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Abstract

In this thesis, we investigate the elements beyond the ACDM model. The ACDM
model consists of two assumptions; A is the cosmological constant and is related
to dark energy, which causes the accelerated expansion of the universe, and cold
dark matter (CDM), which is the dominant component of matter in the universe at
present. However, the properties of them are still unknown, and there is room for
modifications.

To investigate beyond ACDM, we consider two quantities: 1) the growth rate and
2) the mass of non-cold dark matter (NCDM), which are related to the accelerated
expansion of the universe and the property of dark matter, respectively.

The growth rate corresponds to the time evolution of the density perturbation
of matter. It is an important probe of gravity because the evolution of the matter
distribution is driven by gravity. Source of modified gravity theories can explain the
origin of the accelerated expansion. The growth rate is measured by the analysis
of the large-scale structure of the universe and is sensitive to the modification of
gravity.

Dark matter is one of the components of the universe. In the ACDM model,
dark matter is non-relativistic matter when generated and is called CDM. The A
CDM model is consistent with the observations at large scales. However, the ACDM
model has problems at small scales, so-called small-scale crisis. The NCDM model
is one of the solutions to these problems. NCDM is relativistic when generated and
becomes non-relativistic matter as the universe expands and cools. An important
property of NCDM is its velocity dispersion, which prevents structure evolution at
small scales depending on its mass. Conversely, we can examine the mass of NCDM
by the analysis of the large-scale structure of the universe.

The growth rate and the mass of NCDM can be measured by analyzing the large-
scale structure. Traditionally, two-point statistics, such as the power spectrum of the
large-scale structure, are used for the analysis. In the near future, we will obtain a
large amount of high-sensitivity observation data. Therefore, we need to develop
new methods to study these large amounts of data more effectively and accurately.
In this thesis, we focus on the machine learning approach and conduct two works
for the measurements of the growth rate and the mass of NCDM.

For the growth rate measurement, we use convolutional neural networks (CNN)
trained by the Quijote N-body simulations to predict the growth rate for the sim-
ulation data. In general, we need a model for the non-linear part of the observed
power spectrum to predict the growth rate. By using CNN, we aim to predict the
growth rate directly from the matter distribution without non-linear modeling. As
a result, we find that the predictions of the growth rate from our CNN are in good
agreement with the fiducial values that the simulation assumes. The prediction er-
rors are within a factor of order unity from those of the traditional optimistic Fisher
approach. Therefore, we conclude that CNN can provide growth rate predictions
without non-linear modeling on small scales.

For the mass of NCDM, we use CNN trained by the cosmological hydrodynamic
simulation data to constrain the mass of NCDM. We focus on the HI distribution as
a tracer of the dark matter distribution because the HI distribution can be observed
as the 21cm signal using radio frequency observations. In this work, we conduct
the hydrodynamic simulations for both the CDM model and NCDM models with
different masses using GADGET3-0saka and generate images of 21cm signals. We
use CNN to classify the images of the 21ecm maps in CDM and NCDM models and
evaluate the classification results. As a result, we find that CNN outperforms the



vi

power spectrum analysis in our study. In addition, we investigate the effects of
different astrophysical models and the system noise assuming SKA-MID.

From these works, we demonstrate the potential of the machine learning ap-
proach for the analysis of the large-scale structure of the universe.
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Chapter 1

Introduction

The ACDM model is widely accepted because it can account for the results of most
observations. This model assumes two components in the universe: the cosmolog-
ical constant A, which is related to dark energy and causes the accelerated expan-
sion of the universe, and cold dark matter (CDM). However, the properties of these
components are still unknown. To unveil them, we require more highly accurate
observational data and methods for their analysis.

In this work, we focus on machine learning, especially the Neural Network (NN),
as a method of analysis. NN is a type of machine learning used for the analysis of
big data. This algorithm can be used to extract information from labeled data with-
out specifying the features of data manually by a human. The traditional analysis
techniques for the large-scale structure (LSS) of the universe such as the power spec-
trum, which is the two-point correlation of the matter distribution in Fourier space,
can only obtain a part of the information in the observed data. In contrast, a ma-
chine learning algorithm can extract more complex information from the data and
use various features beyond the two-point statistics. For example, the Convolutional
Neural Network (CNN), which is an algorithm for image analysis, has been used to
constrain cosmological parameters from the simulated weak lensing data (Ribli et
al., 2019; Ribli, Pataki, and Csabai, 2019) or the simulated large-scale structure of
dark matter distribution (Pan et al., 2020). Other examples use U-Net to detect the
Sunyaev-Zel’dovich effect from Planck cosmic microwave background (CMB) data
(Bonjean, 2020), distinguish modified gravity models from the standard model us-
ing CNN (Peel et al., 2019), and use NN to reconstruct the initial conditions of the
universe from the galaxy distribution (Modji, Feng, and Seljak, 2018).

Here, we focus on the growth rate of the matter density perturbation related to
dark energy and the mass of dark matter. These quantities are related to the statistics
of the LSS of the universe. We use machine learning algorithms to investigate the
LSS and compare the results with those from traditional analysis techniques. In the
following subsection, we provide more details about the quantity we focus on.

1.1 Growth Rate

Recent cosmological observations indicate the expansion of the universe is accel-
erated and it is considered that this acceleration is typically caused by dark en-
ergy, specifically the cosmological constant in the ACDM model, which may cause
the fine-tuning issues (Padmanabhan, 2003; Amendola, Marra, and Quartin, 2013).
Various candidates for dark energy or alternative explanations for the accelerated
expansion have been proposed beyond the cosmological constant. For example,
quintessence (Fujii, 1982; Wetterich, 1988; Chiba, Sugiyama, and Nakamura, 1997)
is one of the dark energy models that introduce a new scalar field beyond the Stan-
dard Model of particle physics. Another candidate is the modified gravity theory
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FIGURE 1.1: This figure shows the constraints on the growth rate

quoted from a previous work (Chapman, Zhai, and Percival, 2023).

The solid line represents the prediction of fog value for the ACDM

model, and the plots show the constraints on dog by using the galaxy
surveys.

(Tsujikawa, 2007; Joyce, Lombriser, and Schmidt, 2016), deviating from general rela-
tivity at scales corresponding to the size of galaxies or larger. One of the challenges
in modern cosmology is understanding the properties of dark energy.

The LSS of the universe encodes important details for testing the cosmological
model as it contains information about the late-time evolution of the Universe and
the matter density distribution. The information is useful to constrain the fractional
density parameters for CDM Q) 4,,, baryon )y, dark energy Q)5 and other param-
eters such as the amplitude of the matter power spectrum cg. The LSS is also an
important probe of dark energy and gravity theories because the dynamics of the
LSS which is derived by gravity are strongly related to them.

One way of investigating the dynamics of the LSS is measuring the growth rate
f of matter density perturbation, which is defined based on the time derivative of
the matter density perturbation amplitude. In general, f is measured from galaxy
survey data. However, galaxies are biased tracers of the matter distribution and f is
sensitive to the bias parameter of galaxies bg. So, we generally use fog as the bias-
free parameter (see Section2.5), which can be measured, for example, through the
two-point correlation of the galaxy distribution in redshift space (Song and Percival,
2009), the galaxy-clustering analysis using Effective Field Theory of the LSS (Car-
rasco et al., 2014; Carrilho, Moretti, and Pourtsidou, 2023), and the simulation-based
emulator (Winther et al., 2019; Ramachandra et al., 2021; Brando et al., 2022).

Figure 1.1, which is quoted from Chapman, Zhai, and Percival, 2023, shows some
constraints on the fog based on the LSS analysis ; the SDSS MGS (Howlett et al.,
2015), BOSS galaxies (Alam et al., 2017), CMASS+eBOSS LRGs (Bautista et al., 2021),
eBOSS ELGs (De Mattia et al., 2021), eBOSS quasars (Neveux et al., 2020). In addi-
tion, the constraints from some works (Chapman et al., 2022; Lange et al., 2022; Zhai
etal,, 2023; Yuan et al., 2022; Reid et al., 2014), which aim to analyze the small scales
of the BOSS galaxy samples, are shown.

However, we need to make two assumptions to estimate fog. Firstly, we need
to specify a cosmological model to determine the relation between the redshift and
the distance to a galaxy in order to compute the two-point correlation (Contreras
et al., 2013). Secondly, we need to assume a model for the power spectrum includ-
ing the non-linear part, typically done with phenomenological models (Scoccimarro
and Frieman, 1996; Bernardeau, Rijt, and Vernizzi, 2012; Baldauf et al., 2015; Casas
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et al., 2017; Blanchard et al., 2020a). So, we want to develop a method to avoid
these problems. For the first assumption, we can correct the dependence on the cos-
mology, for example, by Alcock-Paczynski type correction (Nesseris, Pantazis, and
Perivolaropoulos, 2017). In this work, we try to develop a method to mitigate the
second one.

In addition, we can expect more accurate data of the LSS from forthcoming cos-
mological observations such as Euclid (Laureijs et al., 2011), LSST (Abell et al., 2009),
and DESI (Aghamousa et al., 2016). These observations data are rich in information
in the LSS, so we need to develop statistical tools to use these data effectively.

To solve these problems, we focus on machine learning as the method to estimate
fog without modeling the non-linear part of the power spectrum and the useful
statistical tool for the rich LSS data. To demonstrate the performance of machine
learning, we use the public N-body simulation data, Quijote simulation (Villaescusa-
Navarro et al., 2020), and train and test our 3-dimensional CNN (3D-CNN) with
this simulation data. The analysis with 3D-CNN has mainly two advantages. The
first one is that the 3D-CNN can extract information from the matter density field
directly. Here, we need assumptions only for the simulations. In this work, we use
the data of Quijote simulation based on the ACDM model, so we need to assume
the ACDM model. However, we do not need any assumptions for the non-linear
part of the matter density field in estimating fog. Secondly, we can estimate fog at
high speed once we train CNN. CNN algorithm can simplify the computationally
expensive procedures for data treatment (Lazanu, 2021a).

In this work, we aim to estimate the growth rate fog by 3D-CNN. Our 3D-CNNs
are trained directly by the N-body simulations at different redshift bins. In addition,
we use the power spectrum of these simulations, estimate fog, and compare the
estimated error of fog from 3D-CNN to that from the power spectrum analysis.

This work is published in Murakami et al., 2023b.

1.2 Mass of Dark Matter

Dark matter is one of the components of the universe and accounts for about 26%
of the total energy density in the universe (Planck Collaboration et al., 2020). The
existence of dark matter has been confirmed through various observations such as
the motion of galaxies in a cluster (Zwicky, 1937) and the gravitational lensing effects
(Natarajan et al., 2017). Dark matter interacts gravitationally with ordinary matter,
while its interaction with the electromagnetic force is either absent or weak. Most
of the properties of dark matter remain unknown and many dark matter models are
suggested (Abdalla et al., 2019). In this work, we focus on the dark matter model in
which dark matter is an elementary particle. One of the important properties of dark
matter is its mass. In the ACDM model, dark matter is characterized as a heavy and
non-relativistic, i.e., cold particle at its freeze-out. This type of dark matter is called
Cold Dark Matter (CDM), and the CDM model is consistent with many observation
results. However, the ACDM model does not specify any particular dark matter
model and makes no assumptions about the mass of a dark matter particle.

Various dark matter models are suggested. Figure 1.2, which is quoted from
Tuominen, 2021 shows the examples of dark matter models. Axion dark matter
is produced by the vacuum realignment and is the ultralight particle (Abbott and
Sikivie, 1983; Dine and Fischler, 1983; Preskill, Wise, and Wilczek, 1983). On the
other hand, the weakly interacting massive particle (WIMP) dark matter is a heavy
particle and its mass range is from 10 GeV to 100 TeV (Alvarez et al., 2020). In our
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FIGURE 1.2: Examples of dark matter models. This figure is quoted
from Figure 1 of the previous work (Tuominen, 2021).

work, we focus on the sterile neutrino, which is a fundamental right-handed parti-
cle added to the standard model and distinct from active neutrinos (a left-handed
particle), as a warm dark matter model (Dodelson and Widrow, 1994).

The sterile neutrino dark matter model is one of the dark matter models with
particle masses in the keV scale. In these models, dark matter is a relativistic parti-
cle at the time of freeze-out. And then, these dark matter particles have a velocity
dispersion that depends on their mass. In this work, we refer to this type of dark
matter as Non-Cold Dark Matter (NCDM) or Warm Dark Matter (WDM). The veloc-
ity dispersion of dark matter has an effect on the dark matter distribution at scales
corresponding to the free-streaming length of dark matter. This effect is one of the
solutions of the small-scale crises in the ACDM model such as the core-cusp and
too-big-to-fail problems (Weinberg et al., 2015). These problems represent inconsis-
tencies between observations and simulations (ACDM model) regarding the density
profile of the halo and the halo abundance, respectively.

As mentioned earlier, the mass of dark matter affects its spatial distribution, al-
lowing us to estimate the dark matter mass based on the dark matter distribution.
For example, the power spectrum of Lyman-a forest, which traces the dark mat-
ter distribution, has been used to constrain the dark matter particle mass. Previous
studies have shown that the lower limit of the dark matter mass is on the order of 1
keV (Viel et al., 2013; Garzilli et al., 2021; Garzilli et al., 2019; Villasenor et al., 2023).
However, a more stringent constraint on the dark matter mass is required to explore
various dark matter models. Therefore, it is important to develop new methods that
can extract more complex information from the LSS than the power spectrum. In
this work, we focus on the machine learning techniques to access the information
including three- or higher-order statistics.

As we cannot see the dark matter directly, we need to see the tracer of the dark
matter distribution in practical observations. In this work, we use the 21cm radia-
tion emitted from neutral hydrogen (HI) due to the hyperfine splitting. The HI is
one of the tracers of the dark matter distribution and the 21cm radiation can be ob-
served by radio telescopes. A lot of ongoing or planned observations of the HI such
as the Murchison Wide-field Array (MWA) (Tingay et al., 2013), Canadian Hydrogen
Intensity Mapping Experiment (CHIME) (Bandura et al., 2014), Hydrogen Intensity
and Real-time Analysis eXperiment (HIRAX) (Newburgh et al., 2016), and Square
Kilometer Array (SKA) (Santos et al., 2015), contribute to our understanding of the
HI distribution. These surveys will provide us with the information of the HI distri-
bution and we can use it as a tool to constrain the dark matter mass. For example,
a previous study (Carucci et al., 2015) showed the forecasts of the constraint on the
dark matter mass by the SKA observation.

In this work, our goal is to demonstrate the potential of CNN in constraining the
dark matter mass. Our focus is on the HI distribution at redshift z = 3 during the
post-reionization epoch, as will be observed by SKA. During the reionization epoch,
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the HI distribution is significantly influenced by ionization processes, so we focus on
the post-reionization. The previous study (Bauer et al., 2021) discussed the HI power
spectrum for the 21cm intensity mapping, which is modeled by using the N-body
simulation and assuming the properties of the HI halo and forecasted the improve-
ment of the constraints on the axion dark matter. As an example of applying machine
learning to the cosmological analysis, the previous work (2024MNRAS.527..739R)
investigated the constraints on the warm dark matter mass by using CNN based on
the N-body simulation and showed that CNN analysis can outperform the analy-
sis by the two-point statistics. In our approach, we consider a map-based analysis
with CNN to extract additional information to the power spectrum included in the
HI map generated from the cosmological hydrodynamic simulation including mod-
els such as the star formation, supernova feedback, UV radiation background, and
radiative cooling and heating.

To test our CNN analysis, we run hydrodynamic simulations using the CDM
and NCDM models with various masses, generating corresponding HI maps. Sub-
sequently, we use CNN and the power spectrum to classify the data assuming dif-
ferent dark matter models, and we compare the results.

Furthermore, we consider two effects that exist in practical observations. Firstly,
we consider the different astrophysical assumptions such as the self-shielding effect
of HI gas, the star formation effect, and the UV background model. In this thesis, we
refer to these assumptions as the astrophysical model. These models have an effect
on the ionization of hydrogen, so it is probable that they affect the results of our anal-
ysis. For example, in the work by (Villanueva-Domingo and Villaescusa-Navarro,
2021), they removed the astrophysical effect from the map of the 21cm signal and
created the map of the matter distribution. On the other hand, our work uses the
map with the astrophysical effects directly to constrain the dark matter mass. Sec-
ondly, we consider the system noise that exists in the SKA observation. This noise
contaminates the map of the 21cm signals, affecting our analysis. We generate the
map data contaminated by the mock noised map assuming the SKA observation,
and investigate the effect of the noise on our analysis.

This work is published in Murakami et al., 2023a.

This thesis is organized as follows. In Chapter 2, we present the theory for the
evolution of the matter distribution, the statistics representing the properties of the
matter distribution, the redshift space distortion related to the growth rate, NCDM
models, and the 21cm signal. Chapter 3 introduces the algorithm of machine learn-
ing we focus on. Chapter 4 and 5 present our works for estimating fog and con-
straining dark matter mass, respectively. Finally, in Chapter 6 we summarize this
thesis. Unless otherwise described, we use natural units and consider a flat universe
in this thesis.






Chapter 2

Theoretical Framework

In this chapter, we introduce the theoretical frameworks for our work. Section 2.1-2.5
introduces the standard cosmology, the evolution and statistics of the LSS, and the
effects of the practical observations. In the discussion of these sections refer to (Mat-
subara, 2014). Section 2.6 and 2.7 provide a brief introduction to the modified gravity
theory and NCDM models for the preparation of our work. Section 2.8 explains the
observable we focus on in Chapter 5.

2.1 FLRW Metric

Firstly, we consider the homogeneous and isotropic spacetime. The homogenous
and isotropic metricis described by the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric, and its line element ds? is expressed as,

ds? = —d¢? + {Iz(f)’}’f;’dxidxj, (2.1)

where a is the scale factor that represents the size of the universe, ; i is the 3-dimensional,
homogenous, and isotropic metric, where i and j take values of 1, 2, or 3, represent-
ing the components of 3-dimensional space. In our work, we normalize the scale
factor such that a(ty) = 1, where f; represents the present time. When we consider

the spherical coordinate for 3-dimensional space, the line element is written as

dr?
vV1—Kr2

where r is the radial coordinate scaled with the cosmic expansion, 6 and ¢ are the
angular coordinates, and K describes the spatial curvature; K = 1,0, and — 1 cor-
respond to a closed, flat, and open universe, respectively. In the following, we set
df = d¢ = 0 since the spacetime is homogenous and isotropic, and K = 0, i.e., the
universe is flat. The trajectory of a photon in the universe is described as ds = 0, so
we can derive the following relation for the photon trajectory from Eq. (2.2),

ds? = —df + a2(t) +77(d6” + sin 9d€P2)] : (2.2)

e (2.3)

where dy is defined as dxy = dr/+/1 — Kr?, and x is the comoving distance repre-
senting the distance measured at t = f;. And then, in the case that the photon is
emitted from y = x atf = t and reaches us at y = 0 at the present time (), we derive

the relation as
/E” ar_ /Xd (2.4)
Jt a(t) o A: '



8 Chapter 2. Theoretical Framework

By integrating, we can calculate the comoving distance x to the source of the photon

s to o 14 d
o df a Zdz

o _— - — =T s 2'5

A [ a(t) [ 2H )y H 25)

where H = i/a is the Hubble parameter representing the expansion rate of the
universe, and z is a redshift representing an increase in the wavelength caused by
the expansion of the universe, which satisfies 1 + z = 1/a. Note that we express the
time derivative of a quantity A as A.

2.2 Friedmann Equation

In general relativity, the equation for the gravity is expressed by the Einstein equa-
tion
Glmf + Agﬁb" — SHGTFV, (2.6)

where G, is the Einstein tensor, 4 and v take values of 0,1, 2, or 3 and represent the
components of the 4-dimensional spacetime, A is a cosmological constant, Quv is a
metric, G is the gravitational constant, and T),,, is the energy-momentum tensor. For
the FLRW metric, we can derive two equations from the Einstein equation, and they
are written as

Ly 2
a 811G A

(5) i e (2.7)
i 477G A

(;) T 2.8)

where A represents the second time derivative of a quantity A, p is the energy den-
sity of the matter and radiation components of the universe, and P is the pressure of
the radiation component. Eq. (2.7) is called as Friedmann equation. In addition, we
can derive the equation from the above two equations,

P+3g(p+ P) = 0. (2.9)

Based on Eq. (2.7), we define the following parameters;

8G A

, L 2.10
3H2 N 3H2 (210)

Hy =a(ty), Qo=

where Hj is the Hubble parameter at the present time referred to as the Hubble
constant, () is the density parameter representing the rate of the energy density of
the matter and radiation components to the total energy density in the universe, and
(14 is the cosmological constant parameter, which is the nondimensionalized value
of A. We can rewrite the Friedmann equation (2.7) at the present time by using (g
and ), as

Oy +Qpp =1 (2.11)

The dimensionless Hubble constant,

b Hy
- 100 km s Mpc-! ’

(2.12)
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is often used to express the value of the Hubble constant or the density parameter in
the form of Q2. The parameters h (or Hy), (), and Q) are part of the cosmological
parameters which specify the cosmological model.

