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Abstract

The current Standard Model of particle physics accurately explains many phenomena, yet its
inability to unify strong and gravitational forces suggests the need for new physics. Neutrons, being
mass-bearing and electrically neutral, serve as useful test particles in the search for new physics.
Especially, precision measurements using low-energy neutrons have yielded significant results since
they can be handled optically. Recently, the use of neutron optics has been proposed to explore the
fifth force and fundamental symmetry breaking, reaffirming its significance in the field. To realize
such research, neutron optics demands enhanced measurement precision and flexible experimental
frameworks.

In current neutron optics, sufficient statistical quantities are secured using large-area beams and
large components. Despite the increased neutron intensity from pulsed neutron sources, the usable
statistical quantity for experiments has been limited due to the manufacturing and installation pre-
cision limits of neutron optics components. Additionally, neutron optics components for precision
measurements require micro to nanometer-level accuracy, making their development challenging. I
have focused on using advanced machining technologies in developing neutron optics components,
maintaining accuracy in large components, and improving both the shape accuracy and installation
precision of these components. These efforts, demonstrating the advancement of neutron optics, were
validated through three experimental approaches.

In the first experiment, I demonstrated the development of large components maintaining shape
accuracy by measuring the reflection of epithermal neutrons. I developed a large flat neutron mirror
with a 0.3 mrad slope error and 100×300 mm2 surface area, demonstrating the potential applicability
of neutron optics to the epithermal region. The second experiment used dynamical diffraction in the
fifth force search experiment, proving shape accuracy improvement. This experiment significantly
reduced the dominant systematic uncertainty, the single-crystal sample thickness error, to less than
1 µm, allowing a more accurate approach to the fifth force. Finally, the development of a multilayer
neutron interferometer demonstrated an improvement in component installation accuracy. By adapt-
ing optical substrates and adjustment devices used in laser optics for neutron optical components, I
achieved component installation with about 30 nm precision, enabling observation of neutron interfer-
ence dependent on neutron wavelength. The development of this interferometer showed the potential
to construct an experimental setup previously deemed impossible.

These demonstration experiments indicate that the application of advanced machining technologies
advances neutron optics. The development of neutron optics reduces uncertainty in physical measure-
ments and enables the construction of new experimental systems. This research demonstrates the
contribution of neutron optics advancement to the exploration of fundamental physics.
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Chapter 1

Exploration of Fundamental
Physics using Neutron Optics

In fundamental physics, efforts are being made to broadly and generally understand physical phe-
nomena through a deeper comprehension of the behavior of elementary particles and their interac-
tions. Currently, the Standard Model of particle physics, which unifies electromagnetic and weak
forces among the four basic interactions, accounts for the largest number of physical phenomena with
the greatest precision. However, the theory that includes the remaining strong force and gravity is
still developing, and understanding these interactions remains a challenge in fundamental physics.

The advancement of theoretical physics has always been supported by experimental verification.
Among the numerous experiments conducted, many significant results have been obtained from ex-
periments using neutrons. A neutron is a composite particle made up of one up and two down quarks,
first observed by Chadwick[1]. Neutrons are characterized by having mass, no charge, a magnetic
moment, and a long lifetime of about 15 minutes. Since non-relativistic neutrons are known to behave
as de Broglie waves, the wavelength, energy, and momentum of neutrons are closely related. Among a
wide energy range, the wavelength of neutrons near 300 K in the Boltzmann distribution is similar to
that of X-rays. Neutrons in this wavelength region can utilize optical phenomena such as interference,
reflection, refraction, and diffraction like X-rays. The field encompassing the optical treatment of
neutrons is generally referred to as “Neutron Optics”. Research using neutron optics, active since the
1970s, has played a crucial role in both fundamental and applied physics. It has notably advanced the
field of fundamental physics by harnessing the inherent properties of neutrons and their capabilities
in optical handling. The substantial value of neutron optics is highlighted by historical studies that
have investigated phenomena inaccessible by other experimental techniques. To this day, neutron
optics remains an essential tool in the proposal and execution of fundamental physics experiments,
continually uncovering new facets of previously unknown phenomena.

Fundamental physics experiments using neutron optics have continually progressed alongside in-
creasing demands for experimental precision. The advent of pulsed neutron sources, in particular,
revolutionized neutron experiments. The ability to use neutrons of various wavelengths simultaneously
led to improvements in wavelength-dependent measurements and statistical quantities. However, the
development of neutron optical components is still a work in progress. Unlike X-ray sources, where
focusing systems using electromagnetic forces are applicable, neutron sources can’t create such fo-
cusing systems. Therefore, neutrons from a source are shaped using shields before being directed to
experimental apparatuses. To create a focusing system, large mirrors capable of accepting a wide-area
neutron beam are needed. Similarly, large samples that can accept a wide-area beam are required
for components irradiated with neutrons not to compromise statistical quantities. While components
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used in X-ray optics can rely on the local precision of components due to the availability of focusing
systems, neutron optical components require global precision in the area of use because of the unavail-
ability of a focusing system. Developing large neutron optical components with high shape accuracy
is challenging. Thus far, neutron optics has often sacrificed shape accuracy for improved statistics
and experimental precision. However, with the advent of pulsed neutron sources solving the statistical
quantity issues, the next challenge is enhancing the precision of neutron optical components.

The following sections describe the motivation for expanding neutron optics to explore fundamental
physics. Section 1.1 describes the fundamental physics that can be investigated using neutron optics,
providing insights into how this technology enhances our understanding of fundamental physics. Sec-
tion 1.2 focuses on the basic properties of neutron optics, detailing the principles and mechanisms
that govern its functionality. Finally, Section 1.3 describes directions for the development of neutron
optics for the exploration of fundamental physics.

1.1 Fundamental Physics using Neutron Optics

In this section, we will clarify the motivation for this study by briefly summarizing the current
status and challenges in fundamental physics. In the subsections that follow, we describe experiments
using neutron optics that have been designed to approach these issues and organized by each physical
topic.

In inflation theory, it is believed that the fundamental particles and interactions we know today
were unified at the beginning of the universe. Hence, it is conceivable that the four fundamental
interactions -electromagnetic, weak, strong, and gravitational interaction- could be described in a
unified theory at a certain energy scale, an idea encapsulated in the Grand Unified Theory. Currently,
the particle standard theory, which unifies the electromagnetic and weak forces, explains a majority
of physical phenomena with remarkable accuracy. However, the theoretical framework that includes
the remaining strong force and gravity is still in development. Fully understanding these interactions
and integrating them into a comprehensive theory remains one of the significant challenges in modern
physics.

To unify gravitational interaction with other interactions, it’s necessary to understand gravity at
the scale of the early universe. According to inflationary theory, the size of the universe was around
the Planck scale, approximately 1.6 × 10−35 m at its inception. To deal with gravity at this scale,
quantum mechanics must be applied, suggesting that gravitational values become discrete and thus
requiring the breakdown of Lorentz symmetry. Lorentz symmetry breaking, while a fundamental
principle in physical laws, could offer a viable solution for treating quantum effects of gravity without
contradiction when considering high energies. This approach is regarded as a strong candidate for
new quantum gravity theories[2]. If the quantization of gravity is carried out under the assumption
that Lorentz symmetry is maintained, quantum corrections become necessary to ensure that physical
quantities are calculable as finite values. However, this approach leads to non-renormalizability, posing
a significant challenge in the theoretical framework. Superstring theory, proposed to overcome this
issue of non-renormalizability, suggests the existence of extra dimensions. This theory implies that
gravity might deviate from the inverse square law in microscopic spaces, a concept that has significant
implications for our understanding of fundamental physics, particularly at the smallest scales[3].

The quantization of gravity essentially seeks to unify the theory of general relativity, which is
based on the principles of equivalence and locality, with the theory of quantum mechanics, founded
on the conservation of probability and unitarity. If there are issues in quantizing gravity, it implies
that modifications might be necessary in either or both theories. One such modification in general
relativity is the Chern-Simons theory. This theory emerges from adding a topological term, known
as the Chern-Simons term, to the standard Lagrangian density. It offers an explanation for the flat
rotation curves of galaxies without the need to invoke dark matter[4, 5]. Conversely, there are also
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research efforts focused on modifying the framework of quantum mechanics itself. These studies aim
to address the complexities and challenges encountered in the intersection of quantum mechanics and
gravitational theory[6].

In the context of space and black holes, the quantization of gravity is closely related to the sin-
gularity problem in Einstein’s equations. Einstein’s equations describes that the presence of matter
causes a distortion in spacetime. However, these equations also lead to singularities, where spacetime
curvature becomes infinite, such as within a black hole. To resolve the singularity where spacetime
curvature becomes infinite, matter itself would have to vanish, a scenario that is considered unnatural.
To tackle this issue, the weak-field approximation was introduced. It assumes that the gravitational
field weakens near the center of a black hole, leading to the emergence of a flat spacetime in that
region. This approach of using a weak-field approximation has notably influenced the development
of Quantum Chromodynamics (QCD). This weak-field approximation has influenced the success of
QCD, which was introduced as a theory of strong interactions describing the physics of hadrons such
as nuclei.

Observations of stars in the universe, particularly through the analysis of gamma rays emitted by
them, indicate that the universe is expanding at an accelerated rate[7]. This accelerated expansion
cannot be fully explained by the interstellar gravity known to us, leading to theories about a type of
repulsive gravity[8]. This repulsive force is incorporated into Einstein’s equations as the cosmological
term. In the early universe, this term was insignificant. However, as the universe expanded and
the density of matter decreased, the influence of the cosmological term became more pronounced,
and it is now believed to be the driving force behind the universe’s accelerated expansion. The
cosmic microwave background radiation (CMB) studies suggest that this repulsive gravity-like force
contributes to about 70% of the total energy in the current universe. Despite its significant impact,
the true nature and origin of this force remain one of the biggest mysteries in modern astrophysics
and cosmology.

Matter constitutes everything in our observable universe, but during the early stages of the uni-
verse’s formation, it is believed that antimatter existed in equal quantities to matter. However, the
current universe is predominantly composed of matter, a phenomenon thought to result from slight
differences in the properties of matter and antimatter. This disparity suggests the presence of CP
(Charge Parity) symmetry breaking and non-conservation of baryon number. Research efforts are
ongoing to detect and understand these phenomena. The currently known degree of symmetry break-
ing in CP is quantified at , but this magnitude is not sufficient to fully explain the predominance of
matter in the universe. The discrepancies in the currently understood symmetry breaking suggest that
additional, yet undiscovered forms of symmetry breaking may have occurred in the early universe.

Quantum Chromodynamics (QCD) has been successful in explaining some aspects of quarks and
gluons, the fundamental constituents of hadrons, particularly in the energy region of about GeV.
However, QCD has yet to effectively address phenomena in higher energy regions, such as those
involving nuclei and neutron stars. Nuclear forces at these higher energy levels play a crucial role in
the balance of forces in extreme environments of the universe and in super-dense states created by
explosive phenomena. The accurate determination of these forces through lattice QCD is expected
to significantly contribute to understanding the mysteries surrounding various cosmic events. These
include supernova explosions at the end of stellar evolution, the formation of neutron stars and black
holes, mergers of binary neutron stars, and elemental synthesis in the universe, all of which are
intricately linked to these explosive phenomena.

In the realm of fundamental physics, experiments utilizing neutron optics have accomplished many
significant achievements. This success is largely due to the unique properties of neutrons. As neutrons
carry no electric charge and have mass, they enable the verification of interactions coupled with mass,
such as gravity, as well as interactions with atomic nuclei, without being influenced by electric fields.
Moreover, free neutrons possess an exceptionally long lifetime of about 15 minutes, allowing them to be
used as stable particles in various experiments. In the subsequent subsections, we discuss experiments
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where neutron optics can be applied to address the aforementioned fundamental physics issues.

1.1.1 Fifth Force

The quantization of gravity and the origin of the accelerated expansion of the universe are hypoth-
esized to involve an unknown interaction coupled with mass. This interaction, not accounted for in the
four known fundamental interactions, is often referred to as the “Fifth Force”. A common approach
to exploring this interaction involves adding a short-range term to Newtonian gravity, which does not
diminish the generality of the theory. This interaction is characterized by

V (r) = −Gm1m2

r

(
1 + αGe

−r/λ5

)
, (1.1)

where αG represents the coupling constant, λ5 represents the reach distance, G is the gravitational
constant, m1 and m2 is the mass of the two substances, and r is their distance apart. The existence of
a Fifth Force has been a focus of exploratory experiments around the world, and the current findings
are well-documented in the reference[9]. These studies have investigated various fifth forces, the details
of which are depicted in Figure 1.1. Among the findings, the shortest range of gravity observed to
date operates at a distance of 56 µm, with no gravitational effects detected at shorter distances[10].
Search experiments using large accelerators have not even confirmed the existence of an interaction
that is 1030 orders of magnitude larger than Newtonian gravity[11]. In contrast to charged particles,
neutrons are uncharged yet possess mass, enabling them to penetrate into the interior of an atom,
a region inaccessible to charged particles. Within this atomic domain, neutrons interact at scales
roughly equivalent to the size of an atomic nucleus. This characteristic of neutrons makes them ideal
test particles in experimental searches, allowing for the strong limitation of interactions at distances
on the order of nanometers. In previous studies, experiments using neutron scattering have provided
the strongest limits on fifth forces in the reach range of 10−11–10−8 m[12, 13].

Figure 1.1: Exclusion map of the fifth force.
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The chameleon mechanism, one of the fifth forces, has an effective mass that varies depending
on the matter density. This mechanism has the potential to explain the origin of the accelerated
expansion of the universe, since the mass changes in the distant universe where the matter density is
low. Investigations into the chameleon mechanism have predominantly used neutron interferometry,
focusing on the phase change of neutron waves as they traverse through matter of different densities[14,
15]. In more recent times, research into this mechanism has expanded, incorporating techniques such
as atomic interferometry and experiments with force sensors to explore this concept further[16, 17].

1.1.2 General Relativity

Investigating the gravitational effects on fundamental particles can be effectively done using Earth’s
gravity. Most common fundamental particles either have negligible mass or are completely massless,
and in the case of heavy-mass particles like protons and nuclei, their behavior is predominantly in-
fluenced by electrical interactions. In contrast to these particles, neutrons are unaffected by electric
fields and thus can be used to measure gravitational forces directly. Neutrons, when their momen-
tum is reduced to an extremely low level, can be trapped by Earth’s gravity. This trapping results
in a discrete probability distribution of their existence along the vertical or height axis. This dis-
cretization is particularly observable with ultra-cold neutrons. In the relevant literature, it has been
shown that the search sensitivity for these gravitational effects can be enhanced by ensuring the flat-
ness of the guide mirrors of neutrons and by developing techniques to isolate minor variations in the
measurement position[18]. Neutron interferometer experiments are capable of measuring differences
in Earth’s gravitational potential by directing neutrons along two separate paths at varying heights.
Past studies in this field have sparked debate, particularly when observed deviations of up to 12% from
theoretical values were reported[19]. These results were subsequently re-examined in a follow-up ex-
periment, achieving an accuracy of 0.8%[20]. However, there remains a desire for further improvement
in measurement sensitivity to deepen our understanding of gravitational effects on neutrons.

The current theory of general relativity posits that gravitational waves are produced through the
interactions between massive objects[21]. Primordial gravitational waves, thought to have originated
in the early stages of the universe’s formation, provide a means to observe phenomena from a time
before the universe became transparent, which is not possible with optical methods. Gravitational
waves are primarily detected using laser interferometry. In contrast, the use of neutron interferometry
has gained interest due to its advantages, such as allowing for longer interaction times and eliminating
mirror noise[22].

Chern-Simons modified gravity, a theory that alters the conventional understanding of gravity,
suggests that the path integral of waves traveling along two different elevations changes over time[23].
This change can be observed in the influence of relativistic Sagnac effect measurement with the Lense-
Thirring effect. It has been proposed to investigate this phenomenon by making precise time-variant
measurements of the Sagnac effect using neutron interferometry, building on previous observations[24].

1.1.3 Quantum Mechanics

Quantum mechanics, constructed based on empirical principles, has seen proposed modifications
aimed at achieving a unified description with general relativity. A fundamental aspect of quantum
mechanics, the 4π symmetry of fermions, was experimentally verified using neutron interferometry[25].
This involved measuring the phase shift of polarized neutrons in a magnetic field. In addition, the
experiment observed the Sagnac effect extended for the quantum mechanism by applying a rotating
magnetic field to polarized neutrons[26]. This effect is a result of the interaction between the neutron
spin and the angular velocity of the rotating field. Observations in quantum mechanics are generally
confined to determining a particle’s final state. However, by conducting measurements that limit the
information to the bare minimum, it’s possible to observe particles in a superposition of wave functions.
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This method is known as weak measurement and is crucial for exploring quantum paradoxes and
deepening the understanding of quantum mechanics, such as the implications of the Dirac equation
and the concept of weak values. These weak measurements have been experimentally validated using
neutron interferometry with polarized neutrons, providing significant insights into the nuances of
quantum mechanics[27].

1.1.4 Symmetry Breaking

CP symmetry breaking implies that either parity or charge conservation is not upheld in matter and
antimatter. This phenomenon has been validated through the measurement of 2π decay of K meson,
and so on[28, 29, 30]. However, a more substantial degree of symmetry breaking is necessary to
explain the current matter-dominated universe. CP symmetry breaking can be verified as time-reversal
symmetry breaking by using the CPT theorem. This effect is explored by measuring the absorption
cross-section of polarized epithermal neutrons at the polarized target[31, 32, 33].

The breaking of CP symmetry can also be investigated by searching for the electric dipole moment
(EDM) of neutrons[34]. Neutrons, though electrically neutral, are known to possess an internal charge
structure. The asymmetry in the charge distribution within nucleons is a phenomenon that instanta-
neously breaks CP symmetry and has been extensively studied. Currently, experiments using stored
ultra-cold neutrons provide the most stringent constraints on this search[35]. However, improving the
sensitivity of these searches beyond current levels is fundamentally challenging. Therefore, proposals
have been made to enhance search sensitivity by utilizing multiple methods, such as beam techniques
and diffraction methods[36, 37].

Baryon number violation predicts the existence of neutron-antineutron oscillations[38]. Similar
to flavor oscillations in neutrinos, this phenomenon involves neutrons transforming into antineutrons.
Left-right symmetric Grand Unified Theories, which predict massive right-handed neutrinos, anticipate
this neutron-antineutron oscillation to occur within a range of 109–1010 seconds[39]. The phenomenon
can be explored by allowing free neutrons to travel a long distance of 76 m. The lower limit of this
oscillation period has been investigated in experiments conducted at the ILL reactor, establishing a
lower bound of τnn̄ > 8.6×107 seconds for the neutron-antineutron oscillation period[40]. Several new
experiments have been proposed to improve the scope of the search to the area predicted by the new
theories[41].

The theoretical framework aimed at resolving the issue of quantizing gravity necessitates the exis-
tence of Lorentz symmetry breaking[42]. Lorentz symmetry breaking introduces an anisotropic effect
that varies based on the direction of a particle’s momentum[43]. Neutrons, with their substantial
mass, are particularly useful probes in such search experiments, as they possess large momentum even
at relatively low energies. When neutrons travel along two non-parallel paths, Lorentz symmetry
breaking leads to differing momentum changes, resulting in a phase shift. This phase shift can be
investigated using a non-parallel neutron interferometer. Notably, this setup suggests the possibility
of observing daily periodicity variations in the phase shift due to the Lorentz symmetry breaking[44].

1.1.5 Nuclear Structure

In the construction of lattice Quantum Chromodynamics (QCD) theory, continuous spacetime is
approximated using a “lattice”, onto which QCD is defined for numerical calculations. However, due
to the immense computational requirements, calculations are currently limited to two-body problems.
Understanding the behavior of nuclei composed of multiple nucleons is still in the development stage.
Various methods are used for three-body calculations, however, each of these theories is incomplete[45].
To evaluate these theories, precise measurements of nucleon-nucleon interactions are required. Neutron
interferometry can contribute to this field by measuring the nuclear scattering lengths of neutrons with
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light elements such as protons, deuterons, and helium. These measurements provide experimental
values that are crucial for assessing and refining theoretical models in nuclear physics[46, 47, 48, 49].

1.2 Neutron Optics

In the previous section, we delved into the remarkable history of neutron optics, highlighting how
these physics experiments have been conducted within the unique environment provided by neutron
optics. In this section, we will focus on describing the basic properties of neutron optics.

Non-relativistic neutrons are known to behave as de Broglie waves according to the following
equation:

E =
ℏ2k2

2mn
=

h2

2mnλ2
=

1

2
mnv

2=̂kBT, (1.2)

where the E is kinetic energy, h is Plank constant, ℏ is Dirac constant, and mn is neutron mass. The
wave vector k is proportional to the square root of E. This value has the following relationship to the
momentum p:

p = ℏk = mnv = h/λ. (1.3)

The neutron wavelength λ is inversely proportional to the square root of E. The neutron velocity v
is proportional to the k. The averaged temperature of neutrons T in the thermodynamic equilibrium
state follows a Maxwell–Boltzmann distribution, where the kB is the Boltzmann constant. Neutrons
are assigned different designations depending on their kinetic energy (Figure 1.2). A typical neutron
cooled to near room temperature (T = 300 K) has the characteristics of

E ≃ 25 meV, λ ≃ 0.18 nm, v ≃ 2200 m/s. (1.4)

Noteworthy is the wavelength of neutrons is almost the same as that of X-rays. This similarity means
that optical phenomena such as interference, reflection, refraction, and diffraction, which are commonly
utilized in X-ray studies, can also be applied to neutron studies. In this dissertation, the field that
leverages these characteristics of neutrons is referred to as neutron optics, and neutrons within the
energy range addressed by neutron optics are referred to as low-energy neutrons.

Energy

Temperature 

Wavelength

25 meV10 eV105 eV 10-3 eV 10-6 eV

300 K105 K109 K 10 K 10-2 K

10-11 m10-13 m 10-9 m 10-7 m

thermal 
neutron

cold 
neutron 

very-cold

neutronepithermal neutronfast neutron ultra-cold 

neutron

Neutron Optics

0.18 nm

Figure 1.2: Correlation between neutron energy and generic designations.

Neutrons have the ability to penetrate into the interior of an atom due to their electrical neutral-
ity, which causes neutron scattering to be primarily influenced by the potential of the nucleus. Since



9

the effective radius of the potential is about a few femtometers, and considering that the wavelength
of low-energy neutrons is approximately 105 times larger than the nuclear potential, neutrons are
unable to discern individual nuclei and can only detect the averaged potential. This property of neu-
trons eliminates the necessity to consider individual scattering events in neutron optical phenomena.
Consequently, this allows for discussions and analyses to be conducted in a semiclassical framework.

The upcoming subsections provide a description of the major behavior of neutron optics: in-
terference, reflection, refraction, and diffraction, with an explanation of the basic laws of quantum
mechanics. In addition, facilities and detectors essential for neutron experiments will be introduced.
These subsections can be skipped if they are not relevant to your needs.

1.2.1 Basic Characteristics

The phenomena in neutron optics are described using the general theory of quantum physics. The
matter-wave fields are described by the Schrödinger equation using Hamiltonian H:

HΨ(r, t) =

(
− ℏ2

2m
∇2 + V (r, t)

)
Ψ(r, t) = iℏ

∂Ψ(r, t)

∂t
, (1.5)

where the V is static potential. These equations are linear and solvable in free space using a plane
wave approach:

Ψ(r, t) = Aei(k·r−ωt), (1.6)

where the ω is the angular frequency, and the A is normalized parameter. This value is given such
that the probability of existence of the particle, determined by the square of the wave function, is 1.
A wave packet in free space composed of multiple wave functions can be written as a superposition of
plane waves.

Ψ(x, t) =
1√
2π

∫ +∞

−∞
g(k)ei(kx−ωt) dk (1.7)

where g(k) is an eigenvalue. When considering a Gaussian distributed wave packet, its wave function
can be written as a wave packet localized at x = x0. In this case, the eigenvalues are written as

g(k) =
1

(2πσ2
k)

1/4
exp

[
− (k − k0)

2

2
(√

2σk
)2
]

(1.8)

The spatial extent of the wave function ∆x and the momentum extent ∆p are written by the square
root of the mean of the squares of the deviations from the expected values ⟨x⟩ and ⟨p⟩, respectively.

∆x =
√
⟨(x− (x))2⟩ (1.9)

∆p =
√
⟨(p− (p))2⟩ (1.10)

Calculating the spread using the expectation value obtained from the integral of Eq. (1.8), we can
write

∆x∆p =
ℏ
2

(1.11)

This is the minimum value that can be expected from the uncertainty principle, indicating that the
position and momentum of the wave cannot be determined simultaneously.

The velocity of an isotropic wavefront can be expressed as ω/k, using the fact that the phase of
the wavefunction is constant, i.e. kr − ωt in Eq. (1.6) is constant. This velocity is called the phase
velocity and is written as

vp =
ω

k
, (1.12)
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This phase velocity relates the de Broglie wavelength to the frequency of the matter wave. In contrast,
the speed of travel of the wave packet is determined by the speed of travel of the probability density
of the equation. This value is given by the following equation:

v ≡ dω

dk
=

ℏk
m

= 2vp (1.13)

This v is called the group velocity and is related to the velocity of matter in de Broglie’s relation.

1.2.2 Interference

Consider the situation where two wave functions with the same phase origin overlap. The wave
functions Ψ(x, t) separated into two paths can be written with a phase difference ϕ as follows:

ΨI(x, t) =
aI√
2π

∫
g(k)ei(kx−ωt) dk, (1.14)

ΨII(x, t) =
aII√
2π

∫
g(k)ei(kx−ωt)eϕ dk. (1.15)

Here, aI and aII are normalization constants that satisfy a2I + a2II = 1 when absorption is ignored. The
g(k) is the eigenvalue parameter shown in Eq. (1.8). The phase shift ϕ can be expressed using the
phase ϕ0 of the wave function before separation and the optical path length difference L0 between the
two paths as:

ϕ = ϕ0 + L0 (k − k0) . (1.16)

The observed wave function is obtained by the superposition of these two wave functions:∫
|Ψsup|2 dx =

∫
|ΨI +ΨII|2 dx (1.17)

= a′I
2
+ a′II

2
+ 2a′Ia

′
II exp

[
−1

2
(σkL0)

2

]
cosϕ0 (1.18)

When the two wave functions overlap, in addition to the sum of the probabilities of each wave function
a′I

2
+ a′II

2
, a periodically varying term is added, observable as interference. To quantify the degree of

interference, a value defined by the standard deviation of the wave packet and the optical path length
difference is given as:

Γ(L) = exp
[
(−σkL)2 /2

]
(1.19)

With a fixed wave number dispersion, the optical path length difference that makes Γ = 1/e is called
the coherence length Lc, and can be written as:

σkL
c =

√
2 (1.20)

This value is a parameter that determines the coherency of matter waves, and the experimental setup
needs to be constructed to fit within the range of the coherence length.

Neutron interference was demonstrated by the realization of neutron interferometer[50]. Subse-
quently, neutron double-slit experiments and other experiments have clearly demonstrated the wave
nature of neutrons[51].
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1.2.3 Scattering

Next, we consider the scattering of neutrons by the time-independent potential V (r). In this case,
the time-dependent terms of the wave function in Eq. (1.6) can be regarded as constants:

Ψ(r, t) = ψ(r)e−iωt, (1.21)

and the Eq. (1.5) can be expanded as follows:[
− ℏ2

2m
∇2 + V (r)

]
ψ(r) = Eψ(r), (1.22)

which is the time-independent Schrödinger equation. We can describe the incident particle as a plane
wave approaching the target in the region where the potential has no effect. The incident plane wave
can be expressed according to the Eq. (1.22) as follows:

ψ(r) = eik·r. (1.23)

The majority of these particles propagate directly as transmission waves, while a portion of them,
scattered by particles within the target, can be represented as outward spherical waves. The neutron
wave field outside the nucleus (R≪ r) can be expressed by adding a spherical wave term as follows:

ψ(r) = eikz + f(θ, ϕ)
eikr

r
, (1.24)

where f(θ, ϕ) is the scattering amplitude. The potential V (r) responsible for the scattering can be
defined in accordance with condition kR≪ 1 as follows:

V (r) =

{
−U (r < R)
0 (r > R)

(1.25)

The wave equation for the scattered wave by the potential can be written using the Lippmann-
Schwinger equation, which is widely known as the equation to solve scattering states.

ψ(k; r) = eik·r − 2m

ℏ2

∫
d3r′

e+ik|r−r′|

4π |r− r′|
V (r′)ψ (k; r′) (1.26)

It can be readily verified that applying the operator (∇2+k2) to this equation indeed returns us to the
original Schrödinger equation Eq. (1.22). The Lippmann-Schwinger equation represents an integral
equation, serving as a reinterpretation of the more conventional Schrödinger differential equation. It
does not provide a solution to the Schrödinger equation itself, as there is still a need to determine
what that solution entails. Considering the limit of r → ∞ for comparison with Eq. (1.24), Eq. (1.26)
can be written using the first Born approximation and the condition of r ≫ r′:

ψ(r) = eik·r − 2m

ℏ2
1

4π

[∫
d3r′eiq·r

′
V (r′)

]
eikr

r
, (1.27)

where
q = k− kr̂ (1.28)

can be thought of as the momentum transfer from the incoming wave to the outgoing wave. Due to
the scattering amplitude can be written by the comparison between Eq. (1.24) and Eq. (1.27), the
following equation is obtained

f(θ, ϕ) ≈ − m

2πℏ2

[∫
d3r′eiq·r

′
V (r′)

]
(1.29)
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Since neutrons are primarily scattered by nuclei, the interaction length R of the potential is significantly
shorter than the wavelength of the neutron. As this condition renders kR ≪ 1 valid, it allows us to
make the approximation of eiq·r

′ ≃ 1, and we need to consider only the s-wave for the scattered waves.
Utilizing these connections, Eq. (1.29) can be expressed as:

f(θ, ϕ) = − m

2πℏ2
Ṽ (r). (1.30)

Since the condition of kR ≪ 1, the potentials can be treated as point sources, and neutrons can be
seen as undergoing scattering by point potentials with a number density N . Furthermore, since the
mass of the scatterer is considerably larger than the mass of the neutron, the parameter in Eq. (1.30)
can be regarded as m = mn. Under these conditions, Eq. (1.30) yields the following relationship:

UF =
2πℏ2

mn
bN (1.31)

where b is called the “scattering length” and represents the scattering amplitude by the nucleon. The
UF represents is called the “Fermi pseudopotential”. These values serve as fundamental parameters
extensively employed in neutron experiments, offering a concise and lucid depiction of neutron-nucleon
interactions.

Next, we consider the wave function around the scattering potential. Inside the nucleus, the exact
s-wave regular solution of the Schrödinger equation is

ψ(r) = A
sinKr

Kr
, (1.32)

where

K2 = 2m
E − UF

ℏ2
. (1.33)

The constants A and b need to be tuned to ensure the continuity of both ψ and dψ/dr at the surface
of the nucleus (r = R). In the vicinity of the nuclear surface, where kr is very small, we can write
Eq. (1.24) as follows:

ψ ≈ 1− b

r
(1.34)

in the region of r > R. The boundary conditions necessitate us to seamlessly connect this function to
the rapidly oscillating wavefunction Eq. (1.32) within the nucleus, as illustrated in Figure 1.3. In the
limit of kR→ 0, the boundary conditions entail the following:

A
sinKR

K
= R− b (1.35)

and
A cosKR = 1 (1.36)

As indicated by the equation and the diagram, the wavefunction undergoes distortion due to the
intense potential of the nucleus, resulting in multiple oscillations within the potential well. The
nuclear scattering length exhibits significant variations with even slight adjustments in the potential
depth R.

It is evident that neutrons undergo scattering by a potential characterized by a nuclear scattering
length. The interaction of neutrons with potentials results not only in scattering but also in absorption.
This effect can be expressed by extending the scattering length to complex numbers:

b = bscat + ibabs. (1.37)
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Figure 1.3: Diagram showing the matching of the neutron wave function.

