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Abstract

Computed Tomography (CT) is a widely used modality for acquiring tomographic im-

ages in clinical practice. It is the preferred choice for the non-invasive diagnosis of

complex anatomical structures, due to its exceptional spatial accuracy and extensive

imaging range. The rapid development of CT technology has led to the prominence

of 3D CT volumes, replacing the previous reliance on 2D imaging. While 3D volumes

offer more valuable information and spatial context of human anatomy, interpreting

these volumes has imposed a significant workload for radiologists. The development

of Computer-Aided Diagnosis (CAD) systems is desired, as they can assist radiologists

in reducing interpretation time and simultaneously enhancing interpretation accuracy.

Since segmentation is a critical task for CAD in the field of computer science, its accu-

racy significantly influences the reliability of the CAD system.

This thesis presents three topics related to the pancreas and its associated regions,

aiming to assist in pancreatic diagnosis in clinical usage: segmentation of a healthy

pancreas and its surrounding abdominal organs, segmentation of the pancreas and pan-

creatic tumors, and segmentation of the dilated pancreatic duct. Segmenting larger

objects, such as abdominal organs, is relatively straightforward, but the task becomes

significantly more challenging when dealing with smaller tissues like the pancreatic

duct. The presented research follows a progression from handling simpler tasks to ad-

dressing more complex segmentation challenges.
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The first topic focuses on the segmentation of a healthy pancreas and its multiple

associated abdominal organs. Segmentation of the pancreas in abdominal organs is

challenging, especially when compared with larger organs like the liver and stomach.

The pancreas has notable variations in shape compared to other abdominal organs.

Additionally, the low contrast of the pancreas and its boundaries adds to the difficulty.

Anatomically, the pancreas is closely situated to neighboring organs like the stomach,

duodenum, liver, and spleen. The segmentation of multiple abdominal organs aids in

providing relational information for pancreas segmentation. Two distinct methods are

proposed for segmenting a healthy pancreas and its associated abdominal organs and

tissues. Both methods have successfully improved the segmentation accuracy of the

pancreas.

The second topic focuses on pancreatic pathology, where the segmentation targets

include the pancreas and pancreatic tumors. Pancreatic cancer, marked by a high mor-

tality rate, demands precise diagnosis, often reliant on detecting pancreatic tumors.

Accordingly, a segmentation method for pancreas and pancreatic tumors is proposed.

Acquiring diverse abnormal datasets is crucial for robust models, but the challenge lies

in collecting extensive medical imaging datasets due to cost and privacy constraints.

To address this, an innovative Federated Learning (FL) framework is proposed for effi-

cient pancreas and pancreatic tumor segmentation, offering a solution to the limitations

of dataset collection in medical imaging. Two optimization methods for FL are investi-

gated to address the issue of data heterogeneity in FL. The proposed method is shown to

outperform traditional model aggregation methods in the segmentation of the pancreas

and pancreatic tumor.

The third topic addresses the early detection of pancreatic pathology by focusing on

the segmentation of the dilated pancreatic duct. In clinical studies, the dilation of pan-

creatic duct is regarded as a high-risk indicator for pancreatic cancer. Acknowledging

the significance of this observation, the segmentation of dilated pancreatic ducts from
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CT volumes holds valuable potential for the diagnosis of pancreatic cancer. The small

size of the pancreatic duct in abdominal CT volumes poses a challenge for traditional

organ segmentation methods based on Fully Convolutional Networks (FCNs). For this

topic, a pancreatic duct segmentation framework employing a coarse-to-fine strategy is

proposed. To further improve segmentation, a pancreatic anatomical attention method

is proposed, and vesselness structure features are integrated, enhancing the precision

crucial for timely intervention and improved patient outcomes. The proposed segmenta-

tion framework exhibits significant superiority compared to other methods in pancreatic

duct segmentation using single-phase CT volumes.

In summary, this thesis presents segmentation methods for the pancreas and its re-

lated structures from CT volumes. Chapter 1 provides the aim of this thesis. Chapter 2

proposes two distinct methods for segmenting the healthy pancreas and its associated

abdominal organs and tissues. Chapter 3 introduces a framework for the segmentation

of the pancreas and pancreatic tumor using FL. Chapter 4 presents a framework for

the segmentation of the pancreatic duct. Chapter 5 establishes a connection between

the research presented in this thesis and Real-World Data Circulation (RWDC). Finally,

Chapter 6 provides a summary and outlines directions for future work.
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Chapter 1

Introduction

1.1 Computed tomography

Computed Tomography (CT) is one of the most important and popular modalities for

acquiring tomographic images in clinical practice. The outstanding spatial accuracy and

extensive imaging range of CT makes it an ideal choice for the non-invasive diagnosis

of complex anatomical structures. In most cases, the term “CT” refers to X-ray CT,

which is an advanced medical imaging technique that employs X-rays and computer

processing to create highly detailed cross-sectional images of the body. In the early

1970s, the introduction of the Electric and Musical Industries (EMI) scanner by Godfrey

Newbold Hounsfield marked a significant milestone in medical image analysis [3]. The

EMI scanner utilizes a rotating X-ray tube and detector array to capture multiple X-ray

images from various angles around the patient’s body [4]. It is the first commercially

available CT scanner on record. Since then, the development of CT scans has continued.

A CT scanner typically comprises three essential components that collaboratively

generate intricate cross-sectional images of the body. An example of a modern CT scan-

ner is shown in Fig. 1.1. The main components of a CT scanner include the gantry,

1
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Figure 1.1: Modern CT scanner located at the Lochot́ın University Hospital in Pilsen,
Czech Republic (Siemens NAEOTOM Alpha) [1].

cradle, and control panel. The gantry in a CT scanner is a circular or cylindrical struc-

ture that contains the X-ray tube. It rotates around the patient while scanning to obtain

the X-ray images from various angles. The cradle, also known as the patient table or

bed, is where the patient lies during the CT scanning process. The control panel man-

ages the operation of the CT scanner [5].

CT images are displayed based on CT numbers, which are obtained through a linear

transformation of the attenuation coefficients. The Hounsfield Unit (HU) is the unit of

measurement used to represent the radiodensity of the tissues or materials in the CT
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scan. The CT numbers can be defined as:

HU =
µt − µw

µw

× 1000, (1.1)

where µt is the attenuation coefficient of material being scanned, and µw is the attenu-

ation coefficient of water. Since µt − µw = 0, the assigned value of water is 0 HU. Air

has a CT number of −1, 000 HU because its attenuation coefficient is µt = 0. Each organ

or tissue typically has a specific CT number in the human body. These CT numbers can

either be positive or negative, indicating how much more or less attenuate X-rays than

water during scanning [6]. Low-density materials like fat typically exhibit negative CT

numbers below 0 HU, whereas CT numbers of soft tissues, such as organs and muscles,

are slightly higher than 0 HU. On the other hand, hard tissues, like bones and teeth,

show much higher CT numbers.

After obtaining the CT numbers from the scanner, the CT images are commonly

reconstructed into three main planes: axial plane, coronal plane, and sagittal plane.

Each plane provides distinct internal information about the body. The axial plane shows

views from top to bottom, while the coronal plane offers front-to-back views, and the

sagittal plane provides side-to-side views. An example of the cross-sectional images

from a 3D abdominal CT scan in axial, coronal, and sagittal views is shown in Fig. 1.2.

1.1.1 Computer-aided diagnosis for volumetric CT images

With the rapid development of CT technology, 3D volumetric CT images are predomi-

nantly utilized in clinical practice, replacing the previous reliance on 2D imaging. Al-

though 3D volumetric images contain more valuable information and spatial context of

human anatomy, interpreting them has become a substantial workload for radiologists.

It becomes more challenging to catch important details within a limited image read-

ing time, increasing the risk of overlooking crucial information [6]. The development
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(a) 3D view (b) Axial plane

(c) Coronal plane (d) Sagittal plane

Figure 1.2: Example of the cross-sectional images of 3D abdominal CT in different
views. Axial, coronal, and sagittal planes are represented by red, blue, and green lines,
respectively.

of Computer-Aided Diagnosis (CAD) systems is desired as they can aid radiologists in

shortening interpretation time and improving interpretation accuracy concurrently.

A CAD system quantitatively processes medical images and provides radiologists

with the computer output that serves as a supplementary “second opinion” [7]. The
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exploration of CAD commenced in the 1980s at the University of Chicago [8–11]. It

is crucial to emphasize that while CAD systems can be valuable tools to assist radiolo-

gists, their purpose is not to replace human expertise. This distinction separates them

from the concept of automated computerized diagnosis, a concept that was explored in

the 1960s and 1970s [12–14]. The goal of CAD is to improve the accuracy and repro-

ducibility of radiological diagnoses while simultaneously reducing the time required for

radiologists to interpret images. The exploration of CAD system development dates back

to the 1990s in Japan, marking the inception of research endeavors in this field [15].

Since then, continuous advancements and research have significantly contributed to the

evolution and refinement of CAD systems in the realm of medical image analysis.

In the past few decades, extensive research has focused on lesion detection [16–18],

disease prediction [19–21], and other related areas [22–24]. CAD systems serve as valu-

able tools, assisting healthcare professionals not only in identifying abnormalities but

also in contributing to more efficient and accurate diagnostic workflows. The develop-

ment of CAD systems in the medical field is influenced by various factors. Establishing a

high-performance CAD system for medical diagnosis necessitates collaboration between

medical professionals and computer scientists. The combination of medical insight and

computational methods is crucial for CAD system success. The accuracy and reliability

of the system depend on the quality of medical data, the expertise of ground-truth an-

notators, and the effectiveness of implemented models. In the field of computer science,

research aims at developing computational methods for gaining a deeper understanding

of medical data is crucial for advancing CAD capabilities.

Segmentation is a crucial task for CAD in the field of computer science. It helps

precisely identifying specific regions or structures in medical images. Segmentation

plays a pivotal role in CAD by enabling the precise identification of specific regions or

structures within medical images. This step is crucial for accurate and detailed analy-

sis, as it allows CAD systems to focus on relevant areas during the diagnostic process.
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Figure 1.3: Illustration depicting the segmentation from a volumetric CT image, with
each color representing distinct organ classes. Each voxel is identified as an individual
organ.

Through segmentation, the CAD system can delineate and differentiate between vari-

ous anatomical structures or abnormalities, contributing to a more refined and targeted

interpretation of medical images. Moreover, segmentation aids in extracting quantita-

tive data, facilitating the assessment of the size, shape, and characteristics of identified

structures. This quantitative information enhances diagnostic accuracy and provides

valuable insights for healthcare professionals. In essence, segmentation in CAD acts as

a cornerstone, enabling the system to navigate and comprehend intricate details within

medical images, ultimately contributing to more effective and reliable medical diag-

noses.

1.1.2 Segmentation from volumetric CT images

In the context of volumetric CT images, segmentation involves the assignment of labels

to individual voxels in 3D volumetric images [25]. This process is crucial for distinguish-

ing and categorizing different tissues or organs within volumetric CT images, enabling

a comprehensive analysis of medical images. An Illustration of segmentation from a

volumetric CT image is shown in Fig. 1.3.



1.1. COMPUTED TOMOGRAPHY 7

Traditional segmentation methods

Segmentation research in medical image analysis has a rich history that predates the

widespread adoption of deep learning techniques. Before the emergence of deep learn-

ing, researchers have explored a variety of classical computer vision and machine learn-

ing methods to address medical image segmentation challenges.

The atlas-based method is one of the widely used traditional segmentation methods

in medical images. In this method, the organ’s existence probability atlas is initially

computed using volumetric CT images and ground truth. This anatomical statistical

information is then leveraged for organ segmentation. Shimizu et al. [26] introduced

a technique for simultaneous segmentation of 12 organs from non-contrast 3D abdom-

inal CT images. They implemented atlas-guided segmentation with the expectation

maximization algorithm to address the large fluctuation problem in feature distribution

parameters. The segmentation process incorporates multiple level sets to delineate or-

gan boundaries. Park et al. [27] devised a probabilistic atlases thresholding method

on the segmentation of 24 abdominal volumetric CT images. Statistical information

is used from multiple abdominal volumetric CT images to generate a probabilistic at-

las, representing the likelihood of voxel locations corresponding to different anatomical

structures.

Graph-cuts [28] is another traditional image segmentation method to formulate seg-

mentation as an optimization problem on a graph. In this method, the image is repre-

sented as nodes, and the edges between nodes represent the relationships between

pixels. The segmentation is then obtained by finding the minimum cut in the graph.

Boykov et al. [29] developed a graph-cuts method to allow users to interactively sep-

arate the foreground and background. An approximation to multi-way graph-cuts was

introduced, making it applicable to multi-class segmentation problems. Chen et al. [30]

integrated the active appearance model and live wire cost function into the parameters
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of graph cuts for 3D abdominal organ segmentation. A live-wire cost function was

proposed to specify paths within the image. This was integrated into the graph-cuts

framework. Linguraru et al. [31] indicated a combination of statistical modeling and

a graph-cuts based approach for organ segmentation. Graph-cuts methods are effective

in incorporating both local and global information, making them suitable for refining

segmentation results obtained from statistical models.

Conditional Random Fields (CRFs) are also a well-known approach for organ seg-

mentation. Unlike the atlas-based methods, CRFs-based methods can adjust empirical

parameters to determine the organ regions automatically. It is used to model the re-

lationships and dependencies between pixels from 3D volumetric CT images. CRFs

and Histograms of Oriented Gradients (HOG) features were first combined by Bhole

et al. [32] on medical images. They evaluated the influence on parameter learning in

CRFs which compared to the Markov Random Fields (MRF) counterparts. Also, they in-

dicated the importance of introducing HOG features in anatomical segmentation prob-

lems. Nimura et al. [33] used CRFs as a probabilistic graphical model for the right

lung, left lung, heart, liver, spleen, right kidney, and left kidney segmentation. Yang et

al. [34] proposed a voxel-connection structure based on CRFs in multi-organ segmenta-

tion. They utilized the stochastic gradient descent algorithm in the learning phase and

Maximum A Posteriori (MAP) inference in the prediction. Furthermore, they introduced

FCNs into CRFs. A fine-tuned 3D FCN is utilized to generate the probability maps for

each organ. Beyond organ segmentation, CRFs have been applied to various other types

of segmentation in medical images, including blood vessels [35] and brain tumors [36].

Deep learning methods

With the rapid advancement of machine learning, deep learning has emerged as the

predominant method for medical image segmentation tasks. Convolutional Neural
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Networks (CNNs) have played a pivotal role, allowing the training of complex mod-

els from extensive datasets and delivering state-of-the-art results with remarkable effi-

ciency [37, 38]. CNNs enbale to learn hierarchical representations of features directly

from the training data [39, 40]. This intrinsic ability alleviates the need for manual

feature engineering, where human-defined features are specified in advance. Typically,

deep learning based segmentation can be divided into two main categories: supervised

segmentation and unsupervised segmentation. In supervised segmentation, the neural

network is trained on annotated training data, where each input has a corresponding

ground-truth segmentation. The performance of supervised methods is often high, es-

pecially when ample annotated data are available for training. However, a limitation of

supervised methods is their dependence on large annotated training datasets, which can

be extremely challenging to obtain in certain fields. On the other hand, unsupervised

segmentation involves the model learning patterns or relationships from the training

data without relying on annotated segmentation ground truth. However, achieving

high performance on complex segmentation tasks with unsupervised methods can be

challenging due to the absence of explicit guidance from annotated data. This thesis

mainly focuses on supervised learning methods.

The introduction of FCNs by Long et al. [41] has significantly enhanced the feasi-

bility of pixel-wise semantic segmentation. FCNs, being the most extensively employed

architecture in supervised semantic segmentation, have played a pivotal role in ad-

vancing this field. U-Net proposed for 2D biomedical image segmentation is the most

well-known structure in the medical image segmentation field. The architecture intro-

duced an encoder-decoder structure to process feature maps, utilizing deconvolution

for up-sampling the feature maps, and incorporating skip connections to integrate fea-

tures from the encoder path. It was initially introduced by Ronneberger et al. [42] for

2D biomedical image segmentation and has subsequently been extended to 3D volu-

metric applications, as demonstrated in works such as 3D U-Net [43] and V-Net [44].
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These extensions have led to significant performance enhancements in 3D medical im-

age segmentation. Isensee et al. made significant improvements to the segmentation

performance of the U-Net-shaped structure through meticulous hyperparameter tuning

and pre-processing strategies [45].