When matter is the dominant component in the universe, we can derive the evo-
lution of matter density from Eq. (2.8) by setting P = 0 as p « a °>. And then, the
Friedmann equation (2.7) during the matter-dominated epoch is rewritten as

0
H? = Hj (—QZ‘“ 1l Q:\) , (2.13)

where the ), is the density parameter of the matter at the present time defined as

S?TGPHIU

Qm[] — 3 H{Z}

, (2.14)

where p,, is the energy density of the matter at the present time. From Eq. (2.13),
we can describe the time dependence of the Hubble parameter by the function of the
redshift z as,

H(2) = Hoy/Quo(1 +2) + Qpo. (2.15)

From this equation and Eq. (2.5), we can calculate the comoving distance depending
on the value of the cosmological parameters.
When we define two quantities as

PrA= ==, Pr=———x (2.16)

pa and Pa correspond to the energy density and the pressure of the cosmological
constant in Eq. (2.8). Then, we can deal with the cosmological parameter as the en-
ergy component which has the constant density and the negative pressure for A > 0.
In Eq. (2.8), i is positive when P < —p/3 and A > 0. Therefore, the cosmological
constant causes the accelerated expansion of the universe by its negative pressure.
The energy component that causes the accelerated expansion, such as the cosmolog-
ical constant, is referred to as dark energy. By defining the equation of state param-
eter of dark energy as w = Ppg/ppg, where Ppg and ppg represent the pressure and
energy density of dark energy, respectively, w should be < —1/3 for the accelerated
expansion, e.g., w = —1 for the cosmological constant.

2.3 Evolution of Density Perturbation

In this section, we explore the evolution of matter density perturbations. In the early
universe, the matter distribution is nearly homogeneous. However, slight inhomo-
geneities in the matter distribution lead to density perturbations around the mean
density, giving rise to the structures observed in the present universe. As matter
moves from lower-density to higher-density regions due to gravitational instability,
these density perturbations grow. A plausible theory explaining the origin of these
initial perturbations is inflation theory, which posits the exponential expansion of
the universe in its early stages, offering a coherent explanation for various observa-
tions.

In the following, we approximate the matter distribution by the non-relativistic
Newtonian fluid. For spatial coordinates r defined by a physical distance, the fluid



10 Chapter 2. Theoretical Framework

follows the equations below;

dp 0

§ + 5 . (pl!) =0, (2-17)
ou ) 1P 9¢
ot (” ‘ ﬁ) = o (2-18)

where p(r, t) is the mass density, P(r, t) is the pressure, u(r, t) is the velocity vector,
and ¢(r,t) is the gravitational potential. Eq. (2.17) is the continuity equation rep-
resenting the mass conservation, and Eq. (2.18) is the Euler equation which is the
equation of motion of the fluid element.

These equations are described in the physical rest-frame coordinates r. Next,
in order to describe the motion of a fluid in the expanding universe, we rewrite
Eq. (2.17) and Eq. (2.18) by the comoving coordinates x, which expand with cosmic
expansion, defined as r = a(t)x with a scale factor 2. When the position of a fluid
element is expressed by r(f), its velocity is described by u# = # = ax + ax. To disen-
tangle the effects of cosmic expansion from the velocity caused by local motions, we
define the velocity in comoving coordinates as

v =F—ax = ax, (2.19)

which means the relative velocity to the comoving rest-frame and v is called a pe-
culiar velocity to discriminate the velocity caused by the cosmic expansion. The
relation between v and u is described as # = ax + v. Here, we can rewrite the spatial
derivative for the coordinates transformation (r, ) — (x, t);

d d a d 1
— > ——(-)x-V, ——>-V, 2.20

at ot (a) v o a (2:20)
where V = d/0dx. Therefore, we rewrite Eq. (2.17) and Eq. (2.18) in the comoving
coordinates as

ap a 1 B
P 435042V (o) =0, @21)
Jv 4 1 1 1
where @ defined as .
D= ¢+ Em‘f|a|f:|2, (2.23)

which is the gravitational potential in the comoving frame. These equations help
isolate the effects of cosmic expansion and provide a clearer understanding of the
fluid dynamics in an expanding universe.

In a physical rest frame, the gravitational potential ¢ follows the Poisson equa-
tion derived from Einstein equation for Newtonian limit;

Ap =47Gp — A, (2.24)

where A¢ represents Laplacian. The mean matter density p in the universe satisfies
the below equation from Eq. (2.8) during the matter-dominated epoch;

i 4nG _ A
(a) =254 2 (225)
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where the mean pressure p is much less than p during the matter dominated epoch.
And then, in the comoving frme, Eq. (2.24) is written as

AD = 4ntGa*(p — p). (2.26)

The mass density perturbation é and pressure perturbation 6P, which are the
small deviations of the matter density and pressure from the homogenous back-
ground, respectively, are defined as

5(x 1) = %, 5P(x,t) = P(x,t) — P(t). (2.27)

Finally, we can rewrite Eq. (2.21), Eq. (2.22), and Eq. (2.26) as follows:
1

5+ V- [(1+6)0] =0, (2.28)

a1 B 1 o1

v+ EU -+ E(U - V)U — deP — EV@, (229)
AD = 4nGa*ps.. (2.30)

From these equations, we can calculate the time evolution of the matter density per-
turbation in the expanding universe. In addition, the following equation derived
from Eq. (2.28)-(2.30) is often used;

5+25 4nGp(1 +5)5—
Aap

J d
— - Lvs. ZZ—— [(a+o)0], @3y
paz R dx' dx/
where x’ and ¢’ are the i-th component of the comoving coordinates and the peculiar
velocity, respectively.

Next, we consider the linear evolution of the density perturbation of dark matter.
In the late universe, which we focus on in our work, the non-relativistic matter (dark
matter and baryon) is the dominant energy component relative to radiation. In the
standard cosmology, dark matter is a pressureless particle, which is cold when it
is generated. This kind of dark matter is called as cold dark matter (CDM). We
can approximate CDM as a pressureless and non-relativistic fluid. Therefore, the
evolution of the density perturbation of CDM is written as

5+ 2%5 — 47Gpé = 0, (2.32)

which derived from Eq. (2.31), where the righthand-side is zero since we ignore
the second order of the perturbation and dark matter is pressureless. When dark
energy is modeled as a cosmological constant, we can derive the time evolution of
the Hubble parameter H = i/a from the time derivative of Eq. (2.25) and p < a;

H +2HH — 47GpH = 0. (2.33)

By comparing Eq. (2.32) with Eq. (2.33), we can see 6 o H is a particular solution
of Eq. (2.32). And then, we put § = Hy(t), where y(f) is an unknown function
depending on time, to find the other solution. From Eq. (2.32), y(t) satisfies the
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below differential equation;
aij + 2iy = 0. (2.34)

Therefore, we can derive y o a2 by integrating Eq. (2.34). Subsequently, we find

tdt T da T da
it R - 2.35
ye L az  Jo @  Jo a*H3 (2.35)

From the above, we find that two independent solutions D_ and D of Eq. (2.32) are

@ da

D_ H, D H “ayia’
« + Jo a3H3

(2.36)

where the Hubble parameter is described as the function of the scale factor a =
1/(1+z) by
le]

H(ﬂ) = H{] .{I3

+ O po. (2.37)

When the matter-dominated epoch, the term of Q,,0/ a3 is dominant in Eq. (2.37).
Therefore, D is &« a3/2 and vanishes with the expansion of the universe. On the
other hand, D is o< a and grows with the expansion.

After enough time in the matter-dominated epoch, the term proportional to D_
vanishes, and we can describe the time evolution of the matter density perturbation
6 by D,. The linear growth factor, D, quantifies the growth of density perturba-
tions in the linear regime. In the case that the linear growth factor is normalized by
its present value D (t9) and expressed as D(t) = D (t)/D (ty), the time evolution
of the matter density perturbation § in the linear regime is described as

5(x,t) = D(t)do(x), (2.38)

where Jy is the value of the matter density perturbation in the linear regime at the
present time.

For Eq. (2.28) and Eq. (2.29), we consider the peculiar velocity v. The rotation of
Euler equation (2.29) in the linear regime is

%(av x v) = 0. (2.39)

Therefore, the rotation of the peculiar velocity vector V x v is proportional to the
inverse of the scale factor a—!. After enough time, the rotation of v decays and we
can describe the peculiar velocity as

vy

v =
aH’

(2.40)
where ¢(x, t) is a scalar function. From Eq. (2.40) and the continuity equation (2.28)
in the linear regime, we find
. Ay
0= ——.
a’H
By combining this equation with the time evolution of the density perturbation
(2.38), the below equation is derived;

(2.41)

A = a®H2 3, (2.42)
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where f is the linear growth rate representing the time evolution of the linear growth
factor D(t), and it is defined as

dinD D  dIné

f(H) = dlna  HD dlna’

(2.43)

The linear growth rate is an important quantity to discuss the redshift space distor-
tion since it is related to the peculiar velocity (see Section 2.5). In addition, it is one of
the probes of gravity theory since f describes the evolution of the matter distribution
depending on the gravity theory.

2.4 Statistics of the Large-Scale Structure

Cosmological models predict the properties of the entire universe, not those of in-
dividual objects such as gas, stars, and galaxies. The actual distribution of galaxies
is determined by the initial matter distribution in the universe, but the value of the
density perturbation at an individual location is randomly determined and we can-
not know its specific value from a cosmological model alone. Therefore, the statistics
of the matter distribution are generally used to compare theoretical predictions by
cosmological models and observations. In this section, we explore the power spec-
trum, a commonly used statistic to investigate the Large-Scale Structure (LSS).
Firstly, we define the Fourier transform of the matter density perturbation as

5(k) = [ Pre *5(x), (2.44)

where (k) is the Fourier counterpart of the matter density perturbation and k is a
wave vector. Here, we define the two-point correlation function ¢ as

¢(x) = (3(x)o(x")), (245)

where (- - - ) represents the ensemble average, and we assume the cosmological prin-
ciple, which means the universe is globally homogenous and isotropic, and ¢ de-
pends only on the distance between x and x’ described as x = |x — x/|. £ represents
the correlation between the values of § at x and x’. And then, we consider the Fourier
counterpart of (6(x)d(x’));

)3(K)) = [ [ BxdPr'e ke K (5(x)5(x")) (2.46)

_ [ [ Brdr'e * e K ¥ E (x). (2.47)

we can do the integration in the above equation by converting x — ¥ =x—x"and
e (05(KY) = (25 (k + K)P(K) (2.48)

where 67, (k) is the 3-dimensional Kronecker delta function, and P(k) is power spec-
trum defined as

P(k) = [ Bre g (x) = 4n [ x> ;fx &(x), (2.49)
where k is = |k|. Note that the power spectrum depends on the direction of the

k vector when the matter distribution is anisotropic, e.g., the power spectrum in
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the redshift space (see Section 2.5). In the case that the spatial distribution of §
follows Gaussian, the two-point correlation function or the power spectrum rep-
resents all statistical information of the matter distribution. For non-Gaussian distri-
bution, three- or higher-order statistics such as bispectrum (three-point correlation)
and trispectrum (four-point correlation) include additional information to the power
spectrum.

In the early universe, the matter distribution follows nearly Gaussian, and the
density perturbation at each location grows linearly like Eq. (2.38). Furthermore, if
5(#) follows Gaussian, 6(t) o D(t)5(#') also follows Gaussian due to the property of
random valuables following Gaussian. Therefore, from Eq. (2.38) and Eq. (2.48) the
power spectrum at a time t = f in the linear regime is described by

P(k,t) = D*(t)P(k, to), (2.50)

where D(t) is the growth factor, and ) represents the present time. Following the
matter-dominated epoch, the functional form of the power spectrum undergoes little
change. On the other hand, during the radiation-dominated epoch, the growth of é
depends on the wave number k as follows; Firstly, we consider the perturbations for
the scale that k is smaller than the horizon scale, which is the maximum scale that
particles can interact each other. The growth of these perturbations is suppressed
by the pressure of the radiation component. Smaller scales (larger k) are surpassed
more strongly, as they remain within the horizon scale for a longer duration.

In a linear regime, the strength of the above suppression is determined indepen-
dently for each scale. Therefore, we can describe the density perturbation evolves in
the linear regime as

(1 = D
D(tin)

where T(k) is a transfer function representing the suppression for each k, fi, is a
time during the radiation-dominated epoch, and di is the value of the density per-
turbation in Fourier space at t = t;;,. Subsequently, the power spectrum is described
as

T(k)éin(k), (2.51)

P(k) = D*(t) T?(k)Pin(K) 2.52
~ D2(tin) in(k), (2.52)
where Pj, (k) in the power spectrum at t = ti,. The specific form of the initial power
spectrum Pi,(k) depends on the theoretical model. In general, we assume the initial

power spectrum is proportional to the power function of k;

P, o k', (2.53)

where 1, is the spectral index, representing the scale dependence of the initial power
spectrum.

In summary, in the linear regime, the power spectrum for the initial power spec-
trum given by Eq. (2.53) is described as

P(k) = AD*(t)T2(k)k™, (2.54)

where A is the amplitude of the initial power spectrum, determined through obser-
vations. The parameters A and n; are part of the cosmological parameters, and the
functional forms of D(t) and T (k) can be calculated when assuming the cosmologi-
cal model and the values of the cosmological parameters.

As another expression of the amplitude of the power spectrum, oy is often used.
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It is the density perturbation averaged within a sphere with a radius R = 8 Mpc/h,
and defined as

d°k

3= | "V ERIP(6) s g (2.55)
where W (kR) is the Fourier counterpart of the top-hat window function and is writ-
ten as

3sin(kR) — 3kR cos(kR)

W(kR) = RY

(2.56)

2.5 Observational effects

In this section, we discuss the observational effects when we use practical observ-
ables.

Firstly, in Section 2.4, we discuss the statistics of the matter density distribu-
tion in the universe. However, in practical observation, we cannot see dark matter,
which is the dominant component of matter. Therefore, we need to observe a tracer
of the dark matter density distribution. For example, we consider galaxies as ob-
servables. In general, we can consider that more galaxies exist in the high-density
region. Therefore, we can describe the perturbation of the galaxy number density as

8y = b6, (2.57)

where dg is the galaxy number density perturbation, J is the matter density pertur-
bation, and b is the bias parameter representing the relation between the distribution
of the matter density and galaxies. This bias relation (Eq. (2.57)) is not limited to the
galaxy distribution; it can be adapted by considering the bias corresponding to the
specific observable under consideration.

Next, in practical observations of the LSS, the distance to an observable such as
a galaxy is measured through its redshift because photons from more distant objects
are redshifted more. However, the redshift does not always correspond directly to
the distance to the observable, as some observables have their peculiar velocity. We
observe the redshift to an observable, which is derived from the cosmic expansion
and the peculiar velocity of the observable. Therefore, when the distance to an ob-
servable is determined by its redshift, the observed distribution of the observables
is distorted from the actual distribution along the line of sight. This distortion is
referred to as Redshift Space Distortion (RSD).

In a homogenous and isotropic space-time, when A] is the wavelength observed
by the rest observer at the location of the source of light and A is the wavelength
observed by us, the redshift derived from the cosmic expansion is

Ao

1+z=>, (2.58)
A

where we consider the rest frame of us, i.e., our peculiar velocity is zero. And then,

the observed redshift z,,s deviates from Eq. (2.58) due to the peculiar velocity of the

source;
Ay

/)L_'lr
where A; is the wavelength observed by the observer moving with the source. The
relation between A} and A; is derived from the formula of the relativistic Doppler

1+ zgps = (2.59)
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effect as 1+
[
M=y, (2.60)

14—17;""’-|

where v is the peculiar velocity of the source relative to us. In the case that the
motion of the source is non-relativistic, i.e, 7 < 1 (in natural units), we ignore the
terms of the second and higher order of v| and derive the relation from Eq. (2.58)-
(2.60)

1+ zops = (1+2)(1+ 7)), (2.61)
0
Zobs = Z+ z”f (262)

where a is the scale factor at the time of the photon emission.
From Eq. (2.5), the observed distance s to the source is

Zobs d i

= - 2.63

s= 0 F (2.63)
v

_ iy 2.64

s=x+ Py (2.64)

where yx is the actual comoving distance to the source, and we consider that the Hub-
ble parameter H is nearly constant from z to z,ps by assuming the duration is enough
small in deriving the second equation. Here, we can describe the relation between
the actual comoving coordinates x (referred to as real space) and the coordinates s
measured by the redshift (referred to as redshift space) as

il

(s51,52,83) = (-’51;372, x3 + E) p (2.65)

where x3 and s3 correspond to the direction along the line of sight. The number of
observables is conserved in converting from the real space to the redshift space, so

we find
n,(x)d°x = ng(s)d’s, (2.66)

where 1, and ns are the number density of the observables in the real space and
redshift space, respectively. From Eq. (2.65)-(2.66), the relation between n, and n; is
written as

ny(x
ns(s) = %)B" (2.67)
1452 (a#)
From the above, in the linear regime for the perturbation, the relation between
the number density perturbation in the real space and the redshift space is described
as

5s(s) = 6,(x) — 9 (%) , (2.68)

8x3

where é; = ng/fiy — 1 and 6, = n, /i, is the number density perturbation in the
real and redshift space, respectively, and we use the relation 71; = 71, derived from
Eq. (2.66). We can consider d;(s) = 6;(x) in the linear regime from Eq. (2.65), and we
assume the scales we focus on is enough small along the line of sight to approximate
aH is constant. In this case, Eq. (2.67) is written as

d
() = 6(x) ~ (a—ﬂ) - (2.69)
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By Fourier transform, we find
b5 (k) = &, (k) — —U||(k)f (2.70)

where A represents the Fourier counterpart of the quantity A, and kj is the compo-
nent of the wave vector along the line of sight. From Eq. (2.40) and Eq. (242), 7,

satisfy

1](3

o) = aHf 7 5(k), 2.71)

where f is the growth rate, and J is the mass density perturbation of matter. There-
fore, we find the below relation;

5.(k) = b,(k) + fu28(k), (272)

where y is defined as pt = k3 /k representing the direction of the wave vector k.
From Eq. (2.72), the power spectrum in the redshift space Ps(k) is defined as

(65(k)ds(K')) = (2m)°63 (k + k') Ps(k (2.73)
and described by using the power spectrum in the real space as
Ps(k, u) = b*(1 + pp*)P(k), (2.74)

where b is the bias parameter for the observable we consider, and is = f/b. The
redshift space is anisotropic, so Ps depends on not only the absolute value but also
the direction of k via . P is often described by its Legendre multipole P, i.e.,

po =250 [ ki, 275)

where L; () is the Legendre polynomial of order I. The advantage of this expression
is that we can express the power spectrum in the redshift space by using k without
u. Forl =0, 2, and 4, the Legendre polynomial is

Lo(u) =1, (2.76)
La(pu) = %(3;:2 - 1), (2.77)
Ly(u) = %(35;44 —30p* + 3). (2.78)

By comparing the observed power spectrum P;(k, i) with the theoretical pre-
dicted power spectrum P(k), we can estimate the value of f. In practice, the value
of fog, which is independent of the bias parameter, is estimated(Song and Percival,
2009).

2.6 Modified Gravity

In this section, we briefly introduce modified gravity. While General relativity is
consistent with observations at scales of the solar system, there is room for modifica-
tion of the gravity theory at cosmological scales, such as the scale of galaxy clusters.
Modified gravity is one of the theories that can explain the accelerated expansion of
the universe, and it has been actively studied recently.
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Firstly, we consider the perturbed FLRW metric. In the conformal Newtonian
gauge, the perturbed FLRW metric is written as (Ma and Bertschinger, 1995; Bernardeau
etal., 2002)

ds* = a(t)? [-(1+2¥(x,7))dt* + (1 — 2®(x, 7) )dx?], (2.79)

where © and Y are the scalar metric perturbation and correspond to the Newtonian

potential, and 7 is the conformal time defined as T = [*1/a(t')dt'. In the case that
the matter component is a perfect fluid, the energy-momentum tensor of the matter
described as

T = pé&l, + (p + P)U'U,, (2.80)

dx”

—ds2’
delta, p is the total energy density, and P is the total pressure. p and P can be written
as p(1+ ) and P + 6P like Eq. (2.27). Therefore, the components of the energy-

momentum tensor are (Nesseris, 2022)

where U¥ is the 4-dimensional velocity defined as U" = ol is the Kronecker

Ty = —p(1+9), (2.81)
T) = (p+ P)u;, (2.82)
T! = (P +6P)st + X, (2.83)

where X is the anisotropic shear perturbation, and u is the conformal time derivative
of x, i.e., u = dx/adt. In the following in this section, the conformal time derivative
of a quantity A is denoted by A" = 9A /9.

By using this energy-momentum tensor, we can write the perturbed Einstein
equations in Fourier space as (Ma and Bertschinger, 1995; Nesseris, 2022)

! !
o435 (@ + L¥) = 4nGa®Te, (2.84)

a a

!

