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   Abstract—Owing to the shareability and spatial-temporal 
imbalance of free-floating bike-sharing (FFBS), the users may fail 
to pick up the bike at the desired location (i.e., the demand is 
truncated). Consequently, the demand partially migrates to 
nearby areas or is lost. Thus, the observed demand recorded in the 
system is not the underlying real demand. To address this issue, a 
framework for Demand Recovery considering demand 
Truncation, Migration, and spatial Correlation (DRTMC) was 
proposed. In detail, the real demand recovery is first modeled as a 
maximum-a-posteriori (MAP) problem. Then, the prior term and 
conditional term in MAP are formulated to jointly consider the 
demand truncation, migration, and spatial correlation. Finally, a 
tailored simulated annealing approach is applied to estimate the 
real demand. We then present the results using simulation data for 
validation and real-world data for empirical analysis. The 
validation results indicate that the demand recovered by the 
DRTMC model is much closer to the real demand value than the 
observed demand, and it performs better than all the benchmarks. 
For the case study, the FFBS data from Shanghai City in a 
prosperous area is chosen. It shows the distribution of observed 
demand is significantly different from that of real demand, 
emphasizing the importance of real demand recovery. The 
proposed DRTMC model enables researchers to capture the 
underlying real demand for FFBS and develop more effective 
rebalance strategies to improve FFBS service levels.  

 
Index Terms—demand correlation; demand migration; demand 

truncation; free-floating bike-sharing; real demand recovery. 

I. INTRODUCTION 
ike-sharing systems provide a shared, economical, 
flexible, convenient, and sustainable travel alternative for 

travelers, which solves the last mile problems and mitigates 
traffic congestion in cities [1], [2], [3], [4], [5]. In general, the 
current bike-sharing systems can be categorized into two types: 
station-based bike-sharing (SBBS) and free-floating bike-
sharing (FFBS) [6]. In SBBS, users pick up and drop off the 
bikes at a designated station. In contrast, FFBS eliminates the 
station constraint and is characterized by its “Internet plus” 
property, enabling users to pick up and drop off bikes at any 
allowable location with their smartphones [6], [7]. The 
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introduction of bike-sharing benefits the travelers and transport 
system. To improve the service level of bike-sharing, an 
increasing amount of research has been conducted, which 
commonly includes analyzing the usage pattern [8], [9], 
investigating the influential factors [7], [10], [11] predicting 
future demand [5], [12], [13], and relocating the bike-sharing 
services [14], [15], [16], [17]. 

Accurately capturing the actual real-world demand of FFBS 
is vital for ensuring the effectiveness of the aforementioned 
studies. However, due to the feature of sharing, the supply 
would be limited among users. Consequently, the bike usage 
demand may not be totally satisfied [18]. Thus, some users fail 
to acquire bikes at their desired locations. Moreover, the failure 
to use the shared travel mode is a common issue not only in 
FFBS but also in other shared travel modes (e.g., taxi or ride-
hailing). It is vital to consider the unmet or unassigned demand 
when analyzing or designing the shared travel system [19],[20]. 
Thus, in this paper, the FFBS as a typical shared travel mode is 
selected for the study. The example of usage details for FFBS 
and corresponding data are illustrated in Fig. 1.  

 

 
Fig. 1. The usage details and data samples of FFBS. 
 

In this example, three users want to pick up the bike at the 
location (118.80, 32.05). For the first user arriving at 18:25:02, 
two bikes are available and then one bike is picked up. After the 
trip is finished, the FFBS system will record the information. 
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which includes the bike ID, the trip starting time and origin 
location, the trip ending time and the destination location. 
Similarly, another bike is picked up by the second user arriving 
at 18:28:34, and the usage information is recorded as well. 
However, when the third user wants to use the bike at 18:29:16, 
the bike is not available. Then, she/he chooses the secondary 
option and goes to the destination by bus. In this case, the FFBS 
demand is unmet. Unlike the previous two successful pickups, 
the information of the third user can’t be recorded. As a 
consequence, the pickups recorded in the system cannot reflect 
the real bike usage demand [21].  

In this study, we define the number of users planning to use 
bikes when the bike supply is sufficient as real demand (i.e. 
actual real-world demand without truncation), successfully 
using bikes as observed demand, and planning but failing to use 
bikes as the unmet demand [22], [23]. According to [21], which 
used the FFBS dataset in Beijing from May 14 to May 31, 2017, 
there were more than 80% of areas experienced demand 
truncation. Thus, the real demand and observed demand should 
be distinguished. However, most previous studies ignore the 
unmet demand and directly treat historical observed demand as 
the real demand [5], [7]. Thus, estimating the underlying real 
demand of bike-sharing receives little attention. But estimating 
the FFBS real demand is difficult due to the data limitation. 
Commonly, as presented in Fig.1, the dataset of FFBS contains 
only the bike ID, pick-up/drop-off time and location [4], [9]. In 
other words, only the successful usage can be recorded. The 
researchers have no idea about how many users search for the 
bikes in the APP, and how the users behave when no bike is 
available. Moreover, detailed GPS movement is rarely obtained 
in the FFBS system. Thus, there is no direct reference for the 
underlying real FFBS demand. All those data limitations make 
it a challenge to estimate the FFBS real demand. 

In addition to the real demand, observed demand, and unmet 
demand, another kind of demand related to demand truncation 
analysis especially in the free-floating bike-sharing context is 
the “migration demand” [24]. It is the number of demands 
captured by the nearby area when bikes in the first-choice area 
are not available [23] [25]. It is worth mentioning that the 
concept of migration demand is closely related to substitution 
demand in market management. In detail, the migration demand 
can be viewed as the FFBS demand substituting among 
different areas. For the demand substituting to other travel 
modes, it is counted as the unmet demand. Here, to emphasize 
the context of FFBS and to avoid misleading, the migration 
demand instead of substitution demand is used for the paper 
exposition. An important concept related to the migration 
demand is the migration (or substitution) rate 𝜋𝜋𝑖𝑖→𝑗𝑗 [26], which 
is the probability of shifting to area 𝑗𝑗 when bikes in area 𝑖𝑖 are 
not available [25], [26]. When truncation occurs, the truncated 
demand spills over to the migration area, which captures extra 
demand that wasn't supposed to be there. In other words, the 
demand in different areas would be coupled together [23]. 
Therefore, the migration process must be considered and the 
spillover and captured demand must be decoupled when 
recovering the real demand for FFBS in each area [27], [28].   

Further, it is proved that the demand for shared travel modes 

like car-sharing and public buses show an obvious spatial 
correlation, and the FFBS is also not the exception.  Especially, 
the real demand for FFBS in the nearby area should be spatially 
correlated and tend to be similar [7], [23]. Therefore, in this 
paper, such an implicit positive correlation of FFBS will also 
be considered.  

The aim of this study is to develop a model to recover the 
underlying real demand based on the observed information in 
Fig.1. Especially, what we can see is not the truth, and we need 
to infer the underlying truth based on what we observe. In this 
study, real demand recovery is modeled as a maximum a 
posteriori (MAP) problem considering demand truncation, 
migration, and spatial correlation. The model details are 
provided in Section III. Moreover, due to the limitation of the 
system record, the ground-truth real demand of FFBS can’t be 
obtained, which results in the difficulty of model validation. To 
address this issue, the simulation study is first conducted where 
the ground-truth data is obtainable to validate the model. Then 
the verified model is applied in real-world case to estimate the 
actual real-world demand of FFBS. The contributions of this 
study are as follows: 
 A framework for Demand Recovery considering 

Truncation, Migration, and spatial Correlation (DRTMC) 
is proposed to estimate the real demand of FFBS. In 
particular, the real demand recovery under the framework 
of DRTMC is formulated as a maximum-a-posteriori 
(MAP) problem. 

 The performance of the proposed DRTMC is validated 
and proved to be superior to the benchmarks through 
simulation experiments, then it is applied to the field 
dataset in real world for empirical study. 

The remainder of this paper is organized as follows. A 
literature review of related work is presented in Section II. 
Section III presents the methodology, followed by the 
validation in Section IV. The case study in real world is then 
shown in Section V. Finally, the conclusion is provided in 
Section VI.  

II. LITERATURE REVIEW 
Research on demand recovery in the transportation field is 

widely reviewed in this section to provide a complete 
perspective. To begin with, a simple and straightforward 
method of recovering real demand or unmet demand is to 
conduct a survey. For instance, Ullman et al. conducted a state-
wide survey of the inhabitants of Vermont to collect 
information about their long-distance travel, where nearly 22% 
of respondents reported they experienced unmet demands at 
least once yearly [29]. Further, they found that the number of 
unmet demands was larger than expected for females. Besides, 
Luiu and Tight focused on elderly people and used the National 
Travel Survey in England to investigate their travel difficulties 
and unmet demand. The result revealed that poor health, lack of 
access to transport resources, and gender were the main factors 
contributing to unmet travel demand [30]. Fields et al. designed 
the MyAmble app to record the unmet travel demand amongst 
low-income older adults. Their two-week study concluded that 
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16% of the travel demand failed to be met in this period [31]. 
Further, a survey was conducted by the Torbay Council in the 
UK to capture how much unmet taxi demand there is so that the 
taxi service levels could be improved [32]. Such survey 
methods can collect data easily but are time-consuming and 
limited to small sample sizes [33].  

As an alternative, passively collected data can also be used 
for demand estimation. For example, using taxi GPS data in 
New York City, Zhang and Ghanem estimated the demand for 
street-hail taxis in each road segment using the non-stationary 
Poisson random field method [34]. Similarly, by utilizing 
street-hail taxi data in Xi’an City, Wang et al. developed a 
recursive decomposition probability model to estimate the real 
demand by incorporating the disaggregate passing time of each 
taxi [35]. Based on the car-sharing historical dataset in Boston 
and New York City, Fields et al. simulated the car-sharing 
demand truncation process with different levels of demand 
distribution, then compared the output of the simulation and the 
pickups in historical data to determine the most likely real 
demand distribution, the demand migration behavior was 
implicitly considered in the simulation while not explicitly 
formulated in the analytical model [23].  

In addition, studies specifically related to the demand 
estimation of bike-sharing have also been conducted. To 
evaluate the service levels of FFBS and SBBS, Albiński et al. 
calculated the mean value of demand that is not truncated in the 
same period to replace truncated demands [18]. In addition, 
based on the CitiBike dataset, Jian et al. proposed a discrete 
event simulator to estimate the demand for each pair of stations 
in New York City [36]. Similarly, an iterative simulation-based 
inference method was established by Negahban to estimate the 
real demand for SBBS, proving that ignoring the demand 
truncation causes incorrect or suboptimal decisions [37]. To 
estimate the demand for FFBS, Wang et al. treated truncated 
demand as the missing value in the matrix and established a 
matrix completion solution to detruncate those values [21]. 
Moreover, the Tobit model is a common method applied for 
truncation research, and a representative study on bike-sharing 
was conducted by Gammelli et al., where the authors integrated 
the Tobit model with a Gaussian process and modeled the 
problem of real demand recovery as a time-series analysis to 
recover the real SBBS demand [22].  

These approaches have been successfully applied in real 
demand recovery. However, the following aspects need to be 
explored further for FFBS. (i) The data structure used in these 
methods is commonly represented by a tuple (𝑦𝑦,𝑇𝑇𝑇𝑇), where 𝑦𝑦 
is the value of observed demand and 𝑇𝑇𝑇𝑇 represents whether the 
real demand is truncated (i.e., 𝑇𝑇𝑇𝑇 = 1) or not (i.e., 𝑇𝑇𝑇𝑇 = 0). 
Thus, 𝑇𝑇𝑇𝑇 is an “all-or-nothing” indicator. However, the demand 
could also be partially truncated in the focused time period. 
Therefore, in addition to indicator 𝑇𝑇𝑇𝑇 , the duration of 
availability can be used to incorporate the information of 
truncation intensity. (ii) When a bike is unavailable in area A, it 
is possible for a user to migrate to nearby area B to pick up a 
bike. Such migration has rarely been investigated except for a 
few studies. To address these issues in the FFBS context, Wang 
et al. proposed the DTMP regression model to consider the 

demand truncation and migration process [24]. However, the 
demand correlation among nearby areas is ignored. Moreover, 
the regression model focuses on the trend of the whole dataset, 
although it reveals the causal influence of factors on real 
demand, it can’t be used to estimate the real demand for each 
individual area. To overcome the limitation, this study tries to 
estimate the real demand of FFBS in each individual grid area 
by jointly considering the demand truncation, migration, and 
spatial correlation. 