1.2 Anatomical background

1.2.1 Abdomen

The term “human abdomen” denotes the anterior region situated between the thoracic

diaphragm and the pelvis [46]. This area plays a pivotal role in the overall functioning

of the body. The abdominal cavity contains a variety of organs and blood vessels essen-

tial for daily bodily functions, including digestion, metabolism, and other fundamental

processes. Fig. 1.4 depicts an illustration of the anatomy of the posterior abdomen. In

medical contexts, having a thorough understanding of the structure and components of

human abdominal anatomy is crucial. Numerous diseases are directly related to the ab-

dominal organs. Due to the presence of many critical organs, there is a significant focus

on studying the abdomen. This understanding offers a fundamental viewpoint neces-

sary for studying and diagnosing conditions and disorders associated with the abdomen.

This thesis focuses primarily on the pancreas, while also taking into account relevant

areas like blood vessels (artery and portal vein), liver, spleen, stomach, and gallbladder.

Subsequently, a concise introduction to the anatomical background of these tissues and

organs will be presented.

Artery and portal vein

The artery is depicted in red, while the portal veins are represented in blue in Fig. 1.4.

They are two major blood vessels in the abdomen that contribute significantly to blood
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Figure 1.4: Illustration of the anatomy of the posterior abdomen [2].
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circulation throughout the entire body. The artery transports oxygenated blood from the

heart to all parts of the body, including the abdominal organs. Conversely, the portal

vein plays a crucial role in nutrient transport. It carries blood with nutrients and toxins

from the digestive organs to the liver [47].

Liver

The liver is the largest and heaviest solid organ in the body. It is located in the right

upper quadrant of the abdominal cavity. The liver’s substantial size and strategic place-

ment emphasize its pivotal role in facilitating various essential physiological functions

that are vital for maintaining life and overall well-being. The function of the liver is

versatile. It is a multifunctional organ that plays a crucial role in various physiological

processes. Its functions span across metabolic, synthetic, hemopoietic, and immunolog-

ical activities, making it a central hub for maintaining overall health [48].

Stomach

The stomach is an essential digestive organ with a sac-like structure that distinguishes

itself as the broadest within the abdomen. It is situated in the left hypochondrial region,

beneath the lower rib cage. The size, shape, and location of the stomach can vary signif-

icantly, influenced by factors such as an individual’s posture and the level of fullness in

the stomach [49]. The stomach serves multiple functions, including aiding in digestion,

regulating nutrition, and influencing appetite control [50].

Spleen

The spleen is an organ located in the left upper corner of the abdomen, right next to the

stomach. It is part of the lymphatic system and serves multiple functions in the body.

The spleen plays a crucial role in the body as a filter of the blood, removing damaged
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blood cells and bacteria, and is involved in immune responses [51]. Additionally, it ac-

tively participates in immune responses, contributing significantly to the body’s defense

mechanisms.

Gallbladder

The gallbladder is a small organ located on the inferior surface of the liver. It plays a

crucial role in the digestive process. In between meals, it acts as a reservoir for bile,

a digestive fluid produced by the liver. Bile is essential for breaking down fats in the

small intestine during digestion. When a person consumes a meal, especially one that

contains fats, the gallbladder contracts, releasing the stored and concentrated bile into

the small intestine. This process aids in emulsifying fats, facilitating their digestion and

absorption into the body [52].

1.2.2 Pancreas and pancreatic duct

The pancreas is an organ located in the upper abdomen, situated behind the stom-

ach and in front of the spine. It is connected with several abdominal organs including

the spleen, stomach, duodenum, and colon. For a healthy adult, the pancreas typi-

cally weighs around 100 grams on average and measures between 14–25 centimeters

in length [53]. It performs both exocrine and endocrine functions for the human body.

In its exocrine function, it secretes digestive enzymes essential for the digestion and

absorption of food, facilitating the intake of nutrients into the body. In its endocrine

function, it releases hormones, primarily insulin and glucagon, into the bloodstream,

playing a key role in regulating blood sugar levels [54].

The detailed anatomical structure of the pancreas is illustrated in Figure 1.5. It can

be divided into three main components: head, body, and tail. Additionally, there is a

crucial duct structure inside it known as the pancreatic duct. This duct connects to both
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Figure 1.5: Illustration of the anatomy of the pancreas [2].

the first part of the small intestine and the bile duct [55]. It plays a pivotal role in

transporting digestive enzymes produced by the pancreas to the duodenum, where they

contribute to the breakdown of food.

Pancreatic pathology

Pancreatic cancer, a pathology that has garnered considerable attention, stands as one

of the most lethal malignancies, claiming the lives of hundreds of thousands of individ-

uals globally each year. Due to its high fatality rate, it is often referred to as the “king of

carcinoma” [56]. The American Cancer Society estimates that pancreatic cancer will re-

sult in approximately 49,830 fatalities among adults in the United States in 2022 [57].

It has the lowest 5-year survival rate, which is around 10%, when compared to other

malignancies [58]. The primary treatment for pancreatic cancer is resection. A critical

factor contributing to the low survival rate is the limited manifestation of symptoms, of-

ten leading to detection at an advanced stage. Consequently, only a minority of patients

are eligible for surgical resection at the time of diagnosis [58]. Therefore, it is essential

to find it early when it is still treatable.
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Pancreatic Ductal AdenocarCinoma (PDAC), which develops in the main duct, ac-

counts for more than 90% of pancreatic cancer [59]. Several clinical studies suggest

that dilatation of the main pancreatic duct indicates an increased risk of pancreatic

cancer [60–62]. This thesis centers on the pancreas and related structures, including

pancreatic tumors and ducts. The goal is to contribute to the development of a CAD

system tailored for pancreatic conditions.

1.3 Aim of this study

This thesis aims to introduce innovative segmentation methods for the pancreas and

its related structures, holding substantial promise for future clinical applications. Ad-

dressing the challenges related to accurate and efficient segmentation of these critical

anatomical structures contributes to the development of CAD, treatment planning, and

patient care in healthcare scenarios.

In typical medical scenarios, when performing noninvasive examinations of the ab-

domen, a variety of diagnostic imaging techniques are commonly employed. Among

these, the predominant methods in clinical practice include CT, Ultrasonography (US),

and Magnetic Resonance Imaging (MRI) [63–66]. These advanced imaging modalities

play a central role in providing comprehensive insights into abdominal structures, en-

abling precise and detailed assessments across a broad spectrum of medical conditions.

Each imaging modality comes with its strengths and weaknesses. MRI, with its out-

standing soft tissue contrast, makes it superior for imaging the brain and joints [63].

However, its less frequent use is mainly attributed to its higher cost compared to other

modalities. US stands out as the most cost-effective modality, but it may not provide the

same level of detailed soft tissue imaging as CT or MRI. CT, on the other hand, is the

most widely used modality in abdominal imaging, owing to its advantageous balance

between cost and image quality. The American College of Radiology (ACR) Appropri-
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ateness Criteria has proposed guidelines for the appropriate investigation of various

disease entities [67]. In clinical practice, CT is the predominant diagnostic modality for

diagnosing pancreatic diseases compared to other imaging techniques [61, 65]. Given

this clinical perspective, the thesis is primarily centered on the analysis of abdominal

volumetric CT images.

The research presented in this thesis centers around the pancreas, a crucial organ

situated in the abdomen. Previous studies have extensively explored larger abdominal

organs, such as the liver [68–70], spleen [70, 71], and stomach [72, 73], resulting in

commendable achievements in understanding and segmenting these larger anatomical

structures. However, when it comes to smaller organs like the pancreas, there still exists

a noticeable gap in segmentation performance that needs to be improved [74, 75].

Besides exploring the pancreas itself, the research extends the exploration to the

surrounding abdominal regions. Additionally, this research delves into the study of ab-

normal conditions, specifically focusing on pancreatic tumors and dilated pancreatic

ducts. Through this exploration, this thesis tries to contribute to a comprehensive un-

derstanding of the pancreas, its surroundings, and the implications of disorders such as

tumors and duct dilation. In a broader aspect, this research aims to provide valuable

insights into the field of medical image analysis and healthcare.

1.4 Research overview

The work included in this thesis aims to propose segmentation approaches for the pan-

creas and its associated region to assist in pancreatic diagnosis in clinical usage. It can

be primarily categorized into three main topics: (1) Segmentation of the pancreas with

abdominal multi-organ, (2) Segmentation of the pancreas and pancreatic tumor, and

(3) Segmentation of the pancreatic duct. Segmenting large objects like abdominal or-

gans is relatively easy, but dealing with tiny tissues such as the pancreatic duct poses a
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significant challenge. The research progresses from tackling simpler tasks to addressing

more complex ones.

1.4.1 Topic 1: Pancreas and multiple associated abdominal organs

segmentation

The first topic involves studying healthy pancreas cases. In this topic, two approaches

to the segmentation of the pancreas and its multiple associated abdominal organs are

presented. Segmenting the pancreas from abdominal organs is challenging, especially

when compared to larger organs like the liver and stomach. Unlike other abdominal

organs, the pancreas shows significant individual shape differences. Additionally, the

low contrast of the pancreas and its boundaries adds to the difficulty. Anatomically, the

pancreas is closely situated to neighboring organs like the stomach, duodenum, liver,

and spleen. This proximity can lead to unclear boundaries in imaging studies, making

it challenging to distinguish it from surrounding structures [5]. In actual clinical prac-

tice, radiologists can enhance the identification and separation of the pancreas from

surrounding structures by making informed judgments based on the relative positions

and anatomical connections between organs. This experiential knowledge can also be

applied to automated pancreas segmentation situations. Here, two segmentation meth-

ods for the pancreas with multi-organ segmentation are presented. The first method

is a traditional supervised deep learning-based approach. When employing FCNs for

segmentation, organs with small voxel sizes often exhibit poor performance. This is be-

cause they learn less, and crucial information may be disregarded during the learning

process. The input for an FCN is a crop of the entire volumetric CT image, constrained

by computational resource limitations. In this process, positional information is disre-

garded. To tackle this issue, this work proposes a modification to an FCN that considers

the spatial information of input sub-volumes. The second method involves leveraging
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Automatic Machine Learning (AutoML) techniques for this task. This eliminates the

need for carefully selecting hyperparameters for organ segmentation.

1.4.2 Topic 2: Pancreas and pancreatic tumor segmentation

The second topic focuses on pancreatic pathology. Pancreatic cancer is a significant pan-

creatic pathology that attracts high attention, mainly due to its high mortality rate. The

presence of a pancreatic tumor is a primary indicator for diagnosing pancreatic cancer.

In most cases, the identification of a tumor in the pancreas is a key outcome that leads

to the diagnosis of pancreatic cancer. Here, a method for pancreas and pancreatic tumor

segmentation is proposed. When addressing pancreatic pathologies such as pancreatic

tumors, acquiring a substantial amount of abnormal datasets is crucial for developing a

highly generalizable model. However, collecting a large number of datasets in medical

image analysis is often challenging due to cost and privacy concerns. Federated Learn-

ing (FL) emerges as an innovation to address this issue. In this context, an efficient FL

framework is proposed for pancreas and pancreatic tumor segmentation.

1.4.3 Topic 3: Pancreatic duct segmentation

The last topic proposes a research perspective aimed at facilitating the early detection

of pancreatic pathology, which can serve as an entry point for the early detection of

pancreatic cancer. Early detection enables prompt intervention and treatment, posi-

tively impacting patient outcomes and overall prognosis. The anatomical structure of

the pancreatic duct is very small in abdominal volumetric CT images. Traditional or-

gan segmentation methods based on FCNs may not perform well on this target. Thus,

a pancreatic duct segmentation framework is investigated to overcome this issue. A

coarse-to-fine strategy for pancreatic segmentation is proposed. Additionally, to en-

hance pancreatic duct segmentation performance, a pancreatic anatomical attention
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method is introduced to guide the FCN to focus on the pancreas regions during train-

ing. In addition, vesselness structure features is incorporated to enhance the structure

segmentation during segmentation.

1.5 Perspective of real-world data circulation

Real-World Data Circulation (RWDC) is a recently proposed concept by the Informa-

tion Technology (IT) community [76]. Its central concept involves analyzing collected

data, conducting a thorough analysis, and subsequently developing products or services

based on the findings. The process then loops back to receiving feedback in the form of

data derived from the utilization of these products and services. The key idea behind

RWDC is that the analysis of collected data, followed by the integration of results into

new designs and fabrication, forms the foundation for value creation. The paradigm

of RWDC is illustrated in Fig. 1.6. The work in this thesis utilizes volumetric CT im-

ages obtained from hospitals. The data is analyzed to develop segmentation methods

for CAD systems, with the potential application in clinical practice. This process aligns

with the RWDC framework. Moreover, the three topics this thesis explored are intercon-

nected, enhancing the potency of the circulation. This interconnectedness contributes

to a thorough exploration and understanding within the scope of the study.

Acquisition

Acquisition of real-world data is the first step of this circulation. This thesis focuses on

volumetric CT images obtained from real-world clinical scenarios. To employ the data

for segmentation tasks, ground truth for each case needs to be obtained. The precision

of the ground truth significantly impacts the quality of subsequent segmentation models.

In the medical image analysis field, since manual annotation necessitates highly skilled
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Figure 1.6: Illustration of the real-world data circulation paradigm.

experts, which can be cost-prohibitive, annotating ground truth is challenging. While

using an implemented segmentation model is an alternative, it requires high accuracy.

Analysis

Data analysis in RWDC involves developing methods to address specific problems based

on the acquired data from the real world. This thesis proposes three distinct segmenta-

tion topics for data analysis. Initially, volumetric CT images of the healthy pancreas are

analyzed for the segmentation of the pancreas and its multiple associated organs. The

other two topics focus on unhealthy pancreas, specifically those with pancreatic cancer

or pancreatic duct dilation. Improving segmentation accuracy represents the primary

challenge in this step. In this thesis, various deep learning-based methods are explored



1.6. THESIS STRUCTURE 21

Chapter 1
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Figure 1.7: Overview of the chapters in this thesis.

to improve segmentation tasks. In real-world clinical applications, the significance lies

not only in the methodology but also in the effectiveness of the approach.

Implementation

Implementation involves actively creating products or services based on insights derived

from data analysis, and this aspect is tied to the “value creation” of RWDC. The research

outcomes of this thesis have the potential to be applied in CAD systems, aiding radiol-

ogists in their diagnoses. In the clinical scenario, the accuracy of the analysis markedly

influences the quality of the implementation. Additionally, the feedback obtained from

the implementation can serve as valuable data for re-evaluating the analysis, thereby

completing the circulation.

1.6 Thesis structure

This thesis comprises five chapters. An overview of the relationship between each chap-

ter is depicted in Fig. 1.7. Chapter 1 served as an introduction, providing background
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information on anatomy and modalities. Additionally, the research was introduced from

the perspective of RWDC. Chapter 2 introduces two methods for pancreas segmentation

within the context of multiple abdominal organs analysis. Chapter 3 covers the method

for segmentation of the pancreas and pancreatic cancer. Chapter 4 introduces the meth-

ods for pancreatic duct segmentation. Chapter 5 presents the RWDC process and its

societal value in this research. Finally, Chapter 6 concludes with a summary and a

discussion regarding the future directions of this study.



Chapter 2

Segmentation of pancreas and its

multiple associated organs

2.1 Background

In this chapter, two segmentation methods for the pancreas and its multiple associated

abdominal organs are presented. Semantic segmentation from volumetric Computed

Tomography (CT) images is a critical and challenging task in medical image analysis,

as it aids in understanding the major anatomical structures of humans. Moreover, accu-

rate segmentation results have the potential to be applied in Computer-Aided Diagnosis

(CAD) systems for clinical workflows. In the pancreatic CAD system scenario, the pan-

creas segmentation results are fundamental, aiding in comprehending the location and

condition of the pancreas. However, there are many challenges in pancreas segmen-

tation. One limitation is the relatively small size of the pancreas compared to other

abdominal organs. Moreover, significant individual variations in shape, size, and ap-

pearance further complicate the segmentation process. Additionally, the low contrast

of the pancreas boundary with other organs adds to the complexity of the task. These

23
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factors often limit segmentation accuracy, potentially impacting diagnostic quality when

incorporating results into CAD systems in real-world clinical settings. Utilizing informa-

tion from the multiple associated organs of the pancreas could be valuable for improving

pancreas segmentation.

The increasing capacity of computing power supports the rapid development of deep

learning in the last decade. Nowadays, numerous segmentation approaches based on

deep learning have been introduced with the rapid development of Convolutional Neu-

ral Networks (CNNs). Among them, the Fully Convolutional Network (FCN) has demon-

strated its advantages for medical image tasks [41], achieving higher segmentation per-

formance. Various FCN architectures have been developed for medical image analysis,

of which U-net [42] designed for 2D biomedical image segmentation, stands out as

one of the most famous FCN architectures widely used in medical image analysis. It

was originally proposed for 2D image processing and later extended to 3D volumet-

ric processing by Çiçek et al. [43]. Moreover, numerous 3D U-Net-like FCNs have

been proposed, showcasing their significant advantages in the field of medical image

analysis [44, 77, 78]. The encoder-decoder network architecture is proven to achieve

acceptable performance on pixel-wise segmentation tasks.