K2 (@’ + %‘I’) —4nGa*(p+ D)0,  (2.85)

3
(P —Y) =12nGa*(p + P)o, (2.87)

I 1" 7 kZ 4 .
@+ %(‘P" +20') + (2% - ‘;—2) ¥ (DY) = ?”cazaT;, (2.86)

where G is the gravitational constant, 6T and 5'1";' is the term of the perturbation
in T) and T/, respectively, 6 = ikjuf is the fluid velocity, and ¢ is the rewritten
anisotropic shear perturbation; (p + P)o = —(—kik; — 15;;)£, where k; is the unit
vector of k;. Here, we use the Einstein summation convention. From the above equa-
tions, the Newtonian potentials ® and ¥ are expressed as (Nesseris, 2022)

a2

¥ (k,a) = —4nGp(k,a)po, (2.88)

2
a _
D(k,a) = —4HGEQCH(;C,Q)]O5, (2.89)
where i and Q. are the phenomenological parameters representing the deviation

from General relativity and equal to unity in General relativity. In general, ¥ and
Qefr are dependent on time and scale (Nesseris, 2022).
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For the most modified gravity theories, the time evolution of the matter density
perturbation ¢ is described as (Tsujikawa, 2007)

8" (a) + (g + Pg((;))) o' (a) — %5(@ =0, (2.90)

where we assume the initial condition of §(a < 1) is ~ a and the one of §’(a < 1) is
~ 1 at the initial time during the matter-dominated era.

By introducing the modified gravity, the expansion rate of the universe deviates
from the one in General relativity and accelerated expansion can be caused. The
modified gravity changes the time evolution of the matter density perturbation as
Eq. (2.90), and then the growth rate f is different between General relativity and the
modified gravity. Therefore, the growth rate f (multiplied by og) is used as a probe
of the gravity theory. However, we have some problems in estimating the value of
fog such as the difficulty of the modeling of the theoretical power spectrum and the
computational cost to explore the large amount of data. As the solution to these
problems, we focus on machine learning analysis (see Chapter 4).

2.7 NCDM Models

In this section, we introduce the Non-Cold Dark Matter (NCDM) or Warm Dark
Matter (WDM). Note that we focus on dark matter models where dark matter is a
fundamental particle.

Dark matter is the dominant matter component in the universe and interacts with
the gravitational force while it does not (or weakly) interact with the electromagnetic
force. In the ACDM model, we assume dark matter is Cold Dark Matter (CDM),
which is the non-relativistic particle when it is generated. However, ACDM does
not specify the particular dark matter model, and dark matter is still mysterious
matter. In addition, there is the small-scale crisis, referred to in Chapter 1, and this
problem motivates the NCDM (or WDM) model.

The difference between CDM and NCDM is described as its velocity dispersion.
CDM is non-relativistic just after it is generated and does not have velocity disper-
sion. On the other hand, NCDM is relativistic when it is generated and has some
velocity dispersion. In general, the phase space distribution of NCDM is given by
(Colombi, Dodelson, and Widrow, 1996)

_ p
flo) = o (%) oy (2.91)

where v = p/+/p? + m?, T, is the cosmic microwave background photon tempera-
ture at the present time, « and f are the free parameters and m is the mass of NCDM.
From this, we can also describe the energy density of NCDM relative to the total en-
ergy density in the universe as

Ol — g™ 2.92
NCDM —ﬁmmx (2.92)

where h is the dimensionless Hubble constant. The velocity dispersion depends on
the ratio m/T, where T = aT.,, (Colombi, Dodelson, and Widrow, 1996), and the
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FIGURE 2.1: The linear matter power spectrum for CDM model and
NCDM models with m = 1 keV and m = 10 keV at z = 0. The
horizontal axis represents the wave number, The upper panel shows
the amplitude of the power spectrum and the lower panel shows the
ratio of the power spectrum of the NCDM to the one of CDM.

free streaming length of dark matter is ~ T/m. The free streaming of dark mat-
ter prevents the clustering of matter, and the amplitude of the power spectrum is
suppressed within the scale of the free streaming length.

In this work, we consider the Dodelson-Widrow sterile neutrino (Dodelson and
Widrow, 1994) as the NCDM model. A sterile neutrino is an undetected fundamen-
tal particle beyond the standard model of particle physics and is the right-handed
particle while the active neutrino is the left-handed particle. It is expected that a ster-
ile neutrino interacts with gravity while it does not have electromagnetic and weak
interaction, unlike the active neutrino. Therefore, a sterile neutrino is one of the can-
didates for dark matter. The space space distribution of Dodelson-Widrow sterile
neutrino is given by setting & = (4/11)'/3, which corresponds to the temperature of
the active neutrino, in Eq. (2.91). Once we decide the abundance of NCDM, Qnepw,
and the mass of NCDM, we can decide the value of B from Eq. (2.92). In this work,
we do not consider the mixture of CDM and NCDM, and we set Qnepy — 0.2621,
which is the value of the abundance of CDM from the Planck observation(Planck
Collaboration et al., 2020).

Based on this phase space distribution, we can calculate the linear matter power
spectrum. To calculate them in this paper, we use the Boltzmann solver code Cosmic
Linear Anisotropy Solving System (CLASS) (Lesgourgues, 2011). This code solves
the Boltzmann equation, which represents the time evolution of the phase space
distribution function, and computes the power spectrum of the density perturbation
numerically. Fig. 2.1 shows the linear power spectra for the CDM model and NCDM
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models with m = 1 keV and m = 10 keV at redshift z = 0. The upper panel shows
the amplitude of the power spectrum and the lower panel shows the ratio of the
amplitude of the NCDM power spectrum to the CDM power spectrum. We can see
the suppression of the amplitude by the free streaming of NCDM and about ten
times difference between the suppressed scale of NCDM models with m = 1 keV
(k ~ 0.3 hMpc ') and m = 10 keV (k ~ 3 hkMpc ).

When we know the matter distribution, we can extract the information about
NCDM mass, e.g., by studying the power spectrum. However, dark matter has no
or very weak interaction with the electromagnetic force and we cannot observe the
dark matter distribution directly by telescopes. Therefore, we focus on the distribu-
tion of neutral hydrogen as a tracer of the one of dark matter (see Section 2.8). In
addition, the effect of the NCDM mass appears at the small scale, where the non-
linear effects arise and the matter distribution does not follow Gaussian. The power
spectrum cannot all information included in the non-Gaussian distribution, so we
want a method to access the information in the three- or higher-order statistics. In
this work, we focus on the method using machine learning (Chapter 5).

2.8 21cm Signal

21cm signal is the radio waves emitted from neutral hydrogen (HI). [tis emitted from
the hyperfine structure of HI, and its wavelength is 21 ¢cm corresponding to 1420
MHZz in frequency. In recent years, there has been a lot of ongoing and planned radio
observation such as the Murchison Wide-field Array (MWA) (Tingay et al., 2013),
Canadian Hydrogen Intensity Mapping Experiment (CHIME) (Bandura et al., 2014),
Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) (Newburgh et al.,
2016), and Square Kilometer Array (SKA) (Santos et al., 2015). These observations
will provide us with the HI distribution, which we can use as a tracer of the dark
matter distribution, through the 21cm signals.

In this work, we consider the post-reionization epoch (z < 6), when almost HI
is ionized and HI resides in high-density regions such as haloes and galaxies. We
can observe 21cm signals as the differential brightness temperature 67Tj,, which is the
difference between the brightness temperature of the 21em radiation and the cosmic
microwave background photon temperature and is described as (Field, 1958)

Ts - T,
14z

0T, = (1—e ™), (2.93)
where Tg is the spin temperature of HI, T, is the cosmic microwave background
photon temperature, vy = 1420 MHz is the frequency of the 21cm radiation at the
rest frame, and 7y, is the optical depth of HIL

The spin temperature represents the temperature, corresponding to the ratio of
the number of HI in the excited states of the hyperfine structure to that of the ground.
It is defined by using the functional form of the Boltzmann distribution as

m1 hpb’u
— =3 — , 2.94
1y &P ( kg Ts) (294)

where hj, and kj are the Planck constant and the Boltzmann constant, respectively, 1
and 1 are the number density of the excited- and ground-state HI, respectively, and
the coefficient of the exponential corresponds to the ratio of the statistical weight of
the excited-state to that of the ground. Note that we use the MKS system of units in
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this section. The spin temperature is also described as (Field, 1958)

T, + xa Ty '+ x T
1+ x, +x,

' = ) (2.95)
where T, and x, is the temperature of Ly-a and its coupling coefficient, and Tx and
X is the kinetic gas temperature and its coefficient. In Chapter 5, we compute the
spin temperature following (Furlanetto, Oh, and Briggs, 2006; Endo, Tashiro, and
Nishizawa, 2020).

The optical depth is given by (Furlanetto, Oh, and Briggs, 2006)

3
3 hyc®Ay NHI

o ’ 2.96
T = o0 kgTsvd (14 z)(doy/dr)) =

where c is the speed of light, Ajg = 2.85 x 10 !° [s '] is the Einstein coefficient,
corresponding to the possibility of the emission of the 21cm radiation from a HI
per second, 1y is the number density of HI, z is the redshift of the source of 21em
radiation, and dv| /dr is the gradient of the velocity of the source along the line of
sight. In the following, we replace the dv| /dr| with the expansion rate (or Hubble
parameter) H(z) because the peculiar velocity of HI is significantly smaller than the
receding speed caused by the expansion (Ando et al., 2021).

We can assume 1, < 1 during the post-reionization epoch, when almost HI is
ionized, and rewrite Eq. (2.93) as

3 hycAyg T,(2) M
T~ g (1) G S =

As we can see in Eq. (2.97), 6T} is proportional to the HI number density ny;. Thus,
we can infer the HI distribution by observing the differential brightness temperature.
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Convolutional Neural Networks

In this chapter, we introduce the basics of convolutional neural networks (CNN). In
Section 3.1, we introduce the single-layer and multi-layer Perceptrons, which form
the basis of neural networks. Section 3.2 shows the basic structure and the algo-
rithms used to train the neural network. In Section 3.3, we illustrate the structure of
the convolutional neural network, which is employed in our work.

3.1 Perceptron

In this section, we consider the regression problem as an example. Our aim is the
prediction of a value of y by using the data vector x.

The single-layer Perceptron (Rosenblatt, 1958) models the function of our brain
and is one of the oldest and simplest structures of neural networks. It describes the
output by the linear combination of the input as

n
Y= Z WiX; =W - X, (3.1)
i=0

where x; is the i-th component of the input data vector x = (x1,x2,---,x,), w is
the vector of the weight parameters, n is the number of components of x, and we
set xop = 1 to represent the constant bias with wy. And then, y = w - x is converted
to f(w - x), where f is the activation function for the non-linear transformation and
(Rosenblatt, 1958) suggests the sigmoid function f(t) = 1/(1 +e ') as the activation
function. The other activation functions are introduced in Section 3.1.1. In training,
w is optimized to fit the training data, where we know the correct value of y corre-
sponding to the input data vector x. The single-layer Perceptron can also be illus-
trated as shown in Figure 3.1. Such illustrations are convenient for understanding
more complex structures of neural networks. Fitting the single-layer Perceptron to
a single training data is straightforward by choosing w that minimizes the squared
error E = (y —w - x)?/2.

To express more complex function, the multi-layer Perceptron (Cybenko, 1989)
is suggested to express the more complex functions. The multi-layer Perceptron
is composed of multiple single-layer Perceptrons and can describe the non-linear
function of x. Figure 3.2 illustrates an example of the multi-layer Perceptron, which
consists of the input and output layer, and a hidden layer. The hidden layer is the
layer between the input and output layer and consists of nodes (shown by circles
in Figure 3.2), where the input to each node is weighed by the different weight pa-
rameters. In addition, the hidden layer is not necessarily a single layer. Applying
multiple hidden layers allows the multi-layer Perceptron to express more complex
functions, although the training becomes more challenging.
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/y=w0+w|xl+w2x2+"'+wnxn
n

FIGURE 3.1: The illustration of the single-layer Perceptron.

For the multi-layer Perceptron in Figure 3.2, the input to the hidden layer is trans-
formed as

Uy — ; w\)x, (3.2)

where [ and k represent the corresponding node of the hidden layer and component
of the input, respectively, and the superscript of w indicates the number of the pre-
vious layer. And then, the activation function f is applied to #; in a node for the
non-linear transformation of u;. Finally, the output value y is described by the linear
combination of f(u;) as

y =Y w? f(u), (33)

where i represents the i-th input from the node in the previous layer. In general, the
output value is also transformed by the activation function.

The multi-layer Perceptron includes non-linear transformations and can describe
the complex conversion of input data through multiple hidden layers and their
nodes. However, optimizing the multi-layer Perceptron is challenging due to its
complex architecture. To optimize the parameter, we use gradient descent (Sec-
tion 3.2.2) and backpropagation (Section 3.2.3). Neural Network is an algorithm that
consists of the multi-layer Perceptron and its training processes, such as gradient
descent and backpropagation.

3.1.1 Activation function

The activation function is used to express the non-linear transformation. In this
work, we use the following activation functions:

¢ ReLU (Rectified Linear Unit)

f(x):{f; Lo (3.4)

It is commonly in hidden layers. Its derivative is defined as

df(x) _ { 0 (x < 0) ) (3_5)

dx |1 (x>0)
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FIGURE 3.2: The illustration of the multi-layer Perceptron.

In training, we need to calculate the derivative of the activation function (see
Section 3.2.3). The derivative of ReLU is unity for positive input, and it re-
duces the risk of the vanishing gradient problem (He et al., 2016), where the
parameters are not updated due to a very small gradient.

¢ identity function

It is used in the output layer of neural networks for regression. The output
value is directly used as the predicted value.

* softmax function
exp(x

p( ) A (3'6)
Liexp(x;i)
It is used in the output layer of neural networks for data classification. In
neural networks for classification, the output layer has multiple nodes. Each
node corresponds to a target category, e.g., cat and dog for image recognition. i
represents the label of the node in the output layer, and the value of the softmax
function represents the probability that the input data belongs to the category
corresponding to that node.

y:

3.2 Training Neural Network

This section shows the loss function, optimization of the weight parameter, back-
propagation method, and some learning techniques for the training of neural net-
works.

3.2.1 Loss function

In training neural networks, we need to evaluate the difference between the target
value (true value for regression or true category for classification) and the predicted
value from the neural network. Various loss functions are suggested to do it.
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¢ Mean squared error (MSE)
1
E=3) (v~ t)% (3.7)
k

where i, and f; are the predicted and true values for the k-th node in the output
layer, respectively. This loss function is used in neural networks for regression.

¢ Mean Absolute Error (MAE)
1
E= §Z|}1k—fk|r (3.8)
k

where y; and f; are the predicted and true values for the k-th node in the out-
put layer, respectively. This loss function is also used in neural networks for
regression. This Loss function is more robust against outliers than MSE be-
cause MSE is the squared value of the difference between y; and f; and tends
to be larger than MAE. However, MSE is more sensitive to larger differences
Yy and f.

¢ Huber loss (Huber, 1964)

(12 (la
e { 5(|al — 16) (Jal

where a corresponds to the difference between the true and predicted values,
and ¢ is the hyperparameter. This loss function is used in neural networks for
regression and has similar properties of MAE, but we need to choose the value
of 6.

5)
8) '

VOIA

(39)

¢ Likelihood Free Inference (LFI) loss (Villaescusa-Navarro et al., 2022; Jeffrey
and Wandelt, 2020)

2

E:kg(ZXQ—pf)+k%(zm@y—m2—ﬁ)), (3.10)
j j

where we need the subgroup of the training data, j represents the label of data

in the subgroup, 0 is the predicted value, and ¢ and ¢ are the mean and stan-

dard deviation of the true values of the data in the subgroup, respectively. This

loss function is used in neural networks for regression. It can use the informa-

tion of the mean and standard deviation of the training data.

* cross entropy loss
E=-) tiln(y), (3.11)
k

where 1 are the predicted probability of the k-th node in the output layer
ranging from 0 to 1, and f; is unity for the node corresponding to the true
category and is zero for the node corresponding to the false category. This
loss function is used in neural networks for classification. When the predicted
probability y; is 1 for the node corresponding to the false category, this loss
function tends to co.

In our work, we use MSE and cross entropy loss mainly.
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3.2.2 Optimization

In algorithms of neural networks, the weight parameters w are optimized to mini-
mize the value of the loss function. In general. the loss function is minimized when
its gradient with respect to w is zero. However, the architecture of neural networks
is complex and includes many weight parameters. It is impractical to solve the equa-
tion dE /dw = 0 analytically.

In general, the optimization of the weight parameters in neural networks is con-
ducted by using gradient descent. In the gradient descent, the weight parameters
are optimized by the following process:

W w— qg—i, (3.12)

where 7 is the hyperparameter and referred as to the learning rate. By updating the
weight parameters using the gradient of the loss function E with Eq. (3.12), the loss
function becomes close to its minimum value. For multiple weight parameters, w in
Eq. (3.12) is replaced with the vector of weight parameters w.

Eq. (3.12) is the basic form of weight parameter optimization. In practice, various
optimization methods are employed to effectively update the parameters.”

¢ Stochastic Gradient Descent (SGD)
W4 w— qg—i. (3.13)

The form of the formula to update the parameters is the same as Eq. (3.12).
In SDG, the data that is used for the optimization are randomly selected in
each update of parameters. The shape of the loss function is different in each
update, making it less likely for the parameters to get stuck at a local minimum
of the loss function.

¢ Adam (Kingma and Ba, 2014)

myp = vo=0, (3.14)
JoE
mg = Pimpq+ (11— ﬁl)%, (3.15)
oE\?
v = Pavr1+(1-pB2) (%) , (3.16)
" Uy
My = ——, (3.17)
1-p
o Ut
6 = —r, (3.18)
t - B
un

w o~ w7

, 3.19
Vi +e G4
where t is the number of times of the update, f; and B, are hyperparameters,
€ is the small value to avoid the divergence to infinity of the fraction in the
last formula. This optimization adjusts the amount of the update by using the

previous update. As the initial value of the hyperparameters, the following
values are recommended; 1 = 0.9, B, = 0.999, n = 0.001, € = 108
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¢ AMSGRAD with Adam (Reddi, Kale, and Kumar, 2019)

my = 0Ty= {], (320)
aE
my = Pymy o+ (1— ﬁl (3.21)
BE
v = Pavy 1+ (1-pB2) ( w) , (3.22)
. Ut
Wy o= (3.23)
1-pi
- Ut
6 = 2 (3.24)
1-p;
oM« max(9,9M), (3.25)
W W ——t— (3.26)
v+ €

This is an improved optimization method compared to Adam. The optimiza-
tion process is more complex, and the AMSGRAD is not always superior to
Adam.

3.2.3 Backpropagation

For the optimization process, we need to calculate the gradient of the loss function.
However, neural networks have many weight parameters and the computation of
the gradient is challenging. In backpropagation(Rumelhart, Hinton, and Williams,
1986), the gradient is calculated step by step from the output to the input layer using
the chain rule.

In the following, we show an example for the same architecture of the neural
network shown in Figure 3.2.

Firstly, the gradient of the loss function E with respect to w(? is calculated using
the chain rule as

oE  OE oy
aw}z) Ay awf) ’

where i is the label of the parameter corresponding to the node of the previous
layer. In this equation, dE /dy can be computed by specifying the loss function and

(3.27)

8};/8&}52) is expressed as
8y (2)
- {2 E w f(u}) (3.28)

amf)
(Z w0 f(u 1)) of (;() (329)

=f (m)%; (3.30)

8w

1

where X is = (Z;’ w}gz}f(u}-)), and df(X) /90X can be computed by specifying the
activation function f. Therefore, we can write the gradient of the loss function E
with respect to w(2) as

afz} f( J (X)- (331)

ow
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Next, the gradient of the loss function E with respect to w(!) is calculated using
the chain rule as
dE  0JE dy df(u)
aw,ﬂ}) - dy of(u) aw,((}) ’
_9E dy If(m) ou

~ 9y of(u) ou aw}(r})'

(3.32)

(3.33)

In this equation, the value of dE /9y is already calculated, and we can determine the
value of and df(u;)/du; by choosing the activation function. And then, dy/df (u;)

and au,/aw}(}) are described as

Iy 0@ f(u 3
) = 370 (Z el ’)) (39

—w®, (3.35)

and

ou
—{11) - (E w ) , (3.36)
kI
= X, (3.37)
respectively. Therefore, dE/ aw,E'j) is given by

JE aEu{zjaf H]) X
aw{” ay I oow T

(3.38)

As above, we can write the gradient of E with respect to w. Even when consid-
ering neural networks with multiple nodes in the output layer, different activation
functions in the output layer, or multiple hidden layers, we can easily extend the
above discussion. By using the gradient of E and the optimization method intro-
duced in Section 3.2.2, we can train the neural network.

