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Abstract 

 

The sensitivity analysis (SA) plays a key role in the quantification and the reduction of 

the nuclear data-induced uncertainty. For easy implementation and efficient SA for various types 

of neutronics parameters and design systems, the development of a forward-based SA method is 

strongly desired. Therefore, in this thesis, the two methods for the sensitivity analysis using only 

forward calculations are newly proposed focusing on the advantages of the forward calculations. 

The first one is the adaptive smooth-lasso, which is a lasso-type penalized linear 

regression. The penalty term of the proposed method is designed to capture the sparsity, the 

continuity against the induced neutron energy, and the steep changes due to threshold reactions 

and giant resonances better than the conventional regressions. Through the SA of keff of an 

accelerator-driven system (ADS) at the beginning of the cycle (BOC), the better performance of 

the proposed method is demonstrated in comparison with the conventional regressions. 

The second one is the ROM-Lasso, which combines the reduced order modeling and the 

lasso regression to dramatically improve the calculation cost. In this method, the sensitivity 

coefficients are expanded by bases of an active subspace obtained in the lower-fidelity model and 

the expansion coefficients are estimated via the lasso regression. By reducing the effective 

dimensionality of the nuclear data for the sensitivity analysis, the number of forward calculations 

can be dramatically reduced by a couple of orders of magnitude. The ROM-Lasso method is 

verified for several neutronics parameters considering burnup through a one-cycle burnup core 

calculation of the ADS. 

In addition to the development of the methods, the data assimilation (DA) aiming at the 

reduction of the nuclear-data-induced uncertainty of the design property of the ADS is 



investigated as a practice of the application of SA. In this study, the lead-bismuth sample reactivity 

measurements conducted at the Kyoto University Critical Assembly are employed with the 

primary aim of examining the uncertainty reduction of the void reactivity of the coolant in the 

ADS. Through the analysis, the uncertainty is successfully reduced, demonstrating the 

applicability of forward-based uncertainty quantification (UQ) and DA via SA to the ADS. 

The development in this thesis potentially resolves the primary issues in the SA and 

promotes the application of SA to the various types of neutronics parameters. Furthermore, this 

thesis demonstrates the forward-based UQ and DA making use of the sensitivity coefficients for 

neutronics parameters of an innovative system. 
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1. Introduction 

1.1. Background 

Japan’s primary energy supply depends on thermal power for about 80% of its demand. 

Due to its resource-poor situation and its heavy dependence on overseas fossil fuels, Japan’s 

energy has a vulnerability to a stable supply [1]. For example, the energy supply will be potentially 

threatened by political situations in the Middle East because the Strait of Hormuz is the most 

important chokepoint of oil transportation. In addition, Russia’s aggression against Ukraine took 

place in 2022 impacted and confused the international and Japanese supply and market price of 

energy. It is an urgent matter for a sustainable society to establish a well-balanced energy supply 

with diversified sources. 

Nuclear power has great advantages of the capability of producing energy by only the 

domestic fuel stockpile for several years owing to its massive energy density of nuclear fuels and 

its lower greenhouse gas emissions. Japan’s Strategic Energy Plan recognizes nuclear power as 

an important baseload energy [2]. However, the Fukushima Dai-ichi nuclear accident caused by 

the occurrence of the “once in a thousand years” earthquake and subsequent tsunami exposed the 

problem of the mindset so-called “safety myth” that induced overconfidence in nuclear safety and 

the lack of countermeasures against severe accidents. Against this background, on the major 

premise of ensuring safety, Japan plans to restart the nuclear power plants that receive approval 

under the new safety standards established by the Nuclear Regulatory Association (NRA) and 

will promote the development of advanced reactors that expectedly enhance safety and 

technologies for disposal of radioactive waste including transmutations of long-lived nuclides by 

fast reactors and/or accelerators to reduce the scale of the period during which they show 

significant levels of radioactivity [1,2]. 

To design nuclear power systems, it is necessary to perform core analyses that predict 
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neutronics parameters related to safety and economics by simulating the behavior of the system 

using computers. Accurate simulations and reliable predictions are important to better understand 

and optimize the design and safety margins of nuclear systems. The uncertainty quantification 

(UQ) can help to capture how accurate the simulations are, hence ensuring the credibility of the 

simulation outcomes and enabling the robust design. In the next section, the overview of the 

sources of the uncertainty in core analyses is described. 

 

1.2. Overview of uncertainty in core analysis 

There are several sources of the uncertainty in the predictions by the core analysis [3]: 

i) the uncertainty inherent in fundamental formulations that we rely on, ii) the uncertainty of the 

numerical analysis, iii) the uncertainty of modeling and simplification of the problem, and iv) the 

uncertainty of the input parameters. 

The uncertainty associated with i) is derived from the possibility that the fundamental 

formulations we believe do not adequately describe the true physics of nature. For example, even 

in the Boltzmann transport equation, which is considered one of the most exact formulations for 

the macroscopic neutron transport phenomena, there are several assumptions and approximations 

to derive it, and the possibility of the gap between the equation and the true physics cannot be 

completely ruled out [4]. In many cases, especially in the core analysis, this uncertainty is 

considered negligible.  

The uncertainty associated with ii) appears when we numerically solve the equations 

describing the physics. In general, it is difficult to obtain the analytical solution of the Boltzmann 

equations except for extremely simplified cases. In deterministic methods, the space, the direction 

of the flight path, and the energy of neutrons are discretized so that computers can solve the 

problems in a certain sequential procedure, resulting in discretization errors. Even in the Monte 
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Carlo method, which employs no discretization and few approximations, the calculation results 

contain statistical errors because it tracks the neutron trajectory decided by a stochastic procedure 

and statistically makes guesses for the solutions using estimators. 

The uncertainty associated with iii) arises when modeling and/or simplifying a geometry 

of interest. In critical benchmark problems, sometimes experimenters provide models simplifying 

and/or neglecting core supporting structure, jigs, and impurity in compositions to make treatments 

in numerical analysis easier [5]. The geometry is often simplified because there are limitations in 

the types of meshes that can be handled by the calculation methods. 

The nuclear data-induced uncertainty falls into the category of iv). In a core analysis, 

one uses the nuclear data libraries evaluated in advance as the input parameters of the calculations. 

Because the macroscopic behavior of the core is dominated by the microscopic neutron-nucleus 

interactions, the uncertainty of nuclear data propagates to neutronics parameters and ultimately to 

the design through the core analysis. Recently, the uncertainty in nuclear data has been considered 

one of the major sources of uncertainty in core analysis, whereas the others can be mitigated by 

the great improvement of the computers and development of the sophisticated analysis methods 

[6, 7]. Therefore, this thesis focuses on the nuclear data-induced uncertainty among the above-

mentioned sources.  

 

1.3. Nuclear data-induced uncertainty 

The core analysis employs the evaluated nuclear data libraries. There is no way to 

simply describe the underlying physics of neutron-nucleus interactions for all nuclides and all 

types of reactions through a wide range of incident neutron energy. Thus, the nuclear data are 

evaluated by the combined use of differential experimental data, nuclear reaction/resonance 

models, and appropriate approximations, aiming at providing good accuracy in their application 
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to integral experiments while being faithful to the differential data [8]. Because the differential 

experimental data are obtained via radiation measurements using neutrons (often generated by an 

accelerator) and sample materials, there are several sources of uncertainty in the differential 

experimental data, such as the statistical uncertainty of the radiation measurements, the 

uncertainty in the determination of the detection efficiency, and the uncertainty of the 

specification of the samples. Evaluators provide the covariance data of cross sections for various 

nuclides and types of reactions considering the propagation of the uncertainty and the 

corresponding correlation (often empirically given) from the differential data through the nuclear 

model parameters [9].  

Sensitivity coefficients of key parameters of the core analysis to the nuclear data are 

convenient to evaluate the propagation of uncertainties from the nuclear data to these parameters. 

Sensitivity coefficients are defined as the ratio of small deviations of the neutronics parameters 

to perturbations for the nuclear data (i.e., the first-order derivative or often given in its 

dimensionless relative value). The uncertainties of the neutronics parameters can be evaluated by 

a matrix operation (i.e., the sandwich rule [10]) of a covariance matrix of the nuclear data prepared 

in advance and a sensitivity matrix made by arranging the sensitivity coefficients. Analyzing some 

portions of these matrices can help to better understand which nuclides, reactions, and energy 

regions are major sources of uncertainty. In addition, it is possible to evaluate correlation factors 

between neutronics parameters via the nuclear data and to quantify the representative factor, 

which is considered as an index of similarity between a target design and the reactor physics 

experiments [11, 12]. These analyses will assist in proposing reactor physics experiments for 

efficient validation of the core analysis. 

Data assimilation (DA) is a mathematical methodology to seek the best possible states 

(e.g., the boundary conditions, input parameters, and calculation control parameters) with the 
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combined use of the numerical predictions and the actual observations, and then to improve the 

accuracy of the predictions. In the field of reactor physics, the cross section adjustment is known 

as a type of DA technique, whose goal is to reduce the uncertainty of the input nuclear data by the 

adjustment, so that the predictions can well reproduce the integral experiments, and ultimately 

improve the accuracy of the core analysis for the designed systems. Because such a technique 

requires knowledge of the relationship between input parameters and predictions, the sensitivity 

coefficients appear in the formulation of the cross section adjustment [7, 13].  

The sensitivity coefficients have another important advantage: once the sensitivity 

coefficients of the benchmark problems are obtained and provided as a database, analysts can 

perform UQ and DA without the detailed information of the benchmark problems and without 

performing the sensitivity analysis (SA) again, even if they prefer to update the covariance data 

and/or make comparisons between different nuclear data libraries. For such efficient analysis, the 

Whisper code includes sensitivity profiles for over 1000 criticality benchmarks [14]. Some other 

activities also provide useful database storing sensitivity profiles for many critical benchmarks 

[15, 16]. Therefore, the sensitivity coefficients play a key role in the quantification and the 

reduction of the nuclear data-induced uncertainty.  

 

1.4. Issues in evaluation in sensitivity analysis 

To evaluate the sensitivity coefficients, researchers have often employed the adjoint-

based method, such as the perturbation theory (PT) for the effective neutron multiplication factor 

(keff) [17], the generalized perturbation theory (GPT) expanded to more general responses (e.g., 

reaction rate ratios) [18, 19], and the depletion perturbation theory (DPT) considering the change 

of the compositions during burnup [20, 21]. The adjoint-based method can evaluate the change of 

outputs of core analyses due to the perturbation of the inputs implicitly considering flux changes 
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by only the inner product operations of the solution of the forward model (i.e., the neutron flux) 

and the importance functions corresponding to the outputs of interest. By formulating the adjoint 

models whose solutions are the importance functions, the calculation cost of the adjoint-based 

method for SA is proportional to the number of the outputs of interest. Hence, the adjoint-based 

method has a great advantage in terms of the calculation cost when the number of the outputs in 

interest is much less than that of the inputs (i.e., the number of nuclear data of interest, which 

corresponds to the product of the number of nuclides, reactions, and energy groups). Because of 

such an advantage, the adjoint-based method has been used in the analysis of the integral 

experiments for criticality, control rod worth, reactivity coefficient, and reaction rate ratio 

measurements. For the wider application of the adjoint-based method, great efforts have been 

devoted to developing the theory for the different types of neutronics parameters [22, 23] and the 

adjoint-based capabilities in the continuous energy Monte Carlo codes [24, 25].  

Despite the advantage of the adjoint-based method, there are several well-known 

limitations in practical use: it requires the capability of formulating and solving the adjoint 

equations for every output of interest. In the case of the PT for the k-eigenvalue problem of the 

linear neutron transport equation and the neutron diffusion equation, the adjoint equation can be 

described simply by the transpose of the matrix operators. However, the PT can handle only the 

effective multiplication factor. The GPT has a wider range of applications than the PT, but it 

requires the setting of the adjoint sources for each output of interest, careful treatment in the 

orthogonal conditions of the adjoint fluxes, and a special iterative procedure to calculate the 

importance functions (so-called the generalized adjoint flux). In addition, because the adjoint 

sources possibly take positive and negative values simultaneously, it requires a special treatment 

different from the forward calculations, leading to a single adjoint calculation being more costly 

than a single forward calculation, depending on the problem settings and solver employed in the 
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code [26]. Things become complicated when considering multi-physics models. Even for the 

relatively simple coupling of the neutron transport and burnup, the DPT calculations require 

special orthogonal conditions for each burnup region and non-intuitive initial conditions, called 

jumping conditions, for each burnup step. For the coupling with the thermal-hydraulic feedback, 

which is typically done by 2-step calculations (i.e., assembly-core calculations) considering non-

linear effects, the formulation of the adjoint model is expected to be too complicated and is not 

well established so far. Therefore, because of the difficulty in its formulation and complicated 

treatment, the use of the adjoint-based method would be impractical for SA for various types of 

neutronics parameters and design systems. This drawback is expected to be particularly serious 

for innovative reactors that may not be described by conventional formulations or may require 

special analyses that differ from existing reactors.  

Even if the formulations of the adjoint models are established, the adjoint-based method 

requires significant modification of the code system, and it requires expensive implementation 

costs and/or is impractical: the adjoint-based method has to explicitly handle the adjoint model of 

the entire code system. It makes the implementation of the adjoint-based method difficult in a 

complicated code system consisting of various kinds of codes developed in various institutes such 

as the Multi-purpose Advanced Reactor physics analysis system Based on Language of 

Engineering (MARBLE) [27]. Furthermore, the calculation cost of the adjoint-based method is 

easily overwhelmed as the number of the outputs in interest surges, e.g., including spatial 

distribution of power and reaction rate for each time bin and nuclide inventory for each burnup 

step. This fact diminishes the advantage of the adjoint-based method. 

Therefore, an innovative methodology that can perform SA, UQ, and DA without the 

adjoint calculations is strongly desired.  
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1.5. Purpose and contents of this study 

As highlighted in the previous section, the adjoint-based method has a disadvantage in 

its implementation for various applications. For this reason, forward calculations attract attention. 

Recently, some techniques using only forward calculations with reasonably low calculation costs 

have been proposed for UQ [28, 29] and DA [30, 31]. These methods employ the random 

sampling and statistically perform UQ and DA. The major drawback of these methods is that they 

do not explicitly evaluate the sensitivity coefficients.  

The most straightforward method for SA using forward calculations is the direct method. 

In this method, one evaluates sensitivity coefficients of outputs of the core analysis in interest as 

per their definition by performing perturbed forward calculations for each nuclear data in interest. 

Although this method suffers from a large number of input parameters of SA, there are a couple 

of advantages. First, the direct method is easy to perform because it only requires perturbations 

of input parameters, and no major modification of the code system is needed. Second, the 

sensitivity coefficients of core parameters that are accessible by analysts are evaluated 

simultaneously: the calculation cost is independent of the number of outputs of interest as opposed 

to the number of outputs in the adjoint-based method. Then, if the number of forward calculations 

in SA is reduced in some manner, such a forward-based method can be a competitive tool for SA 

of various types of neutronics parameters and design systems. The main objective of this thesis is 

to develop an efficient method for the SA using only forward calculations focusing on their 

advantages and to demonstrate UQ and DA using the sensitivity coefficients obtained along with 

the work in this thesis. More specifically, the objectives are as follows: 

(1) Improve the calculation cost of the forward-based SA by employing the random 

sampling and regression between neutronics parameters and nuclear data based on 

the sparse modeling technique. 
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(2) Develop a novel method that dramatically reduces the number of forward 

calculations based on the combined use of sparse modeling and Reduced Order 

Modeling (ROM) with the idea of Active Subspace (AS).  

(3) Demonstrate UQ and DA with the experiments conducted at a critical assembly for 

the design property of an innovative system using the sensitivity coefficient 

obtained along with the work in this thesis.  

In Chapter 2, a new method for SA based on the lasso-type penalized linear regression, 

called the adaptive smooth-lasso, is proposed. As will be described later in Chapter 2, several 

methods based on the random sampling have been proposed as the forward-based SA method [32, 

33]. In this approach using the random sampling, the calculation cost is proportional to the number 

of samples rather than the number of input parameters. Thus, if better knowledge between the 

randomly perturbed input parameters and corresponding responses can be acquired with the small 

number of samples, the calculation cost for SA can be improved. Especially, Reference [33] 

demonstrated the effectiveness of the L1 norm-constrained regression, which is a technique of the 

sparse modeling, applied to SA focusing on the sparsity in the sensitivity profiles to cross sections, 

i.e., most cross sections have a relatively small impact on neutronics parameters. Due to its well-

known feature of the L1 norm constraints imposing sparsity in the solution, this approach can 

accurately estimate the sensitivity coefficients with a smaller number of samples than the 

traditional L2 norm-constrained regression. However, in the conventional L1 norm approach, 

cross sections to which the sensitivity coefficient is non-zero (or zero) are assumed to be unknown, 

leading to poor reproduction of the reference values and large statistical errors as demonstrated 

later in Section 2.3. In this thesis, to further improve the accuracy of this approach, the additional 

features of the sensitivity profiles to cross sections are considered, i.e., the continuity of the 

sensitivity coefficients against the induced neutron energy and the existence of giant resonances 
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and threshold. Through the estimation of the sensitivity coefficients of keff of the ADS at the 

beginning of the cycle (BOC), it is confirmed that the adaptive smooth-lasso method can 

accurately estimate the sensitivity coefficients with smaller sample sizes than the conventional 

lasso-type penalized regression methods. 

In Chapter 3, the ROM-Lasso method is newly proposed to further reduce the 

calculation cost of the random-sampling-based method. Through the verification in Chapter 2, the 

adaptive smooth lasso succeeded in reducing the calculation cost of SA to about one-tenth of the 

number of input parameters, but the calculation cost is still significant. The proposed method 

combines the ROM technique and the lasso regression to dramatically reduce the dimensionality 

of the nuclear data in SA by expanding the sensitivity coefficients with an effective subspace, 

called Active Subspace (AS), and to determine the important expansion bases, respectively. To 

obtain AS bases with reasonably lower calculation costs, the idea of the Multi-Level ROM 

(MLROM) [34] was employed. In the proposed method, approximated AS bases are 

mathematically derived through the Singular Value Decomposition (SVD) [35] of the sensitivity 

matrices obtained with a lower-fidelity model (e.g., a two-dimensional cylindrical model) for SA 

of a higher-fidelity model (e.g., a three-dimensional Cartesian model). Owing to the combined 

use of the lasso regression, AS bases can be optimized for each neutronics parameter. To examine 

the advantages of the ROM-Lasso method, a one-cycle burnup core calculation of the ADS is 

performed as a verification. In this verification, SA on multiple parameters after burnup, e.g., the 

beam current, maximum relative power, and mass of 241Am at the end of the cycle (EOC), is 

addressed to make use of the advantage of the forward calculations whereas only keff at BOC is 

considered in Chapter 2. Through the verification, it is demonstrated that the ROM-Lasso method 

can successfully reduce the number of sample sizes by a couple of orders of magnitude compared 

to the adaptive smooth lasso. 
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In Chapter 4, the DA for lead-bismuth cross sections using sample reactivities obtained 

at the Kyoto University Critical Assembly (KUCA) is investigated as a practice of the application 

of the sensitivity coefficients. Though the issue in SA is tackled in Chapters 2 and 3, the final goal 

of SA is UQ and/or DA as described in Section 1.1–1.3. Japan Atomic Energy Agency (JAEA) 

has proposed the ADS dedicated to the transmutation of the minor actinides (MAs) produced in 

high-level radioactive wastes. Because key neutronics parameters of ADS proposed by JAEA 

have significant uncertainties contributed from lead and bismuth nuclides due to its much amount 

of inventory of lead-bismuth eutectic (LBE) as the coolant material, JAEA has focused on the 

lead void reactivity measurements [36, 37] and the lead-bismuth sample reactivity measurements 

[38] to validate the nuclear data related to those nuclides for application to the design of ADS. In 

this thesis, the nuclear-data-induced uncertainty is quantified using the sensitivity coefficients 

obtained in Chapter 3, and the impact on the uncertainty reduction of the coolant void reactivity 

of the ADS through DA with the sample reactivity experiments [38] is investigated. 

Finally, the concluding remarks and future research topics to be tackled are summarized 

in Chapter 5. 
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2. Estimation of sensitivity coefficient based on lasso-type 

linear regression   

 

2.1. Introduction 

The safe and efficient operation of nuclear reactors needs to quantify and reduce the 

uncertainty of core neutronics parameters predicted by numerical core analysis. In addition, the 

uncertainties propagated from the nuclear data are still large for a future nuclear system such as 

the ADS, thus both the differential and integral experiment data for efficient reduction of the 

uncertainties of the design calculations are desirable. The identification of the dominant nuclear 

data for uncertainties is important to propose the desired experiment. The sensitivity coefficients 

of the core neutronics parameter to cross section data are often used for uncertainty quantification 

based on error propagation, cross section adjustment method, and a method to identify nuclear 

data for which further improvements are required to reduce uncertainties of target integral 

neutronics parameters [1–3]. Consequently, the evaluation of the sensitivity coefficients of core 

neutronics parameters is important in core analysis. 