When training with FCNs, the network architecture, and its corresponding hyper-

parameters will influence the performance. The network architectures are carefully de-

signed in traditional machine learning settings. The choices of hyperparameters are typ-

ically made by experts through a trial-and-error process. The emergence of Automated

Machine Learning (AutoML) introduces a novel concept that involves automating the

entire pipeline of machine learning, making it more accessible for individuals to con-

duct machine learning experiments. In this chapter, two methods for the segmentation

of the pancreas and its multiple associated abdominal organs are introduced. The first

method aims to enhance the traditional FCNs, while the other leverages AutoML for the

automatic design of the FCN architecture and hyperparameter selection. Experiments
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on a large annotated multiple abdominal organ dataset demonstrate the effectiveness

of the proposed methods.

2.2 Contribution

In this chapter, two distinct segmentation methods for the pancreas and its multiple

associated abdominal organs are introduced. One method focuses on enhancing a tra-

ditional FCN, while the other utilizes AutoML. The primary contribution can be summa-

rized as follows:

1. The first method improves the FCN segmentation performance by incorporating

coordinate spatial information into the network. The sub-volume of CT may dis-

card crucial spatial information that is beneficial for the segmentation. Gamma

correction is introduced in data augmentation to improve the robustness of FCNs.

2. The second method introduces an AutoML framework for segmentation based on

reinforcement learning. Instead of randomly splitting a subset of data, a proxy

dataset is obtained representing the entire dataset for AutoML.

3. Experiments on a large abdominal CT dataset with healthy pancreas conditions

demonstrate the effectiveness of the proposed methods.

2.3 Method 1: Spatial-embedded FCN

2.3.1 Motivation

When training with volumetric images using FCNs, it is necessary to crop sub-volumes

from the entire images as the input due to Graphics Processing Unit (GPU) memory

limitations. However, this process may result in the loss of spatial information in the
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sub-volumes compared to utilizing the entire volumetric CT images. Recovering dis-

missed spatial information can potentially enhance segmentation when using FCNs.

Y-Net [79] is a novel FCN architecture that incorporates central coordinate values into

the U-Net structure. The inclusion of coordinate information has demonstrated effec-

tiveness in segmentation tasks, leading to improved performance. To further exploit the

information retained in random cropping, Wang et al. introduced multiple selected co-

ordinate values for x, y, and z as spatial position information for sub-volumes in kidney

segmentation [80]. This approach remarkably improved the kidney segmentation accu-

racy. Since it is expected that the spatial information-embedded FCNs would also have

a positive effect on multi-class organ segmentation, its effectiveness is evaluated. When

training an FCN, another challenge is the need for a large amount of training data to

prevent overfitting. Generating a substantially large number of datasets is particularly

challenging for segmentation tasks, especially in the medical image analysis field where

labeling volumetric CT images is time-consuming and expensive. To address this issue,

data augmentation is widely employed. This technique effectively increases the training

data and enhances the robustness of trained models.

2.3.2 Network architecture

The network architecture of the proposed spatial-embedded FCN is illustrated in Fig. 2.1.

Similar to the original 3D U-Net [43], it is composed of symmetric analysis and synthe-

sis paths with four resolution levels each. Each level consists of two convolutional layers

with a size of 3 × 3 × 3 in both analysis paths and synthesis paths. A Rectified Linear

Unit (ReLU) is followed by each convolution layer. In the analysis path, max-pooling is

adopted to downsample the feature maps. For synthesis paths, 2× 2× 2 up-convolution

layers are utilized to remap the lower-resolution feature maps. The shortcut connections

from layers of equal resolution in the analysis path to the synthesis path are changed
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Figure 2.1: Network architecture of the proposed spatial-embedded FCN. Spatial posi-
tion information is incorporated at the bottom of the FCN.

from concatenation to summation. The input of FCN is volumetric CT image and the

output is eight classes of voxel-wise prediction results.

A three-channel feature map is concatenated to the bottom to introduce the spatial

position information to the FCN. This information includes the value of x, y, and z co-

ordinates, respectively. Fig. 2.2 indicates how to extract the spatial position information

from the volumetric CT images. Each channel includes one pair of coordinates respec-

tively. The size of each channel is 12 × 12 × 12 voxels to suit the bottleneck layer. As

the size of the input sub-volume is 96 × 96 × 96 voxels, the coordinates are extracted

for every 8 voxels. Firstly, the coordinates of each voxel in a sub-volume of the entire

CT are extracted which are defined as xn, ym, and zl, where n = i + 8, i + 16, ..., i + 96,

m = j + 8, j + 16, ..., j + 96, l = k + 8, k + 16, ..., k + 96. Then, the values are normal-

ized into the range of [0, 1]. Each value of coordinates x, y, and z of sub-volumes is

divided by the corresponding values of width (W ), height (H), and depth (D) of the

entire volumetric CT image. This information is utilized as the spatial information in
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Figure 2.2: Calculation of the embedding of spatial information. Subvolumes are ran-
domly cropped from volumetric CT image and then the voxel-wise coordinate values
are calculated and normalized into the range of [0, 1]. W , H, and D indicate the width,
height, and depth of the volumetric CT image, respectively.

the feature map. The coordinates of all voxels for each patch are used. Spatial position

information of all voxels is adopted, instead of only considering the center coordinates

of input sub-volume as [79].

2.3.3 Improved data augmentation

A large amount of data is always necessary to gain high performance in deep-learning-

based methods. However, annotated volumetric CT images are hard to acquire because

of the high cost. Moreover, if the volumetric CT images come from the same hospital

and settings, the trained model may be imbalanced which would lead to poor perfor-

mance on unseen data. Data augmentation is widely utilized to effectively solve these

problems.

This work adopts non-rigid deformations including random 3D translation, rotation,
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and B-spline deformation in both volumetric CT images and the ground truth, which

is based on the method proposed by Özgün et al. [43]. Besides the general data aug-

mentation mentioned above, gamma correction inspired by No New-Net [45] is also

adopted. It is a nonlinear operation, which is widely used to adjust the contrast of

images. With random gamma correction, volumetric CT images with different contrast

conditions could be generated. The intensity of each pixel can be defined as I, thus the

results I ′ of gamma correction could be obtained as:

I ′ = imax

(
I

imax

) 1
γ

, (2.1)

where imax is the largest intensity of CT. When γ > 1, the difference in dark areas tends

to be large and the image will turn brighter, and when γ < 1, the difference in bright

areas tends to be large and the image will turn darker.

2.3.4 Experimental results

Dataset

400 abdominal clinical volumetric CT images in the portal-venous phase collected for

pre-operative planning in gastric surgery were prepared. Each volumetric image con-

tained 460–1,177 slices with the size of 512 × 512 pixels per slice. The dataset was

randomly divided into subsets of 360 training volumetric images and 40 validation vol-

umetric images. The ground truth including seven abdominal organs or tissues (artery,

portal vein, liver, spleen, stomach, gallbladder, and pancreas) was annotated manually

using semi-automated segmentation tools. Examples of CT data with the corresponding

labels are shown in Fig. 2.3.
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(a) 3D rendering (b) Axial plane

(c) Coronal plane (d) Saggital plane

Figure 2.3: Examples of CT data and corresponding ground truth in the axial, coronal,
and sagittal planes, as well as 3D rendering.

Implementation

FCNs were implemented using the Keras1 with TensorFlow2 backend. For training, a

mini-batch size of 3 was used with randomly cropped sub-volumes from different vol-
1https://keras.io/ (Accessed on 2024/1/15)

https://keras.io/
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umetric CT images. Each volumetric image was re-sampled to an isotropic resolution

of 1 × 1 × 1 mm2. For optimization, the input and output sizes of the network were

96 × 96 × 96 voxels, which were chosen based on the memory consumption of the 3D

FCNs. For gamma correction, a range of γ from 0.5 to 2.0 was set to improve the data

augmentation. The network was trained with an initial learning rate of 0.01 using the

Adaptive moment estimation (Adam) [81], which is based on stochastic gradient de-

scent. The loss function employed was the average Dice loss. The experiments were

executed on a Deeplearning BOX with an NVIDIA Quadro P6000 GPU with 24GB mem-

ory.

Experimental results

A 3D U-Net-like architecture without spatial information presented in 2.3.2 was used

as the baseline FCN, and compared with the inclusion of spatial position information

(Spatial) and data augmentation (Aug.). Figure 2.4 shows examples of segmentation

results of original FCN [78], FCN+Spatial, and FCN+Spatial+Aug.

Table 2.1 compares the Dice Similarity Coefficient (DSC) of each organ with the

original FCN, FCN+Spatial, and FCN+Spatial+Aug. We can see that the spatial posi-

tion information improved the overall segmentation performance, especially on blood

vessels. Data augmentation showed a positive influence on pancreas segmentation for

the testing data from the same hospital and CT scanner as the training data.

2.3.5 Discussion

The main breakthrough of this work was to introduce the spatial information-embedded

FCN from single organ segmentation to multi-class organ segmentation. With the in-

troduction of spatial position information into the FCNs, the segmentation accuracy in-

2https://www.tensorflow.org/ (Accessed on 2024/1/15)

https://www.tensorflow.org/
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Table 2.1: Multi-class DSC of each organ with original FCN, FCN+Spatial, and
FCN+Spatial+Aug. The best average score for each organ is shown in bold.

Organ FCN [78] FCN+Spatial FCN+Spatial+Aug.
Artery 83.9% 85.7% 83.8%
Portal Vein 74.3% 75.9% 74.2%
Liver 96.0% 96.3% 96.1%
Spleen 96.0% 96.8% 96.4%
Stomach 89.6% 87.9% 88.8%
Gallbladder 85.2% 88.1% 87.9%
Pancreas 78.3% 79.4% 81.0%
Average 86.2% 87.2% 86.9%

(a) Baseline FCN [78] (b) FCN+spatial (c) FCN+spatial+Aug

Figure 2.4: Comparison of prediction results. Regions in red rectangles show that spatial
information has a positive influence on the branch parts of portal vein segmentation.

creased for almost all classes. Especially for the gallbladder, the performance increased

by about 3%. For blood vessel segmentation, like artery and portal veins, the spatial po-

sition information also had positive influences. Four types of data augmentation were
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adopted to artificially increase the training data. The segmentation performance for

the pancreas gained the highest accuracy, which achieved 81%. However, it seemed

less help for other organs or tissues. One of the reasons could be that the data came

from the same hospital and CT scanner. Effectiveness of unseen data taken by different

devices and contrast conditions should be examined in the future.

2.4 Method 2: AutoML with proxy data

2.4.1 Motivation

Despite the fact that U-Net is commonly used as a benchmark for a variety of tasks in

medical image analysis, researchers always need to adjust the network architecture or

tune the hyperparameters carefully to fit each task and dataset. To fully boost the po-

tential of a neural network and achieve State-Of-The-Art (SOTA) performance in deep-

learning-based methods, a significant amount of experience and effort is necessary to

select the proper training strategy for each certain task. The training strategy involves

the design of network architecture, as well as the choice of initial learning rate, loss

function, optimization, data augmentation, and so on.

Recent work on AutoML shows promise for designing a proper deep learning based

training strategy without the demand for manual hyperparameters tuning [82], making

deep learning more accessible to beginners and experts from other domains. AutoML is

especially suitable for medical image segmentation as only a few experts are equipped

with both the clinical and computer science knowledge needed to build performant

models. Yang et al. introduced a reinforcement learning-based AutoML strategy [83]

for 3D medical image segmentation. One deficiency of AutoML is the considerable

time taken in the hyperparameter optimization phase. Searching hyperparameters using

an entire dataset in AutoML causes immense computational costs. A straightforward
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solution is to use only a small subset of training and validation data rather than the

whole dataset to overcome this problem. However, randomly dividing the data into

subsets sometimes results in a bias that may influence the AutoML’s performance. Nath

et al. [84] investigated an image ranking mechanism to select the most representative

examples, a “proxy dataset”, from the whole dataset.

2.4.2 Framework overview

A comparison between traditional machine learning and the AutoML framework is

shown in Fig. 2.5. Firstly, the importance of the entire dataset is ranked by measur-

ing the similarity of each data. The best proxy data for AutoML is chosen from the

top of the list. Then, the proxy dataset is used for network and hyperparameter opti-

mization based on reinforcement learning to obtain the best settings. Finally, the whole

training data and the best settings are used to train a final model. The segmentation

performance of the final model is evaluated on testing data. The way of selecting the

proxy data is demonstrated in 2.4.3 and the detailed AutoML strategies are explained

in 2.4.4.

2.4.3 Proxy data selection

Using the entire dataset for hyperparameter search in AutoML will take a long time

and a large amount of computational power. To reduce time and computation, proxy

data are chosen instead of using the whole training dataset in AutoML. In previous

studies, dividing a subset of training data randomly was considered as a solution to this

problem [85]. However, the randomly divided subset sometimes has a bias which might

influence the AutoML performance. This bias can be reduced by selecting an appropriate

proxy dataset to reflect the entire dataset. Nath et al. investigated two measurements

to indicate the importance of certain images among the entire dataset [84]. Figure 2.6
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(b) Workflow of AutoML.

Figure 2.5: Comparison between traditional machine learning and the AutoML frame-
work. In traditional machine learning, radiologists need to be equipped with knowledge
in machine learning, which is hard for beginners. AutoML could alleviate this problem.
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Figure 2.6: Illustration of how to choose the proxy data for AutoML.

shows an illustration of the proxy data selection procedure in this framework.

Suppose there is a dataset S = {x1,x2, ...,xn}, the relation of two different examples

xi and xj can be denoted as m(xi,xj). To explore the importance of data xi, the

mean of the relation measures could be calculated as m(x1, xi), m(x2, xi), ..., and

m(xn,xn). As indicated in [84], the Mutual Information (MI) and Normalized local

Cross-Correlation (NCC) can be used as the 3D pair-wise measurements. MI indicates

the mutual dependence between two data. Its value will be high if one data has a big

amount of information than the other data.

The MI of two data can be defined as:

MI (xi,xj) =
∑
xi

∑
xj

P (xi,xj) log
P (xi,xj)

P (xi)P (xj)
, (2.2)

where xi and xj are flattened vectors of volumetric CT images. P (xi) is marginal

probability distribution of xi, and P (xi,xj) is the joint probability distribution of two

vectors xi and xj. On the other hand, NCC specifies the correlation between two data.

A higher value is a sign that two data are more similar.
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The NCC of two data can be defined as:

NCC (xi,xj) =
1

Ω

∑
d∈Ω

[∑
di

{
di(xi)− d(xi)

}{
di(xj)− d(xj)

}]2∑
di

{
di(xi)− d(xi)

}2 ∑
di

{
di(xj)− d(xj)

}2 , (2.3)

where di is a voxel position in 9×9×9 voxels local window and d are the voxels around

it. Local mean around position di within the window in xi and xj can be written as

d(xi) and d(xj).

MI is used as measurement in this study because Nath et al. [84] found that MI

beats NCC in terms of picking proxy data for AutoML for organ segmentation. The

training images are then ranked in order of lower MI value, which indicates that the

image volume is less similar to other images. A certain percentage of the ranked data

are selected as the proxy data for the AutoML experiment.

2.4.4 Network and hyperparameter searching strategy

The performance of the segmentation model highly relies on the network structure

and hyperparameter settings. Training data may affect the design of networks and

hyperparameters. Deep-learning-based methods require a great deal of effort to find

the proper settings manually. AutoML is an alternative for this limitation that explores

the appropriate settings within the specified search spaces.

For a searching parameter λ, either a value range [λmin, λmax] or a finite searching set

V = {λ′
, λ

′′
, ..., λ

′′...′} could be specified. In the value range, a floating target number λ∗

can be acquired for each training. Given a set of hyperparameters Λ = {λ1, λ2, ..., λn},

n is the number of hyperparameters to be searched in AutoML. The searching objective

Λ∗ = {λ∗
1, λ

∗
2, ..., λ

∗
n} can be obtained jointly in each training.

The network structure used for this work is SegResNet [86], which is designed for 3D

medical segmentation. The variational autoencoder branch is eliminated and only the
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U-Net-like backbone is kept as the baseline for the network architecture search. Block

number combinations for both the encoder and decoder phases and the kernel number

of the first convolution layer are searched for. Each block consists of a normalization

layer, ReLu, and a 3× 3× 3 convolution layer. A summation connection joins the output

of the normalization and convolution layer. The normalization methods searched for

are Batch Normalization [87] and Group Normalization [88].