3.24 Learning Techniques

In this section, we introduce some techniques for training of neural networks

* mini-batch learning

In our work, the term "one epoch" refers to one complete path through the
entire training dataset during the training of neural networks. During each
epoch, the neural networks learn from the entire training dataset once. In an
epoch, the training dataset is divided into some subgroups, and the weight
parameters are updated by each mean value of the loss function E for the data
in the subgroup. This learning process is referred to as mini-batch learning,.
The subgroup and the number of data in a subgroup are called the mini-batch
and the batch size, respectively. Applying mini-batch learning makes it less
likely for the weight parameters to be trapped at the local minimum of the loss
function because the shape of the loss function is different for each mini-batch,
and it takes less time to train the neural network compared to the case where
the parameters are updated by individual data.



30

Chapter 3. Convolutional Neural Networks

¢ [2 regularization

The L2 regularization is used for neural networks to reduce overfitting the
training data. The following value is added to the loss function;

A
Ez=5 Y fwil?, (3.39)
i

where A is the hyperparameter, and the summation is performed over all weight
parameters in the neural network. By doing this, the extremely large values of
the weight parameters are suppressed, and reduce the overfitting of the neural
network to the training data.

dropout

In training a neural network, some weight parameters are temporarily set to
zero to reduce the overfitting of the neural network to the training dataset.
This method is referred to as dropout. By using dropout, the complexity of the
neural network’s architecture is suppressed, making it less likely to overfit the
training dataset. In the testing phase, the dropout is not applied, so the neural
network retains its original configuration.

batch normalization (loffe and Szegedy, 2015)

Batch normalization is a method used to prevent the vanishing and explod-
ing gradient problems, which are that the gradient of the loss function be-
comes extremely small or large, respectively, and stabilize the learning of neu-
ral networks. This method suppresses the internal covariate shift, which is
the change in the distribution of the input to layers of a neural network during
training. The deeper the neural network we consider, the more internal covari-
ate shifts emerge because the input data is transformed more times. To apply
batch normalization, mini-batch learning is used. We consider a mini-batch
that includes the data x = (xq,x3,- -+ ,x,). The mini-batch normalization is
described as

s X — U

R oz’ (3.40)
where p and ¢ are the mean and standard deviation of the components of x, re-
spectively. By using batch normalization, the inputs to the layers of the neural
networks are standardized in a mini-batch. As a result, the internal covari-
ate shift is suppressed. Batch normalization not only stabilizes the learning
but also generalizes the neural network, i.e., the neural network shows high
performance on the test dataset.

3.3 Convolutional Neural Network

A Convolutional Neural Network (CNN) is one of the neural network algorithms
used for image analysis. In CNN, the convolution layer and pooling layer are added
to the usual multi-layer Perceptron for image processing.

3.3.1

convolution layer

The convolution layer extracts information from images by convolving them with
kernels (or filters). Figure 3.3 shows an example of the calculation in the convo-
lution layer, where the size of the input image and the kernel are 3 x 3 and 2 x 2,
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FIGURE 3.3: The illustration of the calculation of the convolution of
the 3 x 3 input image with the 2 x 2 kernel. In this figure, the stride s
is=1.

respectively. In the convolution layer, the kernel is overlaid on the input image. The
value in the input image is multiplied by the corresponding value in the kernel at
each position, and the results are summed up to generate the feature map. Subse-
quently, the kernel is moved spatially across the input image and the above process
is repeated. The feature map, representing the extracted information from the input
image, can be described as

He—11y—1
Fj= Y Y Likjrr X Ky, (3.41)
k=0 [=0

where Fj, I;;, and K; j represent the i x j element of the [(Ny — (nx —1))/s] x [(Ny —
(ny —1))/s] feature map, the Ny x N, input image, and the (1, x n,) kernel, respec-
tively. Here, s is the stride, which is the step size when the kernel is moved spatially
across the input. The values of the elements of K are updated by the learning process
introduced in Section 3.2. This calculation can be easily extended to 3D input images
by using 3D kernels.

The number of convolution layers and the size of the kernel are the hyperparam-
eters. We need to choose the proper values of these parameters. It is generally rec-
ommended to have a dataset size of at least one-tenth of the total number of weight
parameters (Han et al., 2015).

3.3.2 pooling layer

The pooling layer compresses the input image and suppresses the computational
cost. In addition, it makes the CNN less likely to be affected by the position of the
feature in the input image. In the pooling layer, the average- or max-pooling is often
used.
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FIGURE 3.4: The illustration of the pooling layer calculation for the
3 x 3 input image with the 2 x 2 average pooling.

Figure 3.4 shows the calculation of the 2 x 2 average pooling of the 3 x 3 input
image. In the 2 x 2 average pooling, the 2 x 2 patch is trimmed out the values in the
patch, and the feature map is generated by averaging the values in the patch. The
patch is moved spatially across the input image. The feature map from the average
ny X n, pooling layer can be described as

fy—11y—1

= I , 3.42
Ny X ?’11,: kz{) ; (Nx/ny) xi—k,(Ny/ny)xj—1 ( )

where F;; and [;; represent the i x j element of the (N, /ny) x (N, /n,) feature map
and the Ny x Ny input image, respectively. For max-pooling, we just pick up the
maximum value in the patch instead of averaging.

Related to the average pooling layer, the global average pooling layer (Lin, Chen,
and Yan, 2013) is often used to convert the extracted information to the output of the
CNN instead of the fully connected layer, where the inputs are transformed by the
equation such as Eq. (3.2) or Eq. (3.3). The calculation in global average pooling layer
correspond to Eq. (3.42) with Ny = n, and Ny =ny

Considering the N x (N, x N,) input, where N represents the number of the
input, the fully connected layer requires N x N, x N, weight parameters to convert
the input to the output. On the other hand, the global average pooling layer needs
only N weight parameters. The global average pooling layer often shows higher
performances than the fully connected layer (Lin, Chen, and Yan, 2013).
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Estimation of the Growth Rate

This chapter presents the data, methods, results, and discussion related to predicting
fog directly from the 3D matter distribution using machine learning. We aim to
investigate the machine learning approaches, to avoid the modeling of the observed
power spectrum in the non-linear regime. This work uses the Quijote simulations.
We analyze the dark matter and halo distribution of the simulations by the image-
based analysis with CNN and the power spectrum analysis with the neural network.
In addition, we compare these results with the errors estimated by the Fisher matrix
approach.
The contents of this chapter follow Murakami et al., 2023b.

4.1 Data

4.1.1 Quijote simulation

In this work, we use the publicly available N-body simulation data, the Quijote sim-
ulations (Villaescusa-Navarro et al., 2020). The Quijote simulations are a set of 44100
N-body dark matter simulations with ACDM model. These simulations are created
by running the GADGET-3 (described in Springel, 2005), which is a TreePM code.
The size of each simulation box is 1 1! Gpc on a side, and the number of dark mat-
ter particles is 512° in a simulation. We use these simulations to train and test our
CNN in this work.

This work focuses on 2000 realizations out of 44100 simulations, which assume
the different combinations of cosmological parameters (Q,,,g, Qo b, I‘IS,O'&U). Here,
Q) represents the present abundance of baryons defined as

87 Gpyo
Qpy = ,
b0 3HS‘

(4.1)

where py is the energy density of baryons at the present time. (), h, 15, and oy
are the abundance of matter, dimensionless Hubble constant, spectral index, and the
amplitude of the power spectrum, respectively, and are already introduced in Chap-
ter 2. The set of cosmological parameters is chosen randomly by Latin-hypercube
sampling within the range of

Q, € [01,05]
Qp € [0.03,0.07],
hoe [05,09]
ns € [0.8,1.2],
o5 € [0.6,1.0]. (4.2)
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FIGURE 4.1: The distribution of fog for 2000 realizations at their cor-

responding redshifts. The black dots and black dashed line represent

the mean of fog and the ACDM prediction based on the mean value
of each cosmological parameter at each redshift, respectively.

We can compute the fog from Q),, and o3 based on the ACDM model as (Padman-
abhan, 2003; Silveira and Waga, 1994; Percival, 2005; Bueno belloso, Garcia-Bellido,
and Sapone, 2011)

- dlogdy,
@)= "floga’ *3)
111 1
dm(a) =a-2F (§’ 1, — < (1 - Qm,(])) , (4.4)
where > F) is the Gaussian hypergeometric function given by
oo b 1
Z-Fl (arbf sz) — Z ( )n !:‘ (4'5)
Hn—
(x), = x(r+1)(x+2) (x+n—1). (4.6)

Here, we assume the quasi-static and sub-horizon (Tsujikawa, 2007).

All simulations are generated from different seeds of the initial conditions. Each
realization has 5 snapshots at redshifts z = [3, 2,1,0.5, [)], and Figure4.1 shows the
distribution of the values of fog for 2000 realizations at each corresponding redshift.

As a rough approximation, we use the snapshots at z = [3,2,1,0.5] to represent
four redshift bins. The mean redshift in each bin is denoted as z = [2.5,1.75,1.25,0.75]
in the following.



4.1. Data 35

zrange zmean relative number Hhalo comoving distance box size
[(Gpch 1) 73] [h"Mpc] [deg]
[0.5,1.0] 0.75 2 8.0 x 10° 1.9 x 10° 30.2
[1.0,1.5] 1.25 4 1.6 x 10* 2.7 x 103 209
[1.5,2.0] 1.75 3 1.2 x 10* 3.4 x 10° 16.9
2.0,3.0] 2.5 1 8.0 x 10° 41 x 103 14.0

TABLE 4.1: Specifications for the simulations. The relative number is

our assumed ratio of the number of halos in each redshift bin, which

roughly corresponds to the Euclid survey and ny,, is the halo num-

ber density included in the simulation box after the random draw.

We also provide observation-related quantities, such as the comoving

distance to the mean redshift and the subtended angle of the simula-
tion box located at the comoving distance.

4.1.2 the Halo Catalog

The Quijote simulations provide the halo catalog made by the Friends-Of-Friends
(FOF) algorithm, which identifies halos in a N-body simulation by considering par-
ticles as belonging to the same halo if they are close. In the catalog from the Quijote
simulation, a halo is defined as having at least 20 dark matter particles. Therefore,
the lower limit of a halo mass is O(10'2) - O(10'?) [M,/h], which varies with the
set of cosmological parameters because a particle mass in the N-body simulation is
determined by the number of dark matter particles and the cosmological parameters
related to the total mass in the box.

To reproduce the redshift distribution of the observables of the practical obser-
vation such as Euclid (Laureijs et al., 2011), we assume the ratio of the halo number
in each redshift bin, and we draw halos randomly for the halo number to match our
assumption. Table 4.1 shows our assumption of the relative number and the halo
number density after the random draw. This table also shows the specifications of
the simulations such as the comoving distance to the mean redshift of each redshift
bin, and the subtended angle of the simulation box at the mean redshift. Here, we
calculate the apparent angular size as

0 [rad| = 2arctan (%), (4.7)

where [ is the physical size of the simulation box, a is the scale factor, and x(z) is the
comoving distance to the redshift z.

4.1.3 Data for Machine Learning

In this work, we use the CNN to analyze the 3D images of the dark matter or halo
distribution, which are generated from the simulations as

1. We define the 40° grids in a simulation box. The grid size corresponds to
k = 0.25 hMpc ! in Fourier space, which is the scale we focus on and is the
approximately linear scale.

2. The dark matter particles or halos are redistributed to the cells by the Nearest
Gridding Point (NGP).

Through these processes, we obtain a 3D image of the dark matter or halo distribu-
tion with a size of 40° from a simulation box. The voxel value is the density of the
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dark matter or halo. This size of the grid is larger than the typical scale of the red-
shift space distortion in the simulations. Therefore, we do not consider its effect in
generating the images. To validate this assumption, we test our CNN by the images
including the RSD effects, and we confirm the results are not changed from the case
that we use the images without the RSD effects.

In addition, we also use the Legendre multipoles of the power spectrum for the
dark matter distribution in the 2000 simulations. We then proceed to train and test
the neural network using these multipoles. The Legendre multipoles are defined as
Eq. (2.75). Here, we use the coefficient Py(k) (monopole), P>(k) (quadrupole), and
Py(k) (hexadecapole), and these coefficients are publicly available for each Quijote
simulation we use. We use a wave number range of 0.089 < k [iMpc '] < 0.25,
divided into 39 linearly separated bins to match the grid size of the 3D images for
our CNN.

In this work, we divide the 2000 simulations into the subgroups of the 1500, 100,
and 400 simulations. The first one is used as the training data, which is the data for
the update of the weight parameter, the second is used as the validation data, which
is the data for the monitoring of the progress of the training, and the last one is the
test data, which is the data for the evaluation of our CNN and neural network.

4.2 Methods

4.2.1 Error Estimation from Fisher matrix

For comparison with our machine learning analysis, we forecast the measurement
errors of the cosmological parameters with the Fisher matrix from the forthcoming
galaxy surveys (Tegmark, 1997; Seo and Eisenstein, 2003; Yahia-Cherif et al., 2021;
Blanchard et al., 2020a). We can obtain an optimistic estimation of the errors of the
cosmological parameters by assuming some specifications for a survey through the
Fisher matrix approach.

Firstly, we assume a fiducial galaxy survey split in Ny, redshift bins. The Fisher
matrix in each redshift bin can be written as (Tegmark, 1997; Seo and Eisenstein,
2003; Yahia-Cherif et al., 2021; Blanchard et al., 2020a)

] kmax

Pflff;n (Z;') _ # '/_.1 dJH dln Pyps dln Pyps

i dk [ 90, a0 } Vesi (zi, k, 1), (4.8)

. kmin

where y is the cosine of the angle between the line of sight and the wave vector, 0,
is the set of parameters varied in this analysis (specified below), Pops is the observed
power spectrum, and Vg is the effective survey volume described as

1(z) Pops (k, 143 2) r

Vﬂff(k’ IM;Z) - VS(Z) L’I(Z) Pobs(k’ M Z) +1

49)

where V; is the comoving survey volume, and #(z) is the number density of galaxies.
For the range of the integration in Eq. (4.8), kmin is determined by the simulation box
size, and kmayx is = 0.25 htMpc ' corresponding to the grid size of the images for our
CNN analysis. The scale of kmax corresponds to the scale where the non-linearities
become important for z = 0, based on the criterion A%(k) = K> P(k)/(2?) ~ 1
(Dodelson and Schmidt, 2020).

For the Fisher analysis by Eq. (4.8), we need to model the non-linear effects in
the galaxy clustering for the observed power spectrum Pyps. The model is typi-
cally a phenomenological model and is employed in this work and in some works
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(Tegmark, 1997; Seo and Eisenstein, 2003; Yahia-Cherif et al., 2021; Blanchard et al.,
2020a). In this approach, the observed power spectrum an be written as

1 [bos(z) + fos(2)p?]” Paw(k, 1;2)
7 q 1+ [f(2kuop]? o3 (2)

where g, and g are the Alcock-Paczynski projection coefficients, b is the bias of
the observable, ¢, is a non-linear parameter representing the deviation from the
linear prediction and calculated from the linear power spectrum, Py, is the de-
wiggled power spectrum, which is the linear power spectrum without the feature
of the baryon acoustic oscillation (BAO), F, describes the smearing of the galaxy
density field along the line of sight due to the redshift error, and Ps(z) is the scale-
independent offset due to the imperfect removal of the shot noise (Yahia-Cherif et
al., 2021; Blanchard et al., 2020b). Here, we set g, = q) = 1 because the Alcock-
Paczynski effect, which is the geometrical distortion of the 3D galaxy distribution
due to the error of the measurement of the distance to the observable, is irrelevant
to our work. Py, describes the effect of the non-linear spreading caused of the mat-
ter distribution caused by BAO during the structure formation. F, is = e KW (),
where 0; is the error of the measurement of the comoving distance and is written as

Pobs(k, ;2) = F.(k, p;z) + Pi(z), (4.10)

C

on(z) = 0x(2) = s (14 D) v @)

where 0y, = 0.001 represents the redshift error Wang, Chuang, and Hirata, 2013;
Blanchard et al., 2020b.

In our work, we calculate the linear power spectrum numerically using the Boltz-
mann code, the Cosmic Linear Anisotropy Solving System (CLASS) (Lesgourgues,
2011).

To compute the Fisher matrix Eq. (4.8), we need the derivative of Py, with re-
spect to a parameter. We can only evaluate its derivative numerically. Therefore,
we use a central difference scheme for the derivative. We confirm the convergence
of the Fisher matrix calculation by varying the parameter e representing the small
difference to compute the derivative. We set € = 0.01 as the default value, and we
find the robustness of the Fisher analysis for the different values of e.

For P4y, we use a Savitzky-Golay filter with a window size of 201 and poly-
nomial order equal to 3 and obtain a de-wiggled power spectrum from the power
spectrum computed by the CLASS including the BAO feature. We implement the
Savitzky-Golay filter by scipy.signal.savgol filter(data, window_length, poly or-
der) in the scipy (Virtanen et al., 2020) python module.

As the bias parameter b depends on the redshift, we use the value calculated for
the simulations to compare the Fisher analysis with the machine learning fairly. To
calculate b, we compute the power spectrum for both halo and dark matter for the
simulations and fit the ratio of the power spectrum of halo to the one of dark matter
at linear scale k ~ 0.01 h/Mpc ! by using the form of

Dhaio(2) = A + Be©* (4.12)

The obtained values are A = 0.648, B = 0.689, and C = 0.792.
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Subsequently, the total Fisher matrix is calculated by summing over all the red-

shift bins, that is,
N bins

Fp=) Ff;;“(Zg), (4.13)
i=1

where Fﬁé“(zi) is a Fisher matrix for a redshift bin. In our analysis, we choose the
cosmological parameter set Ocosmo = {Qb,u, Omo, h, ns, 0'3} and the non-cosmological
parameters Onon—cosmo = {Up, Ps} (Blanchard et al., 2020a). The fiducial values of the
cosmological parameters are the same as the fiducial values of the Quijote simula-
tions, Ocosmo fid = { Qb = 0.05, Qo = 0.32,h = 0.67, n; = 0.96, 03 = 0.816}.

The total vector of the parameters for the Fisher matrix is io1a1 = Ocosmo + non—cosmo-
In general, other parameters such as the angular diameter distance and the Hubble
parameter are considered in the Fisher analysis. However, our analysis assumes the
ACDM model and these parameters depend on the cosmological parameters. It is
enough to consider 0., in our analysis.

Finally, by determining the total Fisher matrix, we consider the error propagation
from the covariance matrix Cpp = Pa_; of Oiotal to the covariance of the growth rate

fog(z;) in each redshift bin. This process can be described as

.. 9fosi 9fos;
T 90, o0

Cups (4.14)

where fog; represents fog(z;) and we can calculate the dfog; /96, numerically. And
then, the error of fog is the diagonal elements of C;; and can be written as

02

Fos(e = Cit (4.15)

We perform the extensive comparison with other analyses such as (Yahia-Cherif et
al., 2021; Blanchard et al., 2020a) and we confirm that the results of our analysis are
in agreement with other analyses.

4.2.2 Error Estimation by Maximum Likelihood analysis

For comparison, we estimate the fog value by the maximum likelihood analysis. In
this work, we model the Legendre multipoles Py, P>, Py of the dark matter power
spectrum defined by Eq. (2.75) following Noriega et al., 2022 (please see section 3.3
of (Noriega et al., 2022)). This model of the Legendre multipole includes the 1-loop
correction of the perturbation theory and the modeling of the non-linear part. We
use CLASS(Lesgourgues, 2011) and FOLPS-nu for the non-linear power spectra’.

In our work, we focus on the analysis of the dark matter density field for the
maximum likelihood analysis, and the bias parameter b, and b> are unity and zero,
respectively. Here, we estimate 5 cosmological parameters [(),,, (2}, h, n;, 0g] and 4
nuisance parameters [xg, ay, a:f',”o*, ai””f], where the first two parameters model the
non-linear part of the power spectrum and the latter two parameters model the shot
noise.

We fit the modeled power spectrum P04l (k) to the power spectra of the Quijote
simulation data P2 (k) by maximizing the likelihood for k < 0.25 [tMpc '] defined
as

L — [Pmndd(k,') o Pdata(ki)]cov—l (ki,k}?)[PmOdCl(k}') o Pdata(k},)]’ (416)

https:/ /github.com/ henoriega / FOLPS-nu?tab=read me-ov-file
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FIGURE 4.2: The modeled Legendre multipoles of the power spectra

by using FOLPS-nu (dashed), where the parameters are fit to the fidu-

cial simulation, and the ones calculated directly for the fiducial sim-

ulation data (solid). These power spectra are computed for z = 0.75

and the error bar is estimated from the 2000 realization for the fiducial
cosmology.
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where k; is the wavenumber of the center of the i-th bin, P™°4¢l(k;) and P42 (k;) are
the concatenated Legendre multipoles for | = 0,2, and 4 for the power spectra of
the model and the simulation data, respectively, and Cov ™' (k;, k;j) is the covariance
matrix of P42 (k). In our work, we calculate the covariance matrix by using the 2000
realizations of the fiducial cosmology in the Quijote simulations, where the random
seeds of the initial condition are different but the assumed cosmological parameters
are the same; [, Oy, h, 115, 03] = [0.3175,0.049, 0.6711, 0.9624, 0.834].