III. METHODOLOGY 
This section introduces the DRTMC framework. First, we 

state the problem as a MAP estimation in Section A. Then, the 
truncation, migration, and correlation are modeled in detail in 
Sections B and C, and the demand estimation process is 
explained in Section D. The annotations used in this paper are 
summarized in Appendix A for ease of reference. 

A. Problem Description 
In this study, we aim to estimate the real FFBS demand based 

on the observable but truncated demand. To ensure that the 
problem is trackable and address the inconvenience of the free-
floating feature, by following [21], [38], we first divide the 
study area into equal-sized grids of length 100 m (as in Fig.9). 
Then, the problem can be transferred to estimate the real 
demand in each grid.  

Because the real demand in each day is a random value and 
its change is uncapturable, what we are interested in is the 
expected value of real demand, which is a statistical property 
for the daily real demand. The assumptions made before 
modeling are as follows:  

Assumption 1: For each grid, the expected value of real 
demand is constant in the focused period (e.g., 7:00 am – 8:00 
am). Since the expected value of real demand varies at different 
periods of the day, it is not possible to target the whole day in 
the study. Instead, we focus on a specific time period and 
assume that the expected value doesn’t change within this 
period [36]. It is noted that the constant expected value doesn’t 
mean the actual daily real demand is constant. Rather, the 
expected value of real demand is a statistical parameter for the 
daily real demand varying from day to day  

Assumption 2: When the truncation happens, the unsatisfied 
demand will either leave the FFBS system or migrate to nearby 
to pick up the bike. The candidate grids for the migration 
include the nearby eight grids, which means the demand won’t 
spill over to further grids. This assumption is relatively strong, 
but it is easy to be satisfied if we focus on the prosperous area 
(e.g., case study area in Fig. 9). This is because in those areas 
the supply of bikes is high, the situation that no bikes in all the 
eight nearby grids rarely happens.  

Assumption 3: The observed demand and real demand both 
follow Poisson distributions but with different expected values. 
Particularly, the expected values of the real and observed 
demands can be related by considering the truncation and 
migration process. Then, we can assume that the observed 
demand and real demand follow two Poisson distributions with 
different but related parameters, respectively.  
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Assume that there are 𝑁𝑁 grids and 𝐾𝐾 days’ observations. For 
grid 𝑛𝑛 ∈ 𝑁𝑁, we denote the randomly observed demand in the 
specific period on the 𝑘𝑘𝑡𝑡ℎ day as 𝑦𝑦𝑛𝑛,𝑘𝑘 ∈ 𝐘𝐘. In particular, 𝑦𝑦𝑛𝑛,𝑘𝑘 is 
a random variable that follows a Poisson distribution, 
𝑦𝑦𝑛𝑛,𝑘𝑘~𝑃𝑃𝑃𝑃𝑛𝑛(𝜆𝜆𝑛𝑛𝑜𝑜) , where 𝑃𝑃𝑃𝑃𝑛𝑛(∙)  denotes the probability mass 
function of the Poisson distribution and 𝜆𝜆𝑛𝑛𝑜𝑜 ∈ 𝝀𝝀𝒐𝒐,𝑛𝑛 = 1,2, … ,𝑁𝑁 
is the expected value of the observed demand in grid 𝑛𝑛 . 
Similarly, let 𝜆𝜆𝑛𝑛𝑟𝑟 ∈ 𝝀𝝀𝒓𝒓, 𝑛𝑛 = 1,2, … ,𝑁𝑁  represent the expected 
value of the real demand in grid 𝑛𝑛. It is noted that 𝝀𝝀𝒓𝒓 is the 
quantity of interest that will be estimated in this study. In 
addition, denote 𝑃𝑃(𝝀𝝀𝒓𝒓|𝒀𝒀) as the probability that the expected 
value of real demand parameter is 𝝀𝝀𝒓𝒓 given that the observed 
demand is 𝒀𝒀 . Here, 𝑃𝑃(𝝀𝝀𝒓𝒓|𝒀𝒀)  is a posterior distribution. The 
target of this study is to maximize this posterior distribution, 
which will “guess” the most likely expected value of real 
demand conditional on the observed data. This is a MAP 
problem. According to the Bayesian theorem, 𝑃𝑃(𝝀𝝀𝒓𝒓|𝒀𝒀) can be 
written as, 

𝑃𝑃(𝝀𝝀𝒓𝒓|𝒀𝒀) =
𝑃𝑃(𝝀𝝀𝒓𝒓)𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)

𝑃𝑃(𝒀𝒀) , (1) 

where 𝒀𝒀 is the given value and 𝑃𝑃(𝒀𝒀) is a constant. In addition, 
the 𝑃𝑃(𝝀𝝀𝒓𝒓)  is the prior term, which models the common 
knowledge without needing the specific observed information. 
In particular, in the context of FFBS demand, it is common 
sense that the demand is spatially correlated and the real 
demand in a grid is similar to those of their neighbors. In other 
words, if the 𝜆𝜆𝑛𝑛𝑟𝑟  is similar to those of nearby grids, the prior 
term 𝑃𝑃(𝝀𝝀𝒓𝒓)  will be higher. Thus, the spatial correlation is 
considered as the prior information in  𝑃𝑃(𝝀𝝀𝒓𝒓) when recovering 
the FFBS demand. 

As for 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓) , it is a conditional term that models the 
relationship between the expected real value 𝜆𝜆𝑛𝑛𝑟𝑟  and randomly 
observed information 𝑦𝑦𝑛𝑛,𝑘𝑘 . Although the real demand is 
different from the observed demand, they are not independent 
of each other. Specifically, 𝑦𝑦𝑛𝑛,𝑘𝑘  is observed after the grids 
experience truncation and migration. Therefore, the observed 
demand 𝑦𝑦𝑛𝑛,𝑘𝑘 is related to the truncated and migrated versions of 
the real demand 𝜆𝜆𝑛𝑛𝑟𝑟 . Accordingly, the conditional term 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓) 
is used to incorporate the truncation and migration process.  

Overall, in real demand recovery, MAP estimation can be 
applied to estimate the expected value of the real demand  𝝀𝝀𝒓𝒓 
conditional on the observed demand 𝒀𝒀 . Moreover, because 
𝑃𝑃(𝒀𝒀) is a constant with regard to 𝝀𝝀𝒓𝒓, 𝝀𝝀𝒓𝒓 can be determined by 
maximizing the 𝑃𝑃(𝝀𝝀𝒓𝒓)𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓) directly, as follows,   

𝝀𝝀𝒓𝒓� = 𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝝀𝝀𝒓𝒓

𝑃𝑃(𝝀𝝀𝒓𝒓)𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)
𝑃𝑃(𝒀𝒀) ∝ 𝑎𝑎𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝝀𝝀𝒓𝒓
�𝑃𝑃(𝝀𝝀𝒓𝒓)𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)� . (2) 

Therefore, the core part of DRTMC is to model truncation 
and migration in 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓), and to model the spatial correlation 
in  𝑃𝑃(𝝀𝝀𝒓𝒓), which will be elaborated in the next sections B and. 
For the convenience of modeling, a demand network, 
𝐺𝐺(𝑉𝑉,𝐸𝐸) 𝑣𝑣 ∈ 𝑉𝑉  𝑒𝑒 ∈ 𝐸𝐸, is first constructed, as shown in Fig. 2. 
The constructed network can be viewed as a Markov network 
or Markov random field (MRF). This network contains two 
layers. The upper layer represents the expected value of the 

observed demand 𝝀𝝀𝒐𝒐 , and the lower layer represents the 
expected value of the real demand 𝝀𝝀𝒓𝒓. Each layer consists of 
several points 𝑣𝑣 , representing the expected value of real 
demand or observed demand in grids. It is noted that the points 
at the same location in the upper and lower layers represent the 
same grid but with different demand information. Without loss 
of generality, we focus on the point in the center in Fig. 2, 
whose values are denoted by 𝜆𝜆𝑛𝑛𝑜𝑜  and 𝜆𝜆𝑛𝑛𝑟𝑟  in the upper layer and 
lower layer, respectively. In addition, for the focused grids, 
there are eight migration grids, and their values are denoted by 
𝜆𝜆𝑚𝑚𝑜𝑜  and 𝜆𝜆𝑚𝑚𝑟𝑟 , 𝑎𝑎 ∈ 𝑁𝑁(𝑛𝑛).  Here, 𝑁𝑁(∙)  is the neighborhood 
function containing the index of the migration grids. The links 
𝑒𝑒 in Fig. 2 reveal the relationships among different points 𝑣𝑣. For 
simplicity, we only show the links related to the center and 
ignore the other links. In particular, there are three types of links 
with different colors: demand truncation links 𝑒𝑒𝑡𝑡 , demand 
migration links 𝑒𝑒𝑚𝑚, and demand correlation links 𝑒𝑒𝑐𝑐, 

B. Truncation and Migration in Conditional Term 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓) 
The conditional term 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)  models the distribution 

between the observed demand 𝑦𝑦𝑛𝑛,𝑘𝑘 ∈ 𝒀𝒀 and the expected value 
of real demand 𝜆𝜆𝑛𝑛𝑟𝑟 ∈ 𝝀𝝀𝒓𝒓 . Here, 𝑦𝑦𝑛𝑛,𝑘𝑘  is a randomly distributed 
variable and 𝜆𝜆𝑛𝑛𝑟𝑟  is the expected value of real demand. To 
connect these two variables, the expected value of the observed 
demand 𝜆𝜆𝑛𝑛𝑜𝑜 ∈ 𝝀𝝀𝒐𝒐 plays a mediating role. In detail, 𝑦𝑦𝑛𝑛,𝑘𝑘 follows 
the Poisson distribution with parameter 𝜆𝜆𝑛𝑛𝑜𝑜 , i.e., 𝑦𝑦𝑛𝑛,𝑘𝑘~𝑃𝑃𝑃𝑃𝑛𝑛(𝜆𝜆𝑛𝑛𝑜𝑜 ). 
Meanwhile, based on the demand truncation and migration 
process, 𝜆𝜆𝑛𝑛𝑜𝑜  is a function of 𝜆𝜆𝑛𝑛𝑟𝑟 , i.e., 𝜆𝜆𝑛𝑛𝑜𝑜 = 𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 ),𝑎𝑎 ∈ 𝑁𝑁(𝑛𝑛). 
Therefore, we can obtain 𝑦𝑦𝑛𝑛,𝑘𝑘~𝑃𝑃𝑃𝑃𝑛𝑛(𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 )) . The 
relationship between 𝑦𝑦𝑛𝑛,𝑘𝑘 and 𝜆𝜆𝑛𝑛𝑟𝑟  can be expressed as, 

𝑃𝑃�𝑌𝑌 = 𝑦𝑦𝑛𝑛,𝑘𝑘|(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 )� = 𝑃𝑃𝑃𝑃𝑛𝑛�𝑦𝑦𝑛𝑛,𝑘𝑘|𝜆𝜆𝑛𝑛𝑜𝑜�  

=
𝑒𝑒−𝜆𝜆𝑛𝑛𝑜𝑜 ∗ 𝜆𝜆𝑛𝑛𝑜𝑜

𝑦𝑦𝑛𝑛,𝑘𝑘

𝑦𝑦𝑛𝑛,𝑘𝑘!
=
𝑒𝑒−𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 ) ∗ 𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 )𝑦𝑦𝑛𝑛,𝑘𝑘

𝑦𝑦𝑛𝑛,𝑘𝑘!
. (3) 

The problem then becomes how to model the function 𝜆𝜆𝑛𝑛𝑜𝑜 =
𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 )  in (3). Once the 𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 )  is formatted, the 
conditional term could be expressed analytically.  