2.4.5 Experimental results

Dataset

420 abdominal volumetric CT images in portal-venous phases were prepared, includ-

ing annotations of ten classes (artery, portal vein, liver, spleen, stomach, gallbladder,

pancreas, left kidney, right kidney, and background). The slice numbers were between

250 and 2,533 slices with the size of 512 × 512 pixels per slice. The resolution of each

volumetric image was [0.576–0.977, 0.576–0.977, 0.160–1.000] mm. Each volumetric

CT image was re-sampled to an isotropic resolution of 1.0 × 1.0 × 1.0 mm3, and the

CT Hounsfield Unit (HU) intensities were re-scaled into [0, 1] with the window range of

[−1, 000, 1, 000] HU. The whole dataset was randomly split into training, validation, and

testing sets with 352, 44, and 44 volumetric images, respectively.

Implementation details

The proposed reinforced learning-based AutoML implementation was implemented us-

ing NVIDIA Clara Train SDK 3.0 3. For one AutoML trial, all experiments employed an

NVIDIA Tesla V100 with 32 GB memory, with a total of 8 GPUs running in parallel. A

subset of 42 training volumetric images and 5 validation volumetric images were uti-

3https://docs.nvidia.com/clara/clara-train-archive/3.0/index.html/ (Accessed on
2024/1/10)

https://docs.nvidia.com/clara/clara-train-archive/3.0/index.html/
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Table 2.2: Hyperparameters in carefully tuned model (Baseline), standard AutoML (Au-
toML (rand.)), and AutoML with the proxy data (AutoML (proxy)).

Hyperparameter Baseline [86] AutoML (rand.) AutoML (proxy)
Crop size 128× 128× 128 128× 128× 128 128× 128× 128
Learning rate 0.001 0.000532845 0.00044437
Loss function Dice Focal Dice Focal Dice
Optimization Adam Adam Adam
Probability of adjust contrast 0.5 0.503098488 0.459003747
Probability of scale intensity 0.1 0.424087077 0.418601304
Blocks numbers [1,2,2,4][1,1,1] [1,2,2,4][1,1,1] [1,2,2,4][1,1,1]
Initial kernel number 16 16 16
Normlization Group norm Batch norm Batch norm

lized for hyperparameter searching in AutoML. In the standard AutoML approach, the

data used for searching are chosen randomly for a subset, but in the proposed AutoML

framework, the top 42 cases as ranked by the proxy data method were chosen.

Parameters searching

The searching space includes the initial learning rate µ ∈ [1e − 3, 1e − 6], crop size

ϕ = {643, 803, 963, 1123, 1283}, loss function χ = {Dice loss, Focal loss, Focal Dice loss},

and the optimization method ς = {Adam, NovoGrad, Momentum}. For the network

structure, the block numbers of SegResNet in both encoder and decoder phases within

the the searching set θ = {[1, 1, 1, 1, 1, 1, 1], [1, 2, 2, 4, 1, 1, 1], [2, 2, 2, 3, 2, 2, 2], [1, 2, 4, 1, 1]}

were explored. The convolution kernel number k = {8, 16} of the first convolution layer

and the normalization method δ = {batch, group} for each layer were also searched for

SegResNet. In terms of the data augmentation, the probability p ∈ [0, 1] was employed

for adjusting contrast and magnitude m ∈ [0, 1] for scale intensity oscillation for volu-

metric CT images.
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Figure 2.7: Network architecture searched by AutoML. Green boxes represent feature
maps and the numbers below the boxes are the number of channels.

Experimental results on multi-organ segmentation

Table 2.2 compares the hyperparameters used for segmentation of the original well-

tuned SegRestNet (Baseline), standard AutoML method with the subset selected ran-

domly (AutoML (rand.)) and AutoML with the proxy data (AutoML (proxy)). For all

three models, the crop size and optimization method were the same. The network struc-

ture searched by AutoML was identical to that of the original SegResNet [86], except

for the normalization type. Figure 2.7 shows an illustration of the network architecture

obtained by AutoML. The loss function utilized in AutoML was Focal Dice loss, which

was different from the baseline Dice loss function.

Table 2.3 compares the DSC by Baseline, AutoML (rand.), and AutoML (proxy).

We can see that AutoML helps the achievement of better segmentation performance

than the baseline model. When using the randomly selected subset for AutoML, the

segmentation accuracy was comparable to the well-tuned SegResNet model. The proxy

data improved the overall segmentation accuracy for AutoML, especially for the spleen
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Table 2.3: Comparison of multi-class DSC of each organ by using carefully tuned model
(Baseline), standard AutoML (AutoML (rand.)), and AutoML with the proxy data (Au-
toML (proxy)). Similar Dice scores show the effectiveness of AutoML. The best score
for each organ is shown in bold.

Organ Baseline [86] AutoML (rand.) AutoML (proxy)
Artery 85.6% 85.0% 86.0%
Portal Vein 68.6% 67.9% 68.3%
Liver 95.7% 95.9% 96.0%
Spleen 92.1% 95.0% 95.1%
Stomach 85.0% 87.1% 87.6%
Gallbladder 84.0% 83.4% 85.7%
Pancreas 78.0% 78.8% 79.2%
Left kidney 81.5% 80.9% 81.4%
Right kidney 93.8% 93.3% 94.1%
Average 84.9% 85.2% 85.9%

and stomach.

Fig. 2.8 and Fig. 2.9 show examples of segmentation in axial and coronal views.

AutoML improved the segmentation performance of small blood vessels and stomach

regions. The proxy data showed a positive influence on the gallbladder segmentation.

2.4.6 Discussion

The main contribution of this work was to introduce a practical application of AutoML

for multi-organ segmentation, which helps to fully boost the deep-learning-based net-

work performance with a little machine learning experience. The proxy data was se-

lected automatically in the first step to represent the whole dataset, instead of a ran-

domly chosen subset as in the standard AutoML approach. Therefore, the run-time was

vastly reduced compared to performing AutoML on the full data while also effectively

finding a suitable set of hyperparameters for multi-organ segmentation.

Experimental results demonstrated the benefits of the proposed approach. Baseline

and AutoML (rand.) showed similar average DSC of 84.9% and 85.2%, respectively.
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(a) Ground truth (b) Baseline [86]

(c) AutoML (rand.) (d) AutoML (proxy)

Figure 2.8: Comparison of segmentation results in axial slice. Regions in red rectangles
show the effectiveness of using AutoML for organ segmentation.

AutoML eliminated the importance of manually constructing the network architecture

and tuning the hyperparameters, demonstrating the benefits of utilizing it for multi-

organ segmentation. The average DSC improved by about 1% after employing the

proxy data strategy compared to using the randomly selected subset. For the spleen,

when using the proxy data for AutoML, the DSC was 3% higher than the baseline,
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(a) Ground truth (b) Baseline [86]

(c) AutoML (rand.) (d) AutoML (proxy)

Figure 2.9: Comparison of segmentation results in coronal slice. Regions in red rectan-
gles show the effectiveness of using AutoML for organ segmentation.

despite the fact that the network structures of the baseline and AutoML were almost

identical. AutoML significantly improved the network performance by assigning the

proper hyperparameters of pre-processing transforms and augmentations.
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2.5 Conclusion

This chapter proposed two separate segmentation methods for the segmentation of a

healthy pancreas and its multiple associated organs segmentation. In the first method,

a spatial-embedded FCN was introduced to enhance the segmentation accuracy, espe-

cially for organs with small voxel sizes. The spatial information showed a positive in-

fluence on organs with small voxel sizes. Additionally, an improved data augmentation

method was implemented, including original non-rigid data augmentation and gamma

correction, to mitigate overfitting during training. While data augmentation might pro-

vide less assistance for datasets from the same hospital and CT scanner on most organs,

it showed improvement in pancreas segmentation. In the second method, an efficient

application of AutoML was presented, simplifying the development of multi-organ seg-

mentation for volumetric CT images. Proxy data, effectively representing the entire

training dataset were utilized, for network structure and hyperparameter searching in

AutoML instead of randomly selecting data. Experiments demonstrated that proxy data

positively influenced boosting the final AutoML model’s performance. Although the two

methods cannot be directly compared due to differences in training data, they provide

two dominant viewpoints for organ segmentation using supervised methods: one utiliz-

ing traditional machine learning and the other employing AutoML.



Chapter 3

Segmentation of pancreas and

pancreatic tumor

3.1 Background

Segmentation of the healthy pancreas and its multiple associated organs from volumet-

ric Computed Tomography (CT) images was introduced in Chapter 2. In this chapter,

attention turns to a pancreatic pathology known as pancreatic cancer, recognized as

one of the deadliest types of cancer. The main segmentation target in this chapter is the

pancreas and pancreatic tumors. Automated segmentation of pancreatic tumors plays a

crucial role in the development of Computer-Aided Diagnosis (CAD) systems. The main

challenge arises from the poor contrast of the tumor boundary and significant appear-

ance variations among individuals and different cancer stages, as highlighted in [89].

In clinical settings, a CAD system for pancreatic cancer detection not only requires high

accuracy but also needs to demonstrate high generalizability to handle different types

of pancreatic tumors.

Deep Neural Networks (DNNs)-based methods have recently been widely used for

45
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medical image analysis research. High-performing clinically useful models always re-

quire vast, varied, and high-quality datasets. One limitation of pancreas segmentation

using deep learning-based approaches is the lack of annotated training data. Medical

images from a single resource can be biased toward specific pathologies, equipment,

acquisition protocols, and patient populations. The low generalizability of DNN mod-

els trained on insufficient datasets is critical when applying deep learning methods for

clinical usages. Distinct from natural images, collecting extensive training data from

various resources may lead to multiple technical, legal, and privacy issues in healthcare

applications.

To improve the robustness when dealing with limited data, fine-tuning is an alter-

native way to learn the knowledge from pre-trained DNNs. The fine-tuning technique

starts training from a pre-trained weight instead of random initialization, which has

been proved helpful in medical image analysis [90, 91], which exceeds the performance

on training a DNN from scratch. However, fine-tuned models can still have high defi-

ciencies in generalizability [92]. When a model is pre-trained on one dataset (source

data) and subsequently fine-tuned on another dataset (target data), the trained model

often adapts well to the target data but may lose its ability to represent the source data,

as noted by Li et al. [93]. Federated Learning (FL) provides an innovative solution to

tackle all the aforementioned issues. It is a technique that allows for the collabora-

tive learning of a deep learning-based model among distributed devices, referred to as

clients, without the need to centralize the training data in a single location, as outlined

by McMahan et al. [94]. In FL, clients might have different categories of labels repre-

sented in their data. For example, one client might have patient data with “healthy”

pancreases only while datasets from other clients may contain cases with pancreatic tu-

mors. When working with different types of training data, the problem of heterogeneity

can pose a substantial impact on the model’s performance when it is aggregated on the

server.
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In this chapter, efforts are made to investigate an FL framework to effectively address

the issue of heterogeneity using three distinct pancreatic datasets. For the pancreas seg-

mentation task, three publicly annotated datasets are utilized to represent three hetero-

geneous clients. One of the datasets consists of both pancreas and pancreatic tumors,

while the other two exclusively consist of healthy pancreas cases. Two heterogeneous

optimization methods are proposed for FL model aggregation. Experimental results

demonstrate notable improvements in the automated segmentation of pancreas and

pancreatic tumors in abdominal CT images with FL settings.

3.2 Related works

Thanks to the rapid development of deep learning, significant progress has been achieved

in enhancing pancreas segmentation performance over the past decade, largely owing

to the utilization of Convolutional Neural Network (CNN)-based approaches [95–98].

When addressing both pancreas and pancreatic tumors, single-agent learning encoun-

ters a limitation due to the constraints of the training dataset, primarily because of the

significant variations of tumors. However, in the medical image analysis field, sharing

the training dataset among different clients is difficult. FL is a technique that enables

collaborative model training using datasets from different sites without the necessity

of sharing the actual dataset. It has demonstrated significant effectiveness on segmen-

tation tasks in abdominal organs [99, 100], brain tumors [101, 102], and COVID-19

image analysis [103–106], both in simulation and real-world FL applications.

In FL, a central server aggregates models trained on different datasets. The most

common method used for this aggregation is Federated Averaging (FedAvg). It com-

bines models from each client and updates the global model on the server using a

weighted sum. These weights are typically determined based on the number of the lo-

cal training data and remain constant throughout the training process [94]. Meanwhile,



48 CHAPTER 3. SEGMENTATION OF PANCREAS AND PANCREATIC TUMOR

FedProx is a well-known model aggregation method introduced to address data hetero-

geneity in FL. It achieves this by incorporating a regularization loss on the client that

penalizes deviations from the current global model [107]. Prior studies have suggested

that techniques developed for multi-task learning can serve as an alternative approach

for addressing heterogeneous statistical challenges [108]. Building on this inspiration,

the primary motivation of this work is to investigate effective model aggregation meth-

ods to address the issue of heterogeneity.

3.3 Contribution

This study utilizes three publicly annotated datasets for pancreas segmentation, with

each dataset representing a heterogeneous client in the context of FL. Building upon

these datasets, two FL optimization methods are introduced, inspired by multi-task

learning principles. The main contribution can be summarized as follows:

1. The first method is Dynamic Task Prioritization (DTP), where priority is assigned

to each task in multi-task learning using task-specific metrics. It allocates a higher

prioritization to the client with superior performance. The method explores the

scenario where a client model with superior performance contributes more to the

server.

2. The second method is Dynamic Weight Averaging (DWA). In traditional FL, the

model from each client is aggregated based on a fixed weight, typically calculated

as the proportion of the client’s training data size relative to the total data. In

contrast, DWA calculates the weight for each client dynamically at each round,

allowing the adaptation of weights while keeping the data distribution fixed.

3. The validation of the proposed methods is performed using three publicly anno-

tated datasets for pancreas segmentation. It is worth noting that these datasets
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exhibit some variations. One of the datasets comprises cases involving both pan-

creas and tumors, while the remaining two datasets exclusively include cases of

healthy pancreas. The effectiveness of the enhancements are compared in com-

parison to FedAvg and FedProx for pancreas and pancreatic tumor segmentation

tasks.

3.4 Federated learning

FL can be categorized into three main types based on the distribution characteristics of

data, as discussed by Yang et al. [109]: horizontal FL, vertical FL, and federated transfer

learning. In horizontal FL, datasets from each client share the same feature dimensions

but contain different examples. In vertical FL, datasets from each client share the same

examples but differ in their feature dimensions. In federated transfer learning, both

samples and feature dimensions are distinct for each client.

A standard FL system comprises a server and multiple clients, as illustrated in Fig. 3.1.

The server manages the training process and generates a global model, and the client

trains with local data to produce a local model. The server receives trained weights from

each client and aggregates them into the global model. The clients train with the local

dataset and send the weights to the server. The process of generating one global model

is counted as one round.

A typical FL workflow involves the following sequential steps:

1. Server setup: The process is initiated by launching the server. On the server side,

Google Remote Procedure Call (gRPC) communication ports and Secure Sockets

Layer (SSL) certificate are configured, and the allowable ranges for the minimum

and maximum numbers of clients are defined.

2. Client initialization: Each client is started using client-side configuration settings
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Figure 3.1: Illustration of FL in medical image analysis. The server only receives model
updates and the training data stays on the client sites privately.

for initialization and authenticated by sending a login request to the server.

3. Local training: The current global model is downloaded from the server to the

client and fine-tuned by local datasets. After fine-tuning, only the trained model is

sent from each client to the server and contributions from other clients are waited.

4. Model aggregation: Once the updated models are received from a predefined

minimum number of clients, they are aggregated into a new global model.

5. Global model update: The global model in the server is updated and one round

is finished.

6. Repeat: Return to Step 3 to initiate another round of FL.

The models shared among the server and clients are only weight parameters, pro-

tecting the privacy of local data. To establish trust between the server and clients, the
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server employs tokens throughout the process. Additionally, gRPC communication ports

and SSL certificate authority are consistently utilized in FL to enhance security.

3.5 FL model aggregation

In a FL round, each client receives the global model from the server and fine-tunes it on

their local dataset. Subsequently, the client shares a weight update with the server after

completing the local training. A standard FL aims to minimize an overall loss, which

can be defined as:

L = min
K∑
k

ηkLk, (3.1)

where the k-th client tries to optimize the local loss function Lk. The total number of

clients is K and the proportion that each client contributes to the global model update

is ηk ≥ 0, where
∑K

k ηk = 1.

This work aims to investigate an FL optimization method for the challenging task

of heterogeneous pancreas segmentation, where clients possess diverse types of images

and labels in their datasets.

In this section, firstly, two widely adopted FL methods, FedAvg [94] and FedProx

[107] are revisited. Then, two optimization methods are adapted from the multi-task

learning literature to the FL framework: DTP and DWA.

