretability of the results obtained by machine learning 
algorithms and provide useful insights into understanding 
drivers’ risky acceleration behaviors.  

The proposed framework includes the definition of safe 
driving area, two-stage clustering, and extraction of spatio-
temporal context. First, a safe driving area is predefined based 
on the distribution of all drivers’ driving data to distinguish 
risky driving maneuvers from the safe ones. Further, we utilize 
hierarchical clustering algorithm to classify the driver’s average 
driving behavior into high-, medium-, and low-risk groups. 
During the second stage, a unique Gaussian mixture model 
(GMM) is trained for each driver. Each component is labeled 
with a risky driving pattern category using a statistical method. 
A driving performance score is calculated based on the 
probability and severity of the patterns. Further, a driver’s 
numerous risky driving events are decomposed into several risk 
components. The drivers’ self-reported crash data is used to 
prove the validity of the calculated score. Finally, the spatio-
temporal context of the driver’s risky driving behavior is 
extracted. Individual behavioral hotspots are created to show 
locations with relatively higher frequency of the occurrence of 
corresponding risky driving pattern. The risk profile for each 
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driver was created based on the results of the proposed method. 
A large-scale driving recorder (DR) dataset containing 830,338 
km of driving data from 71 drivers was used to perform the 
proposed method. 

The remainder of this paper is structured as follows. Section 
II presents a detailed literature review. Section III introduces 
the dataset used in this study. Section IV presents the details of 
our framework. Section V presents the results and analysis. The 
contributions and limitations of this study are discussed in 
Section VI. Finally, conclusions of this study and the potential 
application of the proposed framework are presented in Section 
VII.  

II. LITERATURE REVIEW 
Our research aims to develop a framework to assess a 

driver’s driving style based on G-G diagram using unsupervised 
machine learning algorithms. The modelling method is based 
on acceleration parameters and, thus, focuses on a driver’s 
acceleration style. Hence, in this section, we first review studies 
that model drivers’ acceleration styles. Further, we review 
studies related to G-G diagrams and those wherein an 
unsupervised approach was used to assess the driver’s driving 
styles. 

A. Driver’s acceleration style modelling 
In previous studies, acceleration parameters have been 

widely used for driving style assessment because of its 
representativeness of a driver’s driving style and significant 
impact on road traffic systems. The longitudinal accelerations 
correspond to acceleration (speeding up) or braking events and 
its value can be used to evaluate the smoothness of these events. 
The lateral accelerations correspond to turning events and its 
magnitude can be used to evaluate the smoothness of the events. 
Unsmooth acceleration maneuvers are generally associated 
with aggressive driving behaviors, which increases crash risk 
and fuel consumption [3]. 

Reference [26] defined three levels of intensity for 
acceleration, braking and turning events based on the 
magnitudes of longitudinal and lateral accelerations. A score 
was calculated for each driver using the frequency and intensity 
of the events. In [27], two weighted scores were calculated for 
measuring a driver’s acceleration and braking performances, 
respectively. The scores were calculated using the frequency of 
the maneuvers, and the weights were determined based on the 
magnitudes of the longitudinal accelerations. In [28], 
acceleration, braking and turning maneuvers were classified 
into aggressive, normal, and cautious categories based on the 
statistical features of these maneuvers. A driver’s driving 
performance was evaluated using the proportion of each 
category of driving maneuvers. 

In these studies, the magnitudes of accelerations were used 
for assessing driving risk partly because a larger acceleration 
magnitude is more likely to exceed a driver’s driving capability, 
which increases driving risk. Several studies considered both 
vehicle dynamics and drivers’ driving capability (driving 
behaviors) to model drivers’ driving style. Reference [29] 
proposed a model that considers the vehicles’ physical 

capabilities and drivers’ behaviors to assess drivers’ 
acceleration styles. The model was proved to be effective in 
modelling the aggressiveness of the drivers. Recent studies 
proposed a physics-informed framework for modelling the 
aggressiveness of a driver’s longitudinal acceleration 
maneuvers [15], [30], [31]. In the framework, three curves in 
the acceleration–speed plane were defined to represent a 
vehicle’s acceleration capacities and a driver’s ordinary driving 
behaviors. Based on the three curves, an independent driving 
style (IDS) metric, that is independent of speed and the 
vehicle’s powertrain, was developed to model the 
aggressiveness of a driver’s acceleration style. The distribution 
of IDS values can be used to model inter-driver heterogeneity 
[30], explore the relationship between CO2 emissions and 
acceleration style [15], and simulate driver heterogeneity in 
microscopic traffic simulation [30]. 

However, most previous studies did not consider the 
relationship between lateral and longitudinal accelerations or 
even neglect lateral accelerations to model driving style. Since 
lateral acceleration plays an important role in road traffic 
system [3] and there is evidence that the magnitude of 
longitudinal acceleration is correlated with that of lateral 
acceleration, it is necessary to combine them for acceleration 
style assessment. This is typically achieved using a G-G 
diagram. In the next subsection, we introduce the G-G diagram 
and review the related studies. 

B. Driving style assessment based on G-G diagram 
The G-G diagram is a graph that displays lateral and 

longitudinal accelerations on the x- and y-axes, respectively, 
which are normalized with respect to gravity. Each point in the 
diagram represents the driver’s instantaneous acceleration 
maneuver, which is selected based on his or her perceived risk. 
Fig. 1 shows an example of the G-G diagram of a driver.  

 
Fig. 1. G-G diagram for a driver 

In early studies, the G-G diagram was used for characterizing 
vehicle–driver performance [13], [32]. An elliptic curve was 
derived using the maximum-friction restriction of the vehicle to 
represent its acceleration capacity in the diagram. Furthermore, 
the shape of the G-G diagram, or the distribution of the data 
points, was used to characterize driver performance. It has been 
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shown that only racing drivers are able to fully exploit the 
vehicle’s acceleration capacity and produces an ellipse-shaped 
G-G diagram. In contrast, common drivers can only exploit a 
small amount of the vehicle’s acceleration capacity and 
produces a rhomb-shape G-G diagram, which may represent a 
common driver’s actual driving capability [13].  

Because the vehicle’s capacity and a driver’s driving 
capability can be explicitly depicted in the G-G diagram, recent 
studies attempted to use it to assess a driver’s driving style. In 
these studies, a safe driving area was defined based on the 
vehicle’s acceleration capacities or driver’s driving capability, 
or both. Data points outside the safe driving area were assumed 
to be risky maneuvers and the percentage of risky maneuvers 
was used to assess a driver’s aggressiveness or risk level. In  
[18], drivers were classified into aggressive and non-aggressive 
groups based on the percentage of risky acceleration 
maneuvers. In another study, a safe driving area was obtained 
in a speed-acceleration plane based on the vehicle’s 
acceleration capacity in the G-G diagram [20]. Drivers were 
classified into high, medium, and low risk groups based on the 
frequency of risky behaviors. These studies considered the 
relationship between lateral and longitudinal accelerations for 
driving style assessment, and the derived safe driving area may 
be accurate in a specific context. However, there are two issues 
that hinder the wide application of G-G diagrams for driving 
style assessment, particularly when using large-scale driving 
data. First, the safe driving area was derived using the 
maximum permissible friction and was hence affected by 
several factors, including the road condition. Therefore, 
applying it in different contexts (e.g., drivers in different 
countries) requires the efforts of transportation experts to adjust 
the parameters of the safe driving area. Second, the 
classification thresholds in these studies were determined based 
on labeled data obtained from on-road experiments [2], [18]. 
During the experiment, drivers were required to drive along a 
designated route, and the driving performance was labeled 
“aggressive” or “non-aggressive” based on a subjective 
judgement (e.g., the self-evaluation of drivers). However, 
labeling the data in the case of large-scale naturalistic driving 
data is difficult and subject to human judgement.  