The parameter bscat can be categorized into two groups: coherent scattering lengths bc, which do
not involve the change of momentum in the scattering process, and incoherent scattering lengths
binc, which encompass the change of momentum. Absorption reactions babs encompass both fission
reactions, in which nuclei split, and capture reactions, where neutrons are absorbed by nuclei. For
nuclei with magnetic structures, the magnetic scattering length can be used to describe them:

b = bcoh ± bmag, (1.38)

where the sign associated with the magnetic scattering length is determined by the direction of polar-
ization of the neutron with respect to the polarized material. Theoretical calculations of the interaction
between neutrons and potentials can be challenging due to the sensitivity of the phase to even minor
changes in the potential. Consequently, we often use experimental values[52]. Here, the scattering
lengths of representative nuclei are shown in Table 1.1.

Table 1.1: Scattering lengths of representative nuclei.

Material Si Ge Ni Ti Al V
Coherent scattering length [fm] 4.1491 8.185 10.3 −3.438 3.449 −0.3824

The total neutron scattering cross section σ is expressed by the following equation:

σ = 4πb2. (1.39)

This cross-section can be classified into scattering cross-section (σs) and absorption cross-section (σa)
as well as scattering length. Each cross-section can be written using the scattering length b as follows:

σs = 4π (Re b)
2

(1.40)

σa = −4π

k
Im b (1.41)

The absorption cross-section is generally inversely proportional to the velocity of the neutron. Also,
the beam attenuation satisfies the Lambert’s law:

I

I0
= exp [− (σa + σs)ND] , (1.42)
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where the I0 is the initial intensity, the I is the attenuated intensity, and the D is the interaction length.
These cross-section values have been measured experimentally and summarized in the database, e.g.
JENDL[53]. Absorption cross sections for materials commonly used in laboratory equipment, such as
metals, are 0.231 barn for aluminum and 2.56 barn for iron. Furthermore, the absorption cross sections
of silicon, which is often used as an irradiation sample, is 0.171 barn. To achieve a transmittance of 1/e,
it is necessary to prepare a sample of several milli-centi meters. For some nuclei, such as 139La, 113Cd,
and 131Xe, resonant absorption can be observed in the low-energy region of epithermal neutrons. This
resonance reaction is internalized in the absorption cross-section and emits gamma rays as it returns
to the ground state.

The discussion of the preceding Eq. (1.31) emphasizes that neutrons have a phase shift based on
the mean potential produced by the nucleus during scattering. This can be thought of as a refraction
by the scatterer. With the incident wave vector denoted as k and the wavenumber inside the scatterer
also represented as K, the refractive index n can be established by employing the ratio of them, as
follows:

n ≡ K

k
. (1.43)

This can be written using the potential U and the kinetic energy E of the scatterer as follows

n2 = 1− U

E
= 1− bNλ2

2π
(1.44)

The refraction index can be acquired by solving the Schrödinger equation for a neutron traversing a
potential U :

n ≃ 1− λ2N

2π

√
b2c −

( σr
2λ

)2
+ i

σrNλ

4π
(1.45)

where the σr is the cross-section expected of coherent term, which is written as σr = σa + σinc. Since
the imaginary part is small in most cases, the following relation is used:

n = 1− λ2Nbc
2π

(1.46)

This value is about 1−n ≃ 10−5 for a typical nuclide, which is slightly less than 1. The refraction angle
θ′ is larger than the incident angle θ in the case of reflected by the general material with refractive
index n. In other words, neutron reflections are always accompanied by refracted waves.

1.2.4 Diffraction

We consider the wave function of a neutron incident on a scatterer such as a single crystal with
periodic potential. If the periodic potential can be written as R in Bravais lattice, the wave function
ψ satisfies the following conditions

ψj (r+Rj) = ψj (r) (1.47)

In this case, the wave function of the scattered wave that satisfies the wave equation Eq. (1.22) can
be written as

ψ (r) =
∑
q

ψqe
iq·r (1.48)

where the ψq is the scattering amplitude, and q is the momentum transfer of scattered wave. This
equation is just a rewriting of Eq. (1.27) with periodic boundary conditions. When the reciprocal lattice
vector obtained from the Bravais lattice R is H, the condition that the scattered waves enhance each
other can be written from the Laue condition as

q = k− k′ = H (1.49)
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where the k is the wave vector of incident neutron, k′ is the wave vector of scattered wave. When
considering coherent scattering, the wave vector satisfies

|k| = |k′| = k =
2π

λ
(1.50)

since the wavelength does not change before and after scattering. If the direction of wave travel
changes by 2θ before and after scattering, the wave vector satisfies

2k2 − 2k2 cos 2θ = |H|2 , (1.51)

This is exactly Bragg’s condition, which can be written as follows

2k sin θ = |H| (1.52)

Neutrons can be observed diffracting at wavelengths and angles that satisfy the Bragg condition for
periodic potentials. This is one of the most widely known phenomena in neutron optics.

In the case of a single crystal sample, the diffraction direction is determined by the reciprocal
lattice vector created by the crystal. The configuration in which the reciprocal lattice vectors are
perpendicular to the crystal surface is called Bragg geometry, and the configuration in which they
are parallel is called Laue geometry. Each configuration is shown in Figure 1.4. In Laue geometry,
diffracted neutrons penetrate the crystal, so the combination of a sample with a small absorption cross
section and highly penetrable neutrons is suitable for observation.

H

H

(a) Bragg Geometry (b) Laue Geometry

θ

θ

kk

k'

k'

Figure 1.4: The diffraction configurations of (a) Bragg geometry and (b) Laue Geometry.

When considering diffraction by a single crystal of a certain thickness, the diffracted wave vector
satisfies the equation k′ − k = H, meaning the diffracted beam with wave vector k′ meets the Bragg
condition of −H and is rescattered by the incident beam. Generally, a “dynamical” interchange of
neutron intensity is expected between the incident beam direction and the Bragg diffraction beam
direction within the crystal medium. This phenomenon is known as the dynamical diffraction of
neutrons, leading to multiple scattering of the incident wave. Waves incident on a single crystal sample
are characterized by waves propagating along the crystal lattice planes and those propagating between
the lattices, which two states are called α and β state. Each type of wave function inside the crystal
is distinguished by a slight difference in refractive index, resulting in four-wave functions: one for the
reflection direction with α and β state and another for the forward direction with α and β state. Waves
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exiting the crystal can be described by two wave functions, which are superimposing α and β states.
This allows the observation of wave interference inside the crystal, with a position distribution in each
direction, as shown in Figure 1.5. These interference patterns are known as pendellösung interference
fringes. The periodicity of these fringes can be described using the pendellösung length, denoted as
∆H . When observing these interference fringes, their representation at a detection position Γ can be
expressed as follows:

I0(Γ) =
1− Γ

(1 + Γ)
√
1− Γ2

cos2
[
πD

∆H

√
1− Γ2 +

π

4

]
(1.53)

IH(Γ) =
1√

1− Γ2
sin2

[
πD

∆H

√
1− Γ2 +

π

4

]
(1.54)

The diffraction intensity depends on the pendellösung length and the thickness of the crystal, and its
period decreases with distance from the beam center (Γ → 1). For a more detailed discussion, see
Chapter 4.

|β⟩
|α⟩

crystal

θB

Neutrons
H

forward diffraction

reflected diffraction

D

Γ

ΔH

Figure 1.5: Experimental configuration of pendellösung interferogram.

1.2.5 Reflection

Neutrons scattered into matter interact with nuclei through Fermi pseudopotentials, not distin-
guishing individual nuclei. In the scenario where a neutron approaches a uniform bulk potential UF

on the xy plane, the potential, and force act exclusively in the direction perpendicular to the surface
since the surface lacks structural features. For a neutron incident from a region z > 0 to a stationary
potential UF in the region z ≤ 0, the wave function can be written as

ψ(z) =

{
Ae−ikz +Beikz (z > 0)

Ceikz (z ≤ 0).
(1.55)

Letting the incident neutron wave vector be k = (k sin θi, 0, k cos θi), the wave vector interacted by
potential can be written using the condition that the wave functions in each region are continuous at
the boundaries:

kr = (k sin θi, 0,−k cos θi), (1.56)

kt = (k sin θi, 0, vk cos θi). (1.57)
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where the kr is the reflected neutron wave vector, and kt is the refracted neutron wave vector. This
process is analogous to the classical reflection of light, as shown in Figure 1.6. Assuming the wave
function remains continuous at the interface and the interaction is elastic, the conservation of momen-
tum dictates that the incident and reflection angles are equal. For total reflection to occur, the energy
of the neutron’s normal component must be less than the potential, leading to the following equation:

sin2 θi <
UF

Ez
(1.58)

The transmitted neutron is influenced by the material’s refractive index, making Snell’s law applicable
to its refractive angle, denoted as θt:

cos θi = n cos θt (1.59)

These characteristics are typical of neutron optics, demonstrating that neutrons reflect and refract
similarly to light. The momentum of the reflected wave can be written from the law of conservation
of momentum as

q =
4π sin θi

λ
(1.60)

Since the one-to-one correspondence between neutron momentum transfer and kinetic energy is estab-
lished, the upper limit of reflectable momentum transfer can be determined.

krk

kt

potential: UF

θi

θt

z

z = 0

Figure 1.6: The reflection and refraction by the flat surface.

Next, consider the reflection of neutrons on a thin film. For neutrons incident from the region
z > 0, if potential UF exists in the region 0 ≤ z ≤ d, the wave function can be written as

ψ(z) =


Ae−ikz +Beikz (z < 0)

De−ikz + Feikz (0 ≤ z ≤ d)

Ceikz (d < z).

(1.61)

There are two types of waves in each region, one traveling in the same direction as the incident particle
and the other reflecting. By solving this wave equation with the boundary conditions satisfied, the
reflection rate R and transmission rate T can be determined:

R =

∣∣∣∣BA
∣∣∣∣2 =

[
1 +

4 (E − UF)E

V 2 sin2 k′d

]−1

, (1.62)

T =

∣∣∣∣CA
∣∣∣∣2 =

[
1 +

U2
F sin2 k′d

4E (E − V )

]−1

. (1.63)

The reflectivity of neutrons depends on the potential depth, which is related to the tunneling effect.
The incident neutrons are reflected by two interfaces, which are the first and second layers. The
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reflected neutron is represented by a composite function of the waves reflected by the two interfaces.
These reflected waves interfere based on their phase shift, which is linked to the optical path difference
and, consequently, the layer’s thickness. The thickness of the layer determines which neutrons can
be reflected, a concept aligned with the classical Bragg’s law. The wavelength of reflected neutrons
depends on the characteristic of the layer, which can be understood by the classical Bragg’s law.

nλ = 2d sin θ (1.64)

where n is a natural number that determines the diffraction order. The wavelength of the reflected
neutron depends on the angle of incidence θ and the thickness d of the thin film, which produces
interference oscillations called Kiessig fringes depending on the diffraction order. These oscillations
reflect the potential and thickness of the thin film, and the period of the fringes shortens with increasing
thickness. By examining the wavelength or angle of incidence dependence of these reflectances, the
properties of the thin film layer can be studied.

In a material with multiple layers of thin films, Bragg reflection occurs at the boundaries of
each layer. When layers with different potentials are stacked alternately with a periodicity of d,
the momentum transfer of neutrons capable of reflection aligns with the Bragg condition, which is
dependent on the stacking period. To calculate reflectivity in detail, we should consider the wave
function. At the interface of the j-th layer, only the normal component of the wave function should
be taken into account. The wave function ψj(z) is given by

ψ(z) = f tje
ikjz + frj e

−kjz (1.65)

where f t and fr denote the amplitudes of the waves in the incident and reflected directions. The j-th
and j + 1-th wave functions can be written as follows using their continuity(

f tj
frj

)
=Mj+1

(
f tj+1

frj+1

)
j = 0, 1, 2, , , n (1.66)

where n denotes the total number of layers and M is operator, which is written as

Mj+1 =
1

2

(1 + kj+1

kj

)
ei(kj+1−kj)z

(
1 +

kj+1

kj

)
ei(kj+1+kj)z(

1− kj+1

kj

)
ei(kj+1+kj)z

(
1 +

kj+1

kj

)
ei(kj+1−kj)z

 (1.67)

The amplitude of the reflected wave can be expressed as fr0 and f tn. In the case that the amplitude of
the incident wave is f t0 = 1 and frn = 0, the amplitude is composed of this equation:(

1
R

)
=M1 ·M2 · ... ·Mn

(
T
0

)
=

(
M11 M12

M21 M22

)(
T
0

)
(1.68)

From these equations, the amplitudes of the reflected and transmitted waves are given by

T =
1

M11
, R =

M21

M11
. (1.69)

The reflected and transmitted wave intensities are given by T̄ = T ·T and R̄ = R ·R, respectively. The
M component is determined by the potential and thickness of the stacked thin films. For a detailed
description of these, see Ref.[54].

By alternately layering two materials with distinct potentials at a set period d, neutron reflectivity is
enhanced by the Bragg diffraction provided by Eq. (1.64). Nickel (Ni) and Titanium (Ti) are commonly
chosen for their significant difference in potential and low absorption rates. This configuration is known
as a multilayer neutron mirror, which can achieve a reflection angle considerably larger than the Fermi
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pseudopotential of typical materials. Mirrors with monochromatic layers, where the period of each
layer matches d, selectively reflect neutrons of specific wavelengths. By gradually varying the thickness
of these layers, the wavelength range of neutrons meeting the Bragg condition can be adjusted, forming
what is termed a supermirror[55]. Additionally, using materials sensitive to magnetic fields, such as
Fe or Permalloy, allows for the creation of magnetic mirrors with spin selectivity. The wavelength-
dependent reflectivity in monochromatic mirrors and supermirrors is shown in Figure 1.7. When the
momentum transfer exceeds the critical angle for reflection, the reflectivity sharply declines following
a q−4 pattern characteristic of quantum mechanics. In multilayer neutron mirrors, the achievable
momentum transfer for reflection is several times greater than that of a single nickel layer, known for
its high pseudopotential. The performance ratio of the multilayer neutron mirror is generally evaluated
relative ratio to the momentum transfer at the critical angle of reflection for a nickel monolayer, which
is qNi = 0.215 nm−1.

m =
qm
qNi

(1.70)

This ratio is called m-value, and the larger this m-value is, the more neutron reflection with large
momentum transfer can be realized.

potential

Ni
Ti
Ni
Ti

θ

d

potential

Ni
Ti

θ

d1
d2
d3

λ1
= 2d1sin θ

λ2
= 2d2sin θ

λ3
= 2d3sin θλ = 2d sin θ

(a) (b)

Figure 1.7: The reflection mechanism of (a) monochromatic multilayer and (b) supermirrors.

However, surface or interface roughness in a thin film can reduce the layer’s reflectivity and alter
the reflection curve. If there is an inter-diffusion or a density gradient of atoms at the interface,
this diffusion zone is also considered as roughness. The compositional distribution at the interface
is typically represented as a Gaussian distribution in terms of depth. The reflectivity R(q) from a
rough interface, where the compositional distribution at the interface has a standard deviation σ, is
expressed as:

R(q) = Rs exp
(
−q2σ2

)
(1.71)

Here, Rs is the specular reflectance from an ideal interface without roughness. From these measure-
ments, by analyzing the neutron reflectance at the material interface, we can gather information about
the thickness and composition of each layer, as well as the roughness between layers. This technique
is known as neutron reflectometry and is widely used in experiments involving physical properties.

In general physics experiments, neutron mirrors are extensively utilized as guides to direct neutrons
from the source to the experimental setup, enhancing the statistical data available for the experiment.
Monochrome mirrors, for instance, are employed to select long-wavelength monochromatic neutrons
from white neutrons produced by a nuclear reactor. Supermirrors serve as guide tubes for white
neutrons in pulsed neutron sources. Magnetic mirrors are used for polarizing neutrons. In these
applications, the wavelength resolution, wavelength range, and reflectivity of the reflected neutrons
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are crucial for experimental performance. Therefore, it is essential to design an ideal multilayer neutron
mirror tailored to the specific requirements of each experiment.

Multilayer neutron mirrors are created by depositing thin films of materials like Ni and Ti onto glass
substrates or other bases using sputtering or vapor deposition equipment. Common sputtering devices
include ion beam or magnetron systems, which remove atoms from the target material and deposit
them onto the substrate. There is ongoing research to achieve stable layering with a large number of
layers. In Japan, groups at Kyoto University and JAEA have developed their own unique deposition
technologies. For mirrors with high m-values, each layer’s thickness is only a few nanometers, so
imperfections at the interface are a primary cause of reduced reflectivity. Improvements in stacking
techniques are expected to mitigate these imperfections, and research is actively being conducted to
develop high-performance mirrors approaching an m-value of 10[56].

1.2.6 Facilities

Neutrons are generated through various physical processes such as nuclear fission, decay of nu-
clei, and spallation reactions. In space, they are produced by solar flares and space showers in the
atmosphere, often being encountered. However, for experiments involving neutron optics, the avail-
able neutron energy is a minute fraction of what is generated through these natural processes. To
efficiently create low-energy neutrons suitable for experiments employing neutron optics, specialized
neutron experimental facilities exist. These facilities can be used as high-intensity neutron sources by
efficiently generating using nuclear fission, nuclear fusion, and spallation reactions. Neutrons produced
by these methods typically possess energies of several MeV. To obtain low-energy neutrons suitable for
experiments, a cooling process is applied using heavy water or liquid hydrogen. The cooled neutrons
then diffuse radially, and the energy follows the Boltzmann distribution. Because neutrons cannot be
induced electromagnetically, shielding is generally used to shape the beam before pulling it into the
experimental setup. The section involves a description of the neutron experimental facilities utilized
for these purposes.

Reactor Neutron Source

Reactor neutron sources employ neutrons generated through nuclear fission for scientific experi-
ments. On the NIST Center for Neutron Research (NCNR) at the National Institute of Standards and
Technology (NIST) in Maryland, USA, neutron generation arises from the fission of 235U. Control rods
made of Cd and B, placed amidst the 235U fuel rods, manage the quantity of produced neutrons, sus-
taining a critical state. The operational power is 20 MW. One method utilizes D2O, H2O, or graphite
moderation to cool down to 315 K. This produces a wide-ranging neutron spectrum extending up to
energies that conform to a Boltzmann distribution centered at 26 meV. The other, a moderator using
liquid hydrogen at 20 K generates neutrons with an energy level of approximately 1.7 meV[57].

JRR3 in Tokai-mura, Ibaraki, serves as Japan’s most powerful neutron source. It operates as a
research reactor using uranium fission with a maximum power of 20 MW. The facility comprises 26
cores, beryllium reflectors, and control rods with six fuel components, alongside two moderators. One
uses circulating light water to extract thermal neutrons, while the other employs liquid hydrogen for
cold neutron production. A neutron guide path extends from the moderator to the experimental hall
for conducting experiments[58].

Accelerator Neutron Source

In accelerator neutron sources, neutrons are generated through fusion or spallation reactions in-
duced by irradiating target materials with accelerated charged particles. The energy of the charged
particles needs to surpass the energy threshold required for the reaction, a value dictated by the target
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material. For the 7Li-p and 9Be-p reactions, an energy of approximately 2 MeV is typically employed,
especially in small neutron sources. Since small neutron sources allow neutron experiments to be
conducted on a lab scale without fission, they are used for testing equipment to be installed in large
experiments and for experiments that require continuous intermittent beam use[59, 60]. The spallation
reaction serves as a high-intensity neutron source. In this reaction, charged particles accelerated to a
few GeV interact with heavy metals containing a high number of neutrons in their nuclei. The neutron
yield per accelerated charged particle is around 20. The number of neutrons produced by 1 kW of
accelerated particle is about 2–3 × 1012 n/sec for nuclear reactions and low energy protons, about
3× 1013 n/sec in a nuclear reactor, and about 2.6× 1014 n/sec in a spallation neutron source, which
means that spallation reaction has the highest efficiency. This type of neutron source has been in prac-
tical use for about 20 years now, with the development of large charged particle accelerators and the
ability to deal with the problem of heat generated in the target. Globally, examples include LANSCE
in the USA[61], CSNS in China[62], and the ESS, currently under construction in Sweden[63].

The Materials and Life Science Experimental Facility (MLF) at the Japan Proton Accelerator
Research Complex (J-PARC), situated in Tokai-mura, Ibaraki, boasts access to the world’s most
intense neutron source[64, 65]. In this facility, protons accelerated to 3 GeV are directed into liquid
mercury, initiating spallation reactions that yield neutrons. The maximum beam power is 1 MW,
and the produced neutrons undergo cooling by moderators before being directed to various beamlines.
There are three types of moderators: coupled, decoupled, and poison types using liquid hydrogen, each
offering different wavelength resolutions and statistical characteristics. To ensure efficient neutron
generation, the moderators and targets are covered with reflective material, excluding the beam ports.
Protons are delivered in pulses with a width of about 100 ns at 25 Hz, resulting in pulsed neutron
generation. As neutrons generated with various energies possess different velocities, the neutron
wavelength can be determined based on the distance and time of flight (TOF).

1.2.7 Detectors

Since neutrons lack the ability to directly interact with and ionize matter, they are converted into
charged particles before detection, where they manifest as electrical signals. Fast neutrons, lacking the
ability to ionize matter, are measured using charged particles generated through elastic scattering with
atomic nuclei. For slow neutrons, charged particles resulting from neutron-induced nuclear reactions
are employed for measurement. The neutron detector is distinguished into two categories: time-
integrating detectors, and time-differentiating detectors. Both types of detectors employ reactions
that emit charged particles with a significant capture cross-section and suitable energy.

n+ 10B → 7Li + α+ 2.8 MeV (7%) (1.72)

n+ 10B → 7Li∗ + α+ 2.3 MeV → 7Li + α+ 0.48 MeV (93%) (1.73)

n+ 6Li → α+ 3He + 4.79 MeV (1.74)

n+ 3He → 3H+ p+ 0.764 MeV (1.75)

The absorption cross sections for each reaction depend on the neutron energy, these are 5330 barn
for 3He, 3840 barn for 10B, and 940 barn for 6Li at 25 meV for neutrons. The higher the energy of
the emitted gamma rays, the greater the energy imparted to the reaction products. Using the wave
height separation method allows for the effective removal of backgrounds such as gamma rays. The
larger the absorption cross-section, the higher the detection efficiency. Excited atoms or ion pairs are
generated as a result of collisions between charged particles in the detector material. The detection of
neutrons can be categorized into three primary types based on the physical phenomena arising from
their interaction with the material. The first type involves detection through ionization, the second
through scintillation, which is a luminescent phenomenon, and the third through pyrophoresis (using
imaging plates). Imaging plates, similar to scintillators, convert incident radiation into light but do
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not emit fluorescence immediately; rather, they do so when stimulated with a laser[66]. Proportional
counters filled with 3He gas are relatively easy to make and handle, in addition to having high detection
efficiency. However, they are not suitable for experiments that require high positional resolution due
to the large detectable area. By using a micro-pixel chamber to detect charged particles generated
by 3He gas, a detector with high positional resolution can be used[67, 68]. 10B converter-based
detectors use gas electron multipliers to detect neutrons[69, 70]. Scintillator-based detectors can
be used in combination with resistance-segmented photomultiplier tubes to provide position-resolved
detectors[71]. Both position-resolving detectors rapidly process the electrical signals representing
neutrons via application-specific integrated circuit (ASIC) chips and a field programmable gate array
(FPGA), and so on, and store the signals as data.

1.3 Expansion of Neutron Optics

In modern physics, understanding gravity and strong interactions is essential for a unified expla-
nation of physical phenomena. Advanced physics research requires exploring the fifth force, deepening
our understanding of quantum mechanics, verifying nuclear forces precisely, and investigating funda-
mental symmetry breaking. Past experiments using neutron optics have provided important results
for the development of fundamental physics. Currently, many experimental plans using neutron optics
aim to further explore fundamental physics. The relevance of neutron optics in these studies is not
only undiminished but is also receiving increasing attention in the scientific community.

Experiments in neutron optics exploring fundamental physics are achieved by reducing statisti-
cal and systematic uncertainties and by constructing smart experimental setups. The use of pulsed
neutron sources has significantly improved statistical uncertainties. Additionally, the measurement of
wavelength dependence using the neutron time-of-flight method has contributed to reducing system-
atic uncertainties. In neutron experiments where focusing using electromagnetic forces is not feasible,
neutrons are utilized within experimental setups by shaping the beam using shielding. To avoid los-
ing statistical quantities, it is necessary to draw a large-area neutron beam into the experimental
apparatus. As the area of the neutron beam increases, the optical components used also inevitably
become larger. Despite this, the required shape and installation precision of each component remain
unchanged, necessitating the use of large, precise optical components. Developing such optical com-
ponents is extremely challenging, and so far, neutron optics have often compromised shape accuracy
to improve statistical quantities, a significant difference from X-ray optics, which can utilize focusing
systems.

However, now that the statistical quantity issues have been addressed with the advent of pulsed
neutron sources, achieving high precision in neutron optical components could lead to significant
improvements in measurement accuracy. These circumstances suggest that the development of high-
accuracy neutron optics can expand the exploration area of fundamental physics experiments. In the
following sections, the development of neutron optics is divided into three directions.

1.3.1 Large Optical Components with Maintained Accuracy

Neutron optical components need to use a large-area neutron beam to maintain statistical quanti-
ties, as neutrons cannot be focused. In addition to shaping the beam using shielding, neutron transport
can be facilitated by conduits using neutron mirrors. Neutron reflection occurs when neutrons are re-
flected at the interface due to the Fermi pseudopotential of the material. The critical angle of reflection
θc is given by the following formula:

θc =

√
bcN

π
λ, (1.76)
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where N represents the atomic density. The critical angle of neutron reflection can be expressed using
the critical angle of nickel, which has a large potential, and the m-value as:

θc = 0.0174mλ [rad]. (1.77)

From this, it is clear that the critical angle of reflection is inversely proportional to the wavelength of
the neutron. If the mirror’s surface is not an ideal plane, the incidence angle will vary depending on
the shape accuracy. When the wavelength of reflected neutrons is fixed, and the mirror surface has a
standard deviation σ of slope error, with the ideal reflection angle denoted as θ0 , the reflectivity of
observed reflected neutrons can be written as:

R(θ0) =

∫
θ

R(θ)
1√
2πσ2

exp

(
θ − θ0
2σ2

)
dθ (1.78)

As this equation shows, the variation of reflectivity R(θ) with respect to θ requires the standard
deviation of the mirror’s slope error, σ, to be sufficiently small. If the reflectivity dependent on θ
also follows a Gaussian distribution with a standard distribution of σR and assuming σ = σR, the
reflectivity decreases by about 22%. The decrease in reflectivity depends on the momentum transfer
distribution of reflectivity, but generally, slope error better than 1/10 of the incidence angle is required.
Typically, the energy of transported neutrons is 25 meV for thermal neutrons, and for an m = 3 mirror,
the critical reflection angle is 9 mrad, demanding a slope error of 0.9 mrad.

On the other hand, experiments searching for the violation of time-reversal symmetry using po-
larized neutrons, as described in section 1.1.4, utilize epithermal neutrons near 1 eV. For epithermal
neutrons with an energy of about 1 eV, the reflection angle is an order of magnitude smaller than
that for thermal neutrons. Even using a supermirror with an m-value of 3, the reflection angle is only
about 1.5 mrad. Therefore, a mirror reflecting epithermal neutrons requires a slope error of 0.15 mrad.
Moreover, to reflect a neutron beam of approximately several centimeters square at a reflection angle
of 1.5 mrad, a footprint of more than 6 meters is needed. Technically, installing a neutron mirror over
6 m long with a precision greater than 0.15 mrad is challenging. To address this issue, research is
being conducted on multilayer neutron mirrors with a high m-value, but it is still in the development
stage.

Non-specular reflection dependent on surface roughness, as described in Section 1.2.5, leads to a
decrease in reflectivity due to its dependence on the momentum transfer of reflected neutrons. For
a nickel monolayer film mirror reflecting neutrons at the critical angle, the momentum transfer is
0.215 nm−1. If the mirror has a roughness of 1 nm, its reflectivity decreases by 5%. In contrast, for a
neutron mirror with 1 nm of roughness reflecting 0.028 nm (1 eV) neutrons, the decrease in reflectivity
is as much as 86%. To prevent this reduction in reflectivity, the mirror surface’s roughness needs to
be finely controlled, proportional to the square of the wavelength. To reduce the reflectivity loss of
1 eV epithermal neutrons to a similar degree as 0.25 eV thermal neutrons, the surface roughness must
be below 0.025 nm. Thus, the required precision of the mirror increases with the square of the wave-
length used, demanding higher accuracy in surface roughness and shape. Realizing reflective optical
components for epithermal neutrons necessitates overcoming these precision challenges. Solutions to
this challenge are discussed in section 2.2.1, with demonstration experiments presented in Chapter 3.

1.3.2 Component Shape Accuracy

The interactions observed between neutrons and matter depend on the distance of interaction.
The physical quantities in various experiments are obtained by subtracting the interaction distance
from the observed quantities, and hence, their accuracy is contingent on the precision with which
this interaction distance is determined. For example, in experiments using crystal diffraction, the
interaction distance corresponds to the crystal’s thickness, necessitating precise determination of this
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value. When neutrons are incident on a crystal under Bragg conditions, interference fringes reflecting
the interactions within the crystal can be measured. The periodicity of these fringes allows for precise
determination of the interactions acquired by neutrons inside the crystal. Neutrons diffracted in the
crystal create interference fringes reflective of these internal interactions. The periodicity of these
fringes can be written as:

ϕP =
D

∆H
=
vHD tan θB

πH
(1.79)

Here, D is the crystal thickness, θ is the incidence angle, and H is the reciprocal lattice vector of the
crystal plane. The vH denotes the crystal’s averaged potential and can be expressed as:

vH =

(
4π

a3

∑
eiQ·x

)
e−W [bN + (Z − fe(Q)) bne + b5(Q)] (1.80)

The initial sigma represents the crystal’s periodic structure, W is the crystal temperature factor, bN
is the nuclear scattering length, fe is the atomic form factor, bne is the neutron-electron scattering
length, and b5 denotes scattering due to the fifth force. As this formula indicates, the measurement of
interference fringes due to dynamical diffraction can be used to search for the fifth force. However, the
sensitivity of the search is limited by the precision of the physical quantities included in the other terms.
In particular, the crystal’s periodic structure and thickness are the most dominant factors of systematic
uncertainty. Due to the difficulty in accurately determining these factors, the use of neutron dynamical
diffraction in fundamental physics experiments has been limited since its demonstration in the 1970s.
Precise measurement of the crystal thickness, which is geometrically determined, or experiments using
a relative measurement system that can eliminate this factor, are therefore required.

The crystal thickness term is eliminated using a neutron interferometer measurement. The neutron
interferometer can measure the forward scattering length by crystals. The obtained phase shift by the
inserted sample using the crystal interferometer can be written as

ϕI = ⟨b⟩λD =
16

a2
√
3
4πv0D sin θI (1.81)

where the ⟨b⟩ is the scattering density, given by the product of the scattering length and the atomic
density. The θI is the Bragg angle for neutron interferometer, whose value can determined with high
presition by the same method of pendellösung measurements. The ratio of the phase shift obtained
from pendellösung interferometry to that obtained from interferometry can be written as

ϕP
ϕI

=
2vH tan θPBHI

v0 sin θBIHP
(1.82)

where the θPB is the Bragg angle for pendellösung interference measurement, θBI is the Bragg angle for
neutron interferometer, HP is the reciprocal lattice vector for pendellösung interference measurement,
and HI is reciprocal lattice vector for neutron interferometer. The crystal thickness term is eliminated
from the two measurements.

