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Abstract

Study of the magnetic order and novel physical phenomena related to it
is one of the primary problems of condensed matter physics. Organic con-
ductors are the platform for observing various physical phenomena because
of their flexibility in elemental substitution and sensitivity to pressure. In
particular, novel physical properties that are considered to be related to
magnetic ordering have been observed in organic Dirac nodal line systems
and organic conductors with inequivalent dimers, but their mechanisms
have not yet been elucidated. In this study, I will therefore conduct a theo-
retical study to elucidate the novel magnetic properties induced by electron
correlation effects in organic conductors. Specifically, I investigate a novel
antiferromagnetic order in (EDO-TTF-I)2ClO4 and anomalous spin fluctu-
ations in the Dirac nodal line system [Ni(dmdt)2].

(EDO-TTF-I)2ClO4 is the charge transfer salt which contains two in-
equivalent dimers in an unit-cells in low T (T < 190 K). If the two dimers
are magnetized with opposite spins in unit-cell, the energy bands split and
the ferrimagnetism appears. However, if the system is commensurately
filled, the magnetization becomes zero in the ground state. This magnetic
order is called compensated ferrimagnetism, which is expected to be useful
for generating spin current. I propose (EDO-TTF-I)2ClO4 as a material
whose ground state can be compensated ferrimagnetism. The ground state
of (EDO-TTF-I)2ClO4 is calculated by the Hartree-Fock approximation
(HFA) and the many-variable variational Monte Carlo (mVMC) method
based on ab initio calculations. As a result, compensated ferrimagnetism
with giant spin splitting is obtained as a candidate ground state.

On the other hand, a single-component molecular conductor [Ni(dmdt)2]
is the Dirac nodal line system with the Fermi surface. First, I construct
the low-energy effective model using the transfer integrals and Coulomb in-
teraction evaluated by the first-principles calculation. The effective model
is described by the fragment orbitals, which are molecular orbitals biased
to one side of the molecules. The spin susceptibility is calculated by ap-
plying the random phase approximation (RPA) to the low-energy effective
model. It is found that the spin fluctuations in this material depend on
the fragment orbitals due to the characteristic wave functions and Fermi
surface. Especially, it is found that the nontrivial intramolecular antiferro-
magnetic fluctuations are enhanced in the fragment orbitals located on the
left and right sides in low T . The Knight shift and spin-lattice relaxation
rate, physical quantities measured by nuclear magnetic resonance (NMR),
were calculated and compared with experimental results.

The antiferromagnetic properties appear in both materials and involve
molecular orbital degrees of freedom. One is the inequivalent dimers and the
other is fragment orbitals. This study shows that electron correlation effects
and molecular orbital degrees of freedom confer various magnetic properties
on organic conductors. New magnetic properties due to molecular orbital
degrees of freedom are expected to be discovered in organic conductors.
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1 General introduction

1.1 Condensed matter physics and elec-

tron correlation effect

Many interesting phenomena and properties have been observed in the ma-
terials around us, such as superconductivity, magnetism, and charge or-
der. Their mechanisms cannot be understood by investigating the materials
macroscopically. Physics in the materials is dominated by the particles of
the Avogadro numbers, such as electrons and phonons. Therefore, quantum
mechanics and statistical mechanics are used to study the phenomena in the
materials. In modern physics, the electron correlation effect in the materials
is researched actively because it plays important roles in the ordered states
and transport phenomena. For example, the short-range Coulomb inter-
action is important for the magnetic order, while the long-range Coulomb
interaction can induce the charge order.

1.2 Organic conductors and their diver-

sity

I focus on the organic conductors because of their diversity: many struc-
tures are composed of the same composition, structural transitions occur
under pressure, and there is a high degree of freedom in molecular sub-
stitution. Organic materials are the insulators or semiconductors in many
cases because the respective organic molecules take closed-shell structure
and the transfer integrals between the molecules are smaller than HOMO-
LUMO gap as shown in Fig. 1 (a). Here, HOMO is the occupied molecular
orbital with the highest energy eigenvalue (highest occupied molecular or-
bital), while LUMO is the unoccupied molecular orbital with the lowest
energy eigenvalue (lowest unoccupied molecular orbital). They are also
called “frontier orbitals”. However, some organic materials have conductiv-
ity. They are called ”organic conductors”. There are two types of organic
conductors “charge transfer salt” and “single-component molecular con-
ductor”. The former acquires conductivity because anions supply carriers
despite the large HOMO-LUMO gap (∼1eV). Meanwhile, in the latter, the
HOMO and LUMO bands are overlapped by the transfer integrals because
the HOMO-LUMO gap is narrow (∼0.1eV). In this research, (EDO-TTF-
I)2ClO4 corresponds to the charge transfer salt and [Ni(dmdt)2] corresponds
to the single-molecular conductor. In the organic conductors, fascinating
properties and anomalous behaviors are observed. They are governed by
the crystal structure, characters of wave functions, and electron correlation
effect. I introduce the two intriguing systems next sections. One is the
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inequivalent dimer system (Fig. 1 (b)) and the other is the Dirac electron
system (Fig. 1 (c)), which has been researched for a long time.

Figure 1: (a) Relationship between HOMO and LUMO. (b) Schematic of the com-
pensated ferrimagnetism in the inequivalent dimer system. (c) Linear dispersion
in the Dirac electron system and Dirac nodal lines in the momentum space. Dirac
nodal lines are drawn by Dirac points connecting.
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1.3 Compensated ferrimagnetism in (EDO-

TTF-I)2ClO4

Collinear antiferromagnetism has been recognized as conventional mag-
netism without anomalous phenomena e.g., spin current generation. How-
ever, recently, exotic collinear antiferromagnetism with time-reversal sym-
metry breaking has been discovered, especially altermagnetism [1, 2, 3]
and compensated ferrimagnetism [4]. Spin splitting phenomenon appears
in these magnetic states nevertheless net magnetization vanishes. These
anomalous antiferromagnetisms are the center of attention because spin
splitting can induce spin-dependent unique transport phenomena and un-
conventional superconductivity.

Several materials have been suggested as candidates for materials where
altermagnetism is observed [3, 5, 6, 7, 8, 9, 10, 11]. For example, in κ-ET
salt [6] and transition metal oxide RuO2 [8, 10, 12], altermagnetic state
with anisotropic spin splitting appears. It is expected that these materi-
als exhibit spin-dependent transport and anomalous Hall effects caused by
anisotropic spin splitting. Meanwhile, compensated ferrimagnets exhibit
isotropic spin splitting, which makes spin-current generation efficient. The
magnetic structure of the compensated ferrimagnet is like a usual antiferro-
magnet, however, the spin splitting occurs in the energy eigenvalues. Thus,
exotic transport phenomena are expected such as spin current. Since van
Leuken and de Groot suggest the idea of compensated ferrimagnetic metal
(antiferromagnetic half-metal) [13], some candidate materials have been
proposed by ab initio calculations [14, 15]. Recently, MnF2 monolayer was
suggested as the material where an insulating compensated ferrimagnetism
realizes [16]. The compensation condition is robust against small perturba-
tions because the net magnetization of compensated ferrimagnetic insulator
is zero due to the Luttinger’s theorem [4]. Moreover, crystal symmetry of
the compensated ferrimagnets is lower than that of altermagnets [4]. Thus,
compensated ferrimagnets are more useful for applications, such as thin-
film synthesis, than altermagtets. Nevertheless, only a few compensated
ferrimagnets have been found in experiments [17, 18, 19, 20]. The method
to realize the compensated ferrimagnets is necessary to make use of them.

I find that the compensated ferrimagnetism can be realized in the or-
ganic conductor which has the inequivalent dimers with the opposite spins.
Schematics of two inequivalent dimers with opposite magnetization and
energy levels of the compensated ferrimagnet are shown in Fig. 1 (b).
I propose the organic conductor (EDO-TTF-I)2ClO4 as a material where
such magnetism appears. It is the pseudo-two-dimensional organic conduc-
tor which consists of the EDO-TTF-I with +1/2 charge (3/4 filling) and
anion ClO4 layers, which is shown in Fig. 2 (a) and (b). In T ≳ 190K, two
EDO-TTF-I molecules belong to one unit-cell, and space-inversion symme-
try is macroscopically protected because anions ClO4 randomly orientate.
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Experimentally, insulating electrical resistivity is observed then[21]. In ad-
dition, there are two energy bands of which 3/4 is filled near the Fermi
level (EF ) and a dimerization gap opens between them. This implies that
the system is effectively half-filled. Thus, (EDO-TTF-I)2ClO4 is the dimer
Mott insulator in T ≳ 190K. However, the resistivity measurement and
X-ray analysis experimentally show that a phase transition from Mott in-
sulator to semimetal with structural transition occurs at T ∼ 190K upon
cooling. It is due to the regular orientation of anions ClO4, which is called
anion ordering. In this material, anion ordering is the mechanism by which
inequivalent dimers are formed. After a structural transition, the unit cell
doubles in size; one unit cell contains four molecules (A, A’, B, B’). The
A and A’ (B and B’) molecules in the unit cell form a single dimer, which
I call “dimer I (dimer II)”. That is not the only phase transition phe-
nomenon observed in this material. The phase transition from semimetal
to insulator is observed again at T ∼ 95K with cooling. In contrast to
the phase transition at T ∼ 190K, it is without a structural distortion.[21]
In addition, the magnetic susceptibility monotonically decreases after the
metal-insulator transition at T ≲ 95K with cooling [21]. In this study, I
show that (EDO-TTF-I)2ClO4 is the compensated ferrimagnetic insulator
in the low-temperature phase.

Figure 2: (a) Crystal structure of (EDO-TTF-I)2ClO4 along to the stacking di-
rection. (b) Main conduction plane. The black frames represent the unit cell.

1.4 Dirac nodal line system [Ni(dmdt)2]

I introduce the Dirac electron system and Dirac nodal line system in this
subsection. The Dirac electron system has a linear dispersion near the
Fermi level because the effective Hamiltonian is equivalent to the mass-
less Dirac equation. The band-crossed point is called the Dirac point. The
anomalous transport phenomena are observed in the Dirac electron system.
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The resistivity is almost independent of temperature, while the Hall coef-
ficient increases with decreasing temperature. In addition, because of the
characteristic wave function, edge-localized electronic states (edge states)
are observed.