Reference [17] addressed the first issue using a statistical 
method. In this study, a safe driving area was obtained based on 
the distribution of all drivers’ driving data and represents the 
most common driving maneuvers of a specific group of drivers. 
Driving maneuvers with a relatively lower probability of 
occurrence among these drivers are assumed to be risky 
maneuvers. One advantage of the statistical method is that the 
safe driving area is determined by the data rather than 
transportation experts’ knowledge. Hence, it can be easily 
adjusted for use in different contexts. In this study, we also used 
the statistical method to define a safe driving area in the G-G 
diagram. More details are presented in Section IV.  

In addition, reference [17] used the G-G diagram to score 
individual driving behaviors. Four levels of risk space 
(including the safe driving area) were defined in the G-G 
diagram. A weighted score was calculated for each driver using 
the percentage of the points in each risk space. Modelling 

individual driving behaviors can better reflect the heterogeneity 
in drivers’ driving styles compared to] the classification 
approach. However, this study only used a score to represent a 
driver’s overall driving performance; the performance in terms 
of specific maneuvers (i.e., braking, turning) was unclear.  

In summary, although the G-G diagram is an intuitive and 
effective way to characterize a a driver’s driving style, a 
framework to apply it to large-scale naturalistic driving data for 
driver behavior assessment is lacking. To apply it to large-scale 
driving data, there is need to address several issues in related 
studies, such as the classification thresholds obtained using 
labeled datasets and manual encoding of the G-G diagram 
shape. Unsupervised machine learning algorithms provide 
opportunities to address such issues. In the next subsection, we 
review the studies using unsupervised approach to assess a 
driver’s driving style. 

C. Driving style assessment using unsupervised approach 
Unsupervised machine learning algorithm is a machine 

learning technique that discovers hidden patterns in unlabeled 
data. In the context of ITS, large-scale driving data are no 
longer rare because of the improvement in technology, such as 
the Internet of Things. These large-scale data are generally 
unlabeled, thereby making it difficult to extract driving patterns 
from them [33]. Hence, researchers have started using 
unsupervised algorithms to process these data for the 
assessment of a driver’s behavior.  

In [34], hierarchical clustering and principal component 
analysis were performed on drivers’ speed and acceleration data 
to classify drivers into five groups, which represents different 
levels of aggression. Reference [35] proposed a two-stage 
clustering method to classify the driving styles into six 
categories based on the harsh event frequency, acceleration, 
speed, and mobile usage. The k-means algorithm was used for 
classification at both stages. In these studies, machine learning 
algorithms were used to classify the average driving behavior 
of the drivers into several homogenous groups, which may 
overlook the individual differences in the driving style among 
drivers in the same group.  

A few studies have attempted to use unsupervised algorithms 
to model individual driving behaviors. Reference [36] utilized 
self-organization map and k-means algorithms to identify 
driving patterns in the driving events of all the drivers. The 
frequencies of potential aggressive driving patterns were 
displayed in a driving behavior map to establish a diagnosis for 
each driver. In [33], self-organization maps and k-means 
algorithms were used to recognize unique driving patterns in 
drivers’ speed and longitudinal and lateral acceleration data. 
The recognized driving patterns can be labeled with a suitable 
description found in the literature. In these studies, 
unsupervised algorithms were applied on the driving data of all 
drivers. The probability of each driving pattern varied per 
driver. However, the severity of the pattern (e.g., magnitude of 
the acceleration) was assumed to be identical for all the drivers. 
Hence, a risk score considering both the probability and 
severity of risky driving behaviors was not given.  

Of all the unsupervised machine learning algorithms, the 
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Gaussian Mixture Model (GMM) has been widely used to 
profile a person, such as speaker and driver recognitions in 
previous studies [37], [38]. GMM is a probabilistic model that 
is a weighted sum of Gaussian component densities [37] and is 
a powerful tool for the statistical modeling of data, such as 
pattern recognition [39]. Hence, several studies have adopted 
GMM to model individual driving behaviors. In [38], two 
GMMs were trained for a standard driver (e.g., the average 
behavior of all the drivers and safest driver) and target driver, 
respectively. The similarity between both GMMs was used to 
score the target driver to measure the driving risk. In [40], the 
driving data for each driver were fitted with a GMM. The 
Kullback-Leibler divergence was used to measure the similarity 
between the distributions of the driving data. An unsupervised 
clustering algorithm was developed to classify the drivers into 
three groups based on similarity. In these studies, the 
uniqueness of the driver’s driving behavior was represented by 
the feature distributions of that driver, which were estimated 
using GMM. One motivation for using GMM to estimate 
feature distributions is because the components of the GMM 
can model some underlying sets of hidden clusters [37] which 
may correspond to driving patterns. These components reflect 
some useful driving pattern characteristics for modeling 
individual driving behaviors. Because of its suitability in 
modeling individual behaviors, GMM was adopted to encode 
the distribution (shape) of the G-G diagram to characterize 
individual driving styles in this study. Particularly, the 
parameters of each component (e.g., weight and centroid) 
reflect the category, probability, and severity of the driving 
pattern, which can be used in scoring the drivers directly. The 
details are provided in Section IV.  

Summarily, few studies have utilized unsupervised machine 
learning algorithms for driver profiling. Additionally, one of the 
main limitations of machine leaning algorithm is its 
interpretability. The spatio-temporal context of a driver’s risky 
driving behavior is one way to improve the interpretability [24], 
[41]. Furthermore, the spatio-temporal distributions of risky 
behaviors (e.g., individual behavioral hotspots) can be used as 
part of the driver’s profile for feedback [41]. However, they 
were hardly considered in previous studies that assessed the 
driver’s behavior using machine learning algorithms.  

III. DATA SOURCE 
The data used in this study were obtained from the elderly 

driver database of the Nagoya University Center of Innovation 
(COI) project. Participants were recruited from among elderly 
residents in and outside Nagoya City. All the participants were 
informed about the study and were required to provide informed 
consent to participate in the experiment according to the 
requirements of the Nagoya University Ethics Committee 
(Approval number:2022-16).  