The expected value of the observed demand 𝜆𝜆𝑛𝑛𝑜𝑜  is consists of 
two parts. The first part, 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑡𝑡𝑟𝑟 , is the demand related to the 
truncation process, and it represents the demand that comes 
from grid 𝑛𝑛 itself when the demand is not truncated (truncation 
link in Fig. 2(a)). The second part, 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚, considers the demand 
migration process and represents the demand that comes from 
nearby grid 𝑎𝑎 after demand truncation occurs there (migration 
link in Fig. 2(b)):  

𝜆𝜆𝑛𝑛𝑜𝑜 = 𝜆𝜆𝑛𝑛
𝑜𝑜,𝑡𝑡𝑟𝑟 + 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚 . (4) 

Particularly, a higher value of 𝜆𝜆𝑛𝑛
𝑜𝑜,𝑡𝑡𝑟𝑟 is captured if the duration 

of availability in 𝑛𝑛 is longer and vice versa. To represent 𝜆𝜆𝑛𝑛
𝑜𝑜,𝑡𝑡𝑟𝑟, 

the indicator 𝑎𝑎𝑛𝑛  is defined to measure availability. It is 
expressed as 𝑎𝑎𝑛𝑛 = 𝑇𝑇𝑛𝑛𝑎𝑎/𝑇𝑇, where 𝑇𝑇𝑛𝑛𝑎𝑎  is the duration for which 
the bike is available and not truncated in grid 𝑛𝑛, and 𝑇𝑇 is the 
entire duration (in this study 𝑇𝑇 is 1 h). Thus, the first part related 
to the truncation process can be expressed as,   

𝜆𝜆𝑛𝑛
𝑜𝑜,𝑡𝑡𝑟𝑟 = 𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟 . (5)
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Fig. 2. Demand recovery considering (a) truncation, (b) migration, and (c) correlation. 

 
The second part 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚  is related to the migration process. 
We choose one of the nearby grids 𝑎𝑎 ∈ 𝑁𝑁(𝑛𝑛)  for a later 
explanation. After demand in 𝑎𝑎 is truncated, there are 𝜆𝜆𝑚𝑚𝑟𝑟 (1 −
𝑎𝑎𝑚𝑚) users cannot find a desired bike immediately, where 𝑎𝑎𝑚𝑚 
indicates the availability of 𝑎𝑎. Among those 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚) users, 
some of them may migrate to nearby grids to use the bike (i.e., 
case 1 in Fig. 3), whereas the remaining users leave the FFBS 
system and are counted as unmet demand (case 2 in Fig.3).   

 

 
Fig. 3. User choices when the demand is truncated 
 
In Fig. 3, 𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) represents the probability/willingness 

of migration. The 𝑤𝑤𝑚𝑚 is a dummy variable, which takes 1 if the 
user in grid 𝑎𝑎 decides to migrate to nearby grids when the first 
choice is truncated and 0 otherwise. In contrast, 1 −  𝑝𝑝(𝑤𝑤𝑚𝑚 =
1) in case 2 is the willingness of not migrate, which can be 
interpreted as the proportion of unmet demand with respect to 
the truncated demand. Consequently, the total expected demand 
spilled from 𝑎𝑎  and captured by nearby grids is 𝜆𝜆𝑚𝑚𝑟𝑟 (1 −
𝑎𝑎𝑚𝑚)𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) . Among all spillover demands, a proportion 
will be captured by grid 𝑛𝑛 ∈ 𝑁𝑁(𝑎𝑎) , and such proportion is 
denoted as 𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1). It is the conditional probability 
that a user migrates from 𝑎𝑎 to 𝑛𝑛 given that he or she decides 
still to use a bike. It is worth mentioning that 𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 =
1) is zero if grid 𝑛𝑛 has no bike across the entire study period. 
Thus, the expected demand migrates from 𝑎𝑎 to 𝑛𝑛, 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎), 
can be represented as,     

𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎) = 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚)𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1)𝑝𝑝(𝑤𝑤𝑚𝑚 = 1). (6) 
 

To quantify 𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎), we need to model 𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) and 

𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1) . For 𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) , it represents users’ 
willingness of migration in the corresponding grid 𝑎𝑎, which is 
subjective information and can’t be measured from the bike 
dataset. However, such kind of information can be surveyed 
from bike users and used as extra information when estimating 
the real demand (see D in this section).   

As for 𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1), when users fail to find a bike at 
the desired grid, they will choose the bike at nearby grids. In 
this case, their goal is clear, i.e., to find the bike for trips. 
Compared with other factors (e.g., built environment, bike 
inventory level), they would only care about whether the bike 
is available or not. Thus, we assume that, as long as there is a 
bike inside a grid, this grid’s attractiveness to users is the same 
as other nearby bike-available grids. Therefore, we can regard 
that the 𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1) is only related to whether the bike 
is available in nearby grids. To consider the influence of bike 
availability when calculating 𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1) , we define 
the projected availability 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛, which measures the duration 
in which the bike is available in 𝑛𝑛 when no bikes are in grid 𝑎𝑎. 
The migrated demand is more likely to be captured by grid 𝑛𝑛 if 
the corresponding 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛   is higher. In other words, 𝑝𝑝(𝑎𝑎 ⟶
𝑛𝑛|𝑤𝑤𝑚𝑚 = 1)  is proportion to 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛 . Particularly, the 𝑝𝑝(𝑎𝑎 ⟶
𝑛𝑛|𝑤𝑤𝑚𝑚 = 1) is calculated based on the dataset, which is macro 
information and not changeable for each user in  𝜆𝜆𝑚𝑚𝑟𝑟 (1 −
𝑎𝑎𝑚𝑚)𝑝𝑝(𝑤𝑤𝑚𝑚 = 1). The calculation example of 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛 is shown in 
Fig. 4.  

 

 
Fig. 4. Calculation of projected availability of nearby 𝑛𝑛  
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In Fig. 4, the 𝐵𝐵𝑛𝑛 and 𝐵𝐵𝑚𝑚 represent the numbers of available 
bikes in grid 𝑛𝑛 and 𝑎𝑎, respectively. The duration of truncation 
of grid 𝑎𝑎 is projected to demand-capturing grid 𝑛𝑛 in the blue 
region. Then, 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧  for grid 𝑛𝑛 equals the 𝑧𝑧𝑡𝑡ℎ duration in which 
the bike is available in 𝑛𝑛  but not available in 𝑎𝑎  (i.e.,  𝐵𝐵𝑚𝑚 =
0 & 𝐵𝐵𝑛𝑛  ≥  1 ), and 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛  is the summation of 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧 , i.e., 
𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛 = ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧
𝑧𝑧 . The conditional migration probability 

𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1)  is proportional to 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛 , and can be 
represented as, 

𝑝𝑝(𝑎𝑎 ⟶ 𝑛𝑛|𝑤𝑤𝑚𝑚 = 1) =
𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
=

∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛
𝑧𝑧

𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
. 

(7) 

By substituting (7) into (6), the demand migrating from 𝑎𝑎 to 
𝑛𝑛, 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎), can be expressed as,    

𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎) = 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚)

∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛
𝑧𝑧

𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1). (8) 

Then, 𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚 is the summation of all demands captured from 

nearby grids 𝑎𝑎, which can be expressed as, 

𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚 = ∑ 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎)𝑚𝑚∈𝑁𝑁(𝑛𝑛)      

= � 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚)
∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧
𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1)

𝑚𝑚∈𝑁𝑁(𝑛𝑛)

. (9) 

According to (4), (5), and (9), 𝜆𝜆𝑛𝑛𝑜𝑜 = 𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 ) in (3) can be 
formulated as, 

𝜆𝜆𝑛𝑛𝑜𝑜 = 𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟 +  

= � 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚)
∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧
𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1)

𝑚𝑚∈𝑁𝑁(𝑛𝑛)

. (10) 

Now, as 𝜆𝜆𝑛𝑛𝑜𝑜 = 𝑓𝑓(𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 ) is derived in (10), by substituting 
(10) into (3), the connection between the observed demand 𝑦𝑦𝑛𝑛,𝑘𝑘 
and the expected value of the real demand 𝜆𝜆𝑛𝑛𝑟𝑟  for one 
observation is established, which considers the demand 
truncation and migration process:   

𝑃𝑃�𝑌𝑌 = 𝑦𝑦𝑛𝑛,𝑘𝑘|𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 � = 𝑃𝑃𝑃𝑃𝑛𝑛(𝑦𝑦𝑛𝑛,𝑘𝑘|𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟  +  

       � 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚)
∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧
𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1))

𝑚𝑚∈𝑁𝑁(𝑛𝑛)

(11) 

The conditional term 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)  can then be formulated by 
multiplying the probability of each observation 𝑦𝑦𝑛𝑛,𝑘𝑘,    

𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)  = ∏ ∏ 𝑃𝑃�𝑌𝑌 = 𝑦𝑦𝑛𝑛,𝑘𝑘|𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 �𝑛𝑛𝑘𝑘   

= � � 𝑝𝑝𝑃𝑃𝑛𝑛(𝑦𝑦𝑛𝑛,𝑘𝑘|𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟
𝑛𝑛𝑘𝑘

+  

       � 𝜆𝜆𝑚𝑚𝑟𝑟 (1 − 𝑎𝑎𝑚𝑚)
∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧
𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1)).

𝑚𝑚∈𝑁𝑁(𝑛𝑛)

(12) 

It should be pointed out that the demand in nearby truncation 
grids could migrate to the same grids. In other words, the 
migration grids would partially overlap if the truncation grids 
are located closely. Accordingly, 𝑃𝑃�𝑌𝑌 = 𝑦𝑦𝑛𝑛,𝑘𝑘|𝜆𝜆𝑛𝑛𝑟𝑟 ,𝝀𝝀𝒎𝒎𝒓𝒓 �  is not 
independent, and (12) somehow violates the independent 

condition. However, we keep this form for the following 
reasons. (i) Independent factorization is only satisfied by 
ignoring the migration process (i.e., no migration links in Fig. 
2), but ignoring this process would leave out the important 
migration pattern of FFBS. (ii) We validated in Section IV that 
although the proposed model violates the independent condition 
to some extent, it is superior to that of the model satisfying the 
independent condition (i.e., the benchmark in (19), which 
contains no migration link).    

C. Spatial Correlation in Prior Term 𝑃𝑃(𝝀𝝀𝒓𝒓) 
We then model the prior term 𝑃𝑃(𝝀𝝀𝒓𝒓), which considers the 

spatial correlation of the expected value of real demand. In this 
study, we assume that the demand 𝜆𝜆𝑛𝑛𝑟𝑟  is directly correlated with 
those in the nearest eight grids and has no direct correlation with 
the further grids. This assumption reflects the Markov property 
of the demand network and is widely used in the Markov 
random field. But it is noted that this assumption doesn’t mean 
the grids have no correlation with the further grids. Instead, the 
further correlation is implicitly considered. For example, there 
is a grid a paired with the nearby grid b, and the demand is 
correlated. Meanwhile, grid b is also correlated with another 
grid c, which is a further grid for a. Through the mediate grid b, 
the correlation between grid a and further grid c is implicitly 
incorporated. In Fig. 2(c), for each pair of linked grids, we 
define the correlation function (or equivalently, the potential 
function in Markov random field) as follows, 

𝑃𝑃�𝑒𝑒𝑐𝑐(𝜆𝜆𝑛𝑛𝑟𝑟 , 𝜆𝜆𝑚𝑚𝑟𝑟 )� =
1

√2𝜋𝜋
𝑒𝑒𝑎𝑎𝑝𝑝 �−

1
2
�

(𝑙𝑙 𝑛𝑛(𝜆𝜆𝑛𝑛𝑟𝑟 ) − 𝑙𝑙 𝑛𝑛(𝜆𝜆𝑚𝑚𝑟𝑟 ))
𝜎𝜎

�
2

� ,  

, (13) 

where 𝜎𝜎 is the “prior correlation parameter” in the prior term, 
which represents the extent of the spatial correlation. and 𝑙𝑙𝑛𝑛 (. ) 
is a logarithmic function, which is used to ensure that the 
expected demand 𝜆𝜆𝑛𝑛𝑟𝑟  is always positive. It is noted that (13) is 
not a normal distribution. We take its form since it is similar to 
the normal distribution and it satisfies the requirement of the 
potential function in MRF at the same time (i.e., to be always 
positive). In a MAP problem, the 𝑃𝑃(𝑒𝑒𝑐𝑐(𝜆𝜆𝑛𝑛𝑟𝑟 , 𝜆𝜆𝑚𝑚𝑟𝑟 ))  will be 
maximized, which means that the values of 𝑙𝑙𝑛𝑛 (𝜆𝜆𝑛𝑛𝑟𝑟 )  and 
𝑙𝑙𝑛𝑛 (𝜆𝜆𝑚𝑚𝑟𝑟 )  will be as similar as possible. Consequently, the 
increase in the real demand of one grid will make an increase in 
the real demand of another. Thus, an implicit positive 
correlation is incorporated. It is worth mentioning that the 
demand in nearby areas could also be substantially different as 
it highly depends on the built environment. But in this study, 
we divide the area into small grids with a length of 100 m. Thus, 
the built environment is similar and there would be few cases 
of substantially different demand levels. But then again, even if 
there is a substantial difference of demand resulting from 
different built environments, it will be implicitly captured by 
the observed demand and bike availability, which are then 
considered in the conditional term. As for the prior term, it 
should, by definition, only incorporate the prior knowledge. It 
is common sense that the demand in neighboring grids is 
positively correlated as those grids are close. In contrast, the 
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built environments in different locations are viewed as extra 
information, thus we think there is no need to consider it in the 
prior term. 