Dirac electron systems in materials fascinate a lot of researchers due
to not only their quantum transport phenomena [22, 23, 24, 25] and large
diamagnetism, [26, 27] but also their anomalous behaviors which result
from the electron correlation effect.[28, 29, 30, 31, 32, 33] Dirac electron
systems in molecular conductors, for example, α-(BEDT-TTF)2I3, offer
appropriate platforms to research the electron correlation effect because
the bandwidth W is much smaller than the onsite Coulomb interaction U
(U/W >> 1). [34, 35, 36, 37, 38, 39, 40] α-(BEDT-TTF)2I3 is a massless
Dirac electron system at high pressure(P ≳ 1.5GPa), while a charge order
is induced by the long-range Coulomb repulsion in low pressure, [41, 42, 43]
where anomalous spin–charge separation on spin gaps [44, 45] and transport
phenomena are observed.[46, 47, 48] Moreover, the long-range Coulomb
repulsion makes the Dirac cones sharp, which is caused by a logarithmic
velocity renormalization. The reshaping of the Dirac cones induces a rare
magnetic response.[49, 50, 51] In addition, ferrimagnetism and spin-triplet
excitonic fluctuations are observed.[52, 53]

The Dirac electron system in α-(BEDT-TTF)2I3 is treated as pseudo-
two-dimensional system[40] because it is a stacked molecular conductor
and the transfer between different conduction layers is incoherent. On the
other hand, if the electron hopping perpendicular to the main conducting
layer is coherent, the Dirac points connect and draw lines (rings) in the
three-dimensional momentum space, which are called the Dirac nodal lines
(rings). [54, 55, 56, 57] Dirac nodal line system can have the Fermi surface
and the nodal lines wind due to the dispersion in the stacking direction as
shown in Fig. 1 (c). Dirac nodal line (ring) systems have been found in
graphite, [58] transition-metal monophosphates,[59] Cu3N,[60] antiperovskites,[61]
perovskite iridates,[62] and hexagonal pnictides with the composition CaAgX
(X = P, As),[63] as well as in the single-component molecular conductors
[Pd(dddt)2], [64, 65, 66, 67, 68, 69, 70, 71] [Pt(dmdt)2],[72, 73, 74, 75, 76]
and [Ni(dmdt)2].[75, 76] In the Dirac nodal line system, not only the phe-
nomena are in common with two-dimensional Dirac electron systems, e.g.,
the in-plane conductivity[72], but also the characteristic electronic prop-
erties such as non-dispersive Landau levels,[77] Kondo effect,[78] quasi-
topological electromagnetic responses,[79] and edge magnetism[75] exhib-
ited due to the three-dimensionality. However, the electron correlation ef-
fects in the Dirac nodal line systems with Fermi surface have not been
investigated in detail.

I focus on the Dirac nodal line system [Ni(dmdt)2], which is a single-
component molecular conductor composed of the Ni(dmdt)2 molecules.
The crystal structure of [Ni(dmdt)2] is triclinic (Fig. 3) and has space-
inversion symmetry. One Ni(dmdt)2 molecule sits on one unit-cell. The
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electronic and magnetic properties of [M(dmdt)2](M=Pt,Ni) were previ-
ously investigated by using density functional theory (DFT), and tight-
binding models were constructed based on the extended Hückel method
and DFT.[72, 73, 74, 75] These researches show that [M(dmdt)2] is a Dirac
nodal line system. Furthermore, electronic resistivity measurements were
performed by the conventional four-probe methods. As a result, it is shown
that the resistivity of [M(dmdt)2] is constant to the temperature (T ). It is
consistent with the behavior in the Dirac electron system[72] and called uni-
versal conductivity.[80] In addition, I previously proposed that the nesting
between the Fermi arcs localized at the edge and the short-range Coulomb
repulsion induce a helical spin density wave (helical edge SDW).[75]

Figure 3: (a) Crystal structure in the b–c plane of [Ni(dmdt)2]. (b) Crystal
structure along to the b-axis. The red, blue, brown, and cyan balls illustrate Ni,
S, C, and H atoms, respectively. The black frames indicate the unit cell.

Recently, Knight shift and spin-lattice relaxation rate 1/T1T of [Ni(dmdt)2]
were observed in a 13C nuclear magnetic resonance (13C-NMR) experiment.[81,
82] 1/T1T decreases with cooling and is almost proportional to T 2 in high
T . However, at a low T , it starts to increase with cooling and a peak ap-
pears at approximately 30 K. On the other hand, the Knight shift is almost
proportional to temperature due to the linear energy dispersion and does
not increase with cooling. The mechanism of this anomalous behaviors of
the spin fluctuations has not been uncovered.

To solve the problem, I introduce the “fragment orbitals” which are
relatively new descriptions for the molecular orbitals, and theoretically re-
search the electron correlation effect on them. The low energy effective
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model of single-component molecular conductors, e.g., [M(tmdt)2] (M =
Ni, Au, Cu)[83, 84] and [M(dmdt)2] (M = Pt, Ni)[74, 75], are described
by multiple molecular orbitals localized in a part of the molecule. These
molecular orbitals are the energy eigenstates obtained using first-principles
calculations and are called “fragment orbitals”[83, 84]. The fragment or-
bitals are transformed into HOMO and LUMO by a high-symmetry unitary
transform. Seo et al. introduce a Hubbard model of [M(tmdt)2](M=Ni,
Au, Cu), which is described by the fragment orbitals, based on the first-
principles calculation.[83, 84] The model which they used is similar to that
in this research. They calculated the charge and spin densities by mean-
field approximation to investigate the ordered state realized in [M(tmdt)2].
By contrast, I study the spin fluctuations by calculating the spin suscepti-
bility using RPA. I further explain that the fragment orbital concept is
a useful way to study the magnetic properties of Dirac nodal line sys-
tems in single-component molecular conductors. In addition, models of
some charge-transfer salts such as (TTM-TTP)I3 were also previously con-
structed by Tsuchiizu et al.[85, 86]

By studying electron correlation effects on fragment orbitals, I find two
types of spin fluctuations that depend on the fragment orbitals. Their tem-
perature dependencies are different. One is intramolecular antiferromag-
netic fluctuation, which is enhanced at low T . The other is incommensurate
spin fluctuation, which increases slowly at high T .

1.5 Motivation

Many electronic states have been discovered and investigated in the long
history of condensed matter physics, for example, Mott insulator, supercon-
ductivity, Dirac electron system, and so on. These are dominated by the
electron correlation effect, characters of the wavefunctions, and the crystal
structure. The new ordered states and bound states can be discovered in
the system where the electronic correlation effect is important by the chem-
ical pressure and element substitution. I predict that the materials used
in this research become the platform where diverse physical phenomena
are observed because the organic materials are flexible to the element and
molecule substitution.

Research of the magnetic orders and phenomena related to them is one
of the important problems in condensed matter physics. I investigate the
novel magnetism induced by the electron correlation effect in the organic
conductors.

I study the spin fluctuations and magnetic order induced by the elec-
tron correlation effect in the organic conductors by the perturbation theory
and mVMC method[87, 88]. It has been considered that the spin fluctua-
tions are not enhanced in the Dirac electron system because the DOS near
the Fermi energy is low. However, in the research about [Ni(dmdt)2], I
find that the antiferromagnetic spin fluctuations are enhanced within the
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respective molecules by the characteristic wavefunctions in the Dirac elec-
tron system and the scattering process in RPA. It is also found that the
intramolecular antiferromagnetic spin fluctuations can’t be observed by the
Knight shift but appear as the upturn in the 1/T1T . Moreover, I find that
the inequivalent dimers with opposite spins induce a spin splitting phe-
nomenon. It corresponds to the compensated ferrimagnetism. I propose
the organic conductor (EDO-TTF-I)2ClO4 as the material in which the
compensated ferrimagnetic order appears. They are the researches about
the antiferromagnetism within unit-cell caused by the molecular orbital de-
gree of freedom. I predict that these studies provide new knowledge about
the antiferromagnetism and electron correlation effect in the organic con-
ductors.
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2 Compensated ferrimagnetism
in the organic conductor

Abstract

Recently, exotic collinear antiferromagnetism with time-reversal
symmetry breaking, such as altermagnetism and compensated
ferrimagnetism, have been studied extensively for magnetic or-
der. These exhibit spin-splitting phenomena even when the net
magnetization is zero, causing anomalous transport phenomena
such as spin currents. Anisotropic spin splitting phenomena ap-
pear in altermagnets. On the other hand, compensated ferri-
magnets exhibit isotropic spin splitting. However, the mecha-
nism to induce the compensated ferrimagnetic state is limited.
Therefore, I show how to realize a fully compensated ferrimagnet
that exhibits isotropic spin splitting using an inequivalent dimer
system in organic conductors. I also find that this magnetism
appears in a recently discovered organic conductor (EDO-TTF-
I)2ClO4 based on ab initio calculations. These findings provide a
new guideline for realizing fully compensated ferrimagnets with
giant spin splitting by using the molecular orbital degrees of
freedom of organic materials.

2.1 Simple model of the compensated fer-

rimagnetism

I propose a path to fully compensated ferrimagnets with giant spin splitting
using conventional dimer systems in organic materials. Using a simple one-
dimensional model, I introduce that collinear antiferromagnetism with in-
equivalent dimers causes fully compensated ferrimagnetism. Furthermore, I
find that the organic material (EDO-TTF-I)2ClO4 [21], which was recently
discovered, can realize this magnetism based on ab initio calculations. Ac-
cording to the experiments, a structural transition with unit-cell doubling
occurs with anion ordering at 190 K in this material. As a result, two
inequivalent dimers belong to the unit-cell in T < 190 K. In this study,
I introduce and solve the low-energy effective Hamiltonian based on the
first-principles calculation in T < 190K. I find that the ground state is a
collinear antiferromagnetic state with isotropic spin splitting, i.e., a fully
compensated ferrimagnet.

At first, to show the important idea for realizing the compensated fer-
rimagnets, I use a one-dimensional model with a unit cell including two in-
equivalent dimers. This one-dimensional model is schematically depicted in
Fig. 4 (a). The dimer inequivalence is expressed by the intra-dimer transfer
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Figure 4: (a) Hopping network of the simple model exhibiting the compensated
ferrimagnetism. The unit-cell is represented by the broken frame. (b) Energy
band structure obtained by the simple model Eq. 2. That of the equivalent dimer
case is shown by the broken lines.

integrals t1 and t2 (t1 ̸= t2) and site potential δ. I also assume the collinear
dimer antiferromagnetic (DAF) order where the electrons with up(down)
spin are located on A and A′ (B and B′). This DAF order is not invariant
to any combination of time reversal with translation/rotation operations
due to inequivalent dimers. Thus, it is predicted that the isotropic spin
splitting phenomenon is induced under the DAF order.

In order to investigate the cause of spin splitting in the one-dimensional
model, the tight-binding model of the DAF state is expressed by the fol-
lowing Hamiltonian :

H =
∑
k,σ

c†kσHσ(k)ckσ, (1)

Hσ(k) =


σ∆ t1 A(k) 0
t1 σ∆ 0 A(k)

A(k)∗ 0 −σ∆+ δ t2
0 A(k)∗ t2 −σ∆+ δ

 , (2)

where c†k = (c†Ak, c
†
A′k, c

†
Bk, c

†
B′k), A(k) = s(1 + e−ik), and ∆ is the order

parameter describing the DAF state. σ is the spin index taking +1 and −1
for the up and down spins, respectively. By diagonalizing the Hamiltonian
Eq. 2, the following eigenvalues are obtained.

E0,σ,±(kx) = δ/2 + t+ ± [(σ∆+ t− − δ/2)2 + 2s2F (k)]1/2, (3)

E1,σ,±(kx) = δ/2− t+ ± [(σ∆− t− − δ/2)2 + 2s2F (k)]1/2, (4)

where t± = (t1 ± t2)/2 and F (k) = 1 + cos k. Thus, it is found that the
parameters t− = (t1 − t2)/2 and δ, which express dimer inequivalence,
cause spin splitting. Furthermore, not only the site potential but also the
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difference between two intra-dimer transfer integrals can open an energy
gap. Because t− and δ are constant in momentum space, isotropic spin
splitting occurs.

Figure 4(b) depicts the energy band structure obtained by diagonalizing
the Hamiltonian Eq. (2). The parameters are set to be t1 = 1.0, t2 = 0.6,
s = 0.6, δ = 0.2, and ∆ = 1.5. On the other hand, the broken lines show
the energy band structure in the case that the dimers are equivalent, where
the parameters are set to be t1 = t2 = 1.0, s = 0.6, δ = 0.0, and ∆ = 1.5.
The energy bands split to those with up and down spins as expected. Under
the condition that the system is commensurately filled (i.e., three-quarter,
half, and quarter filling), the system under DAF order can be an insulator,
and the zero net magnetization is realized because the numbers of occupied
electrons with up and down spins are same.

