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Chapter 1

Introduction

1.1 Background: indicators for strong/weak gravity

Gravity is described by warped spacetime in general relativity. If gravity becomes strong,
the orbit of light is curved. As a drastic case, general relativity predicts the existence of black
hole so that even light cannot escape from it.

Trapped surface was introduced as an indicator for strong gravity region [1]. Under certain
assumptions, the existence of the trapped surface shows us that spacetime is geodesically
incomplete (singularity theorem [1, 2, 3]). However, if a singularity is hidden behind the event
horizon which is the boundary of black hole, it is well-known that the trapped surface is also
inside the black hole horizon [4]. Therefore, we cannot examine the singularity theorem from
observational point of views.

Related to the above problem, we consider observable indicators for strong gravity
region. In the Schwarzschild black hole which is the spherically symmetric solution to
the vacuum Einstein equation, an unstable circular photon orbit exists outside the black
hole. By virtue of the spherical symmetry, the set of these orbits forms a sphere, which
is called the photon sphere. Recently other observable indicators for strong gravity region
have been proposed as generalizations of the photon sphere to a wider class of spacetimes
regardless of spherical symmetry, for examples, photon surface [5], loosely trapped surface
(LTS) [6] and dynamically transversely trapping surface (DTTS) [7]. The LTS is defined by
characterizing the strong curvature of space using the geometric quantity of mean curvature.

Figure 1.1: An image of the outermost trapped
surface, LTS, DTTS, and AGPS. The AGPS
encompasses the outermost trapped surface and
LTS, and it exists even in weak gravity regions,
such as near spatial infinity.

In contrast, the DTTS is defined through
the behavior of null geodesic congruences
emitted along a timelike tube hypersurface,
employing distinct geometric quantities for its
characterization. Furthermore, the attractive
gravity probe surface (AGPS) was introduced
as an extension of the LTS to describe not
only regions of strong gravity but also weak
gravity regions [8]. This is achieved by looking
at the behavior of the mean curvature in both
regions.

Here note that, the Penrose inequality
was proposed as the areal inequality for the
trapped surface and that inequality is written
by

A ≤ 4π(2m)2, (1.1)
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where A is the area of the outermost trapped surface, m is the mass of black hole [9]. It has
been proven under certain assumptions on the time slices [10, 11, 12]. Furthermore, the Penrose
inequality can be refined by taking account of contribution from angular momentum J as

A ≤ 8πm
(
m+

√
m2 − J2/m2

)
. (1.2)

Indeed, Anglada examined the above inequality for axisymmetric cases, and proved the refined
Penrose-like inequality with the angular momentum and size for the minimal surface [13].

It is also natural to discuss the areal inequalities for LTS, DTTS, and AGPS [6, 7, 8], in a
manner akin to the Penrose inequality. The authors of Refs. [6] and [7] proved that the area of
the LTS and DTTS satisfies

ALTS/DTTS ≤ 4π(3m)2. (1.3)

For the AGPS, the areal inequality

AAGPS ≤ 4π

[
(3 + 4α)m

1 + 2α

]2
(1.4)

also holds, where α > −1/2 is an intensity parameter of gravity appeared in the definition of
the AGPS later [8]. Eq. (1.4) reduces to Eq. (1.1) and Eq. (1.3) for the limits α → ∞ and
α = 0, respectively. The weak gravity region corresponds to the case where 0 > α > −1/2.

1.2 Summary of main consequences

In this thesis, we will present the following points based on my original works [14, 15].

(i) A new extension of the DTTS to characterize weak gravity regions, which we refer to as
transverse AGPS.

(ii) Refined areal inequalities that take into account not only the angular momentum but also
gravitational waves and matters.

1.2.1 Definitions of four types of AGPSs

The original version of AGPS is defined such that the first derivative of the mean curvature is
controlled by the square of the mean curvature, multiplied by a certain factor (See Eq. (1.5)).
However, we realized that a similar approach can be applied using the Ricci scalar of the
surface (See Eq. (1.6)). Consequently, four types of AGPSs, extended from LTS and DTTS,
can be introduced (See Table 1.1): the original AGPS (longitudinal AGPS associated with mean
curvature, LAGPS-k), longitudinal AGPS associated with Ricci scalar (LAGPS-r), transverse
AGPS associated with mean curvature (TAGPS-k), and transverse AGPS associated with Ricci
scalar (TAGPS-r). The details are as follows (See also Definitions 3.8, 3.13, 3.17 and 3.20).