As described in Chapter 1, there are two sensitivity estimation methods, i.e., the direct 

method, and the adjoint-based method. The direct method estimates the sensitivity coefficients by 

performing the perturbed calculations for each input parameter. Because the direct method 

requires only forward calculations and no major modifications of existing codes, the use of the 

direct method is easy. However, the calculation cost of this method is proportional to the number 

of input parameters taken into account, thus this method would be impractical due to a large 

number of input parameters (e.g., fine-group microscopic cross sections). On the other hand, in 

the adjoint-based method, the adjoint models defined for each interesting neutronics parameter 
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are evaluated to estimate the sensitivity coefficients [4–6]. The calculation cost of this method 

depends on the number of output parameters as opposed to the number of input parameters in the 

direct method. Thus, when the number of the neutronics parameters is less than that of the input 

parameters, the adjoint-based method is superior to the direct method from the viewpoint of the 

calculation cost. However, the adjoint-based method generally requires modification of the 

calculation code system to formulate and solve the adjoint model. It would require a great effort 

to modify the complicated code system which performs the series of core analyses by combining 

several codes (e.g., lattice-calculation, core-calculation, and burnup-calculation codes) and the 

definition of the adjoint model for such a complicated code system will be sometimes difficult. 

Therefore, the application of the adjoint method would be difficult to perform. Furthermore, the 

calculation cost of the adjoint-based method is proportional to the number of the neutronics 

parameters taken into account, thus the adjoint-based method would be also impractical when the 

number of the neutronics parameters (e.g., power distribution, space/energy flux distribution, and 

the number density of the nuclides) is large.  

As another approach, several methods based on random sampling have been proposed 

[7, 8]. These methods estimate the sensitivity coefficients by solving the simultaneous linear 

equations whose solution is the sensitivity coefficients. The calculation cost of these methods is 

proportional to the number of the random samples, though these methods utilize only forward 

calculations. Therefore, the calculation cost is less than that of the forward method when the 

number of samples is smaller than that of nuclear data of interest. However, in such a case, the 

simultaneous equation for the sensitivity coefficients is an underdetermined system (as described 

in Section 2.2.1), thus the constraint condition is required. In Reference [8], the sensitivity 

coefficients are determined based on the L1 norm minimization. Generally, the solution obtained 

by the L1 norm minimization is sparse, most of the elements of which are zero [9]. In typical 
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reactor analysis, most of the cross sections have a very small impact on neutronics parameters 

(i.e., small sensitivity coefficient) and a small part of cross section dominates neutronics 

parameters (i.e., large sensitivity coefficient). In other words, sensitivity coefficients for cross 

sections are very “sparse”. Consequently, the L1 norm minimization can adequately estimate 

especially large sensitivity coefficients with a smaller number of the random samples than that of 

the input parameters [8]. As a similar approach, the penalized linear regression “lasso”, in which 

the L1 norm of the solution vector is considered as the penalized term, is proposed [10]. Lasso 

can obtain a sparse solution similar to the L1 norm minimization method. However, in the L1 

norm minimization and lasso methods, cross sections to which the sensitivity coefficient is non-

zero (or zero) are assumed to be unknown. Thus, the non-zero (or zero) sensitivity coefficients 

are sometimes evaluated as zero (or non-zero). 

Now, let us consider the shape of sensitivity coefficients. The energy region of large 

sensitivity coefficients depends on the type of reactor, e.g., thermal or fast reactor. For instance, 

in a fast reactor, the sensitivity coefficients have large positive or negative values in the fast energy 

region and very small values in the thermal energy region. Namely, the non-zero elements of the 

sensitivity coefficients are not randomly distributed but are clustered in a certain energy region 

depending on the type of reactor. For this reason, the “smooth-lasso” would be a better choice, 

whose penalized term consists of not only the L1 norm but also the sum of squares of the 

difference between adjacent elements [11]. The smooth-lasso can select the sparse solution but 

the difference between adjacent elements is small. It means that the elements show smooth change 

for the index of the solution vector. Owing to the smoothness, zero and non-zero elements of a 

solution vector selected by smooth-lasso would be clustered, respectively. Thus, the smooth-lasso 

would be more appropriate for the estimation of the sensitivity coefficients than the lasso. 

However, the sensitivity coefficients would not change smoothly depending on the energy range 
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due to the threshold reactions and the giant resonance cross sections, although the non-zero 

elements are distributed in a cluster in certain energy regions. Then, this chapter proposes the 

weighted penalized linear regression “adaptive smooth-lasso” that would be more appropriate for 

the estimation of sensitivity coefficients of the neutronics parameters to the microscopic cross 

sections than the lasso and smooth-lasso. The main objective of this chapter is to confirm the 

applicability of the adaptive smooth-lasso compared to the two conventional methods, i.e., the 

lasso and the smooth-lasso. In this chapter, the applicability of the adaptive smooth-lasso is 

demonstrated through the estimation of SA of the effective multiplication factor keff of an ADS.  

The remainder of this chapter is organized as follows. In Section 2.2, the estimation of 

the sensitivity coefficients based on the random sampling and the penalized linear regression is 

described. In Section 2.3, the numerical results of the proposed method are shown in comparison 

with the conventional and the direct methods. Finally, concluding remarks are summarized in 

Section 2.4. 

 

2.2. Method 

2.2.1. Penalized regression in random sampling of cross section 

Firstly, let us consider that the numbers of the cross sections, the neutronics parameters, 

and the samples are 𝑁𝑁 , one, and 𝑀𝑀 , respectively. Using the first-order approximation of the 

Taylor expansion, the relative variation of the neutronics parameter obtained with small relative 

variations of the cross sections is approximately expressed as follows: 

 

 

𝛥𝛥𝑅𝑅𝑖𝑖 = �𝛥𝛥𝑇𝑇𝑖𝑖𝑖𝑖𝑔𝑔𝑗𝑗

𝑁𝑁

𝑗𝑗=1

, (2.1) 
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where 𝑖𝑖  is the index of the sample, 𝑗𝑗  is the index of the cross sections, 𝛥𝛥𝑅𝑅𝑖𝑖  is a relative 

variation of the neutronics parameter in the 𝑖𝑖-th sample, 𝛥𝛥𝑇𝑇𝑖𝑖𝑖𝑖 is a relative variation of the 𝑗𝑗-th 

cross section in the 𝑖𝑖-th sample, and 𝑔𝑔𝑗𝑗 is the relative sensitivity coefficient of the neutronics 

parameter to the 𝑗𝑗-th cross section [𝑔𝑔𝑗𝑗 ≡ (𝑑𝑑𝑑𝑑/𝑅𝑅)/(𝑑𝑑𝑇𝑇𝑗𝑗/𝑇𝑇𝑗𝑗)]. Equation (2.1) can be represented 

in a matrix-vector form as follows: 

 

where, 𝛥𝛥𝑅𝑅�⃗ , 𝛥𝛥𝐓𝐓, and 𝑔⃗𝑔 can be written as follows: 

 

 

 

 

𝛥𝛥𝑅𝑅�⃗ , 𝛥𝛥𝐓𝐓 , and 𝑔⃗𝑔  are 𝑀𝑀 -dimensional column vector, 𝑀𝑀 -by-  𝑁𝑁  matrix, and 𝑁𝑁 -dimensional 

column vector, respectively. In the estimation of the sensitivity coefficients, Equation (2.2) is a 

simultaneous linear equation whose solution is the vector 𝑔⃗𝑔. When 𝑀𝑀 <  𝑁𝑁, the number of 

equations is fewer than that of unknowns (i.e., elements of 𝑔⃗𝑔) so the solution of Equation (2.2) 

cannot be uniquely determined. For such an underdetermined system, the solution 𝑔⃗𝑔 can be 

determined by the penalized linear regression as follows [12]: 

 

𝛥𝛥𝑅𝑅�⃗ = 𝛥𝛥𝐓𝐓𝑔⃗𝑔, (2.2) 

𝛥𝛥𝑅𝑅�⃗ = (𝛥𝛥𝑅𝑅1,𝛥𝛥𝑅𝑅2, … ,𝛥𝛥𝑅𝑅𝑀𝑀 )𝑇𝑇 ,  (2.3) 

𝛥𝛥𝑻𝑻 = �

𝛥𝛥𝑇𝑇11 𝛥𝛥𝑇𝑇12 … 𝛥𝛥𝑇𝑇1𝑁𝑁
𝛥𝛥𝑇𝑇21 𝛥𝛥𝑇𝑇22 … 𝛥𝛥𝑇𝑇2𝑁𝑁
⋮ ⋮ ⋱ ⋮

𝛥𝛥𝑇𝑇𝑀𝑀1 𝛥𝛥𝑇𝑇𝑀𝑀2 … 𝛥𝛥𝑇𝑇𝑀𝑀𝑀𝑀

�, (2.4) 

𝑔⃗𝑔 = (𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑁𝑁)𝑇𝑇 . (2.5) 
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where, 𝑝𝑝(𝑔⃗𝑔) is the penalty term and the argmin of a function is the values of the arguments at 

which the function is minimized. The various types of the penalty term are proposed as follows 

[12]: 

 

 

 

 

where the regressions by Equation (2.7) through Equation (2.9) are called the ridge, lasso, and 

smooth-lasso, respectively. The parameters 𝜆𝜆, 𝜆𝜆1 and 𝜆𝜆2 in Equation (2.7) through Equation 

(2.9) are user-defined hyperparameters. Equation (2.6) determines 𝑔⃗𝑔  which minimizes the 

summation of the residual sum of squares between 𝛥𝛥𝑅𝑅�⃗  and 𝛥𝛥𝐓𝐓𝑔⃗𝑔, and the penalty term 𝑝𝑝(𝑔⃗𝑔) 

depending on 𝑔⃗𝑔. The penalty term prohibits a solution whose elements are inappropriately large 

(e.g., point at infinity). 

Figure 2.1 illustrates a difference between a solution by the ridge and the lasso. Figure 

2.1 is a two-dimensional figure; however, each axis corresponds to 𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑁𝑁. The ellipses in 

𝑔⃗𝑔 = argmin�
1
2
��𝛥𝛥𝑅𝑅𝑖𝑖 −�𝛥𝛥𝑇𝑇𝑖𝑖𝑖𝑖𝑔𝑔𝑗𝑗

𝑁𝑁

𝑗𝑗=1

�

2𝑀𝑀

𝑖𝑖=1

+ 𝑝𝑝(𝑔⃗𝑔)�, (2.6) 

𝑝𝑝(𝑔⃗𝑔) =
𝜆𝜆
2
�𝑔𝑔𝑗𝑗2
𝑁𝑁

𝑗𝑗=1

, (2.7) 

𝑝𝑝(𝑔⃗𝑔) = 𝜆𝜆��𝑔𝑔𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

, (2.8) 

𝑝𝑝(𝑔⃗𝑔) = 𝜆𝜆1��𝑔𝑔𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

+
𝜆𝜆2
2
��𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗−1�

2
𝑁𝑁

𝑗𝑗=2

, (2.9) 
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Figure 2.1 represent contours that have the same residual sum of squares term, and the inner lines 

correspond to the smaller residual. Furthermore, the circle and the square centered at the origin 

represent the contour of the penalty term for the ridge and the lasso (𝑝𝑝(𝑔⃗𝑔) = const), respectively. 

The contact point of the ellipse and contour of the penalty term is the solution that reduces both 

the residual sum of squares and the penalty term. As shown in Figure 2.1, the lasso solution tends 

to be located at a corner, which contains a zero coefficient. On the other hand, no corner exists in 

the ridge penalty term thus the sparse solutions are rarely selected. The sensitivity coefficients of 

the neutronics parameters to the multi-group microscopic cross sections are generally sparse, 

hence the lasso will be appropriate for the estimation of the sensitivity coefficients. 

 

 

(a) ridge      (b) lasso 

Figure 2.1 Illustration of (a) the ridge and (b) lasso regressions. 

 

The penalty term of the smooth-lasso is defined as the sum of squares of the difference 

between adjacent elements. Therefore, the smooth-lasso selects the solution whose adjacent 

elements have close values while keeping the sparsity. Namely, the zero and non-zero elements 

of the solution obtained by smooth-lasso would be distributed in a cluster while the lasso does not 

consider the structure of the non-zero elements. The large sensitivity coefficients of the neutronics 

parameters to the microscopic cross sections are distributed in certain energy regions depending 



24 

 

on the type of reactor, thus the smooth-lasso is expected more appropriate for the estimation of 

the sensitivity coefficients than the lasso. However, the elements of the solution obtained by 

smooth-lasso change smoothly depending on the energy index. Thus, the solution obtained by 

smooth-lasso would fail to reproduce the rapid changes of sensitivity coefficient due to threshold 

reactions or giant resonance cross sections. 

 

2.2.2. Adaptive smooth-lasso 

As mentioned in the previous section, the solution obtained by the smooth-lasso would 

not sufficiently reproduce the steep energy dependence of the sensitivity coefficients. Then, the 

weighted penalized regression “adaptive smooth-lasso” is newly proposed. The penalty term of 

the adaptive smooth-lasso is defined as follows:  

 

 

Equation (2.10) represents the penalty term of smooth-lasso multiplied by the weight 𝑣𝑣𝑗𝑗 and 𝑤𝑤𝑗𝑗. 

Here the weight 𝑣𝑣𝑗𝑗 and 𝑤𝑤𝑗𝑗 are defined as follows. 

 

 

 

The element 𝑔𝑔� is the sensitivity coefficient estimated by the smooth-lasso, and the constants 𝑐𝑐 

𝑝𝑝(𝑔⃗𝑔) = 𝜆𝜆1�𝑣𝑣𝑗𝑗�𝑔𝑔𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

+
𝜆𝜆2
2
�𝑤𝑤𝑗𝑗�𝑔𝑔𝑗𝑗 − 𝑔𝑔𝑗𝑗−1�

2
𝑁𝑁

𝑗𝑗=2

. (2.10) 

𝑣𝑣𝑗𝑗 =
1

1 + 𝑐𝑐�𝑔𝑔�𝑗𝑗�
𝛾𝛾 , (2.11) 

𝑤𝑤𝑗𝑗 =
1

1 + 𝑐𝑐 �
�𝑔𝑔�𝑗𝑗� + �𝑔𝑔�𝑗𝑗−1�

2 �
𝛾𝛾. 

(2.12) 
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and 𝛾𝛾 are user-defined hyperparameters (𝑐𝑐 > 0 and 𝛾𝛾 > 0). As can be seen in Equation (2.11) 

and (2.12), the range of weight 𝑣𝑣𝑗𝑗 and 𝑤𝑤𝑗𝑗 is [0, 1]. These weights (i.e., 𝑣𝑣𝑗𝑗 and 𝑤𝑤𝑗𝑗) take small 

values for the large absolute values of the non-zero elements of the sensitivity coefficients 

obtained by smooth-lasso (i.e., 𝑔𝑔�𝑗𝑗 or 𝑔𝑔�𝑗𝑗−1). As the smaller values of the weight 𝑣𝑣𝑗𝑗, the L1 norm 

penalty term gets smaller. Thus the 𝑗𝑗-th sensitivity coefficient 𝑔𝑔𝑗𝑗 tends to take a larger absolute 

value. Furthermore, as the smaller values of the weight 𝑤𝑤𝑗𝑗, the penalty term of the sum of squares 

of the difference between adjacent elements gets smaller. Thus, the large difference between the 

adjacent elements (i.e., steep changes between 𝑔𝑔�𝑗𝑗−1 and 𝑔𝑔�𝑗𝑗) is allowed. Namely, it is expected 

that the adaptive smooth-lasso can emphasize the non-zero elements and allow steep changes 

between the adjacent elements than the smooth-lasso. For zero elements, the weight remains one, 

thus zero element distribution would be similar between the smooth-lasso and adaptive smooth-

lasso. For the larger value of 𝑐𝑐, the weights 𝑣𝑣𝑗𝑗 and 𝑤𝑤𝑗𝑗 take smaller values. For the smaller value 

of 𝛾𝛾 , the weights 𝑣𝑣𝑗𝑗  and 𝑤𝑤𝑗𝑗  take smaller values for smaller absolute values of non-zero 

elements, i.e., larger absolute values and steep changes are allowed even for small absolute values 

of non-zero elements estimated by the smooth-lasso. 

The adaptive smooth-lasso requires four user-defined hyperparameters, i.e., 𝜆𝜆1, 𝜆𝜆2, 𝑐𝑐, 

and 𝛾𝛾. For example, when c is zero, the adaptive smooth-lasso is equivalent to the smooth-lasso. 

When 𝜆𝜆2  is also zero, the adaptive smooth-lasso is equivalent to the lasso. Namely, the 

sensitivity coefficients estimated by the adaptive smooth-lasso depend on the hyperparameters. 

In this chapter, as mentioned later in Section 2.3, the hyperparameters in the adaptive smooth 

lasso (i.e., 𝜆𝜆1, 𝜆𝜆2, 𝑐𝑐, and 𝛾𝛾) are determined by preliminary calculations so that the estimated 

sensitivity coefficients can reproduce the reference values.  
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2.3. Numerical verification 

2.3.1. Verification conditions 

To verify the proposed method, SA of the effective neutron multiplication factor keff of 

an ADS is performed. As the ADS core, the basic concept investigated in JAEA was adopted [13]. 

Figure 2.2 shows the two-dimensional R-Z geometry of the ADS. The MA core region in the 

ADS is composed of fuel, cladding tubes, and LBE coolant. The volume ratio of these component 

materials is 0.27:0.10:0.63. The keff of the ADS initial core was set to 0.97 by adjusting the weight 

ratio of zirconium nitride (ZrN) and plutonium (Pu) + MA nitride [(Pu+MA)-N]. The isotopic 

compositions of the actinides are listed in Table 2.1. 

 

 

Figure 2.2 Two-dimensional R-Z geometry for ADS initial core. 
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Table 2.1.  Isotopic composition of actinides in the MA core region.  

Nuclide 
Composition 

[wt%] 
Nuclide 

Composition 
[wt%] 

234U 0.01 241Am 23.19 
237Np 34.21 242mAm 0.04 
238Pu 0.71 243Am 9.68 
239Pu 16.17 243Cm 0.02 
240Pu 7.41 244Cm 2.95 
241Pu 3.22 245Cm 0.29 
242Pu 2.07 246Cm 0.03 

 

The ADS3D code was used to perform the core calculation [14]. The criterion of outer 

iteration for keff was set to 1.0 × 10−7. The energy-group structure was the 73-energy-group from 

0.1 eV to 20 MeV employed in the fast group constant sets (UFLIB.J40 [15]) based on JENDL-

4.0. As the input parameters, a total of 13286 multi-group microscopic cross sections are taken 

into account: there are 73 group cross sections for seven reactions (capture, fission, the average 

number of neutrons per fission ν‾ , (n,2n), inelastic scattering, elastic scattering, and average 

scattering cosine μ‾) of 26 nuclides, i.e. 13268 = 73 × 7 × 26. The indices of a microscopic cross 

section of the first energy group are listed in Table 2.2. The index of the 𝐺𝐺-th group microscopic 

cross section for the 𝑛𝑛-th row nuclide and the 𝑟𝑟-th column reaction is defined as: 

 

 

By defining the index as Equation (2.13), the adjacent elements are arranged in the order of energy, 

thus the non-zero values cluster within a particular energy range can be considered by the smooth-

lasso. 

 

𝑗𝑗 = 𝐺𝐺 + 73 × (𝑟𝑟 − 1) + 73 × 7 × (𝑛𝑛 − 1). (2.13) 
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Table 2.2. Index of the microscopic cross section of the first energy group. 

Nuclide Capture Fission ν‾ (n,2n) 
Inelastic 
scattering 

Elastic 
scattering 

μ‾  

54Fe 1 74 147 220 293 366 439 
56Fe 512 585 658 731 804 877 950 
57Fe 1023 1096 1169 1242 1315 1388 1461 
90Zr 1534 1607 1680 1753 1826 1899 1972 
91Zr 2045 2118 2191 2264 2337 2410 2483 
92Zr 2556 2629 2702 2775 2848 2921 2994 
94Zr 3067 3140 3213 3286 3359 3432 3505 
96Zr 3578 3651 3724 3797 3870 3943 4016 

204Pb 4089 4162 4235 4308 4381 4454 4527 
206Pb 4600 4673 4746 4819 4892 4965 5038 
207Pb 5111 5184 5257 5330 5403 5476 5549 
208Pb 5622 5695 5768 5841 5914 5987 6060 
209Bi 6133 6206 6279 6352 6425 6498 6571 
237Np 6644 6717 6790 6863 6936 7009 7082 
241Am 7155 7228 7301 7374 7447 7520 7593 

242mAm 7666 7739 7812 7885 7958 8031 8104 
243Am 8177 8250 8323 8396 8469 8542 8615 
243Cm 8688 8761 8834 8907 8980 9053 9126 
244Cm 9199 9272 9345 9418 9491 9564 9637 
245Cm 9710 9783 9856 9929 10002 10075 10148 
246Cm 10221 10294 10367 10440 10513 10586 10659 
238Pu 10732 10805 10878 10951 11024 11097 11170 
239Pu 11243 11316 11389 11462 11535 11608 11681 
240Pu 11754 11827 11900 11973 12046 12119 12192 
241Pu 12265 12338 12411 12484 12557 12630 12703 
242Pu 12776 12849 12922 12995 13068 13141 13214 
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Each microscopic cross section was uniformly sampled in the range of ±5 % (this range 

was empirically determined). It is worth noting that SA based on the random sampling does not 

require correlations between cross sections as opposed to UQ based on the random sampling, and 

the sampling was done independently for each cross section. The relative sensitivity coefficients 

of keff to the 13268 microscopic cross sections are estimated with 100, 200, 500, 750, 1000, 1500, 

2000, and 4000 samples by the lasso, the smooth-lasso, and the adaptive smooth-lasso. Table 2.3 

lists the user-defined tuning parameters used in this verification calculation. These values in Table 

2.3 were determined based on preliminary calculations so that the estimated sensitivity 

coefficients can well reproduce the reference values obtained by the direct method. For lasso, we 

utilize 𝜆𝜆1 in Table 2.3 as 𝜆𝜆 in Equation (2.8).  