 In addition, as for 𝜎𝜎, it reflects the operators/researchers’ 
sense of the spatial correlation extent. As its name implies, the 
𝜎𝜎 should be specified in advance as the prior information when 
estimating the demand. Although we qualitatively know from 
(13) that a high value of 𝜎𝜎 indicates a low spatial correlation 
and vice versa, the exact values for the different extents of 
spatial correlation are unknown. Thus, we need to first match 
the value of 𝜎𝜎 with the different extents of spatial correlation 
quantitatively. Then, the matched 𝜎𝜎  can be used as the 
reference list, and the operators can select appropriate 𝜎𝜎 based 
on their prior sense of spatial correlation. To this end, we 
conduct simulation studies, in which the specific extent of 
spatial correlation is first generated. Then, the exact value of 𝜎𝜎 
can be matched to the given extent of spatial correlation. The 
example of matching the 𝜎𝜎 value is shown in Section IV.C.     

Because each pair of points can be regarded as a clique in the 
demand network, according to the Hammersley–Clifford 
theorem in a Markov random field [39], the distribution of 
correlation links in the demand network can be independently 
factorized into the correlation function (or potential function) 
for each clique; thus, 𝑃𝑃(𝝀𝝀𝒓𝒓) can be formulated by multiplying 
all the correlation functions directly,  

𝑃𝑃(𝝀𝝀𝒓𝒓) = 1
𝐻𝐻𝜎𝜎
∏ 𝑃𝑃(𝑒𝑒𝑐𝑐)𝑒𝑒𝑐𝑐     

       =
1
𝐻𝐻𝜎𝜎

�
1

√2𝜋𝜋
𝑒𝑒𝑎𝑎𝑝𝑝 �−

1
2
�

(𝑙𝑙 𝑛𝑛(𝜆𝜆𝑛𝑛𝑟𝑟 ) − 𝑙𝑙 𝑛𝑛(𝜆𝜆𝑚𝑚𝑟𝑟 ))
𝜎𝜎

�
2

�
𝑒𝑒𝑐𝑐

, (14) 

where 𝐻𝐻𝜎𝜎  is the normalizing constant and is usually called the 
partition function, it is added to ensure the range of (14) is 
between 0 and 1, which is consistent with the probabilistic 
model. The value of  𝐻𝐻𝜎𝜎  depends on the 𝜎𝜎. 

Finally, the log-likelihood function (objective function) for 
the real demand recovery under the DRTMC framework is 
formulated in (15). The truncation and migration are considered 
through the conditional term 𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)  and correlation is 
considered in 𝑃𝑃(𝝀𝝀𝒓𝒓), 

𝐿𝐿𝐿𝐿 = 𝑙𝑙𝑙𝑙𝑎𝑎�𝑃𝑃(𝝀𝝀𝒓𝒓)𝑃𝑃(𝒀𝒀|𝝀𝝀𝒓𝒓)�  

= 𝑙𝑙𝑙𝑙𝑎𝑎

⎩
⎪
⎨

⎪
⎧ 1
𝐻𝐻𝜎𝜎
∏ 1

√2𝜋𝜋
𝑒𝑒𝑎𝑎𝑝𝑝 �− 1

2
�(𝑙𝑙 𝑛𝑛(𝜆𝜆𝑛𝑛𝑟𝑟 )−𝑙𝑙 𝑛𝑛(𝜆𝜆𝑚𝑚𝑟𝑟 ))

𝜎𝜎
�
2
�  ×𝑒𝑒𝑐𝑐  

∏ ∏ 𝑃𝑃𝑃𝑃𝑛𝑛�𝑦𝑦𝑛𝑛,𝑘𝑘�𝑛𝑛 𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟 + ∑ 𝜆𝜆𝑚𝑚𝑟𝑟𝑚𝑚∈𝑁𝑁(𝑛𝑛)𝑘𝑘

× (1 − 𝑎𝑎𝑚𝑚) ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛
𝑧𝑧

𝑧𝑧
∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′

𝑧𝑧
𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)

𝑝𝑝(𝑤𝑤𝑚𝑚 = 1))
⎭
⎪
⎬

⎪
⎫

. (15)   

D. Demand Recovery  
The real demand, observed demand, unmet demand, and 

migration demand are strongly related. Each of these four types 
of demands can be calculated if the other three are known. 
Commonly, the data obtainable for estimation are observed 
demand data. However, as proven by Vulcano et al., the real 
demand, unmet demand, and migration (substitution) demand 
cannot be estimated together based on the observed demand 
alone without extra information [25]. Therefore, in their study, 
the proportion of unmet demand was specified as an extra 

constraint to avoid multiple optimal results. By following the 
study [25], we assume the willingness of migration, 
i.e., 𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) , can be accurately obtained through a 
questionnaire survey. Thus, the value of 𝑝𝑝(𝑤𝑤𝑚𝑚 = 1)  is 
specified as extra information when estimating the 𝝀𝝀𝒓𝒓 . The 
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1)  could be different for each grid. However, the 
survey of  𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) for different grids is beyond the scope of 
the current study. For ease of calculation, we assume the 
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1) in all grids happen to be the same from the survey 
and use one value to represent it. But in the real world, the 
operators could conduct a field survey. In this way, the 
heterogenous willingness of migration in different grids can be 
considered through the DRTMC model.     

In general, when using the Markov random field technique, 
several classical solutions exist, such as Gibbs 
sampling, iterated conditional mode, min-cut/max-flow, 
expansion moves, and simulated annealing (SA) [40], [41]. 
Because the proposed model is not a standard Markov random 
field and the demand is coupled owing to the demand migration 
process, the common methods are not applicable here. 
Therefore, we adopt SA for demand recovery. The SA method 
has been widely applied in the transportation field to obtain 
approximate global solutions. It is a metaheuristic approach that 
mimics the annealing process in metallurgy [42], [43], [44], 
[45]. 

We illustrate how the SA is applied to the DRTMC problem 
in the context of FFBS. First, we classify the grids into two 
types: real demand grid and non-real demand grid. The former 
refers to the grids in which truncation does not occur, and it 
does not capture the migration demand as well (i.e., the demand 
is also not truncated in the nearby grids). Thus, for the first type, 
the expected value of its real demand can be directly 
represented as the average value of observed demand across 𝐾𝐾 
days and is not updated during the estimation process. For the 
second type of grid, which experiences the demand truncation 
or its nearby grid experiences truncation, the real demand is not 
equal to the observed demand and needs to be estimated by SA.  

To implement SA for demand recovery, several parameters 
should be specified. Temperature scheme: The temperature 
scheme is set to follow a geometric pattern for consecutive 
iterations, i.e., 𝑇𝑇𝑃𝑃𝑞𝑞 = α𝑇𝑇𝑃𝑃𝑞𝑞−1, where α is the cooling rate and 
𝑇𝑇𝑃𝑃𝑞𝑞  is the temperature in iteration 𝑞𝑞 . When the initial 
temperature 𝑇𝑇𝑃𝑃0 gradually decreases and reaches a predefined 
final temperature 𝑇𝑇𝑃𝑃𝑓𝑓, the iteration stops. The values of 𝑇𝑇𝑃𝑃0, 
𝑇𝑇𝑃𝑃𝑓𝑓 , and α are always empirically set based on the problem 
context, and in this study, they are empirically set as 𝑇𝑇𝑃𝑃0 = 20, 
𝑇𝑇𝑃𝑃𝑓𝑓 = 0.01, and α = 0.95 after pre-testing.   

Initial solution and new solution generation: For initial 
solution {𝜆𝜆1

𝑟𝑟,0, 𝜆𝜆2
𝑟𝑟,0, … , 𝜆𝜆𝑛𝑛

𝑟𝑟,0} ∈ 𝝀𝝀𝒓𝒓,𝟎𝟎, instead of using the average 
of observed demand {𝑦𝑦�1,𝑦𝑦�2, … ,𝑦𝑦�𝑁𝑁} ∈  𝒀𝒀� directly, we modify 𝒀𝒀� 
according to the availability indicator 𝑎𝑎𝑛𝑛  to reduce the 
truncation effect. The value of the average observed demand 𝑦𝑦�𝑛𝑛 
is divided by its availability indicator 𝑎𝑎𝑛𝑛; that is, 𝜆𝜆𝑛𝑛

𝑟𝑟,0 =  𝑦𝑦�𝑛𝑛/𝑎𝑎𝑛𝑛. 
For new solutions at the 𝑧𝑧𝑡𝑡ℎ transition {𝜆𝜆1

𝑟𝑟,𝑧𝑧 , 𝜆𝜆2
𝑟𝑟,𝑧𝑧 , … , 𝜆𝜆𝑁𝑁

𝑟𝑟,𝑧𝑧} ∈ 𝝀𝝀𝑟𝑟,𝑧𝑧, 
it evolves randomly from the solution 𝝀𝝀𝑟𝑟,𝑧𝑧−1  at the last 
transition. In particular, for 𝑛𝑛, 𝜆𝜆𝑛𝑛

𝑟𝑟,𝑧𝑧 = 𝑒𝑒𝑎𝑎𝑝𝑝(𝜉𝜉) ∗ 𝜆𝜆𝑛𝑛
𝑟𝑟,𝑧𝑧−1, where 𝜉𝜉 



4 
T-ITS-23-05-1448.Final 

is a term that follows a normal distribution with μ = 0  and 
σSA = 0.1. The 𝑒𝑒𝑎𝑎𝑝𝑝 {… } function ensures that the real demand 
is always positive. The process of new solution generation is 
only applied to the second type of grid in which the real demand 
needs to be updated. 

Acceptance probability: When a new solution is generated, 
SA decides whether to accept the new solution. If the generated 
solution is better (i.e., the value of the objective function is 
higher), it is accepted; otherwise, it is accepted with a defined 
acceptance probability. The acceptance probability is specified 
using the Metropolis criterion Δ𝐿𝐿𝐿𝐿   𝑇𝑇𝑃𝑃𝑞𝑞⁄ , where Δ𝐿𝐿𝐿𝐿  is the 
difference between the objective values of the current and new 
solutions and  𝑇𝑇𝑃𝑃𝑞𝑞  is the current temperature. In addition, for 
the objective function, i.e., (15), the normalized term𝐻𝐻𝜎𝜎  is 
constant with regard to different 𝝀𝝀𝒓𝒓 and can be ignored when 
calculating the objective function and the difference Δ𝐿𝐿𝐿𝐿.   

With these implementation points, the SA repeatedly 
generates a new solution and decides whether to accept it. At 
each temperature, SA generates new solutions 50 times (i.e., 
𝑍𝑍 = 50). When the temperature is high, the SA is more likely 
to accept the degrading solution, ensuring that the algorithm is 
trapped out of the local maxima. As the temperature gradually 
decreases, the system converges to a near-global or global 
optimum. The pseudocode of the cooling procedure for SA is 
shown in Algorithm 1 in Appendix B. 

IV. THE VALIDATIONS IN SIMULATION STUDY 
Because the real demand for FFBS is not obtainable in the 

real world, we have no idea about the real demand information, 
and the model accuracy can’t be directly evaluated. However, 
to ensure that the model is efficient and the estimated real 
demand is reliable, we first validate the model with a synthetic 
dataset obtained from the simulation, where the actual real 
demand can be obtained for comparison. Using the synthetic 
dataset for validation is a common approach to test the 
performance of the real demand estimation model for the shared 
travel modes [22], [23], [24]. In addition, another task of 
simulation is to match the value of 𝜎𝜎 with the specific extent of 
spatial correlation quantitatively, which can be used as the 
reference for the real-world case.  

In the simulation, we first generate the expected value of real 
demand 𝜆𝜆𝑛𝑛𝑟𝑟  directly, which is regarded as the true value and 
stored as the reference for the model evaluation. Then, based on 
the 𝜆𝜆𝑛𝑛𝑟𝑟  generated before, the disaggregate pick-up and drop-off 
process for each day is simulated. During the simulation 
process, the interaction between the supply and demand is 
proceeded and the FFBS usage information is recorded. The 
output of the simulation in each grid contains the number of 
successful pick-ups and the available duration of bikes. It is 
noted that the output contains no real demand information since 
the real demand is not obtainable as well in the real world. 
Based on the outputs, the DRTMC model is applied to estimate 
real demand 𝜆𝜆𝑛𝑛𝑟𝑟�. Finally, the estimated result 𝜆𝜆𝑛𝑛𝑟𝑟� is compared 
with the true value 𝜆𝜆𝑛𝑛𝑟𝑟  setting at the beginning. In this way, the 
model performance is evaluated.  

