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概要
荷電共役 (C)、空間反転 (P)、そして時間反転 (T)操作で構成される離散的対称性は物理学における基本的な対称

性の一つであり、素粒子標準模型は中性 K中間子崩壊に代表される離散的対称性の破れをその枠組みの中で説明す
ることができる。一方、素粒子標準模型では説明の付かない観測事実が存在し、その一つに現在の宇宙におけるバリ
オン、反バリオン数の非対称性が挙げられる。この観測結果は標準模型を超える CP対称性の破れを示唆している。
CPT定理より、CP対称性の破れは時間反転対称性の破れと同等であるとみなせる。そのため時間反転操作に敏感
な永久電気双極子モーメントの探索がさまざまな基本粒子とその複合系に対して６０年以上に渡り遂行されている。
我々の研究グループは、永久電気双極子モーメント探索と非常に相補的となり得る、中性子スピンと原子核スピン
間の時間反転対称性を破る相互作用の探索を計画している。低エネルギー中性子が誘起する原子核反応では、核子
核子間相互作用における非常に小さな空間反転対称性の破れが s波と p波の混合によって生じる複合核状態を経由
することで極めて大きく観測されている。この実験事実に基づき、時間反転対称性の破れが高感度に探索可能であ
ることが予測されている。時間反転対称性の破れは空間反転対称性の破れと複合核スピンに依存する因子の積に比
例するため、そのスピン依存因子を実験的に決定することは高感度探索の設計に向け重要である。スピン依存因子
は p波共鳴における中性子部分幅の角運動量比で定義されている混合角の決定により求めることができる。核種と
して p波共鳴エネルギーが 0.75 eVであり、大きな空間反転対称性の破れが観測されている 139Laを選んだ。中性
子と 139La標的核に対する零角度散乱振幅において、中性子スピンと核スピンの内積に比例する相関項は p波共鳴
において混合角を含む。そのため、測定には偏極中性子ビーム及び偏極核標的が必須である。大強度陽子加速器施
設 J-PARC/BL22において、中性子吸収断面積のスピン選択性を利用した 3Heスピンフィルターと、希釈冷凍機及
び 7T超伝導磁石による静的核偏極を同時にビームラインへと導入した。偏極中性子ビームを偏極核標的に照射し、
中性子スピン正偏極、負偏極に対応する透過中性子数の非対称度を測定した。得られた非対称度に対して s波共鳴
由来の構造を差し引くことにより p波共鳴の断面積を取得した。実験によって得られた断面積と理論式を比較する
ことにより、混合角の解が４つ得られた。この解に対し、中性子吸収反応におけるガンマ線放出角度相関項測定に
よる先行研究の結果が与える解の制限によって物理的な混合角の解を一意に決定し、スピン依存因子を求めた。孤
立系複合核における零角度散乱振幅に得られた混合角を含め、中性子光学へ拡張して得られた中性子スピン観測量
を計算することで、現実的な統計量において到達可能な時間反転対称性の破れに対する探索感度を見積もった。
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Chapter 1

Introduction
Discrete symmetries, comprising of Charge conjugation (C), Parity (P), and Time-reversal (T) symmetries, have
long been presumed to exist in the field of physics. However, in 1956, Lee and Yang theoretically proposed P
violation (PV) in the weak interaction, and the following year, Wu et al. experimentally confirmed PV in the
electron longitudinal polarization of β decay using 60Co [4, 5]. Subsequently, in 1964, CP violation through
the decay of neutral K meson was first observed [6]. The exploration of the discrete symmetries violation has
since become a widely researched field. All these phenomena and observed symmetry violations have been
systematically explained by the Standard Model, which is considered a robust theoretical framework, exemplified
by the discovery of the Higgs boson at the LHC [7]. However, there exist multiple observed results that remain
unexplained by the Standard Model, suggesting phenomena beyond the Standard Model (BSM). One such instance
is the baryon asymmetry in today’s universe. Results from cosmological observations show a baryon-to-antibaryon
asymmetry on the order of 109, which the Standard Model has not yet accounted for [8]. As proposed by Sakharov,
the conditions for the universe to exhibit baryon asymmetry include baryon number violation, C and CP violation,
and interactions out of thermal equilibrium [9]. There is a suggestion that the source of CP violation might be
attributed to BSM physics.

1.1 Discrete symmetry violation in the standard model
The Standard Model provides explanations for two possible sources of CP violation. The first source is CP violation
due to the complex phase associated with quark generation mixing in the Kobayashi-Maskawa matrix, which is
described by the electroweak Lagrangian density for the quark field, denoted as

LW = − e√
2 sin θW

(u†
L, cL†, t

†
L)VKM


σ̃µdL

σ̃µsL

σ̃µbL

W+
µ + h.c. (1.1)

where θW represents the Weinberg angle, while uL, cL, and tL represent their respective eigenstates, and W+
µ

denotes the vector field propagated by the W+ boson. The matrix VKM is the Kobayashi-Maskawa matrix,
representing the mixing between quark generations, and is a 3× 3 unitary matrix [10]. Additionally, the following
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parameter notations are provided by the Particle Data Group (PDG) [11].

VKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



=


1 0 0

0 c23 s23

0 −s23 c23



e−iδ/2 0 0

0 1 0

0 0 eiδ/2




c13 0 s13

0 1 0

−s13 0 c13



eiδ/2 0 0

0 1 0

0 0 e−iδ/2




c12 s12 0

−s12 c12 0

0 0 1



=


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


(1.2)

Here, θij is interpreted as the mixing angle between different quark flavors, with sij = sin θij and cij = cos θij
representing the couplings between quark fields of distinct flavors. The parameter δ represents a complex phase
angle, and a non-zero δ leads to the CP violation. Another possible source of CP violation arises from the θ term
in Quantum Chromodynamics (QCD), which describes the strong interaction between quark colors and gluons.
The CP violating term in the QCD Lagrangian (∆Lθ) is described as follows [12, 13].

∆Lθ =
θ2

32π2
Ga

µνG̃
a
µν (1.3)

The superscript a corresponds to the different types of gluons, ranging from 1 to 8, and Ga
µ represents the 3 × 3

matrix of gluon gauge fields. It is defined as G̃a
µν = (1/2)εµναβG

a
αβ , where εµναβ is a 4-dimensional antisymmetric

tensor. The parameter θ quantifies the extent of CP violation, and experiments aimed at measuring the neutron
electric dipole moment have established an upper limit of |θ| < O(10−10). This value signifies that the CP violation
in the strong interactions is significantly smaller than what theoretical predictions would suggest, a phenomenon
commonly known as the strong CP problem [14].

1.2 Time-reversal invariance violation
In the study of the measurement of permanent electric dipole moments (EDMs) and the CP violation through
neutron scattering, the measurements are carried out with sensitivity to time reversal, rather than measurements
corresponding to CP transformations. This approach is grounded in the CPT theorem, which is based on the
principle that Lorentz-invariant fields always remain invariant under operations involving charge conjugation,
parity reversal, and time reversal.

1.2.1 TRIV search with permanent EDMs
The possession of permanent EDMs by fundamental particles such as neutrons, protons, and electrons, as well as
their composite systems, atoms, is equivalent to the time-reversal invariance violation (TRIV). Fundamental CP
violation can potentially lead to the emergence of EDMs at low-energy scales through various composite systems.
Over the past six decades, extensive searches for permanent EDMs have been conducted by research institutions
worldwide. The Hamiltonian that describes the interaction for a particle placed in an electromagnetic field denoted
as (E,B) is expressed as follows,

H = −µ ·B − d ·E (1.4)

where µ represents the magnetic moment, and d represents the EDM. Under a time-reversal operation, only the
sign of the term d · E is reversed. In other words, by applying radio waves to a particle in an electromagnetic
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fundamental CP odd phases

dμ , de

EDMs of paramagnetic molecules
(Hg, Xe, Ra, Rn)

Cqe , Cqq θ , Cqq , d̃q , w

muon EDM
CS,P,T ḡπNN neutron EDM
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EDMs of diamagnetic atoms
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TeV
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Fig. 1.1 A scheme of hierarchy in which CP-odd phase sources propagate to each energy region corresponding

to generic classes of EDMs[19]. The dashed lines correspond to weaker dependencies. Each EDM search is

complementary, indicating the importance of searching by experiments sensitive to each sector.

field, the Larmor precession frequency is given as ω = −2(µB ± dE)/ℏ, and the EDM d can be evaluated by
measuring the electric field in the opposite direction as d = ℏ∆ω/4E. Among the various EDM measurements,
the neutron EDM (nEDM) provides the most stringent constraint on θQCD associated with QCD. The most recent
nEDM results indicate [15]

|dn| < 1.8× 10−26 e · cm (90%C.L.). (1.5)

On the other hand, the Standard Model predicts |dn| ∼ O(10−32) e · cm, a level of precision not yet achieved by
current experiments. However, since the accuracy of nEDM measurements is primarily constrained by statistical
uncertainties, there is potential for increased sensitivity with improvements in neutron sources. Additionally, the
most recent results for the electron EDM [16] and the 199Hg atom EDM [17] have been measured as follows

|de| < 4.1× 10−30 e · cm (90%C.L.) (1.6)

|dHg| < 7.4× 10−30 e · cm (95%C.L.). (1.7)

These measurements have imposed constraints on many theoretical models based on BSM physics [18]. Figure 1.1
illustrates how the fundamental CP violation can propagate into different energy regions and sectors. Since EDMs
for various systems exhibit varying sensitivities to CP-violating coupling constants, conducting experiments with
sensitivity in multiple sectors is of utmost importance. Our research group is aiming to explore the TRIV using a
novel approach through low-energy nuclear reactions, complementing EDMs measurements.

1.2.2 TRIV search with nuclear reaction
In cases where enhancement mechanisms involving compound nuclei, such as nucleon-nucleon reactions, are not
present, the observed asymmetry due to PV is extremely small, on the order of 10−8 [20]. However, in low-energy
neutron scattering with medium-heavy nuclei, PV in the vicinity of the p-wave has been enhanced to approximately
106, as confirmed by both theory and experiments over nearly five decades. This enhancement is understood to be
induced by compound nucleus reactions, as elaborated in the next chapter, and it is expected that, along with the
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σ
k̂n

̂I

k̂n × ̂I

−σ
−k̂n

− ̂I

k̂n × ̂I

Fig. 1.2 A concept of the TRIV search with neutron transmission propagating through a polarized media. The

left and right pictures indicate a corresponding time-reversed system.

enhancement of PV, the TRIV is similarly enhanced through the same mechanism. Our research group aims to
explore TRIV through measurements of the transmitted neutrons in the process where low-energy neutrons with
wavevector k̂n propagate through an atomic nuclei target polarized along Î, as depicted in Fig.1.2. The scattering
amplitude, proportional to the coefficient σ · (k̂n× Î) that violates time-reversal symmetry, is obtained through this
measurement. A noteworthy advantage of this measurement is that it does not exhibit false TRIV effects mediated
by final-state interactions. This is because the first Born approximation is applicable for the forward scattering
amplitude at zero-angle for low-energy neutrons (typically below a few eV) on nuclei, preserving the unitarity of
the scattering matrix. In the context of TRIV in the nucleon system, it is essential to consider what observables
appear concerning the coupling constants illustrated in Fig.1.1. Due to a lack of quantitative understanding related
to the strong interaction, it is not entirely clear what coupling constants theoretically emerge. Therefore, it is
valuable to compare the calculation results for PV and TRIV in neutron-proton scattering with those for composite
nuclei [21, 22]. Denoting the total cross section in neutron-deuteron scattering as σtot and the cross-section for
PV and TRIV as ∆σ ̸P ̸T , their ratio may be described as follows

P̸P ̸T =
∆σ ̸P ̸T

σtot

=
(−0.185 bn)

2σtot
[ḡ(0)π + 0.26ḡ(1)π − 0.0012ḡ(0)η

+ 0.0034ḡ(1)η − 0.0071ḡ(0)ρ + 0.0035ḡ(1)ρ + 0.0019ḡ(0)ω − 0.00063ḡ(1)ω ].

(1.8)

The P-violating ratio may be described as follows [23]

P ̸P =
∆σ ̸P

σtot

=
(0.395 bn)

2σtot
[h1

π + h0
ρ(0.021) + h1

ρ(0.0027) + h0
ω(0.022) + h1

ω(−0.043) + h′1
ρ (−0.012)].

(1.9)

Here, ḡ
(T )
π,η,ρ and h

(T )
π,ω,ρ represent the coupling constants of the π, η, ρ, ω mesons characterized by P- and T-

odd interactions between mesons and nucleons with isospin T . A single-meson exchange model proposed by
Desplanques, Donoghue, and Holstein (DDH model) [24] is applied to Eq. 1.8 and 1.9. Due to the dominance of
the coupling constants associated with π meson exchange in each equation, they may be described as [25]

λ̄ =
∆σ ̸P ̸T

∆σ ̸P
≃ (−0.47)

[
ḡ
(0)
π

h1
π

+ (0.26)
ḡ
(1)
π

h1
π

]
. (1.10)

This represents the unexplored parameter in low-energy neutron and nuclear reactions. The nEDM is associated
with ḡ

(0)
π , and the HgEDM is associated with ḡ

(1)
π , and their upper limit may be described as [26]

ḡ(0)π < 1.6× 10−10, ḡ(1)π < 0.5× 10−11. (1.11)
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The parameter h1
π is determined by the γ-ray asymmetry measurement in n⃗p scattering and the DDH model as [27]

h1
π = (2.6± 1.2(stat)± 0.2(syst))× 10−7. (1.12)

Therefore, the following relationship is derived from Eq.1.10.

|λ̄| =
∣∣∣∣∆σ ̸P ̸T

∆σ ̸P

∣∣∣∣ < 2.9× 10−4 (1.13)

Measurements with the potential to exceed this value indicate the possibility of improving the current EDMs
experimental limits and are referred to as "discovery potential." It is important to note that these limits strongly
depend on theoretical models like quark-chromo EDMs and Axion-like particles, as highlighted by Fadeev et
al. [28]. The search for TRIV through neutron transmission experiments has a significant advantage in being
complementary to EDMs searches. Assuming that ḡ(T )

π , ḡ
(T )
η , ḡ

(T )
ρ are of the same order, the neutron EDM dn and

deuteron EDM dD can be expressed as follows [29]

dn ≃ 0.14(ḡ(0)π − ḡ(2)π ) (e fm)

dD ≃ 0.22ḡ(1)π (e fm).
(1.14)

In other words, each of these observables has different sensitivities to models of TRIV. Therefore, Equation 1.8
corresponds to exploring a parameter space that is distinct from each EDMs search.

1.3 Overview and organization of the dissertation
The purpose of this dissertation is to identify the factors that contribute to the formulation of neutron spin
observables and to provide systematic estimations for TRIV in neutron optics. The mixing angle, characterized by
the compound nucleus spin J and the neutron partial width of the p-wave resonance was experimentally obtained
and determined including the restriction of the previous studies. Chapter 2 presents calculations concerning the
enhancement mechanisms of PV and TRIV in the compound nucleus model, along with explicit forward scattering
amplitudes for the most promising target. In Chapter 3, the theoretical framework of neutron transmission
experiments, the observables, and the interactions that introduce systematic uncertainties are elucidated. Chapters
4 and 5 detail the method and results of neutron transmission experiments for determining the essential p-wave
mixing angle ϕF required for evaluating TRIV. The value of ϕF obtained here is independent of the final states,
unlike measurements performed in previous studies using (n, γ) reactions. In Chapter 6, the causes of systematic
uncertainties are summarized, and the measurement procedures necessary to achieve the sensitivity required for
exploring new physics and constraining it are discussed.
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Chapter 2

Theory of compound nucleus

PV in neutron reactions has been reported from both theoretical and experimental perspectives for six decades.
Experimentally, PV was observed in (n, γ) reactions and (n, f) reactions in nuclear fission [30, 31]. In 1980, the
helicity dependence of neutron spin rotation in unpolarized media was first reported using 117Sn [32]. Subsequently,
as neutron transmission experiments, the absorption cross section depending on neutron helicity were measured
for medium-heavy nuclei such as 117Sn, 139La, and 81Br, revealing PV in the vicinity of p-wave resonances with
the observed P-violating cross section being on the order of 10−1−10−2 with respect to the total cross section [33].
These experimental findings were accompanied by attempts to construct theoretical models for P-violating nuclear
reactions. Between 1964 and 1980, theoretical frameworks explaining P-violating nuclear reactions were reported
by Michel, Stodolsky, among others. These models included treating nuclear potentials as P-odd, neglecting the
intrinsic degrees of freedom of nuclei resulting from neutron interactions, or discussing exotic phenomena and the
presence of new weak interaction due to nuclear reactions [34, 35, 36]. However, these theoretical models did not
reconcile the significant disparities between the experimental results of P-violating spin rotations and absorption
cross section and the theoretical predictions. The discrepancies were due to the consideration of idealized models
such as single-particle potential resonances while overlooking the more complex internal degrees of freedom of
actual nuclei. In response, Sushkov and Flambaum proposed a model to explain the substantial enhancement of
PV by introducing compound nuclear states as highly excited intermediate states in nuclear reactions [37, 38]. In
this compound nuclear model, they predicted two main reasons for the substantial enhancement of PV. Firstly,
they attributed it to the dynamic enhancement due to the narrow level spacing between excited states in compound
nuclear states, typically on the order of eV. Secondly, they suggested a structural enhancement caused by the
ratio of P-invariant and varying transition matrix elements originating from s and p-wave states and nuclear
structure, which scales as ∼ (knR)−1 (kn represents the neutron wave number, and R denotes the nuclear radius).
While Flambaum’s proposal considered only PV in the vicinity of p-wave resonances in compound nuclear states,
Bunakov and Gudkov developed a theory that also considered s-wave resonances, which dominate most of neutron
scattering [39]. This microscopic nuclear reaction theory framework achieved consistency with the aforementioned
experimental results [40]. In this chapter, we discuss the theoretical interpretation of the enhancement mechanism
of symmetry violation in compound nuclear processes, along with a focus on promising target nuclei for exploring
TRIV. We provide an explicit expression for the forward scattering amplitude, including tensor polarization, for
the most promising nuclei 139La. Furthermore, we present specific computational results for the correlation terms
constituted by neutron spin, neutron momentum, and nuclear spin.