Because dimers I and II are inequivalent after the structural phase tran-
sition, (EDO-TTF-I)2ClO4 will exhibit compensated ferrimagnetism if ap-
propriate antiferromagnetic order occurs. I note the related organic com-
pound (EDO-TTF-I)2PF6 has similar crystal structures; however, all the
dimers are equivalent.[89]

2.2 Low-energy effective model of (EDO-

TTF-I)2ClO4

In order to analyze the electronic state of (EDO-TTF-I)2ClO4 in low tem-
perature, I construct the low energy effective model based on density func-
tional theory (DFT). I use the program “Quantum ESPRESSO [90]” to
obtain the energy band structure based on the DFT. In this research, the
optimized norm-conserving Vanderbilt pseudopotentials and plane-wave ba-
sis sets [91, 92] are employed. In this research, the generalized gradient ap-
proximation suggested by Perdew, Burke, and Ernzerhof [93] is used as the
exchange-correlation functional. The cut-off energy of the wave functions
and charge densities are set to be 80 Ry and 320 Ry, respectively. I use a
5× 5× 3 uniform k-point grid and Methfessel-Paxton smearing method in
the self-consistent calculation. This first-principles calculation is performed
based on the crystal structure data analyzed in 100 K [21] , however inter-
nal coordinates of H atoms are optimized. The following calculations are
based on the relaxed crystal structure. Figure 5 (b) shows the energy band
structure of (EDO-TTF-I)2ClO4 obtained by DFT. The four bands around
EF are isolated from the other energy bands in Fig. 5 (b). Therefore, I
select them as the low energy degrees of freedom and calculate the wave
functions of the Wannier orbitals using RESPACK [94]. The Wannier or-
bitals are shown in Fig.5 (a). Colors of anions mean their orientations in
Fig. 5 (a). Because of the different configurations of ClO4, dimer I and
II become inequivalent. The inversion centers are located at the centers
of each dimer. The eigenvalues of the tight-binding Hamiltonian described
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by the Wannier orbitals (A, A’, B, B’) reproduce the original DFT band
structures (Fig.5 (b)).

Figure 5: (a) Crystal structure of (EDO-TTF-I)2ClO4 at T = 100 K and the
Wannier orbitals are drawn using VESTA [95]. The black frame shows an unit-
cell containing four EDO-TTF-I molecules. Colors of anions ClO4 illustrate their
orientations, which make two dimers (A-A′ and B-B′) inequivalent. (b) Energy
band structure obtained by first-principles calculation is shown by the red lines.
The energy eigenvalues obtained by Wannier fitting are shown by the blue circles.
EF is set as the origin of energy.

Next, I introduce a low-energy effective model :

H = H0 +Hint,

H0 =
∑

i,j,α,β,σ

tiαjβc
†
iασcjβσ,

Hint =
∑
i,α

Uiαniα↑niα↓ +
1

2

∑
i,j,α,β

ViαjβNiαNjβ . (5)

c†iασ and ciασ is creation and annihilation operators for an electron in the
unit cell i with orbital α(= A, A′, B, B′) and spin σ(=↑, ↓). The charge

density operator are given by niασ = c†iασciασ and Niα = niα↑ + niα↓.
The transfer integrals tiαjβ are estimated by using the wave functions of
Wannier orbitals. I also calculate the Coulomb interactions Uiα and Viαjβ
incorporating screening effect by the constrained random phase approxima-
tion (cRPA) [96, 97] implemented in RESPACK [94]. The cutoff energy
of the polarization functions is set to be 5.0 Ry. I summarize the transfer
integrals whose absolute values are larger than 0.020 eV and the Coulomb
interactions in Table 1. The cutoff energy of the Coulomb interaction is set
to be 0.60 eV. They are schematically illustrated in Fig. 6.
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Figure 6: Transfer integrals and the neighbor Coulomb interactions are schemat-
ically illustrated.

Transfer integrals [eV] Coulomb interactions [eV]
δ 0.047 U res

A =U res
A′ 2.094

U res
B =U res

B′ 2.076
t1 0.252 V res

1 0.903
t2 0.179 V res

2 0.884
t3 0.128 V res

3 0.880
t4 0.112 V res

4 0.700
t5 0.084 V res

5 0.681
t6 0.058 V res

6 0.614
t7 - V res

7 0.659
t8 - V res

8 0.628

Table 1: Numerical data of transfer integrals(> 0.020 eV) and screened Coulomb
interactions.
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Actually, I subtract the dimensional downfolding shift value ∆DDF from
the Coulomb repulsion parameters evaluated by RESPACK to incorporate
the screening effect between the layers in the following calculations. [98, 99].
Following the previous researches [99, 100, 101, 102], I set ∆DDF = 0.2 eV.
I confirm that the qualitative results are hardly influenced by ∆DDF.

2.3 Hartree-Fock approximation (HFA)

To determine the candidate ground state for (EDO-TTF-I)2ClO4, I perform
a real-space Hartree-Fock approximation (HFA) to the low-energy effective
model. I use the unrestricted Hartree-Fock (UHF) program equipped in
mVMC [88]. The initial variational parameters for the mVMC are gen-
erated from real-space HFA results. In this study, I consider the ordered
states that do not change the periodicity of the crystal. I attempt five ini-
tial states as shown in Fig. 7 : (i) the paramagnetic (PM) state, (ii) the
ferromagnetic (FM) state, (iii) the dimer antiferromagnetic (DAF) state,
(iv) the AF state, (v) the AF state with charge order (AF+CO). To inves-
tigate the electron correlation effects in detail, I introduce the parameters
λ and ∆DDF. λ tunes the Coulomb interaction parameters. ∆DDF is a
dimension downfolding shift value which incorporates the screening effects
via different layers [98, 99]. Using these parameters, I express Uiα and
Viαjβ as Uiα ≡ λ(U res

iα − ∆DDF) and Viαjβ ≡ λ(V res
iαjβ − ∆DDF). Figures 8

(a) and (b) show the behaviors of the charge density
⟨
nCi

⟩
= ⟨ni↑⟩ + ⟨ni↓⟩

and spin density
⟨
nSi

⟩
= ⟨ni↑⟩ − ⟨ni↓⟩ for the orbital i. The horizontal

axis indicates λ. ∆DDF is set to be 0.2 eV then. In λ ≲ 0.3, PM state
[⟨nCA(B)⟩ = ⟨nCA′(B′)⟩ and ⟨nSi ⟩ = 0] is the ground state. In 0.3 ≲ λ ≲ 0.5,

DAF order [⟨nCA(B)⟩ = ⟨nCA′(B′)⟩ and ⟨nSA⟩ = ⟨nSA′⟩ = −⟨nSB⟩ = −⟨nSB′⟩] ap-
pears as the ground state. In λ ≳ 0.5, the AF+CO [⟨nCA(B′)⟩ > ⟨nCA′(B)⟩
and ⟨nSA′(B′)⟩ > ⟨nSA(B)⟩] is obtained. The λ-∆DDF phase diagram is also

shown in Fig. 8 (c). Because magnitudes of Uiα and Viαjβ decrease as
∆DDF increases, the phase boundary between the DAF and AF+CO states
slightly changes with ∆DDF.
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Figure 7: Initial states for in real-space HFA. The orange and blue ellipses rep-
resent the dimer I and II, respectively. The green circles show the charge-rich
sites.
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Figure 8: Behaviors of (a)
⟨
nC
i

⟩
and (b)

⟨
nS
i

⟩
to the parameter λ. (c) λ-∆DDF

phase diagram obtained by real space HFA.
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2.4 Many-variable variational Monte Carlo

(mVMC) analysis

The variational method approximately determines the wave function of the
ground state by optimizing variational parameters so that the energy ex-
pectation value is minimized. The variational method in condensed matter
physics requires summation over real-space configurations |x⟩ when cal-
culating energy expectation values, which needs enormous numerical costs.
Therefore, the variational Monte Carlo method evaluates the physical quan-
tities, such as energy expectation value, using Markov chain Monte Carlo
sampling in the summation over |x⟩. The key to obtaining highly accurate
wave functions at realistic computational cost in variational method and
variational Monte Carlo methods is the setting of the trial wave function.

Gutzwiller employed the trial wave function that multiplies the Slater
determinant of plane wave state by the Gutzwiller factor in order to investi-
gate the ferromagnetism on transition metal[103]. Then, he used an approx-
imation (Gutzwiller approximation, GA) in which up-spin and down-spin
electrons are treated independently and energy expectation values are cal-
culated probabilistically. Gutzwiller’s theory attracted attention in terms of
MI transition. Brinkman and Rice researched MI transition in the half-filled
Hubbard model using Gutzwiller wave function (GWF)[104] and GA. Under
the GA, it is shown that MI transition occurs. Later, however, Yokoyama
and Shiba used a variational Monte Carlo method as a calculation beyond
GA and showed that GWF describes only the metallic state in a finite-
dimensional model and cannot explain MI transition[105]. Brinkman and
Rice’s theory is justified only for infinite-dimensional systems. Cappelo et
al. calculated some physical quantities in the finite-dimensional Hubbard
model, such as the energy expectation value, spin correlation function, and
density correlation function, using the trial wave function that multiples
GWF by Jastrow correlation factor[106] (GWF+J)[107]. In the result, they
explained that MI transition in finite dimensional model. Jastrow correla-
tion factor incorporate the effect of charge density fluctuations and greatly
reduces the energy in the strongly correlated regime, and in U → ∞, it
reproduces the energy of the exact solution of the Heisenberg model with
good accuracy, successfully describing the insulating state. Furthermore,
the theory shows that by considering next-nearest neighbor transfer inte-
grals, a metal-insulator transition from a spin-gapped metal to a dimerized
insulator can occur.

Because of this history, not only the Gutzwiller factor but also the Jas-
trow factor is considered important in variational Monte Carlo methods for
strongly correlated systems. Moreover, Jastrow is considered to be even
more important because the model treated in this study also takes into
account neighbor Coulomb interaction and far transfer.

I solve the low energy effective model using the mVMC method [87, 88],
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which can consider quantum fluctuations and spatial correlations seriously.
In this research, I use the following trial wave function :

|ψ⟩ = PGPJLS |ϕpair⟩ , (6)

PG = exp

[∑
i

gini↑ni↓

]
, (7)

PJ = exp

1

2

∑
i ̸=j

vijNiNj

 , (8)

|ϕpair⟩ =

Nsite∑
i,j

fijc
†
i↑c

†
j↓

Ne/2

|0⟩ , (9)

where PG, PJ , and LS are the Gutzwiller factor [103], long-range Jas-
trow factor [106, 107], and total spin projector [108, 109], respectively [88,
110]. LS is important in the case of short-range correlations such as the
one-dimensional antiferromagnetic Heisenberg spin model and spin singlet.
Since theoretical predictions have shown that spin singlet is formed under
CO order in organic conductors α-(BEDT-TTF)2I3[101], this study takes
such a possibility into account and performs spin projection. In conclusion,
however, the ground state of this system is long–range magnetic order, and
the effect of LS is not very important for the present study. Ne and Nsite

denote the numbers of electrons and sites, respectively. In the numerical
calculation, 1×4 sublattice structure is imposed on variational parameters.
In addition, I also perform an electron-hole transformation to save costs for
the calculations. I employ the results obtained by the HFA as the initial fij
value. I use the spin-singlet projection (S = 0) in the mVMC calculations
for Lx = Ly ≤ 8. Meanwhile, I don’t use it for Lx = Ly ≥ 10 to save the
numerical costs. It is confirmed that the spin projection hardly influences
physical quantities, such as the spin correlation functions. All variational
parameters are simultaneously relaxed using the stochastic reconfiguration
method [111].