And then, we picked up 400 realizations randomly, where the parameters are
determined by the Latin-Hypercube described in Section 4.1.1, and compute the foy
following Eq. (4.3) for the parameters maximizing the likelihood for each 400 real-
ization. To maximize the likelihood (equivalent to the minimizing of the —logL),
we use the optimize.minimize () in scipy, which is the Python module. Figure 4.2
shows the Legendre multipoles calculated from the fiducial simulation and the model
of the power spectra fitted to the model as an example.

Finally, we evaluate the error of the foy estimation by the standard deviation of
Afog, which is the difference between the prediction from the maximum likelihood
and the true value for the realization.

4.2.3 Machine Learning architecture

Layer Output map size
1 Input 40 x 40 x 40 x 1
2 | 3 x3x3convolution 38 x 38 x 38 x 2
3 BatchNorm3d 38 x 38 x 38 x2
4 2 x 2 x 2 MaxPool 19 x 19 x 19 x 2
5 | 2x2x2convolution 18 x 18 x 18 x 64
6 BatchNorm3D 18 x 18 x 18 x 64
7 2 x 2 x 2 MaxPool 9x9x9x64
8 | 3 x 3 X 3 convolution 7X7x7x64
9 | 3 x 3 X 3 convolution 5x5x5x64
10 | 2 x 2 x 2convolution 4 x4 x4 x 128
11 BatchNorm3d 4x4x4x128
12 Flatten 8192(= 43 x 128)
13 FullyConnected 512
14 FullyConnected 256
15 FullyConnected 1

TABLE 4.2: Our CNN architecture. In all convolutional layers, stride

s = 1. Output map size corresponds to (height, width, depth, and

channel), where the channel represents the number of input images

to the layer. After each convolution layer and FullyConnected layer,

we apply the ReLU as the activation function except for the last layer.
The total number of trainable parameters is 5,345,341.

In this work, we use the 3D-CNN for the image analysis and the neural network
for the power spectrum analysis. To implement the CNN and neural network, we
use the PyTorch (Paszke et al., 2019), which is one of the Python modules for deep
learning, and these architectures are based on (Lazanu, 2021b). Note that some hy-
perparameters are different from this previous work because the size of the input
image is different. Table 4.2 and Table 4.3 show the architectures of our 3D-CNN
and neural network.
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Layer Output size
1 Input 3 x39
2 | FullyConnected 512
3 | FullyConnected 512
4 | FullyConnected 512
5 | FullyConnected 512
6 | FullyConnected 1

TABLE 4.3: Our neural network architecture. After each FullyCon-
nected layer, we apply the dropout layer with rates of 0.1 except for
the last layer. The total number of trainable parameters is 848897.

In our CNN, we use ReLLU as the activation function in the convolution and Ful-
lyConnected layers except for the last layer. Also, in our neural network, ReLU is
used in the FullyConnected layers except for the last layer. In both our CNN and
neural network, the activation function is the identity function in the last layer, and
the output is the predicted value of the growth rate fog. The batch normalization
and dropout are used in our CNN and neural network, respectively. Please see the
caption of Table 4.2 and Table 4.3 for the details.

We apply the mini-batch learning for both our CNN and neural network with
the batch size N, = 16. As the loss function, we use the MSE loss;

1 M

E=—Y (vi—9) (417)

b i—1

where y; is the predicted value of fog from our CNN and neural network, and 7; is
the correct value of the corresponding input data. We discuss other loss functions in
Appendix. A.

In updating the weight parameters in our CNN and neural network, we use
the Adam optimizer (Kingma and Ba, 2014). We implement this optimizer by us-
ing torch.optim.Adam() in PyTorch. For our CNN, we set Ir = 5 x 107 and
weight decay = 0.1 , which are the argument of torch.optim.Adam(), and cor-
respond to the learning rate and the hyperparameter of the L2 regularizatio, respec-
tively. For our neural network, we set Ir = 5 x 10~% and weight_decay = 0. We use
default values for other parameters in torch.optim.Adam() for both our CNN and
neural networks.

For our CNN, the input is the 40 x 40 x 40 image of the dark matter or halo
distribution. For our Neural network, The input is the Legendre multipoles Py(k),
P,(k), and Py(k). The size of the input is 3 [Py(k), P>(k), and Py(k)] x 39 [the number
of k-bins].

Our CNN and neural network are trained during 100 and 1000 epochs, respec-
tively, and we use the set of weight parameters that minimizes the loss function
for the validation data. The errors of the prediction by the machine learning are
estimated by the standard deviation of the vector Afoy;, which is the difference be-
tween the predicted and true fog and defined as Afos = (Ypred;i — Yiruei), Where i is
the label of the input data, andypred i and Yirue,i) are the predicted and true value of
the foy;, respectively. We validate this estimation by the following test:

* We make the 30 sets of the cosmological parameters for Q,, € [0.1,0.5] and
og € [0.6,1.0].
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FIGURE 4.3: This is an overview of our work, highlighting the various

comparisons between the different reconstruction methods. PS-ML

represents the Power Spectrum and the Machine Learning, and CNN
stands for Convolutional Neural Networks.

¢ We evaluate the fog value for the above parameter sets, and pick the 400 sets
(same as the number of the test data).

¢ We draw the predictions for fog from the Gaussian distribution with mean
given by the value of each parameter set and with the standard deviation ¢.
The assumption that the predictions follow Gaussian is justified by a large
number of the data and the central limit theorem.

¢ We compare the predicted error from the standard deviation of the A fog of the
previous step with the fiducial error § assumed in the previous step.

For this test, the predicted errors from the fog agree with the fiducial error o.

4.3 Results

method CNN PS-ML Likelihood Fisher
tracer DM halo DM DM DM halo
z=0.75 3.8 4.5 (3.9) 2.3 7.9 14 0.34
1.25 2.3 25(2.2) 2.0 5.7 1.6 0.46
1.75 1.2 1.7 (1.1) 2.7 3.9 1.6 0.49
2.5 0.74 1.2(1.2) 2.9 3.3 14 0.46
(x1072)

TABLE 4.4: The predicted errors on the fog as derived by different
methods and tracers, where the combination of methods and trac-
ers are summarized in Figure 4.3. The values for "halo" are obtained
from the halo data, drawn randomly from the parent halo to match
the redshift distribution shown in Table. 4.1) for CNN, while those in
parenthesis are from the parent halo sample as a reference.

Here, we show and compare the results of the inference of the growth rate foy
from the dark matter or halo distribution in the simulations by the image analysis
with the CNN and the power spectrum analysis with the neural network and Fisher
matrix. Firstly, in Section 4.3.1, we show the results of the image-based analysis with
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the CNN for both the images of the dark matter and halo. Additionally, we discuss
the effects of the random drawing of the halo. Next, in Section 4.3.2, we show the
results of the power spectrum analysis with the neural network, denoted as PS-ML
in the following. And then, we show the results of the Fisher analysis for the power
spectrum of the dark matter and halo distribution in Section 4.3.3. In addition, we
discuss the effect of the random seed for the initial condition of the simulations to
investigate the origin of the errors in Section 4.3.4. Figure 4.3 shows the overview
of the comparison between the different methods of the parameter inference, and
Table 4.4 summarizes the error of the estimation from the different methods (CNN,
PS-ML, and Fisher) and tracers (dark matter and halo).

4.3.1 CNN results for dark matter and halo

prediction

prediction

z=0.75 z=1.25
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b i
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FIGURE 4.4: The scatter plot of the prediction of fog from our CNN

for dark matter images (blue) and halo images, including all halo (or-

ange) for each redshift. The horizontal and vertical axis shows the
true and predicted value of foyg, respectively.




FIGURE 4.5: The histograms of the CNN prediction for dark matter

images (blue) and halo images (orange) for each redshift bin. The

horizontal axis corresponds to the value of Afog predicted by our

CNN. The error bars show the standard deviation of Afog; its value

is shown in the legend. As seen, all histograms are centered around
zero, indicating that our CNN successfully constrains foy.
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FIGURE 4.6: The results of our CNN for images include all halos (or-

ange, same as Figure 4.5) and randomly selected halos (brown) for

each redshift bin. Each axis, the error bar, and the legend represent
the same as Figure 4.5

Here, we show the results of the prediction of the fog with our CNN shown in Ta-
ble 4.2 for the images of the dark matter and halo distribution in the simulations.
The process of the training and the error evaluation is mentioned in Section 4.2.3.

Figure 4.4 shows the scatter plot of the predicted and true value of the foy for
each test image in the vertical and horizontal axis, respectively, and each panel cor-
responds to the different redshift bin. The blue and orange plots represent the pre-
diction of our CNN for the dark matter and halo images, respectively. Figure 4.5
shows the histogram of A fog predicted by our CNN. The horizontal axis represents
the Afog, the vertical axis shows the frequency, and each panel corresponds to the
different redshift bin. In addition, the error bars, which is predicted by our CNN
and the standard deviation of A foy ;, are shown in this Figure, and the values of the
errors are provided in the legend. As we can see in Figure 4.5, all histograms are
centered around Afog = 0, and we find our CNN successfully constrains the value
of the fog.

In these figures, we use the halo images including all of the halos (without draw-
ing the halo) to compare the results for the dark matter and halo. As a result, we
find the errors are mostly comparable for each redshift bin, while the error for the
dark matter images is a bit smaller than the one for the halo images at the redshift
bin of z = 2.5. And then, we can see a decrease in the error for both the dark matter
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and halo image. One of the possibilities is that the non-linearity makes it more chal-
lenging to extract the information included in the matter distribution at the lower
redshift.

The error for the halo images is larger than the one for the dark matter at z = 2.5,
while these errors are comparable at z = 1.75. We can consider that the one reason is
the shot noise because the number of the halo in the simulation at z = 2.5 is less than
the one-tenth of the simulations at the other redshift bins in using all of the halos.
The shot noise is proportional to the inverse of the number density of the halo 1/n
and has a larger impact on the analysis at the higher redshift.

Next, we show the effects of the random drawing of the halos in Figure 4.6. This
figure also shows the histogram of the Afog from our CNN, like Figure 4.5, for all
halos (orange, same as Figure 4.5) and the randomly drawn halos (brown), where
the halos in the simulation are drawn randomly to follow the redshift distribution
shown in Table 4.1. Even in the case of the randomly selected halos, we find the
same dependence of the error on the redshift in the case of all halos.

The error for the selected halo is slightly larger than the one for all halos. This is
reasonable because the images of the selected halo distribution lose the information
compared to the ones for all halos.

In addition, we test some loss functions other than the MSE loss function, such as
the MAE loss, Hubber loss, and LFI loss, which are introduced in Section 3.2.1. We
find that the error is slightly improved at low redshift with the LFI loss. However,
the loss curve, which represents the change of the value of the loss function over
the training, for the validation data, is more stable with the MSE loss. Therefore, we
choose the MSE loss for the final results. In Appendix A, we show the error with
other loss functions.
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4.3.2 Power Spectrum analysis on Dark Matter based on Machine Learn-
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FIGURE 4.7: The histograms of our CNN for dark matter images

(blue, same as Figure 4.5) and PS-ML (green) for each redshift bin.

The horizontal axis corresponds to Afog, and the vertical axis shows

the frequency of Afog for each test image. The error bars show the

standard deviation of Afrg, and its value is shown in the legend. In

addition, the black error bar shows the standard deviation of A fog for
the likelihood analysis.

In this subsection, we show the results of PS-ML, where the architecture of the neural
network is defined in Table 4.3. The process of the training and the error evaluation
is mentioned in Section 4.2.3.

Figure 4.7 shows the histograms of Afog for our CNN for the dark matter im-
ages (blue) and PS-ML (green). Both results are for the dark matter images and we
compare them. As we can see in this figure, the constraints on fog from PS-ML are
weaker than our CNN at higher redshift z > 1.75 (lower two panels), while PS-ML
provides tighter constraints than our CNN as lower redshift x < 1.25 (upper two
panels). The observed variations in constraints between PS-ML and our CNN raise
interesting questions. One possibility is that the image recognition by our CNN
might struggle to extract the features of the data in a highly non-linear regime cor-
responding to lower redshift. Another possibility is the architecture of our CNN
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may not be perfectly optimized for the lower redshift data. Further investigation is
needed to explore these potential explanations.

Additionally, we compare the error from the PS-ML and the maximum likelihood
analysis for the dark matter density field. The errors from the likelihood show the
redshift dependence similar to the CNN analysis. We can consider that this redshift
dependence is caused by the difficulty of the modeling of the non-linear part of the
power spectrum. On the other hand, the PS-ML does not show the redshift depen-
dence. The PS-ML learns the power spectra directly including the non-linear part
and can probably estimate the fog more effectively than the maximum likelihood
analysis. At the higher redshift (z = 2.5), the model of the Legendre multipoles can
express the power spectra including the non-linear part better, and the PS-ML and
the likelihood analysis show a comparable result.

4.3.3 Comparison with the Fisher analysis
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FIGURE 4.8: The histograms of Afeog from PS-ML (green, same as

Figure 4.7), plotted together with the errors from the Fisher analysis

for the power spectrum of dark matter (red) and the one of halo (grey-

shaded). The horizontal axis corresponds to Afog, and the vertical

axis shows the frequency of Afog for each test image. The value of
the error is shown in the legend.
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In this subsection, we show the comparison of the error from PS-ML with the one
from the Fisher matrix. Both analyses use the power spectrum of the dark matter
distribution, so we compare the results of them.

The results are shown in Figure 4.8. The errors for the predicted value of fog of
the halo distribution from the Fisher analysis are calculated by using the bias b of
Eq. (4.12), and are shown in Figure 4.8 by the gray-shaded region. The errors for the
dark matter are computed by setting b — 1, and shown in Figure 4.8 by the red error
bar.

For the analysis of the dark matter distribution, the errors Afeog from PS-ML and
the Fisher analysis are not largely dependent on the redshift. Additionally, the errors
from the Fisher analysis are smaller than those from PS-ML. This suggests a potential
limitation in our PS-ML's ability to access all information in the power spectra of
the dark matter distribution, highlighting a potential area for improvement in our
neural network architecture. Additionally, we can see the CNN shows comparable
errors with the Fisher analysis in Table. 4.4 especially at the lower redshifts and CNN
can estimate the fog without the modeling of the non-linear part.

As we can see in Figure 4.8, the error from the Fisher analysis for the halos (gray-
shaded region) is smaller than the one for the dark matter (red error bar). This result
can be explained by the shot noise. Firstly, the number density of the dark matter
particles is larger than the one of the halos. In addition, the amplitude of the power
spectrum of the halos is larger than the one of the dark matter because the halo
power spectrum is amplified by the bias given by Eq. (4.12). Therefore, the shot
noise for the halo has less effect on the analysis than the one for the dark matter.

4.3.4 Effect of the random seed

Each of the 2000 simulations, where the cosmological parameters are sampled by
the Latin hypercube, has a different random seed of its initial condition. Therefore,
for the parameter inference in the previous sections, the error of the predicted value
includes the effects of both the variation of the cosmological parameters and the vari-
ance of the initial conditions. In this subsection, we discuss the effect of the random
seed of the initial conditions on the errors A fog. To discuss the effect of the variation
of the random seed, we use another dataset of the Quijote simulations. The Quijote
simulations have 15000 realizations, which have the same cosmological parameters
(o, Qo h, 15, 089) = (0.3175,0.049,0.6711,0.9624, 0.824) while Each realizations
has the different random seed. In (Villaescusa-Navarro et al., 2020), these realiza-
tions are denoted as 'Fid” simulations.

Firstly, we pick up 7000 realizations from "Fid” simulations. And then, from these
simulations, we generate the 3D images of the randomly selected halo following the
process in Section 4.1.3. Next, by using these images from "Fid’ simulations, we test
our CNN already trained by the randomly selected halo in Section 4.3.1. From these
processes, we can evaluate the error of the predicted value of fog from the variation
of the random seed.

As a result, we find the error for 'Fid’ simulations is around O(103). This value
is one-fifth of the total error shown in Figure 4.5. Therefore, we conclude that the
errors of the predicted values in our CNN analysis are dominated by the errors from
the variation of the cosmological parameters. On the other hand, this value of the
error for 'Fid” simulations is close to the one for the Fisher analysis of the halo power
spectrum shown in Table 4.4. Therefore, the error from the Fisher analysis is affected
by the variation of the random seed.
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4.4 Discussion and Conclusion

In this work, we consider the CNN approach to extract information and to constrain
the value of fog without modeling the power spectrum. We use the Quijote simu-
lation to train and evaluate our CNN and compare the results from our CNN with
those from the power spectrum analysis of the neural network and Fisher analysis.

We overview our analysis in our work in Figure 4.3. The figures 4.4, 4.5,4.6,4.7,
and 4.8 show the results of the different tracers of the matter distribution and the
different methods of the analysis, and Table 4.4 shows the summary of the estimated
error for the results shown in these figures.

As we can see in these figures and Table 4.4, the machine learning approach can
estimate the value of fog accurately. The histograms of Afog shown in the figures
are centered at around zero. And then, the predicted errors from our CNN for each
redshift are comparable within a factor of order unity for both the CNN and neural
network based on both of the images of the dark matter and halo distribution.

In comparing the results from the machine learning approaches with those from
the Fisher analysis, we find that CNN shows comparable results at higher redshifts
to the Fisher analysis. On the other hand, the Fisher analysis shows an optimistic
error compared to the machine learning approach at lower redshifts, and the errors
from the machine learning approaches show the redshift dependence. Specifically,
the errors estimated by our CNN show a factor of reduction of two for low redshifts
compared to the dark matter, and a factor of reduction of two to ten for our CNN for
the halo in Figure 4.5. On the other hand, the errors from the Fisher analysis do not
show the redshift dependence. These errors seem to track the redshift distribution
of the number density of the ideal survey sample. To probe for the cause of this
redshift dependence of the predicted errors from our machine learning approaches,
we test several possibilities.

Firstly, one possibility of the reason that our CNN results have the redshift de-
pendence and deviate from the Fisher results may be the effects that emerged at the
low redshifts. The enhanced non-linearity at low redshifts might introduce more
scatter in the predicted fog by our CNN. The Fisher analysis with the phenomeno-
logical model of the observed power spectrum might not correctly capture the effects
of the non-linearity. The Fisher analysis seems to follow the redshift distribution of
the observables in the ideal survey and ignores part of the complicated effects of the
non-linearity at low redshifts.

Next, another possible reason for the redshift dependence of the errors from our
CNN might be because fog shown in Figure 4.1 is not well sampled while the cos-
mological parameters ()0, Qpo, 1, 15, 059 ) are well sampled by the Latin-hypercube
in the Quijote simulation. As we can see in Figure 4.1, the range of fog is decreased
with redshift. This might introduce the reduction of the errors from our CNN be-
cause the range of fog expected by our CNN might be smaller at higher redshifts.
However, we should note that the range of foy in the training sample is generally
greater than the errors from our CNN. To test this effect, we use new training sam-
ples, where the range of fog is narrower, but we find no significant effect on the error
estimations.

This possibility might be tested by either the larger number of simulations, which
have a wider range of the cosmological parameters at higher redshifts, used to train
our CNN or the direct sampling in fog space. We think that the main scope of our
work is to highlight our methodology and these tests are beyond the scope.

Third, the processes of the training and test of our CNN have some stochastic-
ity and randomness depending on the choices of the training and test dataset. To
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investigate this possibility, we test our CNN by the different test datasets with the
different random seeds and calculate the mean and standard deviation of the errors
from our CNN, As a result, we find that the mean of the errors is consistent with
the values in Table. 4.4 and the standard deviation of the errors, i.e., the error of the
error is much smaller. Therefore, this reason can only have a small contribution to
the redshift dependence of our CNN results.

Additionally, we have more tests. First, we investigate the effects of the random
selection of halos by using the different halos, but there is no significant difference in
the results and we also see the redshift dependence in the case of all halos. Second,
we examine the different loss functions as we mentioned in Section 4.2.3, and we see
the same redshift dependence as the case of the MSE loss. Third, we test the different
random seeds of the initial condition in Section 4.3.4, and we find the errors from
the difference of the random seed in our CNN analysis are only one-fifth of the total
error. Therefore, we conclude the dominant component of the error of our CNN
analysis is the one from the variation of the cosmological parameters.

For future works, we leave the extension of our analysis of models beyond ACDM.
To eliminate the assumption that we need to specify the cosmological model in the
current fog measurements, we require the N-body simulations assuming another
model such as the model based on the modified gravity. Also, we leave a more de-
tailed comparison between our CNN and the Fisher analysis, as it would require
significant modifications of the theoretical model on the non-linear regime for the
Fisher analysis and more optimization of the CNN architecture to study the effects
at low redshifts.

To conclude, the forthcoming galaxy surveys will provide a lot of high-quality
observation data of the large-scale structure of the universe. To deal with these data
effectively, we need new ways of analysis to minimize the theoretical errors from
assumptions such as the modeling of the non-linear part of the power spectrum as
small scales. In this work, we provide the first step in this direction, but more inves-
tigation will be required to bridge the gap between the theory and the observation.
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Chapter 5

Constraint on Non-CDM mass

In this chapter, we show constraints on NCDM mass with machine learning. NCDM
mass affects the large-scale structure of the universe at small scales, but the structure
at small scales follows a non-Gaussian distribution due to the non-linear evolution.
Instead of the power spectrum which cannot extract all information included in the
higher-order statistics, we focus on the CNN analysis.