3.5.1 FedAvg

FedAvg is the most employed aggregation method in FL. In a standard FL scenario,

when the FL system comprises a substantial total of N clients, it employs the practice of

selecting only a subset of K clients (where K ≪ N) for global model updates in each

round. This selection is a strategy aimed at mitigating the significant communication

costs and effectively managing potential client dropouts [94].
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In the FedAvg scheme, the model aggregator conducts a weighted average of the

model parameters from each client. These weights can be calculated by considering

factors like the proportion of the size of training datasets held by each client or set

manually as needed. If the weights are not specified manually, the weight ηk of client

k ∈ K is typically a constant number that can be defined as:

ηk =
nk

n
, (3.2)

where nk is the number of local training data in client k. The total number of training

data in all clients can be derived as n =
∑K

k nk. In this way, clients with larger local

training datasets contribute more significantly to the updated global model.

3.5.2 FedProx

FedProx is an improved federated optimization algorithm proposed to address the chal-

lenges of learning from distributed and heterogeneous datasets [107], which is an ex-

tension of the standard FedAvg scheme. The FedProx algorithm adopts the aggregation

scheme and adds another learning constraint for each client, namely regularization.

The regularization term can help the local client model stay close to the server model.

The local client tries to minimize

L̂k = Lk +
µ

2
∥wk −w∥2 , (3.3)

where L̂k specifies the learning target of client k, and wk stands for the local model

parameters. The w is the model parameter from the FL global model, and ∥·∥2 indicates

the L2 normalization.

This learning constraint ensures the consistency of gradients from different clients.

A more consistent gradient can prevent model divergence of client models and improve
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the convergence of the global model. FedProx is designed to achieve a balance between

global model aggregation and client-specific model stability, particularly when dealing

with heterogeneous data.

3.5.3 Dynamic task prioritization

Dynamic Task Prioritization (DTP) allows for the adjustment of weights between differ-

ent tasks by estimating the Key Performance Index (KPI) κ [110] in multi-task learning.

KPI κ is a monotonic increasing function ranging from 0 to 1; a larger value of κ stands

for better performance of the specific task. DTP concentrates on challenging tasks by in-

creasing corresponding weights and lowering the weights of easier tasks. This technique

enables the handling of the imbalance problem associated with different task difficul-

ties. It ensures that the training process prioritizes challenging tasks while allocating

less attention to easier ones.

In standard FL, each client’s prioritization is uniform. In this work, the DTP is gen-

erated for FL by considering each client as a different task. This enables the dynamic

specification of weights for each client during the training process based on task diffi-

culty. Specifically, the KPI of client k could be defined as:

κk,i = Lr
k,i, (3.4)

where Lr
k,i indicates the loss value L in iteration i of round r. The weight of client k can

be defined as:

wk,i = −(1− κ̄k,i)
γ log κ̄k,i, (3.5)

where κ̄k,i is an exponential average, which is used to stabilize the weights between
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each batch. The exponential average κ̄k,i can be derived as:

κ̄k,i = (1− α)κk,i + α ¯κk,i−1, (3.6)

where α is a value between 0 and 1 and γ is a tunable hyperparameter.

3.5.4 Dynamic weight averaging

Dynamic Weight Averaging (DWA) tries to optimize the FL procedure by focusing on

server model aggregation instead of applying a constraint on the loss function. This

method is inspired by optimization approaches from classical multi-task learning meth-

ods [111]. In FL, finding a suitable balance to aggregate the model updates from hetero-

geneous clients is challenging. The weights of each client for global model aggregation

in FedAvg is based on the local iteration numbers as stated in 3.5.1. An additional con-

stant weight can be assigned for each client as well. However, specifying the proper

weight requires a large number of experiments and priority knowledge. For DWA, this

work investigates a method that defines the client weights on each round automatically.

The server learns to weigh each client based on the variation of loss values from the

previous round. The weight of client k in round r can be defined as:

λk,r =
ξ exp(ρk,r−1/T )∑K
i=1 exp(ρi,r−1/T )

, (3.7)

where ρk,r−1 ∈ (0,+∞) represents the dynamic proportion of the loss value L changes

in client k from round r − 2 to round r − 1, which can be defined as:

ρk,r−1 =
Lk,r−1

Lk,r−2

. (3.8)



3.6. EXPERIMENTS 55

To control the effectiveness of dynamic proportion, T is defined similarly to [111].

When T → +∞, the weight of each client tends to be ρk → 1. Here ξ ∈ N is introduced

to adjust the impact of weights in DWA. Different from the way to calculate loss value

Lk,r in [111], the local loss value of each iteration is averaged in each round as:

Lk,r =
1

J

J∑
j=1

Lk,j, (3.9)

where j is the local iteration number within the total J iterations. The averaging will

make the loss value of each round more stable. For the first round (r = 1), Lk,r−1 and

Lk,r−2 are initialized to 1, so that ρk,1 = 1 could be obtained.

3.6 Experiments

Experiments on three public datasets were conducted, evaluating standalone models

trained individually on each dataset, as well as the FL server model with various aggre-

gation methods.

3.6.1 Datasets

This experiment assumed one federated server for model aggregation and three clients

for local training. The server did not own any validation datum and only aggregated the

client’s model parameters. Each client owned a dataset from a different source. Three

publicly available datasets were employed for pancreas segmentation tasks. It is impor-

tant to note that one dataset was sourced from patients with pancreatic cancer, where

the segmentation targets included both pancreas and pancreatic tumor segmentation.

In contrast, the other two datasets were derived from cases with healthy pancreas, ex-

clusively intended for pancreas segmentation.
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Table 3.1: Data split details for each dataset.

Dataset Training Validation Testing Total
MSD [112] 165 58 58 281
TCIA [95] 48 17 17 82
Synapse [113] 18 6 6 30

The first dataset was the Task07 pancreas segmentation dataset from the Medical

Segmentation Decathlon (MSD) challenge1 [112]. This dataset contained 281 portal

venous phase CT scans with manual labels for the pancreas and pancreatic tumors (in-

traductal mucinous neoplasms, pancreatic neuroendocrine tumors, or Pancreatic Ductal

AdenoCarcinoma (PDAC)). The second dataset was The Cancer Imaging Archive (TCIA)

dataset from The National Institutes of Health Clinical Center 2 [95]. This dataset con-

tained 82 abdominal contrast-enhanced CT scans with manual segmentation labels for

the healthy pancreas. The third dataset was from the MICCAI Multi-Atlas Labeling Be-

yond the Cranial Vault challenge (Synapse)3 [113]. This dataset contained 30 portal

venous contrast phase CT scans with manual labels for 13 abdominal organs including

the pancreas. This dataset specifically retained the pancreas labels, while the labels for

the other 12 organs were discarded. The three datasets were independently shuffled

randomly, and split into training, validation, and testing sets with a ratio of 60%, 20%,

and 20%, respectively. Among the total 231 training cases, 165 cases had both pancreas

and pancreatic tumor labels. The specification of each subset is shown in Table 3.1. Vi-

sual examples of the three datasets are shown in Fig. 3.2.

1http://medicaldecathlon.com/ (Accessed on 2024/1/10)
2https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT/ (Accessed on

2024/1/10)
3https://www.synapse.org/#!Synapse:syn3193805/wiki/217785/ (Accessed on 2024/1/10)

http://medicaldecathlon.com/
https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT/
https://www.synapse.org/#!Synapse:syn3193805/wiki/217785/
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(a) MSD [112] (b) TCIA [95] (c) Synapse [113]

Figure 3.2: Visual examples of the datasets. The pancreas regions are shown in red,
while the pancreatic tumor region is shown in green.

3.6.2 Implementation details

NVIDIA Clara Train SDK 3.14 was used as the FL framework. As this was a collabora-

tive effort between Nagoya University and National Taiwan University, the experiments

were conducted using two types of deep learning machines. Specifically, for DWA, a

DGX-1 with 40 CPU cores, 512GB system memory, and 8 V100 32GB GPUs was utilized

at Nagoya University. Meanwhile, for DTP, a DGX station equipped with 20 CPU cores

and 256GB system memory was employed at National Taiwan University. During the FL

simulation, the server and associated clients were physically on the same machine but

running in individual Docker containers. This setup in Docker containers was consistent

across all experiments, ensuring that the results were not influenced by using different

machines. The server had no access to a GPU, while each client was assigned one

V100 32GB GPU. All volumetric CT images were resampled to isotropic spacing with

1.0 × 1.0 × 1.0 mm3. To ensure that the volumetric CT images were in the same orien-

tation, the voxel axes were arranged as close as possible to the RAS+ orientation. The

Hounsfield Unit (HU) intensity in the range [−200, 250] HU was rescaled and clipped

4https://docs.nvidia.com/clara/clara-train-archive/3.1/index.html/ (Accessed on
2024/1/10)

https://docs.nvidia.com/clara/clara-train-archive/3.1/index.html/
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into [−1, 1]. A network found by Coarse-to-Fine Architecture Search (C2FNAS) [114]

using a TensorFlow implementation was employed in all experiments. The training loss

function was the sum of Dice loss and cross-entropy. The Adam optimizer [81] with

cosine annealing learning rate scheduler was adopted with the initial learning rate of

5×10−4. The input patch size of this network was 96×96×96. The total round number

of FL was set to 60 with a local epoch number of 10. The minimum client number was

3. Despite running FL in simulation on public datasets, a percentile sharing protocol

was employed as a privacy-preserving measure [102]. Only 25% of the model updates

with the largest absolute values were shared, a measure taken to ensure the approach’s

applicability in real-world settings.

3.6.3 Results on pancreas and pancreatic tumor segmentation

The experimental results included the standalone models trained individually on each

dataset (MSD local, TCIA local, and Synapse local), as well as the FL global best models

for FedAvg, FedProx, DTP, and DWA. The global best models were determined using the

average client validation scores throughout each FL round. Table 3.2 compares the Dice

Similarity Coefficient (DSC) across all experiments with different hyperparameter set-

tings. For the standalone training model, the performance on other datasets was quite

unsatisfactory. Specifically, the local model trained on the Synapse dataset exhibited

poor performance on the other two datasets. FL global models have markedly better

generalizability than standalone models. The average DSC for each client was 56.9%

for FedAvg, and 58.1% for FedProx. Both DTP and DWA methods relied on precise

hyperparameter settings; DTP performed optimally with γ = 1, α = 0.5, and r = 1,

achieving an average DSC of 46.1%. DWA delivered its best performance when T = 2

and ξ = 2, achieving a DSC of 61.4%. FedAvg achieved the highest DSC on the MSD

dataset, but the performance was not ideal on the Synapse dataset. Meanwhile, the
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average DSC with FedProx improved over FedAvg. The TCIA and Synapse datasets have

shown the highest DSC with DWA (T = 2, ξ = 2). The average DSC with DWA was

4.5% and 2.9% higher than FedAvg and FedProx, respectively.

Axial visualizations of the segmentation results for standalone training are shown

in Fig. 3.3, while the segmentation results of FL are shown in Fig. 3.4. The standalone

models only showed acceptable performance on their respective datasets. Because the

TCIA and Synapse datasets exclusively contained healthy pancreas cases, their stan-

dalone models were incapable of segmenting pancreatic tumor regions. FL models

exhibited significantly better generalizability across all three datasets compared to stan-

dalone models. Both FedAvg and FedProx yielded similar performance, with acceptable

segmentation results on MSD and TCIA datasets but suboptimal results on the smaller

Synapse dataset. However, the DWA method showed a more stable performance on the

three different datasets.

3.6.4 Visualization of the weights

The dynamically chosen weights of each client, visualized using the DTP and DWA ap-

proaches, are presented in Fig. 3.5. The weights of clients with the TCIA dataset, MSD

dataset, and Synapse dataset are represented in red, blue, and green, respectively. DTP

maintained a consistent weight across the FL rounds, whereas DWA exhibited significant

weight fluctuations.

3.7 Discussion and conclusion

3.7.1 Discussion

In Table 3.2, FedAvg was the standard FL baseline to be compared with other methods.

Three local models were standalone training results for their corresponding datasets.
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(a) Ground truth

(b) MSD

(c) TCIA

(d) Synapse

Figure 3.3: Axial visualization of pancreas (red) and pancreatic tumor (green) segmen-
tation results obtained using standalone training models.
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(a) FedAvg

(b) FedProx

(c) DTP

(d) DWA

Figure 3.4: Axial visualization of pancreas (red) and pancreatic tumor (green) segmen-
tation results obtained from different FL model aggregation methods.
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Figure 3.5: Client’s weight chosen every round.
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The global model resulting from FedAvg performed well for the TCIA dataset, and for

the MSD pancreas dataset comparable to local models. Moreover, for the MSD tumor

and Synapse datasets, although the performance was not as high as corresponding lo-

cal models, there was still a significant improvement to other local models, indicating

the improved generalizability of the global models. The FedProx model showed sim-

ilar performance as the FedAvg model. For the MSD dataset, the average DSC of the

pancreas and pancreatic tumor dataset was slightly lower than the result of the FedAvg

model. However, the average DSC of the Synapse dataset was significantly higher than

the result of the FedAvg model. The performance of DTP models was generally lower

than the FedAvg baseline and DWA results. Nonetheless, in most settings, DTP models

still outperformed the local models. Furthermore, compared to the DWA results, the

performance on MSD tumors dataset was more consistent.

Both FedAvg and FedProx are commonly used in FL, and the experiments suggest

that both methods already provided a strong baseline performance even on heteroge-

neous datasets.

In DTP, the dynamic prioritization weight focused on the most challenging tasks by

adjusting the magnitude of the loss. However, each client only calculated the prioriti-

zation weights using local batch data. The lack of a global perspective of the training

can therefore limit the performance of DTP. Also, DTP scaled the magnitude of the loss,

disrupting the optimization and increasing the need for further hyperparameter tun-

ing. In contrast, with most DWA configurations, the Synapse dataset’s performance was

markedly higher than the FedAvg baseline. The results showed that DWA can outper-

form both FedAvg and FedProx on average with properly selected hyperparameters.
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3.7.2 Conclusion

This chapter investigated two multi-task optimization methods for FL in medical image

analysis with heterogeneous datasets: DTP and DWA. The application of both methods

was inspired by the analogy and similarity between FL and multi-task learning. Each

method was evaluated within an FL framework, and the performance of the global

model was compared with FedAvg and FedProx. The DSC of DTP was lower than Fe-

dAvg and FedProx, likely because of limited manual tuning. However, the global model

from DTP still outperformed the local models. DWA model aggregation method showed

significant improvement, especially on the Synapse client whose training data was rela-

tively smaller than the other two clients.





Chapter 4

Dilated pancreatic duct segmentation

4.1 Background

The research on the segmentation of pancreas and pancreatic tumor from patients diag-

nosed with pancreatic cancer was introduced in Chapter 3. This chapter concentrates on

individuals in the pre-pancreatic cancer stage. As introduced in Chapter 1, Pancreatic

Ductal AdenoCarcinoma (PDAC) which develops in the main pancreaticduct, accounts

for more than 90% of pancreatic cancer [59]. Detecting pancreatic cancer is challeng-

ing due to its mild symptoms, often going unnoticed until it reaches an advanced stage.

Several clinical studies suggest that dilatation of the main pancreatic duct indicates an

increased risk of pancreatic cancer [60–62]. Therefore, the appearance of pancreatic

duct dilatation may serve as a useful entry point for diagnosing pancreatic cancer. In

typical medical settings, Computed Tomography (CT) is the more commonly employed

diagnostic imaging technique for diagnosing pancreatic diseases compared to other di-

agnostic modalities, as highlighted in the literature [61]. However, the main duct of

a healthy pancreas is not apparent on the CT images, as seen in Fig. 4.1 (a). On the

other hand, if the main pancreatic duct is dilated, a dark line structure can be observed

67
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(a) Normal pancreas

(b) Pancreas with dilated pancreatic duct

Figure 4.1: Visual examples of axial CT slices of (a) normal pancreas and (b) pancreas
with dilated pancreatic duct. The orange contour surrounds the pancreas region, and
the pancreatic duct is indicated by blue.

inside the pancreas region as shown in Fig. 4.1 (b). Considering these facts, the auto-

mated segmentation of dilated pancreatic ducts from volumetric CT images is expected

to aid in the early detection of pancreatic cancer. A cautious follow-up may be needed

if the pancreatic duct can be segmented from a patient’s CT scan, as it could indicate

potential progression into PDAC in the future. Furthermore, the segmentation results
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can potentially be used as a clinical screening tool in Computer-Aided Diagnosis (CAD)

systems for pancreatic cancer in the future.