According to the HFA, the DAF state (Fig.9 (a)) and AF+CO are ob-
tained as the candidates of the ground state. Within the framework of the
HFA, for λ=1, the AF+CO state is obtained as the ground state of the
effective model. However, within the framework of the mVMC method, the
DAF state is obtained as the ground state of the effective Hamiltonian. In
addition, I confirm that the DAF state is obtained even if I use the varia-
tional parameters of AF+CO state as the initial state. These results mean
that the electron correlation effect beyond the HFA makes the DAF state
stable.

To show that the a long-range magnetic order exists, I calculate the
spin-correlation functions, given by

S(q) =
1

(Nsite)2

∑
i,j

⟨Si · Sj⟩ eiq·(ri−rj). (10)
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Figure 9: (a) DAF state and large transfer integrals t1, t2, ..., t6 are schematically
illustrated in the two-dimensional conducting layer. (b) Spin correlation function
obtained based on the mVMC method. It has the sharp peaks at (qx, qy) =
(0, π/2), (0, 3π/2). The system size is Lx = 12 and Ly = 12. (c) System size
dependence of S(0, π/2). (d) The chemical potential as a function of doping-rate
γd .

For simplicity, S(q) is mapped to the Lx× 4Ly square lattice. Figure 9 (b)
depicts S(q) in qx-qy plane. It has the sharp peaks at (qx, qy)=(0, π/2) and
(qx, qy)=(0, 3π/2). In Fig. 9 (c), the peaks of S(q) have finite values in the
bulk limit. I also find that charge densities of all orbitals are almost 1.5 and
a charge order does not appear. These results imply that the ground state
of the effective model is the DAF state. Moreover, I calculate the charge
gap ∆c, defined as ∆c = µ(Ne + 1)− µ(Ne − 1). The chemical potential is
determined by µ(Ne + 1) = [E(Ne + 2) − E(Ne)]/2. Figure 9 (d) displays
the chemical potential as a function of doping rate γd (=Ne/Nsite − 1.5).
The charge gap is estimated as ∆c ∼ 0.4 eV from Fig. 9. It shows that the
DAF obtained as the ground state is an insulator.

Here, I show λ dependence of the ground state in Fig. 10 (a), where I
set ∆DDF = 0.2 eV and Lx=Ly=6. By increasing λ, the phase transition
from PM state to DAF state occurs λ ∼ 0.5. In λ ∼ 2.2, the AF+CO state
is stabilized because of neighbor Coulomb repulsion. Figure 10(b) shows
difference of energies between the PM (AF+CO) and DAF states, i.e., λ
dependence of ∆E1 = EPM − EDAF (∆E2 = EAF+CO − EDAF). Figure 11
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Figure 10: (a) λ phase diagram drawn based on the mVMC method. (b) ∆E1

and ∆E2 are shown as functions of λ.

depicts the spin and charge correlation functions of the PM, the DAF, and
the AF+CO states. The charge correlation function is given by

N(q) =
1

(Nsite)2

∑
i,j

⟨
(Ni − N̄) · (Nj − N̄)

⟩
eiq·(ri−rj), (11)

N̄ =
1

Nsite

∑
i

⟨Ni⟩ . (12)

The peaks S(0, π/2) and S(0, 3π/2) in Fig. 11 (b) mean that the DAF
state is stabilized. On the other hand, the peaks S(0, π/2), S(0, 3π/2) and
N(0, π) in Figs. 11(c) and (f) mean the AF+CO state is stabilized.
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Figure 11: Spin correlation function S(q) [density correlation function N(q) ] of
the PM state (λ = 0.3), the DAF state (λ = 1), and the AF+CO state (λ = 2.4)
in (a), (b), and (c) [(d), (e), and (f)], respectively.
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2.5 Analysis of the DAF state

Since the mVMC calculations yielded the DAF state as the ground state, I
examine spin splitting phenomenon under the DAF order using the HFA. I
impose the DAF order and tune λ, which controls Ui and Vi,j , to reproduce
the charge gap ∆c ∼ 0.4 eV estimated by the mVMC method. As a result,
λ is estimated to be λ = 0.7. The mean-field Hamiltonian in the momentum
picture is expressed by

HHFA =
∑
k

∑
δ,α,β,σ

tδ,αβe
ik·δc†k,α,σck,β,σ

+
∑
k

∑
α,σ

Uα

⟨
c†α,σ̄cα,σ̄

⟩
c†k,α,σck,α,σ

+
∑
k

∑
δ,α,β,σ

Vδ,αβ ⟨Nβ⟩ c†k,α,σck,α,σ

−
∑
k

∑
δ,α,β,σ

Vδ,αβ

⟨
c†β,σcα,σ

⟩(δ)
eik·δc†k,α,σck,β,σ.

(13)

δ is the translational vector and σ̄ = −σ. I use the one-body Green’s

functions
⟨
c†β,σcα,σ

⟩
obtained by real-space HFA, which correspond to DAF

state.
Using the Hamiltonian HHFA, I calculate the density of state (DOS)

and energy dispersion. DOS is given by Dσ(ω)=(πLxLy)
−1

∑
k,n Im(ω −

iη − Ek,n,σ + µ)−1, where µ is the chemical potential and η takes an in-
finitesimal value. I set η = 0.002 eV in the numerical calculation. Ek,n,σ

is the eigenvalue of HHFA, where n is the band index. Fig. 12 (a) shows
that DAF order causes spin splitting (D↑(ω) ̸= D↓(ω)). Fig. 12(b) shows
the energy dispersion under the DAF order. Spin splitting occurs on any
momenta k. These behaviors show that (EDO-TTF-I)2ClO4 can exhibit
fully compensated ferrimagnetism under the DAF order.

Here, I examine the origin of spin splitting phenomenon in this material.
As in the simple model, t− = (t1−t2)/2 and δ cause isotropic spin splitting.
In this material, t−(= 0.036 eV) and δ(= 0.047 eV) are comparable, so both
t− and δ contribute to the spin splitting phenomenon. One might think that
a finite δ would make the total magnetization finite, however, the charge
gap ensures that the total magnetization is robust to perturbations. In this
case, the total magnetization is zero at δ=0 and remains zero even if δ is
added, provided that δ is significantly smaller than the charge gap.
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Figure 12: (a) DOS obtained by the mean-field Hamiltonian HHFA. D↑(ω) and
D↓(ω) are shown by red solid and blue broken lines. (b) Energy dispersion ob-
tained by the mean-field Hamiltonian HHFA. The red and blue bands display
those with up and down spins, respectively.
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2.6 Summary and discussion

In this study, I propose a simple method to realize fully compensated ferri-
magnetism using molecular orbital degrees of freedom in organic materials.
First, using a simple model, I show that two inequivalent dimers and DAF
order induce fully compensated ferrimagnetism. I further propose that the
ground state of (EDO-TTF-I)2ClO4 is a DAF insulator where spins of the
two inequivalent dimers are inversely correlated. As a result, the spin split-
ting phenomenon occurs under the DAF order. Incidentally, an organic
material (EDO-TTF-I)2PF6 with a crystal structure similar to (EDO-TTF-
I)2ClO4 has been found[89], however it does not become a compensated
ferrimagnet since the all dimers in it are equivalent.

The key to fully compensated ferrimagnetism is that the anion ordering
makes the two dimers inequivalent. The discovery of the compensated fer-
rimagnetism caused by inequivalent dimers as well as the potential for ma-
terials design using anion ordering, shows that organic compounds provide
a various platform for investigating exotic magnetic properties. I expect
that the doping effects will be examined in the DAF insulator in future
work. It is predicted that the exotic physical phenomena, such as triplet
superconductivity [112], are observed because of the polarized lowest un-
occupied energy band and its large DOS as shown in Fig.12 (a). Further
experimental and theoretical investigations in this direction are desirable.
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3 Fragment-orbital-dependent
spin fluctuations

Abstract

Motivated by 13C nuclear magnetic resonance (NMR) ex-
periments, I investigated the spin fluctuations enhanced in the
single-component molecular conductor [Ni(dmdt)2], which is the
Dirac nodal line system. Especially, I calculated the spin sus-
ceptibility, Knight shift, and spin-lattice relaxation rate (1/T1T )
by applying the random phase approximation (RPA) to a Hub-
bard model which consists of three fragment orbitals and short-
range Coulomb interaction evaluated by ab initio many-body
perturbation theory calculations. I found that the commensu-
rate (q=0) and incommensurate spin fluctuations are enhanced
depending on the fragment orbitals. The commensurate and in-
commensurate responses contribute to 1/T1T in low and high T
in the presence of on-site Coulomb repulsion, respectively. I show
that 1/T1T decreases with cooling but turns to increase at low T
due to the commensurate spin fluctuations. However, the Knight
shift decreases with cooling. Such behaviors result from the char-
acteristic wave functions of this Dirac nodal line system, which is
expressed by an n-band (n ≥ 3) model, causing intra-molecular
antiferromagnetic fluctuations. I explain that the fragment or-
bitals substantially have a hand in the spin fluctuations and the
physical quantities related to them in [Ni(dmdt)2].

3.1 Low-energy effective model and for-

mulation

I calculate the spin susceptibility to investigate the spin fluctuations in
[Ni(dmdt)2]. I consider the electron correlation effect to the spin suscep-
tibility in the framework of the perturbation theory. I also calculate the
Knight shift and 1/T1T for the respective fragment orbitals. They are the
physical quantities measured by nuclear magnetic resonance (NMR). I use
RPA to the multi-orbital Hubbard Hamiltonian to calculate the spin sus-
ceptibility in [Ni(dmdt)2]. Calculation methods considering the effect of
self-energy, such as FLEX, have higher accuracy than RPA. However, I
choose RPA as the method to treat the electron correlation because the
quasi-particle peak spreading by self-energy tends to suppress spin fluctua-
tions.
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The Hubbard model is given by the following Hamiltonian :

H =
∑

⟨i,α;j,β⟩,σ

ti,α;j,βc
†
i,α,σcj,β,σ +

∑
i,α

Uαni,α,↑ni,α,↓, (14)

where i and j denote the unit-cell indices, and σ indicates the spin index (↑
or ↓). α and β stand for the fragment orbitals A, B, and C. ti,α;j,β denotes
a transfer integral between the orbitals α and β which belong to the unit-
cells i and j. And, Uα is the on-site Coulomb interaction on the orbital
α.

∑
⟨··· ⟩ denotes a summation for the transfers which is larger than the

cut-off energy Ecut (=0.010 eV).
I perform the first-principles calculations and Wannier fitting using the

programs QUANTUM ESPRESSO[90] and RESPACK[94], respectively.[75]
QUANTUM ESPRESSO is used for first-principles calculation based on the
pseudopotential method in the previous study. RESPACK is employed for
evaluating the transfer integrals and screened repulsive interaction. The ef-
fective model of [Ni(dmdt)2] near EF is described by three fragment Wan-
nier orbitals as depicted in Fig. 14, which are calculated using Wannier
fitting to three energy bands (DFT) near EF [75]. Figure 13 (a) shows the
energy band structure obtained by QUANTUM ESPRESSO. In Fig. 13
(b), Wannier fitting reproduces the original energy band structure of DFT.