In this work, we assume neutral hydrogen (HI) as the observable because we
can obtain its distribution from the observation of the 21cm signals (Section 2.8).
We use the Gadget3-OSAKA simulation, which is the cosmological hydrodynamic
simulation, and obtain the distribution of the dark matter and HI at redshift z =
3 in the post-reionization epoch. We classify the images from CDM and NCDM
simulations using both CNN and the power spectrum and compare the results from
each method.

In addition, we investigate the effects of some astrophysical assumptions and the
thermal noise of the SKA-MID observation.

The contents of this chapter follow Murakami et al., 2023a

5.1 Data

5.1.1 GADGET3-Osaka simulation

In this work, a series of cosmological hydrodynamic simulations are conducted for
both the Cold Dark Matter (CDM) model and Non-Cold Dark Matter (NCDM) mod-
els with varying particle masses. Specifically, the Dodelson-Widrow model is con-
sidered the NCDM model, as introduced in Section 2.7. In the range of the NCDM
mass denoted by 1y in our analysis, dark matter particles have gravitational inter-
actions only with each other after their initial conditions at z = 99. The features of
the initial dark matter distribution for each dark matter model are described by the
matter power spectrum, assuming a Gaussian distribution for the initial conditions.
The cosmological parameters are based on Planck satellite (Planck Collaboration et
al,, 2020): Q,, = 0.311, Qx = 0.689, O, = 0.049, h = 0.677, and In 10'° A, = 3.047,
with In 10'Y A; representing the amplitude of the primordial matter power spectrum.

We examine NCDM models with six distinct particle masses, logarithmically
sampled from 10° to 10*%¢ eV. A simulation is prepared for an NCDM model with
a particle mass of 10° eV; however, throughout our analyses, this particular NCDM
model cannot be distinguished from the CDM model. Consequently, we exclude it
from further consideration.

Our focus in this work is solely on a single dark matter component. As illustrated
in Figure 5.1, we present examples of the linear 2D matter power spectrum at z = 3
for the CDM model, as well as for NCDM models with particle masses of 10 keV and
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1 keV. It is important to note that we concentrate on the projected 2D matter distri-
bution of dark matter and HI in this work. Our focus is the 21 cm intensity mapping.
Additionally, we want to avoid the effects of redshift space distortion and the light-
cone effect and use the projected matter distribution with enough projection length.
The power spectra are calculated for the 2D matter distribution, wherein the 3D
matter distribution is projected onto a 2D plane over 50 & 'Mpc along the line of
sight. The 3D matter power spectra are computed using CLASS (Lesgourgues, 2011).
As shown in the figure, the power spectrum’s amplitude is suppressed for NCDM
models, with suppression on larger scales for the lighter NCDM model.
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FIGURE 5.1: Examples of the 2D matter power spectra at z = 3, de-

rived by projecting the 3D linear power spectrum along the line of

sight with a width of 50 i !Mpc. The 3D power spectra are com-
puted using CLASS (Lesgourgues, 2011)

We use the linear matter power spectrum calculated by CLASS as the initial power
spectrum for our simulation. First, we calculate the matter power spectrum at red-
shift z = 0, and its amplitude is adjusted to the one at z = 99, which is the initial
redshift of our simulations, by using the linear growth factor D in Eq. (2.36). Fi-
nally, we generate the initial matter distribution by using 2LPTic (Crocce, Pueblas,
and Scoccimarro, 2006), where the distribution of the matter density perturbation is
calculated based on the second-order Lagrangian perturbation theory (Scoccimarro,
1998). In generating the initial conditions, we apply the glass-like (White, 1994)
realization to make a uniform and isotropic distribution. In general, the initial con-
dition is generated from the grid-based realization, but previous works (Gotz and
Sommer-Larsen, 2002; Gotz and Sommer-Larsen, 2003) show that initial conditions
from grid-based realizations can introduce unrealistic features in the matter distribu-
tion. In our work, we test the effect of the choice of grid or glass and find AUC (see
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Section 5.2.3) is slightly increased by O(102) for the case of the glass-like realization
compared to the grid-based realization.

We use the cosmological hydrodynamic simulation code GADGET3-0saka (Aoyama
etal., 2016; Shimizu et al., 2019) to simulate the time evolution of the matter distribu-
tion. GADGET3-0saka is a Smoothed Particle Hydrodynamics (SPH) code designed
for cosmological simulations and is based on GADGET-3 described in (Springel, 2005).

The simulation box has a size of 100 h_lMpc on each side, with 5123 dark matter
particles and 5122 gas particles. Our simulations are started at z = 99 and terminated
at z = 3, corresponding to the post-reionization epoch. In our analyses, we focus on
the simulation data at z = 3, where the ionization processes of neutral hydrogen
(HI) are mostly completed, and the HI distribution is minimally affected by these
processes. Our simulation setup closely follows that of Nagamine et al., 2021, except
for using different initial conditions to account for the NCDM models.

GADGET3-0saka incorporates models for star formation, supernova feedback, UV
radiation background, and radiative cooling and heating, which are related to HI
ionization. The code also considers the self-shielding effect of optically thick HI gas,
mitigating the impact of UV radiation that ionizes HI. Cooling in our simulations is
solved using the Grackle chemistry and cooling library (Smith et al., 2016). In this
work, we use the HI distribution from the simulations without modeling the relation
between the distributions of dark matter and HL

In this work, we explore the different astrophysical assumptions such as the self-
shielding of the HI gas, star formation, and the UV background model related to the
reionization of the universe. These assumptions are referred to as the astrophysical
model in our work. To investigate the effects of the varying astrophysical models,
we consider the following models:

o Fiducial

We apply the star formation model in the AGORA project (Kim et al., 2014;
Kim et al., 2016) and the supernova feedback model described in Shimizu et
al., 2019. The self-shielding of the HI gas is not considered in this model. The
reionization is driven based on the UV background model described in Haardt
and Madau, 2012 at z = 6. For Fiducial model, we conduct the simulations for
a CDM model and 6 NCDM models.

e Shield

The configurations are almost the same as those of Fiducial model, but this
model considers the self-shielding of the HI gas.

e NoSF

This model does not consider star formation. The other configurations are the
same as those of Fiducial.

e FGO9

This model applies the different UV background model (Faucher-Giguere et
al., 2009) from the case of Fiducial model. The other configurations are the
same as those of Fiducial.

The simulations for the Shield, NoSF, and FG09 models are only conducted for the
CDM model. The details of Fiducial, Shield, and FG09 are discussed in Nagamine
etal., 2021.

Basically, this work focuses on the classification of the models of CDM and NCDM
based on Fiducial model. In Section 5.3.2, we investigate the effect of the varying as-
trophysical models.



56 Chapter 5. Constraint on Non-CDM mass

8x8 subregions

128x128 pixels

12.5 Mpc/h

: iy 7

100 Mpc/h cube — . 50Mpc/h
100 Mpc/h (Projection) H
training flip rotation
& validation : ]

ol e P

5 S 0 T |

8x8 subregions
w/ offset

Axis of projection

FIGURE 5.2: lllustration of the procedure for generating images from
simulations.

NCDM: 21 keV ~ NCDM: 1 keV

FIGURE 5.3: Example images of the CDM, 21 keV NCDM, and 1 keV

NCDM models, arranged from left to right. The upper and lower

panels show the images of dark matter and differential brightness

temperature 6T}, , respectively. For visibility, the T, images represent
the logarithm of the actual images.
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5.1.2 the Procedure of generating Images

In this subsection, we outline the process of generating images for training, valida-
tion, and testing of our CNN using data from the hydrodynamic simulations. The
scale of matter power spectrum suppression resulting from the free streaming of
dark matter is k| ~ 1 hMpc ! for the 1 keV NCDM and k; ~ 50 hMpc ! for the 46
keV (approximately 10*% eV) NCDM in the 2D Fourier space, where k| represents
the wave number in the direction perpendicular to the line of sight.

Therefore, it is necessary for the size of the image to encompass the mode k| ~
1 hMpc ! and for the pixel size to be sufficient to resolve the mode k| ~ 50 hMpc .
For the configurations of our simulation, the box size and the number of particles,
which determine the spatial resolution of our simulations, meet these requirements.

We generate images following the steps below (summarized in Fig 5.2):

e [STEP 1]

Firstly, a 10243 grid is defined in the simulation box. And then, in the case of
dark matter particles, they are relocated to their nearest grid point. For HI gas,
the HI number density nyy; in a grid, with its center located at x;, is computed
by summing over all particles contributing to this grid:

n(x;) = Z Wappi (x; — -"'»‘j|h,r')?’1111,j (5.1)
j

where nyy; ; is the HI number density represented by the j-th particle located at
x;, and Wgpy; is the SPH kernel following the cubic spline kernel (Monaghan
and Lattanzio, 1985). The SPH kernel is computed as

Wapri (7, h)
2 3
: I
1-2 () +3 (i) (O<r<}
N 3
=A }—1(2—h—;2) (b <r<h) (52)
0 (h<r),

where h denotes the smoothing length for each particle, and r represents the
distance between the particle and the center of the cell. The constant A is de-
termined such that the sum of Wspy; over all grids equals unity for each par-
ticle. This normalization ensures the proper weighting of contributions from
neighboring particles in the SPH calculations. The HI number density nyy; is
converted to the differential brightness temperature 47}, following Eq. (2.97).

e [STEP 2]

We cut out a part of the simulation box with a size of 100 x 100 (h~'Mpc)?
(transverse) x50 h~'Mpc (line of sight) , and obtain three slices. These slices
correspond to regions from 0 to 50 h~Mpc, 25 to 75 h~'Mpc, and 50 to 100
h~"Mpc along the line of sight, respectively. However, for one direction of the
line of sight, which is used to generate test images, only two slices from 0 to 50
h~'Mpc and 50 to 100 h~'Mpc are used to prevent overlap in the regions when
generating test images.

To determine the optimal length of the slice along the line of sight, we in-
vestigate the length from 50 h~"Mpc (limited by the sufficient number of im-

ages for CNN training) to 0.1 h~Mpc (the cell size in STEP 1). The perfor-
mance, evaluated by the AUC of the classification between the CDM and 10
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keV NCDM models, is found to be maximized when the projection depth is
set to 50 ™ 'Mpc.

Given that there are three degrees of freedom for the direction of the line of
sight and these can be treated as independent realizations, a total of (2 line-
of-sight directions) x (3 slices) = 6 slices are used to generate training and
validation images. For test images, (1 line-of-sight direction) x (2 slices) = 2
slices are used. Specifically, images from five slices are used as the training
data, and those from the remaining slice are used as validation data for the
two line-of-sight directions. Test images are generated using the two slices
from the other line-of-sight direction.

* [STEP 3]

Within each slice in STEP 2, we perform integration along the line of sight for
the mass density of dark matter ppy(x), where x is the 3D coordinate of the
center of cell. For dark matter, this integration yields a 2D map of the projected
dark matter density ppy (1), where 1 is the 2D coordinate of the center of the
cell. And then, we compute the 2D mass density fluctuation of dark matter
dpm(n), defined as dpyp(n) = (ppm (1) — Pom)/ Pom, where ppy is the average
projected density of dark matter. For 21cm signals, 6Tj, is accumulated along
the line of sight, described as 8T (1) = } 1,6 6Tp(x).

* [STEP 4]

From each slice, we crop 8 x 8 subregions with each size of 12.5 x 12.5 (h~'Mpc)?.
Each subregion corresponds to a single image with 1282 pixels, where the pixel
size corresponds to the scale of ~ 0.17'Mpc.

To augment the training data, when dividing the slices into 8 x 8 regions to
create training and validation data, we apply multiple offsets for the location
of the edge for cropping. These offsets are defined as A = 12.5i/16 h~ 'Mpc,
where i = (,1,---,15, in both the directions parallel and perpendicular to a
side. When the edge for cropping is out of the slice, we apply the periodic
boundary condition. While the shifted images may not be entirely indepen-
dent, this approach significantly increases the number of available images and
helps our training process.

Consequently, for the training, validation, and test images, we obtain (8 x 8 cut
out in STEP 4) x (5, 1, and 3 slices in STEP 2) x (162, 162, and 1 offsets) = 81920,
16384, and 128 images from one realization of the simulation, respectively. Addi-
tionally, in the training process of CNN, we apply the horizontal flip and rotation
every 90 degrees randomly to the images. Finally, the effective number of the train-
ing images is 81920 x 2 (flip) x4 (rotation) = 655360. The images for validation and
test of our CNN are not flipped and rotated. The validation images are only used
to monitor the progress of the training and do not contribute to the updating of the
weight parameters.

The test images are not completely independent of the training images because
these images are generated from the same simulation box. This may affect the results
of CNN. To examine that the test of CNN by using the test images from the same re-
alization as the training images is valid, we prepare another simulation of the CDM
and 10 keV NCDM model with the different random seeds of the initial conditions.
And then, we generate 128 test images from each of these new realizations following
the above procedure. Finally, we use these new test images to test our CNN trained
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by the original dataset. As a result, the AUC for the new test images is 0.80 and
consistent with AUC= (.78 for the original dataset.

The images of the dark matter density fluctuation § and the differential bright-
ness temperature 0T, have large dynamic ranges caused by the evolution of the
large-scale structure of the universe in the non-linear regime. It is not easy for our
CNN to extract information from images with large dynamic ranges. Therefore, we
transform the pixel values in the images as

ms(x) = sinh ™! [%")} , (5.3)
my(x) = sinh ™! [%@] , (5.4)

where b is a softening parameter that controls the smooth transition scale from linear
at x < 1 to logarithm at x > 1. We apply b = 1 for the dark matter images and
b = 1 [nK] for the 6T, images. Figure 5.3 shows examples of the images of the dark
matter and 4Tj,.

This transformation is originally designed for the magnitude system, known as
Luptitude, which is introduced by the Sloan Digital Sky Survey (Lupton, Gunn, and
Szalay, 1999). It is useful for reducing the dynamic range and can deal with negative

pixel values, unlike a simple logarithmic scale. We see the results of our CNN for
b =1 [nK]and b = 1 [mK] for the §T}, images of the CDM and 10 keV NCDM, and
the performance of our CNN for nK becomes better; the AUC is 0.95 for nK while it
is 0.78 for mK.

5.2 Methods

5.2.1 Power Spectrum

For comparison with the CNN approach, we use the power spectrum analysis. Note
that here we consider the classification problem between CDM and NCDM with
mass mpum, unlike the usual parameter inferences. To do this, we calculate the 2D
power spectrum of the test images generated in Section 5.1.2. In this work, we define
the 2D Fourier counterpart of the quantity A(#n) as

Alky) = [ exp{(—ik, -n)}A(n)d*n. (5.5)

In this work, we calculate the discrete 2D Fourier transform of images, and the dis-
crete wave number of the i-th bin is represented as k| ;.
For the dark matter test images, we calculate the 2D power spectrum as

. 11 - .
PPM(k ;) [(h"Mpc)?] = N Y dom(kj)dbm(k L), (5.6)
14 Jr

and for the 4T} test images, the 2D power spectrum is written as

0 . 1 1 = =
Pl (k ;) [mK?(h™"Mpe)?] = N Y 6Ty (ki j)oTy (kyj), (5.7)

Li

where ppy and 8T}, are the 2D Fourier counterparts of dpy and 6Ty, respectively, k| ;
is = |k 4, k,jand Ny  are the vectors of the wave number and the number of
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FIGURE 5.4: The 2D 6T, power spectra measured from the entire box

of the simulation for CDM (blue-solid), 10 keV (orange-dashed), 4.6

keV (green-dotted), and 2.1 keV (red-dash-dotted) models, respec-
tively.

the modes satisfying k ; < |k ;| < ki i1, respectively, and L is =12.5 b~ 'Mpc,
corresponding to the images size. The factor 1/L? is required for the 2D Fourier
transform for the finite interval and L becomes = 27t if the image size is infinite.
The minimum and maximum of k| ; correspond to the inverse multiplied by 27 of
the size and resolution of the image, multiplied by 27, respectively. We evaluate the
classification results for the number of k | -bins ranging from 1 to 20 and find that 4
bins are optimal.

Figure 5.4 shows the 2D power spectra of éTj,. Unlike the dark matter power
spectrum, we see the overall suppression of the amplitude for NCDM models. This
can be explained as follows. The NCDM model affects the HI ionization through the
star formation efficiency due to the different amplitude of clustering of dark matter.
It drastically changes the abundance of HI with respect to the dark matter halo. This
modifies the HI bias, and affects the overall amplitude of the power spectrum.

The covariance matrix of the power spectra for the test images from the CDM
simulation can be measured as

1

Cum —
N; img

Z (pl (kJ_,m) - p(kJ_,m)) (pl (kJ_,n) - P(kJ_,n)) ’ (58)
I

where P; is the 2D power spectrum for the I-th CDM test image, of which the number
is 128 and is denoted as Nimg and P(k ) is the averaged power spectra over the
power spectra for the CDM test images.
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Layer Output
1 Input 128 x 128 x 1
2 || 3 x 3 convolution | 126 x 126 x 32
3 || 3 x3 convolution | 124 x 124 x 32
4 || 3 x 3 convolution | 122 x 122 x 64
5 || 3 x 3 convolution | 120 x 120 x 64
6 || 3 x 3 convolution | 118 x 118 x 128
7 || 1 x1 convolution | 118 x 118 x 64
8 || 3 x 3 convolution | 116 x 116 x 128
9 2 x 2 AvgPool 58 x 58 x 128
10 || 3 x 3 convolution | 56 x 56 x 256
11 || 1 x 1 convolution | 56 x 56 x 128
12 || 3 x 3 convolution | 54 x 54 x 256
13 2 x 2 AvgPool 27 x 27 x 256
14 || 3 x 3 convolution | 25 x 25 x 512
15 || 1 x 1 convolution | 25 x 25 x 256
16 || 3 x 3 convolution | 23 x 23 x 512
17 2 x 2 AvgPool 12 x 12 x 512
18 || 3 x 3 convolution | 10 x 10 x 512
19 || 1 x 1 convolution | 10 x 10 x 256
20 || 3 x 3 convolution 8 x 8 x 512
21 || 1 x 1 convolution 8 x 8 x 256
22 || 3 x 3 convolution 6 x 6 x512
23 GlobalAvgPool 1x1x512
24 || FullyConnected 2

TABLE 5.1: The architecture of our CNN. In the second column, we
show the layer type, and in the third column, we show the output
size from the layer (height x width x channel), where the channel
denotes the number of the feature maps. This CNN has the 8328610

weight parameters.
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5.2.2 CNN architecture

Here, we describe the architecture of our CNN. Table. 5.1 shows the architecture,
which follows the previous work (Ribli et al., 2019) but we remove the first two av-
erage pooling layers in (Ribli et al., 2019) to adjust to our input image with 1282
pixels. Here, in the second column, "convolution”, "AvgPool", "GlobalAvgPPool", and
"FullyConnected" represent the convolution, average-pooling, global average pool-
ing, and fully connected layer. To construct this CNN, we use PyTorch, which is
the Python module for the implementation of neural networks. Our CNN has the
~ 8 x 10° weight parameters. Han et al., 2015 suggests that the number of the train-
ing data should be more than one-tenth of the number of its weight parameters to
avoid both over- and under-fitting to the training data. We have sufficient training
images, of which the number is ~ 10 effectively for a realization.

Here, we explore the optimal number of layers. In the case that we reduce the
number of layers by removing the 4th, 5th, 6th, 12th, 16th, and 22nd layers in Ta-
ble 5.1, the cross entropy loss Eq. (3.11) for this smaller architecture becomes 10
times larger compared to the one for the original architecture, and our CNN clas-
sifies the images at random and cannot distinguish the dark matter models. These
results mean that this smaller architecture is too simple to classify the dark matter
models. On the contrary, we consider the case that we add convolution layers after
each original convolution layer with zero-padding, where the size and number of
the kernel are the same as the one in the previous layer. Zero-padding means the
adding of extra pixels with the value of zero, surrounding the input image, and is
used to keep the size of the input image, In this case, we cannot observe the reduc-
tion of the loss value in training. This is because this architecture is too complex and
its parameters cannot be optimized properly. It is probable that too large number
of the weight parameters cause the vanishing gradients (He et al., 2016). This larger
architecture also classifies images randomly.

In training our CNN, the initial value of the weight parameters is given ran-
domly, and they are updated through the training. For efficient training, we apply
a batch normalization introduced in Section 3.2.4 after each convolution layer in Ta-
ble 5.1. As an activation function in each convolution layer, we use ReLU described
as Eq. 3.5.

Here, we can describe the outputs as

pi(M) = {pi(CDM|M), p;(NCDM|M)}, (5.9)

where M represents the true dark matter model for the i-th input image, and p;(k|M)
is the predicted probability that the i-th input image from model M is from k model.
Our CNN is trained to enlarge the element of P;(M|M).