 

Table 2.3. The values of tuning parameters used for sensitivity coefficient estimation. 

parameter value 

𝜆𝜆1 1.0×10-4 
𝜆𝜆2 0.10 
𝑐𝑐 30.0 
𝛾𝛾 0.50 

 

The reference values of the relative sensitivity coefficients are evaluated with the direct 

method with the central difference approximation using 5% perturbation (i.e., one non-perturbed 

forward calculation and 13286 × 2  times perturbed forward calculations are additionally 

performed). The difference between the estimated and reference values of the sensitivity 

coefficients are quantified by relative difference norm defined as: 

 

𝑒𝑒 =
‖𝑔⃗𝑔est − 𝑔⃗𝑔ref‖2

‖𝑔⃗𝑔ref‖2
, (2.14) 
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where, 𝑔⃗𝑔est  and 𝑔⃗𝑔ref  are the sensitivity coefficients obtained by three penalized linear 

regression and by the direct method, respectively and ‖𝑥⃗𝑥‖2 represents the L2 norm of a vector 

‖𝑥⃗𝑥‖2. When the estimated values are equal to the reference values, the relative difference norm 

defined by Equation (2.14) is zero. 

The statistical errors of the sensitivity coefficients and the difference norm of Equation 

(2.14) with the lasso, the smooth-lasso, and the adaptive smooth-lasso are evaluated by the 

resampling technique so-called Jackknife technique [16]. 

 

2.3.2. Results 

Figures 2.3 (a)–(d) show the sensitivity coefficients obtained by the direct method, 

lasso, smooth-lasso, and adaptive smooth-lasso with 750 samples. As shown in the result by the 

direct method, most of the sensitivity coefficients are zero, i.e., sparse. The result by the lasso 

shows that the many sensitivity coefficients are miss-predicted as non-zero values for the cross 

sections whose reference value of sensitivity coefficient is zero. As can be seen from the result of 

the smooth-lasso and the adaptive smooth-lasso in Figure 2.3, some sensitivity coefficients cannot 

completely reproduce the reference values although the tuning parameters are optimized. This is 

because the sample number of 750 is significantly smaller than the number of input parameters 

(i.e., 13286 in this chapter) and the information about the relation between the input parameters 

and the response is not enough to completely reproduce the sensitivity coefficients. However, we 

can observe that the smooth-lasso and the adaptive smooth-lasso can reproduce the structure of 

the non-zero values of the sensitivity coefficients better than the lasso. 

Figures 2.4 (a)–(c) compare the sensitivity coefficients to the fission cross sections of 

239Pu obtained by lasso, smooth-lasso, and adaptive smooth-lasso with 750 samples with the 

reference values obtained by the direct method. Figure 2.4 (a) shows that some relative sensitivity 
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coefficients obtained by lasso take zero or small values for the indexes where the reference values 

are not negligible. Figure 2.4 (b) shows that the relative sensitivity coefficients obtained by 

smooth-lasso are smaller than those of reference and fail to reproduce the steep change of the 

sensitivity coefficients for the index. Figure 2.4 (c) shows that the relative sensitivity coefficients 

obtained by adaptive smooth-lasso are emphasized to reproduce the reference values and capture 

the steep change tendency of the reference values compared to smooth-lasso. 

Figure 2.5 shows the relative difference norm for each method versus the number of 

samples. As shown in Figure 2.5, the difference norms are decreased as the number of samples 

increases. The relative difference norms by the lasso are the largest and those by the adaptive 

smooth lasso are the smallest among the three penalized linear regressions. 

Figure 2.6 shows the comparison of the relative sensitivity coefficients obtained by each 

method with 750 samples and those obtained by the direct method. In Figure 2.6, the horizontal 

and vertical axes represent the relative sensitivity coefficients of the keff obtained by the direct 

method and each method, respectively. The error bars in Figure 2.6 are the standard deviations 

estimated by the Jackknife technique. As shown in Figure 2.6 (a), we observe the “cross” plots 

centered at the origin in the lasso result. This result indicates that the sensitivity coefficients are 

miss-predicted as non-zero (or zero) values for the cross sections whose sensitivity coefficients 

are zero (or non-zero). This is because the lasso does not consider the structure of the non-zero 

elements for energy. In addition, the error bars of the lasso result are larger than those of the 

smooth-lasso and the adaptive smooth-lasso results. This is also because the structure of the non-

zero elements is not considered, i.e., the indexes for non-zero sensitivity coefficients are 

frequently changed according to the Jackknife resample of cross sections. In Figure 2.5, due to 

the cross plots, the error norm by the lasso is the largest among the three estimation methods. In 

Figures 2.6 (b) and (c), we cannot observe the cross plots and the error bars are smaller than those 
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of the lasso result. These results indicate that the smooth-lasso and adaptive smooth-lasso well 

reproduce the structure of the non-zero elements of sensitivity coefficients compared to the lasso. 

As shown in Figure 2.6 (b), most of the absolute values of sensitivity coefficients obtained by the 

smooth-lasso are smaller than those of reference. The sensitivity coefficients whose neighbor 

sensitivity coefficient is zero or small are underestimated since the smooth-lasso selects the 

solution whose adjacent elements take close values. Consequently, the smooth-lasso fails to 

accurately reproduce the steep changes of the sensitivity coefficients for the energy and 

underestimates the absolute values of sensitivity coefficients. 

The adaptive smooth-lasso reduces the underestimation tendency compared to the 

smooth-lasso as shown in Figure 2.6 (c). This is because the large absolute values of sensitivity 

coefficients are emphasized, and the steep changes of the sensitivity coefficients are allowed by 

the weighted penalty term of the adaptive smooth-lasso. Because the cross plots and 

underestimation tendencies are mitigated, the relative difference norm by the adaptive smooth-

lasso is the smallest among the three penalized linear regressions as shown in Figure 2.5: 

compared to 2000 samples in the conventional lasso regression, 20% of the relative difference 

norm was achieved with 1000 samples in the adaptive smooth lasso. In conclusion, the adaptive 

smooth-lasso newly proposed in this study can be a better candidate for SA without adjoint 

calculations than the other two conventional regressions.  
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(a) direct method 

 
(b) lasso 

 
(c) smooth-lasso 

 
(d) adaptive smooth-lasso 

Figure 2.3 Relative sensitivity coefficients of keff of ADS initial core with 750 samples. 
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(a) lasso 

 

(b) smooth-lasso 

 

(c) adaptive smooth-lasso 

Figure 2.4 Relative sensitivity coefficients of keff to the fission cross section of 239Pu with 750 

samples. 
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Figure 2.5 The number of samples versus relative difference norm of relative sensitivity of keff 

of ADS initial core. 

 

2.3.3. Issue in adaptive smooth lasso 

As shown in Figure 2.6 (c), the sensitivity coefficients with large absolute values were 

reproduced by the adaptive smooth-lasso with a sample size of the order of 1000. However, in 

other words, it still requires about 1000 forward calculations of SA of about 10000 nuclear data, 

indicating that a dramatic improvement in the calculation cost has not been achieved. The adaptive 

smooth-lasso aimed at capturing the feature of the sensitivity coefficients for the incident neutron 

energy by introducing the additional penalty term and weights. In the next chapter, as another 

approach to capture the feature of the sensitivity coefficients, the ROM-Lasso method is proposed 

focusing on the ROM technique based on the AS.  

The other open issue is the determination of four hyperparameters. Because the 

estimated results are sensitive to these hyperparameters, they should be optimized to accurately 

estimate the sensitivity coefficients. However, in this work, they were determined manually so 

that the estimated sensitivity coefficients well reproduced the reference values by the direct 

method. The optimization method without reference values of the direct method is desirable for 

the practical application. 
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(a) lasso                              (b) smooth-lasso 

 

(c) adaptive smooth-lasso 

Figure 2.6 Comparison of relative sensitivity coefficients of keff of ADS initial core. The number 

of samples is 750. 
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2.4. Conclusions 

The adaptive smooth-lasso is newly proposed as an estimation method of the sensitivity 

coefficients of the neutronics parameters using the random sampling. The proposed method is 

based on a lasso-type penalized linear regression. The proposed method utilizes the weighted 

penalty term aiming to reproduce the sensitivity coefficients having steep energy dependence with 

a small number of samples. The proposed method utilizes only forward calculations.  

To verify the proposed method, three lasso-type penalized regressions including the 

proposed method were applied for the estimation of the relative sensitivity coefficients of keff of 

an ADS. A total of 13286 cross sections, i.e., 73-group microscopic cross sections of 26 nuclides 

are considered. Through the verification calculation, it is confirmed that sensitivity coefficients 

obtained by the proposed method can accurately reproduce those of the direct method with smaller 

samples compared to the other two conventional methods, i.e., the lasso and smooth-lasso. 

Even though the better performance of the adaptive smooth-lasso was demonstrated in 

comparison with the conventional regressions, the dramatic reduction in the number of forward 

calculations was not achieved from the direct method. In addition, the proposed method has a 

disadvantage in the optimization of four user-defined hyperparameters. Such an optimization of 

multiple hyperparameters is an open issue. 

To achieve future reduction of the calculation cost, the ROM-Lasso method is proposed 

focusing on the ROM technique based on the AS in the next chapter. Since the ROM-Lasso 

method considers only one hyperparameter, a conventional method for the parameter optimization 

is applied as discussed later in Section 3.2.2. Therefore, the issue of the multiple-hyperparameter 

optimization can be avoided.  
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3. Development of ROM-Lasso method for sensitivity 

coefficient evaluation 

 

3.1. Introduction 

In the previous chapter, the adaptive smooth lasso method has been proposed to address 

the challenges of the forward-based SA. However, it has been clarified that the adaptive smooth 

lasso still requires ~1000 forward calculations for SA of ~10000 cross sections, and a dramatic 

improvement has not been achieved. 

In this chapter, by focusing on the ROM technique [1], further reduction of the 

calculation cost of the forward-based SA is tackled. In the ROM technique, input parameters 

(and/or output parameters) are expanded by AS, and unimportant parameter sets (i.e., orthogonal 

components to AS) are identified through a mathematical method such as SVD [2], thereby 

reducing the effective number of parameters, which is a couple of orders of magnitude smaller 

than the original number of parameters. Abdo et al. proposed MLROM to attain an approximated 

AS using a lower-fidelity model, whose dimensionality is less than that of the target model with 

higher dimensionality and complexity [3]. Based on this idea, a sensitivity coefficient evaluation 

method for core analyses of light water reactors has been proposed, in which the assembly 

calculation performed in advance of the core calculation is regarded as a lower-fidelity model [4]. 

The main objective of this chapter is to improve the lasso regression method applied to 

the sensitivity coefficient evaluation via ROM. It is important to determine the optimal AS for the 

sensitivity coefficient evaluation with reasonably lower calculation costs. In this chapter, the use 

of approximated AS bases obtained with a lower-fidelity model (e.g., a two-dimensional 

cylindrical ADS model) is proposed for the lasso regression-based SA of a higher-fidelity model 
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(e.g., a three-dimensional (3-D) Cartesian ADS model). Through a one-cycle burnup core 

calculation, the applicability of the proposed method is verified. In this chapter, the proposed 

method is referred to as the ROM-Lasso method. As a first step, it is examined that the lasso 

procedure with the ROM expectedly works in the case where the lower-fidelity model well 

reproduces the higher-fidelity model (i.e., the ADS model that has high axial symmetry and can 

be well approximated with the 2-D cylindrical model). In the verification, SA on multiple 

parameters after burnup, e.g., the coolant void reactivity at the BOC, the beam current, maximum 

relative power, and mass of 241Am at the end of the cycle (EOC), is addressed to make use of the 

advantage of the forward calculations whereas only keff at BOC is considered in Chapter 2. 

The remainder of this chapter is organized as follows. Section 3.2 presents the 

theoretical descriptions of the ROM-Lasso method. Section 3.3 describes the basic specifications 

of the 2-D and 3-D ADS models employed in this study and the calculation conditions. Section 

3.4 presents the results and a discussion of the verification calculation. Section 3.5 provides 

concluding remarks and future research directions. 

 

3.2. Method 

3.2.1. Regression-based sensitivity analysis 

In this subsection, the regression-based SA is briefly reminded. As described in the 

previous chapter, the penalized linear regression determines the solution as follows: 

 

 

𝑔⃗𝑔 = argmin �
1

2𝑀𝑀�Δ𝑅𝑅�⃗ − Δ𝐓𝐓𝑔⃗𝑔�2
2

+ 𝑝𝑝(𝑔⃗𝑔)�, 

�Δ𝑅𝑅�⃗ − Δ𝐓𝐓𝑔⃗𝑔�2
2

= ��Δ𝑅𝑅𝑖𝑖 −�Δ𝑇𝑇𝑖𝑖𝑖𝑖𝑔𝑔𝑗𝑗

𝑁𝑁
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(3.1) 
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Note that Equation (3.1) is a repeat of Equation (2.6), but the matrix-vector representation is used 

for the residual sum of squares term for readability in the next subsection and it is divided by the 

number of samples (i.e., M). In the lasso method, 𝑝𝑝(𝑔⃗𝑔) is expressed as follows: 

 

 

where 𝜆𝜆 is a user-determined hyperparameter, and the penalty term is proportional to the sum of 

the absolute values (i.e., L1-norm) of the solutions. For a better choice, the adaptive smooth-lasso 

imposes an additional term and weights on the penalty term defined as follows: 

 

 

where 𝜆𝜆1 and 𝜆𝜆2 are the user-determined hyperparameters, and the weights 𝑣𝑣𝑗𝑗 and 𝑤𝑤𝑗𝑗 are 

 

 

 

Here, 𝑔𝑔�𝑗𝑗 is an element of the solution that is pre-estimated by regression with the setting of 𝑣𝑣𝑗𝑗 =

𝑤𝑤𝑗𝑗 = 1. 𝑐𝑐 and 𝛾𝛾 are also user-determined hyperparameters (𝑐𝑐 > 0 and 𝛾𝛾 > 0).  
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In the previous chapter, it was demonstrated that the adaptive smooth lasso can 

successfully reduce the number of core analyses to approximately a tenth of the direct method for 

SA of keff of the two-dimensional (2-D) ADS model at the beginning of the cycle (BOC). However, 

this number is still large for a precise model, such as the 3-D ADS model with multi-cycle analyses. 

In addition, the adaptive lasso method is disadvantageous in that it requires four hyperparameters. 

Because the prediction accuracy is sensitive to these hyperparameters, the hyperparameters must 

be chosen carefully. In the previous chapter, these hyperparameters were adjusted so that the 

estimated sensitivity coefficients better reproduced those of the direct method. 

 

3.2.2. ROM-Lasso method 

In this subsection, the theory of the novel ROM-Lasso method is described. In the ROM 

approach, the vector of sensitivity coefficients is expanded by AS bases, and the orthogonal 

components to AS are ignored.  

When there are 𝐿𝐿 vectors of sensitivity coefficients of the lower-fidelity model (e.g., 2-

D cylindrical model), they can be arranged to form a sensitivity matrix of the lower-fidelity model 

as follows: 

 

 

where L is the number of neutronics parameters of interest, 𝐆𝐆𝐥𝐥owe𝐫𝐫 is an N×L matrix, and N is 

the number of cross sections of interest. SVD can be used to mathematically derive the effective 

subspace that well represents the original space. 𝐆𝐆lower  can be decomposed using SVD as 

follows: 

 

𝐆𝐆lower = �𝑔⃗𝑔lower
(1) ,⋯ , 𝑔⃗𝑔lower

(𝐿𝐿) �, (3.6) 
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where U is an N×N unitary matrix, V is an L×L unitary matrix, and D is an N × L diagonal matrix 

with singular values (𝑑𝑑1 ≥ 𝑑𝑑2 ≥ ⋯ ≥ 𝑑𝑑𝐿𝐿 ≥ 0). When singular values less than the r-th largest 

singular value are neglected (i.e., 𝑑𝑑1 ≥ ⋯ ≥ 𝑑𝑑𝑟𝑟 > 𝑑𝑑𝑟𝑟+1 ≈ ⋯ ≈ 𝑑𝑑𝐿𝐿 ≈ 0), the sensitivity matrix 

of the lower-fidelity model can be approximated as follows: 

 

 

where Ur is the N×r matrix, Vr is the L×r matrix, and Dr is the r×r diagonal matrix which has 

𝑑𝑑1 ≥ ⋯ ≥ 𝑑𝑑𝑟𝑟 > 0 for its diagonal elements. Because the r+1-th and subsequent column vectors 

of U are negligible to represent 𝐆𝐆lower, the column vector of 𝐆𝐆lower can be expanded by the 

orthogonal bases of Ur as follows: 

 

 

where 𝑔⃗𝑔lower
(𝑙𝑙)  is the l-th column vector of 𝐆𝐆lower and 𝑓𝑓(𝑙𝑙) is the expansion coefficient vector 

of 𝑔⃗𝑔(𝑙𝑙). When r is significantly smaller than N, the effective number of input parameters can be 

significantly reduced from the original number of cross sections. That is, the number of unknowns 

in Equation (3.1) will be significantly reduced by 𝐔𝐔𝑟𝑟  (𝐔𝐔𝑟𝑟  is the AS bases). In the MLROM 

approach, it is assumed that when the lower-fidelity model adequately approximates the higher-

fidelity model (e.g., 3-D Cartesian model), the AS bases 𝐔𝐔𝑟𝑟  obtained with the lower-fidelity 

model can be used to expand the vectors of sensitivity coefficients of the higher-fidelity model. 

By expanding the vector of sensitivity coefficients of the higher-fidelity model via 𝐔𝐔𝑟𝑟, 

𝐆𝐆lower = 𝐔𝐔𝐔𝐔𝐕𝐕T, (3.7) 

𝐆𝐆lower ≈ 𝐔𝐔𝑟𝑟𝐃𝐃𝑟𝑟𝐕𝐕𝑟𝑟T, (3.8) 

𝑔⃗𝑔lower
(𝑙𝑙) ≈ 𝐔𝐔𝑟𝑟𝑓𝑓(𝑙𝑙), (3.9) 
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the variation of the neutronics parameter for the higher-fidelity model can be rewritten as follows: 

 

 

Equation (3.1) is also rewritten as follows: 

 

 

The subscript of “higher” is omitted for readability. In this chapter, the use of the penalty term 

defined in Equation (3.12) is proposed, as in the case of the conventional lasso method: 

 

 

Thus, the sensitivity coefficient vector of the higher-fidelity model can be obtained by 𝑔⃗𝑔 ≈ 𝐔𝐔𝑟𝑟𝑓𝑓. 

If the sensitivity vector of the higher-fidelity model can be well reconstructed with the linear 

combination of 𝐆𝐆𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥𝐥 (or, the corresponding bases 𝐔𝐔𝑟𝑟), one of the reasonable options to reduce 

the dimensional complexity is to truncate the bases with the significantly small singular values. 

However, the absolute values of the expansion coefficients do not necessarily correspond to the 

order of the expansion bases (or, to the magnitude of the corresponding singular values in the 

estimation of 𝐔𝐔𝑟𝑟). In other words, it is not obvious whether the truncation approach is always 

effective in expanding any type of target sensitivity coefficient. For this reason, this study used 

sparse modeling for the expansion coefficients 𝑓𝑓 rather than the truncation approach. Owing to 

the auto-selectivity of the lasso method, the expansion coefficients of the primary bases among 

Δ𝑅𝑅�⃗ higher = 𝚫𝚫𝚫𝚫𝐔𝐔𝑟𝑟𝑓𝑓higher. (3.10) 

𝑓𝑓 = argmin �
1

2𝑀𝑀�Δ𝑅𝑅�⃗ − Δ𝐓𝐓𝐔𝐔𝑟𝑟𝑓𝑓�2
2

+ 𝑝𝑝�𝑓𝑓��. (3.11) 

𝑝𝑝�𝑓𝑓� = 𝜆𝜆��𝑓𝑓𝑗𝑗�
𝑟𝑟

𝑗𝑗=1

. (3.12) 
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the AS bases can be automatically obtained.  