A driving recorder (DR) was installed in the drivers’ private 
vehicles to collect daily driving data. The Yupiteru BU-
DRHD421 DR was used in all vehicles, and the installation 
procedure of each DR was identical. Hence, there is no inherent 
noise in the collected driving data. The DRs collected the 
timestamp, speed, three axes of the acceleration, and GPS 

location of the vehicle with a frequency of 1 Hz. The dataset 
contained the driving data of 85 drivers that are collected from 
February 2015 to 2019. After checking the driving videos, 14 
drivers were not found to be primary drivers during the data 
collection period. Hence, they were excluded from our dataset, 
and the driving data of the remaining 71 drivers were used. The 
total driving distance was 830,338 km. The drivers’ ages ranged 
from 54 to 87 years (mean=72.61, standard deviation = 6.97).  

The acceleration data were checked using the G–G diagrams 
of the drivers. Abnormal values, such as extremely high 
accelerations, were excluded from the driving data because 
these values typically exceed the physical maximum values of 
the vehicle. The timestamp, GPS location, and acceleration data 
were used as the input of the proposed method. Because the 
input data are drivers’ long-term driving data, we can detect 
more reliable and stable driving patterns [42], [43], which can 
provide valuable insights into understanding a driver’s driving 
style and can be used to enhance the benefits of intelligent 
vehicles (e.g., driving assistance systems) [43].  

IV. METHODOLOGY 
Fig. 2 illustrates the overall framework of the proposed 

method. In the framework, two-stage clustering was performed. 
The first stage classified drivers’ average driving behaviors, and 
the second stage diagnosed individual driving behaviors. Driver 
classification provides a macroscopic representation of the 
inter-driver heterogeneity [30], and the semantic label (e.g., 
high-risk) can facilitate driving feedback provision. The 
individual driving behavior diagnosis was customized for each 
driver and provided more details on the heterogeneity in 
drivers’ driving styles. Results of the two approaches are 
complementary, which provides a more comprehensive 
understanding of a driver’s driving style. More importantly, a 
normalized performance score was calculated for each driver in 
the second-stage clustering, wherein the baseline for 
normalizing the scores was based on the first-stage clustering 
results (i.e., the average value of the safest group). Because the 
minimum and maximum values are unusual [27], using them to 
normalize the scores may lead to biased results. Hence, we 
adopted a cautious strategy wherein the baseline was 
determined based on the results of the first-stage clustering.  

Before performing the two-stage clustering, a safe driving 
area in the G-G diagram was defined using a statistical method 
to detect the risky acceleration maneuvers of the driver. The 
first-stage clustering is for driver classification. Two variables 
were developed from the G-G diagram for the first-stage 
clustering: the percentage of the risky maneuvers and driving 
instability index. Hierarchical clustering was performed to 
classify the average driving behavior of drivers into several 
groups with different risk levels. The number of clusters was 
determined based on the silhouette index. The second-stage 
clustering is for individual driving behavior diagnosis. Because 
the input data is a large-scale dataset, the number of data points 
is too large to analyze directly. In practice, some data with 
similar values can be considered as one behavior category 
because of the fuzziness of driving behaviors [44]. Hence, a 
unique GMM was trained for each driver to detect risky driving 
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patterns from numerous risky maneuvers. The driving 
performance score was calculated based on the probability and 
severity of the patterns. The scale of the scores was constrained 
to 0–100 using the average value of the safest drivers obtained 
in the first-stage clustering. The contribution of each risky 
driving pattern to the driver’s driving risk was calculated. 
Further, the spatio-temporal context of drivers’ risky driving 
patterns was extracted to improve the interpretability of the 
results obtained by machine learning algorithms. The temporal 
distribution of the risky driving patterns of the drivers were 
calculated, and their behavioral hotspots were created to show 
intersections with a relatively higher frequency of risky 
maneuvers. Finally, the risk level, driving performance score, 
driving risk component, and spatio-temporal characteristics can 
be used to create the driver’s risk profile. In the following 
subsections, we present the details of the proposed method. 

 
Fig. 2. Overall framework of the proposed method 

A. Safe driving area 
The safe driving area was obtained using a statistical method 

to represent the most common acceleration maneuvers of a 
specific group of drivers. Our assumption is that maneuver with 
a relatively lower probability of occurrence is risky. This 
assumption is reasonable because risky driving behaviors are 
rare, and several previous studies have treated low-probability 
driving behaviors as risky ones [17], [45], [46].  

A confidence region was estimated from the distribution of 
all the drivers’ data points to represent the most frequent 
behavior. To this end, the distribution of the data points needs 

to be estimated, and then the confidence region can be 
calculated.  

(1) Estimation of data point distribution 
The G-G diagram plane is divided into grid cells of a fixed 

size. The density of the data points in each grid cell is used to 
estimate the distribution, and is calculated using the following 
equation: 

𝑑! =
"!

∑ ""#
"$%

,																													 (1) 
where 𝑑& is the density of data points in cell j; 𝑁& represents the 
number of data points in cell j and 𝐶 the number of cells in the 
plane. 

(2) Estimation of the confidence region 
The distribution of the data points was estimated using the 

calculated densities of all the cells. The confidence region of 
the distribution needs to be estimated to represent the most 
frequent data points (maneuvers). To this end, the densities of 
all the cells were first sorted in descending order: 
𝒅$ = {𝑑%$ , 𝑑&$ , 𝑑'$ , … , 𝑑($ }	(𝑑%$ ≥ 𝑑&$ ≥ 𝑑'$ ≥ ⋯ ≥ 𝑑($ )         

(2) 
The cumulative sum of 𝒅' can be represented as: 

𝑫 = {𝐷%$ , 𝐷&$ , 𝐷'$ , … , 𝐷($ },                    (3) 
where 𝐷&' is the sum of the first j densities in 𝒅'. 
The 𝑞 confidence region is the cell corresponding to the first 𝑘 
densities in 𝒅', and 𝑘 is calculated using the following 
equation: 

𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥
)
{𝐷)$ 	|	𝐷)$ ≤ 𝑞}.                     (4) 

The q confidence region of the distribution of all drivers’ data 
points was used as the safe driving area to distinguish risky 
acceleration maneuvers from the safe ones. The method to 
determine q is presented in Section V.  

B. First-stage clustering 
The first-stage clustering classified the average driving 

behavior of drivers into several homogenous groups, and each 
group was labeled with a risk level. Two variables were 
calculated from the driver’s G-G diagram for the clustering. 
The first variable is the percentage of risky acceleration 
maneuvers, which has been used in several past studies [2], 
[18]. The second variable is the driving instability index, which 
is the average distance between all the data points and their 
centroid. It can be calculated using the following formula: 

𝐼 = ∑ *(,"-,̅)(0(1"-12)(
)
"$%

3
 ,                       (5) 

where x denotes lateral acceleration, y longitudinal acceleration, 
(𝑥* , 𝑦*) data point i in the G-G diagram, and (�̅�, 𝑦.) the centroid 
of all the data points. This variable measures the stability of 
acceleration maneuvers, with a larger value indicating more 
unstable driving. 

The hierarchical clustering algorithm was selected as the 
first-stage clustering algorithm. It is a widely used unsupervised 
machine learning algorithm that groups similar objects into 
clusters. There are two types of hierarchical clustering 
strategies: agglomerative and divisive approach [47]. The 
agglomerative approach was used in this study. The 
agglomerative approach treats each observation as one cluster 
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at the initial stage, and the dissimilarity matrix of pairwise 
dissimilarities between two clusters is calculated based on the 
linkage criterion. In each step, the two most similar clusters are 
identified and merged into one cluster based on the dissimilarity 
matrix. By repeating this process, the clusters are merged into 
more inclusive clusters until all the observations are merged 
into one cluster [47]. Ward’s method [48] was used as the 
linkage criterion for clustering.  