The interesting scattering length can be written from the ratio of the phase shifts obtained by the
two measurements as

vHDP

v0DI
= e−W

(
1− (1− fe(Q))

bne
b(0)

+
b5(Q)− b5(0)

b(0)

)
(1.83)

where the DP is the crystal thickness for pendellösung measurement, DI is the crystal thickness for
interferometer measurement, whose values are assumed as same. The b(0) is the literature value of
forward scattering length, which generally refers to the nuclear scattering length, but since the fifth
force term was not assumed in the previous experiment, the experimental value is written as the
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forward scattering length. By using the atomic structure factor of literature values, the temperature
factor and neutron-electric scattering length can be determined, and a fifth force can be explored.
These values are determined from the momentum dependence of the averaged potential.

In the search for the fifth force, the dominant uncertainties in vH are primarily determined by
the atomic structure factor and the neutron-electron scattering length. The estimated accuracy in
determining vHD from these uncertainties is around 10−5. Given that the sensitivity of neutron
interferometer phase shift measurements is about 0.02 rad, a phase rotation of approximately 2000 rad
is required. This phase rotation depends on the thickness of the sample, necessitating a single-crystal
sample with a thickness of about 5 mm to achieve the aforementioned phase. The thickness of the
single-crystal sample used must be determined with the same level of accuracy as the determination
of the averaged potential. Therefore, a thickness accuracy of about 0.25 µm is required. Since a
typical single-crystal sample has a thickness error of several µm, it is necessary to improve the sample
thickness accuracy by an order of magnitude to effectively search for fifth force. The solution to this
challenge is discussed in Section 2.2.2, and the demonstration experiment is described in Chapter 4.

1.3.3 Component Installation Accuracy

High-precision optical components need to be installed in experimental apparatuses with accuracy
equivalent to the precision of the components themselves. For example, in the case of neutron interfer-
ometers, each component must be installed within the accuracy specified by the coherent length. The
interaction of neutrons can be measured by a neutron interferometer as a phase difference acquired
by neutron waves separated into two paths. The interference fringes obtained by splitting and then
recombining the neutron waves reflect the difference in interactions between the two paths. The con-
ventional interferometers achieve neutron interference by controlling neutron waves through diffraction
at lattice planes cut from silicon single-crystal ingots. However, the interactions measurable by a neu-
tron interferometer are proportional to the interaction time, necessitating either longer wavelengths or
larger scales. In interferometers using single-crystal ingots, achieving these conditions is structurally
challenging, leading to a demand for interferometers operating on entirely different principles.

Neutron interferometers utilizing neutron mirrors offer an experimental system that can accommo-
date both long-wavelength neutrons and larger-scale setups. Although continuous development and
research have been conducted, practical implementation has not been achieved due to the difficulty in
positioning neutrons within their coherence length. The coherence length of neutrons, as described in
Section 1.2.2, can be explained by the dispersion of neutron wavelengths. When considering a wave
spread in three dimensions, its coherence length can be broken down as follows:

σx,y,z
k Lc

x,y,z =
√
2 (1.84)

where the z-direction is considered the direction of wave propagation, with x and y directions rep-
resenting the transverse coherence length, and the x-direction indicating the longitudinal coherence
length. The σk represents wave vector dispersion and is dependent on the experimental setup. For
general cold neutrons, the value of wave vector dispersion σk ≃ 0.4 nm−1 leads to the coherence
length of approximately 3 nm. To observe the interference of neutron waves, neutron optical compo-
nents must be installed with the aforementioned precision. Solutions to this challenge are discussed
in Section 2.2.3, and the demonstration experiments are described in Chapter 5.

1.4 Summary of Introduction

In modern physics, understanding gravity and strong interactions is crucial for a unified explanation
of physical phenomena. Further progress in physics requires exploring fifth force, deepening the
understanding of quantum mechanics, precisely verifying nuclear forces, and studying fundamental
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symmetry breaking. Neutron optics, used in past fundamental physics experiments, has significantly
contributed to the development of basic physics. Today, many experimental plans using neutron optics
to explore fundamental physics are proposed, and the relevance of neutron optics continues to grow.

Neutron optics is described using the Born approximation, assuming that neutron wavelengths
are sufficiently larger than nuclear potentials. As a result, neutron optics allows the use of optical
phenomena like interference, reflection, and diffraction. These phenomena enable the measurement
of various physical quantities, such as gravity, nuclear forces, and material structures. However, the
accuracy of these measurements is determined by statistical and systematic uncertainties. While sta-
tistical uncertainties have dramatically improved with the use of pulsed neutron sources, uncertainties
originating from optical components remain unresolved. This is due to the difficulty in focusing neu-
trons using electromagnetic forces, necessitating the use of large optical components and complicating
the development of components meeting the required precision. To enhance the accuracy of physical
measurements, this issue must be resolved.

The challenges associated with optical components can be categorized into three areas, as shown in
Section 1.3: the development of enlarged optical components with maintained accuracy, the accuracy
of component shape, and the precision in component installation. This paper aims to expand neutron
optics by addressing these challenges of component accuracy. The advancement of neutron optics
will not only improve the accuracy of measurements in neutron optics-based fundamental physics
experiments but also expand the range of feasible experiments.

In the following chapters, Chapter 2 will outline the necessary developments to expand neutron
optics. These developments will tackle the three identified challenges using advanced machining tech-
nologies. The solutions to these challenges will be demonstrated through experimental proof in Chap-
ters 3, 4, and 5, showcasing the progress in neutron optics. Chapter 6 discusses the impact of expanded
neutron optics on fundamental physics. Finally, Chapter 7 concludes this dissertation.
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Methods
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Chapter 2

Extension of Neutron Optics Using
Advanced Machining Technology

Neutron optics serves as an effective tool for investigating fundamental physics, yet the scope of
its exploration is nearing its potential limits. To surpass these constraints, enhancing the precision
and broadening the region of phenomena manageable by neutron optics is essential. Addressing this
challenge, I propose the utilization of advanced machining technology for the development of neu-
tron optical components. This technology, which began with aspherical lens machining around 1980,
marked a significant change in the manufacturing process. The traditional process, once reliant on
spherical symmetry and loose abrasive grains, evolved into a cutting procedure employing a machining
device with approximately 1 nm precision. This advancement enabled rapid and mass production of
components demanding near-nanometer precision. This advancement encompasses a suite of ultra-
precision mechanical component technologies, including guide systems, feed mechanisms, length mea-
suring systems, and control systems for machining equipment. The development of shape-measuring
devices to assess workpieces also supports this technology. Furthermore, to achieve high-precision
machining and evaluation of workpieces without compromising reproducibility due to disturbances
and other factors, advanced design technology is indispensable. This dissertation collectively refers to
these design, machining, and evaluation methodologies as “Advanced Machining Technology”.

Advanced machining technology has been increasingly applied in physics experiments, notably in
X-ray focusing systems[72], sequentially timed all-optical mapping photography (STAMP)[73], near-
infrared spectroscopy[74], and in measuring the roundness of silicon spheres for determining the Planck
constant[75]. However, its application in neutron optics is relatively nascent, with limited uses such
as in the development of neutron mirrors[76, 77, 78], suggesting significant untapped potential. By
utilizing this technology for the development of neutron optical components, the accuracy of each
aforementioned component can be enhanced. Developing these components in-house allows for flexible
adjustment of the guaranteed accuracy to align with the experimental system, thus improving the
efficiency of the development process. It also facilitates fine-tuning of the equipment before and after
experiments, accelerating the development cycle. Improving the accuracy of each component will
reduce the uncertainty in physics experiments, enabling the investigation of new areas in physics.

In the subsequent sections, Section 2.1 provides a detailed explanation of the advanced machining
technology. Section 2.2 outlines a method to demonstrate that neutron optics can be developed
utilizing this technology.
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2.1 Advanced Machining Technology

The advent of aspherical lenses around 1980 marked the beginning of ultra-precision machining
technology, a key component of advanced machining technologies. Since the 13th century, lens ma-
chining has relied on spherical symmetry and loose abrasive grains to achieve the desired precision.
This process evolved with the introduction of diamond tool cutting, enabling the mass production
of aspherical plastic lenses by creating molds. Today, ultra-precision machining equipment with a
control resolution of 1 nm or less is a reality. It’s employed in fabricating various consumer device
components, such as hard disk media and polygon mirrors. The achievement of high control resolution
has allowed the ductile mode machining of brittle materials like glass, silicon, and germanium, similar
to how metallic materials are processed, by using extremely small depths of cut.

Ultra-precision machining technology operates by transferring the precise motion trajectory of
the machining device to the workpiece using a single-crystal diamond tool. The development of these
machining tools is supported by ultra-precision mechanical component technologies, including guidance
systems, feed mechanisms, length measuring systems, and control devices. The performance of ultra-
precision machined workpieces is assured by evaluating them with an accuracy equal to or greater
than the machining accuracy. Since contact-based workpiece evaluation can lead to scratches and
deformation, non-contact measurement methods using light or similar means are generally employed,
allowing for evaluations with an accuracy of up to 0.1 nm. Workpieces and machining tools made of
metal are not immune to temperature-induced deformation. For instance, 1 m of iron will deform by
12 µm with a temperature change of 1 K. Therefore, the temperature is controlled to about 0.0001 K
to mitigate this effect.

In the following sections, the advanced machining technology equipment suite utilized in this study
is introduced. This section can be skipped if not deemed necessary.

2.1.1 Ultra-High Precision Machining

When planning machining processes, it is crucial to consider in advance the specific type of ma-
chining required to achieve the target accuracy. The shape accuracy of the workpiece is determined
by various factors, as outlined in the Table 2.1. This table details the factors contributing to accuracy
reduction in relation to each aspect required for machining. While the precision of a workpiece is
primarily influenced by the machining device’s accuracy, it’s essential to account for a multitude of
factors. These include the machining method, the accuracy of workpiece installation, tool selection,
and environmental considerations such as external disturbances. Therefore, all these aspects must be
taken into account to ensure the desired accuracy in the machining of the workpiece.

Table 2.1: Machining Accuracy Relationship Table.
Machine Environments Workpiece Tools Methods

Machining precision ⃝
Work stability ⃝ ⃝ ⃝
Tool stability ⃝ ⃝ ⃝
Temperature ⃝ ⃝ ⃝ ⃝ ⃝
Roundness ⃝

Time dependence ⃝ ⃝
Violation ⃝ ⃝

Workpiece installation ⃝ ⃝

The high-precision aspheric and free-form surface grinders available at RIKEN are the ULG-100A
(H3) and ULG-100D (5A) from Toshiba Machine Co. The appearance of the two machines is shown
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in Figure 2.1, and the configuration of the available axes is shown in Figure 2.2. These machining
centers are specialized ultra-precision machines, specifically engineered for high-precision turning and
grinding of free-form surfaces. The primary distinction between the two machines lies in their ma-
chining accuracy, with the ULG-100D (5A) capable of achieving higher precision. The performance of
ULG-100D (5A) is summarized in Table 2.2. This heightened accuracy in ultra-precision machines is
determined by several critical factors.

• Accuracy of stage movements

• Accuracy of stage position measurements

• Accuracy of grinding tools

• External factors such as temperature and vibrations

These factors are briefly discussed below.

(a) ULG-100A(H3) (b) ULG-100D(5A)

Figure 2.1: Image of the processing machine.４．軸構成比較（模式図）
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Figure 2.2: Axes configuration of the processing machine for (left) ULG-100A(H3) and (right) ULG-
100D(5A).
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General-purpose machining centers typically employ a screw feed mechanism to move the stage.
This method involves transmitting the rotational power of the screw to the stage, thereby allowing
very precise positioning in a fixed direction, especially when bearings with high rigidity in the feed
direction are used. However, this approach has its drawbacks, including backlash in the screw rotation.
Additionally, vibration components in the drive direction and other disturbing forces, such as power-
induced vibration and screw pitch errors, can adversely affect the stage, diminishing its movement
accuracy. To address these issues, ultra-precision machines often utilize a linear motor drive. The
operational principle of a linear motor drive is similar to that of a rotary motor, except that it operates
along a linear axis. In this setup, a fixed magnet and an electromagnet are positioned between the
stage and the guideway. The stage movement is facilitated by the attraction and repulsion between
their magnetic poles. This movement method, being non-contact and not requiring a deceleration
mechanism, allows for highly accurate stage movement due to its high coupling accuracy and non-
contact nature.

In general machining centers, three primary types of guideways are utilized: sliding guideways,
hydrostatic guideways, and rolling guideways. The rolling guideways system is frequently utilized in
precision machining equipment due to its low motion error resulting from friction. This makes it a
preferred choice for applications requiring high accuracy. However, it’s important to note that this
system is not without its challenges. It does not have a mechanism to prevent errors caused by de-
formation due to dimensional differences in the rolling components. Additionally, vibrations caused
by the elastic deformation of the rolling components as they pass through can also introduce errors,
impacting the overall precision of the machining process. Ultra-precision milling machines address the
aforementioned issues by employing V-V rolling guides. The V-V rolling guideway mitigates dimen-
sional errors through the use of two V-shaped guides to steer the stage. This configuration enhances
the accuracy of stage movement, enabling it to follow commands with a precision of approximately 1
nm. This motion of accuracy is particularly crucial in applications where ultra-precision is essential,
ensuring that the machining process meets the stringent requirements for precision and reliability.

In ultra-precision machines, the accuracy of stage position measurement is of utmost importance.
To achieve this high level of precision, a lattice interference encoder utilizing a hologram scale is
employed. This encoder works on the principle that when a laser is incident on a hologram with a
periodic structure, the resulting intensity pattern is a sinusoidal wave that mirrors the period of the
hologram. For instance, if the hologram has a period of 250 nm and the sine wave generated by the
hologram’s interaction with the laser is divided into 250 analog-to-digital (AD) conversion divisions, the
position can be identified with a resolution of 1 nm[79]. This high-resolution measurement capability
is essential for precisely determining the position of each stage in ultra-precision machines, ensuring
accurate and reliable machining operations.

External factors such as temperature and vibration are critical considerations in the operation
of this machine. To mitigate these, the lubricating oil supplied to the machine’s moving surfaces is
temperature-controlled and continuously circulated to maintain a uniform temperature throughout
the machine. Machining is standardized at 23◦C to ensure consistency.

Vibrations affecting the machine are categorized into three types: internal vibrations from machine
components and operator movement, external vibrations from ground movements caused by nearby
railroads or construction sites, and natural external forces from earthquakes or wind. To address these,
the machine is installed on an active vibration isolation device, which primarily counters vibrations
from the ground. For vibrations not eliminated by this isolation device, an internal vibration suppres-
sion mechanism, known as a torque command filter, is used. Additional measures are also important,
such as distancing workers from the machine during operations, installing the machine away from
direct sunlight, conducting machining at night when external vibrations are minimal, and minimizing
machining duration to reduce temperature variation effects. Neglecting these factors can significantly
impact machining accuracy, preventing the machine from reaching its full potential. Therefore, careful
management of temperature and vibration is essential for optimal machine performance.
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2.1.2 Quantitative Evaluation Method for Component Accuracy

The created components are quantitatively evaluated using measurement devices appropriate for
the desired information. Here, I define a coefficient to assess the accuracy of the component. For
simplicity, let’s consider a two-dimensional component with an imperfect shape as illustrated in Fig-
ure 2.3. The macro shape of the component is represented by function F (x). Flatness refers to the
deviation of a planar object from a geometrically perfect plane (geometric plane). It can be expressed
using the difference between the ideal function and the actual function, as follows:

flatness [m] = [(F (x)− Fi(x))]Max (2.1)

This value is widely used in the manufacturing industry to ensure the accuracy of a workpiece’s
shape. However, flatness cannot represent periodic shape features and does not incorporate the area
of the component in its evaluation. As a result, the flatness of an component tends to return better
values for smaller measurement areas, making it unsuitable for quantitative assessments. This kind of
evaluation index is not appropriate for neutron optics, which uses reflective optical systems. Therefore,
for assessing neutron optics component, the slope error, derived by differentiating flatness with respect
to position, is more suitable. Slope error is defined as follows:

slope error [rad] =

[
d

dx
(F (x)− Fi(x))

]
Max

(2.2)

This quantity represents the angular deviation of the component’s shape from its ideal plane, and
can be used to define the reflection angle in reflective optical systems. It’s important to note that
slope error may yield meaningless values at certain points, such as the edges of the component, so its
application is limited to effective ranges. The parallelism between two planes, A and B, can also be
defined similarly using slope error.

parallelism [rad] =

[
d

dx

(
FA
i (x)− FB

i (x)
)]

Max

(2.3)

The assessment of slope error and parallelism is conducted for components with sizes of several mil-
limeters or larger. While macroscopic shapes are evaluated for their slope error, microscopic shapes
are assessed based on roughness. The maximum height roughness within the measurement range is
represented by Rz, as shown on the right side of the Figure 2.3. The average roughness is calcu-
lated using the difference between the highest peak and the lowest valley within a reference length, as
follows:

roughness [m] =
1

L

∫
L

|f(x)− fi(x)| dx (2.4)

where L is the effective length indicating the measurement range. The roughness evaluation can
identify fine scratches caused by cutting marks during machining or dust particles. The effective
length is generally defined on a scale of mm or less. The component used for neutron optics are
evaluated by their slope error, parallelism, and roughness.

2.1.3 Evaluation Instruments

The accuracy of manufactured workpieces is assessed using measuring devices with a higher resolu-
tion than the machining process itself. These evaluation devices are crucial for assessing the installation
accuracy of workpieces and tools during machining, as well as for evaluating components during ex-
periments. Two distinct types of geometry and installation accuracy evaluation devices are described
below, each with its unique features: contact type and non-contact type.
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Figure 2.3: Macroscopic and microscopic shape evaluation methods.

1D Contact Sensors

The MU-CHECKER from Mitutoyo Corp. was utilized for measurement purposes. This device
features a measurement range of ±0.5 mm. The expected measurement accuracy is approximately
1 µm. As the measurement target is defined by the contact area of the probe, this allows for the
measurement of macroscopic displacements.

Ultra-high accuracy CNC coordinate measuring machine

The Legex 707 (3DFD) from Mitutoyo Corp. was used for shape measurements. The measurement
is conducted by bringing the contact point, made of a red ruby at the tip of the measuring instrument,
into contact with the object being measured. This instrument is specifically designed for high rigidity,
superior damping, and precise motion. It is also calibrated to accommodate vibrations and temper-
ature changes. This calibration is crucial for its ability to comprehensively analyze and eliminate
potential error factors, ensuring accurate and reliable measurements. As a result of this design and
calibration, the device can perform shape measurements with an accuracy of 0.28+L/1000 µm, where
L represents the length of the object being measured. This formula indicates that the measurement
accuracy is dependent on the size of the object, ensuring precise measurements across a range of object
sizes.

Non-contact 3D shape measuring machine

The PFU-3 from Mitaka Kohki Co. was utilized for shape and roughness measurements. This
device features a laser with a wavelength of 635 nm, and it boasts a measurement accuracy of ±0.5 µm.
This instrument is capable of measuring both the microscopic and macroscopic shapes of an object by
moving the stage that carries the object. This functionality allows for a comprehensive evaluation of
the object’s dimensions and shape across different scales.

Write laser interferometer

The NewView 7200 from Zygo Corp. was employed for roughness measurements. This instrument
utilizes white light interferometry to acquire interference fringes based on the varying distance to the
reflective surface of the measurement target in response to incident white light. The shape of the
object is determined by these interference fringes. The vertical distance is calculated using frequency
domain analysis, a proprietary interference peak detection method developed by Zygo. Owing to
this advanced methodology, this instrument achieves extremely high measurement accuracy. It is
capable of resolving details to less than 0.1 nm in the vertical direction within a measurement range
of 0.4 × 0.3 mm. This level of precision makes it highly suitable for applications requiring ultra-fine
measurement resolutions.
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HeNe laser interferometer

The flatness and slope error measurements were conducted using the Verifire from Zygo Corp. This
instrument operates on the Fizeau interferometric principle and employs a HeNe laser at 633 nm. The
instrument is capable of emitting a laser beam with diameters of 102–152 mm, and it boasts a high
measurement accuracy of less than 0.06 nm within that range[80]. This capability allows for the mea-
surement of an object’s shape within the laser-irradiated area in a single measurement session. This
approach effectively eliminates the movement errors that can occur when repositioning the object,
thereby enhancing the reliability and precision of the measurements. This single-measurement capa-
bility is particularly beneficial for assessing large or complex surfaces where maintaining consistent
positioning can be challenging.

Autocollimator

The autocollimator was employed for parallelism measurements between two measurement objects.
In this process, a laser emitted from a point source is collimated through a lens. The parallelism of
the measurement object is then assessed by detecting the position of the laser reflected off the object.
Generally, an autocollimator is capable of measuring relative changes in the yaw and roll directions of
the measurement target. When two measurement targets are simultaneously illuminated, the reflected
laser is detected at two distinct positions, varying based on the parallelism of these targets. The
accuracy of parallelism measurement with an autocollimator depends on several factors: the precision
of the lens curvature, the size of the laser collimation, and the positional resolution of the detector.
Typically, the resolution of this method is about 5 µrad. This level of precision makes autocollimators
a valuable tool for precise alignment and angle measurements in various applications.

2.2 Approach Method

To explore fundamental physics, the development of neutron optics is essential. The advancement of
neutron optics can be achieved by enhancing the precision of each component and expanding the range
of phenomena that can be handled. Neutron optics components require precision at the micrometer
to nanometer scale, necessitating improvements in the development accuracy of these components.
In neutron optics, which traditionally uses large components, the focus has often been on improving
the statistical quantity of neutrons rather than addressing uncertainties due to the shape accuracy of
components. Additionally, the variation in components used across different experimental systems has
led to a lack of widespread development in neutron optics. In this context, neutron optics can advance
by utilizing advanced machining technologies, including general technologies, for the development of
components. The advancement of neutron optics can be approached in three ways: “improvement of
large optical components with maintained accuracy”, “improvement of component shape accuracy”,
and “improvement of component installation accuracy”. The following sections will explain how these
three methods contribute to the advancement of neutron optics. Experiments that demonstrate the
advancement of neutron optics using these three methods are presented in the subsequent Part III.

2.2.1 Improvement of Large Optical Components with Maintained Accu-
racy

In neutron reflection optics, the required accuracy of surface roughness increases in proportion to
the square of the wavelength of the neutrons used, and the required accuracy of shape increases in
proportion to the wavelength, as explained in Section 1.3.1. To achieve epithermal neutron reflection,
development of a mirror with 0.15 mrad slope error, a 6 m footprint, and 0.025 nm surface roughness
is required. When compared to typical mirrors with several mrad of slope error, a footprint of about
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100 mm, and surface roughness of approximately 0.1 nm, developing an epithermal neutron reflection
mirror seems unrealistic. Considering a more practical system, if we assume the use of a multilayer
mirror with an m = 6 and an incident neutron width of 1 mm, the critical reflection angle for 1 eV
neutrons becomes 3 mrad. In this case, the required flatness of the mirror is 0.3 mrad. Even with the
typical mirror surface roughness of 0.1 nm, this would only result in a 2% reflectivity loss. Such a mirror
can be fabricated by combining conventional machinery with a glass substrate. The shape accuracy
of the mirror produced can be quantitatively assessed using the array of measurement instruments
employed in advanced machining technologies, as described in Section 2.1.3. Experiments reflecting
epithermal neutrons using this large planar mirror are discussed in Chapter 3.

2.2.2 Improvement of Component Shape Accuracy

The interactions observed between neutrons and matter depend on the interaction distance. In
various experiments, physical quantities are obtained by subtracting the interaction distance from the
observed measurements. Therefore, the accuracy of these measurements depends on the precision with
which the interaction distance is determined. In experiments using crystal diffraction, the interaction
distance corresponds to the crystal’s thickness, necessitating precise determination of this value. In
experiments searching for the fifth force using neutron dynamical diffraction, the accuracy of the
single-crystal sample’s thickness becomes the most dominant source of systematic error, posing a
significant challenge. The absolute value of the sample thickness can be eliminated by the combined
measurement of coherent scattering length and forward scattering length, using dynamical diffraction
and neutron interferometer respectively. It is important to note that the sample thickness needs to be
the same value in both experiments. The required parallelism accuracy for the sample in this context
is less than 1 µm. This level of precision can be achieved by employing ultra-precision machining with
a grinding method on single-crystal samples. Conducting experiments with samples processed in this
way enables the search for the fifth force. This research is explained in Chapter 4.

2.2.3 Improvement of Component Installation Accuracy

Neutron interferometer is achieved by controlling neutron waves with precision at the nanometer
scale. Neutron interferometers, which are composed of recombining neutron waves that have been split
into two paths, are widely used as devices to precisely measure neutron interactions. Existing neutron
interferometers control neutron waves with accuracy within the coherence length using diffraction
in silicon single crystals. However, to improve measurement sensitivity, the development of neutron
interferometers using methods other than crystal diffraction is sought, as sensitivity enhancement
is achieved through enlargement or the use of longer wavelengths. Interferometers using neutron
mirrors can resolve these issues and enable high-sensitivity measurements, thus allowing for precise
exploration of fifth force. The installation precision of neutron mirrors is determined by the coherence
length, which is approximately 30 nm. To install each component with this level of precision, etalon
substrates, widely used in laser optics, can be employed. The installation precision of each mirror
can be achieved with micro-radian accuracy using autocollimators. These techniques were utilized to
install optical components and verify whether they can improve installation accuracy and measure
neutron interference. This research is described in Chapter 5.
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Part III

Demonstration
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In this part, we fulfill the requirements discussed in chapter 1 for large optical components with
maintained accuracy, component shape accuracy, and component installation accuracy using the ad-
vanced machining technologies outlined in chapter 2, and conduct demonstration experiments.

In neutron reflection optics, as explained in Section 1.3.3 the precision required for mirrors increases
with the square of the wavelength of the neutrons used, necessitating higher surface roughness precision
and greater shape accuracy proportional to the wavelength. To realize epithermal neutron reflection
in a practical system, if we assume the use of a multilayer mirror with m = 6 and an incident neutron
width of 1 mm, the critical reflection angle for 1 eV neutrons becomes 3 mrad. At this point, the
required slope error for the mirror is 0.3 mrad, which is described in Section 2.2.1. Even with the
typical mirror surface roughness of 0.1 nm, this would only result in a 2% reflectivity loss. Such mirrors
can be fabricated by combining conventional machinery with a glass substrate. The shape accuracy
of the mirrors produced can be quantitatively assessed using the array of measurement instruments
employed in advanced machining technologies, as described in Section 2.1.3. A neutron mirror meeting
these conditions was developed, and experiments measuring the reflection of epithermal neutrons were
carried out. These demonstration experiments are explained in Chapter 3.

In neutron optics, the interactions observed between neutrons and matter depend on the interaction
distance. In experiments searching for the fifth force using neutron dynamical diffraction, the accuracy
of the single-crystal sample’s thickness becomes the most dominant source of systematic error, posing
a significant challenge. The absolute value of the sample thickness can be eliminated by the combined
measurement of coherent scattering length and forward scattering length, using dynamical diffraction
and neutron interferometer respectively. It is important to note that the sample thickness needs to
be the same value in both experiments. To carry out this requirement, the precision of parallelism
required for the sample is less than 1 µm. To achieve this, ultra-precision machining with a grinding
method was applied to single-crystal samples. Previous research has demonstrated that combining
experiments using ultra-precisely machined silicon single crystals with neutron interferometers can
increase the range of search for fifth force by up to two orders of magnitude. Adding experiments
using ultra-precisely machined germanium single crystals can further enhance the sensitivity of these
searches. This research is discussed in Chapter 4.

In Chapter 5, I discuss the practical application of neutron interferometers using multilayer mirrors,
achieved by improving the installation accuracy of components. Neutron interference is accomplished
by controlling neutron waves with precision at the nanometer scale. Neutron interferometers, con-
structed by recombining neutron waves that have been separated into two paths, are widely used for
precise measurements of neutron interactions. Existing neutron interferometers control neutron waves
within the coherence length using diffraction in silicon single crystals. However, to enhance measure-
ment sensitivity, larger-scale or longer-wavelength approaches are required, leading to the demand for
the development of neutron interferometers using methods other than crystal diffraction. I focused
on neutron interferometers, which use neutron mirrors to control neutron wave motion. By using
each mirror as an optical substrate used for laser optics and a laser surveying system, I developed an
interferometer that met the required accuracy. By measuring the neutron nuclear scattering length
using the developed interferometer, we confirmed that the interferometer functions properly. The
development of this interferometer has made it possible to improve the accuracy of the measurement
of neutron interactions and opened up the possibility of various physics experiments.
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Chapter 3

Demonstration of Large Optical
Components with Maintained
Accuracy: Epithermal Neutron
Reflection

The successful operation of spallation neutron sources, driven by intense proton beams, has enabled
energy-resolved intense neutrons in the thermal and cold regions and also in the epithermal regions[81,
62, 64, 65]. In this description, we refer to neutrons with kinetic energy En in the region of 0.5–1 eV
as “near-epithermal” neutrons. The energy resolution of the pulsed near-epithermal neutron beam
facilitates efficient observations of neutron scattering with a large energy transfer in materials and
precise studies of neutron-induced compound nuclear states for symmetry breaking at fundamental
levels[31, 32, 33].

The use of transport optics for near-epithermal neutrons can significantly improve the efficiency
of neutron applications in fundamental and practical experiments. A specular neutron reflector on
the surface and interface of materials is the most commonly utilized optical device, which transports
grazing-angle incident neutrons[82]. The transport systems using magnetic potentials have also been
developed, however, their use is limited due to the requirement of huge magnetic fields and long effective
lengths[83]. In transport using optical potentials, neutrons are reflected by the Fermi pseudopotential
of the interfacial material[84]. The neutron supermirror is one of the most widely used in recent
neutron facilities, which m-value is within the range of 2–3[85, 86, 87, 88, 89, 90]. Neutron mirrors are
also employed in focusing systems, polarizers, and monochromators, underscoring their indispensable
role in various scientific experiments. In contrast, the transport device for near-epithermal neutrons
is still in the development stage. Because the near-epithermal neutron transport requires the m-value
of approximately 10 or greater. In addition, the shape of the mirror requires 10 times more precision
than that of conventional mirrors. For these reasons, specular reflection of near-epithermal neutrons
has not been observed.

In this chapter, I approached the optical reflection measurement of near-epithermal neutrons as a
first step toward realizing epithermal neutron optics. To reflect epithermal neutrons, I fabricated a
multilayer mirror with a length of 300 mm and slope error of 0.3 mrad with m = 6. For the reflection
measurements, I created a low-divergence beam using crystal diffraction from the silicon wafer and
employed a neutron detector with high spatial resolution. By grazing incident epithermal neutrons on
this mirror and measuring their optical reflection, I demonstrated that large optical components with
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maintained accuracy could advance neutron optics.

3.1 Specular Reflection of Near-epithermal Neutrons

Neutrons are reflected at the interface by the Fermi pseudopotential of the material. The critical
grazing angle of the reflection θc is given as

θc =

√
bcN

π
λ, (3.1)

where N represents the atomic density. In the case of Ni, which is widely used as a neutron reflector
and has a large potential, its reflection angle can be written using neutron wavelengths as follows

θc
λ

= 0.0174 [rad/nm]. (3.2)

Generally, the energy of the neutron transported is 25 meV, which is a thermal neutron, so its reflection
angle is 5 mrad. On the other hand, near-thermal neutrons with an energy of 500 meV have a reflection
angle of 0.7 mrad, one order of magnitude smaller than thermal neutrons. Even if a supermirror with
m = 2–3 is used, its reflection angle is about 2 mrad, which is insufficient to control neutrons with a
beam area of several cm. From this, the reflections of high-energy neutrons with small reflection angles
are not suitable for transport guides. Nonetheless, the recent introduction of pulsed neutron sources
necessitates the development of robust control systems for epithermal neutrons. Neutron mirrors in
conduit systems represent a well-established neutron control technology with a substantial reservoir of
knowledge. Moreover, their adaptability to applications involving monochromators, focusing optics,
and polarization components is readily attainable. I have contemplated expanding the scope of neutron
mirror applications to encompass near-epithermal neutrons.