It is worth noting that the continuity versus energy and steep changes due to threshold 

and resonance cross sections of the neutron-induced reactions are already considered in the AS 

bases because they are obtained from the sensitivity coefficients of the lower-fidelity model. 

Because the proposed method has only one hyperparameter, the cross-validation (CV) technique 

[5] can be easily applied to the optimization of the hyperparameter as opposed to four 

hyperparameters in the adaptive smooth-lasso.  

The ROM-Lasso method has an intriguing feature in that the AS bases can be assumed 

based on the neutronics parameters. That is, the AS basis sets can be optimized for each neutronics 

parameter. Let us suppose that there are two neutronics parameters 𝑅𝑅(1) and 𝑅𝑅(2) and we want 

to obtain the corresponding sensitivity coefficient vectors 𝑔⃗𝑔(1)  and 𝑔⃗𝑔(2) . The corresponding 

expansion coefficients 𝑓𝑓(1) and 𝑓𝑓(2) can be determined by the ROM-Lasso method using two 

different AS bases, as follows:  

 

 

where 𝐔𝐔𝑟𝑟(1)
(1)  and 𝐔𝐔𝑟𝑟(2)

(2)  are AS bases that are optimized for each neutronics parameter. r and 𝜆𝜆 

are also different for each neutronics parameter; however, Δ𝐓𝐓 in Equation (3.13) is common in 

the two equations. Because 𝐔𝐔𝑟𝑟(1)
(1)  is optimized for 𝑅𝑅(1) by ignoring the components orthogonal 

to 𝐔𝐔𝑟𝑟(1)
(1)  , reconstruction of 𝑔⃗𝑔(2)  by 𝐔𝐔𝑟𝑟(1)

(1)   will be difficult, especially when 𝑔⃗𝑔(2)  is almost 

𝑓𝑓(1) = argmin�
1

2𝑀𝑀�Δ𝑅𝑅�⃗ (1) − Δ𝐓𝐓𝐔𝐔𝑟𝑟(1)
(1) 𝑓𝑓(1)�

2

2
+ 𝜆𝜆(1) ��𝑓𝑓𝑗𝑗

(1)�
𝑟𝑟(1)

𝑗𝑗=1

�, 

𝑓𝑓(2) = argmin�
1

2𝑀𝑀�Δ𝑅𝑅�⃗ (2) − Δ𝐓𝐓𝐔𝐔𝑟𝑟(2)
(2) 𝑓𝑓(2)�

2

2
+ 𝜆𝜆(2) ��𝑓𝑓𝑗𝑗

(2)�
𝑟𝑟(2)

𝑗𝑗=1

�, 

(3.13) 



47 

 

orthogonal to 𝑔⃗𝑔(1). However, Equation (3.13) indicates that AS bases can be chosen according to 

the neutronics parameters independently of random sampling. That is, we can evaluate these two 

sensitivity coefficient vectors simultaneously using two different AS bases, even if these vectors 

are orthogonal to each other. In addition, Δ𝐓𝐓 can be an arbitrary perturbed cross section set, and 

Δ𝑅𝑅�⃗ (1) and Δ𝑅𝑅�⃗ (2) are relative deviations evaluated in the higher-fidelity model using Δ𝐓𝐓. The 

AS bases are used only in the lasso regression process performed after the random sampling 

process for the higher-fidelity model. In other words, the AS bases are not used in the random 

sampling process for the higher-fidelity model. Therefore, if more appropriate AS bases are found 

after random sampling, they can be used for a more accurate evaluation. In this work, neutronics 

parameters are divided into some groups (referred to as AS-groups in this thesis) according to 

their properties (e.g., core integral parameters, mass of heavy nuclides, and mass of rare earth 

elements in fission product), and the AS bases are obtained for each AS-group so that each AS is 

optimized for each AS-group.  

The most straightforward method to obtain the optimal AS bases is the use of the 

sensitivity coefficients of the neutronics parameters of interest. However, this method is irrelevant 

because it requires a sensitivity matrix that is yet to be obtained. Therefore, an MLROM approach 

was used to obtain the approximated AS bases. In this chapter, the use of the sensitivity 

coefficients of the multiple neutronics parameters of the 2-D cylindrical model is proposed to 

evaluate the sensitivity coefficients of the 3-D Cartesian model. If the calculation cost of the 2-D 

model is much smaller than that of the 3-D model, we can reduce the total calculation cost, 

including finding AS bases when we evaluate the sensitivity coefficients of the 2-D model via the 

direct method. 

Figure 3.1 shows a schematic view of the ROM-Lasso method. The ROM-Lasso method 

can be summarized as follows. 
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a. Perform the direct method in the lower-fidelity model (e.g., 2-D cylindrical model) 
to evaluate the sensitivity vectors. 

b. Divide sensitivity vectors into AS-groups according to neutronics parameters and 
perform SVD to obtain AS bases according to the AS-groups. 

c. Perform random sampling in the higher-fidelity model (e.g., 3-D Cartesian model) to 
evaluate the deviations of target neutronics parameters. 

d. Evaluate the sensitivity vectors of the target neutronics parameters in the higher-
fidelity model using Equation (3.13). 

Steps a–b and Step c are interchangeable when all cross sections of interest in the higher-fidelity 

model are considered in the lower-fidelity model. 

 

 

Figure 3.1 Schematic view of the ROM-Lasso method. 

 

3.3. Verification calculation condition 

3.3.1. Basic specification of ADS 

In this subsection, the basic specifications of the ADS proposed by JAEA [6] are 

described. The ADS model was updated from [7], whereas the ADS model used in the previous 

chapter was based on [7]. The ADS is composed of a subcritical core loaded with MA nitride fuels 
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and operated by spallation neutrons generated by a proton beam accelerator and an LBE target. 

The basic specifications of the fuel assemblies and pins are summarized in Table 3.1, and Figure 

3.2 shows the arrangement of the fuel assemblies used in this study.  

The beam duct is inserted from the upper part to the center of the core, and a 1.5 GeV 

proton beam is injected into the LBE target through the beam duct to produce spallation neutrons. 

The inside of the beam duct must be a vacuum to transport the proton beam.  

The isotopic composition of MA and Pu for MA nitrides was based on a previous study 

[7]. The fuel region of the subcritical core has two MA fuel regions (the inner and outer cores). 

The MA fuel consists of trans-uranium (TRU) nitride ((MA + Pu) N) and ZrN. Table 3.2 lists the 

weight ratios of PuN to TRU nitride and those of ZrN to MA fuel for the two fuel regions. Table 

3.3 lists the weight ratios of TRU in the MA core regions. Detailed specifications of the dimension 

of the beam duct and the composition of reflectors and shielding are provided in Reference [6]. 

 

Figure 3.2 The arrangement of fuel assemblies. 
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Table 3.1. Basic specification of fuel assemblies and pins. 

Fuel Assembly (FA) Fuel Pin 

Type 
Hexagonal duct-

less 
Composition 

(MA + Pu)N + 
ZrN 

 Number of FAs Cladding tube material T91 steel 

Inner core 102 Pellet smear density [%] 85 

Outer core 174 
Cladding outer diameter 

[mm] 
7.65 

Total 276 
Cladding inner diameter 

[mm] 
6.65 

Number of fuel pins per FA 121 
Pellet outer diameter 

[mm] 
6.49 

Pitch of FA [mm] 134.5 Pin pitch [mm] 11.48 
Width of FA [mm] 133.5 Active height [mm] 1000 

Number of fuel pins per FA 121   

Number of tie rods per FA 6     

 

 

Table 3.2. Weight ratio of nitrides at BOC 

ZrN / (MA + Pu + Zr)N [wt%] 

Inner core 38.9 
Outer core 28.9 

PuN / (MA + Pu)N [wt%] 

Inner core 27.3 
Outer core 27.3 
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Table 3.3. Isotopic composition of actinides in the MA core region. 

Slightly modified from Table 2.1. 

Nuclide (wt%) Nuclide (wt%) 
234U 0.01 241Am 23.94 

237Np 35.36 242mAm 0.04 
238Pu 0.65 243Am 10.01 
239Pu 14.88 243Cm 0.02 
240Pu 6.84 244Cm 3.05 
241Pu 2.96 245Cm 0.3 
242Pu 1.9 246Cm 0.03 

 

3.3.2. Calculation Conditions 

To investigate whether the lasso procedure with the ROM expectedly works for a highly 

symmetric system, the ADS model with high axial symmetry is considered. For this purpose, 

ADS3D [8] was used for both 2-D cylindrical and 3-D Cartesian models of the ADS. ADS3D 

uses SLAROM-UF [9] to generate effective multigroup microscopic cross sections, PARTISN 

[10] for neutron transport calculations for both the eigenvalue problem and the fixed source 

problem, and BURNUP solver in MARBLE [11], which is implemented by NumPy [12] and 

SciPy [13] libraries, for burnup calculations. Because ADS3D consists of multiple calculation 

codes developed in different institutes, the implementation and application of the adjoint-based 

method are difficult.  

In this work, sensitivity coefficients of neutronics parameters to self-shielded effective 

multigroup microscopic cross sections were evaluated. A couple of previous studies have shown 

the importance of obtaining sensitivity coefficients to infinite diluted cross sections for rigorous 

uncertainty evaluation in light water reactors [14, 15]. Correction methods have been also 

proposed under the assumption of the Bondarenko-type self-shielding factor model [14–16]. Note, 

however, that Chiba et al. pointed out that the self-shielding effect does not significantly impact 
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the uncertainty evaluation of fast reactors [16]. As an example, the uncertainty of keff for a typical 

fresh fuel pin cell used in the ADS [6] has been evaluated using the TSUNAMI-1D module of 

SCALE-6.2 [17]. SCALE-6.2 has the capability of evaluating the so-called “implicit sensitivity”, 

which is a portion of the sensitivity coefficients of the self-shielded cross sections to the infinite 

diluted cross sections, with the aid of the BONAMIST module. It has been confirmed that the 

impact of the self-shielding effects on the sensitivity coefficients and nuclear data-induced 

uncertainty of keff was negligibly small, e.g., the uncertainties evaluated with and without the 

implicit effect were 1.5054 and 1.5058 (%dk/k), respectively. Therefore, the impact on ADSs is 

also expected to be small in this study, though the rigorous evaluation of the sensitivity 

coefficients of the other neutronics parameters considering the self-shielding effect could be a 

future research topic. 

Figure 3.3 shows the 2-D cylindrical model used for the lower-fidelity model to obtain 

the AS bases. Because PARTISN can handle only structured meshes, each region was 

homogenized by volume ratios such that the volume and mass of nuclides were preserved. The 

vacuum boundary conditions were considered for the upper, lower, and outer boundaries. The 

burnup regions of both the inner and outer fuel regions were divided into four radial and ten axial 

regions. The total number of burnup regions was 80 (i.e., (4 + 4) × 10 = 80). 
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Figure 3.3 Geometry of the two-dimensional cylindrical model. 

 

In the 3-D Cartesian model, each mesh in the x-y direction was made to preserve the area 

of a quarter of the cross section of the hexagonal assembly and the mass of nuclides. Figure 3.4 

shows the conversion of the hexagonal grid to the Cartesian mesh. For the higher-fidelity model, 

the reflective boundary conditions are considered on the x = 0 and y = 0 axes. Assemblies located 

in hexagonal symmetry around the origin and mirror symmetry with respect to a plane 30° from 

the x-axis are treated as one burnup region, thereby reducing the number of burnup regions in the 

radial direction from 74 (i.e., the number of assemblies in the quadrant of the core) to 28. The 

number of axial divisions on the z-axis in the fuel region was 10, as in the case of the cylindrical 

model. Because there are 28 burnup regions in the radial direction, the total number of burnup 

regions was 280. Then, the calculation time of the 3-D model was approximately 10 times longer 

than that of the 2-D model. As described later in Section 3.3.3, the AS bases were obtained by the 

direct method in the 2-D model, i.e., the total reduction of the calculation time including the 
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construction of the AS was about one-tenth of the direct method. The efficient construction of the 

AS is a future topic. 

 

 

Figure 3.4 Illustration of mesh conversion from hexagonal grid to Cartesian mesh. 

 

The 70-group-energy-structured UFLIB.J40 library [18] based on JENDL-4.0 [19] was 

used to generate the multigroup microscopic cross sections in SLAROM-UF. The neutron energy 

ranged from 10-5 eV to 20 MeV. 

The burnup calculations were performed assuming 800 MWt and 600-day operations. 

The duration of each burnup step was 200 d. Because BURNUP performs burnup calculations 

using microscopic cross sections and neutron flux calculated by PARTISN, the contributions of 

number density change due to the cross section perturbations were directly included. 

The effective multiplication factor (keff) was 0.98089 at the BOC, and the burnup 

reactivity between BOC and the end of the cycle (EOC) was approximately 0.813% dk/k/k’ in the 

3-D Cartesian model. Fixed source calculations in this chapter used the external neutron source 

generated by protons of 1.5 GeV and the LBE target using PHITS [20] 

 

3.3.3. Neutronics parameters for AS and sensitivity coefficient evaluation 

As input parameters, 193 microscopic reactions and 13510 cross sections (i.e., 193 

y

x
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microscopic reactions and 70 energy groups = 13510) were considered. Table 3.4 lists the 

nuclides and reactions for the input parameters used in this study.  

To construct the AS, the sensitivity coefficients of the neutronics parameters were 

evaluated for the three AS-groups in the 2-D ADS model as shown in Table 3.5. These sensitivity 

coefficients were evaluated using the direct method with a 5% one-sided difference approximation, 

i.e., perturbed calculations were repeatedly performed by increasing each cross section by 5%, 

and sensitivity coefficients were evaluated using the relative changes from the non-perturbed 

calculation. That is, the perturbed burnup calculations of the 2-D ADS model were performed 

13510 times. The parameters in Table 3.5 were divided into three AS-groups and constructed three 

different ASs corresponding to these AS-groups. As described in Section 3.2.2, the truncation 

approach was not considered in this study, and the number of the dimensions of AS-group 1, 2, 

and 3 were 16, 42, and 24, respectively. 

To demonstrate the advantage of the forward-based method, SA on several different types 

of neutronics parameters after burnup were taken into account: the beam current of the proton 

beam accelerator, the mass of 241Am, and the maximum relative power at the EOC, and the coolant 

void reactivity at the BOC of the 3-D ADS model were considered as the target neutronics 

parameters that were simultaneously reproduced by the ROM-Lasso method in Section 3.4. The 

external neutron source intensity is proportional to the beam current of the proton beam 

accelerator and the beam current is adjusted to keep the core power of 800 MWt and varies from 

about 10 mA to 15 mA with the burnup. Evaluation of the beam current is important for the design 

of a feasible beam window that forms the boundary between the core and accelerator. Evaluation 

of the mass of 241Am is also important because the ADS aims to transmute MA nuclides, including 

241Am. To examine the applicability of the proposed method to the local neutronics parameter, the 

evaluation of the sensitivity coefficients of the maximum relative power at EOC was tackled. The 
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position of the maximum relative power at EOC is shown in Figure 3.2 (i.e., the mesh of the inner 

fuel region closest to the beam duct) and its axial position was the center of the fuel region. In 

addition to the above parameters, the evaluation of the sensitivity coefficients of the coolant void 

reactivity at the BOC is also addressed to demonstrate that the forward-based method can 

simultaneously perform SA for various properties at different time steps, though the sensitivity 

coefficients of a reactivity without burnup can be relatively easily evaluated by PT.  

 

Table 3.4. Nuclide and reactions for input parameters. 

Material Nuclide Reaction 
Number of microscopic 

reactions*a 

Fuel 

235, 238U; 237Np; 
238, 239, 240, 241, 242Pu; 

241, 242m, 243,Am; 
243, 244, 245, 246Cm; 

capture, fission, ν‾, μ‾ , 

(n,2n), elastic scattering, 

inelastic scattering, 

fission spectrum 

120 

(15 nuclides × 8 reactions) 

15N elastic scattering 
1 

(1 nuclide × 1 reaction) 

Coolant and 

spallation 

target 

204, 206, 207, 208Pb; 
209Bi 

capture, μ‾ , (n,2n), elastic 

scattering, inelastic 

scattering 

25 

(5 nuclides × 5 reactions) 

Shielding 10, 11B 
capture, elastic 

scattering 

4 

(2 nuclides × 2 reactions) 

Cladding 

and reflector 

16O; 23Na; 52, 53Cr; 
55Mn; 56Fe; 58, 60Ni 

capture, μ‾ , (n,2n), elastic 

scattering, inelastic 

scattering 

40 

(8 nuclides × 5 reactions) 

90Zr 
capture, (n,2n), inelastic 

scattering 

3 

(1 nuclide × 3 reactions) 

 
a In total: 193 microscopic reactions. 
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Table 3.5. Neutronics parameters for sensitivity coefficient evaluation. 

AS group Parameters The number of parameters 

1 

keff 

Coolant void reactivity 

Beam current 

Maximum relative power 

16 

(4 parameters × 4a burnup steps) 

2 

Mass of 14 heavy nuclides 

(237Np; 238, 239, 240, 241, 242Pu; 
 241, 242m, 243,Am; 242, 243, 244, 245, 246Cm;) 

42 

(14 nuclides × 3 burnup steps) 

3 

Mass of eight rare earth elements in 

fission product 

(La, Ce, Pr, Nd, Sm, Eu, Gd, Tb) 

24 

(8 nuclides × 3 burnup steps) 

a BOC + three burnup steps. 

 

Based on Equation (3.13) of the ROM-Lasso method shown in Figure 3.1, the sensitivity 

coefficients of the beam current and mass of 241Am were reproduced using the AS constructed 

with AS-group 1 and AS-group 2, respectively. Using the AS constructed with AS-group 3, the 

results of the sensitivity coefficients of the mass of lanthanum (La) are also provided in Appendix 

A as an example of rare earth elements, which accompany MAs in the partitioning process and 

can impact the neutronics parameters of subsequent cycles [6]. The sensitivity coefficients of the 

maximum relative power at the EOC and the coolant void reactivity at the BOC were also 

reproduced using AS-group 1. 

The number of random samples for the 3-D model was 30, which is a couple of orders of 

magnitude less than the number of input parameters. The input parameters were uniformly 

sampled within the range of ±5%. The perturbation range was empirically given based on 

Reference [21]. In the lasso procedure of the ROM-Lasso, the leave-one-out CV (LOOCV) was 
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used to optimize 𝜆𝜆  in Equation (3.12). The statistical errors of the estimated sensitivity 

coefficients were evaluated using the jackknife method [22]. Note that the lasso regression of 

Equation (3.13) was also applied for the target neutronics parameters corresponding to AS-group1 

as well as the other target neutronics parameters even though the sample size (i.e., 30) is larger 

than the dimension of AS-group 1 (i.e., 16). The direct method was used to evaluate the reference 

values, that is, the perturbed burnup calculations of the 3-D ADS model were performed 13510 

times. 

For a better comparison, the sensitivity coefficients were estimated using the 

conventional lasso method and the adaptive smooth lasso with 30 and 300 samples. The 

hyperparameter of 𝜆𝜆  in the lasso method was optimized using the LOOCV. Four 

hyperparameters of the adaptive smooth lasso were manually optimized so that the estimated 

sensitivity coefficients agreed with reference values. 

 

3.4. Results and discussion 

Figures 3.5 (a)–(c) show a comparison of the results of the sensitivity coefficients of the 

beam current at EOC to the ν‾  of 237Np, where the largest absolute value of the sensitivity 

coefficients was observed, using the ROM-Lasso, the lasso, and adaptive smooth-lasso methods. 

The AS constructed by AS-group 1 was used for the ROM-Lasso method. Table 3.6 lists the 

comparison of the user-defined parameters for the ROM-Lasso, lasso, and adaptive smooth lasso 

methods for the evaluation of the sensitivity coefficients of the beam current at EOC. As shown 

in Figure 3.5, the sensitivity coefficients obtained using the ROM-Lasso method were in good 

agreement with the reference values within the standard deviation (1σ). Conversely, the lasso and 

adaptive smooth lasso methods with 30 samples failed to reproduce the sensitivity coefficients. 

When the number of random samples to 300 increased, sensitivity coefficients were estimated as 



59 

 

non-zero values, and the signs were consistent. However, the discrepancy and the standard 

deviation were significantly large, unlike in the case of the proposed method. As an example of 

the application of the ROM-Lasso to a threshold reaction, to which the sensitivity coefficients are 

not smooth versus the energy, Figure 3.6 shows a comparison of the results of the sensitivity 

coefficients of the beam current at EOC to the inelastic scattering cross section of 56Fe. The 

threshold energy of this reaction is 862.07 KeV. As shown in Figure 3.6, the results of the 

proposed method with only 30 samples can successfully capture the steep change of the sensitivity 

coefficients at the threshold energy, whereas the adaptive smooth lasso with 300 samples 

evaluated the sensitivity coefficients below the threshold energy as non-zero values. These results 

indicate that the proposed method can successfully reduce the computational burden using the 

ROM technique. Other sensitivity coefficients to the top 20 cross sections with the largest absolute 

values are shown in Appendix A (Figure A.1, A.2, and A.3).  