4.2 Related works

In the past few years, some studies have been devoted to the PDAC segmentation [115–

119] and its surrounding anatomy such as blood vessels potentially useful for evaluation

of treatment response [120]. However the automated segmentation of the pancreatic

duct itself was excluded, and only a few consider it as a discrete segmentation tar-

get [116, 117]. Among them, Zhou et al. [116] suggested an approach for segmenting

the pancreas, pancreatic tumor, and pancreatic duct using multi-phase CT. An investi-

gation on a dual-path network was conducted to efficiently integrate data from multi-

phase volumetric CT images. To make the most of the information collected from both

the arterial and venous phases of the volumetric CT images, Xia et al. [117] suggested a

CT alignment strategy and achieved good performance using the multiple phases of vol-

umetric CT images. Both studies investigated pancreatic duct segmentation methods on

a large number of precisely annotated venous and arterial phase volumetric CT images,

which are extremely difficult to obtain. All volumetric CT images were obtained from

patients who have already been diagnosed with PDAC. To the best of my knowledge,

this work is the first to address pancreatic duct segmentation in individuals without any

pre-existing pancreatic cancer.

4.3 Contribution

This chapter proposes an anatomical attention-based framework for dilated pancreatic

duct segmentation. The contributions are summarized as follows:
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1. Investigate the anatomical attention-based strategy to guide the FCN to focus on

the pancreas region during dilated pancreatic duct segmentation.

2. Employ the multi-scale aggregation strategy before the final prediction to fully

utilize the information produced at different scales.

3. Introduce the feature obtained from the tubular structure enhancement filter as

an additional input channel of FCN. This inclusion aids the FCN in capturing ad-

ditional connection information that may be lost during the convolution process.

4. Validate the proposed approach on a real-world dilated pancreatic duct dataset

from patients who have not been detected as suffering from PDAC yet and show

acceptable performance on dilated pancreatic duct segmentation using single-

phase volumetric CT images only.

4.4 Coarse-to-fine pancreatic duct segmentation

4.4.1 Overview

Since the pancreatic duct only takes up a small portion of the abdominal volumet-

ric CT image, it is particularly challenging to segment the target directly. This study

investigates a coarse-to-fine framework for dilated pancreatic duct segmentation. As

illustrated in Fig. 4.2, the framework mainly consists of two stages. In the first stage,

a coarse pancreas segmentation model is created using a publicly available pancreas

dataset. The details of coarse pancreas segmentation will be described in 4.4.2. The

dilated pancreatic duct dataset is applied to a pancreas segmentation model for predic-

tion. This process generates the Region Of Interest (ROI) crops of the pancreas region,

which are then utilized for fine pancreatic duct segmentation described in 4.4.3. In the
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Figure 4.2: Overall workflow of coarse-to-fine pancreatic duct segmentation.

Table 4.1: GPU memory requirements for different input sizes when using the standard
3D U-Net and V-Net. The batch size is set to 2 in all the following settings.

Network Input size Parameters # GPU memory usage
3D U-Net [43] 1283 19.1M ∼20.0 GB
V-Net [44] 1283 41.2M ∼5.8 GB
3D U-Net 1603 19.1M >24.0 GB
V-Net 1603 41.2M ∼9.7 GB

second stage, the dilated pancreatic duct segmentation model is trained exclusively us-

ing the ROI crops for fine prediction. The details of fine pancreatic duct segmentation

are described in 4.4.4.

4.4.2 Coarse pancreas segmentation

Here, a straightforward yet effective pancreatic mask segmentation model is developed

using a publicly accessible dataset [95] for coarse pancreas mask segmentation. U-

Net [42] is a ready-to-use FCN that has proven to be useful in the field of medical image

segmentation. 3D U-Net [43] and V-Net [44] are well-known 3D extensions for U-Net,

which show considerably good ability in handling 3D volumetric images instead of 2D

images. As shown in Table 4.1, the standard V-Net can hold larger input volumetric
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image sizes with less memory usage than the standard 3D U-Net. Due to this fact, V-Net

is used here as the baseline for the coarse pancreatic mask segmentation.

Scaling up the networks in depth, width, and resolution aspects has been shown to

be beneficial in boosting segmentation performance [121]. When it comes to the V-

Net, increasing the number of resolution levels of the network helps it to capture more

specific information from the input volumetric images. This is especially important in

medical image analysis, where the networks attempt to make the most of the limited

training data. Extending the input size of FCNs can also benefit the network by allowing

it to handle larger volumetric images and more detailed contexts. However, simply

scaling up a neural network is not always the best approach because larger networks are

more computationally expensive to train and may be more prone to overfitting. Model

complexity must be carefully balanced with computational efficiency and generalization

performance. Here, the standard V-Net is scaled up to discover the most efficient type

for coarse pancreas segmentation and then is utilized as a baseline for pancreatic duct

segmentation.

Different types of normalization techniques, including Batch Normalization (BN)

and Instance Normalization (IN) are further introduced. Deep Neural Networks (DNNs)

often use normalization to increase convergence stability, accelerate training speed, and

mitigate issues like vanishing and exploding gradients. In 3D U-Nets, BN is a commonly

used method [87]. It normalizes the activations of the previous layer by subtracting the

batch mean and dividing by the batch standard deviation. When training with 3D FCNs,

the number of batches is always constrained by the amount of available GPU memory.

Smaller batch sizes, though, might affect how well batch normalization works [88]. On

the other hand, IN is a technique that can be used to alleviate this issue. In contrast

to BN, which normalizes the activations across the batch, it normalizes the activations

for each unique sample in the batch. This lessens the reliance on batch size and boosts

the model’s robustness. In the context of 3D FCNs, IN can be particularly useful, as
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Figure 4.3: Example of ROI processing. Yellow ellipses represent the pancreas regions.
Blue cubes are the bounding boxes of the pancreas, and the green cube is the ROI crop
for the next step.

it allows for the use of larger batch sizes without requiring a significant increase in

GPU memory. This can lead to faster training times and improved model performance.

Furthermore, it has been shown to be effective in reducing the internal covariate shift,

which is the change in the distribution of the network activations due to the changing

parameters of the network. This can help to reduce the risk of overfitting and improve

the generalization performance of the model. Overall, IN is a useful technique for 3D

FCNs that can help to improve training performance and model accuracy, particularly

when dealing with limited GPU memory and small batch sizes.

4.4.3 Pancreatic ROI generation

A pancreatic duct dataset is adapted to the model trained in Step 1 to perform coarse

pancreas predictions. The predictions are interpolated back to the original size using the

nearest-neighborhood interpolation. The pixel numbers of all connected components

are counted in the pancreas prediction, and only the largest connected component is

kept. A 3D bounding box of the pancreas region can be calculated through pancreas

prediction. The ROI crops need to be larger than 128 × 128 × 128 voxels to match the

FCN input size. The details of generating ROI crops are shown in Fig. 4.3. The length,
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Figure 4.4: Proposed anatomical attention FCN architecture. Channel numbers are
listed above the boxes in blue. Convolution blocks are shown by blue boxes, and the
feature map sizes are indicated next to the boxes.

width, and height of the bounding box are defined as (x, y, z) assuming x, z < 128 and

y ≥ 128. The final length, width, and height of the ROI crop are (x′, y′, z′). Edges that

are shorter than 128 pixels (like x and z) are extended to 128 pixels to match with the

FCN input size. For edges longer than 128 pixels, 5 pixels are added on both sides to

keep the boundaries of the pancreas inside the ROI crops.

4.4.4 Fine pancreatic duct segmentation

Network architecture

For dilated pancreatic duct segmentation, this work proposes an anatomical attention-

based FCN as shown in Fig. 4.4. The FCN structure consists of an encoder part and a de-



4.4. COARSE-TO-FINE PANCREATIC DUCT SEGMENTATION 75

coder part with resolution levels of four. A training set S = {In,Ln,Mn,Pn;n = 1, ..., N}

is prepared, where In ∈ RH×W×D indicates the n-th volumetric CT image from the total

N training sets. The volumetric image size in height, width, and depth of the n-th train-

ing set is H ×W ×D pixels. Ln represents the corresponding ground-truth volumetric

image of the pancreatic duct region, and Mn represents the mask of the pancreas region,

which is obtained from the segmentation result in 4.4.2. Pn is the features generated

from the tubular structure enhancement filter. The input of the FCN is a two-channel

union of volumetric CT image In and the corresponding pancreatic duct enhancement

Pn. The coarse pancreas prediction mask Mn is employed to guide the anatomical at-

tention on each level for the decoder. In multi-level FCNs, the high-resolution features

are typically more focused on spatial information, whereas low-resolution features usu-

ally concentrate on the semantic information from the input. Combining features from

multiple scales enables the learning of additional complementary information, which

helps boost and refine the final prediction [122, 123]. Therefore, the proposed method

aggregates the feature maps from each level to produce the final segmentation similar

to the deep supervision [124]. The feature of each scale is upsampled to accommodate

the size of the final prediction. To achieve this aggregation, a 1×1×1 convolution is ap-

plied to reduce the channels of the feature map for each level to the class number. The

outputs from each level are subsequently scaled using bilinear interpolation to match

the resolution of the final prediction. These features are concatenated, and a 1 × 1 × 1

convolution is applied to transform the number of channels to the number of output

classes.

Anatomical attention

The attention mechanism is widely utilized in the medical image analysis field [97,

123, 125, 126], to capture useful information and ignore the useless context in FCNs.
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Figure 4.5: Process of computing the anatomical attention coefficient on the l-th level
of FCN. Colored boxes represent feature maps with their sizes indicated below them.

To effectively focus on the organ that the target object belongs to, here, a pancre-

atic attention-guided method is proposed inspired by the grid-attention method [97].

Instead of using the image spatial information obtained in the bottleneck, the pro-

posed method introduces pancreatic attention, which fully exploits the pancreas region’s

coarse prediction. Since the dilated pancreatic duct only makes up a small fraction of

the entire pancreas, it is preferred to focus on the whole pancreas rather than just the

target.

An attention coefficient Al
j ∈ [0, 1] can be computed for each level l of the FCN based

on grid-attention [97], where j is the j-th voxel of the input image. A coarse pancreas

segmentation result is used as a mask for the attention gate to provide spatial informa-

tion. The detailed procedure of calculating the attention coefficient vector Al on the

l-th level is shown in Fig. 4.5. The pancreas masks Mn are downsampled using adaptive

averaging pooling [127] to match the size of the bottleneck layer, and is followed by a

1× 1× 1 convolution to learn the pixel-wise focus regions gn. For the input feature

map, a 2× 2× 2 convolution with stride 2 is applied. The output is summed up with

the focus region gn over the channel dimension as:

g⃗n = ϕ(W⃗gZ(P⃗n) + bg). (4.1)
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An attention vector Al with values between 0 and 1 is produced by the sigmoid

activation function. Furthermore, upsampling operations are necessary to make the

attention vector’s size suitable for each level’s feature map. The output of anatomi-

cal attention is obtained by multiplying the input feature map xl and attention vector

elementally, as:

x̂l = Al · xl. (4.2)

Tubular structure enhancement channel

To fully capture the tubular structure of the pancreatic duct, an additional channel is

introduced as input to the FCN. For vessel segmentation, vessel enhancement algo-

rithms are often incorporated to increase the robustness of the segmentation perfor-

mance [128]. Most of these algorithms try to represent the curvature of the vessel-like

structure with the second derivatives of the volumetric image intensities. In the medical

image analysis field, the Frangi filter is commonly used as a filter to enhance vessels to

identify tubular structures and suppress other image features such as noise and non-

vessel structures [129]. It is a Hessian-based method proposed to strengthen the dif-

ferences in intensity in medical volumetric images with eigenvalues |λ1| ≤ |λ2| ≤ |λ3|,

where λ1, λ2, and λ3 are derived from the Hessian matrix to indicate the principal cur-

vature of the intensity profile at each voxel. An ideal tubular structure in 3D voxel has

|λ1| ≈ 0, |λ1| ≪ |λ2|, and λ2 ≈ λ3. The Frangi filter is formulated as:

F =


(
1− exp

(
− R2

a

2α2

))
exp

(
− R2

b

2β2

)(
1− exp

(
− S2

2γ2

))
if λ2 ≤ 0 and λ3 ≤ 0,

0 otherwise,
(4.3)

where α = 0.5 and β = 0.5 are fixed by experience to control the sensitivity of the

filter, and γ uses half of the maximum Hessian norm of the intensity range [130]. Ra

is used to distinguish the tubular-like and the plate-like structure, Rb to measure the
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blob-like structure, and S indicates the low contrast backgrounds. These patterns can

be formulated as:

Ra =
|λ2|
|λ3|

, Rb =
|λ1|√
|λ2λ3|

, S =
√

λ2
1 + λ2

2 + λ2
3. (4.4)

For post-processing, pancreatic mask segmentation is utilized to eliminate the values

outside the pancreas areas. Additionally, to better adapt to the DNN, min-max normal-

ization is applied to convert the remaining filter output into the range of 0 to 1.

Multi-scale aggregation

Features from different scales have different influences on the final prediction. Features

from low resolution are expected to focus on the semantic information, while those

from high resolution focus more on spatial information. Aggregation of features has

proven to show remarkable performance in segmentation [122, 123, 131]. Thus, the

attention vectors from each level are aggregated for final segmentation. The proposed

method follows the attention aggregation introduced in [125]. Feature on each scale

is indicated as F⃗j, where {j = 1, 2, 3} indicates the j-th level of the network, except

the bottleneck layer. The final prediction of each scale j can be obtained by using an

1 × 1 × 1 convolution to transform the number of channels to the number of output

classes K. Due to the resolution difference among feature maps at each scale, bilinear

interpolation is used to upsample the feature map to ⃗̂
Fj. The output F⃗ of the network

is formulated as:

F⃗ = W⃗f

([
⃗̂
F1,

⃗̂
F2,

⃗̂
F3

])
, (4.5)

where W⃗f is an 1×1×1 final convolution to reduce the channels of concatenated feature

map to the class number K.
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4.5 Experiments

The standard Attention U-Net [97] is compared with the proposed FCNs, including the

Pancreatic-anatomical Attention Network (PANet), PANet with Multi-scale aggregation

(PAMNet), and PAMNet utilizing tubular structure enhancement as multi-channel input.

The Multi-Channel input evaluation includes both non-normalized (MCPAMNet) and

Normalized (NMCPAMNet) variations.

4.5.1 Datasets

Manual data annotation of dilated pancreatic duct

A pancreatic duct dilation dataset is generated from scratch using Pluto [132], a plat-

form designed for CAD of medical images. Contrast-enhanced CT images were taken

for patients with over 3 mm pancreatic duct dilation on an abdominal ultrasound scan.

It is important to note that none of the patients had been diagnosed with PDAC. A me-

dian filter with a factor of 3 voxels was applied to smooth the volumetric CT images.

Then, the display window level as well as the window width were manually adjusted,

and the Hounsfield Unit (HU) intensity range of the pancreatic duct dilation region was

observed. The region growing algorithm [133] was employed and then the starting

voxel was chosen from the volumetric CT image. As the HU intensity of pancreatic duct

dilation regions was similar to the surrounding tissues, falsely connected components

were manually erased slice by slice. After that, connected-component labeling with 26-

connected neighborhood connectivity was adopted to set labels for each component.

Finally, label numbers for the pancreatic duct were selected and threshold processing

was applied to remove unnecessary labels. After these semi-automatic operations, the

annotations were manually checked slice by slice.
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Specifications

Two datasets were used in this experiment. For coarse pancreas segmentation, a public

pancreas annotation dataset [95] from The Cancer Imaging Archive (TCIA) was used

which includes 82 contrast-enhanced portal venous phase abdomen 3D volumetric CT

images. Each volumetric image contained 181–466 slices with a size of 512× 512 pix-

els per slice. The slice thickness was between 0.5–1.0 mm. The whole set was split into

training, validation, and test sets with 46, 16, and 18 volumetric images, respectively.

For dilated pancreatic duct segmentation, a dataset was generated from scratch, that

consisted of 30 abdominal contrast-enhanced portal venous phase 3D volumetric CT

images containing 192–887 slices with a size of 512× 512 pixels per slice. The voxel

dimensions of the volumetric CT images were [0.59–0.75, 0.59–0.75, 0.30–1.0] mm.

The dilated pancreatic duct data were split into five folds equally with each fold con-

taining six volumetric CT images. Each fold was set as the test set and cross-validation

was performed for the remaining four folds.

The intensity of all volumetric images was rescaled to [−200, 200] HU and then nor-

malized to [0, 1]. The resolutions of each volume CT image were resampled into 1 mm

isotropically. Random cropping was applied alternately to generate sub-volumes with a

mini-batch size of two. Both the input and output sizes were 128× 128× 128 voxels. A

combination of the Dice loss function and Focal loss function with λ = 0.7 were intro-

duced and Adam optimization [81] was used with an initial learning rate of 1e−4. All

experiments were performed on an NVIDIA Quadro P6000 GPU with 24GB of memory.