Reflective optics for epithermal neutrons are unsuitable for practical application due to their limited
reflection angles, and no proof of principle experiments have been conducted to date. In the initial
stages, it is imperative to ascertain whether epithermal neutrons can indeed undergo optical reflection.
As previously discussed in Chapter 1, neutron reflection relies on the Fermi pseudopotential of matter.
This pseudopotential assumes validity when the density of scatterers in the material is significantly
lower than the neutron wavelength. The precision of this approximation approaches a practical limit
as the neutron wavelength decreases. The experimental exploration of this adaptive limit is a crucial
step that remains to be undertaken for neutron reflection, and it is essential to provide empirical
validation in this context.

3.2 Accuracy Requirements for Mirrors

In order to achieve the reflection of epithermal neutrons with small reflection angles, the following
specific developments are needed.

• Expansion of reflection critical angle

• Low divergence beam generation

• Quantitative observation of microscopic neutron orbital changes

• Improvement of smoothness in the mirror
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Expanding the critical reflection angle enables alterations in neutron orbits that are detectable with
practical neutron detectors. The application of supermirrors is a means to achieve this expansion.
While most widely used supermirrors feature m-values of 2 or 3, some employ m = 6 mirrors[91], and
development on m = 10 mirrors is underway[92, 93]. To discern slight modifications in neutron orbit
resulting from the small reflection angle and the incident neutron orbit, generating a low-divergence
beam is essential. The assessment of such subtle changes in neutron orbit necessitates the utilization
of neutron detectors with high position resolution. The quality of neutron mirrors influences the
occurrence of off-specular reflections[94]. Consequently, the development of mirrors meeting these
requirements is of utmost importance.

3.3 Mirror Fabrication

I utilized an m = 6 monochromatic mirror to achieve a large reflection angle. This mirror was
produced using an ion beam sputtering system located at Kyoto University. This mirror consists of
NiC/Ti layers with a total of effectively 1600 layers; the thickness of each layer is 5 nm. Individual
layers exhibit a full-width variation of δd/d = 8%, which serves to diminish the reduction in reflectance
due to slight misalignments in the angle of incidence. The reflection angle for a 0.5 eV neutron reflected
using an m = 6 mirror is 4.2 mrad.

The mirrors were sputtered onto a glass substrate of 300 × 70× 1.1mm. The flatness of the glass
substrate formed by the amorphous layer is generally about 0.2 nm, so the sputtered layer can be
deposited stably. On the other hand, the substrate undergoes significant deformation due to layer
stress, and the flatness is approximately ⪆ 10 mrad. This slope error is larger than the reflection angle
of a neutron with an energy of 0.5 eV, which means that the neutron reflection angle has a relative
error of 100%.

To solve this problem, the glass substrate on which the mirrors were deposited was bonded to
an aluminum substrate with good shape accuracy. The aluminum substrate was machined by a
general-purpose machine tool, and its slope error was measured. Since the surface roughness of the
machined aluminum substrate was less than that measured by laser interferometry, the contact-type
shape measuring device was used to measure the surface. The results of the shape measurement of the
aluminum jig are shown in Figure 3.1. The slope error of the substrate is approximately 0.02 mrad,
which is about two orders of magnitude more accurate than the reflection angle of epithermal neutrons.
The mirrors were bonded to the aluminum substrate using wax that melts at about 60◦C. The wax was
applied to the aluminum substrate heated on a hot plate and cooled by placing a weight on the mirror
to be glued. Annealing of the wax in an oven was also performed but to no avail. The slope error of
the glued mirrors was measured using a laser interferometer and the results are shown in Figure 3.2.
The slope error of the bonded mirror was 0.3 mrad, which was one order of magnitude smaller than
the reflection angle of the 0.5 eV neutrons, and was approximately two orders of magnitude smaller
than typical neutron mirrors sputtered onto glass substrates.

The mirror, glued to an aluminum jig, was fixed to the moving stage by means of a three-point
support. The mirror stage was made using a micrometer and a hinge mechanism to fix and control
the mirror with the necessary precision. This enabled the alignment of the neutron incidence angle
and roll direction.

3.4 Specular Reflection for Cold Neutrons

To compare the reflectivity between near-epithermal and cold neutrons, we measured the cold
neutron reflectivity of the mirror in advance at BL10. The experiment setup is shown in Figure 3.3.
For a beam traveling along the z-axis, a mirror is placed on the yz-plane and the neutron is varied by
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Figure 3.1: The measured shape of aluminum substrates. The left figure shows the measured point,
and the right figure shows the measured

a small angle in the x-direction. The reflections by the mirror were measured by a neutron detector
capable of time and 2D position detection[69, 70]. The x distribution of the direct neutron and
reflected neutrons are shown in Figure. 3.5. The red distribution represents the direct beam, and the
blue distribution represents the reflected beam. The direct neutrons were detected around x = 53 mm,
and the reflected neutrons were detected around x = 43 mm. The reflection angle is based on the
position of the two peaks and the distance from the mirror to the detector. The positional shift between
direct and reflected neutrons was 9.56 mm, which positions of each distribution were obtained from
the fitting with a Gaussian function. Since the distance between the mirror and the detector was
768 mm, the obtained reflection angle was 6.22 mrad.

The wavelength dependence of reflectivity is determined from the TOF spectra of the detected
neutrons. The TOF spectra of each measurement are shown in Figure 3.5, which reflected neutron
was obtained from the region of the red line in Figure 3.4. The reflectivity of the mirror can be
determined by calculating the division of the direct beam spectrum by the reflected spectrum. The
TOF dependence of the obtained reflectivity is shown in Figure 3.6, where the reflectivity in the total
reflection region (q < 0.13 nm−1) is normalized to be 1. The reason for this is that not all neutrons hit
the mirror, which is evident in Figure 3.4. The momentum transfer is obtained from the wavelength
and reflection angle. The wavelength was determined using the TOF method, with the distance
between the neutron source and the detector being represented as 14.768 m. The reflectivity in the
region of q < 0.13 nm−1 was due to the total reflection by the Fermi pseudopotential of NiC/Ti. This
peak represents the reflection arising from Bragg diffraction of the multilayer, exhibiting a reflectivity
of 35%. The multilayer structure was purposely designed to possess a broadened peak width, whose
standard deviation was measured to be ±0.09 nm−1. This broadening relaxes the angular tolerance
required for aligning a monochromatic multilayer mirror to reflect a monochromatic beam, a task that
is otherwise difficult.

3.5 Configuration of Reflectivity Measurements of Near-epithermal
Neutrons

For the epithermal neutron reflection measurements, neutrons diffracted by the Si wafer were used
as the induction beam to the mirror in order to produce a low-divergence beam. The experimental
setup in BL10 is shown in Figure 3.7.

The neutron beams were collimated to 20×80 mm by a pair of slits (slit 1 and slit 2) made of 5 mm
thick B4C[95]. The frame overlap was eliminated by the mechanical chopper located 7.2 m away from
the moderator[96]. The collimated neutrons were directed in different directions from the beam axis
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Figure 3.2: Flatness of mirror substrate bonded on the aluminum substrate.

by Bragg diffraction on silicon wafers. The diffracted neutrons were incident to the mirror through
slit 3, which was a 50 mm-thick sintered B4C blocks with the aperture of 1.13 mm wide. The holder
of slit 3 was covered with a rubber sheet containing 10B to absorb scattered neutrons and to define
the diffracted neutron beam by 67 mm in the y-direction. The mirrors on the custom-made stage can
be aligned in both the θ and roll directions. The alignment in the roll direction was accomplished
with the laser. The diffracted and reflected neutrons were detected by a micro-pixel 3He-containing
chamber (µ-PIC)-based neutron detector capable of recording the arrival time and 2D position with
a spatial resolution of 350 µm[67, 68]. The neutron detector was positioned 665 mm away from the
center of mirrors to detect changes in trajectory resulting from neutron reflections accurately. The
neutron path length between the moderator and detector was 14.93 m. The neutron wavelength in
the pulsed neutron source was determined from the TOF and the distance from the moderator to the
detector.

3.6 Diffraction by the Silicon Wafer

The diffracted neutron by the silicon wafers was used as the incident neutrons to the mirror, which
can reduce the background of fast neutrons and flash gamma from the neutron source. The stack of 17
wafers of 5-inch diameter and 0.625 mm thickness was used instead of single bulk silicon so that the
decrease of the intensity of diffracted neutrons is suppressed by the small misalignment among wafers.
The measured TOF spectrum of neutrons diffracted by the silicon wafers is shown in Figure 3.8. The
diffracted neutrons were observed only at specific wavelengths that satisfied the Bragg condition. By
fitting each peak with a Gaussian function, the TOF observed diffracted neutrons were determined.
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Figure 3.3: Diagram of the experimental configuration of reflectivity measurement using cold neutrons.

The observed neutrons around 12 ms were due to diffraction by (111) of the Miller index, and higher-
order diffraction can be confirmed at an earlier TOF region. The observed tof for each diffracted
neutron, normalized by the diffraction order, is shown in Figure 3.9. The normalized TOF depending
on the diffraction order deviates from the fast direction by about 0.3%. This is presumably due to
the shift of the TOF origin, but since wavelength resolution is not important in this study, we ignore
it. The diffraction angle of a silicon wafer was obtained using (111) plane diffraction and the neutron
wavelength from TOF. The diffraction angle was θB = 29.5 deg, which was obtained by Bragg’s law
as 2a/

√
3 sin θB = nλ, where the λ is neutron wavelength, a = 0.5431 nm[97] is the lattice constant,

and n is the diffraction order.
The divergence of diffracted neutrons was determined from the spatial distribution. The standard

deviation of the diffracted neutron by (111) plane is 1.5585± 0.0008 mm, which was obtained by the
fitting for Figure 3.10. The beam divergence was θdiv = (σFWHM−w)/L = 2.761± 0.001 mrad, where
the w = 1.13 mm is the slit width, L = 920 mm is the length between detecter and slit, and the
σFWHM = 3.670± 0.002 mm is the full-width half maximum of the distribution.

The spatial spectra of diffracted neutrons were subtracted for background by using the spatial
distribution in the area where the diffraction conditions were not satisfied. As an illustration, the TOF
spectrum and position distribution of (777) diffractions by a silicon wafer are displayed in Figure 3.11.
Within the TOF spectrum, the section enclosed by the black line, where the diffraction wave was
observed, is identified as the signal region. The position distribution within this region is indicated
by the red line in the figure. In contrast, the background (BG) was computed from the position
distribution in the TOF region both before and after the signal region. The BG of the signal region
was interpolated by averaging the position distributions in the two areas marked by the black lines
before and after the signal region. The intensity distribution of the interpolated BG is depicted by the
blue line in the figure. Normalizing the neutron intensity involved subtracting the position distribution
in the BG region (blue) from the position distribution in the signal region (red).

3.7 Specular Reflection of Near-epithermal Neutrons

The diffracted neutrons were incident to the mirror to measure the near-epithermal neutron reflec-
tion. The spatial distributions of the reflected neutrons are shown in Figure 3.12 with the diffracted
neutrons. These spatial distributions subtracted the background distributions, which were obtained
from the region of the unsatisfied Bragg condition. The neutrons diffracted by (111) observed at
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x = 0 mm (see Figure 3.12a). In the spatial distribution of higher-order diffraction (see Figure 3.12b–
g), the diffracted neutrons were also observed around x = 0 mm. The diffraction by (222) and (666)
were not observed consistently with the distinction law. The highest order diffraction we observed was
(999).

In the spatial distribution with the mirror, the specular reflection of the neutrons diffracted by
(111) was observed at x = −5.5 mm (see Figure 3.12a). The reflection angle at the mirror was
θR = 4.09 mrad, which was obtained using the detection position and the length from the mirror to
the detector. Since we used the monochromatic mirror, the reflections of diffracted neutrons of (333)
and (444), which do not satisfy the reflectable momentum transfer of the mirror, were not observed
(see Figure 3.12b, c). The significant reflection peaks of neutrons diffracted by (555), (777), (888),
and (999) were observed in the range of −9 < x < −5 mm (see Figure 3.12e–g). Since the maximum
energy of the reflected neutrons diffracted by (999) was 0.7 eV, we successfully observed the specular
reflection of near-epithermal neutrons.

3.8 Reflection Angle of Near-epithermal Neutrons

To evaluate the reflection angle, we define the positional shift ∆x as the difference between the
position of the reflected neutrons and that of the diffracted neutrons. These positions of diffracted
and reflected neutrons were obtained by fitting the spatial distribution with a Gaussian function.
Monochromatic reflection is more reflective at 6Qc = 1.3 nm−1 because the mirror used is m = 6.
When the angle between the direct beam and the reflected beam is θ, the momentum transfer is
written as

q = 4π
sin θ/2

λ
. (3.3)

The position of the observed reflected neutron x is

∆x = L tan θ. (3.4)
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Figure 3.5: The TOF spectra of direct beam (blue) and reflected neutrons (red).

the relationship between neutron wavelength λ and detection position x is

∆x

λ
≈ 6QcLλ

2π
, (3.5)

where we use the approximation of tan θ = θ, sin θ = θ. The experimental values are the distance
between the mirror center and the detector is L = 665 mm and the 6Qc = 1.3 nm−1 represents the
momentum transfer of the monochromatic reflection. Considering a mirror width of 300 mm and a
beam width of 1.13 mm, the Eq.(3.5) has a following value:

∆x

λ
= 136.5± 30.2 mm/nm. (3.6)

The wavelength dependence of the measured positions of the reflected neutrons obtained in the
experiment is shown in Figure 3.13. Since there is a linear relationship between reflection positional
shift and wavelength, it was fitted with a linear function. The dependence between ∆x and λ deter-
mined by the measurement was 112 ± 5 mm/nm. This measured value deviates from the expected
design value by 19.7%, implying that the neutron beam isn’t precisely hitting the center of the mirror.
The beam’s impact point on the mirror was 131 mm away from the mirror’s center, which is notably
shorter. Consequently, the actual mirror-to-detector distance was estimated to be 534 mm, accounting
for the total mirror length of 300 mm. Given an angle of incidence of 4.09 mrad, a deviation of 131 mm
in the z-direction corresponds to a displacement of 0.536 mm in the x-direction. This discrepancy is
feasible, considering the inherent limitations in aligning the mirror accurately in the x-direction.

The detected position of the reflected neutron at λ = 0 was estimated through extrapolation
via fitting and resulted in 1.84 ± 0.28 mm. This measurement poses a geometric issue since the slit
width is 1.13 mm, rendering the obtained position geometrically impractical. This discrepancy is
expected to the trajectory of diffracted neutrons caused by the silicon wafer. The positions where
diffracted neutrons were observed without mirrors are illustrated in Figure 3.14 for each diffraction
order. Notably, the direction of diffracted neutrons varies based on the diffraction order. The positions
where diffracted neutrons are observed exhibit a shift of approximately 0.25 mm, all in the negative
direction, corresponding to the direction where reflected neutrons are observed. This observation
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Figure 3.6: The measured reflectivity of the multilayer neutron mirror used in this experiment as a
function of the neutron momentum transfer q. The dashed line representsm = 6, where the momentum
transfer is q = 1.3 nm−1.

suggests that the reflection angles become relatively shallower with higher diffraction orders. The
cause of this problem is unknown and should be resolved in the next experiment.

3.9 Reflectivity of Near-epithermal Neutrons

The reflectivity R for each neutron energy was calculated using

R =
Ireflection

Idiffraction − Igrazing
, (3.7)

where the Ireflection was the intensity of reflected neutrons integrated with the region of −14 < x <
−4 mm, Igrazing was the intensity of detected neutrons integrated with the region of −4 < x < −1 mm,
and Idiffraction was the intensity of diffracted neutrons integrated with the region of −5 < x < 5 mm.
The Igrazing represents the neutrons that were not irradiated by the mirror. The observed reflectivity
of each near-epithermal neutron is shown in 3.15, along with the cold neutron reflectivity as Designed
R. The reflectivities of near-epithermal neutrons at (111), (333), and (444) were consistent with the
designed value. In contrast, the reflectivity higher than (444) was not consistent with the design
values. The reflectivity of (888) was 7.9±0.6%, which was unexpectedly smaller than the design value
of 31.5%. It suggests a slight misalignment of the mirror position and rough surface of the mirror.
The origin of this discrepancy has not been identified due to statistical limitations.

Finally, the observed reflectivity and positional shifts of each near-epithermal neutron are sum-
marized in Table 3.1, along with the cold neutron reflectivity as Designed R. Improved measurement
with better statistics would be necessary for the quantitative understanding of neutron reflectivity for
practical applications. A more detailed discussion can be expected by increasing the statistics through
future improvements, such as the use of the large m-value supermirror.
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Table 3.1: The characteristics of neutrons diffracted by the silicon wafers.
Order E (eV) q (nm

−1
) R (%) Designed R (%) ∆x (mm)

(111) 0.008 58 0.166 25.3 ± 0.0 25.0 5.5 ± 0.0
(333) 0.0772 0.499 1.4 ± 0.0 0.9 —
(444) 0.137 0.666 2.1 ± 0.0 0.5 —
(555) 0.215 0.832 3.7 ± 0.1 0.6 8.5 ± 0.1
(777) 0.420 1.17 7.3 ± 0.5 9.3 6.6 ± 0.1
(888) 0.549 1.33 7.9 ± 0.6 31.5 6.0 ± 0.1
(999) 0.695 1.50 10.7 ± 2.9 6.8 5.1 ± 0.3

3.10 Conclusion

Given the recent utilization of pulsed neutron sources, there has been a growing demand for the
practical implementation of reflective optics for epithermal neutrons across various fields. As a pre-
liminary step toward achieving this reflective optics, the experimental confirmation of the optical
reflection of near-epithermal neutrons was pursued. The reflective experiment employed a m = 6
multilayer neutron mirror with a slope error of 0.3 mrad. Diffracted neutrons from a silicon wafer
were employed for the incident neutrons directed toward the mirror. This method allowed for the use
of a low-noise environment with a neutron beam exhibiting a small divergence angle and facilitated
the separation of reflected neutrons from direct beams. A µ-NID with a resolution of 350 µm was
used as a neutron detector to observe small orbit changes of reflected neutrons. The optical reflections
of epithermal neutrons were measured by employing grazing diffracted neutrons onto a mirror. The
experimental findings revealed the observation of optical reflections of epithermal neutrons with ener-
gies up to 0.7 eV due to the achievement of large optical components with maintained accuracy. The
positions at which the reflected neutrons were observed aligned with the expectations from geometric
optics. However, the actual reflectivity deviated from the theoretical predictions by up to 24%. The
cause of this variance remains unknown and is expected to be revisited and revalidated in the future
with improved statistical analyses.

The realization of epithermal neutron reflective optics will lead to significant advances in exper-
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Figure 3.8: The TOF spectrum of the diffracted neutrons by the silicon wafers. The inset figure shows
the enlarged spectrum in the TOF region from 1 ms to 4.5 ms.

imental systems. Mirrors with intricate shapes, including elliptical surfaces, have been successfully
developed by depositing films onto Ni-P plated metal substrates[77]. Advancements in recent research
have also expanded the methods for generating multilayer mirrors, contributing to the potential de-
velopment of neutron mirrors with m = 10[93, 92]. This progress suggests that the fusion of these
technologies could lead to the creation of an optical system adept at efficiently transporting epithermal
neutrons.

The realization of epithermal neutron reflection optics can also be used to validate theories de-
scribing neutron optics. Neutron optics relies on an approximation where the potentials arising from
individual nucleons are indistinguishable. However, the energy extent to which this approximation re-
mains valid is yet undetermined. While certain studies have approached this issue theoretically, there
has been no experimental verification. Exploring the adaptive boundaries of neutron optics becomes
essential for its advancement. It not only aids in understanding the limits of the approximations uti-
lized in describing neutron interactions but also quantifies their accuracy in constructing theoretical
frameworks. Expanding the domain of neutron optics to include epithermal neutrons is poised to
significantly contribute to the progression of various neutron experiments.

The near-epithermal neutron reflection measurement experiment can influence the experimental
and theoretical system using neutron optics described above due to the realization by the development
of a large element that maintained accuracy. This demonstrates that the development of large elements
that maintain accuracy will advance neutron optics.
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Chapter 4

Demonstration of Improved
Component Shape Accuracy:
Pendellösung Interferometry

New physics, which can explain physical phenomena in general terms beyond the Standard Model of
particle physics, predicts the existence of the fifth force. The fifth force can be described by measuring
the gravitational interaction with an additional term, and search experiments are being conducted
worldwide. Search experiments using neutrons can place strong limits on the effective distance on the
nm scale, but their search range is far from the range predicted by the new physics, and a further
improvement in search sensitivity is needed.

I have performed a search for the fifth force using pendellösung interferences. Pendellösung in-
terferences are observed as interference fringes indicating interactions inside a crystal when neutrons
are incident on a single crystal sample to satisfy the Bragg condition. While the interactions inside
the crystal can be determined with high precision, the accuracy of the measurement is dictated by
the experimental setup, such as the size of the crystal. In particular, the crystal thickness, which is
the most dominant source of systematic error, must be determined with high precision. Therefore, we
eliminated the term of crystal thickness from the experimental values by combining experiments using
neutron interferometry. To eliminate this term, the sample thickness must be uniform over the entire
area used in the experiment. In order to achieve uniform thickness of the sample, crystal fabrication
was performed using ultra-precision machining techniques.

In previous studies, we have succeeded in updating the search range for the fifth force by up to
two orders of magnitude in experiments using silicon single crystals. To extend this search range, we
are planning to conduct experiments using germanium. In order to perform this experiment, we have
calculated the range of the fifth force that can be explored by using germanium and processed the
samples.

4.1 Pendellösung Interferometry

Pendellösung Interferometry is caused by the interference of waves inside single crystals with pe-
riodic potentials. This phenomenon was demonstrated in 1968 as neutron kinetic diffraction and has
been the cornerstone of widely used neutron diffraction experiments[98]. Here we will understand
pendellösung Interferometry using the wave function in periodic potentials as a starting point.

In the scattering by the periodic potential, the wave function of the scattered wave can be written
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as
ψ (r) =

∑
q

ψqe
iq·r. (4.1)

The Schrödinger equation can be written as follows(
k20 − (kj + q)

2
)
ψj
q =

∑
q′

vq−q′ψ
j
q (4.2)

where v is the eigenvalue of the wave function and can be written as follows

v(r) = 2mṼ (r) (4.3)

using the Fourier transferred potential Ṽ . Considering the momentum transfer satisfying the diffrac-
tion condition in a scatterer with reciprocal lattice vector H up to second order, we can write it in
terms of q = 0 and q = H. From this condition, the wave equation(4.2) can be expressed as(

K2
0 − k20 + v0 v−H

vH K2
H − k20 + v0

)(
ψ0

ψH

)
= 0, (4.4)

where K0, and KH = K0 −H are the wave vectors inside the crystal, and the k0 is the wave vector
of incident wave. In order for this to have a non-zero solution, the secular equation of the left-term
determinant must be zero. The incident neutron satisfying the diffraction condition can be written in
terms of the following two wave vectors:

k20 = v0 +
1

2

(
K2

0 +K2
H

)
±
√

1

4
(K2

H −K2
0 )

2
+ vHv−H , (4.5)

k20 = v0 +
1

2

(
K2

H −K2
0

)
+K2

0 ±
√

1

4
(K2

H −K2
0 )

2
+ vHv−H . (4.6)

It can be seen that K0 has two states. Here, the component of K0 perpendicular to H is defined as
Kζ , and the parallel component as Kξ. When the neutrons incident on the crystal, Kζ causes a slight
wavenumber shift δK0 by the refractive index. The wave vector inside the crystal can be written as

K±
ζ = k20 −

1

4
H2 + (δK0)

2 − v0 ∓
√
(δK0H)

2
+ vHv−H , (4.7)

where the solution at δK0 = 0 is the wave vector of incident neutrons with momentum corresponding
to the exact Bragg condition, and δK corresponds to the vector component of the internal crystal
wave along the Bragg plane. Each solution in ± of Eq. (4.7) creates two dispersion surfaces. A
dispersion surface is a hyperbola connecting the points where KH +K0 = H when shifted by δK. The
relationship between the momentum of incident neutrons in the crystal and the dispersion surface is
shown in Figure 4.1. The separation due to dispersion by δK depends on vH and thus on the potential
between the scattering center and the neutrons. From this, the effective refractive index can be written
as

n± =
K±

ζ

k0
=

(
1− 1

k20

(
v0 + δK0H ±

√
(δK0H)

2
+ vHv−H

)) 1
2

(4.8)

≈ 1− 1

2k20

(
v0 + δK0H ±

√
(δK0H)

2
+ vHv−H

)
(4.9)

It can seen that there are two different effective refractive indices in each of the two eigenstates, which
physically lead to two eigenstates. These two eigenstates are generally called the α state and the β
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Figure 4.1: dispersion surface.

state, and interference fringes are obtained when they interfere with each other. Rewriting the wave
numbers inside the crystal using these different refractive indices, we obtain

Kα
0 = n+k0 (4.10)

Kβ
0 = n−k0 (4.11)

Kα
H =

(
1− n+

)
k0 (4.12)

Kβ
H =

(
1− n−

)
k0 (4.13)

and the wave function inside the crystal can be rewritten as follows

Ψ (r) = ψα
0 e

iKα
0 ·r + ψβ

0 e
iKβ

0 ·r + ψα
He

iKα
H ·r + ψβ

He
iKβ

H ·r. (4.14)

where ψα
0 and ψβ

0 denote the amplitudes of diffracted transmitted waves, and ψα
H and ψβ

H denote the
amplitudes of diffracted reflected waves. By adapting the two refractive indices to the Eq. (4.4), the
wave function outside the crystal can be written as

ψα,β
H

ψα,β
0

=

(
Kα,β

0

)2
− k20 + v0

−v−H
=

−vH(
Kα,β

H

)2
− k20 + v0

. (4.15)

The respective amplitudes satisfied

ψα
0 + ψβ

0 = 1, ψα
H + ψβ

H = 0 (4.16)

by the boundary conditions. From these expressions (4.9), (4.15), and (4.16), we obtain the wave
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function inside the crystal

ψα
0 =

1

2

1− δK0H√
(δK0H)

2
+ vHv−H

 (4.17)

ψβ
0 =

1

2

1 +
δK0H√

(δK0H)
2
+ vHv−H

 (4.18)

ψα
H = −1

2

vHv−H√
(vHv−H)

2
+ (δK0H)

2

√
vH
v−H

(4.19)

ψα
H = +

1

2

vHv−H√
(vHv−H)

2
+ (δK0H)

2

√
vH
v−H

(4.20)

which is the wave function inside the crystal.
For the wave function at the crystal outgoing surface, since the wave number of the diffracted wave

must return to the incident energy, the wave function can be written as

χ (r) = χ0 exp (ik0 · r) + χH exp (ikH · r) (4.21)

which wave vector of the diffracted wave satisfies kH = k0. When considered as a vector, its value is

kH = k0 +H+ δK0 (4.22)

The incident neutron interacts with the potential for the length affected by the potential, in other
words, for the thickness D of the crystal. The phase shift of the wave vector ϕP can be written as

ϕP =

∫
D

dζ
(
Kα

ζ −Kβ
ζ

)
. (4.23)

The length of interaction within the crystal depends on δK0. The difference of wave vectors propagated
in the crystal can be expressed from Eq.(4.7) as

ϕP = D

√
vHv−H

KζB

√
η2 + 1, (4.24)

where the η is the wave vector displacement weighted by vHv−H , which can be written as

η ≡ δK0H√
vHv−H

. (4.25)

Since the phase shift between the two wavenumber vectors depends on the thickness of the crystal, a
variable called the pendellösung length is defined

∆H ≡ πH
√
vHv−H

1

tan θB
. (4.26)

The boundary conditions for the wave function outside the crystal

χ0 = ψα
0 + ψβ

0 (4.27)

χH = ψα
H + ψβ

H (4.28)
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The wave function Eq. (4.14) rewritten using this condition is

χ2
H =

1

1 + η2
sin2

[
πD

∆H

√
1 + η2

]
(4.29)

χ2
0 + χ2

H = 1 (4.30)

where χ2 denotes the probability density, and absorption in the crystal is neglected. The position Γ
in the emitting plane of the crystal normalized by θB is written as

Γ =
tanΩ

tan θB
=

y

1 + y2
=

x

D tan θB
(4.31)

where the defining region is −1 < Γ < 1. The incident neutrons leave the crystal via the path shown
in Figure 4.2. The intensity distributions of forward and reflected diffraction waves can be described

neutrons
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diffraction

Borrmann fan 
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Figure 4.2: Relationship between incident neutrons and crystals in Laue diffraction.

by the superposition of these waves. This can be written using Γ as

I0(Γ) =
1− Γ

(1 + Γ)
√
1− Γ2

cos2
[
πD

∆H

√
1− Γ2 +

π

4

]
(4.32)

IH(Γ) =
1√

1− Γ2
sin2

[
πD

∆H

√
1− Γ2 +

π

4

]
(4.33)

Note that the phase of the periodic function is shifted by π/4 from the Eq. (4.30)[99]. The more
exact solution is represented by a spherical wave, see the following references [100, 101, 102, 103] for
a discussion.

4.2 Phase Shift of Pendellösung Fringe

Pendellösung interference relies on both the average momentum of the neutron beam along the
Bragg plane and the geometry of the position-space slit used. The dynamic diffraction Hamiltonian,
along with the corresponding Green’s function inside the crystal, is most easily solved in the coordinate
system (ξ, ζ), where ξ is parallel to H, and ζ is parallel to the mean momentum of the neutron. In
Laue geometry, ξ-direction is parallel, and ζ-direction is perpendicular to the crystal plane. Greek
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letters are used for crystal coordinates and Latin letters for beam coordinates. In beam coordinates, z
is vertical, and x is horizontal. It is evident that pendellösung interference fringes, which depend on Γ,
can only be resolved at the center of the Bormann fan. In addition to the loss of visibility of interference
fringes due to the kζ-dependence of the pendellösung phase shift, pendellösung oscillations can only
be resolved at the center of the Bohrman fan. To illustrate this point, consider the position-space
neutron profile of the diffracted beam with respect to the beam coordinates.

|⟨x | ψ⟩|2 =

∫
dkζ |⟨kζ | ψ0⟩|2

1 + sin
[
2πD
∆H

√
1− Γ2

]
√
1− Γ2

(4.34)

where x is the displacement of the incident wave packet, which must be averaged over the incident
slit, while x′ is the outgoing position, which is ultimately averaged over the outgoing slit. Since the
Bormann fan is defined by −D sin θB < (x′ − x) < D sin θB, the denominator and argument of the sin
function are always real numbers. For the crystal thickness used in this experiment, the sinusoidal
part becomes highly oscillatory at the edge of the Bormann fan (x′ − x) → ±D sin θB because the
crystal thickness is much larger than the pendellösung length D ≫ ∆H . This function is plotted in
Figure 4.3. Resolvable pendellösung oscillations occur only in the center of the Bormann fan, the
region defined by −

√
D∆H sin θB < (x′ − x) <

√
D∆H sin θB.
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Figure 4.3: The spatial intensity distribution of reflected diffraction waves of pendellösung interference
fringes. I used these parameters to calculate this fringe: ∆H = 21 µm, D = 6.68 mm, and θB = 44 deg.

It is clear that the integrated intensity of the central part can be written as 2πD/∆H from the
Eq. (4.33). This can be written as a change in the crystal thickness D as follows

I(θP ) = A+B cos

(
2πϕP

cos (θP − θ0)
+ ϕcalc

)
(4.35)

where the parameter ϕP = D
∆H

has interesting value and ϕcalc is a constant determined by the colli-
mation condition, generally π/4. The A and B are constants determined by the beam intensity and
background. The parameter θp is the rotation by an axis perpendicular to the crystal plane, which
changes the effective thickness of the crystal. From this, the observed interference fringes are shown
in the Figure 4.4. The physical parameters are determined by this interference fringe.
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Figure 4.4: The Observable intensity distribution of the pendellösung oscillation.