We obtain the output value written as Eq. (5.9) by converting of the raw output
from the last FullyConnected layer, described as y(M) = {y;(k|M), y;(k|M)}, using
the softmax function:

) - oxp{((HM)}
P = S T eoMM)} + eplaNeompy 1O

For the loss function, we apply a cross-entropy loss using the above expression
of the outputs:

Ei(w) = — ;f’s(HM) In (p;(k[M)). (5.11)

Here, p; corresponds to the ground truth, and takes 1 for the correct class (k = M)
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and 0 for the other case (k # M). p; corresponds to our CNN prediction takes from
0 to 1 continuously.

To optimize the weight parameters using the loss function E, we apply the AMS-
GRAD(Reddi, Kale, and Kumar, 2019), described in Section 3.2.2. In our work, we
choose # = 107> as the learning rate. We apply the mini-batch learning and set 8 as
the batch size in training our CNN. The validation images are used to monitor the
training progress, and we define the completion of the training is that the loss for
the validation images averaged over the latest 5 epochs converges to 1%.

5.2.3 Evaluation of Classification

In this study, our focus is to distinguish between the images of the CDM model
and NCDM models. We employ the Kolmogorov-Smirnov test and Area Under the
Curve (AUC) as metrics to assess the effectiveness of our classification. The former
metric is used to evaluate the classification performance of our CNN and the power
spectrum, while the latter provides a quantitative measure of the CNN classification
results.

Kolmogolov-Smirnov Test

The Kolmogorov-Smirnov (KS) test is a method to determine if two different finite
samples have the same probability distribution (Kolmogorov, 1933; Smirnov, 1939).
We apply the KS test to classify the images of the CDM and NCDM models using
either our Convolutional Neural Network (CNN) or the power spectra.

For both the power spectrum and our CNN outputs, we evaluate the classifica-
tion performance using the distributions of x? values defined in the following. For
the i-th test image from the dark matter model M, the x? value of the power spec-
trum is computed as follows:

Xps,i (M) = AP;(k [M)C AP (k( [M). (5.12)

Here, AP;(k | |[M) is = P;(k M) — P(k, |CDM), where P;(k, [M) is the power spec-
trum of the i-th input image from the dark matter model M calculated by Eq. (5.6)
or Eq. (5.7), and P(k ) is the averaged power spectrum over the CDM images. C !
is the inverse covariance matrix for P(k, |CDM) calculated by Eq. (5.8). Concern-
ing our CNN classification, the x? value is determined by evaluating the difference
between the outputs for two dark matter models:

2 (M) — (yi(M) — 7(CDM))? ) 5.13
XCNN,:( ) % Z y} (CDM) CDM))Z ( )
i

where y;( M) represents the output from CNN for the i-th input image of dark matter
model M. 7(CDM) is the mean of our CNN outputs over the CDM test images and
the denominator of the right-hand side is the variance of y;(CDM).

Following that, we apply the Kolmogorov-Smirnov (KS) test to compare the dis-
tributions of x7(CDM) and x7(NCDM) using the stats.ks_2samp method available
in the SciPy library (Virtanen et al., 2020), a Python module.

Our null hypothesis is that the distribution of x?(NCDM) follows the same dis-
tribution as the one of x?(CDM). In this analysis, we set the significance level to a
p-value of 0.01 (~ 2.60).
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Note that the KS test only informs us about the presence or absence of a sig-
nificant difference between the images of the two dark matter models. It does not
provide a quantification of whether the output is correct or not. We evaluate the
correctness of the classification by the AUC introduced in the next section.

AUC

Firstly, we introduce the Receiver Operating Characteristic (ROC) curve. Our CNN
provides the probability that the input image is of the NCDM model denoted. We
denote the predicted probability that the i-th input image is the NCDM model as
pi. In binary classification, a specific threshold f is required. The CNN recognizes
the input image as the NCDM model if p; > t. Therefore, we can consider the four
different cases

1. True Positive (TP): p;(NCDM|NCDM) > ,
2. True Negative (TN): p;(NCDM|CDM) < ¢,
3. False Positive (FP): p;(NCDM|CDM) > ¢,

4. False Negative (FN): p;(NCDM|NCDM) < t.

Each quantity is a function of t.
And then, we can define the following quantities:

FP TP

“mg YO e (5:14)

ROC : x(t)
where x represents the ratio of the number of misclassified images as the NCDM
model to the one of the CDM test images, and y represents the ratio of the number of
correctly classified images as the NCDM model to the one of the NCDM test images.
The trajectory of the point (x, ) with varying threshold f continuously from 0 to 1 is
referred to as the ROC curve.

Subsequently, we can consider the area under the ROC curve (AUC). The AUC
approaches unity when the classification is efficient and complete, while it approaches
0.5 when the classification is insufficient and incomplete.

5.3 Results

In this section, we show the results of the binary classification between the images of
the CDM and NCDM models. The classifications are conducted by the image analy-
sis with CNN and the power spectrum analysis, and the results of the classification
by these analyses are compared. Section 5.3.1 shows the results of the classifications
by the CNN and the power spectrum for both the image of the dark matter and the
0Ty. We compare the results. In Section 5.3.2 and 5.3.3, we discuss the effects of
the choice of the astrophysical models and those of the system noise existing in the
observations.

For convenience, we first define the acronyms X-Y, where X represents the method
(either CNN or PS for power spectrum) and Y represents the observable (either DM
for dark matter or 6T3). For example, CNN-4T}, corresponds to the classification by
the CNN using the 6T, map.
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FIGURE 5.5: The AUC for the classification between CDM and

NCDM, of which the mass is represented in the horizontal axis. The

horizontal dashed line corresponds to the case of the random classifi-

cation. The blue solid and orange dashed line represent the results of

CNN-DM and CNN-6Tj, respectively, and both methods show com-
parable results.
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FIGURE 5.6: p-values of our KS test represented as a function of

the dark matter mass mpy;. We compare CNN (blue solid) with the

power spectrum (orange). The upper and lower panel show the re-

sults of the classification of the dark matter and 6T, images, respec-

tively. CNN shows a better performance than the power spectrum for
both cases of the dark matter and 6T}, images.
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5.3.1 the Classifications of dark matter and 6T, images

In this subsection, we show the classification results of the dark matter model and
compare the results for images of dark matter and 4T}, using both CNN and power
spectrum analyses. These classifications are evaluated using the AUC and the KS
test.

First, we compare the results of CNN-§T}, with those of CNN-DM. Figure 5.5
shows the AUC values of the classification results. As shown in this figure, for both
of the cases of dark matter and 4T, images, AUC values are greater than 0.95 for
mpy < 10 keV. AUC values of CNN-6T;, are comparable to those of CNN-DM for
across the entire mass range of NCDM we consider. Thus, we can conclude that 6T,
is a valid tracer of the dark matter distribution for our CNN.

Next, we compare the p-value of the KS test for CNN-DM and PS-DM, as well as
CNN-6Ty, and PS-0T,. Figure 5.6 shows the results of CNN-DM and PS-DM (upper
panel) and of CNN-4T, and PS-8T}, (lower panel). The results of CNN and the power
spectrum are described by the blue solid and orange dashed line, respectively. Our
CNN outperforms the power spectrum for both of the cases of the dark matter and
0Ty, images. The p-value of CNN-DM and CNN-4T}, is less than 0.001 at mpy = 4.6
keV, and these methods can reject the null-hypothesis with high significance. On the
other hand, the p-values of PS-DM and PS-0T, are larger than 0.1.

Finally, we compare CNN-DM with CNN-4T},. These methods provide a similar
performance for the KS test. The p-values of the classifications by both of them are
less than 0.001 for the mpy < 10 keV NCDM and these methods can distinguish the
images of CDM and NCDM with high significance. Their performances diminish
for more massive NCDM, for example, the p-values of CNN-DM and CNN-4T}, are
= 0.37 and > 0.99 for mpy = 21 keV, respectively.

5.3.2 Effects of the Astrophysical Models

Here, we examine the effects of the different astrophysical models from Fiducial in
our classifications. To assess their effects on the classifications, we replace the CDM
test images of Fiducial model with those of the different astrophysical models such
as Shield, NoSF, and FG09. This implies that our CNN is trained using images from
the incorrect astrophysical model. In the following, we only consider PS-6T;, and
CNN-6Tp.

Figure 5.7 shows the results of the KS test for PS-0T;, (upper panel) and CNN-4Tj,
(lower panel). The p-values for PS-6T}, in the upper panel of Figure 5.7 are less than
0.001 at mpm < 4.6 keV, regardless of the astrophysical model. They exceed 0.1 at
more massive NCDM, where the power spectrum cannot classify the dark matter
models. Hence, the differences in the astrophysical models do not have significant
impacts on our analysis using the power spectrum.

Next, the p-values for CNN-4Tj, are also shown in Figure 5.7 (lower panel). Our
CNN can distinguish between CDM and NCDM with mpy < 4.6 keV independent
of the astrophysical model, except for FG09. The p-values for NoSF (orange dashed)
Shield (green dotted) models are comparable to those of Fiducial (blue solid), while
FGO09 (red plots) exhibit different behavior. Table 5.2 shows AUC values for the dif-
ferent astrophysical model for mpm = 2.1, 4.6, 10, 21 keV. As we can see in this table,
our CNN can distinguish between images of CDM and NCDM for mpy < 10 keV for
Fiducial, Shield, and NoSF. However, our CNN cannot correctly classify the images
of FG09 CDM model and NCDM models with mpy > 4.6 keV, despite the p-values
in Figure 5.7 being close to zero for these classifications. Therefore, the difference
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FIGURE 5.7: The p-values of the KS test. In the vertical axis, we show
the p-value for PS-6T), (upper panel) or CNN-6T}, (lower panel). Here,
the Fiducial (blue solid), NoSF (orange dashed), Shield (green dotted),
and FG09 (red square plot) models are assumed. For CNN-6T}, p-
value for FG09 model is significantly different from that of Fiducial
model. CNN-4T;, provide small p-values for FG09 model, but CNN
cannot classify the images correctly, as we can see in Figure 5.8 and
Table 5.2.
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Model || 2.1keV | 46keV | 10keV | 21 keV

Fiducial 1.00 1.00 0.96 0.58
Shield 1.00 1.00 0.96 0.58
NoSF 1.00 1.00 0.95 0.51
FG0O9 1.00 0.5 0.28 0.02

TABLE 5.2: The AUC values for different astrophysical models and

dark matter mass models. The Shield and NoSF models do not have

significant effects on the classification, but the FG09 model drastically
spoils the classification.

in the HI gas density map between CDM and NCDM might be partly mimicked by
the effect of the different UV background models. However, for mpy < 2.1 keV, we
do not observe the effects of the astrophysical models in the classifications. Thus,
we can conclude that our CNN classification for this mass range is robust against
differences in the astrophysical model, at least within the astrophysical models we
consider in this work.

For further discussion, we evaluate the classification results using the confusion

matrix, defined as
TP FN

TP+ FN TP+ FEN

, (5.15)
FP TN

TN +FP TN +FP

where TP, FN, TN, and FP are calculated at threshold t = 0.5. The diagonal com-
ponents represent the results for the correct classification, where the upper left and
lower right components correspond to the fraction of correctly classified test images
of NCDM and CDM, respectively. On the other hand, the non-diagonals represent
the results for the misclassified images, where the upper right and lower left com-
ponents correspond to the fraction of misclassified test images of NCDM and CDM,
respectively.

Figure 5.8 shows the confusion matrix of the results of CNN-6T;,. The astrophys-
ical models, including Fiducial, Shield, NoSF, and FG09, are considered from top to
bottom, and three NCDM models with mpy = 4.6, 10, and 21 keV are arranged
from left to right. There are little differences among Fiducial, Shield, NoSF in the con-
fusion matrix, similar to AUC values shown in Table 5.2. However, all CDM test
images from the FG09 model are consistently misclassified as NCDM, regardless of
the NCDM mass, and AUC values also decrease drastically. These results imply that
the number of correctly classified images of CDM decreases when we assume the in-
correct astrophysical model. The underlying reason might be the presence of more
HI gas in the FG09 model compared to the UV background model used in Fiducial
model (Haardt and Madau, 2012).

We also investigate the effects of the astrophysical model on the 6T, power spec-
tra. Fig 5.9 shows the fractional difference of P°’s(k ) for different astrophysical
models and NCDM modes with respect to the P°’#(k | ) for Fiducial CDM model. The
errors are depicted by the dark-gray shaded region, where the error corresponds to
the 1-0 error from cosmic variance 1/,/N . The power spectra of NCDM mod-
els are suppressed compared to the Fiducial CDM model. On the other hand, the
power spectra of the NoSF and FG09 models are amplified, while there is little dif-
ference between the Shield and Fiducial models. However, NoSF model does not have
a large effect on the classifications of CNN-6T}, and the images from FG09 model are
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FIGURE 5.8: The confusion matrices for CNN-4T,.

Column: the NCDM masses, 4.6, 10, and 21 keV from left to right
Row: the astrophysical models, Fiducial, Shield, NoSF, and FG09 from
top to bottom.

The confusion matrices of Shield and NoSF are almost identical to that
of the Fiducial model. On the other hand, for the FG09 model, the
CDM test images are classified into NCDM incorrectly, regardless of
the mass of NCDM.
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FIGURE 5.9: The ratio of the 6 T, power spectrum for the Fiducial COM

model to Shield (blue solid), NoSF (orange solid), FG09 (green solid),

4.6 keV (violet dashed) or 2.1 keV (red dashed) model. The shaded

region shows 1 — ¢ error of the cosmic variance (dark gray) and 1-0

error of the cosmic variance + the system noise introduced in Section
5.3.3 with tp = 1,000 hours (light gray).
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FIGURE 5.10: The 2D power spectrum of 6T}, + noise (blue), 6T, only
(orange), and noise only (green) for the Fiducial CDM simulation. For
the noise power spectrum here, the integration time tg is 1,000 hours.

misclassified, as shown in Figure 5.7 and 5.8. Therefore, the effects of the different
astrophysical models on the classifications of CNN-4T}, cannot be explained solely
by the effects on the power spectrum. It is probable that the reason for the misclas-
sifications in the FG09 model is that the classification with our CNN depends on
whether the image is of the CDM model or not, rather than the difference between
the two dark matter models.

In Appendix B, we explore the properties of the HI halo and the effects of the
astrophysical models on the halo properties.

5.3.3 Effect of System Noise

Here, we consider the effect of the system noise for the SKA-MID that can observe
2lcm signals at 0 < z < 3. Indeed, we should consider the effects of foreground con-
tamination, which is the contamination at radio frequencies by Galactic synchrotron
emission, Galactic free-free emission, and extragalactic sources. The signals from
these contaminants are much brighter than the signals from the HI gas. To remove
these contaminations, various methods of foreground removal, such as the principal
component analysis (PCA) (Spinelli et al., 2022), generalized morphological com-
ponent analysis (GMCA) (Carucci, Irfan, and Bobin, 2020)m and Gaussian process
regression (Soares et al., 2022; Chen et al., 2023), have been suggested. In this work,
we assume the most optimistic case, where the foreground contaminations are com-
pletely removed from our data. This is because our aim in this work is to demon-
strate the potential of CNN for the image analysis of 21cm intensity mapping using
the simulation data. In fact, foreground removal is challenging, but the investigation
of the effects of foreground contamination will be part of our future work.
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FIGURE 5.11: Each panel show the image of 12.5 x 12.5 (Mpc/h)?

region of 6T} (left), only noise with to = 1,000 hours (middle), and

the map of the sum of 6T, and noise (right). These images show

the same region in a Fiducial simulation box. The pixel value is

arcsinh (4T, [mK]). Note that the darker pixel represents the higher
6T}, for visibility.

To generate the images including the system noise, we first generate the 3D noise
map with a size of 100 h~!Mpc on each side and 1024° grids, consistent with the con-
figuration used in STEP 1 in Section 5.1.2. We assume the noise follows a Gaussian
distribution with a mean of 0 and a variance of Pyeise as a simplistic assumption,
where P, ise 18 the noise power spectrum introduced in the following part. Next,
we combine this noise map with the simulation data after completing STEP 1 in Sec-
tion 5.1.2. Finally, we generate the images following the same procedure as described
in STEP 2-4 in Section 5.1.2. However, we apply the transformation of Eq. (5.4) with
a different b from previous sections. For the 6T, images including system noise, we
apply the transformation with b = 1 mK instead of b = 1 nK, i.e,,

(5.16)

m,‘;.b-“ — sinh [JTb(x) +noise]

(ImK)

The transformation of sinh (x/b) is a linear transformation at scales of x/b < 1
while it is a logarithmic one at scales of x/b > 1, where the softening parameter b
controls the transition scale. We find that the structure of the HI distribution in low-
density regions contains significant information for our classifications and b = 1
nK works well in the images without the noise. However, low-density regions are
highly contaminated by the system noise, with an amplitude typically on the order
of 1 mK in our assumption. In the case of the images including noise, we focus on
high-density regions of HI, where 6T} is > 1 mK, by setting b = 1 mK. In practice,
for the images including noise, the AUC value of the classification between the CDM
and 1 keV NCDM for b = 1 mK is 0.78 while it for b = 1 nK is 0.67. b is the
hyperparameter in our analysis and needs to be optimized, but we use b = 1 mK in
this work.
The power spectrum of Gaussian noise is described as (Geil, Gaensler, and Wyithe,

2011)
qu ZA /12 2
. ~ sys X BX
R““iki)"Bq,mkaD/znng (Ac) ’ (5.17)

where Ty / A ~ 0.2 represents the ratio of the system temperature to the effective
area, B is the frequency band, fy represents the total integration time of the assumed
observation, x [h_lMpc | is the comoving distance from us to the source at z = 3.0,
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FIGURE 5.12: The p-values for the classification of the noised images

with the observation time ty =500 (blue solid), 1,000 (orange dashed),

and 5,000 (green dotted) hours. The upper and lower panels corre-

sponds to the results of the power spectrum (upper panel) and our
CNN (lower panel), respectively.
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Ax is the depth of the survey volume, A is the observed wavelength of the 21em
signals, and ¢ and vy are the speed of light and the rest frequency of a 21cm signal.
In our analysis, Ay is 50 [k~ Mpc|, which is the projection length in making images
and we can approximate Ay ~ :}01:{2 z}; B. Here, B is ~ 4.5 MHz and the SKA-Mid can
resolve this frequency band. n,(U, v) represents the baseline number density of the
interferometer, given by

Fmax
ny(k x/2m,v) =Cy / dr 27trng(r)
Jo
27T
X dp ng(|r — Ak | x/2m|), (5.18)

Jo
where v is the observed frequency, r [km] is the distance between the center of the
region where the antennas distribute and another antenna, ry,,, is the maximum
value of r and is = 150 km, 1, is the number density of the antenna described as

ne (r<r)
Ma(r) = e (/72 (e <7 < o) (519)
0 (?‘ = rmax) ,

where 7, represents the number density of the antenna in its core region and is writ-
ten as 1. = N/ (7tr2 + In (rmax/7c)), rc [km] is the core radius and is 2 km, Na = 197
is the total number of antennas. Cp in Eq. (5.18) is the normalization constant and is
determined so that n;, satisfies

(1/27) / ki x2np(k x/2m)dk, = Ny(N, —1)/2. (5.20)

The specifications for the observation used in this calculation are taken from the
pages'?>. Note that the field of view of the SKA-Mid is ~ 10 [deg”] while the box
size (= 100 [k~ "Mpc]) corresponds to 1.6 [deg?®]. Therefore, the practical observation
by the SKA-Mid can provide us with a larger survey area and this difference can
affect the results.

In this work, we assume the integration times of fp = 500 hours, 1000 hours
following Villaescusa-Navarro et al., 2015, 5000 hours to investigate the effects of
the integration time. The value of f; = 1000 hours is often used such as (Villaescusa-
Navarro et al.,, 2015; Crocce, Pueblas, and Scoccimarro, 2006; Pritchard et al., 2015),
for example.

Figure 5.10 shows the 2D power spectra of 6T}, only (orange), noise only (green),
and their combination (blue). We can see that the noise power spectrum exceeds the
one of the 6T;, signals around k| > 5 hMpc . Figure 5.11 shows examples of the im-
ages of T, only (left), noise only (middle), and 6T+ noise (right). The bright regions
are barely visible in the right image. Figure 5.9 also shows the fractional difference
of P?To (k) for the NCDM models with respect to the one for the CDM model. It
compares these difference with the errors, including the system noise depicted in
the light-gray shaded region. We can see the dark matter model classification is
challenging for the images including the system noise.