2.1 The enhancement mechanism of P-odd effects

2.1.1 Description for the P-odd amplitudes and dynamical enhancement
For the P-odd neutron elastic scattering amplitude, the reaction T and R matrices are described in association with
the scattering matrix S[39, 40]. Their relationship can be expressed as

R̂ = 2πiT̂ = 1− Ŝ. (2.1)
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The neutron spin, neutron orbital angular moment, neutron total angular moment, and channel spin are defined as
s, l, j = l + s, S = s + I , respectively. The matrix elements of the P-odd neutron elastic scattering amplitude
can be written as Rl′l ≡ ⟨S′l′|RJ |Sl⟩ from [41]. J = l + S, S′, and l′ represent the total angular moment,
the channel spin, and the orbital angular moment in a final state, respectively. In the following discussion, only
l = 0, 1 orbital angular momentum, i.e. s or p wave resonances, are considered for the interaction with low energy
neutrons. To avoid complicated calculations such as spin factors, the target nuclear spin is defined as I = 0 and
J = j = S = S′ = 1/2. Then, the matrix elements can be expressed as

Rl′l = ⟨1/2 l′|R 1
2 |1/2 l⟩ . (2.2)

Letting H0, V ̸P denote the P-conserving or non-conserving potentials as the Hamiltonian H , respectively, leads
to H = H0 + V ̸P . In this case, for a normal (P-conserving) scattering process, the eigenfunction Ψ± follows as
H0Ψ

± = EΨ±, then by using the distorted wave Born approximation for the weak interaction, Eq.2.2 can be
transformed as

Rl′l = 2πi ⟨Ψ−
l′ |VP̸ |Ψ+

l ⟩ . (2.3)

According to the shell model approach in nuclear reactions [42], the scattered wave function has the following
energy dependence

Ψ±
E =

∑
i

a±i (E)φ±
i +

∫
b±(E,E′)χ±

E′dE
′ (2.4)

where φi is the compound nuclear wave function due to the ith resonance and χE′ is the wave function due to mean
field potential scattering in the nucleus. The other coefficients in Eq.2.4 is as follows

a±i (E) =
exp(±iδ)√

2π

√
Γn
i

E − Ei ± iΓi/2
. (2.5)

The neutron partial width included in this is obtained by adding the residual interaction V , which cannot be
represented by the nuclear model, as a perturbation

Γn
i (E) = 2π |⟨χE′ |V |φi⟩|2 (2.6)

Then, b±(E,E′) at the outer |E − E − Ei| > Γi of the compound nuclear resonance is

b±(E,E′) ≃ exp(±iδ)δ(E − E′) (2.7)

which leads to the interaction between the nuclear mean field and the compound nuclear wave function. In this
case, Ei, Γi, Γ

n
i denote the resonance energy, full width, and neutron width for the ith resonance and δ is the phase

shift due to potential scattering. In Eq. 2.4, the potential scattering χ±
E′ can be regarded as an energy-independent

constant in the neighborhood of a compound nuclear resonance, which gives the following∫
b±(E,E′)χ±

E′dE
′ ≃ exp(±iδ)χ±

E′ . (2.8)

Therefore, Eq.2.4 is then restricted to i as s, p-wave resonances to obtain

Ψ±
s,p = a±s,pφ

±
s,p + exp(±iδs,p)χ

±
s,p (2.9)

By substituting Eq.2.9 into Eq.2.3 to obtain

R01 = 2πi

[
a+s a

+
p

∫
φsV ̸Pφpdτ + a+s e

iδp

∫
φsV ̸Pχ

+
p dτ + ei(δs+δp)

∫
χ+
s V ̸Pχ

+
p dτ

]
(2.10)

where τ represents the time of the compound nuclear state. In this equation, the first term represents the mixing of
s, p-wave compound nuclear states via the weak interaction, and the second term represents the decay of compound
nuclei via potential resonant scattering due to the weak interaction. The third term corresponds to the mixing of the
continuous state wavefunction, with all mixing in the absence of compound nuclear resonance coming from this
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term [43]. For low-energy neutrons and heavy nuclei, the first term becomes dominant due to the high resonance
level density, this decreases the denominator of a+s a+p . This mechanism is the dynamical enhancement described
at the beginning of the chapter. Since the mixing of the continuous state wavefunction and decay of the compound
nucleus contribute only when the level spacing of the s, p-wave resonances exceeds 100 eV, when considering
scattering phenomena in heavy nuclei, Eq.2.10 can be approximated as follows

R01 ≃ 2πia+s a
+
p

∫
φsV ̸Pφpdτ = −R10 (2.11)

where the matrix element
∫
φsVP̸φpdτ follows the phase convention of the compound nuclear wave function [44]

to obtain ∫
φsV ̸Pφpdτ = −v (2.12)

Therefore, Eq.2.11 can be described in the simple two resonance approximation from [45] as

R01 = −2iπa+s a
+
p v = −i

√
Γn
s v
√
Γn
p,j=1/2

(E − Es + iΓs/2) (E − Ep + iΓp/2)
= −R10 (2.13)

Next, a calculation of the specific value of the matrix element V due to the mixing of parity due to dynamical
enhancement is performed[40]. Let the compound nuclear wave function simply be φ and the single particle wave
function Ψi, the mixing of compound nucleus resonances due to the strong interactions can be represented as

φ =

N∑
i=1

ciΨi. (2.14)

With the normalization
∑N

i c2i = 1, where N is the number of levels in the compound nucleus. Applying the
random phase approximation [46] to the matrix element ⟨Ψi|V ̸P |Ψk⟩, Eq.2.12 leads to

|v| = ⟨φs|V ̸P |φp⟩ ∼ ¯⟨Ψi|V ̸P |Ψk⟩N−1/2 (2.15)

where ¯⟨Ψi|V ̸P |Ψk⟩ is a average matirix elements between single particles. The number of compound nucleus
levels, N , can be expressed using averaged level spacing of single particle resonances, D̄0, and level spacing of the
compound nucleus, D̄ as

N ≃ D̄0/D̄ (2.16)

Therefore, by substituting Eq.2.15 and Eq.2.16 for the dynamic enhancement factor, v/D, we obtain

|v|
D

≃
¯⟨Ψi|V ̸P |Ψk⟩N− 1

2

N−1D̄0
=

( ¯⟨Ψi|V ̸P |Ψk⟩
D̄0

)√
N (2.17)

Since N ∼ 106 is obtained from the value of the neutron strength function [47] in heavy nuclei, |v|
D ∼

¯⟨Ψi|VP̸ |Ψk⟩/D̄0 × 103, it is clear that PV is enhanced about 102 − 103 compared with the inter-nucleon inter-
action.

2.1.2 P-odd longitudinal asymmetry
In the 1980s, measurements of neutron helicity-dependent absorption cross sections were performed by Alfimenkov
[33] and confirmed that PV was greatly enhanced in the vicinity of p-wave resonances. The number of transmitted
neutrons after longitudinally polarized neutrons propagated through an unpolarized medium was counted, and
helicity-dependent transmission rates were measured by flipping the incident neutron spin. The longitudinal
asymmetry can be defined as

PL =
σ− − σ+

σ− + σ+
(2.18)
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where σ+, σ− are the total cross sections for incident neutrons of positive and negative helicity, respectively. In
this section, the enhancement mechanism of PV in more detail by interpreting the longitudinal asymmetry from
the theoretical expression for the scattering amplitude in p-wave resonance will be discussed. Equation 2.18 can
be expressed using the matrix elements of the P-violating scattering amplitudes as follows

PL =
Re(R10 −R01)

ReR11
(2.19)

where ReR11 represents the P-conserving matrix element of the scattering amplitude in p-wave resonances. This
can be calculated by considering only p-wave resonances from Eq.2.2, this leads to

R11 = ie2iδp
Γn
p

E − Ep + iΓp/2
− 2ieiδp sin δp. (2.20)

For a nuclear radius of R0 ∼ 1.2A1.3 fm and neutron energy E ∼ 1 eV, the phase shift is δp ∼ (knR0)
3 ≃ 10−9. In

this case, the potential scattering in the p-wave can be neglected. Therefore, Eq.2.20 can be described as

R11 ≃ i
Γn
p

E − Ep + iΓp/2
(2.21)

Taking the real part as E = Ep, one leads to

ReR11(E = Ep) =
2Γn

p

Γp
(2.22)

And, Eq.2.13 leads to

Re(R10(Ep)−R01(Ep)) = −
4
√

Γn
s v
√
Γn
p,j=1/2

(Ep − Es)2 + (Γs/2)2
1

Γp

≃ −
4
√

Γn
s v
√

Γn
p,j=1/2

(Ep − Es)Γp

(2.23)

Therefore, by substituting Eq.2.22 and Eq.2.23 into Eq.2.19, we obtain

PL ≃ − 2v

Ep − Es

√
Γn
p,j=1/2

Γn
p

√
Γn
s

Γn
p

(2.24)

In this equation, v/(Ep − Es) is the aforementioned dynamic enhancement factor and
√
Γn
s /Γ

n
p denotes the

structural enhancement factor. Here, the difference in the centrifugal potentials of the s and p waves leads to

Γn
s,p ∝ (knR0)

2l+1 (2.25)

Then, one can write √
Γn
s

Γn
p

∼ 1

knR0
(2.26)

The value of the structure factor is approximately (knR0)
−1 ∼ 102 − 103 for a typical heavy nucleus. In other

words, the P-odd effect is amplified by about 104 − 106 due to s, p mixing in the compound nuclear process. Here,√
Γn
p,j=1/2/Γ

n
p represents the ratio of j = 1/2 in the p-wave neutron partial width, which can have a choice of

j = 1/2, 3/2 in p-wave resonance, then Γn
p,j=1/2/Γ

n
p + Γn

p,j=3/2/Γ
n
p = 1.

x2
F ≡

Γn
p,j=1/2

Γn
p

, y2F ≡
Γn
p,j=3/2

Γn
p

(2.27)

They satisfy the following

x2
F + y2F = 1, cos2 ϕF + sin2 ϕF = 1 (2.28)

Thus, the ratio of p-wave neutron partial widths for j = 1/2, 3/2 can be expressed using the mixing angle ϕF

according to Flambaum’s convention for the momentum summation [48].
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2.2 The enhancement mechanism of CP-odd effects
The possibility of TRIV interactions occurring when polarized neutrons propagate through a polarized medium
was almost simultaneously pointed out by Kabir and Stodolsky[49, 50]. The time evolution of polarized neutrons in
polarized media will be discussed in detail in the following chapter. Here, we focus on the microscopic perspective
of TRIV in nuclear reactions with nonzero spin nuclei as a target[51, 40]. The effects of TRIV can be expressed
in terms of the scattering amplitude proportional to the correlation term σn · (k̂n × Î) involving the neutron spin
σn, the neutron wavevector k̂n, and the nuclear target spin Î. Similar to P-odd effects, this effect can be obtained
by measuring the precession rate dχT

dz around the k̂n × Î axis or by measuring the neutron absorption cross section
∆σT in the cases where the neutron spin is parallel or antiparallel and is calculated by the optical theorem as

dχT

dz
=

4πρ

kn
Re(f↑ − f↓)

∆σT =
4π

kn
Im(f↑ − f↓)

(2.29)

where z is the thickness of the polarized media and f↑, f↓ are the zero-angle forward scattering amplitudes to
neutron spins parallel and antiparallel to the k̂n × Î axis, respectively. Adding a P- and T-odd matrix element w to
Eq.2.12, to obtain ∫

φs(V ̸P + V ̸P ̸T )φp = −v − iw (2.30)

The potential V ̸P and V ̸P ̸T are expressed as follows [52]

V ̸P =



0 v01 . . . vik . . .

v10 0 . . . . . . . . .
...

...
. . . . . . . . .

... vki
... 0 . . .

...
...

...
...

. . .


, V ̸P ̸T =



0 +iw01 . . . +iwik . . .

−iw10 0 . . . . . . . . .
...

...
. . . . . . . . .

... −iwki

... 0 . . .
...

...
...

...
. . .


(2.31)

As these matrices show, vik = 0 and wik = 0 when the angular momenta i and k are of the same parity, and the P-
and T-odd matrix elements are antisymmetric. Therefore, by s, p-mixing with a two-resonance approximation as
in the P-odd argument, Eq.2.29 can be transformed as

dχT

dz
=

4πρGJ

k2n

√
Γn
sw
√

Γn
p [(E − Es)(E − Ep)− ΓsΓp/4]

((E − Es)2 + iΓs/2) ((E − Ep)2 + iΓp/2)

∆σT = −2πGJ

k2n

√
Γn
sw
√
Γn
p [(E − Ep)Γs + (E − Es)Γp]

((E − Es)2 + iΓs/2) ((E − Ep)2 + iΓp/2)

(2.32)

One shows the form is similar except for GJ in Eq.2.13. Here, GJ represents a spin factor as [40]

GJ = −

√
3

2(2I + 1)

1

4π

{√
2I + 1

2I + 3
δj,I+1/2δS,I−1/2 +

√
I

I + 1
δj,I−1/2δS,I+1/2

}
(2.33)

where δ is Kronecker’s delta. Let ∆σP be the P-odd and T-even cross section of non-zero nuclear spins, and since
the P- and T-odd cross section are also expected to be enhanced about 106, the following equation is introduced
based on their analogy [53].

∆σT = κ(J)
w

v
∆σP (2.34)
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Here, κ(J) is the ratio of the spin-dependent factor of P- and T-odd effects. Its specific formulae can be described
as

κ(J = I + 1/2) = − 3

23/2

(
2I + 1

2I + 3

)3/2(
3√

2I + 3
γ −

√
I

)−1

κ(J = I − 1/2) = − 3

23/2

(
2I + 1

2I − 1

)(
I

I + 1

)1/2(
− I − 1√

2I − 1

1

γ
+

√
I + 1

)−1
(2.35)

where γ is the ratio of neutron partial widths for different channel spins I + 1/2, I − 1/2, then γ = [Γn
p (I +

1/2)/Γn
p (I − 1/2)]1/2. The value of κ(J) here can be obtained mainly from angular correlation experiments in

(n, γ) reactions [48]. In other words, the larger the value of κ(J), the more the TRIV search is also enhanced with
respect to the P-odd cross section, thus it is important to select such nuclides. Their ratio can be also defined as

x2
S ≡

Γn
p (S = I − 1

2 )

Γn
p

, y2S ≡
Γn
p (S = I + 1

2 )

Γn
p

. (2.36)

The relation of the spin-coupling transformation from the Gudkov notation (xS , yS), J = l + (s + I), according
to the Eq.2.27 to the Flambaum notation (xF , yF ), J = I + (l + s), the relation of the spin-coupling can be
transformed by the order of angular momentum composition as follows

|[l, (sI)S]J⟩ =
∑
j

(−1)l+s+I+J
√
(2j + 1)(2S + 1)

1 1
2 j

I J S

 |[I, (ls)j]J⟩

=
∑
j

(−1)l+s+I+J
√
(2j + 1)(2S + 1)

1 1
2 j

I J S

 (−1)j+I−J |[(ls)j, I]J⟩ .

(2.37)

Here, the transformation in the first and second lines uses |[I, (ls)j]J⟩ = (−1)j+I−J |[(ls)j, I]J⟩ according to the
definition of the 6j symbol and Condon-Shortley’s phase convention. This transformation yields the expression
(2.35) in (xF , yF ) as follows

κ(J = I − 1/2) =

(
1− 1

2

√
2I − 1

I + 1

yF
xF

)

κ(J = I + 1/2) =
I

I + 1

(
1 +

1

2

√
2I + 3

I

yF
xF

)
.

(2.38)

Thus, the spin-dependent factor κ(J) can be interpreted by measuring the mixing angle ϕF . The p-wave neutron
partial width ratios xF , yF (or xS , yS) for obtaining the mixing angle ϕF have not been established due to the
complex structure of the compound nuclear process. Therefore, they are determined only by experiments sensitive
to the p-wave neutron partial width ratio and its sign.