4.3 Averaged Crystal Potential

The integrated pendellösung interference fringes lead the pendellösung length, which can be written
using the effective potential vH as

∆H =
πH

vH tan θB
(4.36)

where the effective potential can be written in terms of a Fourier expanded potential from Eq. (4.3).
For periodic potentials, the periodic structure is disturbed by temperature factors, inelastic neutron
phonon scattering, thermal diffuse scattering, cubic anharmonic effect, and these higher-order terms.
When only first-order terms are considered, the averaged potential is associated with only one recip-
rocal lattice vector, and the single term of the sum over H is conserved. Thus, the averaged potential
can be written as

vH = 2mṼ =
2m

a3
Ṽ (H)

〈∑
n

exp (iH · xn)

〉
(4.37)

where the inside of the bracket represents the temperature average. The potential term is described
by Fermi pseudopotentials. The Fourier expanded potential using periodicity can be written as

Ṽ =
2π

m
b(Q) (4.38)

where b(Q) is the scattering length depending on the momentum transfer, which parameter can be
written using nuclear scattering bN, electromagnetic scattering bEM, and fifth force b5 as follows

b(Q) = bN + bEM(Q) + b5(Q) (4.39)

In the following subsections, each of these terms will be explained.
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Temperature Factor

The inside term of brackets in Eq. (4.37) can be separated into temperature-dependent and non-
temperature-dependent terms.

⟨exp (iH · xn)⟩ → exp (iH · xn) ⟨exp (iH · un)⟩ (4.40)

Here, the temperature-independent term is defined as

KH ≡ exp (iH · xn) . (4.41)

This value is determined by the crystal structure used. For materials with diamond structure, such
as silicon and germanium, the value depends on the crystal plane and can be written as

KH =
∑
n

exp (iH · xn) =


8 for h+ k + l = 4m√
32 for h+ k + l = 4m± 1

0 for h+ k + l = 4m± 2

(4.42)

where the (h, k, l) represents Miller index of the crystal, and the m is natural number. Noteworthy is
the case h + k + l = 4m ± 2, in which the diffraction intensity is zero, which is called the forbidden
rule.

The un is represented using the phonon generation and annihilation operator since the crystal has
a periodic potential. At this point, u(x) in Eq. (4.40) is written as follows

u(x) =

∫
d3k

√
1

2mωk

(
ak + a†−k exp (ik · x)

)
(4.43)

where the ak is the generation and annihilation operator of the phonon, which is written as

ak|nk⟩ =
√
nk|nk − 1⟩ (4.44)

a†k|nk⟩ =
√
nk + 1|nk + 1⟩ (4.45)

the crystal temperature factor can be written as follows

⟨exp (iH · u)⟩ = exp

[
−1

2

〈
(H · u)2

〉]
= exp ⟨H · U ·H⟩ = e−W (4.46)

where the U is the mean square displacement matrix, which is written as Uij = uiuj [104]. The
component of U is called the anisotropic mutation parameter (ADP) [105]. The occurrence of the
off-diagonal components in U depends on the symmetry of the system. From there, the exponent of
the Eq. (4.46) can be written as

W =
1

2
⟨H · u⟩2 =

1

2
H · U ·H =

1

6
H2
〈
u2
〉
=

B

16π2
H2 (4.47)

where B is the called temperature factor (or Debye–Waller factor), which can be used to write down
the temperature-dependent potential of the crystal. The measured value and theoretical calculations
of the temperature factor have been done in the past, see the reference[106] for measurements in
germanium and reference[107] for theoretical calculations.
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Neutron-Electric Scattering Length

The potential in momentum space at the neutron electron scattering length can be written using
Dirac factor F1 and Pauli factor F2 as

Ṽ (Q) = jµnÃµ(Q) (4.48)

= ū (p′)

(
γµF1 +

σµνqν
2mn

F2

)
u(p)Ãµ(Q) (4.49)

where the u is the spinor of Dirac, γµ is matrix of Dirac, and σµν = i
2 [γ

µ, γν ][108]. The momentum

transfer (p′ − p)2 = −Q2 = −q 2, which can be written as |p′ − p|2 = Q2 ≪ m2. Ã(Q) is the 4-
dimensional potential in the crystal. Let GE(Q) be the shape factor for scattering by electrons and
GM (Q) be the shape factor for scattering by magnetism. It can be expanded by Q2 in the low energy
region.

GE(Q) = F1(Q
2)− Q2

4m2
F2(Q

2) (4.50)

GM (Q) = F1(Q
2) + F2(Q

2) (4.51)

It is these form factors that are obtained experimentally. Here we consider GE , the coupling between
the neutron current and the electrostatic potential Q. The relation between GE and Q is obtained by
scattering electrons onto a target containing neutrons. The formulation of this form factor has also
been studied in recent years. However, this is completely different from the energy band used in this
experiment. To discuss this at low energies such as those used in this experiment, we only need to
consider the slope of GE(Q) near Q ∼ 0.

GE(Q) =

(
∂F1

∂(Q2)

)
Q2 − F2

4m2
Q2 (4.52)

= −1

6

〈
r2n
〉
Q2 (4.53)

where
〈
r2n
〉
is the effective charge radius of the neutron,

〈
r2n
〉
= −0.1161 ± 0.0022 fm2[109]. The

neutron electron scattering length at this time can be written as

bE(Q) =
1

3a

(
m

me

)〈
r2n
〉
Z [1− fe(Q)] (4.54)

= −bne [Z − fe(Q)] (4.55)

where the Z is atomic number and fe(Q) is the atomic form factor[110]. The atomic form factor takes
different values for different atoms and can be obtained either by experimental Bragg diffraction using
x-rays or by calculations using Confucius mechanics[111, 112, 113]．

Fifth Force

The fifth force is expressed by adding an additional term to the gravitational interaction that can
be described by the universal law of gravitation. This is called the Yukawa potential, which represents
an interaction that does not obey the inverse square law at short distances. In this case, the potential
that the neutron undergoes can be written as

b5(Q) = −m

2π
g2QnQN

λ25
1 +Q5λ2

(4.56)

= αG2Gm
2M

λ25
1 +Q2λ25

(4.57)
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where g2 is the coupling constant andQn andQN are the neutron and nuclear charges, respectively[114].
The fifth force is found to depend on the mass M of the matter. Therefore, experiments with multiple
nuclei are useful to evaluate unknown systematic errors in exploratory experiments.

4.4 Combined measurement using Neutron Interferometer

Measurements of the integrated pendellösung interference fringes allow for measurements of the
crystal temperature factor, the neutron electron scattering length, and even a search for the fifth
force. However, the only value obtained by experiment is the period ϕP given by the Eq. (4.35). In
this section, we describe a method for precisely determining the scattering length from experimental
data.

The phase shift determined by the measurement of pendellösung interference is written as

ϕP =
D

∆H
=

vHD

2πk cos θB
(4.58)

where the D is crystal thickness, k is the wave vector of incident neutron, and the θB is the Bragg
angle. The term of k cos θB can be written as

k sin θB =
H

2 tan θB
(4.59)

using Bragg condition. The H represents the reciprocal lattice vector, which is determined by

H =
2πa√

k2 + h2 + l2
(4.60)

where the h, k, l is the Miller index, and the a is the lattice constant, whose value is well determined
by previous research. The θB is determined by the 2 measurements with high precision encoder, which
is the plus Bragg condition and minus Bragg condition with the same lattice plane. By using the
difference between the encoder values in each measurement, the phase shift and Bragg angle can be
determined to a first-order approximation.

The remaining term, crystal thickness, is eliminated using a neutron interferometer measurement.
The neutron interferometer can measure the forward scattering length by crystals. The obtained phase
shift by the inserted sample using the crystal interferometer can be written as

ϕI = ⟨b⟩λD =
16

a2
√
3
4πv0D sin θI (4.61)

where the ⟨b⟩ is the scattering density, given by the product of the scattering length and the atomic
density. The θI is the Bragg angle for neutron interferometer, whose value can determined with high
precison by the same method of pendellösung measurements. The ratio of the phase shift obtained
from pendellösung interferometry to that obtained from interferometry can be written as

ϕP
ϕI

=
2vH tan θPBHI

v0 sin θBIHP
(4.62)

where the θPB is the Bragg angle for pendellösung interference measurement, θBI is the Bragg angle for
neutron interferometer, HP is the reciprocal lattice vector for pendellösung interference measurement,
and HI is reciprocal lattice vector for neutron interferometer. The crystal thickness term is eliminated
from the two measurements.
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Finally, the interesting scattering length can be written from the ratio of the phase shifts obtained
by the two measurements as

vHDP

v0DI
= e−W

(
1− (1− fe(Q))

bne
b(0)

+
b5(0)− b5(0)

b(0)

)
(4.63)

where the DP is the crystal thickness for pendellösung measurement, DI is the crystal thickness for
interferometer measurement, whose values are assumed as same. The b(0) is the literature value of
forward scattering length, which generally refers to the nuclear scattering length, but since the fifth
force term was not assumed in the previous experiment, the experimental value is written as the
forward scattering length. By using the atomic structure factor of literature values, the temperature
factor and neutron-electric scattering length can be determined, and a fifth force can be explored.
These values are determined from the momentum dependence of the averaged potential.

4.5 Accuracy Requirement for Crystal

Since the two experiments, which are pendellösung experiment and interferometer experiment, are
performed independently, the sample thickness must be uniform for all measurements. The accuracy
of phase shift determination is about 5 × 10−5 in all experiments. For a 5 mm thick sample, the
required accuracy of the crystal thickness is about 0.25 µm. In practice, the phase shift is affected by
the average thickness of the area irradiated by the beam, so the peak-to-valley (PV value) value of
the sample thickness must be smaller than ∼ 1 µm. This process also helps to improve the contrast
of the resulting interference fringes.

I used silicon and germanium single-crystal samples with good single-crystalline quality for our
neutron experiments. The overview photograph of the germanium crystal used in this experiment
is shown in Figure 4.5. Germanium single crystals are bonded to low thermal expansion cast metal
with wax. These materials, categorized as hard brittle material, are typically processed using abrasive
techniques due to their propensity for brittleness and cracking. Abrasive processing is effective for
achieving a mirror-like finish on the workpiece surface. However, controlling the amount of polishing is
challenging because it involves wandering abrasive grains. Specifically, when using a lapping machine,
the workpiece often ends up with a convex shape due to increased abrasive contact towards the
edges. Consequently, the parallelism of the workpiece is limited to ∼ 10 µm, complicating the precise
assurance of parallelism in relation to slope error. Moreover, the accuracy is significantly influenced
by how the workpiece is positioned, which adds to the difficulty in ensuring reproducibility.

I addressed this problem by machining the crystal using one of the advanced machining technolo-
gies, specifically grinding with an ultra-precision machining system. Grinding is an abrasive machining
process based on the motion transfer method. It involves a forced infeed approach where the tool re-
ceives a fixed infeed, and the tool’s motion trajectory is precisely transferred to the workpiece. The
process needs to make a rotating grinding wheel contact the workpiece. The machining amount is
directly linked to the machining accuracy through the tool path of cut and feed accuracy to the work-
piece. Hence, to achieve high machining accuracy, the machine’s structure and motion mechanism
need to be highly rigid, and a fine, accurate tool feed is essential. Furthermore, the tool must be
composed of a material that is both rigid and resistant to wear, and it must be finished with a high
level of precision. In other words, if the machine tool and the tool possess a highly rigid and accurate
motion mechanism, the precision of the machine tool can be transferred to the workpiece with equiv-
alent accuracy. High repeatability in machining is attainable as long as the tool’s geometry remains
consistent.

Machining of workpieces is typically carried out through plastic deformation, which persists even
after the removal of an external force. The counterpart process is elastic deformation. The deformation
experienced by a workpiece due to plastic deformation can be categorized into two main modes: brittle
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Figure 4.5: Germanium crystal fixed on holding tool.

fracture and ductile fracture. A brittle fracture refers to the instantaneous failure of a workpiece that
occurs primarily at high strengths. The surface of a workpiece subjected to brittle fracture breaks
along a fracture plane known as the plane of fracture. Conversely, in ductile fracture, the fractured area
is transferred to the workpiece surface through the formation of a machining alteration layer. Silicon
and germanium are classified as brittle materials and generally undergo brittle fracture. However, it is
recognized that ductile fracture can be achieved by machining at a thickness below the cut thickness,
known as the ductile-to-brittle transition point (denoted as dc-value). This dc-value is generally around
100 nm, and plastic working is attained by maintaining a depth of cut smaller than this value.

Ultra-precision machining of silicon and germanium samples was conducted using an ultra-precision
machining device equipped with a grinding wheel. The shape measurements of the machined germa-
nium specimens are presented in Figure 4.6. The crystal thickness ranged from 6.6940 – 6.651 mm,
and the maximum error in the crystal thickness was effectively machined to less than 1.1 µm within the
10×10 mm2 area of neutron irradiation. This level of shape accuracy aligns with the accuracy required
for this study and is sufficiently precise not to impede the experiment. For a detailed description of
germanium processing, see Ref. [115].

A work alteration layer, devoid of crystal structure, forms on the surface treated with ductile
machining. This layer is uniformly removed from the entire crystal through a chemical etching process,
which eliminates a thickness equivalent to the altered layer. By employing these methods, crystals
with uniform crystal structure and thickness are obtained.

4.6 Previous Results

In this section, we briefly describe the results of the experiments that have been performed. The
measurement of b(Q) using pendellösung interferometry and b(0) using neutron interferometer were
performed at the Neutron Interferometry and Optics Facility (NIOFa) at NIST. Here, neutrons from
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Figure 4.6: The overall shape of the crystal after processing.

the reactor neutron source are taken out to the experimental setup by diffraction from pyrolytic
graphite (PG), making available neutrons at wavelengths of 2.2 Å and 4.4 Å. The neutrons enter the
crystal sample after wavelength selection using a beryllium filter to improve the monochromaticity of
the wavelengths. Two Cd slits were placed in front of the crystal and one after the crystal, which were
used to shape the neutron beam. The interference fringes are obtained by rotating the crystal θP to
change its effective thickness. The diffracted neutrons are detected by a 3He detector and stored as
data. Interferograms were measured for (111), (220), and (400) planes. The results of this experiment
can be found in reference[116, 117]. The most noteworthy result of this research is the updated range
of existence of the fifth force by up to two orders of magnitude. However, this search range is not far
from the range of existence predicted by the new physics, and further search sensitivity improvement
is needed. Increased search sensitivity is achieved by strongly constraining the momentum dependence
of the averaged potential by increasing the number of crystal planes to be measured. However, the
unknown systematic uncertainty of the term dependent on the atomic number of the crystal cannot be
eliminated. To solve this problem, measurements using germanium crystals have been proposed. Since
the atomic number of germanium is double that of silicon, the effect of the fifth force is also expected
to be double. In fact, it is almost canceled out by the nuclear scattering length, but the sensitivity will
be slightly improved. Since germanium has different crystal temperature factor and atomic structure
factors than silicon, the unknown systematic uncertainty of these values can be estimated.

4.7 Calculation of Uncertainty

In this section, we describe the calculation of the range of existence of the fifth force, which is
explored in experiments using germanium crystals. The measured value of the scattering length ratio
is written by

b(Q)

b(0)
= e−W

[
1− Z

bne
b(0)

]
+ fe(Q)

bne
b(0)

+ e−W b5(Q)− b5(0)

b(0)
(4.64)

where Q is the momentum transfer, W is Debye–Waller factor, Z is atomic number, fe is atomic form
factor, bne is electric scattering length. The left term is measured, and the right term is assigned the
theoretical value. To estimate bne and B, the third term changes to 0, and to estimate the fifth force,
the bne and B are assigned PDG average and previously measured value, respectively. From the Si
measurement data, the relative uncertainties of measured scattering lengths can be estimated 5×10−5
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in each Q. Assuming that the statistical uncertainty estimated for the germanium measurement is the
same as in the experiment with silicon, the estimated experimental values are

b(111)

b(0)
= 0.987186± 0.000050 (4.65)

b(220)

b(0)
= 0.966708± 0.000067 (4.66)

b(400)

b(0)
= 0.934455± 0.000088 (4.67)

The other term for germanium is determined by the literature value. The temperature factor is

W (Q) =
B

16π2
H2 (4.68)

B = 0.552± 0.004 Å
2

(4.69)

from the reference[118], the forward scattering length is

bGe(0) = 8.185± 0.020 fm (4.70)

from the reference[119], the lattice constant is

a = 5.657820± 0.000009 Å (4.71)

from the reference[120], and the atomic form factors are

fe(111) = 27.42± 0.07 (4.72)

fe(220) = 23.35± 0.11 (4.73)

fe(311) = 21.44± 0.09 (4.74)

fe(400) = 19.40± 0.07 (4.75)

from the reference[121]. Note that the anharmonic term is ignored. The relative uncertainty of
b(Q)/b(0) is shown in figure 4.7. The total uncertainty (black line) is the convoluted theoretical uncer-
tainty which is the total of atomic form factor (AAF), bcoh, bne, and temperature factor uncertainties.
The measured uncertainty (red line) is estimated by the measurement data of Si which is 5.1× 10−5

for (111), 6.9×10−5 for (220), and 9.4×10−5 for (400). This total and atomic form factor uncertainty
between each lattice plane is interpolated linearly. The fifth force uncertainty (gray line) is calculated
by the sum of measured uncertainty and total uncertainty using error propagation. The fifth force
constraint is estimated using the right term of the uncertainty of Eq. (4.76). The constraint estimation
can be obtained by assignment of measured value for b(Q)/b(0), reference value for 2nd and 3rd term,
respectively. This uncertainty is shown in Figure 4.7 in the gray line.

e−W b5(Q)− b5(0)

b(0)
= δ

[
b(Q)

b(0)
− e−W

(
1− Z

bne
b(0)

)
− fe(Q)

bne
b(0)

]
(4.76)

Note that the mean of δ is the uncertainty of the inside function.

4.8 Calculation of Exclusion Region of Fifth Force

The scattering length by the fifth force is written by

b5(Q) = αG
2Gm2M

ℏ2

(
λ25

1 +Q2λ25

)
(4.77)
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Figure 4.7: The relative uncertainty of Q-dependence.

where the αG is the normalized parameter by the gravity, λ5 is the effective interaction length of
fifth force, m is neutron mass, the M is the nuclear mass, Q is the momentum transfer, and G is
the gravitational force constant. In the case of using silicon, The b5 can be calculated using G =
6.67430 × 10−11 m3kg−1s−2, m = 939.565413 MeV/c2, M = 28.0855/NA g, NA is an Avogadro
constant,

b5(Q) = 1.57× 10−21 [m−1] αG

(
λ25

1 +Q2λ25

)
for Silicon (4.78)

In the case of Germanium, the M change to M = 72.63/NA g for germanium,

b5(Q) = 4.06× 10−21 [m−1] αG

(
λ25

1 +Q2λ25

)
for Germanium (4.79)

From these, the fifth force constraint is calculated by

4.06× 10−21 [m−1]
e−W

b(0)
αGλ

2
5

(
Q2λ25

1 +Q2λ25

)
= δ

[(
b(Q)

b(0)

)
meas.

− e−W

(
1− Z

bne
b(0)

)
− fe(Q)

bne
b(0)

]
(4.80)

Note that the right term is(
b(Q)

b(0)

)
meas.

= e−W

(
1− Z

bne
b(0)

)
+ fe(Q)

bne
b(0)

(4.81)

because the b(Q)/b(0) is calculated using the theoretical value which is not measured in the Ge case
yet. The e−W and b(0) have an uncertainty, so these factors are moved to the right term to simplify
the calculation.
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αGλ
2
5

(
Q2λ25

1 +Q2λ25

)
= δ

[((
b(Q)

b(0)

)
meas.

− e−W

(
1− Z

bne
b(0)

)
− fe(Q)

bne
b(0)

)
b(0)eW

4.06× 10−21 [m−1]

]
(4.82)

The αG and λ5 are estimated using this equation (4.82). To explain easier, we call each term

f1(Q) = αGλ
2
5

(
Q2λ25

1 +Q2λ25

)
(4.83)

f2(Q) =

((
b(Q)

b(0)

)
meas.

− e−W ′
(
1− Z

bne
b(0)

)
− fe(Q)

bne
b(0)

)
b(0)eW

4.06× 10−21 [m−1]
(4.84)

The Eq. (4.84) equal to zero is to perform a simple calculation. The estimated fifth force constraint
will be the minimum estimation. In the case of silicon, the experimental values are given and are not
strictly zero.

The χ2 is calculated using

χ2(αG, λ5) =
∑
Q

(
f1(Q,αG, λ5)− f2(Q)

δ [f2(Q)]

)2

. (4.85)

Since the calculated χ2 means the probability of the existence of the Fifth Force, the point where
the upper-side dominance probability is 5% becomes the 95% confidence level. The critical values
for the χ2 test are 7.815 for a degree of freedom of 3 and 12.59 for a degree of freedom of 6. The
calculated constraints of αG and λ5 using Si and Ge data are shown in Figure 4.8. It can be seen
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Figure 4.8: The exclusion map of fifth force constraint with the data of Ge and Si.

that the exclusion zone does not change significantly from the measurements with silicon. The ratio of
the area excluded by the measurement with silicon to the area excluded by the additional germanium
measurement is shown in the Figure 4.9. From these, the constraint with Ge measurement is a factor
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of 1.3 at minimum.
In order to improve the search range of experiments using germanium, it is necessary to improve

the precision of the determination of each physical quantity used. From Figure 4.7, it can be seen
that precise measurements of the atomic structure factor and crystal temperature factor are neces-
sary. However, since these values are obtained in separate experiments, the determination accuracy
cannot be easily improved. Therefore, we conclude that the first step is to strengthen the momentum
dependence of the phase shift by measuring pendellösung fringes on multiple crystal planes.

4.9 Conclusions

The global search for the fifth force is a pursuit rooted in predictions from new physics beyond
the Standard Model of elementary particles. The pendellösung interference method, employed in
measuring interference fringes, offers the world’s highest sensitivity for probing the fifth force. Exper-
iments using silicon single crystal with ultra-high precision machining have succeeded in enhancing
the exploration range by up to two orders of magnitude compared to previous research. Despite this
progress, the achieved range falls considerably short of the predicted existence range posited by new
physics. To address this, we considered enhancing search sensitivity through the use of germanium.
The calculated search range for germanium was approximately 1.3 times larger than that for silicon.
To further improve the search range, enhancing the precision of determining the crystal temperature
factor and the atomic structure factor is crucial. However, as both factors are derived from other
experiments, improving their determination accuracy is not a straightforward task. From these, we
assert that the initial step towards enhancing search sensitivity is to tightly constrain the momentum
shift dependence of the phase shift using multiple crystal planes. This process can give important
results for neutron-electric scattering length and temperature factors[117]. The experiment is being
conducted at NIST, where beam access has been halted for several years to facilitate beam line up-
dates and reactor accidents. Throughout this period, discussions will focus on strategies to enhance
the accuracy of various physical quantities.
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The most important achievement was the reduction of systematic uncertainty by applying ultra-
precision processing to the single-crystal samples used in the experiments. In conventional kinetic
diffraction experiments, interference fringes that precisely reflect the potential inside the crystal can
be observed, but it has been difficult to precisely extract the values due to uncertainty in the crystal
thickness. By using ultra-precision machining, the uncertainty derived from the sample geometry
accuracy was reduced. This result shows that it is possible to advance the neutron optics by improving
the component shape accuracy.
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Chapter 5

Demonstration of Improved
Component Installation Accuracy:
Development of Neutron
Interferometers Using Multilayer
Mirrors

Neutron interferometers, characterized by a neutron wave that is divided into two paths and then
merged while sustaining its coherence[122], are employed for the precise quantification of interac-
tions involving neutrons[123]. In particular, the Mach–Zehnder type neutron interferometer, utilizing
diffraction of Si single crystal and first demonstrated by Rauch in 1974[50], has found broad application
in various physics experiments. These range from neutron-nuclear scattering length measurements[124,
125, 126], demonstrations of classical physics with elementary particles[19, 127], validations of quan-
tum mechanics[25, 128, 129, 130, 131, 27], to explorations of exotic interactions expected by new
physics[132, 14]. More recently, a proliferation of proposed experiments using neutron interferometers
to investigate new physics highlights their undiminished significance[24, 133, 134, 44, 135, 22].

The sensitivity of the measured interactions is proportionally linked to the neutron wavelength
and the interaction length. However, neutron interferometers using Si crystal are restricted by the
lattice constant in terms of available neutron wavelengths and also constrained in size by the dimen-
sions of the ingot[122]. There is ongoing advancement in the development of neutron interferometers
capable of high-sensitivity measurements to overcome these limitations[136, 137, 138]. Among them,
Jamin-type neutron interferometers using neutron mirrors function by reflecting neutrons via an ar-
tificially fabricated multilayer structure that separates and recombines neutron paths[139, 140, 141].
This multilayer configuration permits the selection of neutron wavelengths based on specific design
parameters[91]. However, since multilayer mirrors need to be installed with an accuracy of about
30 nm, which is the coherent length, they have not been put into practical use until now.

I have developed a novel neutron interferometer, synergistically integrating unpolarized neutron
mirrors with a pulsed neutron source capable of identifying the wavelength from the time of flight
(TOF) at J-PARC. The multilayer mirrors were installed to meet the required accuracy using etalon
substrates and autocollimators used in laser optics. This interferometer possesses the capability to
simultaneously measure phase shifts at varying wavelengths, offering a notable statistical advantage.
Moreover, it facilitates the tracking and compensation of time-varying disturbances lasting longer than
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the pulse interval[142]. These features overcome the problems of conventional ones using multilayer
mirrors. In a demonstrable feat, we have executed measurements of the neutron-nuclear scattering
lengths for an array of nuclei. This chapter outlines the principle of our interferometer and the
experiment result.

5.1 The Quantum Phase Shift of Matter Waves

This seciton examines the fundamental operation of a typical neutron interferometer. The quantum
phase of the neutron interferometer is described as a wave that evolves in both space and time following
the Feynman-Dirac path integral along a trajectory defined by classical mechanics. The phase, denoted
as ϕ(x, t), of the wave function Ψ(x, t) should be considered a scalar field that spreads throughout the
entire apparatus, specifically a neutron interferometer. This apparatus includes various components
such as the slits, phase-shifting interactions, and detectors. The neutron interferometer has a geo-
metric resemblance to the classical optics Mach–Zehnder interferometer and possesses a topological
equivalence to a ring, as depicted in Figure 5.1. At a designated point A on the ring, an initial wave
Ψ0 is introduced into the ring and then coherently split into two components: one travels clockwise on
path I, while the other moves counterclockwise on path II around the ring. Following interactions with
a potential V (x′, v′, t′) that relies on the position x′ along the trajectories, the time t′, and sometimes
the neutron’s velocity v′, these two waves merge and interfere within a confined region of space near
point B. This interference results in the creation of an exit beam, which is a combined form of the
two wave functions I and II that have traversed the respective paths. Notably, the differences in phase
serve as the sole measurable quantities. This situation is akin to the aspects of position, momentum,
angular momentum, or time measurements in classical and quantum mechanics, where only relative
observables can be measured, always in relation to a reference system.

source (x0, t0) detector (x, t)

Ⅱ

Ⅰ

A B

V (x', t')

Figure 5.1: General scheme of the interferometer experiment.

The phase accumulated on either path is a line integral over the Lagrangian L in space-time given
by

ϕ(x, t) =
1

ℏ

∫
L dt′ (5.1)

The Lagrangian L is related to the Hamiltonian H by a Legendre transformation

L = p · v −H (5.2)

where p is the canonical momentum of the neutron and v is the group velocity. Thus, Eq. (5.1) gives
the phase at the detector at position x as a function of time t, namely

ϕ(x, t) =
1

ℏ

∫ x

x0

p · ds− 1

ℏ

∫ t

t0

Ψ dt′ =

∫ x

x0

k · ds−
∫ t

t0

ω dt′ (5.3)



75

where the wave vector k = 2π/λ corresponding to the de Broglie wavelength λ, and ω is the frequency
related to the total energy of the wave at any point (x′, t′) along the trajectories. We must evaluate
the line integrals in Eq. (5.3) along each of the paths in Figure 5.1, namely

ϕI(x, t) =
1

ℏ

∫ x

x0

pI · ds−
1

ℏ

∫ t

t0

HIdt
′ (5.4)

and

ϕII(x, t) =
1

ℏ

∫ x

x0

pII · ds−
1

ℏ

∫ t

t0

HIIdt
′ (5.5)

Thus, the last terms cancel due to energy conservation and the phase difference for the waves traversing
the two paths is

∆ϕ(x, t) = ϕII(x, t)− ϕI(x, t) =
1

ℏ

∫
pII · ds−

1

ℏ

∫
pI · ds (5.6)

which is a path integral around the ring in Figure 5.1. In neutron interferometry, it is the phase
shift delta V (x, t) caused by the potential V that is of physical interest. This potential-dependent
phase shift is a line integral along the classical trajectory of the neutron. The stationary phase shift
is represented by a potential V (x) that changes momentum due to energy conservation:

(p− δp)
2

2m
+ V (x) = E → vδp ≈ −V (x) (5.7)

and

∆ϕ =
1

ℏ

∮
δp ds = −1

ℏ

∮
V (x) dt (5.8)

This is the basic equation for most interferometer measurements.
The canonical momentum p must be used in evaluating this potential-dependent phase shift to

account for gauge invariant potentials. In general, it consists of two parts

p = pkinetic + phidden (5.9)

Considering the case where the potential depends only on position and not on time t or velocity v,
the neutron’s total energy E is a constant of the motion. The force is said to be conservative, and the
neutron decelerates when entering the region R where V is non-zero and accelerates when leaving R
(and vice versa when the sign of the potential changes). There is no hidden momentum in this case,
and the phase shift depends only upon the action of the kinetic momentum.

∆ϕ =
1

ℏ

∫
R

∆pkinetic ds (5.10)

where the kinetic momentum is given by the product of the neutron’s mass and velocity v,

pkinetic = mv (5.11)

and the phase shift can be written as

∆ϕ =
2π

λ

∫
∆L dx (5.12)

where the ∆L represents the optical length difference between two paths considered refraction. When
the potential difference between the two paths is ∆V , the resulting phase shifts can be written as
follows:

∆ϕ =
2πmnλL

ℏ2
∆V (5.13)
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where the L is the interaction length. When ∆V is constant, the observed phase shift is proportional
to the neutron wavelength λ and interaction length L. For a more detailed description, see Ref[122].

In the case of zero-force situations when H is independent of time, the phase shift ∆ϕ may de-
pend explicitly upon the geometry and topology. The hidden part of the momentum arises in situa-
tions where the potential is velocity-dependent. In the Aharonov–Casher (AC) effect experiment, the
velocity-dependent potential comes from the spin-orbit coupling of the neutron’s motion to the electric
field generated by a line of charge. In the Sagnac effect experiments, the hidden momentum depends
on the state of rotation of the frame of the interferometer, that is, its frequency of angular rotation.

5.2 Conventional Neutron Interferometers

Neutron interferometers constructed using silicon single crystals stand as the most commonly
employed apparatus in contemporary physics experiments. The inception of the silicon crystal neutron
interferometer draws inspiration from X-ray interferometers and was initially demonstrated by Rauch
et al. in 1974. The silicon crystal neutron interferometer is composed of multiple blades designed to
uphold a single-crystal structure, as illustrated in Figure 5.2. Within each blade, neutrons undergo
separation into two distinct paths through Laue diffraction, subsequently recombining once more.
These blades, extracted from a unified ingot, possess crystal planes that naturally align, ensuring
precise control over the motion of neutron waves within the coherence length.

neutron

O-Beam

H-Beam

Figure 5.2: The sketch of conventional neutron interferometer using silicon single crystal.