 

Table 3.6. Parameters for the penalty term for sensitivity coefficients of beam current. 

Parameter ROM-Lassoa Lassoa 
Adaptive smooth 

lassob 

𝜆𝜆1 7.9 × 10-6 4.0 × 10-7 1.0 × 10-5 
𝜆𝜆2   5.0 × 10-4 
𝑐𝑐   50 
𝛾𝛾   0.8 

a 𝜆𝜆1 was determined by the LOOCV. 

b Parameters for the adaptive smooth lasso were manually determined so that the estimated 

sensitivity coefficients reproduced the reference values. 

 

 



60 

 

 
  (a) ROM-Lasso with 30 samples   

 
  (b) lasso with 30 and 300 samples 

 
(c) adaptive smooth lasso with 30 and 300 samples 

Figure 3.5 Sensitivity coefficients of beam current at EOC to ν� of 237Np estimated by each 

method.   
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(a) ROM-Lasso with 30 samples 

 
  (b) lasso with 30 and 300 samples 

 
(c) adaptive smooth lasso with 30 and 300 samples 

Figure 3.6 Sensitivity coefficients of beam current at EOC to inelastic scattering cross section of 

56Fe estimated by each method. 
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To demonstrate the validity of Equation (3.13), Figure 3.7 shows the result of the 

sensitivity coefficients of the mass of 241Am at EOC to the capture cross section of 241Am, where 

the largest absolute value of the sensitivity coefficients was observed, estimated by the ROM-

Lasso method. 𝜆𝜆1 was 8.7 × 10−8 for the mass of 241Am. Again, it is emphasized that the AS 

constructed by AS-group 2 was used, unlike in the case of the beam current using AS-group 1, 

whereas the perturbed responses were simultaneously evaluated by random sampling. As shown 

in Figure 3.7, the estimated sensitivity coefficients were also in good agreement with the reference 

values within the standard deviation. For supplemental information, the sensitivity coefficients of 

mass of 241Am and La at EOC to the top 20 cross sections with the largest absolute values are also 

shown in Appendix A (Figure A.4 and A.5).  

To demonstrate the applicability of the proposed method to a local neutronics parameter, 

Figure 3.8 shows the result of the sensitivity coefficients of the maximum relative power at EOC 

to the ν‾ of 237Np, where the largest absolute value of the sensitivity coefficients was observed, 

estimated by the ROM-Lasso method. 𝜆𝜆1  was 4.7 × 10−6  for the maximum relative power. 

Discrepancies from the reference values exceeded slightly 1σ in the energy range over 1 MeV. 

However, the estimated sensitivity coefficients of the local neutronics parameter (i.e., the 

maximum relative power) were in good agreement with the reference values despite using AS-

group1 that consisted of integrated parameters (i.e., keff, the coolant void reactivity, and the beam 

current which is proportional to the core power) and the maximum relative power of the 2-D 

cylindrical model. The ROM-Lasso method aims to reconstruct the sensitivity coefficients by the 

linear combination of the orthogonal bases. Therefore, if the reference sensitivity coefficients of 

the maximum relative power in the higher-fidelity model can be well approximated by the linear 

combination of AS bases estimated by the lower-fidelity model, the ROM-Lasso method can 

reproduce the sensitivity coefficients even when using the integrated parameters of the lower-
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fidelity model. Choice of the optimal neutronics parameters of the lower-fidelity model is not 

trivial and should be addressed in the future.  

For supplemental information, the sensitivity coefficients of the relative maximum power 

at EOC to the top 20 cross sections with the largest absolute values are shown in Appendix A 

(Figure A.6). The sensitivity coefficients of the coolant void reactivity at the BOC were also 

successfully reproduced by the proposed method as shown in Appendix A (Figure A.7). The 

obtained sensitivity coefficients of the coolant void reactivity will be used for DA tackled in the 

next chapter.  

 

 

Figure 3.7 Sensitivity coefficients of mass of 241Am- at EOC to capture cross section of 241Am 

estimated by the ROM-Lasso method. 
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Figure 3.8 Sensitivity coefficients of maximum relative power to ν� of 237Np estimated by the 

ROM-Lasso method. 

 

Owing to the ROM-Lasso method, the number of random samplings can be dramatically 

reduced by a couple of orders of magnitude (i.e., from about 1000 to 30 in this thesis). However, 

as mentioned in Section 3.3.2, the calculation time of the 2-D model was approximately one-tenth 

that of the 3-D model, that is, the total reduction of the calculation time including the construction 

of the AS was only about one-tenth of the direct method used to evaluate the reference values. 

Therefore, the reduction in the calculation cost of the construction of the AS will be addressed in 

the future. A possible remedy to address this challenge could be the employment of a model with 

coarser mesh and/or looser convergence tolerances for the AS construction in the lower-fidelity 

model, as proposed in reference [4].  

In this thesis, transport calculations on both the lower- and higher-fidelity models were 

based on the deterministic method, i.e., the evaluated sensitivity coefficients could have 

uncertainty due to discretization. For more accurate SA, the application of the continuous energy 

Monte Carlo calculations would be a future topic of interest. Recently, a useful tool [23] has been 

available to perturb cross section libraries for the continuous energy Monte Carlo codes. Provided 
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the AS obtained by the 2-D model is applied to the continuous energy Monte Carlo calculations, 

this approach would be efficient because the calculation cost of the Monte Carlo calculations is 

generally larger than that of the deterministic method, and the relative calculation cost of the AS 

construction becomes smaller when the Monte Carlo calculations are considered as the higher-

fidelity model. 

In this chapter, the feasibility of the ROM-Lasso method for the highly symmetrical 

system is demonstrated where the 2-D cylindrical model may adequately reproduce the 3-D 

Cartesian model. However, more general systems do not necessarily have geometric symmetry, 

and it is not obvious how to construct the lower-fidelity model. Therefore, the choice of an 

appropriate lower-fidelity model would be another challenge that has to be addressed in the future.  

Furthermore, the reproducibility of the sensitivity coefficients by the ROM-Lasso was 

confirmed by directly comparing the estimated values and the reference values obtained by the 

direct method. However, in more general cases, it is important to estimate the error bounds by the 

orthogonal components to the AS without the direct method to check whether the sensitivity 

vector of the higher-fidelity model is well included in a subspace spanned by the sensitivity 

vectors of the lower-fidelity model. Estimation of such an error bound should be addressed in the 

future. 

In this chapter, the range of the uniform sampling of the cross sections was empirically 

chosen as ± 5%. When the perturbation of the cross sections is too small, the perturbation of the 

neutronics parameters will be affected by the round-off errors. For the too-large perturbation, the 

higher-order derivatives degrade the accuracy of the sensitivity coefficients (i.e., the first-order 

derivative). Determination of the optimal range of the perturbation of the cross sections is also a 

future task.  
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3.5. Conclusions 

The sensitivity coefficients of the target neutronics parameters to the cross sections are 

important for uncertainty evaluation and reduction. In this chapter, the ROM-Lasso method is 

newly proposed, which is enhanced by the ROM technique for further reduction of the calculation 

cost to evaluate the sensitivity coefficient that uses only forward calculations. The ROM-Lasso 

method can flexibly choose AS bases according to neutronics parameters. In this chapter, AS 

bases were constructed using the sensitivity coefficient matrix of the lower-fidelity model (i.e., 

the 2-D ADS model), and random sampling was performed for the higher-fidelity model (i.e., the 

3-D ADS model). The numerical verification has clarified that the ROM-Lasso method can 

successfully reduce the number of samplings by a couple of orders of magnitude and 

simultaneously evaluate the sensitivity coefficients of the several neutronics parameters after 

burnup.  

Through Chapter 2 and Chapter 3, the development of the practical methodology for the 

forward-based SA has been addressed. Especially, Chapter 3 has demonstrated the applicability 

of the ROM-Lasso method through the verification calculation considering multiple neutronics 

parameters after burnup. However, as discussed in Chapter 1, the final goal of SA is performing 

UQ and/or DA, aiming at reliable core analyses. In the next chapter, as an example of the 

application of the sensitivity coefficients for a design property of a future system, UQ and DA are 

performed for the coolant void reactivity of the ADS using the sample reactivity measurements 

conducted at KUCA.  

There are still open technical issues in the ROM-Lasso method that should be addressed 

in the future. First, in this chapter, the sensitivity coefficients to the effective self-shielded 

microscopic cross sections were evaluated. To evaluate those to the infinite diluted cross sections, 

one should use the correction methods proposed in References [14] and [17]. Second, in this 
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chapter, AS bases were constructed using 2-D ADS sensitivity coefficients. Although the number 

of calculations in the higher-fidelity model is dramatically reduced using the ROM-Lasso method, 

additional calculations in the lower-fidelity model are required to construct AS bases. The 

reduction in the calculation cost of the construction of the AS will be addressed in the future. 

Third, application to SA on Monte Carlo transport calculations will be also a future topic in terms 

of improving the accuracy of sensitivity coefficients and relative calculation cost of the AS 

construction. Fourth, the choice of an appropriate lower-fidelity model and identification of 

neutronics parameters of the lower-fidelity model will be also addressed in the future. Fifth, the 

estimation of error bounds by the orthogonal components to the AS will be also tackled in the 

future. Finally, the determination of an optimal range of the perturbation of the cross sections will 

be also a future task. 
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4. Data assimilation for lead-bismuth cross sections using 

sample reactivity experiments 

 

4.1. Introduction 

In this chapter, as a demonstration of the application of the sensitivity coefficients, UQ 

and DA of the coolant void reactivity of the ADS are performed using the sensitivity coefficients 

obtained in the previous chapter together with the lead (Pb) and bismuth (Bi) sample reactivity 

measurement data obtained at KUCA A-core. 

Pb and LBE are considered to be candidates of coolant and reflector materials for the 

lead-cooled fast reactor (LFR) of Generation IV and the ADS as nuclear transmutation systems 

for high-level radioactive waste because of their attractive properties including inertness against 

water and air, low melting points, high boiling points, good retention capability for fission 

products, good shielding capability for gamma radiation, and low-absorption cross sections. 

However, the impact of uncertainty induced by inelastic scattering cross sections of Pb and Bi is 

significant on the neutronics parameters, especially on the coolant void reactivity of the ADS [1]. 

A target accuracy ranging between 5% and 7% for the coolant reactivity has also been proposed 

and discussed in the OECD/NEA WPEC subgroups [2, 3]. As shown later in Section 4.4, the 

model of the ADS in this chapter based on Reference [4], which is a revised version from 

Reference [1], has an uncertainty of 6.3% in the coolant void reactivity, which slightly exceeds 

the lower value of the target accuracy discussed so far (i.e., 5%). 

For improvement requirements on the nuclear data to achieve a target accuracy of design 

properties of advanced systems, the use of integral experiments and DA is considered important 

[5]. Several experiments have provided integral data for the validation of Pb cross sections, such 
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as a series of experiments conducted in a Pb-reflected, water-moderated, uranium-fuel rod array 

of the experimental criticality facility at SRSC Valduc (CEA, France), known as LEU-COMP-

THERM-027 in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [6]. 

Measurements of neutron multiplication factors and spectral indices in plutonium fuel with Pb 

coolant in the critical assembly BFS-61, known as BFS1-LMFR-EXP-002 in the International 

Reactor Physics Experiment Evaluation (IRPhE) [7], have also been conducted. To further expand 

the integral data for Pb and Bi cross sections, JAEA has focused on analyzing the reactivity worths 

relevant to nuclear characteristics that are highly sensitive to Pb and Bi nuclear cross sections: 

The JAEA has conducted the sample reactivity measurements in a solid-moderated and solid-

reflected core (A-core) at the KUCA [8, 9]. In a previous study [8], the C/E values of these sample 

reactivities of the KUCA A-core were successfully improved by the DA analyses. However, the 

impact of DA on the uncertainty reduction in the coolant void reactivity of the ADS has not been 

evaluated. 

The main objective of this chapter is to perform DA using the sensitivity coefficients 

obtained in the previous chapter and the sample reactivity measurement data obtained at the 

KUCA with the primary aim of examining the uncertainty reduction of the void reactivity of the 

LBE coolant in the ADS as an example of DA for a future system using the sensitivity coefficients. 

Experiment analyses of the KUCA including SA were performed with MCNP-6.2 [10] together 

with JENDL-4.0 nuclear data library [11]. The impact of DA on the uncertainty reduction in the 

coolant void reactivity of the ADS is investigated using the sensitivity coefficients obtained in 

Chapter 3. For better practice than the previous DA analysis of Reference [8], the experimental 

uncertainties and the corresponding correlations are re-evaluated and highlighted as will be 

discussed later in Section 4.2. Using the sensitivity coefficients and the experimental uncertainties, 

the DA analysis is performed by the MARBLE code system [12]. Through the DA analyses using 
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the sample reactivities obtained at KUCA, it is demonstrated that the uncertainty in the coolant 

void reactivity of the ADS is successfully reduced, achieving the provisional target accuracy in 

this chapter discussed later in Sec. 4.3. In addition to the KUCA data, the DA analysis with the 

integral experimental data set including sensitivity database used for the ADJ2017 [13] is 

performed to further reduce the uncertainty in the coolant void reactivity of the ADS. 

The remainder of this chapter is organized as follows. Section 4.2 provides a brief 

description of the sample reactivity experiments conducted at KUCA. Section 4.3 describes the 

formulation of DA and gives a brief description of ADJ2017. The results of DA with KUCA 

experiments and discussions are presented in Section 4.4, while Section 4.5 presents the 

conclusions and remarks. 

 

4.2. Reactivity experiments at KUCA 

4.2.1 Brief description of experiment 

Detailed information about the KUCA experiments, including core configurations and 

fuel rod composition, is given in Reference [9]. Sample reactivity experiments were carried out 

in the A-core at KUCA. The KUCA A-core is a solid-moderated and solid-reflected thermal core 

consisting of highly enriched uranium (HEU) fuel and polyethylene plates. Two core 

configurations were used to vary the neutron energy spectra: an HEU core and a low-enriched 

uranium (LEU) core, presenting core configurations shown in Figures 4.1(a) and 4.1(b), 

respectively. These cores contained five sample fuel rods surrounded by normal fuel rods. Figures 

4.2(a), 4.2(b), and 4.2(c) show the configurations of the fuel rods for these cores as follows: the 

normal fuel rod termed “F” was identical for both the HEU and LEU cores and contained 60 unit 

cells at the axial center sandwiched by polyethylene moderators and reflectors. The unit cell 

consisted of two HEU fuel plates (2×2×1/16-inch) and one polyethylene plate (2×2×1/8-inch) as 
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shown in Figure 4.2(a). Here, the HEU fuel plate was made of uranium-aluminum (U-Al) alloy. 

The partial fuel rods (“40” and “14” for the HEU core and “16” for the LEU core) shown in Figure 

4.2(a) were equipped to adjust the excess reactivity. For instance, the fuel rod termed “16” had 

only 16 unit cells at the axial center and 44 dummy cells constituting two 1/16-inch Al plates and 

1/8-inch polyethylene plates to maintain the height of the fuel region at the axial center. The 

sample fuel rod in the HEU core was similar to the normal fuel rods, but the polyethylene plates 

of 40 cells at the axial center were replaced by 1/8-inch thick plates of sample materials, i.e., Pb, 

Bi, Al plates, and an Al spacer (whose specification is given in Reference [9]), as shown in Figure 

4.2(b). The 235U enrichment of the HEU core was 93 wt%. In the LEU core, 1/24-inch (1.05 mm) 

natural uranium (NU) metal plates were inserted into the 20 cells at the axial center, as shown in 

Figure 4.2(c). The number of enriched uranium plates for the LEU core sample rod was the same 

as that for the HEU core sample rod, and the average 235U enrichment of the test region was 

reduced to 17 wt% because of the additional usage of the NU metal plates. The test region of the 

sample fuel rods was axially divided into three parts. For the HEU sample fuel rods, the test region 

was divided into 10, 20, and 10 cells of 40 unit cells each in the lower, central, and upper regions, 

respectively. For the LEU sample fuel rods, the test region was divided into 5, 10, and 5 cells of 

20 unit cells each, respectively. The core patterns were designated “Al/Al/Al” when the sample 

materials for all three parts were Al plates, and “Pb/Al/Pb” if the upper and lower parts were 

substituted with Pb plates. The Al spacers were termed “Vd” in this chapter. 

The excess reactivities for certain sample patterns were measured by inserting a B2O3 

control rod from the top into the core. The worth of the control rods was calibrated by the rod 

drop method. The control rods designated “C3” and “C2” were used for the HEU and LEU cores, 

respectively. Tables 4.1(a) and 4.1(b) give the sample loading patterns and corresponding 

measured excess reactivity for the HEU core and the LEU core, respectively. Table 4.1 also lists 
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the sample substitution patterns and corresponding sample reactivities. The experimental 

uncertainties listed in Table 4.1 have been re-evaluated in this chapter, as discussed later in Section 

4.2.3, and differ from the values reported in Reference [9].  

 

 

       

(a)  HEU core                     (b) LEU core 

Figure 4.1 Top view of the area around the fuel region of experimental cores. 
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(a) Fuel rods termed “F”, “40”, “16”, and “14” ordered from top to bottom. 

 

(b) Test fuel rod of HEU core termed “f”. 

Figure 4.2 Side view of fuel rods. 

“Gr”, “EU”, “NU”, “PE”, and “p” represent graphite block, HEU fuel plates, natural uranium 

plates, polyethylene reflector, and polyethylene moderator, respectively. 
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(c) Test fuel rod of LEU core termed “LEU”. 

Figure 4.2 (continued) Side view of fuel rods. 

“Gr”, “EU”, “NU”, “PE”, and “p” represent graphite block, HEU fuel plates, natural uranium 

plates, polyethylene reflector, and polyethylene moderator, respectively. 

 

Table 4.1 Measured excess and sample reactivities and corresponding uncertainties (1σ). 

(a) HEU core 

Case 
Pattern 

Excess reactivity [pcm]a Sample Case 
Sample worth 

(U/C/L)  [pcm] 

A Al/Al/Al 72.0 ± 4.9 - - - - 
B Pb/Pb/Pb 241.9 ± 6.1 Al → Pb (B − A) 169.8 ± 7.6 
C Pb/Vd/Pb 38.7 ± 3.6 Pb sample (B − C) 203.2 ± 6.9 
D Bi/Bi/Bi 166.5 ± 6.5 Al → Bi (D − A) 94.5 ± 8.0 
E Bi/Vd/Bi 0.0 ± 0.1 Bi sample (D − E) 166.5 ± 6.5 

 

(b) LEU core 

Case 
Pattern 

Excess reactivity [pcm]b Sample Case 
Sample worth 

(U/C/L)  [pcm] 

A Al/Al/Al 152.4 ± 7.5 - - - - 
B Pb/Pb/Pb 280.3 ± 7.8 Al → Pb (B − A) 127.9 ± 10.4 
C Pb/Vd/Pb 116.1 ± 6.8 Pb sample (B − C) 164.2 ± 10.0 
D Bi/Bi/Bi 228.8 ± 8 Al → Bi (D − A) 76.4 ± 10.6 
E Bi/Vd/Bi 75.6 ± 5.6 Bi sample (D − E) 153.2 ± 9.6 

a Measured with C3 control rod and the other rods were fully withdrawn. 

b Measured with C3 control rod and the other rods were fully withdrawn. 
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Upper polyethylene
10”p + PE
(20.25”)

×
10

×
10

×
20

Test region 20 times 
(10.83”)

Unit cell 10 times 
(2.5”)

Unit cell 10 times 
(2.5”)

Void
(0.63”)

1/16”EU×2 + 1/8”p +1/24” NU + 1/8”p + 1/16 “ EU×2
(0.542”)

Gr (2”)Gr (2”)
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4.2.2. Eigenvalues and uncertainty 

The MCNP6.2 code, together with the JENDL-4.0 nuclear data library, was used to 

perform eigenvalue calculations of clean core models (i.e., fully withdrawn control rods). 