Thttps:/ /www.astron.nl/telescopes /square-kilometre-array /

https:/ /www.skao.int/en/science-users/118/ska-telescope-specifications

Shttps:/ /indico.skatelescope.org/event/940/contributions /8511 /attachments /7800 /12784 / MA-
SUM_Dish%20pdf.pdf
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For the images including the system noise, we train our CNN following the pro-
cedure described in Section 5.2.2. Figure 5.12 shows the classification results de-
scribed by the p-values of the KS test for PS-6T, (upper panel) and CNN-4T;, (lower
panel). Each line shows the p-value as a function of mpy, for the classification of the
noised images with ty = 500 (blue solid), 1000 (orange dashed), and 5000 (green dot-
ted) hours, respectively. PS-6T}, can classify the noised images of the CDM and 1 keV
NCDM with ty = 5000 hours with high significance (~ 3-¢) but cannot distinguish
the 1 keV NCDM from CDM with t; — 1000 hours. On the other hand, CNN-4T}, can
distinguish the images between the CDM and thel keV NCDM with f; = 500 hours
as well as the 2.1 keV NCDM with t; = 5000 hours. The system noise prevents the
classifications with both the power spectrum and CNN, but CNN still outperforms
the power spectrum. The feature of 1 keV NCDM mass is obscured by the system
noise of SKA-MID with f; = 1000 hours observation in the power spectrum analysis,
but our CNN succeeds in capturing this feature.

Finally, we discuss the comparison between the effects of the astrophysical mod-
els and the system noise. The classifications with CNN-6T;, without considering
the system noise are not largely affected by the Shield and NoSF models and are af-
fected by FG09 model for mpy > 4.6 keV as shown in Table. 5.2. However, the
classifications of CNN-4Tj, are affected by the system noise with ty = 1000 hours for
mpum > 2.1 keV as shown in Figure 5.12. Therefore, the effects of the system noise
exceed those of the difference of the astrophysical models, but the effects of the as-
trophysical models become important in future observations with higher sensitivity.

5.4 Conclusion

In this work, we investigate the image-based CNN analysis of 21cm intensity map-
ping to constrain the mass of dark matter particle. We conduct the cosmological
hydrodynamic simulations with the different dark matter models, such as the CDM
model and NCDM models with varying the mass of dark matter particle. We gen-
erate the images of the mass density distribution of dark matter, and those of the
21cm signals described by the differential brightness temperature 6T,. And then, we
compare the performance of the classification using CNN and the power spectrum
and demonstrate the potential of the CNN analysis.

Firstly, we compare the results of the classifications for the four cases, such as
PS-DM, CNN-DM, PS-6Tp,, and CNN-6T;. Here, the AUC and KS test are used to
evaluate the classifications for our CNN, and both of our CNN and the power spec-
trum, respectively. In Figure 5.5, we can see that the results described by the AUC
for both images of dark matter and 67T, are comparable. We can conclude that 6T, is
a valid tracer of the dark matter distribution in our CNN analysis.

In Figure 5.6, we compare the performance of the classification described by the
p-values of the KS test between our CNN and the power spectrum. For both the
images of dark matter and 67T}, our CNN outperforms the power spectrum. Specifi-
cally, our CNN can classify the CDM model and the 10 keV NCDM model with high
significance, while the power spectrum can distinguish between the CDM and 2.1
keV NCDM.

Next, we examine the effects of the different astrophysical models. To do this,
we conduct the additional simulations of the CDM model with varying astrophysi-
cal models, such as Shield, NoSF, and FG09. Subsequently, we generate images from
these additional simulations and replace the test images of the Fiducial CDM with
those of the different astrophysical models. From Figure 5.7, we obtain the following
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results; For PS-6T;,, we do not find the significant impacts of the different astrophysi-
cal models on the classification. However, for CNN-0T},, we can see FG09 model has
a large effect on our classifications. From these results, we conclude that our CNN is
robust against the difference of the astrophysical models we consider, for mpy < 2.1
keV.

Table 5.2 also shows the effect of the FG09 model, and our CNN cannot correctly
classify the images of the FG09 model from the npy > 4.6 keV NCDM. In Figure 5.8,
which shows the confusion matrix, we see the FG09 CDM images are misclassified
as NCDM. We explore how different astrophysical models have effects on the power
spectrum in Figure 5.9. However, the behaviors of the power spectra for the different
astrophysical models cannot explain the reason for the misclassifications of CNN
for FG09 model. There is a possibility that the results are affected by the presence
of more HI gas in the FG09 model compared to the UV background model used in
Fiducial model (Haardt and Madau, 2012).

Finally, we study the effects of the system noise. In this work, we assume the
SKA-MID survey. As a simplistic assumption, we add the Gaussian noise to the
images obtained from the simulations. The power spectrum and image considering
this noise are shown in Figure 5.10 and Figure 5.11. Figure 5.9 compares the power
spectrum differences between the CDM model and the NCDM models, considering
errors including system noise depicted by the light gray-shaded region As we can
see in this figure, the classifications of dark matter models become challenging at
the presence of the system noise. In fact, Figure 5.12 shows the degradation of the
performance of PS-6T, and CNN-4T;,. However, even if the system noise is included
in images, the performance of our CNN exceeds than the one of the power spectrum.
As an example, CNN-6T}, can distinguish the 1 keV NCDM model with the noise
from the t; — 500 hours observation, and the 2.1 keV NCDM model with the noise
for ty = 5000 hours, while PS-6T;, can only distinguish the 1 keV NCDM model with
to = 5000 hours.

In addition, we compare the impacts of the different astrophysical models and
those of the system noise. For the astrophysical model, FG09 model has a significant
effect on the classification of CNN-6T;, for mpy > 4.6 keV as shown in Table 5.2.
However, the system noise with f; = 1000 hours has a large effect on the classifica-
tion for m > 2.1 keV. Therefore, the effects of the different astrophysical models are
hidden behind those of the system noise in our assumption.

This work demonstrates the potential of the CNN to constrain the particle mass
of dark matter more effectively than the power spectrum, where We assume the 67T},
signals as an observable, which can be observed by radio observations such as SKA
instead of the dark matter distribution. However, some effects, which we ignore
but should consider in practical observation, such as foreground contamination, the
selection of the target redshift, and redshift space distortion, are not considered yet.
We will revisit these challenges in future work.
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Chapter 6

Summary

In this thesis, we focus on machine learning approaches, to investigate the elements
beyond the ACDM model. The ACDM model consists of two assumptions: A as
the cosmological constant, related to dark energy causing the accelerated expansion
of the universe, and cold dark matter (CDM), which is the dominant component
of matter in the universe and derive the growth of the large-scale structure of the
universe. However, their properties are still unknown, and there is a room for mod-
ifications.

To investigate models beyond ACDM, we consider two quantities; the growth
rate and mass of non-cold dark matter (NCDM), which are related to the accelerated
expansion of the universe and dark matter, respectively. However, we encounter
some challenges, such as the non-linear modeling of the power spectrum for mea-
suring the growth rate and the analysis of the non-Gaussian distribution of matter
caused by non-linear evolution for constraining the mass of NCDM. To solve these
problems, we utilize machine learning approaches. The image-based analysis with
machine learning enables us to analyze the large-scale structure of the universe di-
rectly from its image.

This thesis demonstrates the potential of machine learning approaches to pre-
dict the growth rate through observational data, such as galaxy clustering, without
a theoretical model of the statistics of observables. It also explores the constraint on
the mass of NCDM using the HI distribution, a tracer of the dark matter distribu-
tion observable through radio frequency observations. This paper consists of two
works with machine learning approaches: (1) estimation of the growth rate and (2)
constraint on the mass of NCDM.

(1) This work is in Chapter 4 and Murakami et al., 2023b.

The growth rate fog represents the time evolution of the density perturbation of
matter. Structure formation is mainly caused by gravity, and therefore the growth
rate reflects the effects of modifications to the standard gravity theory. Therefore, it
is often used as a probe of modified gravity theories. Modified gravity theories alter
the equations describing the evolution of the universe, and may explain the origin
of the accelerated expansion of the universe.

In general, we measure the growth rate through the observations of the large-
scale structure such as galaxy clustering, and two-point statistics such as the power
spectrum are used to analyze the data. However, estimating fog requires a theo-
retical model of the statistics of observables, and modeling at non-linear scales is
challenging.

To avoid this modeling difficulty, we use convolutional neural networks (CNN)
and estimate fog directly from the matter distribution in the N-body simulations
without theoretical modelings. In this work, we use the Quijote simulations, which
are the publicly available dataset of the N-body simulations. We generate 3-dimensional
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images of the distribution of dark matter particles and dark matter halo from the
simulations with varying cosmological parameters and train our CNN.

First, we show the results of the prediction of fog for images of dark matter and
halo in Figure 4.4,4.5,4.6. We find that A f oy is centered around zero for each analysis
of dark matter, halo, and randomly selected halo. Therefore, we conclude that our
CNN successfully constrains fog without a significant bias.

In addition, this work compares the errors of the predicted value of fog from our
CNN with those of the power spectrum analysis with machine learning as shown in
Figure 4.7. As a result, our CNN shows the redshift dependence of the results and
provides smaller errors at high redshift while it shows larger errors at low redshift.
One possible reason for these results is that our CNN might struggle to obtain the
information in the data at scales of the non-linear regime at low redshift. Another
possibility is that there is room for optimizing our CNN architecture for low redshift
data.

We also investigate the reason for the redshift dependence of our CNN results,
which the Fisher analysis does not show. We show some possibilities: non-linearity,
parameter sampling, choice of the training, validation, and test dataset, random se-
lection of halo, and random seed of the initial condition of the simulations. We have
examined these possibilities, but we do not completely explain the reason for the
redshift dependence of our CNN results. We leave the extension of our analysis for
future works.

(2) This work is in Chapter 5 and Murakami et al., 2023a.

Since the mass of NCDM affects the matter distribution at small scales due to
their free streaming, we can obtain information of the NCDM mass from the analysis
of the matter distribution in the universe. However, we cannot observe the dark
matter distribution directly, and the distribution is highly non-Gaussian at small
scales including the information of the NCDM mass.

In this work, we focus on the HI distribution, which can be observed as 21cm
signals 6T}, as a tracer of dark matter distribution, and image-based analysis with
CNN to extract features from the non-Gaussian distribution of 47},.

We use the cosmological hydrodynamic simulation GADGET3-0saka in the CDM
model and NCDM models with different masses, and generate images of the distri-
bution of dark matter and 4T}, to train and test our CNN. In this work, to demon-
strate the potential of CNN to constrain the mass of NCDM, we classify the images
of CDM and NCDM by CNN and the power spectra and evaluate the classification
results by comparing these methods.

Figure 5.5 shows the difference in the results of our CNN between the cases
where we use the images of dark matter and 07j,. These results are comparable, and
we conclude that 6T}, is a good tracer of the dark matter distribution in our CNN
analysis. Then, we compare the results of CNN with those of the power spectrum
in Figure 5.6. As a result, we can see that our CNN exhibits better performance in
the classification of CDM and NCDM for both the analyses of dark matter and 4T
images.

Next, we investigate the effects of the different astrophysical models such as
Shield, NoSF, and FG09 by conducting additional simulations with the CDM model
for these astrophysical models. We replace test images of the Fiducial CDM with
those of the different astrophysical models to test our CNN. Figure 5.7 shows the
classification results for the different astrophysical models. There is little effect of
Shield and NoSF models on our CNN analysis, but FG09 model has a large effect.
From the confusion matrix shown in Figure 5.8 and the AUC values shown in Ta-
ble 5.2, we can see that the images of the FG CDM model are misclassified as NCDM.
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Therefore, the features of NCDM might be partly mimicked by the FG09 model. We
do not see the effect of the FG09 model on the classification for mpym < 2.1 keV,
so we conclude our CNN is robust against the different astrophysical models if we
consider mpy < 2.1 keV.

Finally, we investigate the effects of the system noise, assuming SKA-MID ob-
servations. Gaussian noise, whose power spectrum is shown in Figure 5.10 as an
example, is added to the simulation data like Figure 5.11 and the noised images are
generated. Figure 5.12 shows the results of the classification of the noised images of
CDM and NCDM by our CNN and the power spectrum. The system noise degrades
the performance of both CNN and the power spectrum analysis, but our CNN out-
performs the power spectrum for the classification of the noised images. In addition,
we compare the effects of the system noise with those of the different astrophysical
models and find that the effects of the different astrophysical models are hidden
behind the system noise with fy = 1000 hours or less.

Over the next decade, we will obtain a large amount of data with high accuracy
from the forthcoming surveys.

For the constraints of fog by the analysis of the galaxy clustering, we need more
galaxy samples and the three or higher statistics. The forthcoming galaxy surveys
Euclid Laureijs et al., 2011, LSST Abell et al., 2009, and DESI Aghamousa et al., 2016
provide us with a large number of the galaxy samples for the large survey area and
the machine learning approaches enable us to investigate the galaxy distribution in
more detail and at higher speed. Our work in Chapter4 demonstrates the potential
of CNN. However, we must consider some effects of the practical observations such
as the masked region in the survey area, the redshift distribution of the galaxies,
and the selection of galaxies. we will investigate these effects in our future work.
In addition, we leave the question for the comparison of the results between the
machine learning and the Fisher analysis. We will also revisit this problem.

For the dark matter mass constraints, we will obtain the HI distribution in the
universe by the radio interferometer, SKA with a high resolution. To constrain the
mass of the dark matter, we need information of the matter distribution at small
scales. At small scales, the matter distribution does not follow the Gaussian due to
the non-linear evolution of the matter density and the higher-order statistics have
the important information for the dark matter mass. The image-based analysis by
machine learning allows us to access this information than the power spectrum anal-
ysis as we demonstrate in Chapter 5 in the noise-level of the SKA observations. To
apply our method of analysis to the data from the practical observations, we need
further examination of the effects of the foreground contamination and the survey
area. Additionally, we can consider other redshifts for the observation or joint anal-
ysis of the multiple redshifts to improve the constraints on the dark matter mass in
future work.

In our works, we use the CNN for the image-based analysis. In recent years,
many machine learning algorithms for image analysis have been developed. Re-
current Neural Network (RNN) is one of the developed neural network algorithms.
In RNN, the data is inputted to the layers in the middle of the network. By doing
this, RNN can avoid the vanishing of information of the input data and can have
a deeper network than a usual neural network. Another example is the Bayesian
Neural network (BNN). In BNN, the weight parameters are given by the probability
distribution function. BNN can avoid overfitting training data and evaluate the un-
certainty of the output explicitly. These algorithms are applied to some cosmological
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analyses such as Escamilla-Rivera, Carvajal Quintero, and Capozziello, 2020. As an-
other method for image analysis, a Vision Transformer (ViT) is suggested. This is not
a kind of neural network. ViT applies the algorithm for a Large Language Model to
the image-based analysis. A previous work demonstrates the ViT performance for
the cosmological image-based analysis. This work does not show the superiority of
the ViT to CNN. However, in the other case, ViT outperforms CNN (Raghu et al,,
2021) and there is probably room for improvement of the ViT analysis in cosmol-
ogy. Additionally, we usually use the simulation data to train our machine-learning
architecture and need a large amount and various cosmological simulations. In re-
cent years, there has been a lot of public simulation data such as Quijote simulations
(Villaescusa-Navarro et al., 2020) and CAMELS project (Villaescusa-Navarro et al.,
2021). Therefore, we can expect the improvement of the analysis by the new algo-
rithm and training data.

Our works demonstrate the potential of image-based analysis by using CNN for
the constraints of the growth rate and the mass of dark matter and the possibility
that the image-based analyses outperform the conventional method such as power
spectrum. To apply our method to the practical data and improve the constraints,
we should consider the effects of the practical observations, another algorithm of
machine learning, and more simulation data in future work.



Appendix A

Loss Functions tests

redshift | MSE Loss MAE Loss Huber Loss LFI Loss
0.75 3.8 4.1 3.9 3.3
1.25 2.3 3.1 2.9 2.3
1.75 1.2 1.5 1.8 1.7
2.5 0.74 1.0 1.1 1.3
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TABLE A.1: Predicted errors from our CNN for each redshift using
Mean Squared Error (MSE), Mean Absolute Error (MAE), Huber Loss
and the moments networks Loss (LFI) Functions.

This appendix is related to Chapter 4.

We introduce several loss functions in Section 3.2.1. In the work of Chapter 4, we
use the MSE loss in the calculations for the main results. Here, we show the effects
of the choice of the loss function on the errors, which is defined as the standard
deviation of A fog, from our CNN analysis. In our work, the LFI loss is written as

gLFI — lOg (

Y. (fos;— M‘)Z) +log (

je batch

) ((fﬂ&f — )t - 0?)2) , (A1)

j€ batch

where the summation is done over the data in a mini-batch, yj and ¢; is the mean
and standard deviation of the true value of fog in the mini-batch.

Table A.1 shows the errors from our CNN analysis for each redshift for the MSE
loss, MAE loss, Huber loss, and LFI loss function. We find that our CNN with each
loss function provides a similar error. The LFI loss shows a slightly better result at
the low redshift z = 0.75. However, the loss curve, which is the change of the loss
function with epochs, for the MSE loss shows a smaller variance than the one for the
LFI loss, and the training with the MSE loss is more stable. Therefore, we use the
MSE loss to obtain the final result.
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FIGURE B.1: The mass function of HI in halos. The horizontal axis
represents the HI mass in a halo, and the vertical axis represents the
comoving number density of the halos, where the halo includes HI
mass corresponding to the horizontal axis. The upper and lower
panel show the histograms of Fiducial (blue) and other astrophysical
models (orange), and their ratios, respectively.
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FIGURE B.2: This figure shows the same as Fig. B.1, but the orange
histograms correspond to the NCDM models.

In this appendix, we investigate the halo properties for further discussion related

to Section 5.3.2.

As we discussed in Fig. 5.7, the FG09 CDM test images are misclassified as the
NCDM model. In this appendix, we explore the effects of the astrophysical models
on the halo properties such as its size, number, mass function, and density profile.
We identify the dark matter halo using the ROCKSTAR code (Behroozi, Wechsler,
and Wu, 2013), and the size of the dark matter halo is defined by its virial radius.
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FIGURE B.3: The HI mass density profile of halos. The horizontal
axis represents the halo radius. To calculate the density profile, we
pick up and stack the 3000 halos, where the lowest mass of the halos
is log (Myy [h 1M(:J]) >5,6,7,8and 9, corresponding to each panel
from top to bottom. The stacked density profiles for each model are
shown, such as Fiducial (blue solid), Shield (green dashed), NoSF (red
dashed), FG09 (purple dashed), and 10 keV NCDM (orange dash-
dot). Note that our images cannot resolve the scales ~ 100 h 'kpc
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Model | u[h 'kpc] | o [h 'kpc] | Total Number
Fiducial 66.2 28.2 270,931
Shield 66.2 28.2 270,930
NoSF 66.2 28.2 271,092
FGO09 66.2 28.2 270,936
46 keV 66.2 28.2 269,283
21 keV 66.2 28.5 264,444
10 keV 66.2 28.5 245,598
4.6 keV 65.2 31.9 196,314
2.1 keV 61.9 34.6 126,987
1 keV 59.9 36.7 54,755

TABLE B.1: The properties of dark matter halos, which are its mean

size () and its standard deviation ¢, and its number, in a simula-

tion box for each astrophysical model and NCDM model. Each row

corresponds to the difference between the astrophysical models and
NCDM models.

And then, the HI halo is identified as the collection of the HI gas particles included
the dark matter halo.

In Table B.1, we show the mean size, the standard deviation of the halo size, and
the number of dark matter halos in a simulation box. Each row corresponds to the
difference of the assumed model for the astrophysics or NCDM. It is observed that
there is no significant relation between the halo number and the assumed astrophys-
ical models. However, the halo number decreases when the NCDM mass is smaller,
especially for NCDM models with mpym < 4.6 keV. This reduction is attributed to
the prevention of clustering in light dark matter due to the free-streaming of NCDM
(refer to Section 2.7), resulting in the absence of halo formation. In contrast, the halo
size remains unaffected by both astrophysical models and NCDM models.

Fig. B.1 and Fig. B.2 show the comparison of HI mass function between the Fidu-
cial CDM model and the astrophysical models or the NCDM models, respectively.
The count of halos with My > 10°Mg /h shows an increases in the NoSF and
FGO09 models compared to the Fiducial model. Simultaneously, halos with My ~
108 h_lM@ decrease for mpm < 10 keV NCDM models. Nevertheless, these ob-
served trends fail to elucidate the resemblance between the FG09 model and the
NCDM model in terms of classification. We do not find the similarities in the HI
halo mass functions between the NCDM models and FG09 model.

Subsequently, we will examine the similarity of the halo density profile between
the NCDM models and FG09 model. Fig. B.3 shows the mass density profiles of the
HI halo. This figure shows the averaged HI density profiles over the 3000 halos,
of which the lowest HI halo mass are 10°, 10, 107, 10°%, and 10° h'M,, in each
panel from top to bottom. The halos in the Fiducial (blue solid) and Shield (green
dashed) models have relatively comparable profiles. For NoSF (red dashed) and 10
keV NCDM (orange dash-dot) models, the halo profiles are similar, except for the
second panel corresponding to log (M [h'Mg]) > 6. However, the results in
Section 5.3.2 do not show the misclassification between the NoSF CDM model and
the 10 keV NCDM model. Concerning the FG09 model, its profiles (purple dashed)
are different from Fiducial’s ones, particularly for massive halos (M > 10 'Mp),
and they also differ from the NCDM profile. As indicated in Section 5.3.2, our CNN
misclassification is likely instigated not only by features resembling NCDM but also
by features that diverge from CDM-like characteristics.
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