A silicon crystal interferometer follows the Mach–Zehnder model and incorporates four components
responsible for wave reflection. According to symmetry considerations, the amplitude and phase of
the resultant forward (O-beam) wave function behind the interferometer comprises equal contributions
derived from both beams, traversing paths I and II. The wave traveling along the path I experiences
transmission (t) at the first crystal, followed by two consecutive reflections (r) at the second and third
crystals, ultimately arriving at the detector as the O-beam. Conversely, the wave on path II undergoes
reflection-reflection-transmission (rrt) and can be identified as an H-beam. Symmetry analysis reveals
that these two waves exhibit identical phase and amplitude. However, differences in phase (denoted as
ϕ1 and ϕ2) emerge when neutrons encounter distinct interactions along the two beam paths. Therefore,
the intensity of the O-beam is given by

IO = |ψI + ψII|2 =
∣∣ttr ψ0e

iϕ1 + rrt ψ0e
iϕ2
∣∣2 , (5.14)
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where the psi0 is the wave function of incident neutrons. Setting ∆ϕ = ϕ2−ϕ1 to be the phase differ-
ence, one sees that the intensity pattern for the O-beam interferogram displays complete modulation
in this ideal case:

IO(∆ϕ) = A [1 + cos∆ϕ] (5.15)

By similar reasoning, one finds that the intensity in the H-beam is

IH(∆ϕ) =
∣∣trt ψ0e

iϕ1 + rrr ψ0e
iϕ2
∣∣2 = B −A cos∆ϕ (5.16)

The minus sign in front of the cosine term arises because there is an odd number of reflections (r), for
each component contributing to IH. From particle conservation, it also follows that

IO + IH = constant. (5.17)

The total intensity of the O-beam and the H-beam remains constant, as is expected due to silicon’s
near-zero absorption of thermal neutrons. Consequently, the neutron intensity alternates between
the O-beam and the H-beam detectors as the phase difference ∆ϕ is adjusted. However, due to the
various imperfections present in the interferometer, intensity oscillations are expected to be somewhat
damped compared to the ideal expected behavior.

Silicon interferometers have been widely used in physics experiments since their first demonstration
in 1974. In the past, they’ve been employed to measure neutron nuclear scattering length, confirm
quantum mechanics, investigate gravitational interactions, and explore unknown phenomena such as
chameleon fields. Recently, there has been a surge in proposing neutron interferometry for various
new physics investigations due to its highly sensitive measurement capabilities. This includes stud-
ies on breaking Lorentz symmetry and endeavors to detect primordial gravitational waves. While
these studies are crucial for enhancing our understanding of current physical phenomena, it is imper-
ative to conduct these experiments with utmost precision. There’s a growing expectation for further
enhancements in the sensitivity of neutron interferometers from various avenues.

The measurement sensitivity of a neutron interferometer is proportional to the neutron wavelength
and interaction length from Eq. (5.13). However, silicon interferometers are composed of silicon
crystals made from ingots, so the available neutron wavelength is limited by the lattice constant and
the interaction length is limited by the size of the ingot. In addition, interferometers are sensitive to
noise and require large vibration isolators and temperature control mechanisms. To solve this problem,
several interferometers are in the development stage. Split interferometers, which split existing silicon
interferometers in two, allow for increased interaction length[138]. Spin-echo interferometers and
Talbot-Lau interferometers have been implemented to enhance measurement accuracy by boosting
statistical data. Despite their practical application, their ability to measure a wide range of physical
phenomena is restricted due to the absence of achieving a two-path separation. Therefore, the need for
a neutron interferometer that can achieve high-sensitivity measurement with a two-path separation is
crucial and anticipated across various fields.

The neutron interferometer using neutron mirrors was demonstrated by Funahashi in 1996[139].
Neutron mirrors can utilize neutrons of longer wavelengths that cannot be reflected by silicon crystals,
thus improving the sensitivity of the measurement. In this mirror interferometer, two layers of neutron
mirrors and a gap layer were deposited on a silicon wafer. Subsequently, an interferometer with an
air gap was demonstrated by Kitaguchi by using an etalon substrate[143]. By enlarging the air
gap of the etalon substrate, an interferometer in which the two paths are completely separated was
realized by Seki[141]. A conceptual diagram of the mirror interferometer developed so far is shown
in Figure 5.3. These developed interferometers have successfully observed the interference of long-
wavelength neutrons. On the other hand, the distance between the two separated paths is as short as
300 µm, so the auxiliary phase shifter used in the silicon interferometer cannot be used. Therefore, the
interference fringes are observed according to the same principle as in spin-echo interferometry using
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polarized neutrons. In addition, it was difficult to measure interference fringes stably due to statistical
problems, so measurement of the interaction by sample insertion was not realized. A combination
of the interferometer using the multilayer mirror and a pulsed neutron source has been proposed to
solve the statistics problem and achieve stable measurements. In 2021, interferometers with multilayer
mirrors were successfully operated at the pulsed neutron source[142]. The results show that short-time
measurements were achieved and that disturbances can be removed from the phase shifts obtained.
However, this has not yet departed from the measurement of interference fringes based on the spin-echo
principle.

Funabashi et. al., 1996 Kitaguchi et. al., 2003 Seki et. al., 2010
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We report a successful experimental test of an interferometer for cold neutrons using multilayer mirrors.
Interference fringes that are analogous to the Brewster’s fringes in classical optics have been clearly observed
using the cold neutron beam with a wavelength of 12.6 Å and a bandwidth of 3.5% at full width at half
maximum. The observed interference fringes demonstrate the coherence of the reflection off the multilayer
neutron mirror and confirm the feasibility of cold neutron interferometry using multilayer mirrors. @S1050-
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The neutron interferometer is one of the most powerful
tools for direct tests of quantum-mechanical laws and inves-
tigations of various weak neutron interaction effects. Numer-
ous interesting experiments @1# have been performed since
the first successful test of a single-crystal neutron interferom-
eter @2#. However, the single-crystal interferometer is inher-
ently not able to deal with a neutron that has a wavelength
longer than twice its lattice constant, namely the Bragg cut-
off wavelength. In order to investigate problems of funda-
mental physics, including tests of quantum measurement
theories and searches for non-Newtonian effects of gravita-
tion, the interferometry of cold neutrons is of vital impor-
tance, since the wave property of the neutron, the massive
matter wave, is more significant at lower energy. Several
attempts have been made to develop neutron interferometers
for the cold and very cold neutrons. Ioffe et al. obtained the
convincing results showing diffraction gratings to be appli-
cable to neutron interferometry @3#. Gruber et al. developed a
phase-grating interferometer for very cold neutrons @4#.
In cold and very cold neutron optics, the multilayer neu-

tron mirror is one of the most useful devices. Multilayer
neutron mirrors consist of alternating layers of two materials
with different potential energies for the neutron. The incident
neutron is partially reflected at each interface of alternating
layers. A convenient way of understanding the behavior of
such a multilayer device is to think of it as a one-dimensional
crystal in which the unit bilayer thickness is the lattice con-
stant. The reflected intensity should be a maximum when
Bragg’s law is satisfied. The reflectivities of multilayer mir-
rors can be controlled by adjusting the total number of lay-
ers, the unit bilayer thickness, or the difference of the poten-
tial energies between the two materials. The unit bilayer
thickness of a multilayer mirror is available in the range
from 50 to 500 Å. The multilayer mirror with such a lattice
constant is suitable for the Bragg reflection of cold and very
cold neutrons with larger angle than the angle of diffraction

using gratings. A magnetic multilayer mirror, in which one
of the materials in the unit bilayer is ferromagnetic, is useful
to polarize the Bragg-reflected beam. Depending on the po-
larity of the external magnetic field, a magnetic multilayer
mirror functions either as a reflective mirror or as a transpar-
ent mirror for a beam of polarized neutrons.
We have proposed an interferometer for cold neutrons

using multilayer mirrors @5#, which is analogous to the
Mach-Zehnder interferometer in classical optics. Owing to
the features of multilayer mirrors mentioned above, the
multilayer interferometer has advantages over other interfer-
ometers developed so far. In addition, in principle, the di-
mension of the multilayer interferometer is much larger than
that of the single-crystal interferometer. The sensitivity of
the interferometer improves with its larger dimension. How-
ever, the four multilayer mirrors must be aligned indepen-
dently as optical elements, in contrast with the single-crystal
interferometer in which parallel alignment of all elements is
ensured by the fact that each element is cut from the same
single crystal.
The purpose of the present paper is to report the success-

ful test of a type of multilayer interferometer for cold neu-
trons, which is free from the difficulty in aligning the el-
ements. The schematic diagram of the interferometer
reported here is shown in Fig. 1. It consists of two pairs of

*Present address: Department of Physics, Kyoto University,
Kyoto 606-01, Japan.

FIG. 1. Schematic diagram of the multilayer interferometer. The
glancing angles off the first and the second pairs are denoted by u1
and u2 , respectively.
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multilayer mirrors. Each pair contains two multilayer mir-
rors; between each multilayer mirror there is an intermediate
monolayer with a thickness of T . The intermediate layer en-
sures the parallelism of the two multilayer mirrors. This is
the advantage of the present multilayer interferometer over
the Mach-Zehnder type, though the waves Cb and Cc in Fig.
1 overlap each other. For the following calculation, the ef-
fective distance D between the two multilayer mirrors con-
tained in a single pair is defined as

D[T1Nd , ~1!

where N is the number of bilayers in the single multilayer
mirror and d is the unit bilayer thickness.
The first pair divides the incident neutron into two coher-

ent parts and gives the phase difference of Df1 between each
part. When the incident neutron with the wavelength of l is
reflected with the glancing angle of u1 , Df1 is given approxi-
mately as

Df152p
2D sinu1

l
, ~2!

assuming the neutron refractive index of the intermediate
layer to be unity. The phase difference Df1 should cause the
‘‘interference of equal inclination’’ between the waves Cb
and Cc in Fig. 1 @6#. However, the interference fringes are
not clear when Df1 is much larger than 2p~l/Dl!, where Dl
is the width of the wavelength @7#.

Df1 can be compensated with Df2 , which is the phase
difference given in the reflection off the second pair. Df2 is
expressed as

Df252p
2D sinu2

l
, ~3!

in the same way as the first pair. The two interfering waves
Cb8 and Cc8 in Fig. 1 are superposed with the total phase
difference, Df12Df2 , after the second reflection, which is
given as

Df12Df2'2p
2D
l

du , ~4!

where du is u12u2 . When du is scanned from 2~l/2D!~l/
Dl! to ~l/2D!~l/Dl!, the interference fringes are observed
with the periodicity of l/2D according to Eq. ~4!, since the
total phase difference between Cb8 and Cc8 is within the
range of 2p~l/Dl!, even if Df1 and Df2 are very large. Such
kinds of interference fringes are analogous to Brewster’s
fringes in classical optics @7#. In the case of the present op-
tical system, the divergent angle of the incident beam has no
influence on the disappearance of the visibility since it has
the advantage of being nondispersive and the glancing angle
of the incident beam is small enough. This feature permits us
to observe intense interference signals without fine collima-
tion.
The experiment has been performed using the new beam-

line, MINE ~multilayer interferometer for neutron experi-
ments! @8#, at the cold neutron guide tube of the reactor
JRR-3M at the Japan Atomic Energy Research Institute
~JAERI!. MINE provides the cold neutron beam with a

wavelength of 12.6 Å and a bandwidth of 3.5% at full width
at half maximum ~FWHM!, employing the monochromator
system QUAD. QUAD has four multilayer mirrors to extract
the neutrons from the guide tube by means of four consecu-
tive reflections. Two slits separated by 2.6 m define the col-
limation of the incident neutron beam. The upstream slit is 3
mm wide by 40 mm high and the downstream slit is 1.8 mm
wide by 40 mm high. The beam divergence is collimated
within 61 mrad in the horizontal direction and 615 mrad in
the vertical. The beam intensity is 3800 neutrons/sec.
The two pairs of multilayer mirrors are fabricated simul-

taneously by the successive vacuum evaporations of
multilayer mirror A in Fig. 1, the intermediate layer, and
finally multilayer mirror B on polished silicon substrates.
These substrates have a flatness of about 6000 Å in peak-to-
valley and a roughness of about 2 Å in root mean square
within the diameter of 60 mm. Each multilayer mirror has
five bilayers made of germanium-titanium. The thickness of
bilayer d is 180 Å. The intermediate layer is made of ger-
manium whose thickness T is 9200 Å. Since N is 5, D is
calculated to be 10 100 Å. The accuracy of the parallelism
between the two multilayer mirrors is estimated to be within
1027 rad from the geometry of our vacuum evaporation sys-
tem @9#. The distance between the two pairs is 13 cm.
As shown in Fig. 2~b!, interference fringes have been

clearly observed with the periodicity of 0.035° when the
relative angle between the two pairs du changes. The ob-
served periodicity is consistent with the expected value. The
visibility of the interference pattern is 30%.
We have obtained another interference pattern, as shown

in Fig. 3, using a set of two pairs, with the following param-
eters: N is 10, d is 140 Å, and T is 2300 Å. D is 3700 Å
according to Eq. ~1!. Both beam collimation slits of MINE
are 1 mm wide by 40 mm high. The beam intensity is 790
neutrons/sec. In Fig. 3~a!, we see a slight pattern of the ‘‘in-
terference of equal inclination’’ in the single reflection. This
can be understood from the fact that Df1 is not so large
compared with 2p~l/Dl!. As shown in Fig. 3~b! the ob-
served periodicity of ‘‘Brewster’s fringes’’ is 0.10°, which is
also consistent with the expected value of l/2D . The visibil-

FIG. 2. Effective distance D between the two multilayer mirrors
contained in a single pair is 10 100 Å and the unit bilayer thickness
of each multilayer mirror d is 180 Å. ~a! Intensity of neutrons
reflected off a single pair. ~b! Interference fringes observed by
changing the relative angle between the first and second pairs.
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A cold-neutron interferometer using four independent multilayer mirrors is demonstrated. We have observed
interference fringes with a contrast of 60%. The interferometer is based on a pair of devices using etalons with
an air gap of 9.75 #m in spacing. The optical system is equivalent to the Jamin-type interferometer, which
allows much larger spatial separation between the two coherent beams than the previous type of multilayer
interferometer to broaden the applicability of neutron interferometry.
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Neutron interferometry is a powerful technique for study-
ing fundamental physics. Numerous interesting experiments
$1% have been performed since the first successful test of a
single-crystal neutron interferometer $2%. However, the
single-crystal interferometer is inherently unable to deal with
a neutron that has a wavelength longer than twice its lattice
constant. In order to investigate problems of fundamental
physics, including tests of quantum measurement theories
and searches for non-Newtonian effects of gravitation, the
interferometry of cold neutrons is extremely important, since
the sensitivity of the interferometer for a small interaction
increases with neutron wavelength. Several attempts have
been made to develop neutron interferometers for cold neu-
trons and very cold neutrons $3%. Interference fringes are
given as a function of the relative phase. When there is an
interaction energy difference &E between the two paths, the
relative phase is written as

&'!2(
m)L

h2
&E , !1"

where m is the neutron mass, ) is the neutron wavelength,
and L is the interaction path length. A large interferometer
scale also has the advantage of increasing the sensitivity to
small interactions.
Using multilayer mirrors, a large-dimensional cold-

neutron interferometer was demonstrated $4%. The multilayer
mirror is one of the most useful devices in cold-neutron op-
tics. A multilayer of two materials with different potentials is
understood as a one-dimensional crystal that is suitable for
Bragg reflection of long-wavelength neutrons. A magnetic
mirror, in which one of the two materials is ferromagnetic,
works as a reflective mirror or as a transparent mirror de-
pending on the polarity of the neutrons. Neutron spin inter-
ferometer $5% using magnetic mirrors, which is one of polar-

ization interferometer, enables us to study the spin-dependent
interaction and to carry out more precision experiments, due
to its higher contrast, than the original type of multilayer
interferometer. Some remarkable experiments have been car-
ried out with multilayer interferometers using magnetic mir-
rors, for example, double Stern-Gerlach experiments $6% and
delayed choice experiments $7%. The range of application
was, however, limited due to the small spatial separation
between the two coherent beams. A cold-neutron interferom-
eter with large spatial separation enables us to carry out
much higher precision measurements and new types of ex-
periment. With the large separation, we can insert some de-
vices into the gap between the paths of the interferometer, for
example, to investigate the topological nature of the
Aharonov-Casher !AC" effect $8%. We can also measure more
precisely the interaction that provides the relative phase &'
depending on the area enclosed by the two beam paths $9%.
The aim of our development is to increase the spatial beam
separation of a multilayer interferometer in order to broaden
the applicability of neutron interferometry.
The cold-neutron interferometer, using multilayer mirrors

$4% and the neutron spin interferometer $5%, employs a pair of
‘‘pairmirrors’’ or ‘‘spinsplitters’’. Each of them consists of a
pair of multilayer mirrors and an intermediate monolayer. A
pairmirror or a spinsplitter shifts the two coherent beams;
however, the beams overlap each other !Fig. 1". Because the
pairmirrors and spinsplitters are fabricated by the vacuum

*Also at RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
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FIG. 1. Conventional spinsplitter !left" and beam splitting etalon
!right". The present etalon can make larger spatial separations be-
tween two waves than a conventional spinsplitter.
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evaporation method, the gap between the two mirrors is of
the order of 1 !m. It is not thick enough to separate the two
beams spatially. We have used etalons in order to enlarge the
spatial separation between the two coherent waves of the
interferometer "Fig. 1#. An etalon consists of two parallel
planes finished with high precision. We can purchase special
etalons with planes smooth enough to be used as substrates
of neutron multilayer mirrors. By depositing multilayer mir-
rors on the parallel planes, such an etalon splits a neutron
beam spatially.
Our experimental setup is shown in Fig. 2. It contains a

pair of beam splitting etalons "BSEs#. In the viewpoint of
geometrical optics, the pair of BSEs is equivalent to a Jamin
interferometer, which is the oldest type of interferometer for
practical use in the history of optics. The polarizer and $/2
flipper both provide the superposition of the spin-up and
spin-down components. A magnetic neutron mirror deposited
on one of the BSE planes reflects only the spin-up compo-
nent and a nonmagnetic neutron mirror on the other plane
reflects the spin-down component that is transmitted through
the magnetic mirror. The BSE separates up- and down-spin
components spatially into two parallel paths. The waves are
spatially superposed on each other on the second BSE. The
magnetic field provided by the phase-shifter coil gives the
relative phase between the two components. By scanning the
phase-shifter-coil current, interference fringes are observed
through the $/2 flipper and the analyzer mirror.
The present etalon made of fused silica has a spacing of

9.75 !m and a diameter of 42 mm. The mirrors were depos-
ited in a diameter of 20 mm on a clear aperture of 30 mm
diameter. The rms roughness of the present etalon plate is
less than 3 Å "SLS Optics#. The etalon has matched front
surfaces of %He-Ne/150 in parallel. The mirrors were fabri-
cated by the vacuum evaporation method at KURRI. The
magnetic mirror has eight bilayers made of permalloy45
(Fe55Ni45) and germanium. The nonmagnetic mirror also has
eight bilayers made of nickel and titanium. Both multilayers
have an effective lattice constant of about 240 Å. The dis-
tance between the two BSEs was 340 mm.
The experiment was performed using the cold-neutron

beam line ‘‘MINE2’’ at the JRR-3M reactor in JAERI. The
beam had a wavelength of 8.8 Å and a bandwidth of 2.4% in
full width at half maximum. We observed interference
fringes with a contrast of 60% by scanning the phase-shifter-

coil current "Fig. 3#. Background counts were about 0.05
counts per second. In the present measurements, irregular
drift of phase about 0.01 rad/min was found, which might be
due to the rigidity of the present prototype. This drift is taken
into account as a systematic error in the following discus-
sion, but it does not affect our conclusion.
We measured the phase shift of the interferogram when

the relative angle between the two BSEs changed "Fig. 4#.
The reflectivity of the mirrors on the etalon remains high in
our narrow scanning range. The interferograms have maxi-
mum contrast point "echo point#. The echo-point shift was
also observed in the reverse direction of the phase shift of the
interferogram "Fig. 5#. As described below, we can under-
stand that these two responses to the change of relative angle
between the two BSEs result from the interference of two
paths as shown in Fig. 2.
When we use a monochromatic beam with a wave num-

ber of k0 and the standard deviation of Gaussian distribution
&k , the relative phase between the two paths ' can be ex-
panded as

'"k ,(#!'"k0 ,(#!
)'

)k "k"k0

"k#k0#

*'0"(#!L0"(#"k#k0#, "2#

where ( is a set of parameters of the phase shifters. Using
Eq. "2#, we can describe interferogram fringes as

FIG. 2. Setup of the Jamin-type interferometer using etalon plates. The first beam splitting etalon "BSE# spatially separates up- and
down-spin components into two parallel waves, and the two waves are spatially superposed on each other on the second BSE.

FIG. 3. Interference fringes resulting from scan of phase-shifter-
coil current around the maximum contrast point. The contrast of
fringes was 60%.

KITAGUCHI et al. PHYSICAL REVIEW A 67, 033609 "2003#

033609-2

plane measured with a laser interferometer was !He{Ne=100
in peak-to-valley height, where !He{Ne is the wavelength
of a 633 nm He–Ne laser. The parallelism between the two
planes of the BSE was estimated to be at least !He{Ne=100
from a previous study.14) Each parallel plane of a BSE
contained either one total reflection mirror (nonmagnetic
multilayer mirror) or two polarizing mirrors (magnetic
multilayer mirrors) in a clear aperture 40 mm in diameter.
The effective area of all the mirrors was 12! 12 mm2. These
mirrors were deposited by the vacuum evaporation method
at Kyoto University Research Reactor Institute (KURRI).
The nonmagnetic mirror consists of eight nickel and
titanium bilayers with thicknesses of 9.83 and 13.35 nm,
respectively. The magnetic mirrors consist of eight bilayers
made of Permalloy45 (Fe55Ni45) and germanium with
thicknesses of 15.48 and 10.84 nm, respectively. The
incident angle of the beam onto the mirrors was 1.12" in
the present experiment. At this incident angle, the reflectiv-
ities of the magnetic mirrors for the spin-up and spin-down
states, denoted by R" and R#, were 0:98# 0:02 and
0:069# 0:002, respectively. As shown in Fig. 2, each path
in the interferometer is reflected once as the spin-up state
and transmitted twice as the spin-down state by the mag-
netic mirrors with the result that the intensity ratio of the
contamination component to the primary component is
R#ð1% R"Þ2=R"ð1% R#Þ2 in each path. Because this value
was nearly 0, we were able to ignore the interference
between the spin-up and spin-down states in one path behind
the second BSE.

When a superposition of spin-up and spin-down compo-
nents is incident to a BSE, the BSE divides the neutron wave
function into two separate parallel beams according to the
spin state. By taking account of the beam refraction on the
etalon substrates with a refractive index of n ¼ 1% 4:3!
10%5 for 0.88 nm neutrons, the incident angle of the beam
onto the BSEs was set to 0.99".

The experimental setup is shown in Fig. 2. A guide coil,
which is not shown in Fig. 2, generated a weak magnetic
field of about 10 G vertically over the entire beam in order
to magnetize the magnetic mirrors and hold the neutron
polarization. The distance between the two BSEs was
300 mm. The two BSEs were mounted on an active vibration
isolation system (HERZ AVI-140LP) apart from all the other
devices.

In the present experiment, the pair of BSEs was combined
with a neutron spin interferometer (NSI)15) in order to
magnetically shift the phase differences between the two
paths, as mentioned below. The NSI consisted of a spin-
polarizer, spin-analyzer, and radio-frequency (RF) rotators.
The two paths of NSI, which were marked with a spin state,
were separated and superposed onto one another spatially
with BSEs (Fig. 3).

Phase differences between the two spatial paths were
induced by the phase of oscillating magnetic fields of the RF
rotators. The transition of spin states through RF rotators
involves additional phase factors as a result of the energy
transition.15) When the magnetic field of a RF rotator
oscillates as B0 sinð!t þ "Þ, the neutron wave function
obtains a phase factor of eþið!tþ"Þ in the case of the
transition from a spin-up state to a spin-down state, or
e%ið!tþ"Þ in the case of the inverse transition.

In the present setup, the frequencies of all of the rotators
were set at the same !0, and the initial phases of the two #=2
rotators were fixed at zero. The initial phase of the # rotator,
denoted by "#, was controllable. As shown in Fig. 3, a
superposition of the spin-up and spin-down states was first
provided by the spin-polarizer and first #=2 rotator: j"i !
1=

ffiffiffi
2
p
ðj"iþ eþi!0tj#iÞ. The phase factor of eþi!0t is due to

the spin state transition. Here, for a simple description, we
omitted all phase factors other than that induced by RF
rotators. The superposition state was split spatially into two
parallel paths by the first BSE. After the reversal of the spin
states by the # rotator, each state obtained additional phase
factors: 1=

ffiffiffi
2
p
ðj"iþ eþi!0tj#iÞ! 1=

ffiffiffi
2
p
ðeþið!0tþ"#Þj#iþ

e%i"# j"iÞ. On the second BSE, the two paths were spa-
tially superposed onto one another. Through the second
#=2 rotator, each state was converted to a superposition
state: 1=

ffiffiffi
2
p
ðeþið!0tþ"#Þj#iþ e%i"# j"iÞ! 1=2ðeþi"# j"iþ

eþið!0tþ"#Þj#iÞ þ 1=2ðe%i"# j"iþ eþið!0t%"#Þj#iÞ, where the
first and second parenthetical terms on the right-hand side
originated from the spin-down and spin-up states on the
left-hand side, respectively. Only the spin-up states of the
superposition state, 1=2ðeþi"# j"iþ e%i"# j"iÞ, were reflected
by the analyzer, and thus the interference between the two
components from each spatial path was observed as the
change in count rate with a single-wire 3He neutron
detector. The wave function that passed through path 1 and
path 2 obtained phase factors of e%i"# and eþi"# in total,
respectively. Consequently, the phase difference between
the two paths was 2"#, and the neutron counts modu-
lated as

Ið"#Þ ¼ I0½1þ C0 cosð2"# þ $0Þ*; ð1Þ

where I0 is the mean count, C0 is the contrast of fringes, and
$0 is the phase induced by other factors. C0 becomes 1 in
ideal cases and a shift in "# of 180" produces one cycle of
intensity change, that is, an interferogram.
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Fig. 1. Schematic view of a BSE. The BSE separates the neutron wave
function into two parallel paths according to the spin state.
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Fig. 2. Setup of the present interferometer using a pair of BSEs. A weak
magnetic field of about 10 G was generated vertically by a guide coil all
over the beam (omitted in the figure).
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The required parallelism between the two BSEs was about
twenty times stricter than those of Kitaguchi’s interferom-
eter.

The vertical parallelism was adjusted by the optical lever
method using a laser leveler (TOPCON Model RL-VH3A)
with a precision of about #0:006$. The horizontal parallel-
ism was roughly adjusted by referring the beam profile of
neutrons reflected off BSEs with a precision of #0:04$

and tuned by searching for an interference signal with a
resolution of 0.002$ using goniometers driven by pulse
motors. Because the resolution of the goniometers was
nearly comparable with the tolerance for ! [eq. (4)], a
solenoid, which magnetically compensated the residual
longitudinal shift 2D!, was added behind the second BSE
(Fig. 2). The solenoid was 120 mm long in the beam
direction and could provide a vertical magnetic field of
12.5 G/A strength. Since one of the two interferometer paths
is in the spin-up state and the other is in the spin-down state,
the solenoid induces the relative spatial shift between the
two wave packets expressed as

!z ¼
2#BsðIsÞt

k0
; ð6Þ

where # is the gyromagnetic ratio of neutrons, Bs is the
magnitude of the vertical magnetic flux density provided
by the solenoid, Is is the current of the solenoid, and t is
the time of flight through the solenoid. We supplied 2.0 A to
the solenoid, which corresponded to a longitudinal shift of
!z ¼ 18:2 $0 between the two paths.

3. Beam Profile and Interference Fringes

As shown in Fig. 6, the beam profile confirms that the two
paths of the interferometer are completely separate. When a
cadmium plate was inserted as a beam stopper between the
two BSEs crossing the beams in steps of 50 mm, neutron
count gradually varied. From the differentials of the intensity
variation, we derived the beam profile and fitted a double
Gaussian curve to it. The measured beam separation length
was 328# 9 mm. This value agreed with the estimate of
2D cos % & ðtan %= tan %0Þ ¼ 333# 4 mm with a beam incident
angle % ¼ 0:99# 0:05$, where %0 is the angle of refraction
on the BSE plane with a refractive index n.

Figure 7 shows the first interference fringes of the
multilayer neutron interferometer with the two paths

separated. The interferograms were obtained by scanning
the phase &' of the oscillating magnetic field in the ' rotator
in steps of 18$. The measurement time of each data point
was 75 s. The mean count rate was 0.80 neutrons per second
including the background rate of 0.064 neutrons per second.
The contrast of the interferograms was 67# 4% at max-
imum. The background counts have already been subtracted
from the plot in Fig. 7. In the present pilot experiment,
an irregular phase drift of 0.01 rad/min on average during
a 49-h observation was found. We suppose that the phase
drift was due to external disturbances such as fluctuations
in the position of the pulsed motor stage holding the BSEs,
environmental magnetic fields, or thermal disturbances.

We confirmed that the observed fringes did not arise from
the interference of the spin-up and spin-down states in a
single path. We measured interferograms of one cycle with
single and two paths alternately by sliding a cadmium plate
in and out of a one-sided path. Each data set was fitted to
sine curves with the cycle fixed to 180$. Typical results for
each measurement are shown in Fig. 8. The average contrast
and the root mean square deviation of six measurements
with the single path was 7# 4%, while that for the meas-
urements with the two paths was 46# 7%. The contrast of
the single-path measurements is much smaller than that of
the control measurements without the cadmium plate. The
contrast of the latter was prevented from reaching that of the
above first fringes by some accidental changes in measure-
ment conditions; however, the fact that the contrast was
observed at all was significant. The value of the single
path was not zero, but was determined to be the result
of statistical fluctuations. We did a simple Monte Carlo
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Fig. 5. Spatial shifts between the two wave packets due to the displace-
ment between the two BSEs. (a) Top view. (b) Horizontal view tangential
to BSE surfaces.
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Fig. 7. Interference fringes resulting from changing the phase &' of the
RF magnetic field in the ' rotator. A maximum contrast of 67% was
observed without the background counts.
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Figure 5.3: History of neutron interferometer using multilayer mirrors.

5.3 Theoretical Phase Shifts

The phase shift that can be measured using a neutron interferometer depends on the neutron
wavelength, and thus, the interferograms that can be observed are wavelength-dependent. In this
section, the wavelength dependence of the phase shift obtained is explained. Consider the case where
the neutron mirror is a component deposited on a glass substrate In this figure, the D represents the
air gap of glass substrate, θ is the incident angle of neutrons, θ′ and θ′′ is the incident angle for each
mirror considered with refraction, and n is the refraction index of glass. For reference, a typical value
for these variables is D = 200 µm and θ = 1 degree. Incident neutrons are separated into two paths
due to the effect of refraction by the glass substrate and reflection by the mirror. The phase shift is
determined by the optical path length, which is defined by the geometric configuration since it is given
by the line integral of the momentum of the neutrons separated into two paths from the Eq. (5.8).

It is assumed that the two glass substrates are parallel, and the sides and bottom of the glass
substrate are vertical. The optical lengths L of path I (B→E) and path II (B→C→D→F→G) can be
expressed as follows:

LI =
nl1
cos θ′

, (5.18)

LII =
2D

sin θ′′
+
n (l1 − l2)

cos θ′
+ (l1 tan θ

′ − (l1 − l2) tan θ
′) sin θ. (5.19)
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Figure 5.4: Characteristics of the 1st beam splitting components. The neutron beam incidents from
left to right.