The implementation of FCNs was based on PyTorch [134].

4.5.2 Evaluation metrics

The segmentation performance of the dilated pancreatic duct was evaluated using four

types of metrics, including Dice Similarity Coefficient (DSC), Sensitivity, Normalized
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Surface Distance (NSD), and 95% percentile of the Hausdorff Distance (HD95).

DSC calculates the overlap percentage between the segmentation result and the

ground truth which is defined as:

DSC =
2× TP

2× TP + FP + FN
, (4.6)

where TP, FP, and FN are the voxel numbers of true-positive, false-positive, and false-

negative voxels. The value range of DSC is [0, 1], where DSC = 1 represents the

optimum segmentation.

Sensitivity quantifies TP’s contribution to the overall accurate segmentation as:

Sensitivity =
TP

TP + FN
. (4.7)

NSD is another distance-based metric that is used to calculate the degree of overlap

there is between two borders as:

NSD =
|Bg ∩Rτ

s |+ |Bs ∩Rτ
g |

|Bg|+ |Bs|
, (4.8)

where Bg and Bs indicate the boundary of the ground truth g and the predicted results

p. Rτ
g is the border regions of the ground truth, and Rτ

p is the border regions of the

prediction result under the maximum tolerated distance τ . The maximum tolerated

distance represents the threshold of uncertainties and acceptable deviations between

ground truth and prediction result boundaries, which is set to 1 here. The value range

of NSD is [0, 1], where NSD = 1 representes that the boundaries are fully overlapped.

HD is the most frequently used distance-based metric for segmentation tasks. It mea-

sures the distance between two point sets, that is the maximum value of the minimum
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Table 4.2: Ablation study to show the effectiveness of scaling the V-Net in the network
level, numbers of initial filter, and input size for pancreatic mask segmentation. The
best DSC is shown in bold.

Level # Initial filter # Parameters # Input size Normalization DSC [%]

4 16 9.9M
1283 BN 53.2
1603 BN 59.4
1603 IN 74.8

5 16 41.2M
1283 BN 50.9
1603 BN 67.8
1603 IN 75.7

6 16 166.2M
1283 BN 39.9
1603 BN 69.3
1603 IN 78.3

6 32 664.7M
1283 BN 44.1
1603 BN 63.3
1603 IN 78.8

distance from a point in the ground truth to the prediction result as:

HD = max{ sup
pg∈Sg

inf
ps∈Ss

∥pg, ps∥, sup
ps∈Ss

inf
pg∈Sg

∥pg, ps∥}, (4.9)

where the voxel on the surface of the ground truth Sg and the segmentation Ss are

denoted by pg and ps, respectively. HD95 ignores the impact of small subsets of the out-

liers by only computing the 95% percentile values rather than the maximum distances

of all points between ground-truth and segmentation results. Here, HD95 was used to

evaluate the segmentation performance.

4.5.3 Experimental results on coarse pancreas segmentation

Table 4.2 shows the quantitative evaluation result of the coarse pancreatic mask seg-

mentation. V-Net was used as the baseline and the network was scaled up in depth,

width, and resolution, which correspond to the level number, filter number, and input

size, respectively. Scaling up the V-Net positively influenced pancreas segmentation. In
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this experiment, both BN and IN were used, with IN being more beneficial for pancreas

segmentation.

4.5.4 Experimental results on dilated pancreatic duct segmentation

Table 4.3 shows an ablation study of the proposed FCNs on the dilated pancreatic duct

segmentation. In the context of pancreatic duct segmentation, the baseline model was

the Attention U-Net, with 3D U-Net serving as the backbone FCN. Recognizing V-Net’s

strong performance in pancreas segmentation, additional experiments were conducted

using V-Net as the backbone. Furthermore, evaluations of different FCNs were con-

ducted with both IN and BN to identify the optimal combination. The best results were

obtained by NMCPAMNet using the V-Net as the FCN backbone and IN as the normaliza-

tion operation. Fig. 4.6 shows segmentation examples of coronal slice and 3D rendering

in each method with U-Net and BN as the backbone. Fig. 4.7 presents a segmentation

comparison using NMCPAMNet with four different backbone combinations: U-Net+BN,

U-Net+IN, V-Net+BN, and V-Net+IN. Fig. 4.8 shows a comparison of the heatmap de-

piction of attention coefficients using Attention U-Net and the proposed anatomical

attention.

The proposed PANet outperformed the standard Attention U-Net [97]. The multiple

levels of FCN were aggregated for the final output in MPANet, and the tubular structure

enhancement as an additional input channel was incorporated in MCPAMNet. To further

boost the efficiency of tubular structure enhancement, the min-max normalization was

adopted on the features in NMCPAMNet.

Table 4.4 provides additional comparisons between the proposed method and other

reported pancreatic duct segmentation strategies. Both studies [116] and [117] were

carried out on PDAC patients, whose pancreatic ducts were substantially larger than

normal cases. Furthermore, these studies used a dataset of 239 cases, which was much



84 CHAPTER 4. DILATED PANCREATIC DUCT SEGMENTATION
Ta

bl
e

4.
3:

A
bl

at
io

n
st

ud
y

of
us

in
g

th
e

pr
op

os
ed

FC
N

s
on

th
e

di
la

te
d

pa
nc

re
at

ic
du

ct
se

gm
en

ta
ti

on
.

Th
e

be
st

va
lu

e
fo

r
ea

ch
m

et
ri

c
is

sh
ow

n
in

bo
ld

.

N
et

w
or

k
B

ac
kb

on
e

D
SC

[%
](
↑

)
Se

ns
it

iv
it

y
[%

](
↑

)
N

SD
[%

](
↑

)
H

D
95

(↓
)

U
-N

et
+

B
N

50
.7
±

17
.0

56
.8
±

22
.3

53
.1
±

19
.4

89
.5
±

43
.6

A
tt

en
ti

on
U

-N
et

U
-N

et
+

IN
52

.5
±

16
.5

62
.9
±

.2
1.

8
59

.7
±

.2
0.

2
83

.5
±

45
.5

U
-N

et
+

B
N

52
.9
±

16
.1

58
.3
±

21
.8

59
.9
±

20
.2

67
.8
±

41
.1

U
-N

et
+

IN
54

.2
±

13
.2

66
.4
±

17
.2

63
.1
±

15
.9

72
.1
±

38
.7

V-
N

et
+

B
N

52
.6
±

17
.0

62
.3
±

22
.2

60
.8
±

19
.9

72
.0
±

42
.6

PA
N

et

V-
N

et
+

IN
51

.1
±

14
.5

64
.9
±

17
.9

63
.0
±

14
.5

86
.6
±

36
.3

U
-N

et
+

B
N

53
.4
±

11
.4

66
.1
±

14
.1

63
.2
±

14
.5

75
.5
±

39
.8

U
-N

et
+

IN
52

.1
±

13
.3

67
.5
±

14
.9

63
.7
±

15
.4

77
.2
±

46
.9

V-
N

et
+

B
N

52
.7
±

14
.4

62
.3
±

19
.9

60
.5
±

17
.0

64
.1
±

45
.1

PA
M

N
et

V-
N

et
+

IN
53

.8
±

14
.1

60
.7
±

17
.4

60
.8
±

18
.4

66
.9
±

44
.9

U
-N

et
+

B
N

53
.3
±

13
.1

65
.2
±

17
.5

59
.9
±

14
.0

63
.0
±

42
.4

U
-N

et
+

IN
53

.3
±

10
.7

60
.3
±

18
.6

61
.9
±

12
.1

63
.6
±

45
.2

V-
N

et
+

B
N

53
.5
±

13
.6

65
.5
±

17
.7

60
.8
±

16
.2

66
.9
±

43
.0

M
C

PA
M

N
et

V-
N

et
+

IN
55

.5
±

11
.3

62
.5
±

18
.2

63
.0
±

14
.2

60
.4
±

46
.4

U
-N

et
+

B
N

55
.2
±

11
.9

64
.4
±

17
.2

63
.2
±

12
.2

68
.4
±

44
.1

U
-N

et
+

IN
55

.4
±

12
.0

64
.2
±

15
.8

63
.7
±

13
.4

62
.5
±

45
.6

V-
N

et
+

B
N

55
.4
±

13
.0

62
.8
±

19
.4

63
.1
±

14
.7

65
.0
±

44
.7

N
M

C
PA

M
N

et

V-
N

et
+

IN
55

.7
±

12
.5

64
.3
±

19
.3

63
.0
±

15
.7

56
.4
±

40
.3



4.5. EXPERIMENTS 85

(a) Ground truth (b) Attention U-Net

(c) PANet (d) PAMNet

(e) MCPAMNet (f) NMCPAMNet-UBN

Figure 4.6: Comparison of pancreatic duct segmentation results. Segmentation failure
is indicated by a blue arrow. The upper image represents the axial slice, while the lower
one depicts the 3D rendering.
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(a) U-Net+BN (b) U-Net+IN

(c) V-Net+BN (d) V-Net+IN

Figure 4.7: Comparison of pancreatic duct segmentation result using NMCPAMNet ar-
chitecture with four different backbone settings. Segmentation failures are indicated by
a blue arrow. The ground truth of this case is shown in Fig. 4.6 (a). The upper image
represents the axial slice, while the lower one depicts the 3D rendering.
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(a) CT (b) Attention U-Net [97] (c) Proposed anatomical at-

tention

Figure 4.8: Heatmap visualization of attention coefficients. The pancreatic duct is indi-
cated by the red arrow inside the pancreas.

Table 4.4: Comparison to previous pancreatic duct segmentation methods. Other pan-
creatic duct region segmentation results using single or multiple phase volumetric CT
images are included. The proposed methods are highlighted in bold. The methods
marked with an ⋆ were also proposed by the author.

Methods Phase # of data DSC (%)
3D-UNet-single-phase [116] Arterial 239 PDAC 38.35± 28.98
3D-UNet-single-phase [116] Venous 239 PDAC 40.25± 27.89
3D-ResDSN-single-phase[116] Arterial 239 PDAC 47.04± 26.42
3D-ResDSN-single-phase [116] Venous 239 PDAC 49.81± 26.23
Cascade SE-Dense U-net [135]⋆ Venous 30 normal 49.87± 22.54
MPA-Net[136]⋆ Venous 30 normal 54.16± 12.60
Proposed method Venous 30 normal 55.70± 12.50
3D-UNet-multi-phase (fusion) [116]

Multiple

239 PDAC 39.06± 27.33
3D-UNet-multi-phase-HPN [116] 239 PDAC 44.93± 24.88
3D-ResDSN-multi-phase (fusion) [116] 239 PDAC 48.49± 26.37
3D-ResDSN-multi-HPN [116] 239 PDAC 56.77± 23.33
Multi-phase Alignment Ensemble [117] 239 PDAC 64.38± 29.67

greater than the 30 examples used here. Although it is difficult to directly compare stud-

ies using different datasets, the proposed method yielded the highest DSC on pancreatic

duct segmentation on a single-phase volumetric CT image.



88 CHAPTER 4. DILATED PANCREATIC DUCT SEGMENTATION

4.6 Discussion and Conclusion

4.6.1 Discussion

This work proposed an anatomical attention-based strategy for dilated pancreatic duct

segmentation from volumetric CT images. Because the pancreatic duct only takes up a

minor percentage of the total volumetric CT image, this work started by localizing the

pancreas area, as inspired by clinical experience [137]. A basic yet efficient model for

coarse pancreas segmentation was employed using the publicly accessible TCIA pan-

creas dataset. Then, pancreatic segmentation was concentrated based on the pancreas

ROI obtained in the previous step. Anatomical attention was introduced to force the

FCN to focus on the pancreas anatomy area and disregard other portions in order to

improve the pancreatic duct segmentation performance. Furthermore, tubular struc-

ture enhancement was incorporated as an extra FCN input channel to boost the tubular

feature of the pancreatic duct.

Table 4.2 showed the ablation study of scaling the V-Net in depth, width and resolu-

tion aspects for pancreas segmentation. For the pancreatic mask segmentation, increas-

ing the input size and number of levels of the V-Net were both beneficial and efficient.

On the other hand, increasing the initial filter number helped slightly but significantly

raised the parameter numbers of FCN. Thus, we can say that it is necessary to strike a

balance between segmentation performance and model complexity. For normalization,

IN was better suited for pancreatic segmentation using V-Net than BN. When applying IN

on V-Net, the DSC for pancreatic segmentation increased considerably at each network

scale. This improvement is significant because the performance of BN relies heavily

on batch size, which is constrained by computer power. Due to these constraints, 3D

segmentation tasks often use a relatively small batch size during training, which was

specifically set to 2 in this chapter.
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For pancreatic duct segmentation, the segmentation results were evaluated in four

different aspects, including DSC, sensitivity, NSD, and HD95. These four metrics mea-

sured the overlap, sensitivity, border accuracy, and maximum deviation of the segmen-

tation result. An ablation study using the proposed FCNs on the dilated pancreatic duct

segmentation was shown in Table 4.3. For pancreatic duct segmentation, focus on the

entire pancreas anatomy improved the segmentation compared to the original Attention

U-Net [97]. In medical image analysis, it is not always optimal to focus on a particu-

lar target. Narrowing the FCN focus would result in a lower fault tolerance during

training when the target region is quite small. This hypothesis was further affirmed by

the visualization of attention coefficients in Fig. 4.8. Some pancreatic duct parts were

outside of the focus by standard attention U-Net. The segmentation performance was

also enhanced by multiscale aggregation of FCN, which made full use of the knowl-

edge acquired at each level. The DSC on pancreatic duct segmentation was significantly

enhanced by introducing the normalized tubular structure enhancement as a second

input channel. The additional channel helped FCN understand the duct’s tubular struc-

ture better. The proposed NMCPAMNet with V-Net baseline and IN demonstrated the

most favorable performance across all four metrics. It achieved the highest scores in

DSC and the lowest in HD95. While it may not have shown the highest accuracy in

terms of sensitivity and NSD, its performance remained comparable to other methods.

Segmentation examples of 3D rendering and coronal slice segmentation were shown in

Fig. 4.6 and Fig. 4.7. It was shown that tubular structure enhancement could improve

the connection of the pancreatic duct segmentation. The pancreatic duct segmented by

NMCPAMNet using V-Net+IN as the backbone exhibited smoother duct segmentation

with less exceeding segmentations.

The proposed method was also compared with existing pancreatic duct segmenta-

tion strategies in Table 4.4. When compared to other reported results of pancreatic

duct segmentation using single-phase volumetric CT images only, the proposed method
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outperformed all existing strategies, despite the fact that only 30 cases were employed

instead of the larger dataset’s 239 cases. Incorporating multiple-phase volumetric CT

images could provide additional features and potentially improve the accuracy of pan-

creatic duct segmentation. However, obtaining paired annotated multi-phase pancreatic

duct dataset is quite difficult.

4.6.2 Conclusion

In this chapter, an anatomical attention-based strategy was investigated for the seg-

mentation of the dilated pancreatic duct from volumetric CT images. The proposed

strategy was motivated by clinical experience; when radiologists look for the pancreatic

duct from volumetric CT images, they first try to locate the pancreas area. Thus, an

attention mechanism that enabled to focus on the entire pancreas anatomy rather than

just the target was proposed. To fully capture the vessel-like structure of the pancreatic

duct, a tubular structure enhancement was employed as an additional input channel for

the FCN. The proposed FCNs were evaluated using four different assessment measures,

which demonstrated their effectiveness on dilated pancreatic duct segmentation. Upon

comparing the results with other strategies that relied on single-phase volumetric CT

images, the proposed method exhibited significant superiority. The proposed technique

might be applied to other tube-like structure segmentation tasks for other anatomies in

the future. Nevertheless, the duct component still has some exceeding and improper

segmentation with the current proposed method. For the use of PDAC diagnosis in

real-world settings, the overall accuracy still needs to be improved to capture the full

anatomy of the duct. This remains as future work.