2.3 Final state interactions
In general, the measurement of T-odd angular correlation terms in scattering or particle decay does not necessarily
directly relate to TRIV. As an example, the P-conserving operator in the scattering of polarized particles,σ·(ki×kf ),
is T-odd and can formally mimic time-reversal. However, the avoidance of mimicking final-state interactions by
T-odd correlation terms can be achieved by treating low-energy neutrons optically. This is only valid when the
zero-angle forward elastic scattering amplitude of low-energy neutrons can be described within the framework
of the first Born approximation [54, 23]. Here, the condition of independence from final-state interactions in
zero-angle elastic scattering is imposed by the unitarity condition of the scattering matrix as described as

T̂ † − T̂ = iT̂ T̂ † (2.39)
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Fig. 2.1 Longitudinal asymmetry PL for various nuclei ([55] and references therein)

When the first Born approximation is valid, the right-hand side of Eq.2.39 is extremely small and can be approxi-
mated as zero. In this case, T̂ can be a Hermitian matrix, satisfying T̂ = T̂ †, then

⟨i|T̂ |f⟩ = ⟨f |T̂ ∗|i⟩ (2.40)

The subscripts i and f represent the quantum numbers of the initial and final states, respectively. From the condition
of invariance under time reversal

⟨f |T̂ |i⟩ = ⟨−i|T̂ | − f⟩
∗

(2.41)

The negative sign implies that the particle spin and momentum have opposite signs in the corresponding states.
Additionally, due to the properties of the reaction matrix,

⟨f |T̂ |i⟩ = ⟨−f |T̂ | − i⟩
∗
. (2.42)

This condition prohibits P-odd correlations from being T-odd angular correlations. In other words, the zero-angle
scattering amplitude allows it possible to obtain Eq.2.42 without violating unitarity from Eq.2.41. Consequently,
the final-state interactions in neutron transmission cannot mimic TRIV T-odd correlations.

2.4 The candidate of nuclei for TRIV search
The selection of an optimal nuclide as a polarized target is crucial for exploring TRIV. As mentioned in Eq.2.34,
nuclei with large longitudinal asymmetry and κ(J) lead to enhanced TRIV. Therefore, it is essential to measure
the longitudinal asymmetry and κ(J) for multiple nuclei to evaluate the magnitude of ∆σT in advance. Moreover,
as shown in Fig.2.1, previous studies have measured the longitudinal asymmetry and the corresponding resonance
energies for many nuclides (see [55] and references therein). However, selecting a nuclide with large longitudinal
asymmetry does not necessarily translate into more sensitive measurements. This is because it is necessary to
consider both the limitations of the first Born approximation and the experimental constraints. As discussed in the
previous section, applying the first Born approximation is essential for low-energy neutrons (En < eV) interacting
with a polarized target, to eliminate the T-odd effects associated with the final-state interactions. Furthermore,
from a statistical perspective, a smaller p-wave resonance energy is advantageous, given that thermal neutrons near
the peak of the Maxwellian distribution are considered as the neutron source [56].
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Another experimental constraint to consider is the nuclear polarization method. The magnitude of the TRIV
is proportional to the vector nuclear polarization. Therefore, increasing the nuclear polarization enhances the
measurement sensitivity. The brute-force method (BF method) can be employed to forcibly polarize nuclei
by utilizing a strong magnetic field and cryogenic conditions, taking advantage of nuclear spins following the
Boltzmann distribution. However, in practical settings, the polarization achieved using the BF method is relatively
low. For example, for nuclei with spin 7/2, such as 139La, even under the conditions of sample temperature at 0.1 K
and an applied magnetic field of 1 T, only about 0.4% polarization can be obtained. Therefore, in terms of achieving
high polarization, nuclides for which dynamic nuclear polarization (DNP) techniques are established are preferred
[57]. The DNP involves exciting unpaired electron spins using high-frequency microwave radiation and transferring
polarization to nuclear spins, resulting in high nuclear polarization. For instance, a nuclear polarization of 47.5%
has been reported for LaAlO3, which contains 139La nuclei [58]. Additionally, another polarization technique is
the spin-exchange optical pumping (SEOP) method. The SEOP method polarizes alkali metal atoms by exciting
them with circularly polarized infrared laser beams and subsequently transfers the polarization to nuclear spins
through hyperfine interactions with the target nuclei [59]. This method yields relatively high polarization, but it is
limited to gaseous targets and must be used with non-reactive target nuclei, typically noble gases.

Table 2.1 Candidate nuclei for the TRIV search.

Nuclide Ep (eV) PL (%) I Natural abundance (%) Typical polarization method

139La 0.75 [1] 9.55± 0.35 [60] 7/2 99.91 DNP・BF
81Br 0.88 [3] 1.77± 0.33 [61] 3/2 49.3 SEOP
117Sn 1.33 [3] 0.79± 0.04 [62] 1/2 8.6 DNP
131Xe 3.2 [3] 4.3± 0.2 [63] 3/2 21.2 SEOP
115In 6.85 [3] −1.45± 0.11 [64] 9/2 95.72 DNP

From the above technical constraints, the candidate nuclides, nuclear resonance parameters, and nuclear polar-
ization method are shown in Fig.2.1. Based on the above, we consider 139La to be the most promising nuclide,
because it satisfies both the p-wave resonance energy and the longitudinal asymmetry conditions, and has a track
record of nuclear polarization by the DNP method with LaAlO3. On the other hand, due to the 7/2 of nuclear spin,
not only the simplest vector polarization but also the 2nd- and 3rd-rank tensor polarization must be considered at
the same time for the scattering amplitude.

2.5 The mixing angle of previous experiments in (n, γ) reactions
The angular correlations in the (n, γ) reactions for 139La have been measured using two different experiments, which
are caused by the neutron-induced p-wave resonances associated with the s- and p-wave resonances. Therefore, the
specifical values of xF and yF can be extracted from the correlation terms depending on neutron spin σn, neutron
momentum kn, γ-ray spin σγ , and γ-ray momentum kγ [48]. The differential cross-section in the (n, γ) reactions
describing up to the first four terms can be written as [48]

dσnγ′

dΩγ
=

1

2

(
a0 + a1k̂n · k̂γ + a2σn · (k̂n × k̂γ) + a3

(
(k̂n · k̂γ)

2 − 1

3

))
, (2.43)



2.5 The mixing angle of previous experiments in (n, γ) reactions 15

where a0 represents the angular independent term and is composed as the sum of both the s- and p-wave differential
cross sections, denoted as a0s and a0p. The specific expressions for a0, a1, a2, and a3 can be described as

a0 =
∑
s

|V1|2 +
∑
p

|V2|2,

a1 = 2Re
∑
s,p,j

V1V
∗
2 P (JsJp

1

2
j1IF )zp,j ,

a2 = −2Im
∑
s,p,j

V1V
∗
2 P (JsJp

1

2
j1IF )zp,j ,

a3 = 3
√
10Re

∑
s,K′

p,j
′

V2V
∗
2′P (JsJK′

p
jj′2IF )


2 1 1

0 1
2

1
2

2 j j′

 zp,jzp,j′ ,

(2.44)

where F is a spin of the final state, the primed subscriptions are the final state, and zp,j corresponds to xF (j = 1/2)
or yF (j = 3/2). V1 and V2 are the amplitude in s- or p-wave states as an entrance channel corresponding to the
neutron absorption process and exit channels via γ-rays emission. In case of the interference between the s- and
p-wave amplitude is taken into account, V1 and V2 are described as [48]

V1 = − 1

2kn

√
gsΓn

sΓ
γ
s,f (1 + α)

E − Es + iΓs/2
,

V2 = − 1

2kn

√
gpΓn

pΓ
γ
p,f

E − Ep + iΓp/2
,

(2.45)

where Γγ
f is the partial γ width to f -th final state, α is the contribution of the other far s-wave resonances. The

angular correlation terms, which correspond to a1, a2, and a3, for the γ-rays emission derived from the transition
to the ground state of 140La have been reported in Ref.[65, 66]. The ratios of the partial γ width to the ground state
have been determined as [65]

Γγ
s0,gnd

Γγ
s0

:
Γγ
s1,gnd

Γγ
s1

:
Γγ
p,gnd

Γγ
p

= 1 : 0.009± 0.006 : 0.796± 0.020. (2.46)

The correlation term measurements in (n, γ) reactions with unpolarized and polarized neutron beam for the 0.75
eV p-wave resonance using a germanium detector assembly and a neutron polarizer with 3He gas spin filter have
been performed at the ANNRI instrument [67], the beam port 04 shown in Fig4.1, in J-PARC. The analyzed γ-ray
possesses an energy of 5161 keV, signifying the transition from the compound state involving 139La + n to the
ground state of 140La.

The angular distribution of γ-rays measured with an unpolarized neutron beam, as reported in Ref.[65], corre-
sponds to the a1 term in Eq.2.43. This term represents the correlation between the incident neutron momentum
and the γ-ray emission angle θγ . The resonance shape of the angular dependence was assessed by examining
the difference in γ-ray counts between the lower and higher energy regions of neutrons at the 0.75 eV p-wave
resonance. The experimentally obtained correlation terms were

a1
a0

= −0.409± 0.024,
a3
a0

= −0.191± 0.028. (2.47)

The angular distribution is compared with the theoretical expression described as a function of xF and yF as
follows

a1
a0

= 0.30xF − 0.35yF , (2.48)

a3
a0

= −0.20xF yF + 0.033y2F . (2.49)
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The solutions of xF and yF of Eq.2.48 on the unit circle in Eq.2.28 are obtained as,

(xF , yF ) = (−0.23+0.12
−0.12, 0.97

+0.02
−0.04), (−0.93+0.06

−0.04, 0.37
+0.12
−0.12). (2.50)

Here, equation 2.49 does not intersect with the unit circle.
The angular distribution of γ-rays obtained with a polarized neutron beam, as reported in Ref.[66, 68], is

associated with the a2 term. This term represents the correlation among the incident neutron momentum, γ-ray
emission angle, and neutron polarization orientation, as indicated in Eq.2.43. The transverse asymmetry, denoted
as ALR, was obtained as follows

ALR = −0.60± 0.19 (2.51)

The transverse asymmetry should be multiplied by

1− a3
a0p

(
cos2 θγ − 1

3

)
(2.52)

to compare with the theoretical expression due to the contribution from a3 in the denominator. In the measurement,
the experimental coordinate of θγ = π/2 was satisfied. Consequently, Eq.2.52 is described as 1 − a3/3a0p. The
theoretical expression, expressed as a function of xF and yF , gives

ALR

(
1− a3

3a0p

)
= 0.72xF + 0.42yF . (2.53)

As the transverse asymmetry was derived by subtracting the s-wave component, a3/a0 is corrected by multiplying
a0/a0p, where the value a0/a0p = 2.2 is calculated based on Eq.2.46 and the resonance parameters in Ref[65].
Therefore, the experimental value of Eq.2.53 is obtained as −0.52 ± 0.17. Therefore, the solutions of xF and yF
on the unit circle are obtained as,

(xF , yF ) = (−0.93+0.13
−0.06, 0.37

+0.24
−0.26), (−0.14+0.26

−0.27,−0.99+0.07
−0.01). (2.54)

Equation 2.48, 2.49, and 2.53 are illustrated in Fig.2.2 with the unit circle in Eq.2.28. Since each result can be
interpreted as a probability density function (PDF) on the unit circle, we define the PDFs for Eq.2.48, 2.49, and
2.53 as Pa1, Pa3

, and Pa2
, respectively. These are functions whose integral over the unit circle satisfies one. As

depicted in Fig.2.3, the product of Pa1
Pa3

Pa2
gives a plausible ϕF distribution as

ϕF = (149± 6)◦. (2.55)

Here, the error indicates the region of 68% C.L. from the central value. As can be seen from Eq.2.44, the amplitudes
in the (n, γ) reactions depend not only on the entrance channel but also on the exit channel. Therefore, the value
of the value of the mixing angle involves more ambiguity since the spectroscopic parameters for γ-ray emission
must be determined by experiment, as indicated by the fact that Eq.2.49 does not intersect with the unit circle.

2.6 Analysis of the forward scattering amplitude for 139La

2.6.1 Scattering amplitude with irreducible spherical tensor
In sections 2.1.1 and 2.2, the spin factor in the R̂ matrix was discussed in a simplified manner. On the other hand,
in the TRIV search, all possible systematic effects should be taken into account. It is necessary to give detailed
neutron spin dynamics for a target with arbitrary nuclear polarization. Thus, the zero-angle forward scattering
amplitude for nuclear spins I > 1/2 will be calculated based on [69, 70], taking into account not only vector
polarization but also higher-order tensor polarization [71, 72]. Let ρMM ′ be the density matrix of the polarized
target, the scattering amplitude is calculated as follows

f = Tr(fMM ′ρMM ′) (2.56)
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where the primed parameter corresponds to the exit channel. Using the neutron spin projection µ and the nuclear
spin projection M with the z axis as the quantization axis, the following is expressed as

fMM ′ =
iπ

2k

∑
Jll′SmsS′m′

s

YLmL
(θ, ϕ) ⟨sµ′IM ′ | S′m′

s⟩ ⟨Sms | sµIM⟩

×
〈
S′l′α′

K

∣∣RJ
∣∣SlαK

〉
(−1)J+S′+l′+l(2J + 1)

×

√
(2l + 1) (2l′ + 1)

4π(2S + 1)

× ⟨l0l′0 | L0⟩ ⟨LmLS
′m′

s | Sms⟩

 l′ l L

S S′ J



(2.57)

where fMM ′ is the forward scattering amplitude, θ and ϕ describe the neutron momentum direction, and αK is the
internal quantum number in the compound nucleus. Let the target spin direction coincide with the quantization
axis, then the target density matrix ρMM ′ is determined by the q-order tensor tq0 by [71]

ρMM ′ =
∑
qk

√
2q + 1

2I + 1
⟨IMq0|IM ′⟩ tq0. (2.58)

To represent the neutron spin σ with arbitrary orientation, let the neutron spinor component
(

x̃

ỹ

)
in a spherical

coordinate system with polar angle βn and azimuthal angle αn as follows

x̃ = cos(βn/2)e
−iαn/2, ỹ = sin(βn/2)e

iαn/2. (2.59)

Therefore, the forward scattering amplitude for polarized neutrons can be calculated by using the spherical tensor
polarization P I

q of the polarized target as

f(x̃, ỹ) =
iπ

2k

2I∑
q=0

P I
q

cIq
τ̃q0
√
2q + 1

[ ∑
JMll′SS′

YLmL
(θ, ϕ)N (x̃, ỹ, S, S′,M,M)

× ⟨IMq0 | IM⟩
〈
S′l′α′

K

∣∣RJ
∣∣SlαK

〉
(−1)J+S′+l′+l(2J + 1)

√
(2l + 1) (2l′ + 1)

4π(2S + 1)

×⟨l0l′0 | L0⟩

 l′ l L

S S′ J


 =

2I∑
q=0

P I
q fq.

(2.60)

Here, the statistical tensor ˜τ0q is defined as the expectation of the convention tensor spin operator and ˜τ0q = ⟨τ0q⟩.
Where P I

q denotes the tensor polarization of the q-order to the nuclear spin I and

P I
q =

τ̄ Iq
(τq,0)II

. (2.61)

Let m be the magnetic substate of the nuclear spin I , respectively, as follows

1

(τ Iq,0)II
=

1√
(2I + 1)(2q + 1)

√
(2I − q)!

(2I)!

√
(2I + q + 1)!

(2I)!

(τ jq,k)m′m = ⟨jm′|τ jqk|jm⟩ =
√
2q + 1 ⟨jmqk|jm′⟩

τ̄ Iq =

I∑
m=−I

⟨Ik|τ Iq0|Ik⟩ , cIq =
1

(τ Iq,0)II

(2.62)
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The following equation is also introduced to express neutron polarization.

N (x̃, ỹ, S, S′,M,M ′) =
1

|x̃|2 + |ỹ|2

(
|x̃|2

〈
1

2

1

2
IM | SM +

1

2

〉〈
1

2

1

2
IM ′ | S′M +

1

2

〉〈
LOS′M ′ +

1

2
| SM +

1

2

〉
δmL,0

+ x̃ỹ∗
(
1

2
− 1

2
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∣∣∣∣SM − 1

2
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1
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1

2
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1

2
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2
| SM +

1
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1

2

1

2
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1

2
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L− 1S′M ′ +

1

2
| SM − 1

2

〉
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(
1

2
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2
IM
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2

〉(
1

2
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2
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∣∣∣∣S′M − 1

2

〉〈
L0S′M ′ − 1

2

∣∣∣∣SM − 1

2

)
δmL,0

)
(2.63)

Here, put the neutron momentum direction vector to the y − z plane, ϕ = π/2, which can be described by θ.
Then, by using the unit vectors of neutron spins σ, Î, and k̂n, the correlation term can be expressed by the angle
parameter as follows

(k̂n · Î) = cos θ, (σ · Î) = cos βn, (σ · k̂n) = cos θ cosβn + sin θ sinβn sinαn

[k̂n × Î] = sin θ, (σ · [k̂n × Î]) = cosαn sin θ sinβn

(2.64)

Using the above equation and expanding Eq.2.60 as the coefficients of the correlation terms of neutron spin, neutron
momentum, and nuclear spin vector, the following equation is finally obtained as

f =A′ +B′(σ · Î) + C ′(σ · k̂n) +D′(σ · [k̂n × Î]) +H ′(k̂n · Î) +K ′(σ · k̂n)(k̂n · Î)

+ E′
[
(k̂n · Î)(k̂n · Î)− 1

3
(k̂n · k̂n)(Î · Î)

]
+ F ′

[
(σ · Î)(k̂n · Î)− 1

3
(σ · k̂n)(Î · Î)

]
+G′(σ · [k̂n × Î])(k̂n · Î) +B′

3(σ · Î)
[
(k̂n · Î)(k̂n · Î)− 1

3
(k̂n · k̂n)(Î · Î)

]
+ · · · ,

(2.65)

The properties of each coefficient obtained in this equation are summarized in a Table.2.2.