The refraction index n can be written as

n =

√
1− U

En

≃ 1− λ2Nbc
2π

= 1− mUλ2

h2
, (5.20)

where U is the Fermi pesudopotential, En is the neutron energy, N is the atomic density, bc is the
neutron-nuclear scattering length, m is the neutron mass, and h is the Plank constant. Note that
the absorption was neglected. The relationship between the refraction angle can be expressed using
Snell’s law with refraction index n as follows:

sin θ = n sin θ′, (5.21)

n cos θ′ = cos θ′′. (5.22)

From the geometric conditions, the following equations hold:

1− sin2 θ′′ = n2
(
1− sin2 θ′

)
= n2 − sin2 θ, (5.23)

sin2 θ′′ =
(
1− n2

)
+ sin2 θ, (5.24)

tan θ′

tan θ′′
=

sin θ

sin θ′′
. (5.25)

Using Eqs. (5.21)–(5.25), the Eq. (5.19) is written as

LII =
2D

sin θ′′
+

nl1
cos θ′

− 2n2D

sin θ′′
+ 2D

tan θ′

tan θ′′
sin θ. (5.26)

Consequently, the optical path difference at the 1st glass substlate can be described as

∆L1st = LII − LI

= 2D

√
(1− n2) + sin2 θ

= 2D
√
1− n2 + sin2 θ. (5.27)
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By defining the normalized refraction index δn as

δn = 1− n ≃ mUλ2

h2
, (5.28)

the Eq. (5.27) can be written using n2 ≃ 1 − 2δn, and applying an approximation of δn/sin2 θ ≪ 1;
then

∆L1st ≃ 2D
√
sin2 θ + 2δn

≃ 2D sin θ

(
1 +

δn

sin2 θ

)
. (5.29)

Since the path difference for the 2nd splitting component is the same as for the 1st splitting
component, the overall path difference in the interferometer is written as

∆L = ∆L2nd −∆L1st

≃ 2D

[
sin θ2

(
1 +

δn

sin2 θ2

)
− sin θ1

(
1 +

δn

sin2 θ1

)]
,

(5.30)

where the θ1 is the incident angle for the 1st component, θ2 is the incident angle for the 2nd component.
The air gaps of the two components were assumed to be the same. By denoting θ2 = θ1 + δθ, θ1 = θ,
and assuming sin θ ≃ θ, Eq. (5.30) can be written as

∆L ≃ 2Dδθ

(
1− δn

θ2

)
. (5.31)

The phase shifts due to the path difference are

∆ϕ =
2π

λ
∆L. (5.32)

From these, the phase shifts obtained in this experiment can be written as

∆ϕ ≃ 2π
2Dδθ

λ

(
1− δn

θ2

)
, (5.33)

which can be written using Eq. (5.28) as:

∆ϕ ≃ 4πDδθ

λ
− 4πDδθmU

h2θ2
λ. (5.34)

Finally, the phase shift resulting from the difference in the optical path can be expressed using two
terms. One term is inversely proportional to the wavelength, while the other term is directly pro-
portional to the wavelength. Since the phase shift obtained by inserting a potential V in one path is
described by Eq (5.13), the observed phase shift is written as

∆ϕ =
4πDδθ

λ
− 4πDδθmU

h2θ2
λ+

2πmnL∆V

ℏ2
λ. (5.35)

Since each term in the phase shift depends on wavelength, the interference fringes are wavelength-
dependent. The phase shift due to the sample has the same dimension as the second term of the phase
shift due to the geometric distance.
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5.4 Calculation of Phase Shifts

In the previous section, we showed that the phase shift can be described by two terms, one pro-
portional and one inversely proportional to wavelength. The phase shift due to the inserted sample
is determined by measuring the phase shift with and without the sample, with the geometrically de-
termined phase shift fixed. This eliminates the accuracy of the geometric phase shift approximation
from the phase shift due to the inserted sample. On the other hand, in the development of an inter-
ferometer, it is important to compare the measured and theoretical values of the phase shift in order
to evaluate the accuracy of its design. Here, the function is evaluated by comparing the expression for
the phase shift using the approximation with the expression before the approximation, and by varying
each parameter.

The geometric phase shift is expressed by the following equation:

∆ϕ =
2π

λ

[
2D

√
1− n2 + sin2 θ2 − 2D

√
1− n2 + sin2 θ1

]
(5.36)

≃ 4πDδθ

λ
− 4πDδθmU

h2θ2
λ (5.37)

where
δθ = θ2 − θ1. (5.38)

The wavelength dependence of phase shift before and after the approximation, obtained using the
conditions used in the experiment, is shown in Figure 5.5, where the experimental parameter is D =
189 µm, θ = 1.05 deg, and UF = 90.5 neV for SiO2. Since the wavelength range used in the experiment
is 0.8–1.1 nm, the phase shift in the post-approximation Eq.(5.37) is smaller than that in the pre-
approximation Eq. (5.36) by about 5%.
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Figure 5.5: (a) Wavelength dependence of phase shift before (blue) and after (orange) the approxima-
tion. (b) Wavelength dependence of the ratio of phase shift before and after approximation.

Next, consider the case where the glass substrate injection plane is not perpendicular to the mirror
plane. When the mirror and ejection surfaces of the glass substrate are not perpendicular, that is,
when θV ̸= 0 in Figure 5.4, the path difference in the first glass substrate can be written as follows

∆L′ = 2D
tan θ′

tan θ′′
cos θ sin θv = S sin θv (5.39)

where the S represents the 2 path difference, shown in Figure 5.4, which is written as

∆ϕ′ =
2π

λ

[
2D

√
1− n2 + sin2 θ2 − 2D

√
1− n2 + sin2 θ1 + S sin θv2 − S sin θv1

]
. (5.40)
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Here, the θv1 and θv2 represent the angular difference of injection surface. For simplify, the angular
difference of injection surface is replaced by δθv = θv2 − θv1. The phase shift depending on the δθv
and δθ is shown is Figure 5.6. The angler difference δθV has the same effect on the observed phase
shift as δθ. Therefore, it is important to note that the δθ dependence of the phase shift is influenced
by the offset in the angular difference of the injection plane.
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Figure 5.6: The calculated phase shift depending the δθ and δθV at λ = 1 nm

Next, consider the case where the gap spacing of the two opposite mirror is different. When the air
gap spacing of the 1st opposite mirror is D1 = D and that of the 2nd opposite mirror is D2, we put
the difference between them as ∆D = D2 −D1. The resulting phase shift can be written as follows
from (5.36):

∆ϕ′′ =
2π

λ

[
2D2

√
1− n2 + sin2 θ2 − 2D1

√
1− n2 + sin2 θ1

]
(5.41)

=
2π

λ

[
2D

√
1− n2 + sin2 θ2 − 2D

√
1− n2 + sin2 θ1

]
+
2π

λ

[
2∆D

√
1− n2 + sin2 θ2

]
(5.42)

The phase shift obtained from this is shown in Figure 5.7. It can be seen that when the gap spacing
between the two opposite mirrors changes by a few micrometers, it is observed as a phase shift offset.
The point δθ = 0 in the experiment must account for this air gap difference. It is important to recognize
that this value remains constant during the experiment and does not impact the measurement of the
phase shift. However, it does introduce an offset to the δθ dependence of the phase shift.
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Figure 5.7: The calculated phase shift depending the δθ and ∆D at λ = 1 nm
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5.5 Accuracy Requirement for Mirrors

The interferometric properties of neutrons are influenced by their coherent length, as detailed in
Section 1.2.2. In this section, the installation accuracy of the four mirrors composing the interferometer
is derived from the coherent length. At the beamline where the experiment is conducted, several
factors determine the coherence length in different directions. Along the beam axis, the longitudinal
coherence length Lc

L is dictated by the wavelength resolution. The transverse coherence length for the
horizontal direction Lc

H is determined by the guide bench installed in the beamline. The transverse
coherence length for the vertical direction Lc

V is determined by the slit collimation. In this experiment
configuration, since the largest wave vector is k = 8.05 nm−1, the distribution of momentum transfer
for the longitudinal direction is σL = 0.0435 nm−1, for the horizontal direction is σH = 0.000725 nm−1

and for the vertical direction is σV = 0.042 nm−1. Using these values and Eq. (1.20), we obtain
Lc
L = 32.5 nm, Lc

H = 2.0 µm, and Lc
V = 33.8 nm. This value indicates that the neutron beam must

be controlled with an accuracy of approximately 30 nm.
From this coherence length, the required accuracy of the mirror installation is estimated. The

mirror arrangement can be considered broken down into the following axial directions, respectively

• Gap spacing between paired mirrors (∆D)

• Rotation of opposing mirrors (∆θH and ∆θV)

• Rotation between pair mirrors (δθH and δθV)

These items can be written as shown in Figure 5.8. The installation accuracy of each mirror is
determined by the angle of incidence of neutrons to the mirror θ, the distance between the twin-pair
mirrors D, and the distance from the mirror to the detector L, in addition to the coherent length.
Here we use a typical setup of θ = 1 deg, D = 200 µm, and L = 1 m, and calculate the installation
accuracy for each axis.

Figure 5.8: Axial direction for mirror alignment. The z axis is the longitudinal direction, and neutrons
fly in this direction. Note that the coordinate axes point in different directions for the top three (a–c)
and the bottom two (d, e).
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When the spacing difference between the two paired mirrors is ∆D (Figure 5.8a), the lateral optical
path difference and the requirement for the difference is

2∆D sin θ ⪅ Lc
v (5.43)

∆D ⪅ 0.97 µm (5.44)

The vertical direction can be calculated in the same method:

2∆D cos θ ⪅ Lc
h (5.45)

∆D ⪅ 1.0 µm (5.46)

Therefore, the spacing between two pair mirrors must be matched with an accuracy of less than 1 µm.
Next, we focus on the angle difference between opposing mirrors. When one mirror makes an angle

of ∆θ with respect to the opposing mirrors, the two superimposed beams separate at an angle of 2∆θ
(Figure 5.8b). In this case, the superimposed beam at the detector position has the optical length
shift, and this required accuracy is

2L∆θh ⪅ Lc
h (5.47)

∆θh ⪅ 1.0 µrad (5.48)

In the vertical direction, the difference in length depends on the incident angle θ (Figure 5.8d). This
shift and the required accuracy can be written as follows.

2Lθ∆θv ⪅ Lc
v (5.49)

∆θv ⪅ 0.97 µrad (5.50)

Therefore, the angular difference between the opposing mirrors must match with an accuracy of less
than 1 µrad. Assuming a mirror area of 10 mm, this parallelism requires an accuracy of about λHeNe/60
for the mirror. Where the λHeNe = 630 nm is the wavelength of HeNe laser, widely used to evaluate
optical substrates.

Next, we focus on the angle difference between the paired mirrors (Figure 5.8c). The optical
path difference due to the angular difference between the paired mirrors was obtained in Eq. (5.31).
Considering only the first-order terms here for simplicity, the relative accuracy can be written as

2Dδθh ⪅ Lc
L (5.51)

δθh ⪅ 80 µrad (5.52)

To observe interference fringes with high contrast, the two paired mirrors must be placed within a
relative angle of 0.0046 degrees. There is the transverse shift between the superposed two beams of
2D(cos θ2 − cos θ1) for horizontal direction at the same time. This shift is 0.56 nm in δθ = 80 µrad
and is sufficiently smaller than the value of Lc

H to be ignored.
The tilt angle δθV between the paired mirrors caused by twisting the optics results in a vertical

shift between the two superimposed beams of 2D sin δθV (Figure 5.8e). The condition that this shift
be less than the coherence length is expressed as

2D sin δθv ⪅ Lc
V (5.53)

δθv ⪅ 85 µrad (5.54)

This also requires the same accuracy as the horizontal direction. Given this context, the precise
adjustment of the angular difference between two paired mirror components becomes a critical aspect
in the construction of interferometers using mirrors. This adjustment is essential to ensure the proper
functioning and accuracy of the interferometric measurements.
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5.6 Beam Splitting Etalons

I constructed the interferometer using two Beam Splitting Etalons (BSEs) with a neutron mirror
deposited on it. The schematic view of BSE is shown in Figure 5.9 The BSE consists of two glass
substrates and spacers with an air gap of D = 189 µm, which were bonded by optical contact to
keep the parallelism of two glass substrates[141]. The designed flatness of the substrate was 4.2 nm
(λHeNe/150) and the parallelism of the two mirrors was maintained at approximately 30 nm (λHeNe/20),
where the λHeNe is the wavelength of HeNe laser. The neutron mirrors were sputtered inside a glass
substrate, one a total reflection mirror and the other a half mirror. The neutron mirror, crafted from
a multilayer structure of Ni and Ti, was capable of reflecting momentum transfers in the range of
0.232 < Q < 0.292 nm−1[144].

189 µm

air gap

Φ 54 mm

Spacer for optical contact

Neutron total mirror

SiO2 substrate

Neutron half mirror

Figure 5.9: The configuration of beam splitting etalon (left) and this picture (right).

Each BSE is supported at two points from below on an aluminum fixture and is anchored in the
horizontal (x) direction by a metal spring exerting a force of around 0.5 N. This setup is intended to
prevent any potential falling of the BSE and to minimize deflection effects.

5.7 Experimental Configuration

The experiment was conducted at BL05 (NOP) within the Materials and Life Science Experimental
Facility (MLF) at J-PARC[64, 65]. The beam power sustained during the experiments was 620 kW.
The produced neutrons are provided to three branches through the neutron mirror bender located
7.2 m away from the moderator[86, 87]. This experiment used the Low Divergence Branch in this
beam line. The available wavelength in this branch is longer than 0.2 nm, which TOF spectrum is
shown in Figure 5.10. The neutron was provided toward the experimental setup via a four-blade slit
and a vacuum guide tube. The slit width of vertical was set to Wver = 44 mm and the horizontal was
Whor = 6 mm.

The experimental setup of the interferometer was placed following the beam port, which was 16.0 m
away from the moderator. The overview of the experimental setup is shown in Figure 5.11. The Cd
pre-slit of 400 µm width was placed 909 mm, the neutron assembly was 1259 mm away from the
beam port. The Cd pre-slit, interferometer assembly, and sample insertion assembly were placed on
an active vibration isolator. Among them, the interferometer assembly and sample insertion assembly
were placed on an active vibration isolator and maintained at a consistent temperature of 23◦C within
a simple thermostatic chamber to minimize external disturbances. Over a duration of 9.2 h, the
standard deviation of the temperature remained at 0.035 K. A detail discussion of temperature-
dependent interference fringes is mentioned in section 5.12.
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Figure 5.10: The TOF spectrum of the direct beam at low divergence branch in BL05.

The two BSEs were placed two 140 mm apart, as shown in Figure 3.7. These BSEs allowed the
neutrons to be separated into two paths and superposed. The BSEs were positioned at an incident
angle θ1 of 1.05 deg with respect to the neutrons, with the centers of the two BSEs separated by a
distance of 140 mm. These BSEs were held on a single aluminum plate to suppress disturbances. This
adjustment facilitated the alteration of the incident angle of neutrons directed towards the 1st BSE.
The fixture accommodating the two BSEs was positioned on an automated stage capable of movement
in the rotational direction along the y and z axis. Among them, the axis that rotates around the y-axis
is called the etalon yaw. The insertion sample was placed at the center of two BSEs using the sample
insertion assembly. The assembly can move the sample to the x, y, yaw, pitch, and roll directions
using automatic and manual stages.

The interference pattern of the neutron waves was detected as O and H beams by a neutron detector
equipped with time and two-dimensional position detection capabilities[71]. The detector was placed
17.74 m away from the moderator, and 485 mm away from the center of the interferometer assembly.

5.8 Parallelism Alignments

The relative angles of the two BSEs were aligned by a laser-based autocollimator. The autocollima-
tor irradiates a monochromatic collimated laser onto the object to be measured, and the parallelism
can be measured from the position of the focal point of the reflected light. The parallelism of the
two BSE surfaces, the measurement surfaces, is measured as shown in Figure 5.13 to determine the
relative angles of the etalons. Since the front and back surfaces of the BSE are designed to be parallel,
measuring the parallelism of the two BSE surfaces corresponds to measuring the parallelism of the
mirror surfaces. The angular resolution of the parallelism of the parallelism to be measured, δθ, can
be written as

δθ =
∆x

2L
, (5.55)
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where the dx is the difference position of the two laser spots, and L is the focal length of the telescope.
The equipment used in this measurement was L = 1000 mm, and the pixel size of the CMOS camera
installed on the autocollimator was 5.3 × 5.3 µm2, so the angular resolution in parallel degrees was
approximately 2.65 µrad. Since the laser spot size is 10–15 µm, the resolution is a little worse. The
following histogram (Figure 5.14) shows the CMOS camera image taken during the alignment. As a
note, the 2D histogram on the left side has been rebinned due to resolution, so the peak heights are
different from the intensity distribution on the right side. Since the laser spot size calculated for the
center of gravity was 484.7± 4.6 pixel, the angular resolution is estimated to be 12 µrad.
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Half mirror
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Figure 5.13: Sketch of autocollimator.
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Figure 5.14: The measured distribution of autocollimator. The spatial distribution is normalized.

The autocollimator was also used to measure the angle determination accuracy of the yaw stage
with a fixed 2nd BSE. By deriving the difference in the measured position of the reflected laser when
the yaw stage is moved by a small angle, the displacement angle can be determined with respect to
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the amount of scale movement. The x-position of the laser spot observed at each δθ is shown in
Figure 5.15, the y-position in Figure 5.16, and the displacement amount of each point is shown in
Figure 5.17. The measured y-position was drifting at a particular point, which is a time variation
due to the interval between measurements. This variation is canceled out by calculating the difference
between the two points. The displacement angle to the yaw-axis stage scale is 0.123± 0.002 mrad/div
from Eq. (5.55), and the relative uncertainty is 1.7%. This is consistent with the design value of
0.1222 mrad/div.
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Figure 5.15: The etalon yaw division dependence of measured position x.

5.9 Two Path Separation by the BSE

In an effort to quantify the beam profile, a Cd mask measuring 1 mm in thickness was methodically
traversed across the two beam paths situated between the BSEs. The Cd mask intercepted neutron
waves by scanning in the x-direction using a sample insertion assembly. The measurement setup is
shown in Figure 5.18. The scanned Cd mask intercepts neutron beams separated into two paths one
by one. The neutron intensities pertaining to the O and H beams, along with their differentials, are
shown in Figure 5.19. The distinct staircase pattern observable in the neutron intensities signifies that
the neutrons were fully bifurcated into two separate pathways by the 1st BSE. A double Gaussian
fitting applied to the derivative of the neutron intensity demonstrates that the separation between the
two paths was measured at 326 µm, a value that is in agreement with the design specifications.

5.10 Interference Fringe

The relative angle, denoted as δθ = θ2 − θ1, could be modified with a resolution of 6 µrad utilizing
a micrometer affixed to the 2nd BSE. Following this precise alignment, periodic intensity distributions
were discernible in the TOF region spanning from 35 ms to 50 ms (refer to Figure 5.22a). These
oscillation patterns vanished when a single path was obstructed with a Cd mask, thus inferring that
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Figure 5.16: The etalon yaw division dependence of measured position y.
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Figure 5.19: Overall neutron intensity of O and H beams in relation to the position of the Cd mask
(black) and the corresponding differential intensity (red) that has been fit using a double Gaussian
model.

these oscillations were consequences of the interference of neutron waves emerging from two separate
paths.

Interference fringes were calculated from the following equation:

I(λ) =
IO/IOCd

− IH/IHCd

IO/IOCd
+ IH/IHCd

, (5.56)

where IO and IH represent the measured TOF spectra of O and H beams, respectively, while IOCd
and

IHCd
symbolize the normalization spectra with a single path blocked by the Cd mask. The background

is subtracted from each spectra. Each spectrum measured using a Cd mask is shown in Figure 5.20.
The spectra of IOCd

and IHCd
were obtained by adding the O and H beams when path 1 was blocked

and when path 2 was blocked. The observed spectra with the normalization spectra and background
spectra are shown in Figure 5.21. Any prompt event stemming from proton collision with the mercury
target within the 40 < TOF < 40.1 ms region was deliberately excluded from the analysis.

Phase shifts were evaluated by fitting the normalized interference fringes with a model function.
The interference fringe, normalized by Eq. (5.56), is shown in Figure 5.22b. This interference fringe
can be fitted by the following equation:

I(λ) = A cos

(
PL

λ
+ PRλ− PSλ

)
+B, (5.57)

where λ denotes the neutron wavelength. The λ was obtained by the TOF and the distance from
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the moderator to the detector (17.74 m). The variables in this equation are related to the physical
quantities in Eq. (5.34). The cosine function’s initial term symbolizes the geometric optical length
difference between the two paths, defined as PL = 4πDδθ, with D representing the BSE’s air gap.
The second term represents the path difference times refractive index in SiO2 of the BSE, denoted as
PR = −4πDδθmU/(h2θ21), where U is the Fermi pseudopotential of SiO2, m is the neutron mass, and
h is Planck’s constant. The third term represents the interaction with the inserted sample and can be
articulated as PS = Nbct, where N is the atomic number density, bc is the neutron-nuclear scattering
lengths, and t is the thickness. The sensitivity of the measured interactions is proportionally linked
to the phase shifts written as the third term. The visibility, denoted by A, was typically around 60%.
The other background, such as absorption effects, was ignored because they appear in B terms, which
differ from the phase shift terms. The fitting algorithm used Migrad provided by CERN root. The
fitting region was defined as the TOF range from 37 ms to 49 ms, where the interference fringes were
distinctly visible.
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Figure 5.22: Time of flight (TOF) dependency of the measured interference fringes. (a) TOF spectra
of neutron intensity in the O and H beams. The spectra corresponding to a single-path shielding
with Cd are also represented in the same figure, derived from the sum of path 1 and path 2 shielding.
(b) Interference fringes obtained from the above spectrum. (c) Variation in the interference fringes
prompted by the insertion of an Si sample. The measurement time attributed to these fringes was
10 min. For each spectrum, background readings were subtracted.
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5.11 Phase Shift caused by Geometric Path Length

The phase of the fringes can be manipulated by adjusting δθ with the micrometer attached in
the 2nd BSE. The measured phase shift is proportional to the δθ by Eq. (5.57). The interference
patterns obtained by varying δθ are shown in Figure 5.25. Each pattern displayed a different period
corresponding to the micrometer scale values. The variation in these periods was evaluated by fitting
with Eq (5.57). In the process of fitting periodic functions, the chi-squared value gives good results
even for functions that differ from the optimal solution by 2π; that phenomenon is known as the local
minimum problem. This can pose a challenge in obtaining optimal solutions during the fitting process.
To circumvent this issue, the chi-squared values of the fitting functions with a fixed phase term were
calculated for the data points. These calculated chi-squared values are presented in Figure 5.23. The
phase difference shows a strong correlation between PL and PR, with each “groove” repeating at π
intervals. The optimal solution for fitting was obtained by fitting the initial value of the phase term
as a free parameter in the vicinity of each groove. Here, the fitting parameters for the phase shift were
restricted to a range of ±π/2 from the initial values. The chi-square values obtained by fitting in each
groove are shown in the Figure 5.24. The optimal solution was the value with the smallest chi-square
value. The chi-squared value at each groove changes according to a quadratic function as it moves
away from the optimal solution. The point where this chi-square reaches χ2

min + 1 corresponds to the
standard deviation.
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Figure 5.23: The χ2 of the fitting for the interference fringe at δθ = 6.9 div.

The change in PL with respect to δθ was measured to be 2.13±0.01 nm/µrad (refer to Figure 5.26a),
which is roughly 10% less than the theoretical value of 2.38 nm/µrad. The change in PR was calculated
to be −0.096 ± 0.020 nm/µrad (refer to Figure 5.26b), approximately a quarter of the theoretical
value of −0.39 nm/µrad. These deviations are speculated to arise from geometric inaccuracies in the
BSEs or potential misalignment of the micrometer. Importantly, these effects can be counteracted by
computing the phase shifts both with and without the sample present.
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Figure 5.25: The interference fringe on each δθ.
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Figure 5.26: Relationship of δθ with (a) PL and (b) PR, characterized by a linear function. The
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5.12 Fluctuation of Phase Shift

Interference fringes measured by an interferometer are constantly subject to variations due to dis-
turbances such as temperature and time, so the phase shift varies with time. To evaluate this, the
interference fringes were measured continuously with temperature. The temperature in the interfer-
ometer was read by K-type thermocouples mounted upstream and downstream in the aluminum plate
of the interferometer assembly. The measured interferograms were divided into 10-minute intervals to
obtain sufficient visibility, and the period was obtained from a fit by the Eq. (5.57). The temperature
was taken as the average value within each measurement time from the data logged every 10 seconds.
The relationship between the measured phase shift and time is shown in the Figure 5.27, along with the
temperature. The standard deviation of the observed values was used for the variation in phase shift
and temperature, respectively. The phase variations over time were ∆PL/∆t = 3.9 × 10−4 nm/min
and ∆PR/∆t = 1.5× 10−4 nm−1/min. The sample term variation was 3 × 10−3 rad par 20 minutes,
which time is one dataset of measurement of the potential difference by sample insertion. This varia-
tion is four orders of magnitude lower than the phase shift caused by the Si sample, which was roughly
60 rad. These findings demonstrate the interferometer’s effectiveness within a simple thermostatic
chamber, thereby signifying its robust stability during extended periods of measurement.

Next, the temperature setting of the thermostatic cell was artificially changed and the interfer-
ometer was subjected to a temperature change. The phase shift and temperature observed at this
time are shown in Figure 5.28 The phase variations over temperature were ∆PL/∆T = 2.7 nm/K
and ∆PR/∆T = 0.23 nm−1/K. The sample term variation was 6.8 × 10−4 rad par 3 × 10−3 K,
in which temperature variation is the stability of the thermostatic chamber. This suggests that the
temperature-dependent variation in phase shift is an order of magnitude smaller than the variation
with time.



98

0 5000 10000 15000 20000 25000 30000 35000 40000
time [sec]

113.8

114

114.2

114.4

114.6 [
nm

]
L

P

0 5000 10000 15000 20000 25000 30000 35000 40000
time [sec]

4.7
4.8
4.9

5
5.1
5.2
5.3]

-1
 [

nm
R

P

0 5000 10000 15000 20000 25000 30000 35000 40000
time [sec]

22.6
22.62
22.64
22.66
22.68

22.7
22.72
22.74

T
 [

de
gr

ee
 C

]

0 5000 10000 15000 20000 25000 30000 35000 40000
time [sec]

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

/N
D

F
2 χ

Figure 5.27: Time dependence of the temperature and phase shift parameters and the χ2 of each
fitting while long run.
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5.13 Measurement of Neutron-Nuclear Scattering Length

The potential of a sample is obtained from the phase shift between the sample insertion and
removal. Interference fringe measurements were repeated at 10-minute intervals with and without
the sample. The obtained fringe was split at 5-minute intervals, creating one data set of sample out-
in-in-out to eliminate the effects of disturbances. To ensure accurate results, we carefully adjusted
the samples to minimize phase shifts in the interference fringes using three-axis stages (Figure 5.12).
Particularly, the alignment of the measurement sample in the x-direction was conducted with great
care due to the short distance of approximately 100 µm between the two paths. Figure 5.29 shows the
changes in the interference fringes when the sample was scanned in the x-direction. When the sample
obstructed the neutron wave in one path, the phase changed distinctly. When the sample overlapped
both paths or was outside them, the phase difference remained the same. This phase shift was used to
determine the sample’s position in the x-direction. The measurement sample needs to have a uniform
thickness in the area where the beam passes, requiring sharp edges. To satisfy this precision, the
sample was cut using a wire cutter, creating a sample that satisfies the necessary accuracy.
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Figure 5.29: The observed phase shift in x-direction alignments.

I performed a global fitting for one dataset consisting of four interference fringes with the following
equation:

I0(λ) = A0 cos

(
PL

λ
+ PRλ

)
+B0 (5.58)

I1(λ) = A1 cos

(
PL

λ
+ PRλ+ Psλ

)
+B1 (5.59)

I2(λ) = A2 cos

(
PL

λ
+ PRλ+ Psλ

)
+B2 (5.60)

I3(λ) = A3 cos

(
PL

λ
+ PRλ

)
+B3, (5.61)

where the PL represents the optical path difference between two paths, PR is the optical path times
refraction index of SiO2, and PS donated by the inserted sample. In the four fittings, PL and PR were
common parameters because the phase shifts due to geometrical optics do not change. The A and B
were independent parameters. The parameter with the smallest sum of χ2/ndf for the four fittings
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was considered the best fitting. The measured one dataset is shown in Figure 5.30 along with the
fitting functions.
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Figure 5.30: Typical interference fringe of one dataset. The inserted sample was 0.3 mm thick Si.
These fringes are the ”sample out-in-in-out” from the top to the bottom.

The effect of the disturbance is observed as a slight change in PL and PR, which appears in the
χ2/ndf in the fit result. To account for this effect, χ2/ndf was multiplied by the uncertainty for each
parameter obtained in the fitting when χ2/ndf is greater than 1.

The interference fringe resulting from the introduction of a 0.3 mm thick Si sample into one of the
paths is shown in Figure 5.22c. The phase underwent a significant change from the state without the
sample. The capability to detect a phase shift induced by the sample was measured to be 0.02 rad
per 20 min. This sensitivity exceeded that measured by NIST (0.31 rad per min)[145] by a factor of
three and was comparable to that measured by ILL (0.08 rad per min)[129]. Notably, this experiment
was conducted in the temperature stability of 30 mK. In contrast to Si interferometers, which require
a temperature accuracy of 5 mK[146], the temperature accuracy in this experiment is relaxed by one
order of magnitude, and the accuracy of phase determination is improved.

In our study, we measured Si and Al as representative nuclei, Ti and V as nuclei with negative
bc values, and V-Ni alloy as nuclei with near-zero bc. V-Ni alloy is widely used as sample containers
in neutron scattering experiments to prevent Bragg scatterings[147]. The V-Ni alloy is Fabricated by
TAIYO KOKO Co., Ltd., and the Si sample used in this experiment was cut from an N-type wafer.
To eliminate disturbances, we repeated the measurement of PS with and without the sample for 5 min
each. This process was carried out for several hours for each sample. The phase shift for each data
set, derived from the interference fringes when each sample was inserted, is shown in Figure 5.31 for
Al 0.1 mm thick, Figure 5.32 for Ti 0.1 mm thick, Figure 5.33 for Ti 0.2 mm thick, Figure 5.34 for
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V 0.316 mm thick, Figure 5.35 for V 0.314 mm thick, and Figure 5.36 for V-Ni alloy. The black data
point and error bar are the measured phase shift and its uncertainty. The red error bar is the reduced
uncertainties obtained from the chi-square calculation progress, which is described above. The label
on the horizontal axis indicates the number of the measured data set.

The δθ dependence of phase shift was measured for Al 1 mm thick and Si sample. These phase
shifts are shown in Figure 5.37 for Al 1 mm thick, and Figure 5.38 for Si. The phase shifts obtained
from the 1mm thick Al samples showed varying values depending on the δθ. This phenomenon was
not observed with the other samples, such as Si shown in Figure 5.38. It is anticipated to be more
pronounced in samples that cause larger phase shifts, but this issue has not been fundamentally
resolved yet. It is believed that a better understanding of this issue can be achieved by developing an
interferometer capable of using a wide range of wavelengths and by improving the accuracy of phase
shift fitting.