The simulator for synthetic data generation is presented in 
detail in Section A, followed by the benchmarks in Section B. 
Section C illustrates the example of matching prior σ with a 
specific extent of spatial correlation. Finally, the validation 
results are shown in Section C. 

A. Synthetic Dataset 
A simulator is developed to synthesize the observed demand. 

The number of grids in the simulation is 196 (14 × 14). The 
simulation involves four steps, which are summarized in Fig.5.  

 

 
Fig. 5. Workflow of the FFBS simulator 

 
In the first step, the expected value of real demand in each 

grid 𝜆𝜆𝑛𝑛𝑟𝑟  is generated. It is worth emphasizing that the 𝜆𝜆𝑛𝑛𝑟𝑟  is 
spatially correlated, and such patterns should be kept in the 
simulator. To this end, the “gstat” package in R is adopted to 
generate spatially correlated demand with the “sph” method 
(gstat: Spatial and Spatio-Temporal Geostatistical Modelling, 
Prediction and Simulation (r-project.org)), and we scale the 
demand 𝜆𝜆𝑛𝑛𝑟𝑟  in grids from 0 to 30. Similarly, the supply of FFBS 
in each grid, 𝑃𝑃𝑛𝑛, is also generated and scaled from 0 to 30. It is 
noted that, to reflect the imbalance of demand and supply 
patterns, 𝜆𝜆𝑛𝑛𝑟𝑟  and 𝑃𝑃𝑛𝑛 are generated with different seeds, and their 
values are different. Directly generating the 𝜆𝜆𝑛𝑛𝑟𝑟  and 𝑃𝑃𝑛𝑛 
simplifies the simulation since it ignores the completed bike 
usage process (i.e., user picks up the bike at grid 𝑛𝑛 and drops it 
off at another grid). However, the focus of this study is only the 
demand variation in each grid and there is no need to consider 
the demand flow in the whole FFBS system, Thus, this 
simplification is reasonable [36].  

Then, we need to set the initial number of bikes in each grid. 
We could have generated a random initial number of bikes 
within a reasonable interval for each grid (e.g., 10-20). But in 
this way, the fraction of grids experiencing the demand 
truncation, which is denoted as 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 ∈ [0,1], will be different 
in each simulation. Consequently, the model can’t be fairly 
evaluated as the comparisons are not conducted under the same 
situation. To address this issue and control the 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 the same, 
we first determine the value of 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 in advance. Based on 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓, 
the grids experiencing demand truncation are randomly selected, 
which is shown as the truncation layer in Fig.5. For the selected 
grids, the initial number of available bikes is set to a small value 
(i.e., a random integer from 0 to 3). For the non-selected grids, 

https://cran.r-project.org/web/packages/gstat/gstat.pdf
https://cran.r-project.org/web/packages/gstat/gstat.pdf
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the number of available bikes was set to a large value (i.e., 100), 
so the demand would never be truncated when lots of bikes are 
prepared. Thus, only the selected grids would experience 
demand truncation. The distribution of the initial number of 
bikes set for the non-selected grids is extreme. However, it 
won’t affect the model validations since only the observed 
demand and bike availability information are needed for 
demand estimation, the number of bikes remaining at non-
selected grids after the simulation has no influence.  

In the second step, by assuming that the actual demand and 
supply follow a Poisson distribution, the demand sequence 𝒅𝒅𝒅𝒅𝒏𝒏 
and supply sequence 𝒅𝒅𝒅𝒅𝒏𝒏 in each grid were randomly generated 
with parameters 𝜆𝜆𝑛𝑛𝑟𝑟  and 𝑃𝑃𝑛𝑛, respectively. Here, the demand and 
supply sequences refer to the arrival of users and bikes, 
respectively.  

In the third step, we pool the demand and supply sequence of 
all the grids and rearrange them in the time order to obtain the 
demand-supply sequence, which is represented as 𝒅𝒅𝒅𝒅𝒅𝒅 =
{𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡1,𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡2, … ,𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 , … ,𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡}   in the study area. Each 
𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡  represents an “event,” with information of {event time: 
𝑡𝑡𝑣𝑣; drop off or pick up indicator: 𝐼𝐼; grid index: 𝑛𝑛}. Indicator 𝐼𝐼 
is a dummy indicator with 𝐼𝐼 = 0  meaning that the bike is 
dropped off, and 𝐼𝐼 = 1 meaning that the bike is picked up.  

In the final step, we process the demand-supply sequence 
𝒅𝒅𝒅𝒅𝒅𝒅 in time order. For the 𝑣𝑣𝑡𝑡ℎ event 𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 , we first judge its 
type (pick up or drop off); if 𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡  is a drop-off event, the 
number of bikes 𝐵𝐵𝑛𝑛 in the corresponding grid 𝑛𝑛 will increase by 
one. In contrast, when 𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡  is a pickup event, the user will pick 
up the bike directly if the bike is available (𝐵𝐵𝑛𝑛 > 0); otherwise, 
the user will decide whether to continue using the bike system 
based on the set willingness 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1) in the simulation. In 
detail, a uniformly distributed variable 𝑝𝑝𝑢𝑢 ∈ [0.1] is randomly 
generated for each user, which represents the disaggregate 
migration willingness. Then the generated 𝑝𝑝𝑢𝑢 is compared with 
𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1) . If a user decides still to use a bike, i.e., 𝑝𝑝𝑢𝑢 ≤
𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1), he or she will move to a nearby grid 𝑎𝑎 ∈ 𝑁𝑁(𝑛𝑛) to 
pick up a bike if the bike is available; otherwise, he or she will 
decide to use another travel mode, i.e., 𝑝𝑝𝑢𝑢 > 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1). For 
the former case, if there are multiple grids with available bikes, 
the user will choose the grid randomly because the 
attractiveness of grids is assumed to be the same. It is worth 
mentioning that in the simulation, the availability information 
(whether there is a bike in grids) dynamically changes as the 
behavior of each user is considered at the micro level, thus the 
candidate grids for migration may be different for different 
users. Particularly, the simulation proceeds with randomness 
and the output varies. When a bike is picked up in grid 𝑛𝑛 or 𝑎𝑎, 
the number of available bikes 𝐵𝐵𝑛𝑛 or 𝐵𝐵𝑚𝑚 will decrease by one. If 
the user gives up using the bike system, the 𝐵𝐵𝑛𝑛 will not change. 
Each time when 𝐵𝐵𝑛𝑛 is updated, the information will be stored in 
the list 𝑇𝑇𝑒𝑒𝑃𝑃𝑛𝑛 = {�𝐵𝐵𝑛𝑛,1, 𝑡𝑡1�, �𝐵𝐵𝑛𝑛,2, 𝑡𝑡2�, … , �𝐵𝐵𝑛𝑛,𝑝𝑝, 𝑡𝑡𝑃𝑃�}, where 𝐵𝐵𝑛𝑛,𝑝𝑝 
is the number of bikes in grid 𝑛𝑛 at the time 𝑡𝑡𝑃𝑃 and 𝑡𝑡𝑃𝑃 is the time 
at which the pick-up or drop-off occurs.  

There are two parameters determining the simulation 
scenarios: the percentage of grids experiencing demand 
truncation 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓, and the willingness to migrate to nearby grids 

when bikes are not available, 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1). When the scenario 
is set after specifying 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 and 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1), the simulator can 
be run and the output of the simulator is 𝑇𝑇𝑒𝑒𝑃𝑃𝑛𝑛  for each grid. 
From the output, we calculate the observed demand 𝑦𝑦𝑛𝑛,𝑘𝑘  and 
the duration of availability 𝑎𝑎𝑛𝑛 in each grid, which could be used 
for real demand estimation.  

B. Benchmark Comparison  
To test the model performance, we compare it with the 

following four benchmarks: 
b1: Observed Pickups (OP), which ignores the demand 

truncation, migration, and spatial correlation process. As its 
name shows, it regards the observed demand as the real demand 
for each grid. This benchmark is selected to illustrate the 
consequence of directly treating the observed demand as real 
demand. 

𝜆𝜆𝑛𝑛𝑟𝑟 = 𝑦𝑦�𝑛𝑛,𝑘𝑘. (16) 

b2: Simulation-based Optimization Approach (SOA), 
adopted from [36]. It is a data-driven optimization to infer the 
real demand of bikes. The SOA in [36] was originally designed 
for station-based bike-sharing, and we used it here for the 
context of FFBS. In detail, each grid is viewed as a station, of 
which the real demand will be estimated by SOA. The model is 
shown in (17). The 𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇𝑂𝑂  and 𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇  are the indicators 
extracted from the observed data and simulated data, 
respectively. 𝐹𝐹(. )  denotes the distribution pattern of the 
indicators. The 𝑃𝑃𝑖𝑖𝑎𝑎𝑠𝑠(. ) is the simulation function generating 
the indicators 𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇  with different values of 𝜆𝜆𝑛𝑛𝑟𝑟 ∈ 𝕊𝕊 . The 
𝑃𝑃𝑖𝑖𝑎𝑎𝑠𝑠(. ) can be modified from Section A directly. The objective 
is to minimize the difference between 𝐹𝐹(𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇)  and 
𝐹𝐹(𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇𝑂𝑂), which is measured by the double-bootstrap test. 
The optimal 𝜆𝜆𝑛𝑛𝑟𝑟  with the minimal objective value is selected as 
the estimated real demand. The SOA in [36] incorporates the 
impact of the demand truncation (censoring) but ignores the 
demand migration and spatial correlation.  

              𝑀𝑀𝐼𝐼𝑁𝑁 |𝐹𝐹(𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇) − 𝐹𝐹(𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇𝑂𝑂)|  
𝑃𝑃. 𝑡𝑡.                            𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇 = 𝑃𝑃𝑖𝑖𝑎𝑎𝑠𝑠(𝜆𝜆𝑛𝑛𝑟𝑟 , … )  

𝜆𝜆𝑛𝑛𝑟𝑟 ∈ 𝕊𝕊 (17)  

b3: Demand Recovery Considering Truncation and 
Migration with No spatial Correlation (DRTM), this model 
ignores the spatial correlation of the FFBS demand while 
considering the demand truncation and migration process. Thus, 
the objective function can be written as, 
𝐿𝐿𝐿𝐿𝑏𝑏3  

= 𝑙𝑙𝑙𝑙𝑎𝑎

⎩
⎪
⎨

⎪
⎧ � � 𝑃𝑃𝑃𝑃𝑛𝑛�𝑦𝑦𝑛𝑛,𝑘𝑘�

𝑛𝑛
𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟 + � 𝜆𝜆𝑚𝑚𝑟𝑟

𝑚𝑚∈𝑁𝑁(𝑛𝑛)𝑘𝑘

× (1 − 𝑎𝑎𝑚𝑚)
∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧
𝑧𝑧

∑ ∑ 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛′
𝑧𝑧

𝑧𝑧𝑛𝑛′∈𝑁𝑁(𝑚𝑚)
𝑝𝑝(𝑤𝑤𝑚𝑚 = 1))

⎭
⎪
⎬

⎪
⎫

. (18) 

b4: Demand Recovery Considering Truncation and spatial 
Correlation with No Migration (DRTC), it considers the 
demand truncation process and incorporates the spatial 
correlation of demand but ignores the demand migration. The 
objective function is as follows:   
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𝐿𝐿𝐿𝐿𝑏𝑏4  

= 𝑙𝑙𝑙𝑙𝑎𝑎

⎩
⎨

⎧
1
𝐻𝐻𝜎𝜎

�
1

√2𝜋𝜋
exp �−

1
2

(
𝑙𝑙𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟 − 𝑙𝑙𝑛𝑛𝜆𝜆𝑚𝑚𝑟𝑟

𝜎𝜎
)2�

𝑒𝑒𝑐𝑐
×

� � 𝑃𝑃𝑃𝑃𝑛𝑛�𝑦𝑦𝑛𝑛,𝑘𝑘�
𝑛𝑛

𝑎𝑎𝑛𝑛𝜆𝜆𝑛𝑛𝑟𝑟
𝑘𝑘

) ⎭
⎬

⎫
. (19) 

Moreover, to evaluate the performance of the proposed 
model compared with the benchmarks, the root-mean-squared 
error (RMSE) is adopted:   

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �
1
𝑁𝑁
� �𝜆𝜆𝑛𝑛𝑟𝑟� − 𝜆𝜆𝑛𝑛𝑟𝑟 �

2𝑁𝑁

𝑖𝑖=1
, (20) 

where 𝑁𝑁 is the number of grids and 𝜆𝜆𝑛𝑛𝑟𝑟� and 𝜆𝜆𝑛𝑛𝑟𝑟  are the expected 
values of the estimated demand and real demand, respectively. 
In the validation, five indicators are used: 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝑂𝑂𝑃𝑃 , 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝑆𝑆𝑂𝑂𝑆𝑆, 
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , and 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  for the OP, SOA, 
DRTM, DRTC, and DRTMC methods, respectively. The 
benchmarks together with the DRTMC model follow an 
incremental process to consider the demand truncation, 
migration, and spatial correlation. In this way, the significance 
and the impact of incorporating truncation, migration, and 
spatial correlation can be revealed. 