Sensitivity coefficients of the effective multiplication factor (keff) to 84 microscopic reactions, 

including capture, fission, (n,2n), and elastic/inelastic-scattering cross sections of nuclides for 

uranium, polyethylene, control rods, and air, as well as ν‾ values and fission spectra of uranium 

nuclides, were evaluated by the ksen card, which is a perturbation capability based on the adjoint 

weighted tally [14]. The energy group structure was taken from the SCALE 56-group structure 

[15]. A sample reactivity from a loading pattern “A” to “B” Δ𝜌𝜌A→B is defined by subtracting the 

excess reactivities of these patterns 𝜌𝜌A and 𝜌𝜌B as follows: 

 

 

Then, the sensitivity coefficients of the sample reactivity were evaluated by the chain rule of the 

differential, which is adopted in the TSAR module of the SCALE code system [15]. In this method, 

the relative sensitivity coefficient of the sample reactivity to an arbitrary parameter 𝛼𝛼 can be 

evaluated as follows: 

 

 

In the sample reactivity measurements, only the sample materials in the test region change before 

Δ𝜌𝜌A→B ≡ 𝜌𝜌B − 𝜌𝜌A = �1 −
1

𝑘𝑘eff,B
� − �1−

1
𝑘𝑘eff,A

�, 

∴ 𝛥𝛥𝜌𝜌𝐴𝐴→𝐵𝐵 =
1

𝑘𝑘eff,A
−

1
𝑘𝑘eff,B

. 
(4.1) 

𝛼𝛼
𝛥𝛥𝜌𝜌A→B

𝑑𝑑(𝛥𝛥𝜌𝜌A→B)
𝑑𝑑𝑑𝑑

=

1
𝑘𝑘eff,B

� 𝛼𝛼
𝑘𝑘eff,B

𝑑𝑑𝑑𝑑eff,B
𝑑𝑑𝑑𝑑 � − 1

𝑘𝑘eff,A
� 𝛼𝛼
𝑘𝑘eff,A

𝑑𝑑𝑘𝑘eff,A
𝑑𝑑𝑑𝑑 �

𝛥𝛥𝜌𝜌A→B
. (4.2) 
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and after substitution. Therefore, it is expected that the sensitivity coefficients to factors that are 

invariant before and after the substitution, such as uranium and polyethylene, will be canceled by 

the subtraction of Equations (4.1) and (4.2), and the high sensitivity coefficients to the sample 

material will be extracted. We will see such a subtraction effect later in Sec. 4.2.2.2. The number 

of histories was 6.14 × 109 (128,000 histories per batch, 48,000 active batches with 100 skip 

batches) for all configurations, resulting in a standard deviation of approximately 1 pcm in the 

MCNP eigenvalue calculations. The cross section-induced uncertainty was also evaluated based 

on the covariance data of JENDL-4.0. The covariance data were processed using NJOY99 [16].  

 

4.2.2.1. Eigenvalues 

Tables 4.2(a) and 4.2(b) present the calculated excess and sample reactivities 

corresponding to the measurements for the HEU and LEU cores, respectively. Table 4.2 gives the 

C/E (calculation/experiment) values for the sample reactivities and the corresponding 

uncertainties. The uncertainties for the sample reactivities listed in Table 4.2 are the Monte Carlo 

uncertainties and the total calculation uncertainties, which are the square root of the sum squares 

of the Monte Carlo and cross section-induced uncertainties discussed later in Section 4.2.2.2. As 

shown in Table 4.2, large discrepancies of C/E beyond the total uncertainties were found in the 

“Bi sample” for the HEU core. As discussed later in Section 4.3.1, this sample reactivity was 

determined to be an outlier and was excluded from the DA analysis performed in Section 4.4.  
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4.2.2.2. Cross section-induced uncertainty 

As an example, Table 4.3 lists the breakdown of the cross section-induced uncertainties 

for the keff of the “Bi/Bi/Bi” pattern and the sample reactivity of the “Bi sample” of the HEU core 

for representative microscopic reactions. The uncertainty values in Table 4.3 are relative to the 

mean values. The most significant contributor was the fission spectrum of 235U for both keff and 

the sample reactivity. However, the relative contributions of uranium-related reactions in the 

sample reactivity were significantly reduced by the subtraction. The magnitude of the contribution 

from 209Bi (i.e., an inelastic-scattering cross section of 1.94%) was comparable to that of uranium 

reactions (i.e., the fission spectrum of 3.52%), indicating that high sensitivity to 209Bi was 

successfully attained. Due to the absence of Al-related covariance data in JENDL-4.0, the 

contributions from 27Al are zero in Table 4.3. Table 4.4 lists the cross section-induced 

uncertainties and the correlation matrix of the sample reactivity experiments used to perform the 

DA analyses in this chapter. The covariance matrix of the sample reactivity experiments was 

evaluated based on the sandwich formula [17]: Using the variables described later in Section 4.3.1, 

the covariance matrix is given by 𝐆𝐆𝐆𝐆𝐆𝐆𝐓𝐓, which is a square matrix whose order is the number of 

experiments considered (i.e., 8×8 matrix in Table 4.4). Correlation coefficients will be calculated 

by dividing each element of the covariance matrix by standard deviations (i.e., the square root of 

the diagonal components of the covariance matrix). Here the relative uncertainty of the Bi sample 

of the HEU core (i.e., 4.17%) was nearly the same as the sum of squares for the breakdowns listed 

in Table 4.3. 
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Table 4.3 Breakdown of cross-section-induced uncertainty of keff in the HEU core related to Bi. 

Component Reaction-Reaction 
keff of 

Bi/Bi/Bi 
[pcm] 

Bi 
sample 

[%] 

Fuel plate and 
Al plate 

235U fission spectrum 235U fission spectrum 643.2 3.52 
235U  235U  278.5 0.34 

235U capture  235U capture 201.0 0.22 
235U fission  235U fission 88.0 0.29 

27Al elastic scattering 27Al elastic scattering 0.0 0.00 
27Al inelastic scattering 27Al inelastic scattering 0.0 0.00 

27Al capture 27Al capture 0.0 0.00 

Polyethylene 

1H elastic scattering 1H elastic scattering 228.1 0.28 
1H capture  1H capture  254.9 0.89 

C elastic scattering C elastic scattering 0.0 0.00 

C inelastic scattering C inelastic scattering 0.0 0.00 

Bi sample 

209Bi elastic scattering 209Bi elastic scattering 0.0 0.00 
209Bi (n, 2n) 209Bi (n, 2n) 0.0 0.00 
209Bi capture 209Bi capture 0.0 0.00 

209Bi inelastic scattering 209Bi inelastic scattering 7.4 1.94 
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Table 4.4 Cross section-induced uncertainty and correlation matrix of calculated sample 

reactivity experiments for the different experiments. 

      Correlation matrix [-] 
   HEU     LEU    

Core Case Uncertainty [%] 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

HEU Al → Pb  9.73 1.00  0.90  0.21  0.31  0.98  0.88  0.04  0.28  
 Pb sample  5.04 0.90  1.00  0.34  0.63  0.89  0.99  0.13  0.57  
 Al → Bi  7.94 0.21  0.34  1.00  0.80  0.17  0.32  0.86  0.84  
  Bi sample  4.17 0.31  0.63  0.80  1.00  0.30  0.62  0.59  0.96  

LEU Al → Pb  9.67 0.98  0.89  0.17  0.30  1.00  0.90  0.08  0.26  
 Pb sample  4.78 0.88  0.99  0.32  0.62  0.90  1.00  0.13  0.57  
 Al → Bi  8.57 0.04  0.13  0.86  0.59  0.08  0.13  1.00  0.67  
  Bi sample  3.39 0.28  0.57  0.84  0.96  0.26  0.57  0.67  1.00  

 

4.2.3. Covariance matrices of experiments and calculations 

Covariance matrices of experiments and calculations were evaluated by considering: i) 

aleatoric errors in the control rod position, ii) the control rod worth, iii) the mass of sample 

materials, and iv) calculation uncertainties and correlations from MCNP-6.2. Using the notations 

as will be defined later in Section 4.3.1, the experimental covariance matrix 𝐕𝐕e corresponds to 

the sum of matrices of i), ii), and iii), and the calculation model covariance matrix 𝐕𝐕m 

corresponds to the matrix of iv).  

 

4.2.3.1. Control rod position 

The acquired control rod positions were deviated for each measurement, hence, the 

excess reactivities contain aleatoric uncertainty. Although the measurement uncertainties are 

shown in Reference [9], the number of measurements for each loading pattern was small. In 
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particular, only two measurements were performed for each HEU core loading pattern. The 

aleatoric uncertainties of the control rod position were then re-evaluated by modeling the 

deviations as a normal distribution with a mean value taken as zero for each loading pattern. Then, 

the aleatoric uncertainties of the sample reactivities derived from the control rod position were 

evaluated by error propagation. A detailed description is given in Appendix B. Table 4.5 lists 

these aleatoric uncertainties and the corresponding correlations among the sample reactivities. 

Although no correlation is assumed for each control rod position measurement, some correlations 

appeared among the sample reactivities because they shared loading patterns before or after 

replacement. For example, a non-zero correlation was found between “Al → Pb” and “Al → Bi” 

because these sample cases shared the reference loading pattern “Al/Al/Al”. The HEU and LEU 

cores were taken to critical by different control rods, and it was assumed that there was no 

correlation between the HEU and LEU cores. 

 

Table 4.5 Uncertainty and correlation of sample reactivities induced by control rod position 

      Correlation matrix [-] 
   HEU     LEU    

Core Case Uncertainty [%] 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

HEU Al → Pb  4.33  1.00  0.63  0.40  0.00  0.00 0.00 0.00 0.00 
 Pb sample  3.22  0.63  1.00  0.00  0.00  0.00 0.00 0.00 0.00 
 Al → Bi  8.41  0.40  0.00  1.00  0.79  0.00 0.00 0.00 0.00 
  Bi sample  3.77  0.00  0.00  0.79  1.00  0.00 0.00 0.00 0.00 

LEU Al → Pb  8.04  0.00 0.00 0.00 0.00 1.00  0.52  0.49  0.00  
 Pb sample  5.99  0.00 0.00 0.00 0.00 0.52  1.00  0.00  0.00  
 Al → Bi  13.88  0.00 0.00 0.00 0.00 0.49  0.00  1.00  0.59  
  Bi sample  6.17  0.00 0.00 0.00 0.00 0.00  0.00  0.59  1.00  
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4.2.3.2. Control rod worth 

The control rod worths for the C3 rod of the HEU cores and the C2 rod of the LEU cores 

were measured using the rod drop method. Neutron counts were measured before and after the 

rod drop using two fission chambers. The uncertainty of the control rod worth was estimated to 

be 1% based on the statistical uncertainty of the neutron counts and assuming a Poisson process. 

Table 4.6 lists the uncertainties induced by the control rod worths and the corresponding 

correlations among the sample reactivities. Since the control rod worth determines the absolute 

values of the excess and the sample reactivities, all correlations must be one. The correlations 

between the HEU core and the LEU core were neglected because different control rods were used 

for these cores. 

 

Table 4.6 Uncertainty and correlations of sample reactivities induced by control rod worth 

      Correlation matrix [-] 
   HEU     LEU    

Core Case Uncertainty [%] 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

HEU Al → Pb  1.00 1.00  1.00 1.00 1.00  0.00 0.00 0.00 0.00 
 Pb sample  1.00 1.00  1.00  1.00  1.00  0.00 0.00 0.00 0.00 
 Al → Bi  1.00 1.00  1.00  1.00  1.00  0.00 0.00 0.00 0.00 
  Bi sample  1.00 1.00 1.00  1.00  1.00  0.00 0.00 0.00 0.00 

LEU Al → Pb  1.00  0.00 0.00 0.00 0.00 1.00  1.00 1.00 1.00  
 Pb sample  1.00 0.00 0.00 0.00 0.00 1.00  1.00  1.00  1.00  
 Al → Bi  1.00  0.00 0.00 0.00 0.00 1.00  1.00  1.00  1.00  
  Bi sample  1.00 0.00 0.00 0.00 0.00 1.00 1.00  1.00  1.00  
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4.2.3.3. Mass of sample plates 

Table 4.7 lists the mass and the uncertainty per plate for Pb, Bi, and Al plates, and the 

Al spacer due to manufacturing tolerance measured on several dozen plates with an electric scale. 

The relative uncertainties of the total mass were estimated by assuming no correlation for each 

plate. For example, there were 200 plates in the test region (i.e., 40 plates per fuel rod and 5 fuel 

rods) in the Pb/Pb/Pb pattern for both the HEU and LEU cores; thus, the relative uncertainty of 

the total mass was calculated by dividing the square root of 200, resulting in a relative uncertainty 

of 0.12%. The error propagation from the sample mass to keff was estimated using the kpert option 

of MCNP-6.2, which is a capability based on the first-order perturbation theory [10]. Table 4.8 

lists the uncertainties induced by the mass of the sample materials and corresponding correlations 

among the sample reactivities. Small correlations were found between the Pb sample and the Bi 

sample, which shared the Al spacers in the center of the test region. However, these correlations 

were negligibly small (i.e., <10−4) due to the small relative uncertainty of the Al spacer mass. 

Because the series of experiments on the HEU core was conducted in different years than those 

on the LEU core, and because the positions of the sample material plates were considered to be 

sufficiently shuffled, the correlation between the HEU and LEU cores was expected to be 

negligible.  

 

Table 4.7 Mass of sample platea and corresponding relative uncertainty (1σ) 

Material Mass [g] Relative 
uncertainty [%] 

Pb plate 86.171 ± 1.501 1.74 

Bi plate 71.353 ± 0.439 0.62 

Al plate 22.046 ± 0.068 0.30 

Al spacer 2.404 ± 0.002 0.07 

a  The size of plates was 2 × 2 × 1/8 in.  
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Table 4.8 Uncertainty and correlations of sample reactivities induced by sample mass 

      Correlation matrix [-] 
   HEU     LEU    

Core Case Uncertainty [%] 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

HEU Al → Pb  0.34  1.00  0.69  0.09  0.00  0.00 0.00 0.00 0.00 
 Pb sample  0.16  0.69  1.00  0.00  0.00  0.00 0.00 0.00 0.00 
 Al → Bi  0.19  0.09  0.00  1.00  0.64  0.00 0.00 0.00 0.00 
  Bi sample  0.06  0.00  0.00  0.64  1.00  0.00 0.00 0.00 0.00 

LEU Al → Pb  0.38  0.00 0.00 0.00 0.00 1.00  0.66  0.07  0.00  
 Pb sample  0.14  0.00 0.00 0.00 0.00 0.66  1.00  0.00  0.00  
 Al → Bi  0.24  0.00 0.00 0.00 0.00 0.07  0.00  1.00  0.69  
  Bi sample  0.06  0.00 0.00 0.00 0.00 0.00  0.00  0.69  1.00  

 

4.2.3.4. Calculation uncertainty 

Reference [8] indicates a difference of approximately 100 pcm in the keff of the KUCA 

A-core between two continuous energy Monte Carlo codes (i.e., MCNP and SCALE6.2/KENO-

VI [15]), despite using an identical nuclear data library and using the as-built modeled geometry 

for both codes. Based on this knowledge, the numerical bias of keff is roughly estimated to be 100 

pcm. However, due to the subtraction, the numerical bias seen in keff could be canceled in the 

evaluation of sample reactivities when using the same Monte Carlo codes for both before and 

after sample substitution. Therefore, only the Monte Carlo statistical errors are considered for the 

calculation uncertainties of the sample reactivities. Table 4.9 lists the uncertainties calculated 

from Table 4.2 and the corresponding correlations. Due to subtracting values with similar 

magnitudes of statistical errors, correlation factors of 0.5 appeared among the experiments sharing 

identical loading patterns before or after replacement. 
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Table 4.9 Calculation uncertainty and correlations of sample reactivities. 

      Correlation matrix [-] 
   HEU     LEU    

Core Case Uncertainty [%] 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

HEU Al → Pb  0.89  1.00  0.50  0.50  0.00  0.00 0.00 0.00 0.00 
 Pb sample  0.68  0.50  1.00  0.00  0.00  0.00 0.00 0.00 0.00 
 Al → Bi  1.39  0.50  0.00  1.00  0.50  0.00 0.00 0.00 0.00 
  Bi sample  0.79  0.00  0.00  0.50  1.00  0.00 0.00 0.00 0.00 

LEU Al → Pb  1.19  0.00 0.00 0.00 0.00 1.00  0.50  0.50  0.00  
 Pb sample  0.83  0.00 0.00 0.00 0.00 0.50  1.00  0.00  0.00  
 Al → Bi  2.08  0.00 0.00 0.00 0.00 0.50  0.00  1.00  0.50  
  Bi sample  0.99  0.00 0.00 0.00 0.00 0.00  0.00  0.50  1.00  

 

4.3. Data assimilation 

4.3.1. Methodology 

In this chapter, the methodology in the development of ADJ2017 is used [13]. The 

formulation of the cross section adjustment is:  

 

 

 

where 𝑇𝑇�⃗ 0 and 𝑇𝑇�⃗ adj are the cross sections in vector form before and after adjustment; 𝑅𝑅�⃗ e and 

𝑅𝑅�⃗ c are vectors of experimental parameters and corresponding values calculated with 𝑇𝑇�⃗ 0, 𝐌𝐌 and 

𝐌𝐌adj  are the covariance matrices of cross sections before and after adjustment, 𝐆𝐆  is the 

𝑇𝑇�⃗ adj = 𝑇𝑇�⃗ 0 + 𝐌𝐌𝐆𝐆T�𝐆𝐆𝐆𝐆𝐆𝐆T + 𝐕𝐕e + 𝐕𝐕m�
−1 �𝑅𝑅�⃗ e − 𝑅𝑅�⃗ c�𝑇𝑇�⃗ 0��, (4.3) 

𝐌𝐌adj = 𝐌𝐌−𝐌𝐌𝐆𝐆T�𝐆𝐆𝐆𝐆𝐆𝐆T + 𝐕𝐕e + 𝐕𝐕m�
−1𝐆𝐆𝐆𝐆, (4.4) 
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sensitivity matrix of experimental parameters to cross sections, 𝐕𝐕e is the covariance matrix of 

the experimental parameters, and 𝐕𝐕m is the covariance matrix of the calculation model. 

Outliers and/or underestimation of uncertainties can result in inappropriate adjustment. 

To mitigate the effect of outliers, they were detected in the sample reactivity experiments using 

the following criterion adopted in ADJ2017: 

 

 

where 𝑣𝑣 is the diagonal component of 𝐆𝐆𝐆𝐆𝐆𝐆T + 𝐕𝐕e + 𝐕𝐕m, i.e., the variance of the experiment. 

Assuming a normal distribution, the likelihood of Equation (4.5) being realized is less than 5%, 

which means that the measured values may be outliers and/or that experimental uncertainties may 

be underestimated. Figure 4.3 shows the chi values evaluated by Equation (4.5). Only the Bi 

sample of the HEU core exceeded this criterion, and so it was excluded from DA in Section 4.4. 

If adjustments were made using only the sample reactivities, which are the differences 

between the excess reactivities, the results of the criticality calculations using the adjusted cross 

sections could deviate significantly from the critical state. Therefore, the keff of the “Al/Al/Al” 

pattern for the HEU core is included in the DA analysis as a reference core to maintain the critical 

state after the adjustment. A total of eight experiments (i.e., seven sample reactivities and one keff) 

were used. 

Cross section alterations occur in the adjustment for high-sensitivity coefficients and/or 

large uncertainties so as to reduce the trace of the posterior covariance matrix [18]. If covariance 

data are absent for such nuclides, the cross sections of the other nuclides compensate for the 

adjustment. Here, 27Al was used in the experiments, but the corresponding covariance data is not 

available in JENDL-4.0. The adjustment in this chapter aimed to evaluate the impact of the sample 

𝜒𝜒 =
|𝐶𝐶 𝐸𝐸⁄ − 1|

√𝑣𝑣
> 2, (4.5) 
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reactivity experiment on the uncertainty reduction, and the absence corresponds to the 

effectiveness of Equation (4.4) with the assumption of no uncertainty in the 27Al cross sections. 

 

Figure 4.3 Chi values of sample reactivity by Eq. (4.3). 

(Dashed line represents the criterion.) 

 

4.3.2. Brief description of ADS 

Reference [4] provides a detailed specification of the ADS used in this chapter. The MA-

nitride fuel consists of transuranium [i.e., MAs and plutonium (Pu) nuclides] nitride and the inert 

material of zirconium nitride. The beginning-of-cycle (BOC) keff value was adjusted to 0.98 by 

the volume ratio of Pu-nitride to (MA + Pu)-nitride for the first cycle. 

In this chapter, the prior and posterior cross section-induced uncertainties of the void 

reactivity at the BOC of the first cycle were evaluated using the sensitivity coefficients obtained 

in the previous chapter. For the sensitivity coefficient evaluation, 157 microscopic reactions were 

considered, including capture, fission, (n,2n), and elastic/inelastic-scattering cross sections for 

MA fuels, structure materials, and LBE nuclides, and ν‾  values and fission spectra for heavy 

nuclides. Because the fuel is composed of Pu-nitride, and uranium nuclides accompany the fuel 

fabrication process, the microscopic cross sections of plutonium and uranium nuclides were 
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considered [4]. Note that Al is not contained in the ADS, and the coefficients for sensitivity to 

27Al were zero. Of the microscopic reactions to which sensitivity coefficients were evaluated for 

the KUCA and the ADS, 174 reactions were practically considered in the DA analysis for which 

covariance data were provided. Table 4.10 lists the microscopic reactions considered in the DA 

analysis. Here, μ‾  values were excluded to be consistent with the work of Reference [8, 9]. The 

sensitivity coefficients of the ADS and the ADJ2017 were given in the 70-energy-group structure 

of UFLIB [19]. This structure is typically used for the analysis of fast systems in Japan. The 

sensitivity coefficients of the sample reactivities at the KUCA and covariance matrices were re-

evaluated in the 70-energy-group structure, and then the DA analysis discussed later in Section 

4.4.2 was performed with this structure. 