Table 2.2 Properties of the coefficients of the forward scattering amplitude with nuclear spin I

A′ C ′ B′ D′ H ′ K ′ E′ F ′ G′ B′
3

q 0 0 1 1 1 1 2 2 2 3

P− even odd even odd odd even even odd even even

T− even even even odd even even even even odd even

2.6.2 Complete expression
We will discuss an explicit forward scattering amplitude for 139La, which is the most promising candidate as a
polarized target. Since 139La has nuclear spin I = 7/2, the spherical tensor can take the maximum q = 2I = 7.
However, for low-energy neutrons corresponding to about p-wave resonance energy (0.75 eV), the higher-order
orbital angular momentum (l > 1) contribution is negligible, then it is sufficient to treat up to q = 3 tensor
polarization [70]. Therefore, for Eq.2.60, expanding to q ≤ 3 for I = 7/2, Eq.2.65 is calculated as follows

f7/2 =A′ + P1H
′(k̂n · Î) + P2E

′
(
(k̂ · Î)2 − 1

3

)
+ (σ · Î)

(
P1B

′ + P2F
′(k̂ · Î) + P3

B′
3

3

(
(k̂ · Î)− 1

))
+ (σ · k̂n)

(
C ′ + P1K

′(k̂n · Î)− P2
F ′

3
+ P3

2B′
3

3
(k̂ · Î)

)
+ σ · (k̂× Î)

(
P1D

′ + P2G
′(k̂n · Î).

)
(2.66)
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In this equation, the expression is transformed as the coefficients of the neutron spin correlation term to simplify
the expression, and each primed coefficient can correspond as follows (typographical error corrected of [70]).
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Here, each matrix element in the above equation can be calculated in the same way as in Eq.2.2. The P-conserving
matrix elements are

⟨S′lK|RJ |SlK⟩ =
∑
K

i

√
Γn
lK
(S′

K)
√

Γn
lK
(SK)

E − EK + iΓK/2
exp(i[δlK (S′

K)+δlK (SK)])−2i exp(iδlK (SKS′
K)) sin δδlK (SKS′

K).

(2.68)
where K corresponds to the Kth compound nuclear resonance. For p-wave resonances (l = 1), potential scattering
can be neglected from Eq.2.25. The P- and T-odd matrix elements can similarly be represented by the two-resonance
approximation of s and p-waves, and from V ̸P , V ̸P ̸T by the Eq.2.30 the following can be obtained as

⟨S′l′|RJ |Sl⟩ = i

√
Γn
l′(S

′)(−v − iw)
√

Γn
l (S)

E − El + iΓl/2
exp(i[δl′(S

′) + δl(S)]). (2.69)
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The above equation is then used to introduce the specific form of Eq.2.67. Since the p-wave resonance is J = 4,
all matrix elements with total angular momentum J = 3 in Eq.2.69 can be ignored, due to that it only mixes with
the S0 (J = 4) resonance, not the S1 (J = 3) resonance. Therefore, Eq.2.67 can be calculated as follows using
equation (2.36), which is the p-wave neutron partial width ratio (recalculated based on [70]).
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Here, the phase shift due to potential scattering is treated in a low-energy limit, and the potential radii of the s0
and s1-waves were calculated as Rs0 and Rs1 respectively, as follows

lim
k→0

cos 2δs0
k

= lim
kn→0

cos δs0
k

= 1, lim
k→0

sin 2δs0
k

= −2Rs0, lim
k→0

sin δs0
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= −Rs0
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cos δs1
k

= 1, lim
k→0

sin 2δs1
k

= −2Rs1, lim
k→0

sin δs1
k

= −Rs1.

(2.71)

where vppT in G′ represents P-even and T-odd phenomenological interaction, where mixing by p0 and p1 waves is the
main contribution [73]. Since the phenomenological interaction vppT is predicted to be very small and is proportional
to the 2nd-rank tensor polarization [74], this argument will henceforth be discussed without mentioning G′. All
coefficients are shown in Eq.2.70 but have varying weights and therefore varying importance. We are interested
in D′, which is P- and T-odd, while the other coefficients are background and suppression factors in the TRIV
search. The coefficient of A′, corresponding to the spin-independent scattering cross section, however, it affects
the target transmission and does not directly affect the TRIV search. The term that introduces the most systematic
uncertainty that we should care about is the B′ term, which depends on neutron and nuclear spins and causes
significant suppression of the search sensitivity due to pseudomagnetism, which will be discussed following
section. It is also important to quantitatively evaluate the values of H ′,K ′, which are proportional to (k̂n · Î) due
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Table 2.3 Resonance parameters of 139La [1]

K EK (eV) JK lK Γγ
K (meV) gKΓn

K (meV) RK (fm)

0 −38.8± 0.4 4 0 60.3± 0.5 346± 10 6.13± 0.10 s0

1 0.750± 0.001 4 1 41.6± 0.9 (3.67± 0.05)× 10−5 p

2 72.30± 0.01 3 0 64.1± 3.0 13.1± 0.7 5.54± 0.18 s1

to neutron beam divergence or misalignment, and E′, F ′, and B′
3, which are proportional to 2nd or 3rd rank tensor

polarization, which is generally considered sufficiently small.

2.6.3 Estimation for the coefficients
In this subsection, we substitute the values of resonance parameters for Eq.2.70 and discuss the magnitude of each
coefficient. The calculations were performed by substituting the resonance parameters of 139La shown in Table2.3
and the mixing angles by Eq.2.55 obtained by (n, γ) measurements. The mixing angle was calculated according
to Eq.2.37 and substituted as follows
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(2.72)

In order to compare only the magnitude of the coefficients, the tensor polarization P1 = P2 = P3 = 1 and
the unknown parameter w/v = 1 in Eq.1.10 were assumed for the calculation. The real part (fm) representing
the rotation in the polarized medium and the total cross section (bn) derived from the optical theorem behave
around the p-wave resonance as shown in Fig.2.4 and 2.5 respectively. Excluding ReA′, which is included in the
measured quantities only as a phase factor, the most influential is ReB′ with a magnitude of about −2.8 fm, and
its contribution is about ∼ 103 larger than the other real parts. Next, we mention Fig.2.5, which is the theoretical
curve of the cross section. B′, K ′, and H ′, which correspond to cross section proportional to vector polarization,
we find that B′ and K ′ are comparable in p-wave resonance, and H ′ is about one-tenth of them. The absorption
cross section C ′ corresponding to the longitudinal asymmetry PL is 0.3 bn, and D′ corresponding to the P- and
T-odd cross section is κ(J) based on Eq.2.55 and yields ImD′ = 0.51ImC ′.

2.6.4 Tensor polarization with BF method
From Eq.2.70, all coefficients except A′ and C ′ are proportional to the tensor polarization of the 1st to 3rd rank.
Here are the values of each tensor quantity when the BF method is applied. With the nuclear magnetic moment of
139La as µLa, the Hamiltonian with Hext applied as an external magnetic field can be written as H = −µLaHext.
Let m be the magnetic substate for the nuclear spin I , the corresponding population Nm follows a Boltzmann
distribution and can be described as follows

Nm = Anorm exp(mH/IkBT )

Anorm =
1∑I
−I

exp(mH/IkBT )
(2.73)
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Fig. 2.4 Real part of the coefficients. The left figure shows the dominant coefficients, A′ and B′, while the

right figure shows the other coefficients. The D′ is almost the same magnitude as C′.
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Fig. 2.5 Imaginary part of the coefficients. The left figure shows A′, B′,K′, and E′, while the right figure

shows the other smaller coefficients.

where Anorm is the normalization factor, kB is Boltzmann’s constant, and T is the temperature. In Eq.2.61 and
2.62) based on [70], the expression for P 7/2

q was calculated from the spin population for each m as follows
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(2.74)

Based on Eq.2.73, the result of Eq.2.74 is shown in Fig.2.6 with the ratio of external magnetic field and temperature
Hext/T on the horizontal axis. µLa/µN = +2.7830455(9)[2] was employed as the nuclear magnetic moment
considering the dipole and quadrupole of 139La. For instance, when Hext/T = 100, we can calculate P1 =
4.4 × 10−2, P2 = 1.3 × 10−3, P3 = 2.9 × 10−5, especially the tensor polarization of the 3rd-rank is extremely
small.



24 Chapter 2 Theory of compound nucleus

1−10 1 10 210 310
8−10

7−10

6−10

5−10

4−10

3−10

2−10

1−10

1
1P

P7/2
q

Hext /T (Tesla/Kelvin)

Fig. 2.6 Tensor polarization P
7/2
q .

The solid, dashed, and dashed-dotted lines correspond to q = 1, 2, 3 respectively.



25

Chapter 3

TRIV in neutron optics

The search for TRIV using neutron optics was first proposed by Kabir in 1982 [49]. Subsequently, Stodolsky,
Bunakov, Gudkov, and Kabir discussed the formalism of spin observables, experimental configurations, and
systematic uncertainties [50, 75, 76, 77, 78, 79, 80]. Furthermore, Lamoreaux developed detailed evaluation
methods for spin observables based on the formulation using the time-evolution operator of neutron spins [81].
Chapter 2 provided a detailed discussion of the interaction between isolated nuclei and neutrons. However, in
practical experiments, it is necessary to consider the time evolution of neutron spins propagating through a media
with finite thickness, taking into account neutron spin rotation and polarization due to optical activity, as well as
the Larmor precession induced by external magnetic fields [34, 35, 82]. In this chapter, the expressions developed
by Kabir and Lamoreaux [78, 81] are extended to describe the time evolution of neutron spins when polarized
neutrons propagate through a polarized media. The discussion focuses on spin observables in the context of the
search for TRIV, including the pseudomagnetism resulting from the correlation term (σ · Î), as represented by the
coefficients in Eq.2.70.

3.1 Spin observables propagating through a polarized media
The effect of low energy neutrons of wavenumber kn propagating in a number density ρ media can be expressed
using the complex refractive index n as follows since the potential is uniform in the media by application of the
first Born approximation[83].

n =

√
1− UF

En
≃ 1 +

2π

k2n
ρf (3.1)

where UF is the Fermi pseudopotential and f is the forward scattering amplitude. Typically if UF ∼ 100 neV
and En ∼ 1 eV, then the approximation in Eq.3.1 is sufficient. The forward scattering amplitude f for low-energy
neutrons assuming that it has a correlation term similar to that in Eq.2.66 can be written as follows

f = A+ σ · ÎB + σ · k̂nC + σ · k̂n × ÎD. (3.2)

A is the spin-independent scattering amplitude, B is the neutron and nuclear spin-dependent scattering amplitude,
and C is the neutron helicity-dependent scattering amplitude. Since D is proportional to the scalar triple product
σ · k̂n × Î, the sign reverses with time reversal. From the discussion in Chapter 2.3, D represents the interaction
of TRIV directly without including the final-state interactions. Then, let the nuclear polarization vector be the
arbitrary direction (ϑI , φI), as shown in Fig.3.1, the coordinate system can be defined as follows

k̂n =


0

0

1

 , Î =


sinϑI cosφI

sinϑI sinφI

cosϑI

 , k̂n × Î =


− sinϑI sinφI

sinϑI cosφI

0

 . (3.3)
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Fig. 3.1 Experimental coordinate system represented by the first angle ϑ and the second angle φ. The neutron

momentum direction is fixed to the z-axis.

The effective Hamiltonian represented in the spin space of 2 × 2 is the sum of the Fermi pseudopotential and the
potential due to the external magnetic field Bext (∥ Î):

H = −2πℏ2

mn
ρf − µn ·Bext (3.4)

This allows us to consider time evolution operators acting on neutron spin states propagating through a polarized
media [81]. Here, mn is the neutron mass, µn = gn

2 µN is the neutron magnetic moment with neutron Landé factor
gn and nuclear magneton µN . The external magnetic field is applied uniformly only over the target thickness z,
and at the boundary between the polarized media and the vacuum En(∼ 1 eV) ≫ UF (∼ 200 neV), then reflection
effects can be negligible. The time evolution operator at (t = z/vn) in the polarized media from Eq.3.4 yields

U = e−iH
ℏ t

= exp

{
−i

mnz

ℏ2kn

(
−2πℏ2

mn
ρf − µn ·Bext

)}
= exp

{
i
2π
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ρz

(
f +

mnµn

2πℏ2ρ
Bext(sinϑI cosφI + sinϑI sinφI + cosϑI)

)}
= exp {iZ (A+ σxβx + σyβy + σzβz)} .

(3.5)

where (σx, σy, σz) are Pauli matrices, respectively

σx =

0 1

1 0

 σy =

0 −i

i 0

 σz =

1 0

0 −1

 (3.6)

Also, vn is the neutron velocity, µeff = −mnµn

2πℏ2ρ is the effective magnetic moment in the polarized media, and
Z = 2π

kn
ρz. Now consider the following correspondence

β =
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βx
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βz

 = Z
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(B − µeffBext) sinϑI cosφI −D sinϑI sinφI

(B − µeffBext) sinϑI sinφI +D sinϑI cosφI

C + (B − µeffBext) cosϑI


α = ZA, β =

√
β · β

(3.7)
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Then, Eq.3.5 can be transformed as

U = eiα
[
cosβ + i

sinβ

β
σ · β

]

=

 eiα cosβ + ieiα sin β
β βz ieiα sin β

β βx + ieiα sin β
β βy

ieiα sin β
β βx − ieiα sin β

β βy eiα cosβ − ieiα sin β
β βz

 .

(3.8)

Here, we introduce 
A

B

C

D

 = eiα


cosβ

i sin β
β βx

i sin β
β βz

i sin β
β βy

 . (3.9)

Then, Eq.3.8 can be descrived as

U =

 A+ C B − iD

B + iD A− C

 (3.10)

Next, we consider the density matrix of the neutron beam operating on the time evolution operator. Let the z axis
be the quantization axis, the diagonalized density matrix representing the initial state is

ρ̂i =
1

2
(σ0 + p0σz)

=
1

2

1 + p0 0

0 1− p0

 (3.11)

where σ0 is the unit matrix and p0 ≥ 0 is the polarization of the incident neutron beam. The density matrix is
normalized by the incident neutron beam intensity. Arbitrary rotation operations on the diagonal basis matrix
expressed in Eq.3.11 must be applied to evaluate a polarizer (analyzer) before and after the polarized media,
intentional quantization axis changes, and neutron spin misalignment. Then, the unitary matrix representing the
rotation operation can be expressed as follows

R =

 cos
(
ϑσ

2

)
− sin

(
ϑσ

2

)
e−iφσ

sin
(
ϑσ

2

)
eiφσ cos

(
ϑσ

2

)
 . (3.12)

By including the polar angle ϑσ and azimuthal angle φσ expressed in spherical coordinates according to Fig.3.1,
we obtain

ρ̂ = Rρ̂iR
†

=
1

2

 1 + pz px − ipy

px + ipy 1− pz

 (3.13)

px = p0 sinϑσ cosφσ, py = p0 sinϑσ sinφσ, pz = p0 cosϑσ. (3.14)

3.1.1 Analyzing power and Polarizing power
Let ρ̂p denote the density matrix of the neutron beam polarized by the polarizer installed upstream of the polarizing
media, and let Na

+, Na
− denote the number of transmitted neutrons after upstream (+) or downstream (−)

polarization through the polarized media, respectively, and Eq.3.10 and 3.13 can be described as

Na
+ = Tr(Uρ̂p+U

†), Na
− = Tr(Uρ̂p−U

†) (3.15)
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Here, the superscript p denotes the polarizer. The expected number of neutrons for each is

Na
+ = Tr(Uρ̂p+U

†)

= |A|2 + |B|2 + |C|2 + |D|2 + 2ppx [ReA
∗B + ImC∗D] + 2ppy [ReA

∗D + ImB∗C] + 2ppz [ReA
∗C + ImD∗B]

Na
− = Tr(Uρ̂p−U

†)

= |A|2 + |B|2 + |C|2 + |D|2 − 2ppx [ReA
∗B + ImC∗D]− 2ppy [ReA

∗D + ImB∗C]− 2ppz [ReA
∗C + ImD∗B] .

(3.16)

Thus, the observed asymmetry (analyzing power of the polarization media) Apow can be described as

Apow =
Na

+ −Na
−

Na
+ +Na

−

=
Tr(Uρ̂p+U

†)− Tr(Uρ̂p−U
†)

Tr(Uρ̂p+U
†) + Tr(Uρ̂p−U

†)

=
2ppx [ReA

∗B + ImC∗D] + 2ppy [ReA
∗D + ImB∗C] + 2ppz [ReA

∗C + ImD∗B]

|A|2 + |B|2 + |C|2 + |D|2
.

(3.17)

Next, consider an unpolarized beam propagating through a polarized media and observing its polarization (polar-
izing power of the polarized media) Ppow. This corresponds to an experimental system in which the polarizer and
the spin transport guide coil are rotated by π about the x axis, then Eq.3.13 is regarded as the density matrix of the
analyzer (superscript a). Then, the number of transmitted neutrons Np

+, N
p
− can be described as

Np
+ = Tr(ρ̂a+UU †)

= |A|2 + |B|2 + |C|2 + |D|2 + 2pax [ReA
∗B − ImC∗D] + 2pay [ReA

∗D − ImB∗C] + 2paz [ReA
∗C − ImD∗B]

Np
− = Tr(ρ̂a−UU †)

= |A|2 + |B|2 + |C|2 + |D|2 − 2pax [ReA
∗B − ImC∗D]− 2pay [ReA

∗D − ImB∗C]− 2paz [ReA
∗C − ImD∗B] .