C. Matching the Value of 𝜎𝜎 with the Specific Extent of Spatial 
Correlation in Simulation 

As mentioned before, 𝜎𝜎 is not determined arbitrarily as it has 
a physical meaning. Instead, it is learned from the given extent 
of correlation generated in the simulation. Fig. 6 shows the 
example of the real demand distribution generated in the 
simulation, it is obvious that the real demand is spatially 
correlated. We will search for the value of 𝜎𝜎 to match the extent 
of spatial correlation in Fig. 6.  

 

 
Fig. 6. Distributions of FFBS real demand in simulation 

 
The idea is to search for the optimal value of 𝜎𝜎, under which 

the 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  is minimized. In other words, other than the 
real demand parameters, the 𝜎𝜎 will be estimated as well in this 
part. However, we didn’t estimate the demand parameter and 𝜎𝜎 
jointly. This is because the term 𝑙𝑙 𝑛𝑛(𝜆𝜆𝑛𝑛𝑟𝑟 )−𝑙𝑙 𝑛𝑛(𝜆𝜆𝑚𝑚𝑟𝑟 )

𝜎𝜎
  in (15) makes 

the simultaneous estimation unstable and difficult. Instead, we 
used a line search to find the optimal 𝜎𝜎  value. In detail, we 
gradually increase the value of 𝜎𝜎, the DRTMC model is then 
applied to estimate the real demand under each value of 𝜎𝜎. After 
that, the 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  is calculated based on the estimated real 

demand. Finally, we select the 𝜎𝜎  with the minimal value of 
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 . To run the simulation, we use a specific case with 
𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 = 0.5 and 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1) = 0.5. It is worth mentioning that 
the 𝜎𝜎 is only related to the extent of correlation theoretically. 
Thus, it is not necessary to conduct more experiments with 
other values of 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 and 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1).  For the set scenario, the 
simulation generates data for five days; that is, 𝐾𝐾 = 5. The 
proposed model is then applied to the synthesized data to 
estimate the expected value of real demand. In the estimation, 
the value of 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) needs to be specified in advance. Here, 
we set 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) = 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1)  providing that we could 
accurately obtain the willingness of migration through the 
questionnaire survey. The search results are shown in Fig. 7. 
According to Fig. 7(a), the optimal value of 𝜎𝜎  is 1.5 with 
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  = 0.79. It indicates that, if the extent of spatial 
correlation in the real world is similar to that shown in Fig. 6, 
the most suggested value of 𝜎𝜎 for operators is 1.5. In addition, 
Fig. 7(b) shows iterations of SA when 𝜎𝜎 = 1.5. The objective 
value increases from –12,723 to –11,394. After approximately 
5,000 iterations, the objective value becomes stable and 
converges. 
 
 

 
Fig. 7. (a) Matching the 𝜎𝜎  for the given extent of spatial 
correlation and (b) Estimating the expected value of real 
demand with SA  
 

To illustrate this result further from the perspective of spatial 
correlation, we present the observed demand and estimated real 
demand for each grid in Fig. 8. The distribution of the observed 
demand is significantly different from that of the real demand. 
However, the distribution of the estimated real demand in Fig. 
8(b) is much closer to that of the real demand, regardless of the 
spatial pattern or demand level. It indicates the searched 𝜎𝜎 
value matches the extent of spatial correlation in Fig. 6 well.  
With similar procedures for other extents of spatial correlation, 
the reference list of 𝜎𝜎 can be made for the operators. Moreover, 
the superiority of the proposed model is confirmed as the 
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  of the estimated demand is 0.79, which is 80.3% 
lower than the 𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝑂𝑂𝑃𝑃  with 4.02.  

 

 
Fig. 8. Distributions of (a) observed demand (𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝑂𝑂𝑃𝑃 = 4.02), 
(b) estimated real demand (𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 0.79). 
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Fig. 9. Validation results under different scenarios 

 

D. Validation Results 
In this section, the model is validated in several scenarios by 

comparing the performance with those of the benchmarks using 
RMSE value. Particularly, we first choose 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1) to be 
0.2, 0.5, and 0.8 for the low, middle, and high willingness of 
migration, respectively. Under each level of 𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1), the 
percentage of grids that experience demand truncation increases 
from 10% to 90%. 

In addition, different from above Section C, the 𝜎𝜎  in 
validation is specified in advance as prior knowledge here, 
which is the same as the real-world case. In detail, 𝜎𝜎 is first set 
as 1.5 providing that the operators are experienced in perceiving 
the extent of spatial correlation. Moreover, we also consider 
that 𝜎𝜎 is not 1.5 in case the FFBS operators have a biased sense 
of the spatial correlation. To this end, a 30% bias is considered. 
Accordingly, the value increases by 30%, i.e., 𝜎𝜎 = 1.5 × 1.3 =
1.95,  and decreases by 30%, i.e., 𝜎𝜎 = 1.5 × 0.7 = 1.05,  are 
adopted. The values far away from 1.5 are not considered since 
the matched value from the above Section C could provide the 
operators with a fair reference, so that the bias can be controlled 
within an acceptable rate. The result estimated with the biased 
𝜎𝜎 would be inferior to the perfect prior 𝜎𝜎. To see how the model 
performs when the spatial correlation is not perceived well, the 
worst RMSE value among the two results estimated with 
upward and downward biased priors 𝜎𝜎 is selected and denoted 
as 𝑏𝑏𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 , which will be presented in the validation as 
well. 

To avoid the effects of randomness, the estimation under 
each scenario is conducted 5 times, and the values are averaged. 
The validation results of the proposed DRTMC model, together 
with the benchmarks, are presented in Fig. 9. The conclusions  
are as follows. First, the proposed DRTMC model (red line) 
performs best in all scenarios, followed by benchmarks DRTM, 
DRTC, SOA, and OP. This finding demonstrates the superiority 
of the proposed model and that ignoring the demand truncation, 
migration, or spatial correlation impedes model performance. 
Second, the accuracy of the OP model (green line) is the lowest, 

indicating that directly treating the observed demand as real 
demand is not appropriate and will result in a high bias even 
when the fraction of demand truncation and willingness of 
migration are low. Third, both the parameters 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓  and 
𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) affect the model accuracy. As 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 and 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) 
increase in different scenarios, the accuracy of all models 
decreases. However, unlike the other models, the increase in 
𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  only become significant under extreme conditions 
(i.e., 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) ≥ 0.8, 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 ≥ 0.7), which rarely happens in 
the real world. Fourth, apart from the proposed DRTMC model, 
the performance of DRTM is also better than those of DRTC, 
SOA, and OP, which emphasizes the importance of considering 
demand migration when recovering the real bike-sharing 
system demand, but it has been almost completely ignored in 
previous studies. Finally, compared with the result with perfect 
prior 𝜎𝜎, the model performance degrades when the biased 𝜎𝜎 is 
adopted, which is shown in the blue dash line (𝑏𝑏𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷). 
From the experiment, we notice that the worst RMSE values in 
the blue dash line come almost from the downward bias 
(i.e., 𝜎𝜎 = 1.05). It indicates the model is more sensitive in the 
high spatial correlation cases. The extent of degradation is 
illustrated in the blue area. This comparison indicates the 
necessity of choosing the appropriate prior spatial correlation 
parameter. The FFBS operators should be experienced in 
perceiving the extent of real demand spatial correlation. 
Otherwise, the performance of the DRTMC model will degrade 
or be even worse than other models if an unrealistic value of 
prior 𝜎𝜎 is specified.              

V. CASE STUDY 
In this part, the model is applied to the central area of 

Shanghai city in real-world scenario. The Section A introduces 
data preparation, followed by the case study in Section B. 

A. Preparing the Dataset for Case Study 
We present a case study using the bike trip data from the 

Mobike company in Shanghai City. It is noted that there are 
multiple FFBS operators other than the Mobike company in this 
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city. Consequently, the users could pick up the bike from other 
companies when Mobike is unavailable. But it is expected that 
the government could have access to the whole dataset from all 
companies, so the completed dataset can be obtained by pooling 
those individual datasets. The data structure of the pooling 
dataset is the same as that of the Mobike dataset since the 
recording systems of all FFBS companies are the same. In this 
case, the proposed DRTMC model can be used for the whole 
FFBS system as well if it can be successfully applied in the 
Mobike system. In this study, we assume that there is only one 
FFBS provider and then apply the proposed model. Thus, the 
estimated real demand of Mobike can be regarded as the actual 
real-world demand of the FFBS system. As for the period used 
for estimation, the evening peak hours on weekdays were 
chosen. This is because the usage demand in the evening peak 
hour is higher and the demand truncation is more likely to 
happen, which results in higher unmet demand than other 
periods. Thus, the pickup and drop-off records of FFBS from 
18:00 to 19:00 pm, ranging from September 2 to September 6, 
2020, on five weekdays are selected.  

As for the study area, we selected a prosperous location in 
the Huangpu district, which is near the center of Shanghai and 
covers around 2 𝑘𝑘𝑎𝑎2. The area is shown in Fig.10 (a), which is 
divided into 196 (14 × 14) grids, and the size of each grid is 
100 × 100m. The grids that experienced demand truncation 
during the study period are indicated in purple. This study area 
includes two primary schools, a park (Gucheng Park), tourism 
spots (City God Temple and Yu Garden), and several shopping 
malls and residential locations. Since it is a prosperous area 
with a higher bike supply, the case that no bike is available in 
all eight nearby grids rarely happens. It shows that all the grids 
have the choice to migrate to a nearby area and don’t need to go 
further, so Assumption 2 stated in the problem description part 
could be satisfied. In addition, we can get the fraction of 
truncation 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓  in this case study is 15.3% (i.e., 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓 =
30/196). The average observed demand (successful pickups) 
is also illustrated in Fig. 10(b). 

 

 
Fig. 10. (a) Chosen area and truncated grids and (b) Observed 
demand distribution in the real-world case study.  
 

But it is noted that the truncation information in Fig.10 (a) 
(i.e., whether the demand is truncated) cannot be accessed from 
the raw dataset directly because of the limitation of the data 
structure of the FFBS system. Typically, each record in the 
FFBS dataset contains the unique ID of a bike, pick-up and 

drop-off times, pick-up or drop-off location (i.e., longitude and 
latitude), and lock status (i.e., being picked up or dropped off). 
Based on the above information, we obtain the number of 
pickups and drop-offs in different areas. However, the number 
of available bikes 𝐵𝐵𝑛𝑛  remaining in grid 𝑛𝑛  at any time 𝑡𝑡𝑣𝑣  is 
unknown. In other words, it is unknown whether the demand is 
truncated at time 𝑡𝑡𝑣𝑣 or not. To overcome the problem of no 
truncation information, Gammelli et al. regarded the historical 
observed demand as real demand, they manually set the 
truncation information [22]. However, this technique is 
inappropriate here for the FFBS system when considering the 
spatial correlation, and the reasons are as follows. The bike-
sharing system studied in [22] is station-based, and they further 
gathered the stations into three hubs, which are far away from 
each other. Thus, the spatial correlation among hubs is ignored 
and they can be treated independently. However, here the 
demand is spatially correlated in the FFBS system. Accordingly, 
the truncation information should also be correlated. To retain 
such an intrinsic pattern, we could not generate truncation 
information manually or randomly. Thus, we proposed an 
algorithm to approximate the actual number of available bikes 
in grid 𝑛𝑛 at time 𝑡𝑡𝑣𝑣, which is shown in Appendix C. 