Figure 14(a) and (b) display a Ni(dmdt)2 molecule and fragment or-
bitals. The orbital B in Fig. 14(a) may look like a d symmetric orbital, but
it is an anti-bonding state of p orbitals of the S atoms, as is evident from
Fig. 14 (b). The d orbital of Ni doesn’t greatly contribute to the orbital
B. Meanwhile, the orbitals A and C are p symmetric. They are equivalent
because the system has space-inversion symmetry. The three fragment or-
bitals are localized on the same molecule and belong to the same unit cell.
The Hamiltonian (Eq. 14) in the real space picture is converted to that in
the momentum space picture by the Fourier transform :

H =
∑

k,α,β,σ

H0
αβ,σ(k)c

†
k,α,σc,k,β,σ

+
1

NL

∑
k,k′,q,α

Uααc
†
k+q,α,↑c

†
k′−q,α,↓ck′,α,↓ck,α,↑.

(15)

k, k′, and q are the three-dimensional wavenumber vectors. NL denotes
the system size (the number of the unit cells). In this study, I treat the
first and second terms as unperturbed and perturbed Hamiltonians. Here,
H0

αβ,σ(k) is defined as

H0
αβ,σ(k) =

∑
⟨δ⟩

tαβ,δe
ik·δ. (16)

δ is a translational vector. Further, tαβ,δ indicates the transfer integrals,
which are assigned to t1, t2, ..., t12 and the site potential ∆, which is defined
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Figure 13: (a) Energy band structure of [Ni(dmdt)2] obtained by DFT. (b) The
energy eigenvalues calculated by Wannier fitting (purple circles) reproduce the
original band structure of DFT (red lines).
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Figure 14: Ni(dmdt)2 molecule and the fragment orbitals A, B, and C are
schematically shown. Ni, S, C, and H atoms are illustrated by red, blue, brown,
and cyan balls, respectively. The red dots in respective fragment orbitals depict
the position of the Ni atom for guiding eyes. (a) The view seen from the side of
the molecule. The black solid lines illustrate the Ni(dmdt)2 molecule. (b) View
of the molecule seen vertically. The red dotted circles enclose C atoms, which are
substituted with 13C in the 13C-NMR experiment.[81, 82]

31



as the difference between the chemical potentials of the orbitals A and B
∆ ≡ tBB,0− tAA,0, in Table 2. Note that the small transfer integrals whose
absolute values are less than a cutoff (0.010 eV) are omitted for simplicity
(Fig. 15). t1 links the nearest neighbor fragment orbitals within a molecule.
t2, t3, ..., t8 connect those between molecules in the b–c plane which is the
main conduction plane. The transfer integrals t1, t2, and t3 are essential to
generate the linear dispersions (Dirac cones). Meanwhile, t9 creates Fermi
surfaces along the nodal line. In addition, t10, t11, and t12 wind the nodal
lines.

transfer integrals (eV)
t1 -0.2372
t2 -0.1840
t3 -0.2080
t4 0.0302
t5 0.0326
t6 -0.0389
t7 0.0103
t8 -0.0144
t9 -0.0140
t10 -0.0541
t11 -0.0534
t12 0.0116

site potential (eV)
∆ 0.0429

Table 2: Numerical data of transfer integrals and site potential are shown.

In the previous study, I calculated some physical quantities of [M(dmdt)2]
(M = Pt, Ni) incorporating the spin–orbit coupling (SOC) as a parameter
modulating the imaginary parts of the transfer integrals. I found that the
SOC can shrink the size of the Fermi surface.[74, 75] The energy scale of
SOC in [Ni(dmdt)2] (∼ 0.0016 eV) was estimated to be substantially smaller
than that of the Fermi surface (∼ 0.01 eV)[75]. Thus, it is considered that
SOC in reality should not be large enough to greatly contribute to the
Knight shift and 1/T1T . In this research, I disregard the effect of SOC.

From the definition in Eq. 16, the matrix elements of the unperturbed
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Figure 15: The relationship between transfer integrals and the fragment orbitals
is schematically shown. (a) Two-dimensional network the hopping (shown by
double–headed arrows) in b–c plane is schematically illustrated. The unit cell is
represented by the dashed square. (b) The three-dimensional network containing
the hopping in the a–direction is schematically illustrated. The black chain and
vertical bold lines in (b) are for guiding eyes. The former lines are parallel to the
a–direction. The latter lines connect the molecules in the identical b–c plane.
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Hamiltonian H0
αβ,σ(k) are described by the following equations.

H0
AA,σ(k) = 2t9 cos ka,

H0
AB,σ(k) = t12e

i(−ka+kb+kc) + t1

+ t5e
i(kb+kc) + t4e

ikc ,

H0
AC,σ(k) = t10e

i(−ka+kb+kc) + t11e
i(ka+kc) + t6

+ t3e
ikc + t2e

i(kb+kc),

H0
BB,σ(k) = ∆+ 2t7 cos (kb + kc) + 2t8 cos kc,

H0
BC,σ(k) = t12e

i(−ka+kb+kc) + t1

+ t5e
i(kb+kc) + t4e

ikc ,

H0
CC,σ(k) = 2t9 cos ka.

(17)

In the following calculations, the system is treated as the cubic lattice
where the lattice constant is 1. And, the system is also 2/3 filling because
two of the three bands treated in the effective model are occupied.[74] The
unperturbed Hamiltonian Ĥ0

σ(k) satisfies the eigenvalue equation

Ĥ0
σ(k) |k, n, σ⟩ = En,σ(k) |k, n, σ⟩ , (18)

|k, n, σ⟩ =

 dA,n,σ(k)
dB,n,σ(k)
dC,n,σ(k)

 . (19)

Ĥ0
σ(k) in Eq. 18 is comprised of H0

αβ,σ(k) in Eqs. 15 and 17. En,σ(k) is the
eigenvalue and |k, n, σ⟩ is the eigenvector where n indicates the band index.
dα,n,σ(k) is the matrix element of the unitary matrix, which corresponds to
the wave functions. Because the effective model is 2/3 filling, the chemical
potential µ is obtained by

1

NL

∑
k,n,σ

fk,n,σ = 4, (20)

ϵk,n,σ ≡ En,σ(k)− µ, (21)

fk,n,σ=1/ [1 + exp (ϵk,n,σ/T )] is the Fermi distribution function. At T=0,
µ is equal to the Fermi energy EF .

As the perturbed Hamiltonian in Eq. 15, I introduce the onsite Coulomb
interaction Uαα described by the fragment orbitals as a basis. The matrix
expressing the onsite Coulomb interaction is given by

Û =

 UAA 0 0
0 UBB 0
0 0 UCC

 (22)

=

 λU 0 0
0 U 0
0 0 λU

 .
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The identity relation UAA=UCC is satisfied due to the space-inversion sym-
metry. And, I introduce the controllable parameter λ=UAA/UBB. Using
RESPACK, It is estimate that U=6.72 eV and λ=0.79 when the screening
effect is not considered, and U=2.68 eV and λ=0.95 when it is considered.
I employ λ=0.95 and U value less than 2.68 eV because RPA is apt to
overestimate the effect of onsite Coulomb interaction.

In the framework of the linear response theory, the longitudinal and
transverse spin susceptibilities are expressed by the equations :

χ̂zz(q, iωl) ≡ 1
2

∫ 1/T
0 dτeiωlτ

⟨
Tτ Ŝ

z
q(τ)Ŝ

z
−q(0)

⟩
, (23)

Ŝz
q = 1

NL

∑
k

(
ĉ†k+q,↑ĉk,↑ − ĉ†k+q,↓ĉk,↓

)
, (24)

χ̂±(q, iωl) ≡
∫ 1/T
0 dτeiωlτ

⟨
Tτ Ŝ

+
q (τ)Ŝ

−
−q(0)

⟩
, (25)

Ŝ+
q = 1

NL

∑
k ĉ

†
k+q,↑ĉk,↓, (26)

Ŝ−
−q = 1

NL

∑
k ĉ

†
k,↓ĉk+q,↑. (27)

iωl=2liπT (l ∈ Z) indicates the Matsubara frequency for boson and τ indi-
cates the imaginary time. Ŝz

q(τ), Ŝ
+
q (τ), and Ŝ

−
q (τ) are the spin operators

expressed in the Heisenberg picture. The spin susceptibility is the propor-
tionality coefficient of the magnetization to the infinitesimal magnetic field.
It implies the degree of spin fluctuations because the response of spins to
the infinitesimal magnetic field becomes sensitive under the circumstances
that spin susceptibility has a large value.
By performing a perturbation expansion of Eqs. 23 and 25, the non-
interacting longitudinal and transverse spin susceptibilities χ̂zz,0(q, iωl) and
χ̂±,0(q, iωl) are obtained as the zeroth-order perturbation terms. In this
study, SU(2) symmetry is protected in the paramagnetic state because
the SOC and finite magnetic field are not imposed. Therefore, I define
χ̂zz,0(q, iωl)=χ̂

±,0(q, iωl)≡ χ̂0(q, iωl). Its matrix elements are written as

χ0
αβ(q, iωl)

= − T

NL

∑
k,m

G0
αβ(k+ q, iω̃m + iωl)G

0
βα(k, iω̃m),

(28)

G0
αβ,σ(k, iω̃l) =

∑
n

dα,n,σ(k)d
∗
β,n,σ(k)

1

iω̃l − ϵk,n,σ
. (29)

Eq. 29 denotes the matrix elements of the non-interacting Matsubara
Green’s function. iω̃l=(2l+1)iπT is the Matsubara frequency for fermions.
I omit σ in Eq. 28 because ϵk,n,↑=ϵk,n,↓ is satisfied in Eq. 29. The lon-
gitudinal and transverse spin susceptibilities in RPA are expressed by the
Feynman diagrams depicted in Fig. 16 (A) and (B), respectively. The
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Figure 16: (A) Feynman diagram describing χ̂zz,s(q, iωl). (B) Feynman diagram
describing χ̂±,s(q, iωl). The non-interacting Matsubara Green’s functions, which
denote the quasi-particles, are represented by the solid lines, while the interaction
is shown by the dashed lines. The open circles connect the non-interacting Mat-
subara Green’s functions and the interaction. The black dots indicate the spin
operators.
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first terms in the right-hand sides of diagrams (A) and (B) correspond
to the terms χ̂zz,0(q, iωl)=χ̂

±,0(q, iωl)= χ̂0(q, iωl) (Eq. 28). Because the
longitudinal and transverse spin susceptibilities are calculated by running
summations of the series of Û χ̂0(q, iωl) in RPA, they are written as

χ̂zz,s(q, iωl) = χ̂±,s(q, iωl) ≡ χ̂s(q, iωl) (30)

= χ̂0(q, iωl)[Î − Û χ̂0(q, iωl)]
−1

,

where Î is the unit matrix.
I introduce the Stoner factor ξs(q) evaluating the degree of spin fluctu-

ations. ξs(q) is given by the largest eigenvalue of the matrix Û χ̂0(q, 0). In
the three-band model, ξs(q) and χ̂s(q, 0) are connected by the relational
expression

χ̂s(q, 0) =
1

(1− ξs(q))

χ̂0(q, 0)P̂ (q)

(1− ϕ1(q))(1− ϕ2(q))
, (31)

where ξs(q), ϕ1(q), and ϕ2(q) are the maximum and other eigenvalues of
Û χ̂0(q, 0). P̂ (q) is the adjugate matrix of Î − Û χ̂0(q, 0). The eigenvalues
of Û χ̂0(q, 0) are smaller than 1 in the paramagnetic regime. In the case of
ξs(q) → 1, the spin susceptibility χ̂s(q, 0) diverges and a magnetic order
whose the period corresponding to the wavenumber q is induced.