(3.18)

Calculating as same as Eq.3.17 to obtain

Ppow =
Np

+ −Np
−

Np
+ +Np

−

=
Tr(ρ̂a+UU †)− Tr(ρ̂a−UU †)

Tr(ρ̂a+UU †) + Tr(ρ̂a−UU †)

=
2pax [ReA

∗B − ImC∗D] + 2pay [ReA
∗D − ImB∗C] + 2paz [ReA

∗C − ImD∗B]

|A|2 + |B|2 + |C|2 + |D|2

(3.19)

where the neutron spins in the polarizer (p) and analyzer (a) correspond to the following, respectively

pp = pp0


sinϑp

σ cosφ
p
σ

sinϑp
σ sinφ

p
σ

cosϑp
σ

 , pa = pa0


sinϑa

σ cosφ
a
σ

sinϑa
σ sinφ

a
σ

cosϑa
σ

 . (3.20)

As Eq.3.17 and 3.19 show, the denominator of the asymmetry is the total cross section. In addition, since the
analyzing and polarizing power are equivalent as long as the time reversal is not violated, the combination ReA∗D
that maximizes the sensitivity to the D term (proportional to D) can be evaluated by comparing both. Here, the
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first- and second-order neutron spin transformation inside the polarized media contained in Eq.3.17 and 3.19 can
be specifically expanded from Eq.3.9 as

A∗Xi =
e−2Imα

2|β|2
(i sin(2Reβ)− sinh(2Imβ))β∗βi

X∗
i Xj =

e−2Imα

2|β|2
(− cos(2Reβ) + cosh(2Imβ))β∗

i βj

(3.21)

where i and j correspond to (1, 2, 3) = (x, y, z) and (X1, X2, X3) = (B,D,C). An exponential factor is e−2Imα =

e−
4π
kn

ρzImA, which indicates neutron beam attenuation due to the total cross section. For the denominator, it can
be expanded as follows

|A|2 + |B|2 + |C|2 + |D|2 =
e−2Imα

2

(
| cosβ|2 +

∣∣∣∣ sinββ
∣∣∣∣2∑

i

|βi|2
)

=
e−2Imα

2

(
cos(2Reβ) + cosh(2Imβ) +

− cos(2Reβ) + cosh(2Imβ)

|β|2
∑
i

|βi|2
)

(3.22)

The β included in the spin observable as a common term greatly contributes to the pseudomagnetism described
later in the chapter 3.2. In general, for Imβ ∼ 10−3 fm, µeffBext ∼ 10 fm, we can approximate | sinβ/β| ∼ 1 by
applying external magnetic field to make Reβ smaller. In this case, Eq.3.22 can be approximated as

|A|2 + |B|2 + |C|2 + |D|2 ∼ |A|2 + |Xi|2 = e−2Imα cosh(2Imβi). (3.23)

In addition, consider the case where the neutron momentum vector and nuclear spin are orthogonal and the analyzing
power (polarizing power) for each axis is observed. A second spin transformation term inside a polarized media,
ImX∗

i Xj contained in Eq.3.17 and 3.19, can be considered small compared to ReA∗Xi and can be described as
follows

Ai
pow = 2pp0

ReA∗Xi + ImX∗
i Xj

|A|2 + |B|2 + |C|2 + |D|2

≈ 2pp0
ReA∗Xi

|A|2 + |B|2 + |C|2 + |D|2
.

(3.24)

Thus, by using Eq.3.21 and 3.23, Eq.3.24 can be approximated as

Ai
pow

pp0
=

P i
pow

pa0
≈ − sinh(2Imβi)

cosh(2Imβi)

= − tanh(2Imβi)

≈ −2Imβi.

(3.25)

3.1.2 Polarization transfer coefficients
In the section 3.1.1, we assumed a measurement using either a polarizer or an analyzer. In this section, we discuss
neutron spin observables when both polarizer and analyzer are installed in the experimental system. Let ρ̂a(p)±

denote the density matrix upstream (p
p(a)
0 = +1) and downstream (p

p(a)
0 = −1) of neutron spins for Eq.3.20, the

corresponding transmission of the expected value Nap can be calculated from

N++ = Tr(ρa+Uρp+U
†), N−+ = Tr(ρa−Uρp+U

†)

N+− = Tr(ρa+Uρp−U
†), N−− = Tr(ρa−Uρp−U

†).
(3.26)
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The corresponding equation to the asymmetry Kp
a , can be expressed as follows [79]

Ka
p =

N++ −N−+ −N+− +N−−

N++ +N−+ +N+− +N−−
(3.27)

Thus, a combination of four different measurements yields the polarization transfer coefficients. Choosing one
of ϑσp(a) = 0, π/2, π, φσp(a) = 0, π/2, π, 3π/2, 2π, that is, for neutron spins completely along the (x, y, z) axis,
Eq.3.27 can be calculated as

Kn
m = pa0p

p
0

(
|A|2 −

∑
i |Xi|2

)
δnm + 2

∑
i ϵnmiImA∗Xi + 2ReX∗

mXn

|A|2 +
∑

i |Xi|2
(3.28)

where (a, p) = (n,m) and i,m, n = (1, 2, 3) = (x, y, z), (X1, X2, X3) = (B,D,C). ϵnmi denotes Eddington’s
Epsilon. Calculating for n = m and n ̸= m, respectively,　 yields

Kn
m(m = n) = pa0p

p
0

(
|A|2 − |B|2 − |C|2 − |D|2

)
+ 2|Xm|2

|A|2 + |B|2 + |C|2 + |D|2

Kn
m(m ̸= n) = 2pa0p

p
0

ReX∗
mXn +

∑
i ϵnmiImA∗Xi

|A|2 + |B|2 + |C|2 + |D|2
.

(3.29)

3.2 Pseudomagnetism
Neutron spin rotation correlated with the inner product (σ · Î) of neutron magnetic moment and nuclear magnetic
moment is called pseudomagnetism. This phenomenon was predicted by Baryshevsky et al. in 1964 and was
demonstrated by Abragam et al. in 1972 [84, 85]. It was pointed out by Bunakov, Gudkov, and Stodolsky in
the 1980s that this pseudomagnetic field greatly suppressed the experimental sensitivity in TRIV search with
neutron optics, and a solution was subsequently presented [76]. In this section, we discuss the theoretical aspects
of pseudomagnetic fields and their solution methods. Let f+ and f− be the forward scattering amplitudes
corresponding to neutron spins parallel and antiparallel to nuclear spins, respectively, and their corresponding
complex refractive indices n+ and n− using the Eq.3.1 and 3.2 can be described as

n+ = 1 +
2πρ

k2n
(A+ B), n− = 1 +

2πρ

k2n
(A− B). (3.30)

Therefore, the difference in refractive index for spin parallel and antiparallel is

∆n = n+ − n− =
4πρ

k2n
B (3.31)

The neutron spin angle is

φpm = kn∆nz. (3.32)

Then, the rotation frequency of neutron spins due to the pseudomagnetic field can be described as

ωp = vn
dφpm

dz
=

4πℏρ
mn

ReB (3.33)

Therefore, the pseudomagnetic field can be obtained from Eq.3.33) as [86]

Bp =
ℏωp

2µn
=

2πℏ2ρ
mnµn

ReB (3.34)

In other words, in a polarized media, low-energy neutrons feel a pseudomagnetic field Bp parallel to the direction
of nuclear polarization and undergo Larmor precession at a frequency ωp. To simplify the coordinate system, let
the nuclear spin direction be ϑI = 2/π and φI = 0, where k̂n × Î is parallel to the y axis. Since D is a projection
onto the component with respect to the y axis, the torque around the x-axis leads to a significant suppression in
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Fig. 3.2 Pseudomagnetism for fully polarized 139La.

The left and right figures indicate the neutron energy dependency of the pseudomagnetism frequency and field

respectively.

experimental sensitivity in the TRIV search. The most dominant suppression factor is ReB′, which correlates to
(σ · Î) as shown in Fig.2.4, causing neutron spin rotation of frequency ωp around the x axis.

Applying the above argument to the 139La polarized target of purity 100%, when the perfect experimental
position alignment (k̂n · Î) = 0 is achieved in Eq.2.66, it can be assumed that P3 is very small based on Fig.2.6,
then B = P1B

′ is acceptable. Using 139La number density ρLa = 2.67× 1022 /cm3 and Table2.3, Eq.3.33 and 3.34
can be expressed as Fig.3.2. In this case, the vector polarization P1 = 1 is assumed.

In the vicinity of p-wave resonance, this result can be interpreted as neutron spins feel a pseudomagnetic field
of Bp = 0.322T and rotate with ωp = −59.0MHz. Therefore, we can improve the experimental sensitivity for
TRIV by applying an external magnetic field in the opposite direction, Bext = −0.322T, to cancel the effect of
the pseudomagnetic field. This operation corresponds to an approximation to sinβ/β → 1 in Eq.3.9, which is a
matrix element in the time evolution operator of neutron spin.

3.3 Expected TRIV asymmetry
We will discuss the measured quantities by applying 139La of purity 100% to the experimental system defined by
Fig.3.1. The forward scattering amplitude defined by Eq.3.2 and 2.70 in the previous section is as follows

A = A′ + P1H
′(k̂n · Î) + P2E

′
(
(k̂n · Î)2 − 1

3

)
B = P1B

′ + P2F
′(k̂n · Î) + P3

B′
3

3

(
(k̂n · Î)2 − 1

)
C = C ′ + P1K

′(k̂n · Î)− P2
F ′

3
+ P3

2B′
3

3
(k̂n · Î)

D = P1D
′.

(3.35)

Choosing (ϑI , φI) = (π/2, 0) as the coordinates of nuclear spin, leads to (k̂n · Î) = 0 and P3 = 0 corresponding
to neutron beam divergence. Assume the external magnetic field cancels the pseudomagnetic field completely at
p-wave. Let Ax, Ay, Az and Px, Py, Pz be the analyzing power (polarizing power) parallel to the x, y, z axes for the
neutron spin direction defined by Eq.3.14, the measurement with sensitivity to the D′ term can be described from
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Being asumed the P- and T-odd matrix element w/v = 1 and 20mm target thickness.

Eq.3.17 and 3.19 as follows

Ax

pp0
− Px

pa0
=

4ImC∗D

|A|2 + |B|2 + |C|2 + |D|2
Ay

pp0
+

Py

pa0
=

4ReA∗D

|A|2 + |B|2 + |C|2 + |D|2
Az

pp0
− Pz

pa0
=

4ImD∗B

|A|2 + |B|2 + |C|2 + |D|2
.

(3.36)

Here, from the functional form of Eq.2.70, ImC ′∗D′ is exactly zero. This indicates the condition of (k̂n · Î) = 0
yields Ax/p

p
0 −Px/p

a
0 as completely zero. Therefore, only the combination of Ay/p

p
0 +Py/p

a
0 or Az/p

p
0 − /Pz/p

a
0

should be considered. Then, normalizing by neutron polarization and vector polarization for the Eq.3.36, the
neutron energy dependence in the vicinity of the p-wave resonance can be depicted as Fig.3.3. As an example, we
assume a target thickness of z = 20mm and w/v = 1. Calculating specific observables with pp0 = pa0 = 1, P1 = 0.5
for neutron polarization and vector polarization, respectively, we obtainAy+Py = 7.7×10−3, Az−Pz = 4.8×10−4

in the vicinity of p-wave resonance. In other words, since our ultimate goal is a measurement with Ay +Py, which
is the most sensitive to the D′ term, the experimental system must be orthogonal to the neutron and nuclear
spins. Therefore, the control of the pseudomagnetic field is extremely important, and the measurement of the term
proportional to (σ · Î), is essential in the search for TRIV.
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Chapter 4

Experimental setup and results

The B′ term, as mentioned in the previous chapter, proportional to σ · Î representing neutron spin and nuclear spin
respectively, generates a pseudomagnetic field that can lead to significant background in the search for time-reversal
invariance violation (TRIV). Additionally, as indicated in Eq.2.70, B′ includes the mixing angle ϕF in the scatering
amplitude of resonance term in p-wave. Therefore, neutron transmission experiments allow for the measurement
of ϕF that is independent of the final state. In this chapter, the experimental procedure and results for measuring
ImB′, which corresponds to spin-dependent cross-sections in neutron transmission experiments, will be detailed.
This includes the use of both polarized neutrons and La metal polarized employing the brute force (BF) method.

4.1 J-PARC MLF
The experiment was conducted at the Japan Proton Accelerator Research Complex (J-PARC), situated in Ibaraki
prefecture. This section provides an overview of the proton beam production and neutron transport procedures, with
reference to [87]. The proton beam production involves the utilization of a linear accelerator, called LINAC, with a
total length of 330 m. The primary function of LINAC is the generation of negative hydrogen ions from hydrogen
gas. These negative hydrogen ions are accelerated up to 400 MeV at a frequency of 25 Hz and subsequently
injected into a Rapid Cycle Synchrotron (RCS) accelerator, featuring a circumference of 350 m. At the injection
point into RCS, the use of carbon foil facilitates the conversion of negative hydrogen ions into a proton beam.
The pulsed proton beam is further accelerated to 3 GeV and then transported to the Materials and Life Science
Experimental Facility (MLF). In MLF, a 3-GeV pulsed proton beam collides with a liquid mercury target, where
a spallation reaction produces a neutron beam which is transported to 23 beam ports as shown in Fig4.1, each
with a different physical purpose. To manage the heat generated during these reactions, a 20-ton mercury target
is continuously circulated within a stainless steel container. Positioned adjacent to the mercury target is a liquid
hydrogen moderator. This moderator is instrumental in reducing the energy of the neutrons generated by spallation
reaction through multiple inelastic scattering. The choice of moderator type (coupled, decoupled, or poisoned) is
determined based on the specific requirements of each beamline, particularly with regard to neutron intensity and
energy resolution. During this experiment, the proton bunch width supplied by RCS was 100 ns (double bunch
mode) with an interval of 600 ns, and the average proton beam power was 750 kW.

4.1.1 BL22 RADEN
The experiment was conducted in beamline 22, RADEN, in MLF which is dedicated to energy-resolved neutron
imaging. Notably, this beamline offers enough space for the installation of a dilution refrigerator and a supercon-
ducting magnet, crucial for achieving nuclear polarization. The beamline configuration, encompassing neutron
optical instruments and the length of the beam path is illustrated in Fig. 4.2. The upstream beam size can be selected
from three options at a distance of approximately 3 m from the moderator surface using a shutter. Additionally,
the neutron beam size and intensity entering the experimental room can be collimated by the first rotary collimator
(RC-1) at 8.0 m and the RC-2 at 11.5 m. The optical devices can be adjusted according to the purpose, either to
avoid neutron detector counting loss or to suppress gamma-ray background using a filter at 7.0 m. Information on
these optical devices is summarized in Table4.1 and 4.2[89].
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Fig. 4.1 Illustration of 23 beam ports in MLF[87]. The CM, DM, and PM correspond to coupled, decoupled,

and poisoned moderators. The proton beam incident from the left side and collides with the liquid mercury

target, and then neutrons are transported to each beam port through the moderator.

Experimental room

Neutron beam path

Viewed surface RC-1

Filter

RC-2Shutter
L=0.0 m 2.28–4.28 m 8.0 m 11.5 m 18.7 m

(A)
23.0 m

(B)
24.7 m

(C)

Beam dump

(D)

Radiation shield

Fig. 4.2 Top view illustration of RADEN configuration[88]. The left circle corresponds to the decoupled

moderator surface and each number below is distance from it. The (A),(B),(C), and (D) in the experimental

room represent a 3He spin filter to obtain polarized neutrons, a guide magnet coil to transport neutrons

adiabatically, a La metal target inside the dilution refrigerator surrounded by a superconducting magnet, and a

neutron detector, respectively. These instruments are detailed in the text.
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Table 4.1 Options list of beam collimation

Distance from the surface (m) Collimator size (mm)

Shutter 2.28− 4.28 ϕ26.4, ϕ50.1, 100sq

RC-1 8.0 ϕ2, ϕ5, ϕ15, 102sq

RC-2 11.5 ϕ6, 43sq, ϕ100, ϕ128

Table 4.2 Options list of beam filter

Material Selectable total thickness (mm)

Bi 25, 50, 75, 100

Pb 25, 50, 75

Cd 1

Acrylic resin 5

Borosilicate glass 2

4.2 Experimental apparatus

4.2.1 Neutron polarizer
A 3He gas spin filter was employed to obtain a polarized neutron beam. 3He exhibits significantly different
absorption cross-sections for neutron spin with up and down. When the polarized 3He nuclei and neutron spin
are parallel, the absorption cross section is almost 0 bn, whereas when they are antiparallel, 10666 bn at a neutron
energy of 25meV [90]. The 3He spin filter was pre-polarized with a spin-exchange optical pumping method
(SEOP) [91] before being irradiated by the neutron beam and was installed on the beamline. In the following
sections, the 3He polarization technique and the method for maintaining polarization will be explained.