One challenging problem with unsupervised algorithms is 
finding the optimal number of clusters. In this study, the 
silhouette index was adopted to determine the number of 
clusters for first-stage clustering, as used in several previous 
studies to find the optimal number of the category of driver 
behavior [35], [49]. The silhouette index measures how close 
each data point is to its own cluster compared to other clusters 
[50]. The silhouette index is the average silhouette width of all 
the data points in one cluster. The silhouette width of data point 
i can be calculated using the following formula: 

𝑠(𝑖) = 4(5)-6(5)
76,{6(5),4(5)} ,                           (6) 

where 𝑎(𝑖) is the average distance between data point i and all 
the other data points in the same cluster and 𝑏(𝑖) the average 
distance between data point i and all the data points in the 
closest cluster. The silhouette index lies between -1 and 1. A 
value close to 1 shows that the data points are well-clustered 
and assigned to an appropriate cluster, whereas a value close to 
-1 shows that the data points are likely to be misclassified.  

C. Second-stage clustering 
Second-stage clustering identifies risky driving patterns from 

risky acceleration maneuvers for each driver. The second-stage 
clustering process is shown in Fig. 3. Numerous risky events of 
the driver were clustered into several similar groups. A 
statistical method was used to label each cluster based on its 
centroid. 

 
Fig. 3. Second-stage clustering process 

 
GMM was adopted for the second-stage clustering because 

of its suitability in modeling individual behavior. A GMM is a 
weighted sum of a finite number of Gaussian distributions, as 
expressed by the equation below [37]: 

𝑝(𝒙|𝜆) = ∑ 𝛼5 	𝑝(𝒙|𝝁𝒊, 𝛴5)<
5=%  ,                     (7) 

where 𝒙 is a 2-dimensional feature vector in this study, and 
𝑝(𝒙|𝝁𝒊, Σ*), 𝑖 = 1,… , 𝑎𝑛𝑑	𝐾 is the probability density function 
of the ith component. Each component is a 2-dimensional 
Gaussian distribution with mean vector 𝝁𝒊  and covariance 
matrix Σ*. 𝛼* is the weight of the ith component and is subject 
to the constraint ∑ 𝛼*,

*-. = 1.  
A unique GMM model was fitted with each driver’s risky 

acceleration maneuvers. The expectation-maximization (EM) 
algorithm was used for parameter estimation. The number of 
components was determined based on the Bayes information 
criterion (BIC) score, which is a well-performed indicator for 
selecting the number of components [51]. It can be calculated 
as 
𝐵𝐼𝐶 = −2𝑙𝑜𝑔	H𝐿(𝜓)K + 𝑘𝑙𝑜𝑔(𝑁),                  (8) 

where 𝐿(𝜓)  is the observed likelihood of the mode, 𝑘  the 
number of parameters in the model, and 𝑁  the number of 
training data points. A lower BIC score indicates a better 
performance of the estimated model. In this study, the number 
of components was selected so that the BIC score of the model 
did not substantially decrease with an increase in the number of 
components.  

In the estimation result, each component is a cluster, and the 
mean vector of the component Gaussian density 𝝁𝒊	represents 
the centroid of the cluster. The weight of each component 𝛼* 
represents the percentage of data points that have been clustered 
into this group. Hence, it can be interpreted as the probability 
of one random risky maneuver belonging to this cluster.  

The centroids of the components are used to label the 
components. Reference [52] divided the G-G diagram into nine 
areas, and each area was labeled with a specific category of 
acceleration maneuvers. However, their study was for racing 
drivers. Since a common driver’s driving behavior is different 
from that of a racing driver [13], the thresholds for the division 
of the G-G diagram in their study cannot be used directly in our 
study. Following their nomenclature, a statistical method was 
used to label the component with a suitable semantic 
description. Based on the observation of the centroids of the 
components for all drivers, two thresholds were determined 
according to the 10th percentile of the lateral and longitudinal 
acceleration magnitudes to define eight risky driving pattern 
categories. Each component is labeled with one of the following 
eight risky driving patterns: acceleration, braking, left 
cornering, right cornering, left turn with acceleration, left turn 
with braking, right turn with acceleration, and right turn with 
braking. The detailed results are presented in Section V. 

D. Driving performance score and risk component 
In past research, a driving performance score is a normalized 

score to measure a driver’s driving risk, and it is calculated 
based on the frequency and severity of the risky driving 
behavior [3]. In our study, the estimated GMM for each driver 
was used to calculate the normalized driving performance score 
for the driver. TABLE I shows the estimation results of the 
GMM for one driver. The weight of the component 𝛼* 
corresponds to the probability of one risky maneuver being part 
of this component. It is noteworthy that the probability here is 



8 
> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

in relation to the driver’s risky acceleration maneuvers rather 
than all the acceleration maneuvers. Hence, it should be 
multiplied by the percentage of risky acceleration maneuvers to 
represent the probability of occurrence. The modulus of the 
centroid of the component was computed to represent the 
severity of the behaviors. Thus, a risk index for driver m can be 
defined as 

𝑅7 = 𝑃7 ∑ 𝛼5|𝝁𝒊|<
5=% ,                            (9) 

where 𝑃/ is the percentage of risky acceleration maneuvers for 
driver m and |𝝁𝒊| the modulus of the centroid of the component 

(𝝁𝒊 = B𝑎.0 , 𝑎.1C), which can be calculated as |𝝁𝒊| = D𝑎.02 + 𝑎.12. 

A normalized driving performance score on a scale of 0–100 
for driver m can be calculated as 

𝑆7 = 100 × >34567")6
>8

,                          (10) 
where 𝑅9:;<=*>< is the average risk index of drivers in the safest 
group obtained in the first-stage clustering. This value was used 
as the baseline because the minimum risk index was unusual 
among drivers. However, this led to scores that are higher than 
100. Scores higher than 100 were changed to 100 to ensure that 
all the scores were in the range of 0–100. Hence, a score of 100 
indicates a safer driving style than the average level of the safest 
group rather than being free of risk.  

TABLE I. 
ESTIMATION RESULTS OF GMM FOR DRIVER NO. 44 

 
Component  Weight 𝛼!  Centroid 𝝁𝒊 Label 
1 13.25% (0.05g, 0.26g)  Risky 

acceleration 
2 12.38% (0.03g, 0.31g)  Risky 

acceleration 
3 7.11% (0.02g, 0.36g)  Risky 

acceleration 
4 

13.83% (0.11g, 0.21g)  
Risky left 
turn with 
acceleration 

5 
12.36% (0.16g, 0.24g)  

Risky left 
turn with 
acceleration 

6 
3.86% (0.28g, 0.15g)  

Risky left 
turn with 
acceleration 

7 
15.49% (-0.06g, 0.28g)  

Risky right 
turn with 
acceleration 

8 
10.56% (-0.13g, 0.24g)  

Risky right 
turn with 
acceleration 

9 
9.44% (-0.17g, 0.28g)  

Risky right 
turn with 
acceleration 

10 
1.73% (-0.3g, 0.21g)  

Risky right 
turn with 
acceleration 

The driver risk component can be calculated based on the 
label of the component. Each component was labeled with a 

risky driving pattern category. It is possible that several 
components are labeled with the same category, but the 
probability and severity of the behaviors are different. For risky 
driving pattern n, its contribution to the risk index of driver m 
is calculated using the following formula: 

𝐶7,3 =
?8∑ @"|𝝁𝒊|?