Chapter 5

Data circulation in CAD for pancreatic

cancer

5.1 Relation with real-world data circulation

This section explores how the research presented in this thesis achieves the realization

of Real-World Data Circulation (RWDC). A diagram depicting the relationship between

this research and RWDC is presented in Fig. 5.1. This thesis includes two types of

data circulations. One follows the traditional RWDC structure, similar to the content

proposed in [76]. The other introduces a new RWDC called Pancreatic RWDC devel-

oped within this thesis. This thesis addressed three segmentation topics focused on the

pancreas and its associated structures using volumetric Computed Tomography (CT)

images. The promising segmentation results pave the way for future applications in

Computer-Aided Diagnosis (CAD) systems for pancreatic cancer. As discussed in Chap-

ter 1, pancreatic cancer stands as one of the deadliest cancers, claiming numerous lives

each year. The development of a CAD system capable of aiding in the early detection

of pancreatic tumors is a crucial objective. Semantic segmentation of anatomical struc-

91



92 CHAPTER 5. DATA CIRCULATION IN CAD FOR PANCREATIC CANCER

Data acquisition Data analysis Implementation

Healthy pancreas data

Pancreatic tumor data

Pancreatic duct data

CT scanner

Manual annotation

Investigate 

segmentation methods

Pancreas segmentation

Segmentation models

Guide the pancreatic attention

Enhance the data diversity 

Automated annotation

Figure 5.1: Relation of this research and RWDC in CAD for pancreatic cancer.

tures in medical images plays a pivotal role in the development of CAD systems. The

pursuit of high-accuracy segmentation results is paramount in advancing the develop-

ment of CAD systems.

5.1.1 Traditional RWDC

The data circulation process commences with data acquisition. This thesis primarily

involves processing volumetric CT images from three patient types: healthy pancreas,

pancreas with pancreatic tumor, and pancreas with dilated pancreatic duct. Volumetric

CT images of healthy pancreas are obtained from individuals undergoing gastric surgery,

where the pancreatic regions exhibit normal conditions. Volumetric CT images of the

pancreas with pancreatic tumors are sourced from patients who have already been diag-

nosed with pancreatic cancer. Additionally, volumetric CT images of the pancreas with

pancreatic duct dilation are obtained from patients who exhibit symptoms of pancreatic

duct dilation but have not been diagnosed with pancreatic cancer. For segmentation
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tasks, the annotation of the segmentation target is indispensable. In the medical im-

age analysis field, the acquisition of data is notably expensive compared to other fields.

This is primarily because only well-educated experts can generate annotations accu-

rately. Furthermore, data diversity can introduce an imbalance in the implemented

model. This research places a priority on obtaining datasets that are not only large and

diverse but also accurate. It is crucial to emphasize that all datasets used in this study

have undergone ethical approval, and comprehensive informed consent was obtained

from every individual participant involved in the research.

For the following analysis phase, three distinct segmentation topics were introduced,

each focusing on different types of volumetric CT images. The primary goal was to ex-

plore accurate and efficient segmentation approaches for each specific task. The first

task was to perform segmentation of the pancreas and its multiple associated organs on

healthy pancreas volumetric CT images. This topic yielded two segmentation methods

to improve the accuracy of pancreas segmentation. The outcomes of this task could

serve as a fundamental groundwork for the subsequent two tasks. The second task was

centered on the segmentation of the pancreas and pancreatic tumors from volumetric

CT images obtained from patients diagnosed with pancreatic cancer. Due to the var-

ied appearances of pancreatic tumors in volumetric CT images, a considerable amount

of training data is essential to obtain a segmentation model that possesses high gener-

alizability. Addressing this challenge, the Federated Learning (FL) technique was em-

ployed for this task. Furthermore, a novel model aggregation method was introduced

to enhance the accuracy of pancreatic tumor segmentation. The third task centered

on the segmentation of dilated pancreatic ducts from volumetric CT images obtained

from patients without pancreatic cancer. Due to the small size of the pancreatic duct

in abdominal volumetric CT images, special attention was needed to guide the training

of Fully Convolutional Networks (FCNs). The region of interest, crucial for this task,

was generated through the implementation of the first task. Furthermore, vesselness
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enhancement was incorporated within the FCNs to improve the connectivity conditions

of the pancreatic duct. The results of these analyses could be utilized to implement

CAD systems, holding the potential for application in real clinical scenarios. The seg-

mentation implementations have the capacity to enhance data acquisition processes. As

previously mentioned, annotation is a costly process in the medical image analysis field.

A highly accurate implementation model can play a crucial role in automatically gen-

erating annotations, offering a more efficient and cost-effective solution. This process

constitutes a part of the data circulation.

5.1.2 Pancreatic RWDC

In addition to the traditional RWDC introduced in 5.1.1, this section introduces an ad-

ditional aspect of data circulation which is related to the pancreas. This thesis analyzes

three different types of volumetric CT images, including the healthy pancreas data and

pancreatic pathology data. The segmentation of a healthy pancreas and its multiple

associated organs could serve as a foundation for analyzing pancreatic pathology data.

This proves especially crucial in working on pancreatic pathology, where the initial step

is to identify the pancreas region from the abdominal volumetric CT images. In the

segmentation of pancreatic tumors, the pancreas itself is also a segmentation target.

Utilizing cases with a healthy pancreas can also contribute to refining the segmentation

of the pancreas and pancreatic tumors. In the segmentation of dilated pancreatic ducts,

targeting the pancreatic duct in abdominal volumetric CT images proves challenging

due to its small voxel size. The segmentation of the pancreas serves as a guide for di-

recting attention to the pancreas in this task. This distinction makes this data circulation

system different from traditional RWDC approaches [76].
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5.2 Societal value

In this thesis, segmentation methods for three distinct topics were introduced, with a

focus on the pancreas as the target for CAD system development. The reason behind

concentrating on the pancreas lied in the fact that pancreatic cancer has the highest

mortality rate among cancers. The low survival rate of pancreatic cancer is attributed

to limited symptoms, leading to late-stage detection. Early detection of pancreatic can-

cer is critical, and CT is widely used for its diagnosis. The accurate segmentation of

the pancreas and pancreatic tumor can be leveraged in a CAD system to aid in the de-

tection of pancreatic cancer. However, even with detection, the challenge lies in the

difficulty of resection. How can we identify the signs of pancreatic cancer earlier? This

thesis focused on the dilated pancreatic duct as an entry point. Clinical studies indicate

that dilation of the main pancreatic duct may signal a high risk for pancreatic cancer as

demonstrated in Chapter 4. If the dilated regions of the pancreatic duct are obtained

easily from volumetric CT images after a comprehensive medical examination, care-

ful follow-up could be taken. This has the potential to lead to the early detection of

pancreatic cancer. The segmentation results can also be utilized in virtual endoscopy

of the pancreas, which is expected to be a new method for intraductal papillary muci-

nous neoplasm diagnosis [138]. To the best of my knowledge, the method presented in

this thesis is the first one on the segmentation of the dilated pancreatic duct from pa-

tients who have not been diagnosed with pancreatic cancer. Additionally, the Pancreatic

RWDC could contribute to future data acquisition processes, facilitating the acquisition

of more annotated data. This, in turn, has the potential to significantly reduce the cost

of pancreas-related segmentation studies.





Chapter 6

Summary and future direction

6.1 Summary

This thesis presented research on pancreas and pancreatic-related segmentation meth-

ods from volumetric Computed Tomography (CT) images. Accurate and efficient au-

tomated segmentation is essential for the development of Computer-Aided Diagnosis

(CAD) systems.

In Chapter 1, the aim of this study was introduced; propose segmentation methods

for the pancreas and its related structures from volumetric CT images. CT stands out

as the predominant diagnostic modality in clinical practice for non-invasive abdominal

diagnosis, and its evolution has led to the widespread adoption of 3D CT, offering more

valuable information compared to the previous reliance on 2D imaging. However, the

significant reading time required is a notable challenge for radiologists. Thus, the de-

velopment of CAD systems is desired to assist radiologists and enhance interpretation

accuracy simultaneously. Segmentation is a fundamental task in CAD system develop-

ment, and there is a high demand for accurate segmentation results. Therefore, the

main focus of this thesis was on the methodology of semantic segmentation from vol-
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umetric CT images. In the abdominal region, the pancreas stands out as one of the

most challenging organs to segment, mainly because of its low contrast and significant

individual variation. Additionally, considering that pancreatic cancer has the lowest

five-year survival rate and is acknowledged as the most lethal cancer compared to oth-

ers, the pancreas was the primary segmentation target of this work. Thus, the goal of

this thesis was to introduce segmentation approaches for the pancreas and its related

regions, aiming to aid in pancreatic cancer diagnosis in clinical settings.

The work can be primarily categorized into three main targets: (1) Segmentation of

the pancreas within the context of multiple abdominal organs, (2) Segmentation of the

pancreas and pancreatic tumors, and (3) Segmentation of the pancreatic duct. While

segmenting large objects like abdominal organs is relatively straightforward, dealing

with smaller tissues, such as the pancreatic duct, presents a significant challenge. The

presented research progressed from addressing simpler tasks to tackling more intricate

aspects of segmentation.

In Chapter 2, two distinct methods for segmenting a healthy pancreas and its mul-

tiple associated abdominal organs and tissues were proposed. The segmentation of

the pancreas presents unique challenges due to its relatively small size and indistinct

boundary, making it more difficult than segmenting larger organs. In real clinical prac-

tice, identifying and segmenting the pancreas is facilitated by considering the relative

positions and anatomical connections between organs. Therefore, this work included

its multiple associated abdominal organs as the segmentation targets. The first method

was based on improving the traditional Fully Convolutional Network (FCN). A spatial-

embedded FCN was introduced to enhance the segmentation accuracy, especially for

organs with small voxel sizes. Additionally, improved data augmentation was imple-

mented, including original non-rigid data augmentation and gamma correction, to mit-

igate overfitting during training. While data augmentation may offer limited benefits for

datasets from the same hospital and scanner across most organs, notable improvement
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was observed in pancreas segmentation. In the second method, an efficient application

of Automated Machine Learning (AutoML) was introduced, simplifying the process of

developing multi-organ segmentation from volumetric CT images. To enhance the Au-

toML process, proxy data were leveraged that effectively represented the entire training

dataset for network structure and hyperparameter searching instead of randomly se-

lecting data. Experiments revealed that the use of proxy data had a positive impact on

boosting the final AutoML model’s performance.

In Chapter 3, a framework for pancreas and pancreatic tumor segmentation utiliz-

ing Federated Learning (FL) was introduced. In clinical situations, the development

of highly accurate and generalizable pancreas and corresponding tumor segmenta-

tion models is strongly encouraged as a prerequisite for CAD systems. While achiev-

ing high-performance models in the clinical domain demands extensive, diverse, and

high-quality datasets, collecting datasets from multiple resources encounters various

restrictions in the medical image analysis field. FL emerged as an innovative solution

to address this challenge. When working with training data from various resources, the

challenge of heterogeneity can significantly affect the model’s performance upon aggre-

gation at the server. Additionally, the imbalance in the number of samples per client

results in clients with smaller datasets contributing less to the global model. This chap-

ter investigated two multi-task optimization methods for FL in medical image analysis

with heterogeneous datasets: Dynamic Task Prioritization (DTP) and Dynamic Weight

Averaging (DWA). In DTP, a higher prioritization was assigned to the client with su-

perior performance. Meanwhile, DTW dynamically adjusted the weight of each client

for aggregation. Each method was evaluated within an FL framework and the overall

model performance was compared with traditional FL aggregation methods, such as

FedAvg and FedProx. DWA showed significant improvement, especially on the Synapse

client whose training data was relatively smaller than the other two clients.

In Chapter 4, a framework for the segmentation of the pancreatic duct was intro-
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duced, aiming to assist the early detection of pancreatic cancer. The importance of

early detection is emphasized by the fact that pancreatic duct dilation often serves as

an early symptom of pancreatic cancer. Therefore, the segmentation of dilated pancre-

atic ducts may offer a crucial starting point for early pancreatic cancer detection, but

segmenting the pancreatic duct from volumetric CT images poses a challenge due to its

minute structure. This chapter investigated a coarse-to-fine strategy aimed at creating

Regions Of Interest (ROI) within the pancreas, facilitating a more refined segmentation

of the pancreatic duct. Additionally, an attention mechanism was introduced that fo-

cused on the entire pancreatic anatomy rather than just the target area. To ensure a

comprehensive representation of the vessel-like structure of the pancreatic duct, tubu-

lar structure enhancement was integrated as an extra input channel for the FCN. When

comparing the results with other reported outcomes for pancreatic duct segmentation,

the proposed method demonstrated significant superiority over strategies that rely on

single-phase volumetric CT images. This work also has the potential to be applied to

other segmentation tasks involving tubular structures in different anatomies in the fu-

ture.

In Chapter 5, the connection between the research presented in this thesis and Real-

World Data Circulation (RWDC) was introduced. An RWDC process consists of three

steps: data acquisition, data analysis, and implementation. The circulation commenced

with data acquisition, with all volumetric CT images used in this thesis obtained from

real clinical settings. Three distinct segmentation topics were introduced for analysis,

each focusing on different types of volumetric CT images. Applying these segmentation

methods in the development of a CAD system has the potential for use in real clinical

scenarios. Furthermore, the implementation has the potential to contribute to future

data acquisition processes, enabling the acquisition of more annotated data. The society

value of this RWDC could contribute to the CAD system, assisting in the detection of

pancreatic cancer in clinical settings.
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6.2 Future research

The future perspective of the research field encompasses two aspects: methodology

and the clinical aspects. In terms of methodology, the primary goal is to boost the ac-

curacy of segmentation for individual organs and tissues by employing more efficient

techniques. The pursuit of heightened accuracy remains a perpetual need in the med-

ical field. Additionally, exploring data privacy and collaborative learning represents a

promising and essential direction for future research in medical image analysis. On the

clinical side, the development of CAD systems is vital and holds promise for upcoming

clinical scenarios. Integrating computer technology in the medical field has the potential

to greatly assist radiologists and doctors in their daily routines within hospital settings.

Moreover, CAD systems are anticipated to play a pivotal role in the early detection of

various abnormalities and pathologies.

6.2.1 Methodology aspect

Organs and tissues segmentation

This thesis proposed three different types of segmentation tasks related to the pancreas

and its surrounding tissues. The segmentation results for larger targets, such as organs,

were close to satisfactory. However, for pancreatic pathology components like pancre-

atic tumors and dilated pancreatic ducts, the accuracy still requires significant improve-

ment, when considering the application to CAD systems. Improving the segmentation

accuracy for each target is consistently the primary demand in this field.

Recently, deep learning-based methods have been developing rapidly. Fully auto-

mated segmentation of organs and tissues from volumetric CT images is essential for

medical image analysis. The aforementioned studies primarily focused on research us-

ing FCNs. The effectiveness of FCNs in capturing spatial dependencies has significantly
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contributed to the State-Of-The-Art (SOTA) performance in this domain. Recently, a new

method called Transformer [139], originally designed for natural language processing,

has demonstrated notable success in segmentation tasks. This development opens up

exciting opportunities for further exploration in this field. Its extensions have garnered

significant attention and demonstrated considerable success in various medical image

segmentation tasks [140, 141]. Using Transformer models could be a future direction

for improving the segmentation accuracy of organs and tissues.

Federated Learning (FL)

In a real-world clinical scenario, a generalized segmentation model is desired for CAD

systems. The primary challenge in achieving such generalized models is the scarcity of

substantial datasets for training. Collecting extensive and diverse training data in the

medical image analysis field is always challenging due to the special characteristics of

medical images, which may pose security and privacy issues. Additionally, annotation

is expensive because only experts can perform the annotation. FL is naturally suited for

application in the field because it enables distributed learning across several institutions.

However, the current FL setting among different institutions is not very effective, as it

requires a server to manage the overall process. Recently, a new concept called Swarm

Learning has been proposed [142]. It facilitates collaborative learning without the need

for a central coordinator. This could be a potential research direction for distributed

learning in the future.

6.2.2 Clinical aspect

CAD system for pancreatic cancer

For pancreatic cancer treatment, the initial step is the detection of pancreatic cancer.

Subsequent tasks, such as tumor resection planning, require highly detailed segmenta-
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tions of the tumor and surrounding anatomical structures [143]. The accurate segmen-

tation of the pancreas and pancreatic tumor can be utilized in a CAD system to assist

in the detection of pancreatic cancer. However, in real clinical practice, factors such as

reliability, uncertainty, and robustness against variation become increasingly important

when considering segmentation methods [143]. Additionally, the trade-off between ac-

curacy and computational cost is a key consideration for CAD development. Therefore,

in the future, there is a need for further improvement in developing high-generalized

models with high efficiency.

Early detection of pancreatic cancer

This research was pioneering in its focus on the segmentation of the dilated pancreatic

duct, representing a novel contribution to the field. The investigation was based on a

dataset comprising 30 cases, acknowledging the limitation of its relatively small size. In

subsequent research endeavors, expanding the dataset will be imperative to ensure the

robustness and generalizability of the findings.

The segmentation of the dilated pancreatic duct holds significant promise as an early

detection marker for pancreatic cancer. Building on this potential, the future work will

delve into the critical aspect of seamlessly integrating the segmentation results into

real-world applications. Addressing the translational gap between research findings

and practical implementations poses a crucial challenge that necessitates careful con-

sideration in the ongoing investigations.
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