As described in Section 4.1, the target accuracy ranging between 5% and 7% for the 

coolant reactivity has been proposed and discussed in the OECD/NEA WPEC subgroups [2, 3]. 

Regarding the target accuracy, the report of the WPEC subgroup [2] describes as follows: “These 

target accuracies reflect the perceived state of the art from an R&D point of view, even if they are 

not the result of a systematic analysis, which should necessarily involve industrial partners.” 

Although the target accuracy of the coolant void reactivity of the ADS should be determined 

considering many factors, such as the voiding scenario and the subcriticality required to keep the 

ADS safe, a provisional criterion of 5% (i.e., the lower value of the range) was used for the coolant 

void reactivity in this chapter.  

 

4.3.3. Integral data for ADJ2017 

The ADJ2017 is a cross section set based on JENDL-4.0, aimed at improving the 

accuracy of fast reactors through DA by adopting 620 integral experiments. These experiments 

include data sets that are highly sensitive to MAs, such as a series of experiments with neptunium 
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dioxide at the BFS in Russia, measurements of fission reaction rates of MAs at the FCA-IX core 

in Japan, and MA irradiation tests at the JOYO reactor in Japan. Considerable effort has been 

devoted to the evaluation of these experiments, including sensitivity coefficient evaluation, 

experimental uncertainty evaluation, correlation evaluation, and calculation uncertainty 

estimation. The data sets for the ADJ2017 including sensitivity coefficients, C/E values, 

experimental and calculation uncertainties, and the corresponding correlations are accessible and 

available in YAML format on the webpage of the ADJ2017 report [13] (see the link in the 

reference list), which can be interpreted by MARBLE, and on which DA can be easily performed. 

In this chapter, the combined impact of DA on uncertainty reduction was also demonstrated using 

previously available and accessible data.  
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Table 4.10 Microscopic reactions considered in DA analysis. 

Only reactions termed “yes” were considered. 

Nuclide capture fission 
elastic 

scattering 
inelastic 

scattering 
(n,2n) ν‾ 

fission 
spectrum 

234U yes yes yes yes yes yes yes 
235U yes yes yes yes yes yes yes 
236U yes yes yes yes yes yes yes 
238U yes yes yes yes yes yes yes 

237Np yes yes yes yes yes yes yes 
238Pu yes yes yes yes yes yes yes 
239Pu yes yes yes yes yes yes yes 
240Pu yes yes yes yes yes yes yes 
241Pu yes yes yes yes yes yes yes 
242Pu yes yes yes yes yes yes yes 

241Am yes yes yes yes yes yes yes 
242mAm yes yes yes yes yes yes yes 
243Am yes yes yes yes yes yes yes 
243Cm yes yes yes yes yes yes yes 
244Cm yes yes yes yes yes yes yes 
245Cm yes yes yes yes yes yes yes 
246Cm yes yes yes yes yes yes yes 
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Table 4.10 (continued) Microscopic reactions considered in DA analysis. 

Only reactions termed “yes” were considered. 

Nuclide capture fission 
elastic 

scattering 
inelastic 

scattering 
(n,2n) ν‾ 

fission 
spectrum 

1H yes no yes no no no no 
10B yes no yes no no no no 
11B yes no yes no no no no 
15N no no yes no no no no 
16O yes no yes yes yes no no 
52Cr yes no yes yes yes no no 
53Cr yes no yes yes yes no no 

55Mn yes no yes yes yes no no 
56Fe yes no yes yes yes no no 
58Ni yes no yes yes yes no no 
60Ni yes no yes yes yes no no 
90Zr yes no no yes yes no no 

204Pb yes no yes yes yes no no 
206Pb yes no yes yes yes no no 
207Pb yes no yes yes yes no no 
208Pb yes no yes yes yes no no 
209Bi no no no yes no no no 
nat.C no no no no no no no 
14N no no no no no no no 
27Al no no no no no no no 
40Ar no no no no no no no 

 

4.4. Results 

4.4.1. Adjustment  

DA based on Equation (4.3) was performed using the experimental data of the sample 

reactivity from KUCA discussed in Section 4.2 with the SCALE 56-group structure. Figure 4.4 

shows prior and posterior C/E values of the sample reactivities. The posterior sample reactivities 
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were predicted based on the alterations (i.e., 𝑇𝑇�⃗𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑇𝑇�⃗ 0) and sensitivity coefficients. The error 

bars represent the square root of the sum of squares of calculation uncertainties and cross section-

induced uncertainties (1σ). The prior and posterior keff and the corresponding cross section-

induced uncertainties (1σ) were 1.00112 ± 0.00820 and 1.00110 ± 0.00099, respectively, 

indicating that criticality was maintained before and after the adjustment. The prior and posterior 

C/E values of keff were not changed significantly (1.000 ± 0.008 and 1.000 ± 0.002, respectively) 

but the uncertainty was reduced. As shown in Figure 4.4, the posterior C/E values of the HEU 

core were closer to unity. Interestingly, the “Bi sample” of the HEU core also approached unity, 

although it was excluded from the DA analysis. For the “Al → Bi” of the LEU core, the posterior 

C/E value worsened, but the movement was limited within the range of experimental uncertainty. 

Table 4.11 lists the posterior cross section-induced uncertainties and the correlation matrix of the 

sample reactivity experiments. The posterior uncertainties were reduced by approximately half, 

except for the “Al → Bi” of the HEU and LEU cores, whose experimental uncertainties were 

relatively larger than the other measurements. 

 

Figure 4.4 Prior and posterior C/E value. 

The error bars represent the square root of the sum of squares of calculation and cross-section-

induced uncertainties (1σ). 
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Table 4.11 Posterior cross-section-induced uncertainty and correlation matrix of sample 

reactivities 

      Correlation matrix [-] 
   HEU     LEU    

Core Case Uncertainty [%] 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

A
l 
→

 P
b 

 

Pb
 sa

m
pl

e 
 

A
l 
→

 B
i 

 

B
i s

am
pl

e 
 

HEU Al → Pb  3.42  1.00  0.77  0.40  0.33  0.87  0.68  0.32  0.32  
 Pb sample  1.84  0.77  1.00  0.27  0.63  0.83  0.91  0.33  0.51  
 Al → Bi  4.99  0.40  0.27  1.00  0.72  0.28  0.23  0.82  0.75  
  Bi sample  1.93  0.33  0.63  0.72  1.00  0.41  0.62  0.68  0.86  

LEU Al → Pb  3.76  0.87  0.83  0.28  0.41  1.00  0.85  0.43  0.37  
 Pb sample  1.88  0.68  0.91  0.23  0.62  0.85  1.00  0.33  0.54  
 Al → Bi  5.92  0.32  0.33  0.82  0.68  0.43  0.33  1.00  0.78  
  Bi sample  1.69  0.32  0.51  0.75  0.86  0.37  0.54  0.78  1.00  

 

Figure 4.5 shows the cross section alterations and 1σ of the prior and posterior standard 

deviations for the inelastic-scattering cross sections of 206Pb and 209Bi. As shown in Figures 4.5 

(a) and (b), the alteration of the inelastic-scattering cross sections of 206Pb and 209Bi was within 

1σ of the posterior standard deviation. As discussed in Reference [9], the inelastic-scattering cross 

sections of 27Al have a comparable impact to those of Pb and Bi on sample reactivities, such as 

“Al → Bi”. However, the covariance data of 27Al are not given in JENDL-4.0 (nor in the latest 

version of JENDL-5 [20]). To evaluate the more practical effectiveness of the KUCA data on 

uncertainty reduction, it is desirable to evaluate and verify the 27Al cross sections and covariance 

data in the future. To validate the alterations obtained in this chapter, it is also desirable to further 

expand and evaluate integral experimental data (e.g., void reactivity measurements in a fast 

system [21]) related to Pb and Bi cross sections. The C/E values, experimental and calculated 

uncertainties and correlations, and sensitivity coefficients used in this chapter are provided as 
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supplemental material in a YAML format readable by MARBLE (see Appendix C). 

 

 

(a) 206Pb / inelastic scattering          (b) 209Bi / inelastic scattering 

Figure 4.5 Cross section alterations by DA. 

 

4.4.2. Impact on ADS 

Table 4.12 lists cross section-induced uncertainties of the coolant void reactivity at the 

BOC of the ADS without DA, with DA using KUCA data, with DA using ADJ2017 data, and with 

DA using KUCA and ADJ2017 data. The 70-energy-group structure of UFLIB was used. The DA 

with KUCA data shown in Table 4.12 successfully reduced the uncertainty of the void reactivity 

from 6.3% to 4.8%, despite KUCA being a solid-reflected, solid-moderated, uranium-fuel thermal 

reactor while the ADS is an LBE-cooled, MA-nitride-fuel fast reactor. Here, the DA with only 

KUCA data readily met the uncertainty criterion set (i.e., 5% in this chapter).  

 

Table 4.12. Prior and posterior cross-section-induced uncertainty of coolant void reactivity of 

JAEA-ADS 

  Prior   Posterior   

Parameter   KUCA ADJ2017 KUCA+ADJ2017 

Void reactivity [%] 6.3 4.8 5.5 3.6 
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However, considering the incompleteness of the covariance data in JENDL-4.0, further 

reduction in the uncertainty is desirable. The integral data for ADJ2017 include measurements 

that are highly sensitive to the cross sections of MA nuclides; thus, the combined use of KUCA 

data and ADJ2017 data reduced the uncertainty to 3.6%, while DA with only ADJ2017 still 

exceeded the criterion (i.e., 5.5%). To efficiently reduce the total uncertainty, it is important to 

reduce the major contributions, because the total uncertainty is approximated by the square root 

of the sum of the squares of each contribution. Figures 4.6(a) through 4.6(c) illustrate the 

uncertainty breakdowns of the coolant void reactivity at the BOC of the ADS without DA, with 

DA using KUCA data, and with DA using KUCA and ADJ2017 data, respectively. The 

contributions of the (n,2n) reactions were negligibly small [the maximum value was 0.02% of 

(n,2n) of 208Pb]. A comparison of Figures 4.6(a) and 4.6(b) indicates that the uncertainties induced 

by the inelastic-scattering cross sections of 206Pb and 209Bi were effectively reduced for the coolant 

void reactivity and that the major source of the uncertainty changed to 237Np and 56Fe. Figure 

4.6(c) shows that the uncertainties induced by the MA nuclides and 56Fe were remarkably reduced 

by the integral data of ADJ2017 for the fast reactor. As calculated from the breakdowns in Figure 

4.6, even if we were able to completely eliminate the contributions from Pb and Bi nuclides, the 

total uncertainty would only be reduced to approximately 3.6%, which is comparable to that 

obtained with the combined KUCA and ADJ2017 data.  
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(a) Prior (without DA) 

 

(b) Posterior (with DA using KUCA data) 

Figure 4.6 Uncertainty breakdown of coolant void reactivity of ADS. 
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(c) Posterior (with DA using KUCA and ADJ2017) 

Figure 4.6 (continued) Uncertainty breakdown of coolant void reactivity of ADS. 

 

It should be stressed that, owing to the sensitivity coefficients, the breakdown of the 

uncertainty sources was evaluated, and then the importance of reduction of the uncertainty 

contributions from MA nuclides and 56Fe is clarified. Also, further reduction of the uncertainty 

was successfully achieved using the available sensitivity database for ADJ2017 without the 

detailed information and the re-analyses of the integral experiments. 

In light of the absence of 27Al covariance data, the effectiveness of the KUCA data in 

this chapter was an ideal situation, and additional efforts are required to further reduce the 

contributions from Pb and Bi nuclides. Although it is important to evaluate the 27Al covariance 

data and expand integral experiment data to evaluate the more practical effectiveness of the 

KUCA data, and to validate the alterations observed in the inelastic-scattering cross sections of 

the Pb and Bi nuclides, the major sources of the uncertainty of the coolant void reactivity in the 

ADS have already been efficiently reduced by the currently available ADJ2017 data. 
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4.5. Conclusions 

DA analysis using sample reactivity experiments conducted in the HEU and LEU cores 

at KUCA was performed with the combined use of Pb and Bi plates. The sample reactivities were 

expected to be highly sensitive to the cross sections of Pb and Bi, which are major contributors to 

uncertainty in the ADS. Section 4.2 described the experimental and calculation covariance 

matrices of sample reactivities for the control rod position, the control rod worth, and the mass of 

sample materials, as well as cross section-induced uncertainties by MCNP-6.2 and JENDL-4.0. 

The DA results demonstrated some reduction in the uncertainty of the LBE coolant void reactivity 

of the ADS, achieving the target criterion for the uncertainty in this chapter (i.e., 5%). With the 

application of the KUCA data, the major sources of uncertainty changed from Pb and Bi to 237Np 

and 56Fe. It is indicated that the aid of ADJ2017 efficiently reduced the contributions from these 

nuclides, resulting in 3.6% of the cross section-induced uncertainty. In conclusion, the 

applicability of the forward-based SA, UQ, and DA analysis to the ADS using the sensitivity 

coefficients and the experimental data has been successfully demonstrated. 

There are still open issues related to Chapter 4 that should be tackled in the future. First, 

the DA analysis for the other properties should be performed. In this chapter, the DA analysis was 

done only for the coolant void reactivity of the ADS at the BOC, which is relatively easy to 

calculate using PT, though SA for several neutronics parameters after burnup was performed in 

Chapter 3. Second, the covariance data of 27Al were not provided in JENDL-4.0 (even JENDL-

5), although a previous study [9] revealed that the sample reactivities obtained in the KUCA A-

core were as sensitive to the inelastic-scattering cross section of 27Al as to those of Pb and Bi. 

Hence, the evaluation and verification of 27Al covariance data in the future would help evaluate 

the more practical effectiveness of the KUCA experimental data. Finally, validation of the cross 

section alterations obtained in this chapter by the expansion of the integral experimental data (e.g., 
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void reactivity measurements in a fast system [21]) will be addressed in the future. 
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5. Conclusion 

5.1 Summary 

The evaluation of the sensitivity coefficients to the nuclear data is crucial to quantify 

and reduce the nuclear-data-induced uncertainty and to establish the credibility of the core 

analyses. The sensitivity coefficients benefit performing UQ and DA when analysts prefer to 

update the covariance data and/or make comparisons between different nuclear data libraries 

without detailed knowledge and reevaluations of benchmarks. Due to the difficulty in its 

formulations and complicated treatment, the adjoint-based method requires expensive costs 

and/or is impractical to implement. Furthermore, the adjoint-based method suffers from a large 

number of outputs, such as time-dependent spatial distribution in burnup calculations. Therefore, 

there is a strong motivation to develop innovative SA methods that use no adjoint calculations. 

To address this challenge, this thesis focuses on the advantages of forward calculations. 

The main objective of this thesis is to develop an efficient method for the SA using only forward 

calculations and to demonstrate UQ and DA using the sensitivity coefficients obtained along with 

the work in this thesis. For this purpose, two methods using the random sampling have been newly 

proposed: the adaptive smooth lasso and the ROM-Lasso method. In addition, DA using the 

sensitivity coefficients obtained in this thesis is performed with the primary aim of examining the 

uncertainty reduction of the void reactivity of the LBE coolant in the ADS as an example of DA 

for a future system using the sensitivity coefficients. 

The adaptive smooth lasso is a lasso-type linear regression whose penalty term is 

designed to capture the features of the sensitivity coefficients to the nuclear data. In Chapter 2, 

through the estimation of the sensitivity coefficients of keff of the ADS at the BOC, it is 

demonstrated that the number of samples required in the proposed method can be reduced 

compared to the conventional regression methods and can achieve one-tenth of the calculation 
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cost of the direct method (i.e., about 1000 calculations for about 10000 cross sections). 

However, the adaptive smooth lasso still requires a large number of forward calculations. 

Then, the ROM-Lasso method has been newly proposed in Chapter 3. The ROM-Lasso method 

expands the sensitivity coefficients by the AS bases to reduce the effective dimensionality of the 

nuclear data and estimates the expansion coefficients using the conventional lasso regression. 

Based on the idea of the MLROM, the approximated AS is constructed using the sensitivity matrix 

obtained in the lower-fidelity model whose calculation cost is much smaller than that of the 

higher-fidelity model for which SA is performed. Through the one-cycle AS core analysis, it is 

demonstrated that the number of forward calculations in the higher-fidelity model can be 

dramatically reduced by a couple of orders of magnitude of the direct method (i.e., from about 

1000 to 30 in the verification in this thesis) for several neutronics parameters.  

In Chapter 4, the DA aiming at the reduction of the nuclear-data-induced uncertainty of 

the design property of the ADS is investigated as a practice of the application of the SA. In this 

study, the lead-bismuth sample reactivity measurements conducted at the KUCA are employed 

with the primary aim of examining the uncertainty reduction of the void reactivity of the coolant 

in the ADS. Through the analysis, the uncertainty is successfully reduced to 3.6%, achieving the 

provisional target accuracy (i.e., 5%) in this thesis. In conclusion, the applicability of the forward-

based SA, UQ, and DA analysis to the ADS using the sensitivity coefficients and the experimental 

data has been successfully demonstrated. 

As summarized in this chapter, the present study has established the methodology of SA 

without the adjoint calculations (i.e., ROM-Lasso) that can resolve the primary issue of SA and 

promote the application of SA to the various types of neutronics parameters. Furthermore, the 

present study has demonstrated the forward-based UQ and DA making use of the sensitivity 

coefficients for a design property of an innovative system. Therefore, it can be concluded that the 
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main objectives of this thesis have been accomplished.  

 

5.2. Recommendations for future works 

Although this thesis established new efficient methods using only the forward 

calculations for SA and demonstrated the DA reducing the nuclear data-induced uncertainty of a 

design property, several technical issues are still open. The recommended future tasks would be 

summarized as follows: 

 

(1) Efficient construction of the AS bases (related to Chapter 3) 

As demonstrated in Chapter 3, by expanding the sensitivity coefficients with the AS 

bases, the number of forward calculations in the higher-fidelity model is dramatically reduced by 

a couple of orders of magnitude compared to the direct method. However, in this thesis, the AS 

bases are constructed uszxting the sensitivity matrix of the lower-fidelity model obtained by the 

direct method. The duration of a single forward calculation of the lower-fidelity model (i.e., the 

2-D cylindrical model) is about one-tenth of that of the higher-fidelity model (i.e., the 3-D 

Cartesian model) in this thesis, which impedes the reduction of the total calculation cost including 

the construction of the AS bases. The reduction of the calculation cost to construct the AS bases 

and the choice of a lower-fidelity model should be tacked in the future to enhance the applicability 

of the ROM-Lasso method. A possible remedy to address this challenge could be the employment 

of a model with coarser mesh and/or looser convergence tolerances.  

 

(2) Finding an optimal lower-fidelity model for ROM-Lasso (related to Chapter 3) 

In this thesis, the feasibility of the ROM-Lasso method for the highly symmetrical 

system is demonstrated where the 2-D cylindrical model may adequately reproduce the 3-D 
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Cartesian model. However, more general systems do not necessarily have geometric symmetry, 

and it is not obvious how to construct the lower-fidelity model. Therefore, the choice of an 

appropriate lower-fidelity model should be addressed in the future. 

A possible option to tackle this issue is the following. If a neutronics parameter of the 

lower-fidelity model had a particularly strong correlation factor with a neutronics parameter of 

the higher-fidelity model for which one evaluates the sensitivity coefficients, such a parameter of 

the lower-fidelity model would have the sensitivity vector that is proportional to that of the 

neutronics parameter the higher-fidelity model. In such a case, using the sensitivity vector of the 

lower-fidelity model as an AS basis, only one dimension and one sample would be enough to 

completely reproduce the sensitivity vector of the higher-fidelity model. Thus, this issue could be 

resolved by finding neutronics parameters of the lower-fidelity model that are strongly correlated 

with the neutronics parameter of the higher-fidelity model during the random sampling process 

and then using them for AS construction. 

 

(3) Estimation of error bounds of the orthogonal components to AS (related to Chapter 3) 

In this thesis, the reproducibility of the sensitivity coefficients by the ROM-Lasso was 

confirmed by directly comparing the estimated values and the reference values obtained by the 

direct method. However, in more general cases, it is important to estimate the error bounds by the 

orthogonal components to the AS without the direct method to check whether the sensitivity 

vector of the higher-fidelity model is well included in a subspace spanned by the sensitivity 

vectors of the lower-fidelity model. Estimation of such an error bound is a challenging future 

topic. 

 

(4) Application of continuous energy Monte Carlo method (related to Chapter 3) 
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In the verification of Chapter 3, transport calculations on both the lower- and higher-

fidelity models were based on the deterministic method. For more accurate SA, application of the 

continuous energy Monte Carlo calculations would be a future topic of interest. In terms of 

improvement of the relative calculation cost of the AS construction, it should be addressed in the 

future.  