The Knight shift, K, and the spin-lattice relaxation rate, (1/T1T ), for
the orbital α are expressed by[113]

Kα ∝
∑
β

Re
[
χzz
αβ(0, 0)

]
, (32)

(1/T1T )α ∝ lim
ω→+0

[
1

NL

∑
q

Imχ±
αα(q, ω)

ω

]
(33)

According to Eqs. 31 and 33, all the q components for which ξs(q) becomes
close to 1 dominantly contribute to 1/T1T because they provide large value
with the spin susceptibility. In contrast to 1/T1T , the Knight shift is influ-
enced by only q=0 that gives ξs(q) ∼ 1 (see Eq. 32).

Because the spin susceptibility in the real-frequency representation χ̂s(q, ω)
is necessary to calculate 1/T1T , I calculate χ̂s(q, ω) by applying an ana-
lytic continuation to Eq. 30. Therefore, not only the Matsubara frequency
representation but also the real-frequency representation is used in this re-
search.

3.2 Numerical result in the case of U = 0

I calculate several physical quantities, such as energy dispersion, density of
state, spin susceptibility, Knight shift, and 1/T1T , in the case of U=0. I
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explain that the spin susceptibility in [Ni(dmdt)2] greatly depends on the
fragment orbitals.

I obtain the energy eigenvalues in the momentum space by diagonalizing
Ĥ0

σ(k) in Eq. 18. The energy dispersion in the kb–kc plane is shown in Fig.
17 (a), where ka is set to be −π/2. In the two-dimensional momentum
space (kb–kc), the Dirac cones appear between bands 1 and 2 near EF , and
between bands 2 and 3 beneath EF . The Dirac points are gapless because
of space-inversion symmetry.

Dirac nodal lines are drawn by the Dirac points between bands 1 and 2
connecting in the ka direction. The Dirac nodal line in the first Brillouin
zone is shown in the inset of Fig. 17 (b). As the component of wavenumber
ka varies, the positions of the Dirac points created by bands 1 and 2 vary
in the kb–kc plane and draw Dirac nodal lines in the momentum space [Fig.
17 (b)]. The Dirac points shift up and down across EF as ka varies, which
creates electron and hole surfaces around the nodal lines. This behavior is
schematically illustrated in Fig. 17 (c). The Fermi surface is depicted in
Fig. 17(b). The energy scale of the Fermi surface is approximately 0.010
eV.

I also calculate the density of states (DOS), Dtot(ω) which is given by a
summation of a fragment-orbital dependent DOS, Dα(ω), which is defined
as

Dα(ω) = − 1
πNL

∑
k,σ ImG

R,0
αα,σ(k, ω), (34)

GR,0
αβ,σ(k, ω) =

∑
n dα,n,σ(k)d

∗
β,n,σ(k)

1
ω−ϵk,n,σ+iη . (35)

ĜR,0(k, ω) is the non-interacting retarded Green’s function, where η > 0
takes the infinitesimal value. Dtot(ω) and Dα(ω) are shown in Fig. 18.
The DOS is linear to ω near EF because this material has the linear energy
dispersion in low energy region and the effect of transfer integrals along the
nodal line direction is small. The finite DOS at EF results from the Fermi
surface created by the transfer in the nodal line direction.

In order to explain the fragment orbital-dependent spin fluctuations in
this material, it is necessary to introduce the wave function of the Dirac
nodal system. Figure 19 shows kb–kc dependence of the squared absolute
value of the wave function for the orbital B and band 2, |dB,2,σ(k)|2. ka is
set to be −π/2. Note that the line segments connecting the positions of the
Dirac points (illustrated with black lines in Fig. 19) have |dB,2,σ(k)|2=0,
which I call the “zero region (ZR)” in this study. In contrast to orbital
B, orbitals A and C have no ZR in their wavefunctions. A similar ZR
was previously found in n-band (n ≥ 3) organic Dirac electron system α-
(BEDT-TTF)2I3 (n=4)[51].

I calculate the non-interacting spin susceptibility χ̂0(q, ω) in order to
determine the spin fluctuations enhanced in [Ni(dmdt)2]. The diagonal
elements of the non-interacting spin susceptibility χ0

AA(q, 0), χ
0
BB(q, 0),
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Figure 17: (a) Energy dispersion near EF in the kb–kc plane. ka is set to be
−π/2. There are Dirac cones between each pair of bands. Dirac points between
bands 1 and 2 depict the Dirac nodal lines in the momentum space. (b) Fermi
surface in the first Brillouin zone. The electron and hole pockets are illustrated in
magenta and green, respectively. The Dirac nodal lines in the first Brillouin zone
are shown in the inset. (c) The relationship among the Dirac nodal line, Fermi
surface, and wavenumber ka is schematically shown. The red curved and dotted
transverse lines indicate the Dirac nodal line and EF , respectively.
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Figure 18: Total DOS and local DOS for the fragment orbital α=A(=C) and B
are shown. DA(ω)(=DC(ω)), DB(ω), and Dtot(ω)=

∑
α Dα(ω) are shown by the

red dotted and blue dashed, black solid lines, respectively.

Im[χ0
AA(q, ω0)], and Im[χ0

BB(q, ω0)] are in Fig. 20 (a), (b), (c), and (d), re-
spectively. Temperature is set to be T=0.003 eV. These quantities increase
with rising temperature at q=0. χ0

αα(q, 0) is a real number. I set ω0=0.001
eV because the imaginary part of the spin susceptibility at the infinitesimal
frequency is needed to calculate Eq. 33. One of qa, qb, and qc have to
be fixed to illustrate the spin susceptibilities in the three-dimensional fig-
ures. I confirm that χ0

AA(q, 0) and χ
0
BB(q, 0) have the maximum values at

the commensurate wavenumber q=0 and the incommensurate wavenumber
q=Q=(0.20π, 0.73π, 0.58π) at T=0.003 eV. Therefore, I fix qa=0 in Fig.
20 (a) and (c) and qa=0.2π in Fig. 20 (b) and (d). Q is the wavenumber
where χ0

BB(q, 0) has the maximum values and varies slightly with temper-
ature. Althogh Im[χ0

BB(q, ω0)] has the maximum value q=Q in Fig. 20
(d), Im[χ0

BB(0, ω0)] is largest in the entire Bz. It contributes to (1/T1T )B
in the case of U = 0. χ0

CC(q, 0) is equal to χ
0
AA(q, 0) due to space-inversion

symmetry.
Such fragment-orbital dependencies of the spin susceptibilities imply

that this material has two candidates for spin fluctuations which can be
enhanced in the bulk. They are the spin fluctuations related to q=0 mag-
netic order and SDW. To investigate the reason why the spin susceptibilities
in the momentum space depend on the fragment orbitals, the information
about the spectral weights at EF is essential. The spectral weight in the
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Figure 19: Squared absolute value of the wave function of orbital B in band
2, |dB,2,σ(k)|2, in the kb–kc plane, where ka=−π/2. The up arrows stand for the
positions of the Dirac points degenerated between the bands 1 and 2 in Fig. 17
(a), while the down arrows stand for those between the bands 2 and 3. The color
bar shows the magnitude of |dB,2,σ(k)|2.
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Figure 20: Momentum q dependency of the diagonal elements of the spin sus-
ceptibility in the case of U = 0. (a) χ0

AA(q, 0) in the qb–qc plane, where qa=0.
(b) χ0

BB(q, 0) in the qb–qc plane, where qa=0.2π. (c) Im[χ0
AA(q, ω0)] in the qb–qc

plane, where qa=0. (d) Im[χ0
BB(q, ω0)] in the qb–qc plane, where qa=0.2π. The

temperature is set to be T=0.003 eV.
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momentum space is given by

ρα(k, ω) = − 1

π
ImGR,0

αα (k, ω), (36)

where the spin index σ is omitted in Eq. 36. Eq. 36 at ω=0 implies the
spectral weight on the Fermi surface. ρα(k, ω) shows the weights of the
respective fragment orbitals for the energy ω and the wavenumber k be-
cause GR,0

αα (k, ω) in Eq. 36 includes the square of the absolute values of the
wavefunctions |dα,n(k)|2. In addition, the spectral weight and DOS have
the relationship 1

NL

∑
k ρα(k, ω)=Dα(ω). Figures 21 (a) and (b) show the

spectral weights ρA(k, 0) and ρB(k, 0) in the kb–kc plane (ka=π), respec-
tively. In both figures, −0.65π < kb < −0.50π and 0.20π < kc < 0.30π.
The orbital A does not have the momentum where its spectral weight be-
comes zero, but the spectral weight of B looks like a part of it lacks because
orbital B has ZR in its wave function. This difference in spectral weights
provides the spin susceptibilities with fragment-orbital dependence.

Figure 21: (a) Spectral weight ρA(k, 0), which is a finite value on any parts of the
Fermi surface. (b) Spectral weight ρB(k, 0). ZR makes a part of it zero. In the
both figures, ka=π, −0.65π < kb < −0.50π, and 0.20π < kc < 0.30π. Color bars
show the magnitude of the spectral weights. The yellow region indicates momenta
where the spectral weight on the Fermi surface is high.

After performing summation over the Matsubara frequency of the fermion
iω̃m in Eq. 28, the non-interacting spin susceptibility is rewritten as

χ0
α,β(q, iωl) = − 1

NL

∑
k,m,n

fk+q,m − fk,n
ϵk+q,m − ϵk,n − iωl

× dα,m(k+ q)d∗β,m(k+ q)dβ,n(k)d
∗
α,n(k).

(37)

I omit σ in Eq. 37. The terms in which the denominator and numerator
are respectively close to 0 and 1 in Eq. 37 increase the non-interacting
spin susceptibilities. Such terms are given by the wavenumber k+ q and k
near the Fermi surface. Thus, the vector q connecting the Fermi surface,

43



which is called the nesting vector, greatly affects the spin susceptibility. The
relationship between the vesting vector q=Q and Fermi surface is shown
in Fig. 22. q=Q connects the momentum regions which give ρB(k, 0) high
values. Q provide the maximum value with χ0

BB(q, 0). Note that I do not
calculation Eq. 37 but Eq. 28 using a fast Fourier transform.

Figure 22: Nesting vector q=Q is shown in the right figure. It connects the
momentum regions which give ρB(k, 0) high values. The electron and hole pockets
respectively are depicted in magenta and green.

I calculate the temperature dependence of χ0
αβ(0, 0) by solving Eq. 28

for q=0 because it is important to the following calculations. They have real
values because q=0 and ω=0. χ0

AA(0, 0)=χ
0
CC(0, 0), χ

0
AB(0, 0)=χ

0
BC(0, 0)

are satisfied because this material has the space-inversion symmetry. Be-
haviors of the spin susceptibilities χ̂0(0, 0) are shown in Fig. 23. The diag-
onal element χ0

AA(0, 0) may look like almost constant, however, it slightly
decreases with cooling. χ0

BB(0, 0) also slowly decreases with cooling. On
the other hand, the off-diagonal elements χ0

AB(0, 0) and χ0
AC(0, 0) takes

negative values and decrease with cooling. In order to show the terms de-
termining the signs of χ0

AB(0, 0) and χ
0
AC(0, 0), I define the band-resolved

spin susceptibility (Eq. 38) and solve it.