The obtained values of bc, along with their systematic and statistical uncertainties, are summarized
in Table 5.1. The values for Si, Al, and Ti were consistent with the literature values, with an accuracy
of 2.2%. However, the results tended to be smaller compared to the literature values, which we
attribute to systematic differences between the wavelengths obtained from the TOF method and the
true values[148]. Importantly, the statistical uncertainty was two orders of magnitude smaller than the
systematic uncertainty. To improve the accuracy of bc determination, efforts should focus on reducing
the systematic uncertainties arising from sample conditions. The uncertainties of each scattering
length are explained in the next section.
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Figure 5.31: The all dataset of measured phase shift PS of Al 0.1 mm thick.
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Figure 5.32: The all dataset of measured phase shift PS of Ti 0.1 mm thick.
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Figure 5.33: The all dataset of measured phase shift PS of Ti 0.2 mm thick.
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Figure 5.34: The all dataset of measured phase shift PS of V 0.316 mm thick.
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Figure 5.35: The all dataset of measured phase shift PS of V 0.314 mm thick.
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Figure 5.36: The all dataset of measured phase shift PS of V-Ni alloy.
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Figure 5.37: The Etalon Yaw dependence of measured phase shift PS of Al 1 mm thick.
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Figure 5.38: The Etalon Yaw dependence of measured phase shift PS of Si.
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5.14 Uncertainties

I considered the following systematic uncertainties for neutron-nuclear scattering length. The
thickness of each sample was measured using a micrometer manufactured by Mitutoyo Corporation.
Measurements were taken multiple times, and the mean and standard deviation of these measurements
were used as the sample thickness and its uncertainties, respectively. These uncertainties include
instrumental uncertainties.

The displacement of sample rotation with respect to the beam axis changes the effective thickness
Deff of the measured sample:

Deff = D/cos θ ≃ D

1− θ2/2
, (5.62)

where the D is the sample thickness measured by the micrometer and θ is the sample rotation angle
with respect to the beam axis. This displacement was corrected by measuring the rotation-dependent
phase shift of the sample, which was performed for yaw-and pitch-axis. The phase shifts depending on
the yaw- and pitch-axis are shown in Figure 5.39 and 5.40, respectively. Each phase shift was fitted
with a quadratic function. The sample rotations were aligned at the minima of the quadratic function.

The sample, such as V, was visually aligned perpendicular to the beam axis because we cannot
observe the phase shift depending on the sample rotation. The uncertainty of the sample rotation
for V and V-Ni alloy sample were adopted as the standard deviation of the minima obtained during
the rotation alignment of Ti, Al, and Si. The derived standard deviation of yaw and pitch axes were
σpitch = 0.43 deg and σyaw = 1.56 deg, respectively. Note that the uncertainty of effective sample
thickness due to the rotation was much smaller than the absolute thickness.

250 255 260 265 270 275 280 285 290
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Figure 5.39: Measured PS depending on the sample rotation of pitch.

The neutron wavelength was determined by the TOF method with the distance from the moderator
to detector L. The L was 17.74 m, and the size of the moderator was about 10 cm. Assuming that
the value of L has uncertainty only by the magnitude of the moderator, we adopted the uncertainty
of 0.54%.

The atomic density N was obtained from the mass density ρ, atomic weight, and the Abogadro
constant, in which the ρ is the most dominant uncertainty source. The atomic weight is determined
with great precision[149]. The material density of the samples used in this experiment was measured
by a specific gravity meter. The specific gravity meter can determine the material density from the
ratio of the mass in the air to the mass in pure water. The instrumental uncertainty of this specific
gravity meter was 0.08%, which value was adopted as the uncertainty of N .
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Figure 5.40: Measured PS depending on the sample rotation of yaw.

Inserting a sample in one path of the interferometer shortens the path through the atmosphere by
the thickness of the sample. The phase shift due to the sample was obtained by subtracting the effect
due to the atmosphere from the measured phase shift. The atmosphere phase shift was calculated by
following equation[122]:

ϕair = (0.420± 0.01 [m
−12

])Dλ, (5.63)

where the D is the sample thickness. The factor of phase shift was calculated using the 1010.5 hPa as
atmosphere pressure, 23◦C as temperature, and 15.25% as humidity. Each value is the average over
the experimental period.

The relative uncertainties of the neutron-nuclear scattering lengths measured by each sample are
shown in table 5.2. The summarized values indicate relative uncertainty with the obtained bc.
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5.15 Detailed Analysis of Vanadium

In contrast to the previously mentioned samples, the results for V and V-Ni alloy samples exhibited
significant discrepancies with their respective literature values. I conducted elemental analyses on the
V and V-Ni alloy samples used in the measurements to investigate the underlying cause of this observed
discrepancy. However, no significant impurities were identified. To eliminate the uncertainty arising
from the neutron wavelength of the pulse source, we determined the bc of V from both V and V-Ni
alloy samples relative to Si. The effects of measured impurities were also eliminated. The derived
bc values for V were −0.555 ± 0.003 fm from the V sample and −0.559 ± 0.005 fm from the V-Ni
alloy sample, respectively. Note that we adopted the bc of Si as 4.1491 ± 0.0010 fm, and bc of Ni
as 10.3 ± 0.1 fm[52]. The scattering lengths of vanadium determined in this experiment are shown
in Figure 5.41, along with results from previous experiments. Both values of V were found to be in
agreement, but were 45% different from the NIST recommended value of −0.3824 ± 0.0012 fm[150].
Supporting this result, a previous report indicated that the Bragg peak persisted unless the V-Ni alloy
contained a higher amount of Ni than expected from the NIST database[147]. The following sections
describe the impurity exclusion and relative measurement procedures.

0.55− 0.5− 0.45− 0.4−
 (fm)cb

McReynolds (1950)

Peterson (1952)

Rauch (1976)

Bauspiess (1978)

Knopf (1990)

Koester (1992)
This Work (V)

This Work (V-Ni alloy)

Figure 5.41: History of measured nuclear scattering length of vanadium.

Impurity Measurements

When impurities are included in the inserted sample, the phase shift obtained by the inserted
sample is expressed as the sum of the phase differences due to each element. The observed phase shift
is written by the equation:

∆ϕ =
∑
i

Nibitλ, (5.64)

where the i is the index of the contained atom, b is neutron-nuclear scattering length, t is the sample
thickness, and the λ is neutron wavelength. The atomic density of the atom Ni is written by

Ni =
ρ

Mi
RiNA (5.65)

where the Ri is the weighted ratio of the atom, ρ is the density of the sample, M is the atomic weight,
and the NA is Adogadro constant. The phase shift ϕi by the interested atom i is obtained by the



111

measured phase shift ϕmeas minus contamination phase shift ϕC:

∆ϕi = ∆ϕmeas −∆ϕc (5.66)

Nibitλ = ∆ϕmeas −
∑
j

Njbjtλ (5.67)

ρ

Mi
RiNAbitλ = ∆ϕmeas −

∑
j

ρ

Mj
RjNAbjtλ (5.68)

bi =
Mi

Ri

∆ϕmeas

ρNAtλ
−
∑
j

Rj

Mj
bj

 (5.69)

I performed an elemental analysis of the V and V-Ni alloy samples to investigate the cause of the
discrepancy in the literature values. The analysis was performed by an X-ray fluorescence spectrometer
(XRF) from Na to U, gas chromatography with thermal conductivity detection for H and N, and
gas chromatography with non-dispersive infrared absorption methods for O. The XRF measurement
was performed by RIKEN Materials Characterization Support Team, and the gas chromatography
measurement was performed by TORAY Research Center, Inc. The samples used for XRF analysis
were the same as those used in the experiment. The samples used for gas chromatography analysis were
cut from the same base material as the sample used in the experiment. The measured contamination
is shown in Table 5.3. The Va had a thickness of 0.316 mm and the Vb had a 0.314 mm, these samples
were cut from the same base material. The elements for which the mixing ratios measured by XRF
were below the detection or quantitation limits were excluded. Uncertainties in the mass mixing ratios
of XRF measurements were adopted only the statistical uncertainty. The uncertainties of the mass
mixing ratios of H, N, and O could not be calculated due to the small amount of statistics, so the
lower limit of quantitation was adopted.

While a high concentration of hydrogen impurities could have explained the negative deviation
observed, the measured concentration was relatively low at only 3 ppm. Therefore, it becomes evident
that the observed discrepancy cannot be solely attributed to hydrogen impurity. Vanadium metal is
susceptible to oxygen contamination during the refining process[151]. Hence, it is presumed that this
contamination occurred during that stage. Assuming the correctness of the bc values obtained in this
study, the estimated oxygen mixing ratio in the sample used in the NIST database is approximately
0.9%. Supporting this hypothesis, a previous report indicated that the Bragg peak persisted unless
the V-Ni alloy contained a higher amount of Ni than expected from the NIST database[147].

Relative Measurements

In order to counteract systematic uncertainties, mainly originating from the accuracy of the wave-
length determination of BL05, the nuclear scattering length is determined using the phase shift ob-
tained with the Si sample as a reference standard. Since the Si sample had the fewest impurities and
the literature values were determined with a high degree of accuracy, it was determined that this was
the most optimal standard to use. The phase shift obtained in this case can be written as

∆ϕ = nbN tλ+ Ptλ =
( ρ
M
NAbN − P

)
tλ, (5.70)

where P is the phase shift coefficient due to the atmosphere. The ratio between the literature and
experimental values of the phase shift of silicon is written as

∆ϕexpSi

∆ϕrefSi

=
ϕexpSi(

ρSi

MSi
NAbrefSi − P

)
tSiλ

(5.71)
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Table 5.3: Contamination of each sample. The unit of these values are wt%
atom M bc (fm) V-Ni alloy (wt%) Va (wt%) Vb (wt%)
H 1.01 -3.739 ± 0.0011 0.0002 ± 0.0002 0.0003 ± 0.0002 0.0003 ± 0.0002
N 14.01 9.36 ± 0.02 0.02 ± 0.006 0.02 ± 0.006 0.02 ± 0.006
O 16.00 5.803 ± 0.004 0.023 ± 0.006 0.019 ± 0.006 0.019 ± 0.006
Al 26.98 3.449 ± 0.005 0.106 ± 0.0016 0.15 ± 0.0018 0.166 ± 0.002
Si 28.09 4.1491 ± 0.001 0.039 ± 0.00064 0.0666 ± 0.00078 0.0658 ± 0.0008
P 30.97 5.13 ± 0.01 0.013 ± 0.00021 0.0173 ± 0.00021 0.0145 ± 0.0006
S 32.06 2.847 ± 0.001 0.02 ± 0.00021 0.0229 ± 0.00021 0.0194 ± 0.0002
V 50.94 -0.3824 ± 0.0012 94.7 99.7 99.7
Fe 55.84 9.45 ± 0.02 0.029 ± 0.0012 0.0119 ± 0.00081 0.033 ± 0.0002
Ni 58.69 10.3 ± 0.1 5.055 ± 0.0096 0.0036 ± 0.0005 —
Cu 63.55 7.718 ± 0.004 — 0.00745 ± 0.00035 0.0057 ± 0.0002
Zn 65.38 5.68 ± 0.005 0.0088 ± 0.00035 0.00444 ± 0.00024 0.0039 ± 0.0005
Ge 72.63 8.185 ± 0.02 0.014 ± 0.0014 0.014 ± 0.0011 0.0135 ± 0.0003
As 74.92 6.58 ± 0.01 — — 0.0019 ± 0.0004
Sn 118.71 6.225 ± 0.002 0.0081 ± 0.0006 0.006 ± 0.0006 —

When the scattering length of the interesting nucleus in the sample is bi, the relative nuclear scattering
length obtained is

bi =
Mi

Ri

 ∆ϕmeas

LρNAtλ

∆ϕexpSi

∆ϕrefSi

+
P

ρNA
−
∑
j

Rj

Mj
bj

 (5.72)

=
Mi

Ri

∆ϕmeas

ρNAt

tSi
∆ϕexpSi

(
ρSi
MSi

NAbSi − P

)
−
∑
j

Rj

Mj
bj +

P

ρNA

 (5.73)

This equation does not include a wavelength term in the scattering length.

5.16 Future Developments

The statistical uncertainty associated with the measured phase shift was up to two orders of
magnitude smaller than the systematic uncertainty, highlighting the considerable potential for highly
sensitive measurements. To mitigate the uncertainty in wavelength determination, two approaches can
be employed: conducting relative measurements to Si or performing precise wavelength measurements.
Furthermore, improving the sensitivity of bc can be achieved by utilizing thicker samples with reduced
impurities. The systematic uncertainty arising from non-uniform sample thickness can be addressed
by Ultra-high precision machining technology[76, 77].

The statistics can be increased by a factor of 20 by replacing the current multilayers with super-
mirrors and reflecting neutrons within the optimal wavelength range of 0.2–0.8 nm at J-PARC BL05.
This is advantageous when measuring small interactions and relative measurements. Extending the
BSE’s air gap would allow the measurement of various interactions such as gas samples using a gas
cell[132, 14, 47].
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5.17 Conclusion

I have developed a neutron interferometer utilizing multilayer mirrors. The successful operation
of our interferometer with pulsed neutrons at J-PARC resulted in a visibility of 60%. Notably, our
interferometer exhibited a remarkable precision of phase determination, achieving an accuracy of 0.02
rad within a 20-min interval. Moreover, our interferometer employed a neutron wavelength of around
0.9 nm, which offers enhanced sensitivity for specific applications compared to Si interferometers
using 0.44 nm. The time-dependent phase shift measured in our interferometer was four orders of
magnitude smaller than the phase shift induced by a 0.3 mm thick Si sample. This indicates that
our interferometer is robust against fluctuations. By incorporating samples into one of the paths, we
measured the bc for Si, Al, Ti, V, and V-Ni alloy. These measurements demonstrated agreement with
literature values within an accuracy of 2.2%, except for vanadium. This suggests that our neutron
interferometer accurately captures the phase shift introduced by the inserted sample. About the bc for
V, further investigation is required to ascertain whether impurities present in the V sample contributed
to the observed discrepancy. The utilization of a high-sensitivity neutron interferometer would open
up possibilities for a range of new physics search experiments[132, 14, 135, 24, 44, 22, 133, 134].

The results of this research are supported by the fact that the multilayer neutron mirrors were
installed within the required accuracy determined by the coherent length. The application of etalons,
which are commonly used in laser optics, and autocollimators for neutron experiments has enabled
precise positioning of the elements. This technique demonstrates the advance of neutron optics by
improving the installation accuracy of components.
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Part IV

Conclusion and Future Outlook
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Chapter 6

Future Outlook

In this research, I have achieved advancements in neutron optics by employing cutting-edge en-
gineering technologies. Through the development of large, flat neutron mirrors meeting the required
precision, I successfully captured the optical reflection of epithermal neutrons. This result serves as
evidence that epithermal neutrons can be handled optically, thus expanding the scope of neutron
optics. By applying ultra-precision machining techniques to single-crystal samples used for neutron
diffraction, I demonstrated that systematic errors arising from the components can be eliminated. This
shows that ultra-precision machining technology can be used to remove systematic errors due to the
shape of components. Neutron interferometers using multilayer mirrors met the installation precision
requirements set by the coherence length by combining autocollimators with etalon in the develop-
ment of neutron optics components. This illustrates that the use of advanced engineering technologies
can eliminate uncertainties related to the installation accuracy of general optical components. The
advancement of neutron optics demonstrated by these experiments can be utilized in the development
of fundamental physics. In the following chapters, I will explain how the findings of this research can
be applied to fundamental physics experiments.

6.1 Neutron-Antineutron Oscillations

To explain the origin of a matter-dominated universe, the existence of baryon number non-
conservation processes is required. The breaking of baryon numbers, similar to flavor oscillations
in neutrinos, suggests that neutrons can transform into antineutrons. Left-right symmetric grand
unified theories, which predict the existence of heavy right-handed neutrinos, suggest that neutron-
antineutron oscillations occur in the range of 109–1010 second. The observation of neutron-antineutron
oscillations is based on the hypothesis that neutrons transform into antineutrons over a certain pe-
riod. The detection is relatively straightforward because antineutrons react with neutrons to produce
an average of five pi mesons. Measurements have been conducted on neutrons bound inside atomic
nuclei and free-flying neutrons, with neither observation yielding antineutrons, only providing lower
limits. The probability of neutron-antineutron oscillations occurring can be expressed by the following
formula:

Pn→n̄ =
α2

α2 + V 2
× sin2

(√
α2 + V 2

ℏ
× t

)
(6.1)

with

V =
1

2
(En − En̄) (6.2)



116

where the α is the mixing parameter, En is the neutron energy, and En̄ is antineutron energy. As can
be seen from this equation, long-duration flights are desirable because the reversal probability is time-
dependent. In other words, long-distance flights of low-energy neutrons can improve the sensitivity of
the search. The lower limit of the oscillation period has been investigated in experiments with long-
distance flights of free neutrons of 76 m at the ILL reactor, and a lower limit of τnn̄ > 8.6 × 107 sec
has been explored[40].

To enhance the search sensitivity, the NNBAR experiment is planned at the currently under-
construction European Spallation Source (ESS)[152]. This experiment aims to observe the neutron-
antineutron oscillation of low-speed neutrons, traveling at 1000 m/s over a distance of 200 m. The
experiment plans to increase the statistical quantity by incorporating a focusing system between the
neutron source and the detector[153]. The increase in statistics will be achieved by installing an
ellipsoidal focusing system coated with a supermirror with an m-value of about 6, extending over
approximately 20 m, positioned around 5 m away from the source[154]. The proposed setup for the
NNBAR experiment is illustrated in Figure 6.1. Since such large mirrors cannot be fabricated in a
single piece, they need to be divided into several segments for installation. Considering the need to
focus the beam from a 24 cm moderator to a point 200 m away, the mirrors must be installed with
at least 1.2 mrad precision. Given that the critical reflection angle for a mirror with m = 6 is around
7 mrad, an installation precision of less than 1 mrad is essential. While the installation of segmented
ellipsoidal mirrors is still in the development phase, and there are no examples of using such large
mirrors, this research successfully installed large mirrors with an accuracy of 0.3 mrad. Therefore, the
challenges regarding the installation accuracy of mirrors in the NNBAR experiment can be overcome
based on the findings of this research.

detector

target foil

π

source ellipsoidal mirror

~200 m

~20 m

~5 m

Figure 6.1: Configuration of NNBAR experiments.

6.2 Short Range Gravity

In modern physics, the existence of a fifth force is suggested by both particle physics and cosmology.
As explained in Section 1.1.1, searching for the fifth force using neutrons is an extremely effective
approach within the range of 10−11–10−8 m. However, even with these experiments, there is still a
shortfall of several orders of magnitude from the region predicted by new physics, necessitating further
improvement in search sensitivity. Previous neutron experiments have primarily focused on neutron
scattering for exploring the fifth force. Experiments utilizing neutron dynamical diffraction offer a
method to break through the limitations of previous approaches. The most dominant systematic
uncertainty in these experiments, the thickness of the single-crystal sample, has been eliminated using
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ultra-precision machining techniques. As discussed in Chapter 4, future experiments, which include
increasing the number of measurement points for crystal diffraction Q-dependence and conducting
experiments using germanium, can enhance the sensitivity of the search for the fifth force. This
approach represents a significant step forward in the ongoing quest to uncover and understand new
physical forces.

6.3 Neutron-Nuclear Scattering Length

Neutron interactions are predominantly influenced by phenomena related to the potential of nucle-
ons. The neutron-nucleon scattering length represents the interaction between neutrons and nucleons
and varies with isotopes. This value is widely used as a fundamental parameter in neutron experi-
ments and has been databased, owing to its importance. However, the current situation is that many
of these values were measured around the 1970s and have not been updated for half a century. As
the measurement accuracy of neutron experiments improves year by year, enhancing the precision of
the parameters used in these experiments is essential. Furthermore, as mentioned in Section 1.1.5, a
more profound understanding of nucleon structure requires more precise values. Therefore, improving
the accuracy of these experimental values is anticipated from multiple perspectives, including both
fundamental physics research and practical applications.

The nuclear scattering length can be measured using the neutron interferometer. The phase shift
caused by the inserted sample is written as

∆ϕ = nbctλ, (6.3)

where the bc is the nuclear scattering length, n is atomic density, t is the sample thickness. The
neutron interferometer developed in this study enables precise measurement of the nuclear scattering
length by sample insertion. Furthermore, the use of a gas cell makes it possible to measure the nuclear
scattering length of gaseous samples. This can provide realistic measurements for models of nucleon-
nucleon interactions. The scattering length can be written using the spin singlet term and the triplet
term as follows

bc =
I + 1

2I + 1
b′1 +

I

2I + 1
b′0 (6.4)

where I represents the direction of spin. In previous studies, measurements of the nuclear scattering
length of 3He have placed restrictions on some nucleon-nucleon interaction theories. The results are
shown in Figure 6.2, which was taken from Ref.[47]. Experiments have been performed at several
facilities and methods, each supporting a different theoretical system. Therefore, the neutron interfer-
ometer developed in this study can be used to measure the nuclear scattering lengths of light elements
to add new experimental values.

6.4 Primordial Gravitational Wave

As demonstrated in Chapter 1.1, primordial gravitational waves represent the only current method
capable of observing the state of the universe immediately following inflation. Before the clear-up
of the universe, the momentum of particles was so immense that observations using electromagnetic
waves were not possible. Consequently, it remains challenging to observe how fundamental particles
and interactions were constituted during the period from the Big Bang to the clear-up of the universe.
However, since gravitational waves are determined solely by the energy scale of inflation, they can
impose strong constraints on models that induce inflation. Although gravitational waves have been
detected in experimental setups around the world, the expected period of primordial gravitational
waves is around 1 Hz, which implies the necessity of an interferometer arm length of approximately
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FIG. 13. (Color online) Current experimental data on the n-3He
system from this work, ILL 2006 [25], NIST 2004 [24], ILL
2002 [60], ILL 1979 [65] compared to theoretical predictions [58,59].
Bands represent the experimentally determined values ±1σ .

equal to 1/σ [67]. The uncertainty of the weighted average has
been inflated in the manner described in Ref. [67].

Calculations employing models AV18 + UIX, AV18 +
UIX + V∗

3 [58,59], and AV18 + LL2 [17] have all predicted
similar values for the triplet and singlet scattering lengths. For
example, "b′(AV18 + UIX) = −5.753 ± 0.002 fm. Neither
this work nor the work of Zimmer et al. agrees with NN + 3N
calculations. Figure 13 shows a selection of measured values
of b′

1 and b′
0 beside some theoretical predictions. Four-nucleon

interactions have yet to be included into the theoretical models
owing to the difficulty in handling long-range Coulomb forces,
but should constitute only a tiny correction to NN + 3N
predictions. A calculation of pionless effective field theory to

next-to-leading order shows promise [17], but the uncertainty
of the predicted value is still too large to compare to high-
precision measurements. A recent measurement of the total
scattering cross section [68] that suggests a much larger
scattering cross section and would lie outside of Fig. 13 is
omitted for space.

The recent work on the n-3He interaction can lead to
further understanding of low-energy nucleon systems. Al-
though there are several discrepant measurements, scattering
length measurements do not match theoretical models. Taken
alone, the coherent scattering length by Ref. [24] agrees with
AV18 + UIX, but does not intersect a measurement of the
spin-dependent difference in triplet and singlet states. This
work and Ref. [60] agrees with the R-matrix prediction. More
work needs to be done to resolve the discrepancy between
different n-3He coherent scattering length measurements. The
uncertainty in the triplet absorption cross section needs to
be experimentally determined to better precision, if other
measurements of the spin-dependent quantity "b′ are to be
made. The authors hope that this work along with the previous
scattering length measurements can improve future NN + 3N
models and is part of the ongoing exploration into few-body
systems at the NIOF.
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Figure 6.2: The comparison of nuclear potential models and measured scattering length.

3× 108 m for current experimental setups. To detect primordial gravitational waves with realistically
sized devices, it is necessary to develop a gravitational wave interferometer that can achieve long
interaction times using matter waves, along with the elimination of background noise caused by mirrors.
To address these challenges, the development of a gravitational wave interferometer using multi-
wavelength neutrons has been proposed. This interferometer combines a Mach-Zehnder-type neutron
interferometer with multi-wavelength neutrons. By combining neutrons at 100 m/s and 75 m/s with
an interaction length of 75 m, it becomes possible to search for 1 Hz primordial gravitational waves[22].
The setup described above is impossible with a neutron interferometer using a fixed interaction distance
and wavelength with a single silicon crystal. In contrast, the neutron interferometer developed in
this research, employing multilayer mirrors, can accommodate the proposed setup. The proposed
experimental system is illustrated in Figure 6.3. Accepting such an experimental system allows us to
approach phenomena from the early stages of the universe’s birth.

6.5 Lorentz Invariance

Lorentz symmetry is a fundamental principle in physics, forming the basis for various theoretical
constructions. However, as explained in Chapter 1.1.4, theories aimed at the quantization of gravity
for the construction of a Grand Unified Theory suggest the breaking of Lorentz symmetry at high
energies. The breaking of Lorentz symmetry imparts an anisotropic effect on the momentum direction
of particles like neutrons. Since this anisotropic effect is considered invariant with respect to the coor-
dinates of the solar system, it suggests that the momentum undergoes diurnal variations. Even at low
energies, neutrons, which carry large momenta, become powerful test particles for this phenomenon.
The anisotropic effects dependent on the direction of neutron momentum can be measured using a
neutron interferometer with non-parallel paths. In this scenario, the influence of Lorentz symmetry
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Figure 6.3: Proposed configuration of neutron interferometer to explore the primordial gravitational
waves.

breaking can be represented by the following formula:

∆ϕ ≡ ϕ1 − ϕ2 = G(R)

(
pmcL∆x

ℏ2

)
(6.5)

where p is neutron momentum, m is neutron mass, L is interaction distance, and ∆x is lattice spacing,
which is a discrete space breaking. G is an overall geometric factor depending on the arrangement
of the interferometer and its orientation with respect to the underlying spatial lattice. When a non-
parallel neutron interferometer is used, this value can be written as follows

G(R) = (2/3)g (Rp̂1) + (1/3)g (Rp̂2)− (2/3)g (Rp̂3)− (1/3)g (Rp̂4) (6.6)

In the proposed experimental setup, p̂ represents the four distinct momentum directions of neutrons as
they travel through the interferometer, and R denotes the rotation of the interferometer with respect
to the coordinate system of the solar system. The experimental setup is illustrated in Figure 6.4.
Assuming a typical interaction distance of 10 cm for the interferometer and g ∼ 0.1, the phase shift
caused by the breaking of Lorentz symmetry that can be explored is 3 × 1024∆x. Given that the
interferometer developed in this research has a phase determination accuracy of 10−4 rad, it allows for
the verification of symmetry breaking with an accuracy of 3× 10−29 m. When converted to the same
dimensions, the region explored at LHC CERN corresponds to 1 × 10−18 m. Thus, an improvement
in sensitivity of 11 orders of magnitude is expected. For a more detailed description, see Ref.[44].
The development of the non-parallel neutron interferometer is achieved by independently positioning
four mirrors, which is not feasible with silicon single-crystal interferometers where four diffractive
components are fixed to a single ingot. Therefore, the multilayer neutron interferometer can realize
the verification of fundamental physical symmetries with high precision. This advancement opens new
avenues for exploring fundamental aspects of physics that have not been accessible with traditional
methods.
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Figure 6.4: Proposed configuration of matter interferometer to verify the Lorentz invariance.
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Chapter 7

Overall Conclusion

In fundamental physics, there is a concerted effort to gain a deeper understanding of the behavior
and interactions of elementary particles, with the goal of broadly and generally comprehending physical
phenomena. Currently, the Standard Model of particle physics, which unifies electromagnetism and the
weak force among the four fundamental interactions, is capable of explaining most physical phenomena
with the greatest accuracy. However, theories including the remaining strong force and gravity are
still under development, and understanding these interactions remains a challenge in fundamental
physics. The progress in theoretical physics has always been supported by empirical verification
through experiments. Among various experiments, those using neutron optics have yielded many
significant results, as this method allows for the optical handling of neutrons, which have mass and no
electric charge. Besides achieving key findings in measuring nuclear interactions, verifying quantum
mechanics, and enhancing the understanding of gravity, neutron optics have recently been proposed for
experiments exploring the fifth force, CP symmetry violation, and baryon number non-conservation,
maintaining its high utility value.

Neutrons, unable to be focused using electromagnetic forces, require the utilization of large-area
beams to ensure adequate statistical data. Therefore, in neutron optics, either the use of large optical
components with maintained accuracy or high-intensity neutron sources is essential. The introduction
of pulsed neutron sources has substantially decreased statistical uncertainties, significantly advancing
neutron optics. However, the requirement for precision ranging from micrometers to nanometers in
neutron optical components presents a challenge in scaling up. To further develop neutron optics, tack-
ling three key challenges is imperative: the development of large optical components with maintained
accuracy, enhancement of component shape accuracy, and improvement in component installation ac-
curacy. My approach to resolving these issues involved employing advanced machining technologies in
the development of neutron optical components. These challenges were addressed and demonstrated
through a series of three experiments.

The large optical components with maintained accuracy were validated using epithermal neutron
reflectometry. For the reflection of epithermal neutrons, mirrors with dimensions around 300 mm,
maintaining a tilt error of approximately 0.1 mrad and a surface roughness of about 0.1 nm, are
required. To achieve this, I developed neutron mirrors that satisfied the necessary accuracy by com-
bining a multilayer neutron mirror on a glass substrate with an aluminum substrate. By subjecting
these mirrors to epithermal neutrons with energies up to 0.7 eV at oblique incidences, the optical re-
flection of near-epithermal neutrons was observed. The findings reveal that large optical components,
exhibiting shape precision approximately an order of magnitude greater than conventional mirrors, are
practically viable. This implies that neutron optics, previously limited to the thermal region, can now
be expanded to the epithermal region through the development of large components that maintain
high precision.
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The improvement in component shape accuracy was demonstrated in an experiment searching for
the fifth force using dynamical diffraction. In dynamical diffraction, the averaged potential of the
crystal inferred from the observed interference patterns can be used to search for the existence of a
fifth force. By using ultra-precision machining to manufacture the sample with a slope error of less
than 1 µm, I eliminated the most dominant uncertainty in this experiment. The use of machined silicon
single-crystal samples in the experiment successfully increased the limit range for the existence of the
fifth force by up to two orders of magnitude. Adding measurements with germanium single-crystal
samples to these results indicated an improvement in the search sensitivity by at least 1.3 times and
the elimination of unknown systematic uncertainties arising from atomic structure factors and other
elemental sources. Thus, it was shown that using neutron optics with improved component shape
accuracy allows for a highly precise approach to the investigation of the fifth force.

The improvement of component installation accuracy was demonstrated through the development
of a multilayer mirror neutron interferometer. Neutron interferometers can precisely measure the in-
teractions acquired by neutrons. This system can improve measurement sensitivity by using neutron
mirrors, which is a completely different mechanism than conventional ones. Each mirror needs to be
installed within the precision determined by the coherence length. I achieved the required precision
in component installation by applying optical substrates and positioning systems used in laser optics
to neutron optics. By employing these developments to construct a neutron interferometer, I ob-
served interference patterns dependent on neutron wavelengths. The developed interferometer, while
achieving a measurement sensitivity comparable to traditional interferometers, significantly relaxed
the requirements for disturbance suppression devices. Furthermore, the values of neutron nuclear
scattering lengths obtained by inserting samples in one path matched the literature values, confirming
the correct functioning of the developed interferometer. The advancement in component installation
accuracy enabled the realization of neutron mirror arrangements that were previously unachievable,
thus establishing a new measurement system in neutron optics.

These demonstration experiments have shown that the application of advanced machining tech-
nologies can significantly advance the field of neutron optics. Enhanced neutron optics can be utilized
in the exploration of fundamental physics. The development of large mirrors with maintained shape
accuracy can be applied in constructing large ellipsoidal focusing mirrors for experiments such as
neutron-antineutron oscillation search. Improvements in the shape accuracy of neutron optical com-
ponents, such as single-crystal samples, enable us to approach the existence of the fifth force using
dynamical diffraction. The neutron interferometer, realized through improved component installation
accuracy, allows for high-precision re-verification of fundamental physical experiments previously con-
ducted using silicon single crystals. Moreover, this advancement enables the construction of flexible
experimental systems that were impossible with conventional interferometers. This opens up potential
applications in experiments such as atomic gravitational wave searches and tests of Lorentz invariance.
From these, neutron optics using advanced machining technologies extended the range of fundamental
physics experiments that can be explored.
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