 

(5) DA analysis for various neutronics parameters of ADS (related to Chapter 4) 

In Chapter 4, the DA analysis was done only for the coolant void reactivity of the ADS 

at the BOC, which is relatively easy to calculate using PT, though SA for several neutronics 

parameters after burnup was performed in Chapter 3. To demonstrate the more practical 

applicability of the forward-based methodology established in this thesis, the DA analyses for the 

other properties should be performed in the future.  

 

(6) Expansion of the integral experimental data (related to Chapter 4) 

Although the ultimate goal of the DA analysis is to improve the accuracy of the core 

analysis for designed systems, Chapter 4 only aimed at the reduction of the nuclear-data-induced 

uncertainty, and it is not yet confirmed whether the adjustment of the nuclear data can improve 

the predictions made for the ADS. The possible remedy is to expand the integral experimental 

data so that the design region is confidently covered. To validate the DA analysis in this thesis for 

the application to the ADS, the evaluation of the integral experimental data related to Pb and Bi 

cross sections should be addressed in the future. 

 

(7) Completeness of the covariance data (related to Chapter 4) 

To quantify the uncertainty propagation from the nuclear data to the core analysis, the 
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covariance data of the nuclear data must be given. In this thesis, the DA analysis with the sample 

reactivities obtained at the KUCA was performed to reduce the uncertainty of the coolant void 

reactivity of the ADS derived from the lead and bismuth inelastic scattering cross sections. 

However, as pointed out in Chapter 4, the covariance data of 27Al is not given in JENDL-4.0 and 

JENDL-5 though the inelastic scattering cross section of 27Al potentially has as significant impact 

on the measurement results as the lead and bismuth. The DA analysis performed in this thesis is 

an ideal case in which zero covariance data is assumed for 27Al. Then, the evaluation and 

verification of 27Al covariance data in the future would help evaluate the more practical 

effectiveness of the KUCA experimental data. 

 

(8) SA to the infinite diluted cross sections (related to Chapters 2 and 3) 

In Chapters 2 and 3, the evaluated sensitivity coefficients were those to the effective 

self-shielded microscopic cross sections. As briefly mentioned in Section 3.3.2, the impact of the 

self-shielding effect will not be significant on UQ for fast systems. However, for systems and 

neutronics parameters where giant resonances play an important role (e.g., thermal reactors), 

appropriate corrections are necessary to evaluate sensitivity coefficients for infinite dilution cross 

sections. The use of correction methods would be a future topic. 

 

(9) Range of the perturbation (related to Chapters 2 and 3) 

Both proposed methods consider only the first-order Taylor expansion to formulate the 

SA as linear equations that can be easily handled. However, it is well known that the excessive 

range of the perturbation degrades the accuracy of the sensitivity coefficients due to the higher 

order effect while the insufficient range causes the numerical round-off errors, indicating the 

existence of the optimal range of the perturbation that minimizes the sum of these errors. Then, 
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finding such an optimal range could be a future work. This would be a more crucial problem when 

the proposed methods are applied to Monte Carlo codes because the small range of the 

perturbation will suffer from the statistical errors (i.e., too small perturbations are 

indistinguishable from statistical errors).  

In Chapters 2 and 3, ±5% range of the uniform sampling was applied to all nuclear data. 

In such a case, most of the deviation of a neutronics parameter is contributed from the 

perturbations of nuclear data with large sensitivity coefficients, and nuclear data with small 

sensitivity coefficients would not be considered properly in the regression, leading to the 

degradation of reproducibility of the small sensitivity coefficients. This would be a problem for 

UQ and DA when there were nuclear data with small sensitivity coefficients but quite large 

uncertainties. From this viewpoint in addition to the above-mentioned point, the range of the 

perturbation should be tackled in the future. 
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Appendix 

A. Sensitivity profile of ADS 

Figure A.1 (1/4). Sensitivity coefficients of beam current at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

 

 (237Np, ν‾) (241Am, ν‾) 

 

 (239Pu, ν‾) (237Np, fission) 
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Figure A.1 (2/4). Sensitivity coefficients of beam current at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

 

 (241Am, fission) (238Pu, ν‾) 

 

 (15N, elastic scattering) (56Fe, inelastic scattering) 

 

 (239Pu, fission) (238Pu, fission)  



115 

 

Figure A.1 (3/4). Sensitivity coefficients of beam current at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

  

 (243Am, ν‾) (240Pu, ν‾) 

 

 (244Cm, ν‾) (209Bi, inelastic scattering) 

 

 (239Pu, fission spectrum) (243Am, fission)  
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Figure A.1 (4/4). Sensitivity coefficients of beam current at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

 

 (241Pu, ν‾) (240Pu, fission) 

 

 (244Cm, fission) (237Np, fission spectrum) 
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Figure A.2 (1/4). Sensitivity coefficients of beam current at EOC estimated by the lasso 

method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (237Np, ν‾) (241Am, ν‾) 

  

 (239Pu, ν‾) (237Np, fission) 

  

 (241Am, fission) (238Pu, ν‾)  
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Figure A.2 (2/4). Sensitivity coefficients of beam current at EOC estimated by the lasso 

method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (15N, elastic scattering) (56Fe, inelastic scattering) 

  

 (239Pu, fission) (238Pu, fission) 

  

 (243Am, ν‾) (240Pu, ν‾)  
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Figure A.2 (3/4). Sensitivity coefficients of beam current at EOC estimated by the lasso 

method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (244Cm, ν‾) (209Bi, inelastic scattering) 

  

 (239Pu, fission spectrum) (243Am, fission) 

  

 (241Pu, ν‾) (240Pu, fission)  
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Figure A.2 (4/4). Sensitivity coefficients of beam current at EOC estimated by the lasso 

method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (244Cm, fission) (237Np, fission spectrum) 
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Figure A.3 (1/4). Sensitivity coefficients of beam current at EOC estimated by the adaptive 

smooth lasso method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (237Np, ν‾) (241Am, ν‾) 

  

 (239Pu, ν‾) (237Np, fission) 

  

 (241Am, fission) (238Pu, ν‾)  
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Figure A.3 (2/4). Sensitivity coefficients of beam current at EOC estimated by the adaptive 

smooth lasso method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (15N, elastic scattering) (56Fe, inelastic scattering) 

  

 (239Pu, fission) (238Pu, fission) 

  

 (243Am, ν‾) (240Pu, ν‾)  
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Figure A.3 (3/4). Sensitivity coefficients of beam current at EOC estimated by the adaptive 

smooth lasso method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (244Cm, ν‾) (209Bi, inelastic scattering) 

  

 (239Pu, fission spectrum) (243Am, fission) 

  

 (241Pu, ν‾) (240Pu, fission))  
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Figure A.3 (4/4). Sensitivity coefficients of beam current at EOC estimated by the adaptive 

smooth lasso method with 30 and 300 samples. 

(Top 20 largest absolute value) 

  

 (244Cm, fission) (237Np, fission spectrum) 
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Figure A.4 (1/4). Sensitivity coefficients of mass of 241Am at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

 

 (241Am, capture) (237Np, fission) 

 

 (239Pu, fission) (15N, elastic scattering) 

 

 (56Fe, inelastic scattering) (237Np, ν‾)  
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Figure A.4 (2/4). Sensitivity coefficients of mass of 241Am at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

  

 (241Am, ν‾) (243Am, fission) 

  

 (209Bi, inelastic scattering) (239Pu, ν‾) 

  

 (241Am, fission) (239Pu, fission spectrum)  
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Figure A.4 (3/4). Sensitivity coefficients of mass of 241Am at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

  

 (56Fe, elastic scattering) (237Np, capture) 

  

 (240Pu, fission) (241Pu, fission) 

  

 (244Cm, fission) (238Pu, fission)  
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Figure A.4 (4/4). Sensitivity coefficients of mass of 241Am at EOC estimated by the ROM-

Lasso method. 

(Top 20 largest absolute value) 

  

 (237Np, fission spectrum) (206Pb, inelastic scattering) 
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Figure A.5 (1/4). Sensitivity coefficients of mass of La element at EOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

 

 (237Np, ν‾) (241Am, ν‾) 

  

 (239Pu, ν‾) (237Np, fission) 

  

 (241Am, fission) (239Pu, fission)  
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Figure A.5 (2/4). Sensitivity coefficients of mass of La element at EOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

 

 (15N, elastic scattering) (56Fe, inelastic scattering) 

 

 (243Am, ν‾) (239Pu, fission spectrum) 

 

 (209Bi, inelastic scattering) (240Pu, ν‾)  
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Figure A.5 (3/4). Sensitivity coefficients of mass of La element at EOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

  

 (243Am, fission) (241Pu, ν‾) 

  

 (244Cm, ν‾) (237Np, capture) 

  

 (237Np, fission spectrum) (238Pu, ν‾)  
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Figure A.5 (4/4). Sensitivity coefficients of mass of La element at EOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

  

 (240Pu, fission) (209Bi, elastic scattering) 
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Figure A.6 (1/4). Sensitivity coefficients of maximum relative power at EOC estimated by 

the ROM-Lasso method. 

(Top 20 largest absolute value) 

  

(237Np, ν‾)    (241Am, ν‾) 

  

(239Pu, ν‾)    (237Np, fission) 

  

(241Am, fission)    (239Pu, fission)  
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Figure A.6 (2/4). Sensitivity coefficients of maximum relative power at EOC estimated by 

the ROM-Lasso method. 

(Top 20 largest absolute value) 

  

(15N, elastic scattering)   (56Fe, inelastic scattering) 

  

(238Pu, ν‾)    (243Am, ν‾) 

  

(239Pu, fission spectrum)   (209Bi, inelastic scattering)  
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Figure A.6 (3/4). Sensitivity coefficients of maximum relative power at EOC estimated by 

the ROM-Lasso method. 

(Top 20 largest absolute value) 

  

(240Pu, ν‾)    (243Am, fission) 

  

(238Pu, fission)    (244Cm, ν‾) 

  

(241Pu, ν‾)    (240Pu, fission)  
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Figure A.6 (4/4). Sensitivity coefficients of maximum relative power at EOC estimated by 

the ROM-Lasso method. 

(Top 20 largest absolute value) 

  

(237Np, fission spectrum)   (209Bi, elastic scattering) 
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Figure A.7 (1/4). Sensitivity coefficients of coolant void reactivity at BOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

 

(209Bi, inelastic scattering)    (239Pu, ν‾) 

 

(237Np, ν‾)   (239Pu, fission) 

 

(237Np, fission)   (206Pb, inelastic scattering)  
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Figure A.7 (2/4). Sensitivity coefficients of coolant void reactivity at BOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

 

(241Am, ν‾)    (207Pb, inelastic scattering) 

 

(56Fe, inelastic scattering)    (241Am, fission) 

 

(208Pb, inelastic scattering)   (15N, elastic scattering)  
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Figure A.7 (3/4). Sensitivity coefficients of coolant void reactivity at BOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

 

(209Bi, elastic scattering)  (239Pu, fission spectrum) 

 

(237Np, capture)   (56Fe, elastic scattering) 

 

(243Am, ν‾)   (241Pu, ν‾)  
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Figure A.7 (4/4). Sensitivity coefficients of coolant void reactivity at BOC estimated by the 

ROM-Lasso method. 

(Top 20 largest absolute value) 

 

(90Zr, inelastic scattering)    (241Am, capture) 
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B. Re-evaluation of experimental uncertainty of excess reactivity 

As mentioned in Section 4.2.3.1, the deviation of the excess reactivities is modeled as 

deviations in the control rod positions around a normal distribution, whose mean is taken to be 

zero. First, the excess reactivity was measured using the control rod worth and calibration curve 

as: 

 

 

where 𝜌𝜌ex  is the measured excess reactivity, 𝑅𝑅  is the control rod worth, and 𝑓𝑓(𝑐𝑐)  is a 

calibration curve function for control rod position 𝑐𝑐. 

𝑅𝑅  was measured by the rod drop method before the experiment. Assuming an axial 

cosine distribution, 𝑓𝑓(𝑐𝑐) can be given as:  

 

 

The parameters 𝑎𝑎  and 𝑏𝑏  are the lower edges of the active core and the active core height, 

respectively, and were calibrated by the period method. Then, the error propagation from the 

control rod position to the excess reactivity is given as: 

 

 

where, 𝑐𝑐cri  is the critical control rod position. During measurements, the critical control 

𝜌𝜌ex = 𝑅𝑅𝑅𝑅(𝑐𝑐), (B.1) 

𝑓𝑓(𝑐𝑐) = 1 − (𝑡𝑡 −
1

2𝜋𝜋 
sin(2𝜋𝜋𝜋𝜋)), 

𝑡𝑡 =
𝑐𝑐 − 𝑎𝑎
𝑏𝑏

. 
(B.2) 

Δ𝜌𝜌ex = 𝑅𝑅
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑�𝑐𝑐=𝑐𝑐cri

Δ𝑐𝑐, (B.3) 
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positions were judged by visually checking that the flux level was maintained at a constant value. 

Then, some uncertainty was expected in the critical control positions. It was assumed that the 

uncertainty was independent of the loading pattern and modeled the probability of the control rod 

position based on a normal distribution. Table B.1 lists the measured control rod positions for 

each loading pattern for each measurement in units of mm. Then, these positions were centered 

by subtracting the average positions for each loading pattern, as shown in Table B.2. By assuming 

that the values in Table B.2 are realizations of a normal distribution, the standard deviation of the 

control rod position was estimated as Δ𝑐𝑐 = 3.3 mm and the values in Table 4.5 were evaluated 

by Equation (B.3). 
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Table B.1. Measured control rod positions for each loading pattern. 

The hyphenation indicates that no measurement was performed. 

  Position [mm] 

  HEU LEU 

No. 

A
l/A

l/A
l 

Pb
/P

b/
Pb

 

Pb
/V

d/
Pb

 

B
i/B

i/B
i 

B
i/V

d/
B

i 

A
l/A

l/A
l 

Pb
/P

b/
Pb

 

Pb
/V

d/
Pb

 

B
i/B

i/B
i 

B
i/V

d/
B

i 

1 716.91 567.07 753.03 633.14 0.00a  692.44 596.91 707.96 630.54 743.49 

2 715.36 563.85 759.91 632.92 0.00a  682.64 598.66 707.72 631 741.62 

3 - - - - - 682.64 596.54 710.67 630.87 742.45 

4 - - - - - 682.64 597.56 710.48 631.65 741.94 

5 - - - - - 682.64 597.71 - 630.83 - 

6 - - - - - 678.99 593.81 - 629.68 - 

7 - - - - - 681.93 592.75 - 629.93 - 

8 - - - - - 682.25 606.23 - 640.22 - 

9 - - - - - - 604.86 - 640.53 - 

Average 716.14 565.46 756.47 633.03 0 683.27 598.34 709.21 632.81 742.38 

a Critical with full withdrawal. 
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Table B.2. Centered control rod positions. 

The hyphenation indicates that no measurement was performed. 

  Position [mm] 

  HEU LEU 

No. 

A
l/A

l/A
l 

Pb
/P

b/
Pb

 

Pb
/V

d/
Pb

 

B
i/B

i/B
i 

B
i/V

d/
B

i 

A
l/A

l/A
l 

Pb
/P

b/
Pb

 

Pb
/V

d/
Pb

 

B
i/B

i/B
i 

B
i/V

d/
B

i 

1 0.77  1.61  −3.44  0.11  0.00  9.17  −1.43  −1.25  −2.27  1.11  

2 −0.77  −1.61  3.44  −0.11  0.00  −0.63  0.32  −1.49  −1.81  −0.76  

3 - - - - - −0.63  −1.80  1.46  −1.94  0.07  

4 - - - - - −0.63  −0.78  1.27  −1.16  −0.44  

5 - - - - - −0.63  −0.63  - −1.98  - 
6 - - - - - −4.28  −4.53  - −3.13  - 
7 - - - - - −1.34  −5.59  - −2.88  - 
8 - - - - - −1.02  7.89  - 7.41  - 
9 - - - - - - 6.52  - 7.72  - 
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C. Dataset of sample reactivity measurement at KUCA for data 

assimilation 

In Appendix C, the dataset of the sample reactivity measurement at KUCA used for the 

data assimilation analysis in Chapter 4 is provided in the YAML format readable by the MARBLE 

system. The experimental uncertainties and the corresponding correlations are given in Appendix 

C.1. The calculation uncertainty and the corresponding correlations are given in Appendix C.2. 

Due to the large data size, the sensitivity coefficients of the sample reactivity experiments are 

given as the supplemental material on the webpage of the related article (see “List of publications” 

in this thesis). 

 

C.1. Experimental uncertainties and corresponding correlations 
ExperimentalParameterSet: 
  data: 
    - corename: 'kuca' 
      charname: 'Al_Al_Al_HEU'  # k-eff of "Al/Al/Al" of the HEU core. 
      value: 1.00000000e+00 
      error: 5.00000000e-05 
    - corename: 'kuca' 
      charname: 'Al_to_Bi_HEU' 
      value: 1.00000000e+00 
      error: 8.46679000e-02 
    - corename: 'kuca' 
      charname: 'Al_to_Bi_LEU' 
      value: 1.00000000e+00 
      error: 1.39217000e-01 
    - corename: 'kuca' 
      charname: 'Al_to_Pb_HEU' 
      value: 1.00000000e+00 
      error: 4.46143000e-02 
    - corename: 'kuca' 
      charname: 'Al_to_Pb_LEU' 
      value: 1.00000000e+00 
      error: 8.11038000e-02 
    - corename: 'kuca' 
      charname: 'Bi_sample_HEU' 
      value: 1.00000000e+00 
      error: 3.90464000e-02 
    - corename: 'kuca' 
      charname: 'Bi_sample_LEU' 
      value: 1.00000000e+00 
      error: 6.25353000e-02 
    - corename: 'kuca' 
      charname: 'Pb_sample_HEU' 
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      value: 1.00000000e+00 
      error: 3.37954000e-02 
    - corename: 'kuca' 
      charname: 'Pb_sample_LEU' 
      value: 1.00000000e+00 
      error: 6.07587000e-02 
  correlation: 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_Al_Al_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_HEU' 
      value: -5.83522000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: -6.01776000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 3.75336000e-02 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 4.33653000e-02 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
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      corename2: 'kuca' 
      charname2: 'Al_to_Bi_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: 4.16145000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 7.89522000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 3.49481000e-02 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_LEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 4.93632000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 5.90924000e-01 
    - corename1: 'kuca' 
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      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 1.18222000e-02 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 5.74043000e-02 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 6.56399000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 1.97167000e-02 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
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    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 5.25928000e-01 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 7.57812000e-02 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 2.63188000e-02 
    - corename1: 'kuca' 
      charname1: 'Pb_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Pb_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Pb_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 1.00000000e+00 
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C.2. Calculation uncertainties and corresponding correlations 
CalculationalParameterSet: 
  data: 
    - corename: 'kuca' 
      charname: 'Al_Al_Al_HEU'  # k-eff of "Al/Al/Al" of the HEU core. 
      value: 1.00040500e+00 
      error: 1.00000000e-03     # 100 pcm, empirically determined.  
    - corename: 'kuca' 
      charname: 'Al_to_Bi_HEU' 
      value: 1.15450000e+00 
      error: 1.39008000e-02 
    - corename: 'kuca' 
      charname: 'Al_to_Bi_LEU' 
      value: 9.54188000e-01 
      error: 2.08035000e-02 
    - corename: 'kuca' 
      charname: 'Al_to_Pb_HEU' 
      value: 1.00883000e+00 
      error: 8.85333000e-03 
    - corename: 'kuca' 
      charname: 'Al_to_Pb_LEU' 
      value: 9.98436000e-01 
      error: 1.18761000e-02 
    - corename: 'kuca' 
      charname: 'Bi_sample_HEU' 
      value: 1.15916000e+00 
      error: 7.85790000e-03 
    - corename: 'kuca' 
      charname: 'Bi_sample_LEU' 
      value: 1.00392000e+00 
      error: 9.86069000e-03 
    - corename: 'kuca' 
      charname: 'Pb_sample_HEU' 
      value: 1.09596000e+00 
      error: 6.80995000e-03 
    - corename: 'kuca' 
      charname: 'Pb_sample_LEU' 
      value: 1.11206000e+00 
      error: 8.30545000e-03 
  correlation: 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_Al_Al_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_HEU' 
      value:-6.74602000e-03 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 



151 

 

      charname2: 'Al_to_Pb_HEU' 
      value:-6.74603000e-03 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_Al_Al_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: 5.00000000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 5.00000000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
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      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Bi_LEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 5.00000000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 4.99997000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Bi_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
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      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 4.99999000e-01 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Al_to_Pb_LEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Al_to_Pb_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 5.00001000e-01 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
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    - corename1: 'kuca' 
      charname1: 'Bi_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Bi_sample_LEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Bi_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Pb_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_HEU' 
      value: 1.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Pb_sample_HEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 0.00000000e+00 
    - corename1: 'kuca' 
      charname1: 'Pb_sample_LEU' 
      corename2: 'kuca' 
      charname2: 'Pb_sample_LEU' 
      value: 1.00000000e+00 
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