B. Recovering the Real and Unmet Demand 
After processing the data, we estimate the real demand using 

the proposed DRTMC model. The prior  𝜎𝜎  is set to 1.5 for 
illustration. Three values of 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) representing low (0.2), 
middle(0.5), and high (0.8) willingness to migrate are adopted 
for the estimation. As a result, the estimated real demand in the 
whole area is 1614.3, 1570.7, and 1533.8 for the low, middle, 
and high willingness of migration, respectively. Compared with 
the average observed demand of 1443.3, the hourly unmet 
demand in the study area is 171.0, 127.4, and 90.5, respectively. 
It is noted that the unmet demand is lower when 𝑤𝑤𝑛𝑛 is set to a 
higher value. This is consistent with common sense. For users 
who cannot pick up bikes immediately but have a high 
willingness to perform the migration, the demand is satisfied 
easily and consequently the unmet demand is low. In addition, 
for detailed illustration, the frequency distributions of the 
observed and estimated real demands are presented in Fig. 11. 
The difference between the distribution of the observed demand 
and that of the estimated real demand is significant. Regardless 
of the value of 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1), the frequency of observed demand 
in the 0–2 interval is much larger than that of estimated real 
demand. However, when the demand value is larger than 4, the 
frequency of estimated demand is almost larger than that of 
observed demand. Thus, estimating the real demand and 
distinguishing it from the observed demand is important.  
 

 
Fig. 11. Distribution of estimated real demand. 
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The purpose of estimating the real demand is to figure out the 
unmet demand in grids, which is vital information for FFBS 
management. To this end, we quantify the value of unmet 
demand 𝑠𝑠𝑛𝑛 in each grid by calculating the difference between 
the estimated real demand and observed demand, i.e., 𝑠𝑠𝑛𝑛 =
𝜆𝜆𝑛𝑛𝑟𝑟 − y�𝑛𝑛,𝑘𝑘. We choose 𝑝𝑝(𝑤𝑤𝑛𝑛 = 1) =  0.5 for later presentation. 
Moreover, to illustrate the influence of spatial correlation, 
another value of 𝜎𝜎  representing relatively low spatial 
correlation is adopted as well (𝜎𝜎 = 5) . The distribution of 
unmet demand is shown in Fig. 12 (a) and (b). Grids with 𝑠𝑠𝑛𝑛 =
0 are real demand grids, defined in Section Demand Recovery, 
their observed demands are equal to the real demand. It is noted 
that 𝑠𝑠𝑛𝑛 could also be a negative value, which means that the 
estimated real demand is lower than the observed demand in 
this grid. This is because the observed demand in this grid 
captures not only the demand generated from itself but also the 
demand spilled over from other grids, resulting in a higher 
observed value and a negative value of 𝑠𝑠𝑛𝑛. 

 
Fig. 12. Distributions of unmet demand under relative (a) high 
correlation (𝜎𝜎 = 1.5) and (b) low correlation (𝜎𝜎 = 5)  

Compared with Fig. 12(b), the unmet demand in Fig. 12(a) 
shows an obvious spatial correlation. It indicates that the unmet 
demand tends to show a spatial correlation as well when the real 
demand is assumed to be highly correlated, which is consistent 
with common sense. However, as mentioned before, the spatial 
correlation is considered in the prior term and the parameter 𝜎𝜎 
is determined by the operators’ experience. In other words, if 
the operators regard the demand here is highly spatial correlated, 
a relatively small 𝜎𝜎 will be set, otherwise a higher 𝜎𝜎 will be 
used for demand estimation. Thus, we can’t say which result is 
better. Instead, it requires the operators to be experienced in 
choosing suitable correlation parameters as prior information.  

With the calculated unmet demand 𝑠𝑠𝑛𝑛, FFBS operators can 
determine whether they need to distribute bikes in a grid. No 
matter whether in high or low spatial correlation, the unmet 
demand distribution provides important guidance for the bike 
rebalance. For example, as shown both in Fig. 12 (a) and (b), 
the unmet demand in the bottom-left area is relatively high and 
the operators should distribute more bikes here. In addition, 
among the middle areas in Fig. 12 (b), the grids capturing the 
nearby demand (𝑠𝑠𝑛𝑛 < 0)  are close and scattered among the 
grids with demand spillover (𝑠𝑠𝑛𝑛 > 0) . Such an unbalanced 
demand is suitable for developing self-organized rebalance 
strategies [46]. Operators could incentivize users to go to 
nearby grids proactively to participate in the bike rebalance. 

Thus, they can avoid using the traditional trunk-based rebalance 
strategy, requiring hiring staff to redistribute bikes.  

VI. CONCLUSION 
In this study, we propose a framework for demand recovery 

considering truncation, migration, and spatial correlation 
(DRTMC) to estimate the real FFBS demand. First, the demand 
recovery is modeled as a maximum a posteriori (MAP) problem, 
and the problem is transferred to formulate the prior and 
conditional terms. Then, we establish the prior term by 
analyzing the spatial correlation of the demand and the 
conditional term by analyzing the demand truncation and 
migration process. Finally, a tailored simulated annealing 
approach is adopted to recover the real FFBS demand.  

We then presented the results using synthesized data for 
validation and real data for empirical analysis. The validation 
results indicate that, compared with the observed demand, the 
real demand estimated by the DRTMC model is much closer to 
the set demand in all cases. Furthermore, compared with the 
other benchmarks, the proposed DRTMC model is more 
accurate and appropriate when recovering the real demand. For 
the empirical analysis, we use FFBS data from Shanghai City 
and choose a typical prosperous district covering approximately 
2 𝑘𝑘𝑎𝑎2 for the case study. In particular, we adopt three values 
of the willingness of migration to estimate the real demand. As 
the results show, for the entire study area, the real demand is 
higher than the observed demand, and the distribution of the 
observed demand is significantly different from that of real 
demand, emphasizing the importance of recovering the real 
demand from the observed demand.  

The proposed demand estimation model enables researchers 
to capture the real FFBS demand. Although we haven’t 
conducted real rebalancing works, it is expected that the 
operation companies could develop more effective rebalance 
strategies to improve the FFBS service as long as accurate 
demand information is obtained. The limitations and future 
studies are as follows. First, this study considers only spatial 
correlation, but the temporal correlation is also important for 
demand estimation. Such features should be exploited in future 
studies. Second, we assumed that the users would only migrate 
to the nearby grids when they experienced the truncation. This 
assumption is only applicable to the prosperous area with higher 
bike supply. Thus, it is necessary to extend it and consider the 
possibility of migrating to further grids. So that the model can 
be applied to the more general cases. Moreover, this study 
focuses on recovering the real FFBS pickup demand, for the 
recovered demands, inferring their paired destination would 
also be valuable for managing the FFBS system [47]. In 
addition, the dataset used for the case study is provided by only 
one company, while there might be multiple companies 
operating the FFBS in the real world. If possible, we ought to 
ask for permission for the dataset from other FFBS companies 
and conduct a more complete analysis. Besides, since the 
ground-truth real demand is unavailable for model validation, 
the simulation is first conducted to generate the data for testing 
the model before conducting the real-world case study. 
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Although the validation results based on the synthetic dataset 
are satisfactory, the simulation involves some assumptions that 
simplify the real-world scenarios. In further studies, more 
factors (e.g. the multimodal interaction between FFBS and 
metro, the points of interest (POI) information, and the real-
time bike rebalancing) need to be incorporated to increase the 
credibility of the validation in the simulation. Consequently, the 

result for the real-world scenarios will be more convincing and 
accurate and the FFBS rebalancing work will be more efficient. 

APPENDIX 

A. Summary for annotations  
The annotations are summarized in the following Table Ⅰ.

TABLE Ⅰ  
 ANNOTATIONS 

Notation Definition  Notation Definition 

Sets and indices 
𝑎𝑎,𝑛𝑛  Indices of grids  𝑁𝑁  Set of grids 
𝑘𝑘   Indices of days  𝐾𝐾  Set of days 
𝑣𝑣  Indices of points in demand network   𝑉𝑉  Sets of points in demand network 
𝑒𝑒  Indices of links in the demand network   𝐸𝐸  Sets of links in demand network 
𝑒𝑒𝑡𝑡, 𝑒𝑒𝑚𝑚, 𝑒𝑒𝑐𝑐  Indices of truncation, migration, and spatial correlation 

links in demand network  
 

Variables and parameters 
𝑦𝑦𝑛𝑛,𝑘𝑘  Observed demand within a specific period on the 𝑘𝑘𝑡𝑡ℎ 

day in grid 𝑛𝑛 
 Δ𝐿𝐿𝐿𝐿  The difference between the objective functions of 

the current solution and the new solution in SA 
𝑦𝑦�𝑛𝑛  Average observed demand within a specific period in 

grid 𝑛𝑛 
 𝜉𝜉  The random value following normal distribution for 

updating the solution in SA 
𝐘𝐘  Vector of 𝑦𝑦𝑛𝑛,𝑘𝑘 in all grids and all days  α  Cooling rate parameter in SA 
𝜆𝜆𝑛𝑛𝑟𝑟   The expected value of real demand in grid 𝑛𝑛  𝑇𝑇𝑃𝑃𝑞𝑞  The temperature parameter at iteration 𝑞𝑞 in SA 
𝝀𝝀𝒓𝒓  Vector of 𝜆𝜆𝑛𝑛𝑟𝑟  in all grids  𝑇𝑇𝑃𝑃0 , 𝑇𝑇𝑃𝑃𝑓𝑓 The initial and final temperature parameters in SA 
𝝀𝝀𝒎𝒎𝒓𝒓   Vector of 𝜆𝜆𝑚𝑚𝑟𝑟  in the migration grids around grid 𝑛𝑛  𝜆𝜆𝑛𝑛

𝑟𝑟,𝑧𝑧  The generated new solution of 𝜆𝜆𝑛𝑛𝑟𝑟  at transition  𝑧𝑧 
under the given temperature in SA 

𝜆𝜆𝑛𝑛𝑜𝑜   The expected value of observed demand in grid 𝑛𝑛  𝝀𝝀𝑟𝑟,𝑧𝑧  Vector of 𝜆𝜆𝑛𝑛
𝑟𝑟,𝑧𝑧 in all grids in SA 

𝝀𝝀𝒐𝒐  Vector of 𝜆𝜆𝑛𝑛𝑜𝑜  in all grids  𝑍𝑍  Number of result transitions for each iteration in SA 

𝜆𝜆𝑛𝑛
𝑜𝑜,𝑡𝑡𝑟𝑟  Part of 𝜆𝜆𝑛𝑛𝑜𝑜  capturing the expected demand from grid 

𝑛𝑛 itself. 
 𝑃𝑃𝑛𝑛  The expected value of dropping off in grid 𝑛𝑛 set in 

the simulation 
𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎)  Part of 𝜆𝜆𝑛𝑛𝑜𝑜  capturing the expected demand from 

nearby grid 𝑎𝑎  
 𝑓𝑓𝑇𝑇𝑎𝑎𝑓𝑓  Percentage of grids experiencing demand truncation 

set in the simulation 
𝜆𝜆𝑛𝑛
𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚  The sum of 𝜆𝜆𝑛𝑛

𝑜𝑜,𝑚𝑚𝑖𝑖𝑚𝑚(𝑎𝑎) for all nearby grids 𝑎𝑎  𝑝𝑝𝑠𝑠(𝑤𝑤𝑛𝑛 = 1)  Willingness of migration when bikes are unavailable 
in grid 𝑛𝑛 set in the simulation  

𝑇𝑇𝑛𝑛𝑎𝑎  The duration in which the bike is available in grid 𝑛𝑛   𝒅𝒅𝒅𝒅𝒏𝒏  Pick up sequence in grid 𝑛𝑛 in the simulation 
𝑎𝑎𝑛𝑛  Bike availability in grid 𝑛𝑛  𝒅𝒅𝒅𝒅𝒏𝒏  Drop off sequence in grid 𝑛𝑛 in the simulation 
𝑤𝑤𝑛𝑛  Dummy variable,1 if a user decides to migrate if the 

first choice is truncated in grid 𝑛𝑛, 0 otherwise 
 𝑑𝑑𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡  Pick up or drop off “event” at time 𝑡𝑡𝑣𝑣  in the 

simulation 
𝑇𝑇  The duration of the whole study period  𝐼𝐼  Dummy indicator, 1 if the pick-up occurs and 0  

drop-off occurs in the simulation 
𝐵𝐵𝑛𝑛  Number of bikes available in grid 𝑛𝑛  𝑝𝑝𝑢𝑢   The willingness of migration for each user generated 

randomly in the simulation 
𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛

𝑧𝑧   The 𝑧𝑧𝑡𝑡ℎ duration in which the bike is available in grid 
𝑛𝑛 but not available in grid 𝑎𝑎 

 𝑇𝑇𝑒𝑒𝑃𝑃𝑛𝑛  The output information of grid  𝑛𝑛 in the simulation 

𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛  The sum of 𝑝𝑝𝑎𝑎𝑚𝑚,𝑛𝑛
𝑧𝑧  for all 𝑍𝑍 duration  𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇𝑜𝑜  The indicators extracted from observed data for the 

benchmark b2 
𝜎𝜎   Prior parameter for the extent of the spatial correlation  𝐵𝐵𝐵𝐵𝑃𝑃𝑇𝑇  The indicators extracted from simulated data for the 

benchmark b2 
𝐻𝐻𝜎𝜎  Normalizing constant in the correlation function   𝜆𝜆𝑛𝑛𝑟𝑟�   The estimated real demand in grid  𝑛𝑛 

Functions  
𝑃𝑃𝑃𝑃𝑛𝑛(∙)  Poisson distribution  𝑒𝑒𝑎𝑎𝑝𝑝(∙)  Exponential function 
𝑁𝑁(∙)  Neighborhood function containing the index of the 

nearby migration grids 
 𝑓𝑓(∙)  Function mapping the expected value of real demand 

to the expected value of observed demand 
𝑙𝑙𝑛𝑛 (∙)  The  𝑙𝑙𝑛𝑛 function    𝑃𝑃𝑖𝑖𝑎𝑎𝑠𝑠 (∙)  Simulation function in the benchmark b2 
𝐹𝐹 (∙)  Distribution function in the benchmark b2    



1 
T-ITS-23-05-1448.Final 

B. Simulated annealing algorithm for real demand recovery 
under DRTMC 

Algorithm 1 Simulated annealing for demand recovery 

1 

Initialization: Cooling rate α;  
Number of transitions for each iteration Z;  
Initial temperature 𝑇𝑇𝑃𝑃0   
Final temperature 𝑇𝑇𝑃𝑃𝑓𝑓;  
Mean μ and standard deviation σSA for vector 𝝃𝝃 

2 Calculate the initial solution 𝝀𝝀𝒓𝒓,𝟎𝟎,  
Current solution: 𝝀𝝀𝒄𝒄𝒓𝒓 ← 𝝀𝝀𝒓𝒓,𝟎𝟎; 

3 Current objective function: 𝑙𝑙𝑙𝑙𝑐𝑐 ← 𝑙𝑙𝑙𝑙(𝝀𝝀𝒓𝒓,𝟎𝟎); 
4 while 𝑇𝑇𝑃𝑃𝑝𝑝 > 𝑇𝑇𝑃𝑃𝑓𝑓  do 
5 for 𝑧𝑧 = 1: 𝑍𝑍 do 
6        Generate new solution: 𝝀𝝀𝒏𝒏𝒏𝒏𝒏𝒏𝒓𝒓 ← 𝑓𝑓(𝝀𝝀𝒄𝒄𝒓𝒓, 𝝃𝝃(μ,σSA))  
7        Calculate new objective function: 𝑙𝑙𝑙𝑙𝑛𝑛𝑒𝑒𝑛𝑛 ← 𝑙𝑙𝑙𝑙(𝝀𝝀𝒏𝒏𝒏𝒏𝒏𝒏𝒓𝒓 ) 
8        if 𝑙𝑙𝑙𝑙𝑛𝑛𝑒𝑒𝑛𝑛 > 𝑙𝑙𝑙𝑙𝑐𝑐  then 
9            𝝀𝝀𝒄𝒄𝒓𝒓 ← 𝝀𝝀𝒏𝒏𝒏𝒏𝒏𝒏𝒓𝒓  
10        else 
11           Generate random variable ϵ~uniform[0,1]  
12           if 𝜖𝜖 < 𝑒𝑒𝑎𝑎𝑝𝑝 [𝑙𝑙𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛−𝑙𝑙𝑙𝑙𝑐𝑐

 𝐷𝐷𝑃𝑃𝑝𝑝
] then 

13               𝝀𝝀𝒄𝒄𝒓𝒓 ← 𝝀𝝀𝒏𝒏𝒏𝒏𝒏𝒏𝒓𝒓  
14           end if 
15        end if 
16      end for 
17     𝑇𝑇𝑃𝑃𝑝𝑝+1 = α 𝑇𝑇𝑃𝑃𝑝𝑝 
18 end while 
19 return 𝝀𝝀𝒄𝒄𝒓𝒓 

C. Approximating the number of available bikes in grid 𝑛𝑛  at 
time 𝑡𝑡𝑣𝑣 
Algorithm 2 is developed to approximate the number of 

available bikes left in each grid 𝑛𝑛 at time point 𝑡𝑡𝑣𝑣. In detail, we 
first define 2𝑇𝑇𝛿𝛿  as the duration in which any bike will be used; 
in other words, the data out of the range of [𝑡𝑡𝑣𝑣 − 𝑇𝑇𝛿𝛿 , 𝑡𝑡𝑣𝑣 + 𝑇𝑇𝛿𝛿] 
for 𝑡𝑡𝑣𝑣 can be ignored. 𝑇𝑇𝛿𝛿  is affected by the turnover rate of the 
bike in the focused area. Because a high turnover rate means 
that the bike is used more frequently, and in this case 𝑇𝑇𝛿𝛿  can be 
set shorter to reduce the computational efforts. But a higher 𝑇𝑇𝛿𝛿  
could increase the accuracy. Here is the main idea, for each grid 
𝑛𝑛, taking the drop-off record as an example, if the last record of 
a bike within [𝑡𝑡𝑣𝑣 − 𝑇𝑇𝛿𝛿 , 𝑡𝑡𝑣𝑣] is a drop-off, the bike is thought to 
be located at grid 𝑛𝑛 at time 𝑡𝑡𝑣𝑣. Similarly, we judge that a bike 
is at grid 𝑛𝑛  at time 𝑡𝑡𝑣𝑣  if the first record of this bike within 
[𝑡𝑡𝑣𝑣, 𝑡𝑡𝑣𝑣 + 𝑇𝑇𝛿𝛿] is a pickup.  

It is possible that, at time 𝑡𝑡𝑣𝑣, a bike is assigned to different 
grids 𝑛𝑛 and 𝑎𝑎 according to the drop-off record in [𝑡𝑡𝑣𝑣 − 𝑇𝑇𝛿𝛿 , 𝑡𝑡𝑣𝑣] 
and pick-up record in [𝑡𝑡𝑣𝑣, 𝑡𝑡𝑣𝑣 + 𝑇𝑇𝛿𝛿], respectively. This indicates 
the rebalance is conducted. In this case, this available bike is 
assigned to grid 𝑛𝑛/ 𝑎𝑎 if its drop-off/pick-up time is closer to 𝑡𝑡𝑣𝑣. 
We then aggregate the number of available bikes for [𝑡𝑡𝑣𝑣 −
𝑇𝑇𝛿𝛿 , 𝑡𝑡𝑣𝑣]  and [𝑡𝑡𝑣𝑣, 𝑡𝑡𝑣𝑣 + 𝑇𝑇𝛿𝛿]  and excluded duplicated bikes with 
the same ID. Consequently, we obtain the number of available 
bikes in grid 𝑛𝑛 at time 𝑡𝑡𝑣𝑣. The details of Algorithm 2 are as 
follows. 

 

Algorithm 2 Calculating the number of available bikes 

1 

Initialization: Range of considered duration: 2𝑇𝑇𝛿𝛿;  
The list of focused time points: 𝑡𝑡𝑣𝑣_𝑙𝑙𝑖𝑖𝑃𝑃𝑡𝑡;  
The available bikes in grid 𝑛𝑛: 𝐵𝐵𝑛𝑛 = [ ];  
The available bikes of all the grids 𝐿𝐿𝐵𝐵 = [ ];  
The total dataset 𝑫𝑫;  

2 for grid 𝑛𝑛 = 1: 𝑁𝑁 do  
3 for time 𝑡𝑡𝑣𝑣 in 𝑡𝑡𝑣𝑣_𝑙𝑙𝑖𝑖𝑃𝑃𝑡𝑡 do 
 
4 

Extract the records within [𝑡𝑡𝑣𝑣 − 𝑇𝑇𝛿𝛿 , 𝑡𝑡𝑣𝑣]  and 
[𝑡𝑡𝑣𝑣, 𝑡𝑡𝑣𝑣 + 𝑇𝑇𝛿𝛿]  in grid 𝑛𝑛  as 𝐷𝐷𝑛𝑛,−  and 1 𝐷𝐷𝑛𝑛,+,  
respectively;  

5 {𝐷𝐷𝑛𝑛,−(1),𝐷𝐷𝑛𝑛,−(2), …𝐷𝐷𝑛𝑛,−(𝑃𝑃)} ← 𝑎𝑎𝑇𝑇𝑙𝑙𝑠𝑠𝑝𝑝𝑏𝑏𝑦𝑦𝐼𝐼𝐷𝐷(𝐷𝐷𝑛𝑛,−)  
6 In each 𝐷𝐷𝑖𝑖 ,−(𝑝𝑝), extract the record 𝑇𝑇𝑖𝑖,−(𝑝𝑝) closet to 

the 𝑡𝑡𝑣𝑣 for bike 𝑝𝑝; 
7 𝑇𝑇𝑖𝑖,− ← 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖,−(𝑝𝑝))  
8 extract the drop-off record in 𝑇𝑇𝑖𝑖,− as 𝑇𝑇𝑖𝑖,−,𝑑𝑑  
9 {𝐷𝐷𝑛𝑛,−(1),𝐷𝐷𝑛𝑛,−(2), …𝐷𝐷𝑛𝑛,−(𝑄𝑄)} ← 𝑎𝑎𝑇𝑇𝑙𝑙𝑠𝑠𝑝𝑝𝑏𝑏𝑦𝑦𝐼𝐼𝐷𝐷(𝐷𝐷𝑖𝑖,+)  
10 In each 𝐷𝐷𝑖𝑖 ,+(𝑞𝑞), extract the record 𝑇𝑇𝑖𝑖,+(𝑞𝑞) closet to 

the 𝑡𝑡𝑣𝑣 for bike 𝑞𝑞; 
11 𝑇𝑇𝑖𝑖,+ ← 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖,+(𝑞𝑞))  
12 extract the pickup record in 𝑇𝑇𝑖𝑖,+ as 𝑇𝑇𝑖𝑖,+,𝑝𝑝 
13 𝑝𝑝𝑠𝑠𝑑𝑑𝑝𝑝𝑖𝑖  ← 𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙 (𝑇𝑇𝑖𝑖,−,𝑑𝑑 , 𝑇𝑇𝑖𝑖,+,𝑝𝑝)  
14 Exclude the duplicated record with the same bike 

ID and get the 𝑝𝑝𝑠𝑠𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑒𝑒  
15 𝐵𝐵𝑛𝑛(𝑡𝑡𝑣𝑣) ← |𝑝𝑝𝑠𝑠𝑑𝑑𝑝𝑝𝑖𝑖 ,𝑒𝑒|   
16 Add 𝐵𝐵𝑛𝑛(𝑡𝑡𝑣𝑣) to 𝐵𝐵𝑛𝑛 
17 end for 
18     Add 𝐵𝐵𝑛𝑛 to 𝐿𝐿𝐵𝐵 
19 end for 
20 return 𝐿𝐿𝐵𝐵  

 
In this study, the evening peak chosen for analysis is 1 h, and 

we divide it with 10s to obtain 𝑡𝑡𝑣𝑣_𝑙𝑙𝑖𝑖𝑃𝑃𝑡𝑡 =
{18: 00: 00, 18: 00: 10, … ,18: 59: 50} . In other words, we 
check the number of available bikes in each grid every 10 s. In 
addition, 2𝑇𝑇𝛿𝛿  is set as 48 h , and thus, 𝑇𝑇𝛿𝛿  is 24 h . After 
executing Algorithm B, we obtain the matrix 𝐿𝐿𝐵𝐵 with a size 
196×3600, where the values of row 𝑛𝑛  and column 𝑡𝑡𝑣𝑣  in 𝐿𝐿𝐵𝐵 
represent the number of available bikes at grid 𝑛𝑛 at time 𝑡𝑡𝑣𝑣. 
Through matrix 𝐿𝐿𝐵𝐵 , we could check whether the demand is 
truncated in this grid and, if so, how long the truncation is 
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