"$@ 	
>8

,                         (11) 
where 𝛼*	(𝑖 = 𝐺, 𝐺 + 1,… , 𝐿)  are the weights of the 
components corresponding to the risky driving pattern n (e.g., 
7th–10th components in Table I correspond to the driving 
pattern of risky right turn with acceleration) and 𝝁𝒊  the 
centroids of the corresponding components. The contribution of 
each risky driving pattern to the risk index is used to calculate 
the driver’s driving risk component.  

E. Spatio-temporal context extraction 
Spatio-temporal characteristics can provide implicit factors 

of a driver’s risky driving behavior. Additionally, the 
incorporation of context information can result in a fairer 
comparison between drivers’ driving performances. In [53], the 
locations of risky driving events for aggressive driving are 
uniformly distributed, which implies an intentional behavior 
behind the wheel. Contrarily, the event locations for safe 
driving are clustered in several specific areas, thereby 
implicating unintentional behavior due to the road topology. 
Behavioral hotspots have been used in several studies to display 
locations with a relatively higher frequency of risky driving 
behavior [41], [54]. The hotspots in these studies were created 
based on all the driving events of the drivers and were 
population behavioral hotspots. While population behavioral 
hotspots can be used to diagnose problems on intersection or 
road geometry, this study focused on individual behavioral 
hotspots and included them in the driver’s risk profile for 
driving feedback provision. For example, a warning message 
can be sent to a driver before entering high-risk locations. 
Additionally, the temporal distribution of risky driving 
behaviors can provide implicit factors related to the traffic 
volume and road conditions. It can also be provided to the driver 
as driving feedback.  

In this study, the temporal distributions of the identified risky 
driving patterns for each driver were calculated. Individual 
behavioral hotspots were created to show intersections with 
relatively higher frequencies of risky maneuvers. We focused 
on intersection-level hotspots because drivers in our study live 
in urban areas where intersections are dense. Furthermore, risky 
acceleration maneuvers occur more frequently at intersections 
compared to road segments [55]. First, the locations of the risky 
acceleration maneuvers were divided into segment locations 
and intersection locations. In our study, the intersection 
influence area is circular with 35 m radius. We selected 35 m as 
the threshold because this value has been widely used to 
determine whether one traffic collision occurs within an 
intersection in Japan. The intersection locations were matched 
with the corresponding intersections. The frequency of risky 
acceleration maneuvers for each intersection was calculated as 
the number of locations matched to the intersection divided by 
the total number of intersection locations. The most frequent 
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intersections that accounted for 50% of the risky driving pattern 
occurrences were extracted as hotspots of the pattern and 
displayed in the map with circle markers. The radius of the 
circular marker was proportional to the frequency of occurrence 
at the intersection. 

V. RESULTS AND DISCUSSION 

A. Safe driving area 
In our study, the 95% confidence region of the distribution 

of all drivers’ acceleration data points was used as the safe 
driving area. This value was selected based on the two-sigma 
rule and corresponds to 𝜇 ± 2𝜎. Furthermore, the shape of the 
95% confidence region is similar to the safe driving area 
defined in [18] and close to a rhomb shape (Fig. 4). Hence, in 
this study, the 95% confidence region was selected as the safe 
driving area to distinguish risky acceleration maneuvers from 
the safe ones. 

Numerous previous studies have not considered the 
relationship between lateral and longitudinal accelerations 
when detecting risky acceleration maneuvers. In these studies, 
two thresholds were set for the lateral and longitudinal 
accelerations to detect risky lateral and longitudinal maneuvers 
separately. This corresponds to the rectangular area in the G-G 
diagram. The orange line in Fig. 4 represents the thresholds 
used in [26]. As shown in Fig. 4, the rectangular area cannot 
identify some risky maneuvers that combine the two axes of 
acceleration. Indeed, all previous studies related to G-G 
diagrams revealed that common drivers produced rhomb-
shaped G-G diagrams rather than rectangular-shaped ones. This 
shows that the magnitude of longitudinal acceleration is likely 
to correlate with that of lateral acceleration. Hence, it is 
necessary to consider the relationship between lateral and 
longitudinal accelerations to detect risky acceleration 
maneuvers. The G-G diagram provides an intuitive way to 
combine both axes of acceleration to characterize the driving 
style. However, as mentioned in the previous sections, several 
issues must be addressed when applying it to large-scale driving 
data. Unsupervised machine learning algorithms were used to 
address these. 

 
Fig. 4. Thresholds used to detect risky acceleration 

maneuvers in our study and previous studies: the orange line 
represents thresholds used in [26] and blue line thresholds 

used in [18] 

B. First-stage clustering 
In the first-stage clustering, the number of clusters was 

determined as three according to the silhouette index (Fig. 5). 
Fig. 6 shows the clustering results. Each group represents a 
different risk level of the driver’s acceleration maneuvers. Five 
drivers were classified into the high-risk group. High-risk 
drivers performed risky acceleration maneuvers more 
frequently than those in other groups. The average percentage 
of risky acceleration maneuvers is 17.15%, as displayed in 
TABLE II. The driving behavior of drivers in the high-risk 
group are more unstable, and the average driving instability 
index is approximately 1.42 and 1.93 times that of the medium-
risk and low-risk groups, respectively. Compared to high-risk 
drivers, the risky maneuver frequency of medium-risk drivers 
was lower, and the average percentage of risky maneuvers was 
6.67%. The driving style of low-risk drivers was the safest 
among the three groups. The risky driving maneuvers of low-
risk drivers are unusual, and their driving behavior is stable.  

Previous studies have only used the percentage of risky 
maneuvers to classify the driving style of drivers. In [18], if the 
percentage is larger than 9%, the driver is categorized as 
aggressive. In [2], 8% was selected as the threshold to 
distinguish high-risk drivers from medium-risk drivers. The 
average percentage of risky maneuvers for high-risk drivers in 
our study was higher than that in both studies. However, the 
thresholds in both studies were determined based on the labeled 
data obtained from on-road experiments. Risky drivers may 
behave differently in a naturalistic driving environment 
compared to on-road experiments, which is a possible reason 
for the higher average percentage in our study. Furthermore, in 
our study, drivers were classified into three groups without a 
predefined threshold of the aforementioned variable.  