χ0
αβ,mn(q, iωl)

= − T

NL

∑
k,l′

G0
αβ,m(k+ q, iω̃l′ + iωl)G

0
βα,n(k, iω̃l′),

(38)

G0
αβ,m,σ(k, iω̃l) = dα,m,σ(k)d

∗
β,m,σ(k)

1

iω̃l − ϵk,m,σ
, (39)

wherem and n indicate the band indices. Eq. 38 satisfies
∑

m,n χ
0
αβ,mn(q, iωl)=

χ0
αβ(q, iωl), where χ

0
αβ(q, iωl) is given by Eq. 28. In the inset of Fig. 23,
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the temperature dependencies of χ0
AB,12(0, 0) and χ0

AC,12(0, 0) are shown.
They take negative values and such terms give the off-diagonal elements of
spin susceptibility, χ0

AB(0, 0) and χ
0
AC(0, 0), negative signs.

Figure 23: Behavior of χ0
αβ(0, 0). The red dashed, blue solid, green dotted, and

purple chain lines show χ0
AA(0, 0), χ

0
BB(0, 0), χ

0
AB(0, 0), and χ0

AC(0, 0), respec-
tively. The band-decided spin susceptibilities χ0

AB,12(0, 0) and χ0
AC,12(0, 0) are

also depicted by the green dotted and purple chain lines, respectively.

I calculate the Knight shift in the case of U = 0 using Eq. 32. Knight
shifts for the respective fragment orbitals are expressed by KA=χ

0
AA(0, 0)+

χ0
AB(0, 0)+χ

0
AC(0, 0) andKB=χ

0
BB(0, 0)+χ

0
BA(0, 0)+χ

0
BC(0, 0)=χ

0
BB(0, 0)+

2χ0
BA(0, 0) by using the matric elements of the spin susceptibilities, which

are shown in Fig. 23, because of the space-inversion symmetry. The Knight
shift for the fragment orbitals A and B is shown in Fig. 24. The Knight
shift is dominated by the linear energy dispersion for temperatures higher
than T ∗. However, not only linear dispersion but also Fermi surface con-
tribute to the Knight shift. The influence of the Fermi surface appears in
T ≲ T ∗ ∼ 0.01eV. The Knight shift of the two-dimensional Dirac electron

system for U = 0 is determined byKα ≃
∫∞
−∞Dα(ω)

(
−df(ω)

dω

)
dω.[113] f(ω)

is the Fermi distribution function where the index ω is energy. Kα is pro-
portional to T for T ≳ T ∗ in Fig. 24 because local DOS is proportional to
ω near the Femi energy in Fig. 18. The Knight shift of the two-dimensional
Dirac electron system becomes zero at T=0 because the DOS is zero at EF .
However, the Kα does not become proportional to T for T ≲ T ∗ because
Dα(0) has a finite value (Fig. 18). This is the effect of the Fermi surface
generated by the three-dimensional transfer integrals. The magnitude re-
lationship KB > KA is consistent with the one of DB(ω) > DA(ω) near
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EF .

Figure 24: Behavior of Kα in the case of U = 0. The red dashed, blue dotted,
black solid lines show KA, KB, and total Knight shift Ktotal=KA + KB + KC ,
respectively. The green dotted longitudinal line represents T=T ∗∼0.01 eV. The
green thin line which is proportional to T is shown for the guiding eye.

Next, I calculate the spin-lattice relaxation rate 1/T1T in the case of
U = 0 using Eq. 33. 1/T1T is determined by the imaginary part of the diag-
onal element of the spin susceptibility

∑
q Im[χ0

αα(q, ω0)]. Fig. 25 shows the
temperature dependence of 1/T1T in the case of U = 0. (1/T1T )α is propor-
tional to T 2 for T ≳ T ∗ in Fig. 24 because the 1/T1T of the two-dimensional

Dirac electron system is given by (1/T1T )α ≃
∫∞
−∞[Dα(ω)]

2
(
−df(ω)

dω

)
dω. It

means that q=0 components of the imaginary parts of the spin suscepti-
bilities contribute to 1/T1T .[113] (1/T1T )α is not proportional to T 2 for
T ≲ T ∗ due to the Fermi surface.

3.3 Numerical result in the case of U ̸= 0

I evaluate the Stoner factor, the Knight shift, and 1/T1T in the case of
U ̸= 0. It is found that the enhancement of spin fluctuations by U is
important for the behavior of the Knight shift and 1/T1T .[81, 82] According
to Eq. 31, the Stoner factor ξs(q) close to 1 is the main contributor for
the spin susceptibility thus for the Knight shift and 1/T1T . ξs(q = 0) ≈
1 contributes to the Knight shift and 1/T1T . ξs(q = Q) ≈ 1 does not
contribute to the Knight shift but to 1/T1T .

I calculate the Stoner factor ξs(q) because it takes on an important role
in enhancement of spin fluctuations. Figure 26 shows the behavior of ξs(q),
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Figure 25: Behavior of (1/T1T )α in the case of U = 0. The A and B components,
(1/T1T )A and (1/T1T )B, are shown red solid and blue dotted lines, respectively.
The dashed longitudinal line represents T=T ∗∼0.01 eV. The green thin line which
is proportional to T 2 is drawn for guiding eyes.

where the horizontal axis represents T . I set U=0.802 and λ=0.95. The
value λ=0.95 is acquired at the time of estimating the screened Coulomb
repulsion by RESPACK. ξs(q) value is maximum at q=0 and increases
with cooling. The parameters λ=0.95 and U=0.802 provide ξs(0)=0.999 at
T=0.003 eV. Meanwhile, ξs(Q) slowly decreases with cooling and ξs(Q) <
ξs(0) then. Q is the wavenumber where χ0

BB(q, 0) and χ
0
BB(q, 0) are maxi-

mum in the momentum space. ξs(0) > ξs(Q) shows that the q=0 magnetic
order is easily induced than incommensurate SDW.

I explain reason why ξs(0) increases with cooling. in the case of U ̸= 0,
ξs(q) isn’t directly determined by the DOS because the maximum eigen-
value of Û χ̂0(q, 0) includes the products of the χ0

αβ(q, 0). It means that the
Coulomb interaction is essential for the spin fluctuations. I calculate the
first- and second-order perturbation terms in Eq. (A) and (B) in Fig. 16.
Eq. (A) and (B) in Fig. 16 are equivalent because the SOC is not consid-
ered and external fields are imposed. Their matrix elements χs,1st

αβ (q, iωl)

and χs,2nd
αβ (q, iωl) are expressed by

χs,1st
αβ (q, iωl) =

∑
γ

χ0
αγ(q, iωl)Uγγχ

0
γβ(q, iωl), (40)
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Figure 26: ξs(0) and ξs(Q) are shown as functions of T by the red solid and blue
dotted lines, respectively.

χs,2nd
αβ (q, iωl) =

∑
γ,γ′

χ0
αγ(q, iωl)Uγγχ

0
γγ′(q, iωl) (41)

× Uγ′γ′χ0
γ′β(q, iωl).

They are the first- and second-order perturbation terms in RPA and cor-
respond to the second and third terms in the right-hand of Eq. (A) or
(B) in Fig. 16, respectively. Figure 27 shows the temperature dependence

of χs,1st
AA (0, 0) and χs,2nd

AA (0, 0). They increase as with cooling. Because
the off-diagonal elements of χ̂0(0, 0) are negative and decrease with cool-
ing in Fig. 23, their squares of absolute values increase. Thus, terms such as
χ0
AB(0, 0)UBBχ

0
BA(0, 0) in Eq. 40 and χ0

AC(0, 0)UCCχ
0
CC(0, 0)UCCχ

0
CA(0, 0)

in Eq. 41 increase χs,1st
AA (0, 0) and χs,2nd

AA (0, 0) with cooling. The other
higher-order perturbation terms have similar temperature dependencies.
Thus, ξs(0) has the large value in low T .

Fragment orbitals A and C are sensitive to ξs(0) while fragment or-
bital B is sensitive to ξs(Q). I determine the matrix elements of χ̂s(0, 0)
and χ̂s(Q, 0) to show these behaviors by solving Eqs. 28 and 30. Tem-
perature dependence of χs

AA(0, 0), χ
s
BB(0, 0), χ

s
AB(0, 0), and χs

AC(0, 0)
are shown in Fig. 28(a). They have the real values because q=0 and
iωl=0. χs

AA(0, 0)=χ
s
CC(0, 0), χ

s
AB(0, 0)=χ

s
BA(0, 0)=χ

s
BC(0, 0)=χ

s
CB(0, 0),

and χs
AC(0, 0)=χ

s
CA(0, 0) are satisfied due to space-inversion symmetry.

The inset is the enlarged figure around χs
BB(0, 0) and χ

s
AB(0, 0). χ

s
BB(0, 0)

and χs
AB(0, 0) do not increase at low T , while χs

AA(0, 0) sharply increases.
In addition, χs

AC(0, 0) sharply decreases with cooling and takes the negative
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Figure 27: Behavior of first- and second-order perturbation terms of χs
AA(0, 0)

are shown by the brown solid and magenta dotted line, respectively.

value. ξs(0) greatly contributes to the orbitals A and C but not the orbital
B. The negative χs

AC(0, 0) implies that intra-molecular antiferromagnetic
fluctuations are enhanced. The negative off-diagonal elements of the inter-
acting spin susceptibility result from the distinctive wave functions of the
Dirac nodal line system.

Figure 28(b) shows the behaviors of Re [χs
AA(Q, 0)], Re [χs

BB(Q, 0)],
Re [χs

AB(Q, 0)], and Re [χs
AC(Q, 0)]. Re [χ̂s(Q, 0)] link to ξs(Q) and slowly

varies with T . Re [χs
BB(Q, 0)] is the largest of all matrix elements and slowly

increases with T . Fragment orbital B is influenced by ξs(Q). The spin cor-
relation between the fragment orbitals B and A(C) within a molecule is
antiparallel because Re [χs

AB(Q, 0)] is negative and Re [χs
AC(Q, 0)] is posi-

tive.
Figure 29 shows a schematic of the spin fluctuations within a molecule.

Figure 29 (a) illustrates the case in Fig. 28 (a), where the intra-molecular
antiferromagnetic spin fluctuations appears. The solid arrows in Fig. 29
(a) illustrate that an infinitesimal downward local magnetic field on the or-
bital C(A) gives the orbital A(C) an upward spin polarization by the linear
response relation MA(C)=χ

s
AC(CA)∆HC(A), respectively, where M and ∆H

are magnetization and infinitesimal magnetic field. Figure 29(b), which is
derived from Fig. 28(b), illustrates the spin fluctuations within a molecule
that are incommensurate (q=Q) between molecules. In the case of the
q=Q spin fluctuations, the spins at the orbitals A(=C) and B are apt to
be inversely correlated within a molecule.
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Figure 28: (a) Behaviors of χs
AA(0, 0), χ

s
BB(0, 0), χ

s
AB(0, 0), and χs

AC(0, 0) are
shown by the red dashed, blue solid, green dotted, and purple chain lines, re-
spectively. The inset shows an enlarged view of the region around χs

BB(0, 0) and
χs
AB(0, 0). (b) Behaviors of Re [χs

AA(Q, 0)], Re [χs
BB(Q, 0)], Re [χs

AB(Q, 0)], and
Re [χs

AC(Q, 0)]. The combination of matrix elements and lines is the same as in
(a).
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Figure 29: Spin correlation within a molecule is schematically depicted. (a) Intra-
molecular antiferromagnetic spin fluctuations, which correspond to q=0 response,
are shown in Fig. 28(a). (b) Spin correlation within a molecule given by the q=Q
response in Fig. 28(b).