Polarization of 3He nuclei with SEOP
In the polarization of 3He nuclei using the SEOP method, alkali metal electrons are polarized through optical
pumping, and the polarization of 3He nuclei occurs through the Fermi contact hyperfine interaction resulting
from collisions between alkali-metal and 3He nuclei. To optimize the optical pumping efficiency, the glass cell
containing 3He gas is simultaneously filled with adjusted amounts of rubidium and potassium, as reported in
[92, 93]. During the SEOP, a linearly polarized fiber laser with a wavelength of 794.7 nm (FWHM: 0.4 nm) and an
output power of 110 W is circularly polarized and directed into the entire cell as shown in Fig.4.3. Simultaneously,
a static magnetic field of 15G is applied parallel to the cell. The laser wavelength corresponds to the excitation
from (5S1/2,mJ = −1/2) to (5P1/2,mJ = 1/2) in Rb atoms (D1 absorption line). When 3He interacts with the
energy state, the two levels of 5P1/2 mix and de-excite with equal probability to mJ = −1/2, 1/2. As the pumping
time passes, the population of the 5S1/2,mJ = 1/2 state increases, leading to the polarization of Rb atoms. The
enclosed alkali metals are solid at room temperature, and they are heated using a heater to a range of 170C◦ to
220C◦, allowing them to vaporize. The vaporized alkali metal atoms, which are polarized through optical pumping,
then collide with 3He nuclei, resulting in the polarization of 3He nuclei.

4.2.2 AFP-NMR
Our measurement, as described in Eq.3.17, was achieved by taking the asymmetry of the number of transmitted
neutrons for neutron spins parallel and anti-parallel to the polarized target. To minimize the systematic uncertainty
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Laser

Mirror

Fig. 4.3 Top view of SEOP system.

in neutron polarization, it is essential to flip the neutron spins multiple times during the measurement since the
polarization decreases exponentially with time when laser pumping stops. For this purpose, an adiabatic fast-
passage (AFP) NMR technique, as illustrated in Fig.4.4, was employed, allowing fast and loss-minimized spin
flipping [94]. AFP-NMR involves rapidly applying RF in a much shorter time than 3He relaxation time, enabling
adiabatic spin-flip and suppressing depolarization. Given that the Larmor frequency for 3He nuclear spins, with a
magnetic gyromagnetic ratio of |γ3He| = 32.4MHz/T, is around 50 kHz with an applied static magnetic field of
15 G, the spin is fliped by sweeping around the frequency over a duration of 0.2 s. The polarization loss due to
each spin flip has been confirmed to be sufficiently low at 3.8× 10−5 /flip [92].

Relaxation of polarized 3He
The polarization of 3He nuclei developed using the SEOP method can be relaxed by several factors. The polarization
PHe(t) at the time t can be described as

PHe(t) = P0 exp(−t/τ) (4.1)

where P0 is the initial polarization at the stopping optical pumping, and τ is a polarization relaxation time. The
dominant contribution to the relaxation is dipole-dipole interactions between 3He nuclear spin [95]. This funda-
mentally limits polarization relaxation in gas, and this effect is unavoidable even under ideal environments. Thus,
our attention should be focused on curbing causes of polarization relaxation that are caused by the environment.
The most practical point to note is the relaxation limitation due to collisions with the cell wall. Therefore, a boron-
free aluminosilicate GE180 glass is used as a 3He spin filter to avoid the polarization relaxation and attenuation of
the neutron beam due to boron with a high absorption cross-section [96]. Another cause of the relaxation is due to
static and oscillating magnetic field gradients. This is the reason shown in Fig4.4 that the side and compensation
coils are installed inside the B0 coil and surrounded by a double magnetic shield. Thus, the effective relaxation
time is given by

1

τeff
=

1

τdipole
+

1

τwall
+

1

τgrad
(4.2)

where τdipole, τwall, and τgrad correspond to the relaxation due to dipole-dipole interaction, the collision with the
wall, and the gradient of the magnetic field.
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Fig. 4.4 Sectional view of B0 coil and AFP-NMR system.The 3He cell is installed inside a double µ-metal

magnetic shield to avoid external field disturbances. The magnetic field to hold the nuclear spins is applied by

the main coil, and the compensation coils and side coils are to achieve good field uniformity within the cell

position.

4.2.3 Nuclear polarized target
A 2.0 cm cubic lanthanum metal was used as the polarized target. The isotope abundance, nuclear spin and parity
IP , and nuclear magnetic moment µ0 in the metal La are listed in Tab.4.3. The lanthanum metal target was coated

Table 4.3 Properties of lanthanum metal isotopes[2]. The unit of the nuclear magnetic moment is nuclear magneton.

Isotope Abundance IP µ0

139La 99.91% 7/2+ 2.78
138La 0.09% 5/2+ 3.71

with a thin layer of Apiezon grease to prevent oxidation and reduce thermal contact resistance, then clamped tightly
to a copper holder and attached to the cold head of the dilution refrigerator using copper screws. A calibrated
ruthenium oxide thermometer was mounted inside the bottom of the cold head to monitor temperature deviation
during the experiment. The configuration around the target is shown in Fig.4.5. A dilution refrigerator for low stray
field superconducting magnet manufactured by Taiyo Nippon Sanso was employed. The target was mounted and
placed in the center of a superconducting magnet manufactured by Scientific Magnetics which was custom-made
by Japan Atomic Energy Agency. The target was placed inside the experimental room with the superconducting
magnet at 23.0 m from the moderator surface, as shown in (C) of Fig.4.2. The simulation result of the magnetic
field distribution when a central magnetic field of 6.8 T was applied is shown in Fig.4.6, considering the nominal
configuration of the magnet components. Since the superconducting coils are asymmetric on the upper and lower
side, stray magnetic fields in the z-axis direction, which is the beam axis, are also generated as well as in the
x-direction. On the other hand, at a distance of more than 2 m, the stray field is below 10 G for all components
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Fig. 4.5 Configuration around the La target.

of the magnetic field. In addition, the magnet is designed not to experience zero-field region along the beam
axis, and then the neutron spins incident on the target can be transported without depolarization. The target was
constantly cooled by a dilution refrigerator during the experiment, and a high magnetic field was applied to the
target perpendicular to the neutron beam axis. The cryogenic and high magnetic field environment (BF method)
provides nuclear polarization of the La target following Fig.2.6.

4.2.4 Neutron spin transportation
A polarized neutron beam, obtained by the spin selectivity of a polarized 3He nucleus, is required to tilt its spin
(classically the direction of the neutron magnetic moment) along the beam axis to parallel with the target nuclear
polarization direction during propagation to a polarized target 4.3 m away from the polarizer. For this purpose,
a guide magnet coil of length 3 m, shown in (B) of Fig.4.2, was installed on the neutron path to adiabatically
transport neutron spins to the target by the combined magnetic field with the stray field of the superconducting
magnet.

Assuming neutron spin σ, neutron magnetic rotation ratio γn(= 1.83 × 108 /s/T), and magnetic field B, the
equation of motion for spins in a magnetic field can be written as follows

dσ

dt
= γnσ ×B (4.3)

This differential equation can be written for each x, y, and z component, and a numerical solution was obtained by
the Runge-Kutta method. The gamma factor Γfactor, which represents the adiabatic condition for neutron spin, is
expressed as follows

Γfactor =
ωL

ωB
= γn

|B|
vn(dθB/dz)

(4.4)

where, ωL is the neutron Larmor frequency, ωB is the rotation frequency in the magnetic field, vn is the neutron
velocity, and dθB/dz is the magnetic field gradiet, and the z axis represents a neutron beam direction. As previously
stated, our focus lies in the vicinity of p-wave for 139La, and thus, the calculation was conducted using neutron
velocity associated with the p-wave resonance. The guide coil magnetic field was measured using a magnetic probe
and was found to be Bz ∼ 20G on the beam axis. Considering the magnetic field distribution shown in Fig.4.6 and
treating the measured magnetic field of the guide coil as uniform, the calculation for Eq.4.4 was carried out, and it
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Fig. 4.6 Stray magnetic field in 6.8 T applied.The magnetic field distribution of the superconducting magnet

was calculated using FEMTEM, a three-dimensional finite element method magnetic field simulation software

provided by Murata software. The solid and dotted lines represent the stray field distribution components

corresponding to the x-axis and z-axis directions, respectively. Both are expressed in absolute value, with the

x component being negative beyond the vicinity of 0.18 m and the z component being negative beyond the
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Fig. 4.7 A conceptual diagram that neutron spin propagates through the guide coil.

was found that the adiabatic factor Γfactor exceeded 20 in all regions between the polarizer and the polarized target.
Generally, an adiabatic factor of 10 or higher is considered acceptable [97], and this requirement was satisfied by
a sufficient margin. Figure 4.7 shows the conceptual diagram that neutron spins obtained by the 3He spin filter as
propagating to the La target.

4.2.5 Neutron detector
A 6Li time analyzer (LiTA), 16×16 multi-anode flat panel PMT with a lithium glass scintillator attached to each
pixel as a neutron converter, was employed as the neutron detector [98]. The size of each pixel consists of 3 mm
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Fig. 4.8 2D neutron position distribution with LiTA. The number of neutron counts per pixel is normalized by

the number of shots of the proton beam.

square (position resolution), and a two-dimensional position can be obtained. The neutron energy can be obtained
by recording the time of flight (TOF) between the signal of the proton bunch incident from the RCS to the mercury
target and the signal of the neutron detection. The number of detected neutrons is recorded in list mode for each
pixel, and the TOF is recorded at the same time. The detector position of LiTA from the moderator surface was
determined with the nuclear resonance absorption peak to obtain Lmd = 24.713m. The correspondence between
TOF and neutron energy can be obtained as

En (eV) = 5.227× 10−3 Lmd (m)

TOF (ms)
(4.5)

4.3 Measurement

4.3.1 Determination of neutron optical condition
In addition to the equipment shown in Fig.4.2, stainless steel collimators were installed 0.7 m upstream of the 3He
spin filter and 7 cm upstream of the LiTA in the experimental room, respectively. The respective collimator sizes
were 3 cm× 3 cm (spin filter side) and 2 cm×2 cm (LiTA side). The optimal collimation and filtering conditions
that can be remotely controlled were searched for by measuring the TOF spectra of the neutron beam with different
RC sizes and filter materials to obtain the maximum neutron flux within the detector count rate. The measurements
were performed with both the La target and the 3He spin filter installed and a cadmium filter of 1 mm thickness was
always inserted to reduce the heat load on the La target. First, the two-dimensional neutron position distribution
by LiTA is shown in Fig4.8. The position region near the center of the figure (6 pix × 6 pix) is collimated and
therefore high intensity. The following analysis applies only to this position region since this region is considered
to have neutrons passed through the La target. The TOF distribution of detected neutrons for different RC-2 and
filter conditions and the ratio to the lowest counting condition is depicted in Fig.4.9 and Fig.4.10, respectively.
From these results, we determined the condition of (RC2,Pb,Bi) = (100, 25, 0) because a resonance peak appears
around TOF=2.4 ms when Bi filter is used, and to give high neutron intensity while minimizing count loss less
than 1% around p-wave region. The neutron optics in the determined beam conditions are represented in Fig.4.11.
It can be seen that the maximum neutron beam divergence angle is less than 3mrad for this beam path.
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4.3.2 Asymmetry
The experiment for the asymmetry was performed in the following two conditions: (I) low-temperature condition
(T = 67mK) and (II) high-temperature condition (T = 1K). These comparisons exclude spin-dependent asym-
metries that are caused by any systematics other than nuclear polarization. The neutron irradiation times were 22
hours and 6 hours, respectively. In condition (I), the temperature increase by the beam irradiation to the La target
was approximately 1mK. It indicates that the temperature difference between the cold head and the La target can
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be considered negligible. The temperature fluctuation during the measurement was also around 1 mK, which was
caused by beam interruptions in the accelerator due to malfunctions. The asymmetry of neutron counts for parallel
and anti-parallel spins transmitted through the polarized lanthanum target is defined as

Apow =
N− −N+

N− +N+
(4.6)

where N− and N+ are the neutron counts for parallel and anti-parallel neutron spins. The spin-dependent
asymmetry Apow for (ϑp

σ, φ
p
σ) = (0, π/2) in Eq.3.17 can be described using Eq.3.25 as

Apow = pp0 tanh(2Imβx) (4.7)

where pp0, and βx are the neutron polarizer efficiency and the corresponding β in the neutron-nuclear target
spin system substituting (ϑI , φI) = (π/2, 0) for Eq.3.7. In this argument, the measurement and analysis were
performed using resonance parameters listed in Table 2.3. In the neutron beam condition previously defined in
Section 4.3.1, the measurement of the TOF spectra of transmitted neutrons and the corresponding asymmetry Apow

for conditions (I) and (II) were performed as shown in Fig4.12. In condition (I), corresponding to a few percent
of nuclear polarization, a significant asymmetry was observed, while the asymmetry disappeared in condition (II)
due to lower nuclear polarization. Notably, the peak and dip structures at the 2.99 eV and 0.75 eV resonances were
observed. The global structure observed in less than 0.3ms can be attributed to the spin-dependent cross-section
of the negative s-wave resonance.

Neutron polarization
The 3He spin filter was polarized using SEOP outside the beamline and then installed on the beamline with aB0 coil
depicted in Fig 4.4 to maintain the 3He polarization and decide the quantization axis parallel to the beam direction.
The 3He cell was 45 mm in diameter by 70 mm in length and the pressure was 0.31 MPa. The neutron beam,
longitudinally polarized by the 3He spin filter, was guided using a guide magnet explained in the previous section.
The 3He polarization was determined with the ratio of the transmitted neutrons for polarized and unpolarized 3He
spin filter. The ratio of the transmitted neutrons is described as

Npol

Nunpol
= cosh(PHe(t)ρHedHeσHe) (4.8)

where σHe and ρHedHe are the neutron absorption cross section of 3He and areal density of 3He gas, respectively.
Here, Npol is defined as N− +N+ to average the counts of transmitted neutrons with the spin-dependent of the La
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(a) (b)

Fig. 4.12 TOF spectra of the transmitted neutrons (a) and the spin-dependent asymmetries (b). Black and

white points denote the asymmetries under the conditions (I) and (II), respectively.

Table 4.4 Resonance parameters of 138La [3]

Isotope E0 (eV) J l Γγ (meV) gΓn (meV)

138La 2.99± 0.02 11/2 0 95± 6 0.65± 0.03

target. The areal density ρHedHe was measured by the ratio of transmitted neutrons for unpolarized 3He spin filter
and empty cell as 21.4 atm · cm. The 3He polarization was obtained for each flip by fitting the TOF dependence
of Npol/Nunpol using Eq.4.8 with a fit parameter of PHe as shown in Fig 4.13. The time dependence of the 3He
polarization is depicted in Fig 4.14. The relaxation time of the 3He polarization τeffas described in Eq.4.2, which
was obtained by fitting with Eq.4.1, was 161 hour. The average 3Hepolarization P̄He during the measurement was
(68± 1)%. The neutron polarizer efficiency pp0 is determined as

pp0(t) = − tanh(PHe(t)ρHedHeσHe) (4.9)

This equation can be obtained by following the same procedure for a polarized target as written in section 3. A
polarization p̄p0 shown in Fig 4.15 as a function of the neutron energy calculated from the average 3He polarization.
The averaged neutron polarization at 0.75 eV during the asymmetry measurement for higher nuclear polarization
was (36.1± 0.5)%.

Nuclear polarization
The 139La nuclear polarization was determined using the spin-dependent symmetry at the 2.99 eV s-wave resonance
of 138La because the thermometer shows the cold head temperature, not the actual target temperature. The spin-
dependent asymmetry at the 2.99 eV resonance, after subtracting the negative s-wave resonance, was obtained
as

Apow = (5.1± 0.7)× 10−4 (4.10)

The spin-dependent cross section of the 2.99 eV resonance of 138La can be theoretically calculated using the
resonance parameters listed in Table 4.4 as

σtheo
S,s =

5π

11k2n

Γn
sΓs

(E − Es)2 + (Γs/2)2
(4.11)

where Es, Γn
s , and Γs are the resonance energy, neutron width, and total width of the 2.99 eV s-wave resonance,

respectively. The nuclear polarization of 138La can be calculated using Eq.4.7,4.9,4.10, and 4.11, taking into
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Fig. 4.13 Ratio of the counts of transmitted neutrons for the polarized to the unpolarized 3He spin filter. The

curved red line shows the best fit.

Fig. 4.14 The elapsed time dependence of 3He polarization from the beginning of the asymmetry measurement.

The curved line represents the best fit with an exponential function. The measurement was stopped from 16 h

to 22 h due to a liquid He transfer for the superconducting magnet.
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Fig. 4.15 Neutron polarizer efficiency obtained from the averaged 3Hepolarization.

account its natural abundance shown in Table 4.3, yielding a value of 4.9 ± 0.7%. The target temperature TLa

was calculated based on a Boltzmann distribution and using the magnetic moment and nuclear spin listed in Table
4.3, resulting in TLa = 75.7+10.2

−8.9 mK, which is consistent with the RuO2 thermometer temperature measured at
the cold head of 67 mK. Assuming that the spin temperature of 139La matches that of 138La, the nuclear vector
polarization of 139La was calculated to be P1 = 3.9 ± 0.5%. Then, the P2, P3 representing the target 2nd-rank
and 3rd-rank tensor polarization yields P2 = 0.1+0.03

−0.02%,P3 = (2.1 ± 1.0) × 10−3%, respectively in the present
experimental conditions.