In our study, the driving instability index (a new variable), 
was developed for the classification. The clustering results 
prove the reliability of this variable for measuring a driver’s 
driving risk. As shown in Fig. 6, the driving behaviors of drivers 
in the high- and medium-risk groups are more unstable than 
those of low-risk drivers. The driving instability index highly 
correlates with the percentage of risky maneuvers ( 𝑟 =
0.79, 𝑝 < 0.001 ). Hence, it can be used to replace the 
percentage of risky maneuvers if only one variable is used for 
the classification. Furthermore, the driving instability index was 
calculated using all the data points in the G-G diagram. Thus, it 
does not require a predefined safe driving area. This shows that 
it is possible to classify driving styles without any threshold if 
we use only this variable. For example, if the driving instability 
index of a new driver is larger than the average level of the high-
risk group, the driver can be categorized as a high-risk driver 
without a need to define a safe driving area. 

The first-stage clustering classified drivers into different risk 
groups based on acceleration parameter alone. The 
classification results may be biased if other parameters are 
considered. For example, if a low-risk driver’s smooth 
acceleration maneuvers are performed at high speeds 
frequently, this driver may be a false “low-risk” driver. Hence, 
it is necessary to examine whether the classification results can 
reflect the driving risk of other parameters. Speed was selected 
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because it is also an important parameter for driving style 
assessment. Fig. 7 shows the cumulative distribution of the 
vehicle speed for drivers in different risk groups. Since the 
speed limit of most urban roads in Japan is 60 km/h or lower, a 
speed higher than 60 km/h can be considered as a high speed. 
Interestingly, the frequency of high speed increased with risk 
level although speed was not an input parameter of the model. 
This implies that the classification results can not only represent 
the risk level of a driver’s acceleration maneuvers but also 
reflect the risk level of other driving behaviors, such as speed.  

 
TABLE II. 

MEAN VALUE PERCENTAGES OF RISKY ACCELERATION 
MANEUVERS AND DRIVING INSTABILITY INDEX IN EACH GROUP 

 
Group Number 

of 
drivers 

Percentage 
of external 
points 

Driving 
instability 
index 

High-risk 5 17.15% 0.131 
Medium-risk  13 6.67% 0.092 
Low-risk 53 3.12% 0.068 

 
Fig. 5. Silhouette indices for different numbers of the cluster 

 
Fig. 6. First-stage clustering results 

 

 
Fig. 7. Cumulative distribution of vehicle speed for drivers 

in different risk groups  
 

C. Second-stage clustering 
In the second-stage clustering, a unique GMM was fitted 

with each driver’s risky acceleration maneuvers. Fig. 8 shows 
the G-G diagram for driver No. 44. It can be observed from the 
G-G diagram that this driver’s risky driving pattern is related to 
acceleration (speeding up), and some of these risky maneuvers 
are a combination of lateral and longitudinal accelerations. 
However, these characteristics were discovered by manually 
observing the shape of the G-G diagram. Hence, GMM was 
utilized to model this driver’s risky driving behavior. The 
number of components was determined based on the BIC score. 
Fig. 9 shows the BIC scores for different component numbers. 
After the number of components reached 10, the BIC score did 
not decrease considerably with an increase in the number of 
components. This shows that the performance of the model did 
not improve significantly even if we continued increasing the 
number of components. Hence, 10 was selected as the optimal 
number of components. Note that this number was determined 
automatically by identifying the knee point using our algorithm.  

 
Fig. 8. G-G diagram for driver No. 44 
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Fig. 9. BIC scores for different component numbers 

 
The estimation results are displayed in TABLE I. The 

driver’s numerous risky maneuvers are clustered into 10 
components of the GMM. Each component needs to be labeled 
with a semantic description to represent the risky driving 
pattern category. To this end, the magnitudes of the lateral and 
longitudinal accelerations of the centroids for all the drivers are 
plotted in Fig. 10. Overall, the magnitude of the longitudinal 
acceleration decreases with an increase in the magnitude of the 
lateral acceleration (𝑟 = −0.67, 𝑝 < 0.001 ). Hence, even if 
drivers drive in a risky manner, the combination of large lateral 
and longitudinal accelerations is rare. Based on the 
characteristics observed in Fig. 10, the 10th percentiles of the 
lateral and longitudinal acceleration magnitudes were first 
calculated and the values are 0.057 and 0.037 g, respectively. 
We used slightly smaller values (0.05 and 0.03 g) as the 
thresholds to distinguish between different pattern categories. 
Following the nomenclature in [52], eight risky driving patterns 
were defined, as shown in TABLE III. If the magnitude of the 
lateral acceleration is smaller than 0.05 g, the magnitude of the 
longitudinal acceleration is generally much larger than that of 
the lateral acceleration. Hence, the component is labeled as 
risky acceleration (speeding up) or braking in this case. 
Conversely, if the magnitude of longitudinal acceleration is 
smaller than 0.03 g, the magnitude of lateral acceleration is 
generally much larger than that of the longitudinal acceleration, 
and the component is labeled as risky right cornering or left 
cornering. Otherwise, the component is labeled with the other 
four categories according to the signs of the two axes of 
acceleration.  

 

Fig. 10. Magnitudes of lateral and longitudinal 
accelerations of the centroids for all drivers (1511 centroids 

altogether) 
 

TABEL III. 
DEFINITION OF EIGHT RISKY DRIVING PATTERNS (WHERE 
𝑎0  AND 𝑎1  DENOTE THE LATERAL AND LONGITUDINAL 

ACCELERATION OF THE CENTROID, RESPECTIVELY) 
Definition  Risky driving pattern 

category  
|𝑎#| < 0.05𝑔 and 𝑎$ > 0 Risky acceleration  
|𝑎#| < 0.05𝑔 and 𝑎$ < 0 Risky braking 
+𝑎$+ < 0.03𝑔 and 𝑎# > 0 Risky left cornering 
+𝑎$+ < 0.03𝑔 and 𝑎# < 0 Risky right cornering 
|𝑎#| > 0.05𝑔, +𝑎$+ >
0.03𝑔, 𝑎# > 0, and 𝑎$ >
0 

Risky left turn with 
acceleration  

|𝑎#| > 0.05𝑔, +𝑎$+ >
0.03𝑔, 𝑎# > 0, and 𝑎$ <
0 

Risky left turn with braking 

|𝑎#| > 0.05𝑔, +𝑎$+ >
0.03𝑔, 𝑎# < 0, and 𝑎$ >
0 

Risky right turn with 
acceleration 

|𝑎#| > 0.05𝑔, +𝑎$+ >
0.03𝑔, 𝑎# < 0, and 𝑎$ <
0 

Risky right turn with 
braking 

Based on the definition in TABLE III, each component is 
labeled with a risky driving pattern category. The labeling 
results of the GMM for driver No.44 are displayed in TABLE 
I. It can be found that it is possible that several components are 
labeled with the same category, but the probability (weight of 
the component) and severity (modulus of the centroid) are 
different. Hence, the probability and severity were used to 
calculate the driving performance score and driving risk 
component for each driver. Using (10) and (11), the driving 
performance score and driving risk component for driver No. 
44 were calculated, and the results are shown in Fig. 11. Driver 
No. 44 has been classified into the high-risk group in the first-
stage clustering, and the performance score is low: 18/100. 
Three risky driving patterns have been identified by GMM: 
risky acceleration, risky right turn with acceleration, and risky 
left turn with acceleration, which correspond with what is 
observed from the G-G diagram. However, the density of data 
points (probability of occurrence) is difficult to observe in the 
G-G diagram. Conversely, the GMM can model the probability 
of the behaviors. Furthermore, behaviors corresponding to the 
same risky driving pattern category (defined in Table III) were 
divided into different levels of severity. The two variables form 
the basis for driver profiling [3], [27]. Hence, based on the 
probability and severity of patterns, driving performance score 
and risk component were calculated for diagnosing individual 
driving behaviors. The driving performance score represents 
the overall performance of a driver’s acceleration maneuvers, 
and the risk component reflects the contribution of each risky 
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driving pattern category to driving risk. With the proposed 
method, the shape of the G-G diagram was encoded effectively, 
and the driver’s numerous risky driving events were 
decomposed into several risk components, which facilitated the 
driver risk analysis and feedback provision.  