Next, I show χs
αα(q, ω) at T=0.003 eV. Figure 30 (a), (b), (c), and (d)

show χs
AA(q, 0), χ

s
BB(q, 0), Im[χs

AA(q, ω0)], and Im[χs
BB(q, ω0)] in the qb-qc

plane, respectively. χs
αα(q, 0) has the real value. I fix qa=0 in Fig. 30

(a) and (c) and qa=0.2π in Fig. 30 (b) and (d). The real frequency ω0

is set to be 0.001 eV. χs
AA(q, 0) and Im[χs

AA(q, ω0)] have very large val-
ues at q=0 because the Stoner factor is almost 1 (ξs(0)=0.999). However,
the BB component is insensitive to ξs(0) but sensitive to ξs(Q). Q is the
wavenumber where χ0

BB(q, 0) and χ
s
BB(q, 0) become maximum. χs

AA(0, 0)
and Im[χs

AA(0, ω0)] are much larger than χs
BB(Q, 0) and Im[χs

BB(Q, ω0)]
because ξs(0) > ξs(Q) and the spin susceptibility obtained by RPA is dom-
inated by 1/ (1− ξs(q)). χ

s
AA(0, 0) and Im[χs

AA(0, ω0)] in Fig. 30 (a) and
(c) decrease with temperature. Whereas, χs

BB(Q, 0) and Im[χs
BB(Q, ω0)]

in Fig. 30 (b) and (d) increase and width of the peaks become very broad
with temperature. These are caused by the behavior of ξs(q) in Fig. 26
and the fragment-orbital dependent spin fluctuations.

I calculate Eq. 32 and 33 to investigate the influence of the spin fluctua-
tions on the Knight shift and 1/T1T , which are physical quantities observed
by 13C-NMR experiment.

Fig. 31 shows the Knight shift where U=0.802 and λ=0.95. The hori-
zontal axis indicates temperature. KB in the case of U ̸= 0 is larger than
that in the case of U = 0. On the other hand, KA and KC in the case of
U ̸= 0 are smaller than those in the case of U = 0 and have negative values.
On the other hand, KB and Ktot(= KA +KB +KC) have positive values.
Similar behavior was proposed in the previous research about the organic
conductor α-(BEDT-TTF)2I3, which is the two-dimensional Dirac electron
system.[51]

Although the Stoner factor ξs(0) is almost 1 at T=0.003 eV, KA and
KC monotonically decrease with cooling. The mechanism of this behavior
is unraveled by analyzing the off-diagonal elements of χ̂s(0, 0). Because
χs
AA(0, 0) and χs

AC(0, 0) have opposite signs in Fig. 28(a), their cancela-
tion prevents the Knight shift from increasing in Eq. 32. Thus, the q=0
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Figure 30: The diagonal elements of the spin susceptibility in qb–qc plane. (a)
χs
AA(q, 0) in the qb–qc plane, where qa=0. (b) χs

BB(q, 0) in the qb–qc plane, where
qa=0.2π. (c) Im[χs

AA(q, ω0)] in the qb–qc plane, where qa=0. (d) Im[χs
BB(q, ω0)]

in the qb–qc plane, where qa=0.2π.
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spin fluctuations do not appear in the Knight shift because it is the intra-
molecular antiferromagnetic fluctuations.

Figure 31: Behavior ofKα where U=0.802 and λ=0.95. KA,KB, andKtot(=KA+
KB + KC) are depicted by the red dashed, blue dotted, and black solid lines,
respectively.

Next, I calculate Eq. 33. 1/T1T , which is determined by
∑

q Im[χs
αα(q, ω0)],

is shown in Fig. 32 (λ=0.95, U=0.802). The horizontal axis indicates tem-
perature. At high T , 1/T1T values for all fragment orbitals decrease with
cooling, however, the (1/T1T )A(=(1/T1T )C) starts to increase in low T
because fragment A is greatly contributed by ξs(0). On the other hand,
(1/T1T )B does not increase because orbital B is insensitive to ξs(0). For
T≳0.005 eV, (1/T1T )B become larger than (1/T1T )A and (1/T1T )C . Not
only q=0 component but also q ∼ Q component contribute to (1/T1T )B
because the peak Im[χS

BB(Q, ω0)] become broad and ξs(Q) slowly increases
with T . (1/T1T )A and (1/T1T )C doesn’t become as large as (1/T1T )B
because they are　 difficult to be affected by ξ(Q).

In the case of a small λ, ξs(Q) is larger than ξs(0), and SDW can be
induced. However, the Stoner factor ξs(Q) is suppressed at low T as shown
in Fig. 26. Thus, incommensurate spin fluctuations do not reproduce the
upturn of the 1/T1T curve near 30 K. I estimate λ using RESPACK in this
study. λ=0.79 and λ=0.95 are obtained as the ratios of diagonal elements
with the unscreened and screened on-site Coulomb interactions, respec-
tively. Therefore, I consider that λ=0.95 is more realistic than λ=0.79.

In this subsection, I showed that the Knight shift monotonically de-
creases with cooling due to the intra-molecular antiferromagnetic fluctua-
tions. I also showed that the (1/T1T )A and (1/T1T )C start to increase at
low T due to the behavior of Stoner factor ξs(0). They are dominant in
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Figure 32: Behavior of (1/T1T )α where U=0.802 and λ=0.95. The red solid and
blue dotted lines show (1/T1T )A and (1/T1T )B, respectively.

T≲0.005 eV, while (1/T1T )B become larger than (1/T1T )A and (1/T1T )C in
T≳0.005 eV because of behavior of ξs(Q) and fragment-orbital-dependence
of spin fluctuations. Fig. 33 summarizes the fragment-orbital dependence
of the Fermi surface, non-interacting spin susceptibilities, Stoner factors,
and 1/T1T . Fig. 33 shows the important factors for orbitals A and B.
ξs(0) mainly contributes to orbital A and gives (1/T1T )A large value at low
T . However, Orbital B is insensitive to ξs(0) but sensitive to ξs(Q), which
contributes to (1/T1T )B at high T . The contribution of ξs(Q) to orbital A
and C is small. These fragment-orbital-dependent spin fluctuations result
from the ZR in the momentum space because the spectral weight ρB(k, 0)
in Eq. 36 is biased to a part of the Fermi surface.

3.4 Summary and discussion

It is found that the idea of fragment orbitals is significant in investigating
the spin fluctuations and the physical quantities related to the NMR experi-
ment in [Ni(dmdt)2]. For fragments A and C, which are localized on one side
of the molecule, the commensurate spin fluctuations (q=0) are enhanced,
while the incommensurate spin fluctuations are enhanced in fragment B,
which is localized at the center of the molecule. The q=0 spin fluctuations
make (1/T1T )A and (1/T1T )C increase with cooling at low T . However,
they don’t appear in the Knight shift due to the intramolecular antifer-
romagnetic fluctuations. The mechanism of enhancement of the q=0 spin
fluctuations is understood from the scattering process in RPA and behavior
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Figure 33: Table summarizing th Fermi surface, q giving χ0
αα(q, 0) peaks, Stoner

factors, and 1/T1T for the orbitals A and B.

of χ̂0(0, 0). On the other hand, the incommensurate spin fluctuations make
(1/T1T )B large in T ≳ 0.005 eV. These fragment-orbital-dependent physi-
cal quantities result from the ZR. If there is no ZR in the momentum space,
it is considered that the B diagonal element of the spin susceptibilities is
not maximum at the incommensurate wavenumber, because the behaviors
of the spectral weight ρα(k, 0) for all fragments may be similar. Because
ρB(k, 0) in Eq. 36 is significantly biased on the part of the Fermi surface
due to the existence of ZR, the B diagonal element of the spin susceptibil-
ity becomes maximum at the incommensurate wavenumber. Therefore, the
behaviors of the spin susceptibilities in the momentum space are different
depending on the fragments. The fragment-orbital-dependent behaviors of
physical quantities are expected to be found in other Dirac nodal line sys-
tems because ZR is a character of the Dirac nodal line system expressed by
an n-band low energy effective model (n ≥ 3). In addition, it is predicted
that tuning U and λ by transition-metal substitution controls spin fluctua-
tions appearing in the observable quantities. In the two-dimensional Dirac
electron system under the charge-neutral condition, the spin fluctuations
may be weak because it has no transfer integral creating a Fermi surface.
Whereas, not only intramolecular antiferromagnetic fluctuations but also
incommensurate spin fluctuations are enhanced in [Ni(dmdt)2] because the
hopping in the nodal line direction makes the Fermi surface. This is the
three-dimensionality of [Ni(dmdt)2].

13C-NMR experiments reported that 1/T1T has a peak structure at
T∼30K. This experiment was performed on a sample in which 12C atoms
were replaced by 13C. In Figure 14 (b), the 13C atom is surrounded by a
red dotted circle. Thus, the A and C orbitals are the main contributors to
the physical quantities measured in the 13C-NMR experiments. Therefore,
the numerical results of 1/T1T obtained in this study are considered to be
in qualitative agreement with the experimental results. Furthermore, the
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behavior of (1/T1T )B is expected to appear remarkably in the experiment
using a sample in which 12C atoms near the Ni atoms are replaced by 13C.
On the other hand, the Knight shifts of the A and C orbitals are negative
in the numerical calculations, while the Knight shifts observed in the 13C-
NMR experiments are positive at any temperature. Therefore, I consider
the following electronic state possibilities in T≲30 K. The first possibility
is that the intramolecular antiferromagnetic order is stabilized at T≲30 K,
and the experimental Knight shift measures the sum of KA and KB. In
the second possibility, U is not large enough to make KA negative. Next, I
consider that another order stabilizes at T≲30 K and that the fluctuations
corresponding to that order increase (1/T1T ) with cooling.
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4 Conclusion
In this paper, I investigated the magnetic properties of the organic conduc-
torsand (EDO-TTF-I)2ClO4 and [Ni(dmdt)2], focusing on the molecular
orbital degrees of freedom. The former is the inequivalent dimers and the
latter is the fragment orbitals. In the work on (EDO-TTF-I)2ClO4, I found
that the antiferromagnetic order of the dimer is induced by electron cor-
relation effects and that the inequivalence of the dimer leads to giant spin
splitting. Since the charge gap is finite (∆C ∼ 0.4 eV), the ground state
of this material is a compensated ferrimagnetic insulator. If the energy
gap is controlled by pressure or temperature, a compensated ferrimagnetic
semimetal can be made in the system. Thus, the inequivalent dimer system
is expected to be useful for the generation of spin currents. In the study
of [Ni(dmdt)2], it was found that the spin fluctuations depend on the in-
tramolecular fragment orbitals. Two types of intramolecular antiferromag-
netic fluctuations (q=0) and incommensurate spin fluctuations (q=Q) are
obtained. The fragment dependence of the spin fluctuations is attributed
to the wave function of the Dirac nodal line system. These studies show
that the degrees of freedom of molecular orbitals are an important key to
calculating physical quantities related to the novel magnetism.
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