4.3.3 Spin-dependent cross section at the p-wave resonance
The experimental spin-dependent cross section value, denoted as σexp

S , was determined by the asymmetry Apow

using Eq.4.7. To extract the K-th resonance component σexp
S,K , a fit of the global structure associated with the negative

s-wave resonance component using a third-order polynomial function was performed. The regions corresponding
to resonances listed in Table 2.3 were excluded from this fitting procedure. The TOF dependence of P1σ

exp
S and

P1σ
exp
S,K can be seen in Fig.4.16, which was computed based on the areal density of 139La (ρLadLa = 0.0534, /bn).

A p-value, defined as p = (1 − C.L.)/2, where C.L. represents the confidence level of the non-zero asymmetry,
also indicates the significance of P1σ

exp
S,K in Fig.4.16. This p-value conveys the likelihood of observing a non-zero

value under the assumption of no asymmetry. A confidence level exceeding 99.7% corresponds to a p-value less
than 1.35× 10−3. Consequently, the spin-dependent cross section was first observed at the p-wave resonance with
a confidence level exceeding 99.7%.

The spin-dependent cross section in the vicinity of the p-wave resonance region of Ep − 3Γp < En < Ep + 3Γp

after subtracting the contribution from the negative s-wave component was defined as σexp
S,K . It can be obtained

using the nuclear vector polarization P1 as

σexp
S,p = −0.26± 0.08 bn (4.12)

where Ep and Γp are the resonance energy and total width of the p-wave resonance, shown in Table 2.3. The
asymmetry of the spin-dependent cross section relative to the spin-independent cross section of the p-wave
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(a) (b)

(c)

Fig. 4.16 (a) TOF dependence of P1σ
exp
S . The curved line is the best fit of the global structure derived from

the negative s-wave resonance. (b) Resonance component of spin-dependent cross section. (c) p-value for

P1σS,p. The dotted line shows a 99.7% confidence level.

component was also obtained as

εS =
σp
+ − σp

−
σp
+ + σp

−
=

σexp
S,p

σ0, p

theo

= −0.36± 0.11

(4.13)

The spin-independent cross section σtheo
0,p was theoretically calculated by the total cross section contributed from

the p-wave represented as ImA′ based on the optical theorem in Eq.2.70. When utilizing the nuclear polarization
P1 calculated from the thermometer temperature measured at the cold head, the differences between the values
of σexp

S,p and εS from those calculated in Eq.4.12 and Eq.4.13 were +0.03 bn and +0.04 bn, respectively. These
differences were found to be smaller than the statistical error.
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Analysis

Given the orientation of the neutrons and nuclear polarization during the experiment, the spin-dependent asymmetry
can be described from Eq.4.7 and 3.35 as

Apow = p̄p0 tanh(2Imβx)

≃ p̄p0
4π

kn
ρLadLaImB

(5.1)

The beam divergence and the vector, 2nd-, and 3rd-rank tensor polarization were already obtained from the previous
discussion in chapter 4. Non-zero values of the (k̂n · Î) originate from the beam divergence up to the maximum
value of 2 × 10−3. Then, the dominant contribution in the B term can be determined by comparing it with each
value at p-wave resonance as

P2ImF ′(k̂n · Î)
P1ImB′ ∼ 10−8,

P3ImB′
3/3

P1ImB′ ∼ 10−7 (5.2)

Therefore, the spin-dependent asymmetry Eq.5.1 can be approximated as

Apow ≃ P1p̄
p
0

4π

kn
ρLadLaImB′ (5.3)

representing the spin-spin interaction in the forward scattering amplitude.

5.1 Determination of partial neutron width using spin-dependent

neutron cross section
As mentioned in chapter 2, the partial neutron width can be extracted from the angular correlations of γ-rays
emitted from p-wave resonances, which arise from interference between s- and p-wave amplitudes. The advantage
of using the spin-dependent cross section is that the neutron partial width can be directly determined without
assuming the interference between partial amplitudes and the final state spin after the γ decay. The spin-dependent
cross section at the p-wave resonance can be calculated using the explicit theoretical expression of B′ in Eq.2.70 as

σtheo
S,p =

4π

kn
ImB′ =

π

16k2n

Γn
pΓp

(E − Ep)2 + (Γp/2)2

(
−39

4
x2
S +

9

2

√
7

5
xSyS +

63

20
y2S

)
(5.4)

where xS and yS are defined in Eq.2.36. The broadening effect by the pulse shape of the neutron beam at 0.75 eV
was negligibly small compared with the total width of the p-wave resonance and the statistical error. Therefore,
the spin-dependent cross section obtained in Eq.4.12 can be directly compared with the theoretical calculation.
Calculating the Breit-Wigner function over the region Ep − 3Γp < En < Ep + 3Γp in Eq.5.4 and converting
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(xS , yS) to (xF , yF ) based on Eq.2.28, the following equation can be obtained as

−0.26± 0.08 = 0.079

(
−7x2

F − 2
√
35xF yF +

2

5
y2F

)
(5.5)

Therefore, the solutions for ϕF as

ϕF = (74± 4)◦, (164± 4)◦, (254± 4)◦, (344± 4)◦ (5.6)

The corresponding xF and yF values are also obtained as

(xF , yF ) =(0.28± 0.06, 0.96± 0.02), (−0.96± 0.02, 0.28± 0.06),

(−0.28± 0.06, −0.96± 0.02), (0.96± 0.02, −0.28± 0.06).
(5.7)

5.2 Determination of the physical solution
The four possible solutions were obtained from the spin-dependent cross section measurement. As discussed in
chapter 2.5, the angular correlation measurements in the (n, γ) reactions depend on the exit channel parameters.
Therefore, the results of the (n, γ) measurement were utilized to determine the physical solution from the possible
four solutions obtained by neutron transmission experiments that are independent of the final state.

As the same proceedure depicted in Fig2.3, equations 5.5, 2.48, 2.53, and 2.49 can be interpreted as the probability
density function (PDF) on the unit circle. The PDFs suggest that the physical solution is in the second qudrant on the
(xF , yF ) plane as shown in Fig.5.2. Thus the physical solution is obtained as (xF , yF ) = (−0.96±0.02, 0.28±0.06),
which corresponds to

ϕF = (164± 4)◦. (5.8)

Therefore, the spin-dependent factor in Eq.2.38 is obtained as

κ(J) = 0.59± 0.05. (5.9)

The p-wave resonance cross-section is calculated to be 3.06± 0.09 barn using the optical theorem in Eq.2.70 and
the resonance parameters in Tab.2.3, and with the longitudinal asymmetry in Tab.2.1, the TRIV cross-section in
Eq.2.34 is

∆σT = (0.17± 0.02)
w

v
(barn). (5.10)

5.3 Fundamental TRIV effects in compound necleus
As mentioned in Chapter 1.2.2, the effects of TRIV in the compound nucleus may be related to the effects of
PV in a three-body system of neutron-deuteron scattering [23]. The neutron helicity-dependent asymmetry Pnd

L

was theoretically calculated [21] using the best value of DDH potential, including the strong potential of Argonne
two-nucleon interaction [99] and the Urbana IX three-nucleon interaction [100], as follows

Pnd
L = 0.899× 10−8. (5.11)

This value was calculated for the case of the DDH potential with infinite cutoff and a total cross-section of 3.35 bn
at En = 15 keV. Therefore, using Eq.5.9 and the longitudinal asymmetry PL = 0.0955 of 139La in Tab.2.1, the
enhancement of TRIV in Eq.2.34 denoted as ALa, which relate to the neutron cross sections of TRIV and PV, can
be calculated as

ALa = κ(J)
PL

Pnd
L

∼ 6× 106 (5.12)

Thus, the effects of TRIV were found to be 6× 106-fold, as well as the effects of PV.
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Fig. 5.1 Visualization of the value ofϕ on the (x, y) plane.The red, blue, green, and purple filled areas represent

Eqs.5.5, 2.48, 2.53, and 2.49 with 1σ region. The corresponding solid lines indicate the central values.
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Discussion
Since the explicit forward scattering amplitude for 139La was calculated in Chapter 2, the spin observables in
neutron transmission can now be calculated without any omission shown in Chapter 3. In addition, we obtained
the most plausible mixing angle ϕF in the analysis. Thus, these provide specific quantities of possible systematic
uncertainties and experimental sensitivity for TRIV search with neutron optics. In this chapter, the configuration and
possible systematic uncertainties of future experiments in the TRIV search, as well as the achievable experimental
sensitivity, will be discussed.

6.1 Concept of the future experiment for TRIV search

6.1.1 Experimental configuration
As shown in Eq.3.36, the most sensitive neutron transmission experiments for TRIV will be achieved by the
combination of analyzing power and polarizing power, Ay + Py. The concept of the experimental apparatus is
depicted in Fig.6.1 in which the nuclear spin and the neutron spin lie on (ϑI , φI) = (π/2, 0) and (ϑσ, φσ) =
(π/2, π/2), respectively, corresponding to the ideal spin direction. A quantization axis of 3He spin filter is
determined parallel to the y axis due to the B0 coil, and a polarized neutron beam is transported to just before the
polarization target with its spin direction maintained by the guide magnet. A target, LaAlO3, is polarized using
the DNP method under an environment of a temperature of 0.1 K and an applied magnetic field of 5 T. The nuclear
polarization is still maintained even in a zero magnetic field by using the spin-frozen method. The spin-frozen
method is already used for protons and deuterium to decouple nuclear and electron spin by bringing the electron
spin polarization close to 100% at a cryogenic temperature, thereby yielding a long relaxation time for the nuclear
spin [101, 102]. The pseudomagnetic field adjusting for the p-wave resonance is canceled by applying a magnetic
field Bext to the polarized target in the opposite direction of the polarization. The polarized target is attached
to the cold head of the dilution refrigerator and is surrounded by an RF coil to apply the external magnetic field
and a superconducting magnetic shield made of niobium. The superconducting shield is designed to prevent a
stray magnetic field of the target, and because the magnetic field becomes discontinuous at this boundary, neutron
spin incidents into the polarized target unadiabatically. A two-dimensional position-sensitive neutron detector is
installed downstream of the polarized target to monitor the transmitted neutron beam energy and beam divergence.
The design of the superconducting magnetic shield and coils around the polarization target is under discussion, and
the detailed design is not mentioned here. At the same time, we should consider the Kapitza resistance [103] in
solid-solid interfacial thermal resistance between the cold head and the target for cooling to 0.1 K and the thermal
conductivity of heat inflow caused by radiation to design the size and shape of the target. Since the analyzing power
and polarizing power are assumed to be measured independently, it is required that the measurements for correcting
for neutron and nuclear spin misalignment, nuclear polarization, and external magnetic field misalignment should
be performed for each asymmetry. These correction methods are described in the following section.
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be performed independently. 3He spin filter, a guide magnet, a LaAlO3 target and its polarization device, a

superconducting magnetic shield, and a neutron detector are installed.

6.1.2 Nuclear target

Pseudomagnetism
The pseudomagnetism has already been mentioned in chapter 3.2, however since this calculation only considered
139La with 100% purity, we will discuss it again for LaAlO3, which is used as a polarized target. Since LaAlO3

target is composed of elements such as oxygen with zero nuclear spin and aluminum with nuclear spin I = 5/2,
it is necessary to consider not only 139La but also pseudomagnetism caused by 27Al at the same time. Let the
nuclear polarization of 27Al be PAl and the correlation term proportional to (σ · Î) be B′

Al, the scattering amplitude
corresponding to the pseudomagnetism is expressed as

RePAlB
′
Al =

I

2I + 1
PAl

(
bAl
coh(+) − bAl

coh(−)

)
(6.1)

where bAl
coh(+) and bAl

coh(−) are the coherent scattering length for neutron spin parallel and antiparallel, respectively.
Since 27Al has no resonance for incident neutron energy below 1 keV, it can be treated as a constant independent of
neutron energy in the p-wave resonance of 139La. Therefore, the pseudomagnetic field of polarized LaAlO3 target
can be calculated as

Bp =
2πℏ2

mnµn
ρLaAlO3 (ReP1B

′ +RePAlB
′
Al) (6.2)

As mentioned in chapter 2.4, the study for LaAlO3 using DNP method has been achieved

P1 = 47.5%, PAl = 62%. (6.3)

Applying these results for Eq.6.2, thus it leads to

Bp = 0.10T (6.4)
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Fig. 6.2 Optimal thickness for LaAlO3 and its neutron transmission. (a): The maximum value of the curve, d,

indicates the optimum thickness, and the solid, dashed, and solid-dashed lines correspond to the varying vector

polarization of 139La. (b): Neutron transmission with optimal thickness for neutron energy.

where ρLaAlO3 = 1.887× 1028 /m3, bAl
coh(+) = 3.60 fm, and bAl

coh(−) = 3.24 fm were used as the number of nuclei of
LaAlO3, and coherent scattering length [3].

Optimal thickness of the target
We discuss the optimal LaAlO3 target thickness in terms of the TRIV search sensitivity and statistics in the
measurements shown in Fig.6.1. Let the statistical errors for Ay and Py be ∆Ay and ∆Py, respectively, the
statistical error for Ay + Py can be expressed as

√
∆A2

y +∆P 2
y . Therefore, a function with thickness d as an

argument is introduced as

f(d) =
Ay + Py√
∆A2

y +∆P 2
y

(6.5)

then was maximized to find the value for d. Let N+ and N− denote the number of neutron transmissions at the
asymmetry according to Eq.3.16, ReA∗D±ImB∗C, the observables proportional to ppy or pay, are very small at 10−3

even in the vicinity of the p-wave resonance, then denote asN ≡ 2N+ = 2N− sinceN+ ∼ N− in the statistical error
discussion. The number of neutrons after passing through the polarized target is N = exp(−ρLaAlO3

σLaAlO3
d),

which can be described as √
∆A2

y +∆P 2
y =

√
2√

exp(−ρLaAlO3
σLaAlO3

d)
. (6.6)

Here, σLaAlO3 represents the total cross section of the target, and the total cross section for each nuclide at 0.75 eV
for neutron energy can be calculated as

σLa = 16.17 bn, σAl = 1.55 bn, σO = 4.23 bn (6.7)

based on 2.70, and scattering length in [83]. Therefore σLaAlO3
= 30.4 bn can be calculated and substituted into

Eq.6.5 and can be expressed as Fig.6.2. This result indicates the optimal thickness is 3.4 cm for a vector polarization
0.475 for 139La and neutron transmission of 14%. Essentially, the optimization function is strongly dependent on
transmittance, indicating that changes in vector polarization have no significant effect on the optimal thickness.

6.2 Possible systematics
As mentioned in chapter 6.1.1, the experiment should be tuned by intentionally creating a misalignment of the
neutron, nuclear spin, and the external magnetic field and feedback during the asymmetry measurement. In this
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Fig. 6.3 Comparison of the imaginary part of each coefficient for B and C.

section, we will specifically indicate how the quantities of the coefficients proportional to 2nd- or 3rd-rank tensor
polarization are calculated and observables intentionally shifted for each spin and the external magnetic field.

6.2.1 Higher-rank tensor polarization
As Eq.3.35 shows, the spin correlation terms in the forward scattering amplitude f consist of a linear combination
of 1st- to 3rd- rank tensor polarizations or coefficients proportional to (k̂n · Î). The A vanishes by taking the
asymmetry, however the other terms represented by Eq.3.9 remain as βi and their contribution must be considered.
Here we discuss the contribution of observables of terms proportional to higher-rank tensor polarization or (k̂n · Î)
by comparing terms other than the leading terms for B and C, except for D.

Consider the case in which the vector polarization of P1 = 0.475 is achieved and the pseudomagnetism is
completely canceled. Assuming that the spin temperature of the tensor polarization obeys a Boltzmann distribution,
the 2nd- and 3rd-rank tensor polarization as P2 = 0.16, P3 = 0.044 was calculated from Eq.2.74. Next, the
assumption that the nuclear spin is perfectly aligned along the x axis and the neutron beam divergence is 1 mrad
leads to (k̂n · Î) ∼ 1 × 10−3. Since Eq.3.25 indicates that the imaginary parts of βx and βy are dominant, the
imaginary parts for each coefficient are compared and shown in Fig.6.3. This result leads to the following ratios at
p-wave resonance as

P2ImF ′(k̂n · Î)
P1ImB′ = 7× 10−6,

P3ImB′
3/3

(
(k̂n · Î)2 − 1

)
P1ImB′ = 5× 10−3 for B

P1ImK ′(k̂n · Î)
ImC ′ = 9× 10−3,

P2ImF ′/3

ImC ′ = 8× 10−2,
2P3ImB′

3/3

ImC ′ = −6× 10−2 for C

(6.8)

The calculation indicates that under the condition that the pseudomagnetic field is completely canceled, the
contribution of coefficients other than the leading term is at most 8%. In light of this result, we ignore the
higher-rank tensor polarization in the following discussion, and thus only the leading terms P1B

′ and C ′ can be
taken into account.

6.2.2 Neutron and nuclear spin misalignments
Stray fields due to the target-applied magnetic field and the tilt of neutron spins due to the accuracy of the polarizer
and analyzer and the guide magnet appear as unintended observables. Therefore, it is possible to measure the
misalignment and get feedback on the measurement by indicating the observed quantities for the neutron spin
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The pseudomagnetism is completely canceled for P1 = 0.475, the polarizer efficiency pp0 = 1, and the target

thickness is optimal (3.4 cm).

misalignment.