Fig. 12 shows the driving risk components of different 
drivers. We randomly selected 18 low-risk drivers and plotted 
their risk components as representative examples. Although 
these drivers’ driving exposure and driving context are 
different, the results are comparable because the drivers’ long-
term driving data were used to achieve reliable and stable 
pattern detection results [42], [43]. In addition, all drivers 
primarily drove their cars in the Nagoya metropolitan area; 
therefore, the overall traffic conditions can be considered 
relatively similar. From Fig. 12, we noticed heterogeneity in the 
risky driving behavior of the drivers. Risky acceleration or risky 
braking patterns have been identified for all high-risk drivers, 
and account for a great part of the driving risk for most high-
risk drivers. Conversely, both patterns could not be recognized 
for many low-risk drivers. This shows that risky acceleration 
and braking of these drivers are very rare and, thus, were not 
identified as risky patterns by the GMM. Additionally, even 
though one of both patterns was identified for several low-risk 
drivers, it accounts for only a smart part of the driving risk in 
most situations. Further, the combination of lateral and 
longitudinal accelerations accounts for the majority of the 
driving risk for low-risk drivers. 

 
Fig. 11. Risk level, performance score, and risk 

component of driver No. 44 

 
Fig. 12. Risk components of different drivers 

D. Validity of driving performance score 
In this study, the self-reported crash data of the drivers were 

used to validate the calculated performance scores. During the 
DR data collection period, drivers reported their traffic crash 
experiences annually. Among the 71 drivers, 19 reported that 
they had been involved in at least one traffic crash, including a 
minor crash, whereas the remaining 52 reported that they had 
never experienced a traffic crash. Hence, the drivers were 
divided into two groups based on self-reported traffic crash 
data: crash-involved and crash-free drivers. Normality tests 
revealed that the driving performance score was not normally 
distributed (𝑝 < 0.01). Hence, the Kruskal-Wallis (KW) test, a 
non-parametric method, was performed to verify whether there 
was a significant difference between the medians of the 
performance scores in both groups. The results showed that a 
significant difference existed (𝑝 = 0.001). Fig. 13 displays the 
driving performance scores of both groups. Crash-involved 
drivers were associated with lower driving performance scores 
(median = 59.39) than crash-free drivers (median = 82.77). 
Hence, the calculated driving performance score is reliable for 
measuring the driver’s driving risk and might be used to 
measure the driver’s risk of involvement in a crash. 

 
Fig. 13. Driving performance scores in crash-free and 

crash-involved groups 

E. Spatio-temporal context 
We selected two drivers from the sample to analyze the 

spatio-temporal characteristics of their risky driving behaviors. 
One driver was a high-risk driver with the lowest driving 
performance score (8.12/100). The other driver was a low-risk 
driver with a higher score (86.14/100). The two drivers 
exhibited distinct spatio-temporal characteristics that may 
imply two risky behavior factors: intentional behaviors and 
unintentional behaviors caused by the external environment. 
The temporal distribution of the high-risk driver’s risky driving 
patterns is displayed in Fig. 14. Compared to other risky 
patterns, risky braking is more likely to occur between 7:00 and 
10:00, which corresponds to the morning peak hours in Japan. 
More than half (58.35%) of the risky braking behavior occurred 
during this period. A large proportion (39.89%) of the risky 
acceleration also occurred during the morning peak hours. 
Compared to risky acceleration and braking, the combination of 
lateral and longitudinal accelerations is more likely to occur at 
intersections and between 13:00 and 16:00. Fig. 14 also shows 
that risky maneuvers occurred much more frequently at 
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intersections. Hence, an individual behavioral hotspot was 
created at the intersection level (Fig. 15). First, risky 
acceleration and braking locations are more uniformly scattered 
compared to other patterns. The two risky patterns account for 
the majority of the drivers’ driving risk. Numerous risky 
braking locations are distributed along the artery. In the 
morning peak hours, the traffic volume of the artery is likely to 
be high. Thus, frequent risky braking behaviors may imply a 
close following distance. Additionally, the uniform distribution 

of the locations show that the risky acceleration and braking 
behavior of the drivers are likely to be intentional [53]. This is 
referred to as aggressive driving or bad driving habits in the 
literature. Contrarily, the locations corresponding to the 
combination of lateral and longitudinal accelerations are 
clustered into relatively fewer intersections. This implies that 
these behaviors are likely caused by the external environment 
(e.g., road topology). 

 
Fig. 14. Temporal distribution of different risky patterns for driver No. 15 (the frequency is the percentage within the 

corresponding risky patterns) 
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Fig. 15. Intersection-level behavioral hotspot for driver No. 15 (the radius of the circle marker is proportional to the frequency of 

occurrence) 
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Fig. 16. Temporal distribution of different risky patterns for driver No. 56 
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Fig. 17. Intersection-level behavioral hotspot for driver No. 56 (the map scale is the same as Fig. 14) 

 
Fig.s 16 and 17 display the temporal and spatial distributions 

of driver No.56’s risky driving behaviors, respectively. As 
shown in Fig. 16, the temporal distributions of different patterns 
are similar. Risky maneuvers are more likely to occur between 
9:30 and 11:30. Fig. 17 indicates that a much smaller number 
of intersections could account for 50% of the occurrence of 
risky maneuvers compared to that of Driver No. 15. 

Particularly, the radii of several hotspots are much larger than 
those of the other intersections. This shows that the risky 
maneuvers of this driver were likely unintentional and caused 
by the external environment (e.g., intersection design issues). 
Hence, it can be inferred that this driver was frequently exposed 
to these hotspots between 9:30 and 11:30, and that these risky 
behaviors were likely caused by the external environment, such 
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as road topology. 
The individual behavioral hotspot characterizes the spatial 

distribution of every driver and, thus, is a microscopic 
approach. Conversely, a macroscopic approach considers the 
overall spatial distribution of multiple drivers (e.g., a 
representative sample of the driving population in a road 
network). While the former can reflect personalized spatial risk 
patterns, the latter can better reflect the overall safety 
performance of a road network and, thus, is more suitable for 
diagnosing problems on intersection and road geometry. 
However, our sample contains 71 drivers scattered across the 
Nagoya metropolitan area, and this number of drivers is not 
sufficient for such an analysis. 

VI. CONTRIBUTIONS AND LIMITATIONS 

A. Contributions 
The contributions of this study are threefold. First, this study 

proposed a framework that combines lateral and longitudinal 
accelerations for profiling drivers. The relationship between 
both axes of accelerations was considered to assess driving 
style. This provides more accurate modelling results. Moreover, 
because the acceleration parameters can be collected by 
ubiquitous and inexpensive  DASs (e.g., smartphones and in-
vehicle devices), the proposed framework can be widely 
applied to driving behavior analysis for ITS. Second, the 
proposed framework utilized an unsupervised approach for 
modelling individual driving behaviors. This enables the 
proposed framework to be applicable to large-scale driving data 
that becomes increasingly prevalent in the context of ITS. The 
large-scale driving data are generally collected during a long 
period. Thus, these data can provide reliable underlying driving 
patterns. Furthermore, GMM was employed to evaluate a 
driver’s overall driving performance and decompose numerous 
risky maneuvers into several risk components, which facilitate 
driving behavior analysis. Third, the spatio-temporal context of 
risky driving patterns was extracted to improve the 
interpretability of the results obtained by machine learning 
algorithms. This can also be included in a driver’s risk profile 
and used for driver feedback provision.  

B. Limitations and future work 
A) Other driving parameters 

One of the main limitations of this study is that the effect of 
speed was not considered in the framework. Previous studies 
indicate that there is a non-linear relationship between speed 
and longitudinal acceleration [29], [30]. However, the 
relationships among speed, lateral acceleration and longitudinal 
acceleration are not well-established in the literature. To the 
best of our knowledge, only two previous studies combined the 
three parameters for driving performance assessment. 
However, there is inconsistency in the relationships among the 
three parameters. Using real-world driving data, reference [13] 
observed a nonmonotonic relationship between the size of the 
G-G diagram produced by drivers and speed. The size of the 
rhomb-shape G-G diagram enlarges from low to medium 
speeds and, then, shrinks from medium to high speeds. Another 
study [20] only considered vehicle dynamics to derive a circular 

safe driving area in the G-G diagram, and the size of it 
decreased with an increase in speed. Because drivers can only 
exploit a small part of the vehicle’s acceleration capacity, 
neglecting driving capability may lead to inaccurate results.  

Although the effect of speed was not considered, our analysis 
indicates that the driving risk evaluated by the acceleration 
parameter alone can also reflect the overall risk of drivers’ 
speed behaviors. Hence, the impact of not considering speed as 
an input parameter on evaluating driver risk can be considered 
small. However, drivers’ driving risk components will contain 
more risky driving pattern categories if speed is considered as 
an input parameter. Hence, for future work, we can investigate 
the relationships among speed, lateral acceleration, and 
longitudinal acceleration theoretically  by considering the 
vehicle’s capacity and driver’s driving capability. Then, the 
speed can be included in our model to derive a safe driving 
space and increase the number of risky driving pattern 
categories. 

Furthermore, the data from the front vehicle (e.g., time gap 
and speed difference) are not available in our dataset. A 
previous study indicates that there is a strong correlation 
between large acceleration and short time headway [57]; 
therefore, the driving risk evaluated in the present study may 
also reflect the risk level of these behaviors. For future work, 
we intend to collect and verify these data. 
B) Vehicle trajectory reconstruction  

In our study, all drivers’ driving data were collected using the 
same system. Hence, there is no inherent noise in the data. 
However, considering that the proposed framework can be 
widely applied for driving style assessment, it is expected to be 
performed using driving data collected with different systems 
(e.g., different smartphones). In this case, vehicle trajectory 
reconstruction is necessary to reduce the noise in the data and 
enable comparability of the results. For example, in [31] a 
physics-informed adaptive framework is proposed that 
significantly reduces measurement errors and is widely 
applicable to different DASs. The incorporation of vehicle 
trajectory reconstruction can enable applicability of the 
proposed framework to a wide range of scenarios.  
C) Spatio-temporal context   

In the present study, we characterized individual spatial and 
temporal risk patterns separately. However, the spatio-temporal 
joint effect can provide more useful insights into understanding 
drivers’ risky driving. For future work, a model can be 
developed to analyze the spatio-temporal joint effect. To this 
end, we will use a map-matching algorithm to project each GPS 
location on the road segment to create segment-level hotspots 
and incorporate temporal context into the behavioral hotspots. 
Furthermore, a statistical model can be used to analyze the joint 
effect of spatio-temporal context on a driver’s risky driving. 

VII. CONCLUSIONS 
This paper proposed a framework that combined lateral and 

longitudinal accelerations to assess a driver’s driving style. 
Unsupervised machine learning algorithms were utilized to 
classify the average driving behavior of drivers and encode the 
shape of the G-G diagram to characterize individual driving 
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behaviors. A driving performance score was calculated for each 
driver based on the probability and severity of the patterns. The 
self-reported crash data of drivers were used to verify the 
reliability of the score. The proposed method makes it possible 
to apply the G-G diagram to large-scale unlabeled driving data 
that are becoming increasingly prevalent in the context of ITS. 
With the proposed method, the numerous risky driving 
behaviors of the driver were decomposed into several risk 
components, which facilitated driving risk analysis. The spatio-
temporal characteristics can be used to illustrate the potential 
cause of a driver’s risky driving behavior. The results show that 
it is necessary to consider the relationship between the lateral 
and longitudinal accelerations to assess a driver’s driving style 
since the magnitude of the longitudinal acceleration generally 
decreases when that of lateral acceleration increases. There is 
heterogeneity in drivers’ risky driving behaviors. Risky 
acceleration and braking patterns were detected for all high-risk 
drivers and accounted for a significant part of the driving risk. 
The combination of lateral and longitudinal accelerations 
accounted for the majority of the driving risk for low-risk 
drivers. The developed performance score is reliable for 
measuring the driving risk of drivers, as crash-involved drivers 
were associated with lower performance scores. The analysis of 
the spatio-temporal context for two drivers shows that not all 
risky acceleration maneuvers are aggressive driving behaviors. 
The spatio-temporal characteristics can provide implicit factors 
regarding the risky driving behavior of drivers. Their intentions 
can be inferred from the context information.  

Results of this study can be used to create a risk profile to 
provide driving feedback for each driver. Drivers can be trained 
to improve their driving behavior based on the feedback. This 
risk profile can also be used in the UBI scheme to determine the 
premium amount based on the risk level or performance score. 
Furthermore, the outcome can be used to enhance the benefits 
of ITS, particularly the intelligent vehicles. A personalized 
driving assistance system can be developed based on the results. 
The parameters of the system can be set according to the 
driver’s driving risk component and the system can be set to 
assist the driver’s driving in appropriate scenarios (i.e., 
individual behavioral hotspots). It has been shown that 
personalized driving assistance systems are more acceptable 
and user-friendly compared to regular ones [56]. Intelligent 
vehicles can also warn drivers before entering any individual 
behavioral hotspots, and a good driving plan can be prepared to 
help them avoid challenging circumstances. 
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