Neutron spin
We first assume that the nuclear spin is perfectly aligned, i.e., (ϑI , φI) = (π/2, 0), and discuss the deviation of the
asymmetry (e.g., analyzing power) with neutron spin. Let the analyzing power, given in Eq.3.17, denote A

ϑp
σ,φ

p
σ

pow .
For only one angle parameter, the deviation from the ideal neutron spin orientation can be described as

Aπ/2,π/2
pow −A

ϑp
σ,π/2

pow = 2
(1− sinϑp

σ)ImB∗C − cosϑp
σReA

∗C

|A|2 + |B|2 + |C|2

Aπ/2,π/2
pow −A

π/2,φp
σ

pow = 2
(1− sinφp

σ)ImB∗C − cosφp
σReA

∗B

|A|2 + |B|2 + |C|2

(6.9)

for w/v = 0 of the TRIV parameter. Equation 6.9 when ϑp
σ = (90± 1)◦ and φp

σ = (90± 1)◦ are shown in Fig.6.4,
respectively. One degree deviation around 90 degrees shows the opposite asymmetry in the vicinity of p-wave
resonance and the magnitude of the asymmetry is larger than 10−4, which indicates a enough large magnitude to
measure quickly as shown in Fig.4.12.

Nuclear spin
We next assume that the neutron spin is perfectly aligned, i.e., (ϑp

σ, φ
p
σ) = (π/2, π/2). The nuclear spin misalign-

ment in the asymmetry denoted as AϑI ,φI
pow can be described as follows

Aπ/2,0
pow −AϑI ,0

pow =
2(ImB∗C − ImB∗

ϑCϑ)

|A|2 + |B|2 + |C|2

Aπ/2,0
pow −Aπ/2,φI

pow =
2(ImB∗C − ImB∗

φCφ)

|A|2 + |B|2 + |C|2

(6.10)

where Bϑ, Cϑ and Bφ, Cφ are satisfied with in Eq.3.7 and approximation of Eq.6.8 as follows
βϑ
x

βϑ
y

βϑ
z

 = Z


(P1B

′ − µeffBext) sinϑI

0

C ′ + (P1B
′ − µeffBext) cosϑI

 ,


βφ
x

βφ
y

βφ
z

 = Z


(P1B

′ − µeffBext) cosφI

(P1B
′ − µeffBext) sinφI

C ′

 (6.11)
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Fig. 6.5 Dependency of the external magnetic field. (a): The solid, dashed, and dashed-dotted lines correspond

to the asymmetry in Eq.6.12 of ±0 G, -100 G, and +100 G from the pseudomagnetism calculated in Eq.6.4,

respectively. (b): The maximum value of the asymmetry at p-wave resonance for the external magnetic field.

In this case, since the neutron and nuclear spin misalignment are equivalent in the observed asymmetries for ϕp
σ,

the 1-degree deviations in ϑI and φI correspond to (b) in Fig.6.4.

6.2.3 Nuclear polarization and external magnetic field
While it is essential in the TRIV search to completely cancel the neutron spin rotation caused by the pseudo-
magnetism in nuclear polarization and the external magnetic field, it is generally not easy to measure the actual
nuclear polarization of the target accurately, thus it is necessary to find the optimal field while adjusting the external
magnetic field. Therefore, it is useful to show how much the spin observables depend on the external magnetic
field. Here we propose a method to find the optimum external magnetic field from the asymmetry of the spin
observable, assuming an experimental system in which the neutron and nuclear spin are perfectly aligned. The
asymmetry consists of the imaginary part of the interference term between the helicity-dependent term C ′ and the
B′ term involving the pseudomagnetic field and the external magnetic field as follows

Ay =
2pp0ImB∗C

|A|2 + |B|2 + |C|2
. (6.12)

Assuming a polarizer efficiency of pp0 = 1 and D′ = 0, the calculation results, when the external magnetic field is
varied around the pseudomagnetic field by±100G, are shown in Fig.6.5. It indicates that the sign of the asymmetry
changes as the pseudomagnetic field varies, and a 100 G change results in a magnitude shift of 0.002 at the p-wave
resonance. The measurement of the asymmetry in the p-wave resonance while manipulating the external magnetic
field corresponds to (b) in Fig.6.5, and it can be utilized to ascertain the external magnetic field required to nullify
the pseudomagnetism.

It should be noted that in actual experiments, misalignments occur not individually but in combination. Therefore,
it is necessary to extract and correct individual misalignments by shifting the spins and magnetic field by a relatively
large ammount.

6.3 Sensitivity estimation
We discuss the possible experimental sensitivity to TRIV that can be explored in the neutron transmission shown
in Fig.6.1. Assume 4 cm× 4 cm as the beam cross sectional area of the LaAlO3 target and an optimal thickness of
3.4 cm for 47.5% vector polarization. The experiment is conducted at beam port 07 in MLF, where the poisoned
moderator is employed, shown in Fig.4.1 and assumes a proton beam power of 1 MW. The J-PARC website



6.3 Sensitivity estimation 57

[87] publishes the time-integrated intensity of the incident neutron beam for each beam port, and is shown in
Fig.6.6. The experimental conditions including the neutron beam optics are summarized in Table 6.1. The 3He

Table 6.1 Experimental condition for beam port 07.

Time-averaged flux of incident neutrons Iin Fig.6.6

Moderator surface area Smod 100mm× 100mm

Distance between moderator and target Lmt 15m

Cross-sectional area of target St 4 cm× 4 cm

Solid angle with respect to target area Ωt St/Lmt = 7.11× 10−6 sr

Detector efficiency ϵdet 1

spin filters as the polarizer and analyzer are used, and we have already calculated the optimal areal density of
ρHedHe = 72atmcm at room temperature and PHe = 70% for 3He polarization from a previous study of [104] can
maximize the figure-of-merit for TRIV search at p-wave resonance. It yields the efficiency of 87% and neutron
transmission of 30% at p-wave resonance calculated from Eq.4.9 and

THe = exp(−ρHedHeσHe) cosh(PHeρHedHeσHe) (6.13)

as shown in Fig.6.7. Let the transmission with the optimal thickness target denote as TLaAlO3 as shown in Fig.6.2,
thus the detected neutrons Ndet can be described as

Ndet = ϵdetTHeTLaAlO3
IinSmodΩt∆En (6.14)

Thus the energy spectrum of the detected neutrons for Apow and Ppow can be obtained as Fig.6.8. We assume the
neutron energy width of 30 meV, which corresponds to the 0.8Γγ

p . Following the same assumption of chapter 6.1.2,
we can calculate the statistical error as

∆Apow = ∆Ppow =
1√
Ndet

. (6.15)

6.3.1 Sensitivity estimation under ideal experimental condition
Initially, the experimental sensitivity under ideal experimental conditions is presented. We assume the neutron spin,
nuclear spin, and pseudomagnetism are completely aligned and adjusted and the polarizer and analyzer neutron
efficiency are equal. Summation of the number of detected neutrons over the energy region with 0.72 eV ≤ En ≤
0.78 eV around p-wave resonance energy of Ep in Fig.6.8 yields 331 kcps; if we hypothesize that new physics can
be excluded with 90% confidence level, the evaluation function f(t) is

f(t) = 1.64
√
∆A2

y +∆P 2
y

= 1.64

√
2

Ndett
= 4.0× 10−3 1√

t

(6.16)

as a function of measurement time t. The observed asymmetry with the discovery potential w/v = 2.9 × 10−4

estimated in Eq.1.13 averaged for the same energy region of 0.72 eV ≤ En ≤ 0.78 eV as Eq.6.16 can be calculated
from Eqs.3.25, 3.36, and 5.10 as

|Ay + Py|ave ≃ 2ρLad∆σT p0P1 = 4.3× 10−6p0P1 (6.17)

Here, the averaged P-odd cross-section is used as ∆σP = 0.20 barn. We can show the statistical error and the
corresponding sensitivity in Fig.6.9. This result indicates the required measurement time to reach the discovery
potential with a 90% confidence level for the case of p0 = P1 = 1 and p0 = 0.87, P1 = 0.475. Therefore the
required measurement time is 240 hours and 1400 hours.
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correspond to the neutron polarizer or analyzer efficiency and neutron transmission, respectively.

6.3.2 Sensitivity estimation with chi-square fitting
The actual experiment involves misalignments arising from various causes outlined in Chapter 6.2. Among
these, the control of a neutron spin by a magnetic field and superconducting magnetic shielding poses the most
formidable challenge. Therefore, in this section, assuming adjustments have been performed to the nuclear spin
and pseudomagnetic field to appropriate values in Eq.6.3 and Eq.6.4, we include a neutron spin in the fitting
parameters. This allows us to employ pseudorandom numbers to simulate the experimental sensitivity to the
parameter w/v with a chi-square method. The computed asymmetry Apow and Ppow are presumed to adhere to
Eq.3.17 and Eq.3.19, where the neutron efficiency is consistent for both of p0 = 0.87. The experimental system
follows Table 6.1. The asymmetry values generated in the simulation are assumed to follow a Gaussian distribution
with a mean of Apow(Ei) and Ppow(Ei), where Ei is the corresponding neutron energy for Fig.6.8, and a standard
deviation following Eq.6.15, representing the statistical error. The simulation results of the asymmetries are shown
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in Fig.6.10 for the case where the neutron spin is perfectly aligned at 90 degrees. The value included in coefficient
D′ is calculated as w/v = 0. The experimental sensitivity was obtained from chi-square fitting in the region of
Ep±3Γp with the same function of Apow+Ppow with w/v as a free parameter, yielding w/v = (−7.6±7.6)×10−3

for a 1-hour measurement, which indicates a zero-consistent with one standard deviation.
Next, consider the case of neutron spin misalignment in Apow and Ppow. Here, since ReA∗C, the term for which

is proportional to cosϑσ, is one-tenth the magnitude of ReA∗B as shown in Fig.6.4, then the two fitting parameters
to represent neutron spin are used as φp and φa. The fitting function in this case can be written explicitly as follows.

Apow + Ppow = 2p0
(cosφp

σ + cosφa
σ)ReA

∗B + (sinφp
σ + sinφa

σ)ReA
∗D + (sinφp

σ − sinφa
σ)ImB∗C

|A|2 + |B|2 + |C|2 + |D|2
(6.18)

To ensure that both ReAB and ImBC contributions intentionally appear, the asymmetries of neutron spins with
φp and φa shifted by 1 and 2 degrees from π/2, i.e. φp = 91◦, φa = 92◦, are computed and fitted with Eq.6.18
with three fitting parameters, φp, φa, and w/v. Figure 6.11 shows the computed results corresponding to 100
hours of measurement time. The chi-square over the number degree of freedom was 1.58 and the w/v was
(2.2 ± 0.9) × 10−3. A reliable experimental sensitivity can be obtained by iterating the generation of random
numbers and fitting, which corresponds to the number of measurements. This can be performed by fitting the
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Fig. 6.10 Simulation results for (ϑσ, φσ) = (π/2, π/2) for an hour measurement. The left and right figures

show Apow and Ppow which correspond to red and blue symbols and the combination. In this condition, Apow

and Ppow are proportional to ±ImB∗C.

Fig. 6.11 Simulation results for (φp
σ, φ

a
σ) = (91◦, 92◦). The left and right figures show Apow and Ppow,

corresponding to red and blue symbols and the combination. The red curve is the best fit in the region of

Ep ± 3Γp.

histogram of the obtained central value of w/v using a Gaussian distribution. The distribution of w/v obtained
by iterating the 10 hours measurement 100 times is shown in Fig.6.12. The histogram for w/v under ideal
experimental conditions is black, while the histogram with spin misalignment corresponds to red. This result
shows that it can be fitted with a Gaussian distribution whose mean value was (−4.7 ± 2.3) × 10−4 for the ideal
case and (2.3 ± 4.9) × 10−4 for the misalignment, which yields w/v < 3.8 × 10−4 and w/v < 8.0 × 10−4 at a
90% confidence level, respectively. This indicates that the sensitivity deteriorates by only a factor of 2 even when
neutron spin misalignment is included. Even in the case of neutron spin misalignment, it is suggested that a six-fold
increase in beam intensity or measurement time is needed to reach the discovery potential, which could be solved
by an improved neutron source or beam optics dedicated to epithermal neutron transport. Also, as proposed by
[28], the theoretical prediction limit induced by axion exchange provides w/v < 10−3, which could be meaningful
enough for a 10-hour measurement.

6.4 Current upper limit using existing neutron transmission data
The neutron transmission experiment presented in Chapter 4 is a measurement of the spin-dependent cross section
proportional to (σ · Î). However, it may be possible to obtain an upper limit for TRIV by applying the spin
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observables described in Chapter 3. This is the first attempt to search for TRIV using a neutron transmission
experiment and is considered beneficial because it can serve as an indicator for the upper limit for TRIV discussed
above. For the asymmetry Ax

pow/p̄0
p, corresponding to Fig.4.12, after being corrected by the averaged neutron

polarization, Eq.3.24 can be transformed as

Ax
pow

p̄0p
= −2

ReA∗B

|A|2 + |B|2 + |C|2 + |D|2
. (6.19)

In other words, since the denominator represents the total cross section including D, the contribution of TRIV
can be evaluated by fitting with w/v as a free parameter. For the mixing angle ϕF , Eq.2.55 was used to avoid
self-contradiction, and for the nuclear resonance parameters and vector polarization, Table 2.3 and P1 = 3.9%
were used, respectively. On the other hand, since the independent values of the potential radii Rs0 and Rs1 vary
with the indefiniteness of the negative resonance, one parameter was reduced by the constraint due to the averaged
potential radius as follows

Rave =
√
g4R2

s0 + g3R2
s1. (6.20)

Here, Rave = 5.89± 0.09 fm and gJ = (2J +1)/(2(2I +1)) from [1]. Therefore, the result of fitting Eq.6.19 in the
range of neutron energy Ep ± 3Γp with two free parameters Rs0 and w/v is shown in Fig.6.13. The fitting result
yields χ2/ndf = 1.9 and the parameters Rs0 = 4.12± 0.04 fm and zero-consistent value of w/v = 0± 4183. Thus,
|w/v| < 6.8 × 103 was obtained at a 90% confidence level. This is seven orders of magnitude above our goal of
the discovery potential and indicates a potential improvement of that magnitude from the discussion in section 6.3.
Therefore, this result provides the constraints on the leading terms in the coupling constants of TRIV in Eq.1.10
as follows

−0.47

[
ḡ
(0)
π

h1
π

+ 0.26
ḡ
(1)
π

h1
π

]
< |6.8× 103|. (6.21)

Substituting the value of Eq.1.12, the explored parameter space (ḡ
(0)
π , ḡ

(1)
π ) can be illustrated as Fig.6.14. The

dominant coupling constants of TRIV for nEDM and HgEDM correspond to ḡ
(0)
π and ḡ

(1)
π , respectively, and

although they give strong upper limits as ḡ
(0)
π < 1.6 × 10−10 and ḡ

(1)
π < 0.5 × 10−11. However, our experiment

indicates that the different parameter spaces can be explored.
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Chapter 7

Conclusion
As well as the enhancement of PV in compound nucleus reactions, TRIV can also be enhanced, which is connected
to final-state interaction-free transmission experiments in neutron optics. The conditions for the magnitude of
parity-violating effects and its low p-wave resonance energy lead to the most promising target nucleus being 139La.
The spin-dependent factor κ(J), which links the P-odd, P- and T-odd cross sections, is a function of the mixing angle
ϕF . Due to the complexity of the compound nucleus, ϕF is incalculable, and it can only be obtained by experiments
sensitive to the p-wave resonance and its sign. In the previous study, ϕF was obtained by measuring the asymmetry
of the gamma-ray distribution when a compound nucleus excited by a neutron absorption reaction transitions to the
ground state. In this study, by applying the technique using the polarized nuclear target and polarized neutrons in
neutron transmission experiments, ϕF was obtained by comparing the spin-dependent cross-section measurement
with the explicit theoretical expression of scattering amplitudes. The phsysical solution, ϕF = (164 ± 4)◦, was
determined by restriction of the previous studies. This determination of ϕF and the expression of neutron spin
observables from the description of the time evolution provide a quantitative basis for our future experiment. It is
found that the cross sections that are proportional to the tensor polarization, resulting from realistically achievable
nuclear polarization, are at most 8% of the cross-section of the dominat P-odd coefficient when the inner product
of the neutron beam and nuclear spin direction is suppressed below 1 mrad. According to the method of tuning
the pseudomagnetism, which is the dominant suppression factor in the neutron transmission experiment, it was
shown that the deviation in the asymmetries of 2×10−3 corresponding to a change in the external magnetic field of
±100G is a sufficient amount to monitor neutron rotation, and the application of this method enables the canceling
of pseudomagnetism. Based on these arguments, we estimated the experimental sensitivity of TRIV, including
the most technically challenging neutron spin misalignment, and found that it was a factor of 2 worse than if
ideal experiments had been performed. This result gives the upper limit w/v of 10−4, comparable to nEDM, after
approximately 1400 hours of measurement, and provides a strong limit on BSM physics. Also, access to w/v was
firstly achieved with the neutron transmission experiment, and the result of the current upper limit of 103 indicates
that our future experiment will improve sensitivity on the order of 7. The implementation of this experiment is
desired to involve research efforts that simultaneously fulfill the requirements of magnetic field control through a
superconducting magnetic shield and the application of techniques for sufficiently cooling the target sample.
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