Longitudinal AGPS Transverse AGPS
(Extension of LTS) (Extension of DTTS)

AGPS associated with mean curvature original AGPS (LAGPS-k) TAGPS-k
AGPS associated with Ricci scalar LAGPS-r TAGPS-r

Table 1.1: Four types of AGPSs
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(a) Definition of longitudinal AGPS associated with mean curvature (LAGPS-k)
(Izumi et al. [8], Lee et al. [14, 15]). An LAGPS-k, σ, is defined by a compact two-surface
satisfying k > 0 on a spacelike hypersurface Σ and

(3)£rk ≥ αk2, (1.5)

where α > −1/2 is a constant, k is the mean curvature of σ and (3)£r is Lie derivative on Σ
with respect to the outward normal vector to σ.

(b) Definition of longitudinal AGPS associated with Ricci scalar (LAGPS-r) (Lee et
al. [15]). An LAGPS-r, σ, is defined by a compact two-surface satisfying k > 0 on a spacelike
hypersurface Σ and

(3)£rk ≥ −(2)R(1− γL), (1.6)

where γL is a constant, k is the mean curvature of σ and (2)R is the Ricci scalar of σ.

(c) Definition of transverse AGPS associated with mean curvature (TAGPS-k) (Lee
et al [15]). A TAGPS-k, σ, is defined by a compact two-surface which is the intersection of the
spacelike hypersurface Σ and timelike hypersurface S and satisfies the three conditions:

κ = 0, (1.7)

max(K̄abk
akb) ≤ −βk, (1.8)

(3)£̄nκ ≤ 0, (1.9)

where β > −1/2 is a constant, k is the mean curvature of σ, K̄ab is the extrinsic curvature of
S, (3)£̄n is the Lie derivative on S with respect to the unit normal vector to Σ, κ is the trace of
the extrinsic curvature κab := (1/2)(3)£̄nhab with the induced metric of σ, hab, k

a is an arbitrary
null tangent vector to S with certain restriction about normalization (See Definition 3.17 for
the detail) and the time lapse function is taken to be constant on σ.

(d) Definition of transverse AGPS associated with Ricci scalar (TAGPS-r) (Lee et
al. [15]). In the same setup as those in the definition of TAGPS-k, a TAGPS-r, σ, is defined
by a compact two-surface which satisfies the three conditions:

κ = 0, (1.10)

max(K̄abk
akb) = 0, (1.11)

(3)£̄nκ ≤ (2)R(1− γT ), (1.12)

where γT is a constant and (2)R is the Ricci scalar of σ.

1.2.2 Refined areal inequality theorems

For these surfaces, we could show the areal inequalities taking account of the angular
momentum, gravitational waves and matters. See also Theorems 3.9, 3.14, 3.18 and 3.21 for
the details.

(a) Refined areal inequality theorem for LAGPS-k (Lee et al. [14, 15]). We assume that
a four-dimensional spacetime satisfies the Einstein equation and Σ is an asymptotically flat
spacelike maximal hypersurface equipped with the inverse mean curvature flow1 {σy}y∈R. We

1The definition of the inverse mean curvature flow will be given in Subsec. 2.3.2.
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suppose that each leaf σy is homeomorphic to a two-surface and the energy density of matters
is non-negative. Then, we have an inequality for the LAGPS-k σ0,

mADM −
(
mext +

3

3 + 4α
mint

)
≥ 1 + 2α

3 + 4α
RA0 +

1

R3
A0

(
J̄2
min +

3

3 + 4α
J̄2
0

)
≥ 1 + 2α

3 + 4α
RA0 + 2

3 + 2α

3 + 4α

J̄2
min

R3
A0

, (1.13)

where mADM is the ADM mass, RA(y) is the areal radius defined by RA(y) :=
√
A(y)/4π,

RA0 = RA(0), mext and mint are regarded as the energy in the exterior and interior region of the
LAGPS-k, respectively (See Eqs. (3.14) and (3.41)), J̄ is the area-averaged angular momentum
of σ0 (See Definition 3.4) and J̄min is the minimum of the area-averaged angular momentum
along σy.

(b) Refined areal inequality theorem for LAGPS-r (Lee et al. [15]). In the same setup
and under the same assumptions as those in the refined areal inequality theorem for LAGPS-k,
we have an inequality for LAGPS-r σ0,

mADM − (mint +mext) ≥
γL
3
RA0 +

J̄2
0 + J̄2

min

R3
A0

≥ γL
3
RA0 + 2

J̄2
min

R3
A0

. (1.14)

(c) Refined areal inequality theorem for TAGPS-k (Lee et al. [15]). In the same setup
and under the same assumption as those in the refined areal inequality theorem for LAGPS-k,
we have an inequality for TAGPS-k σ0, which possesses non-negative mean curvature,

mADM +
3

3 + 4β
p(int)r −mext ≥

1 + 2β

3 + 4β
RA0 +

1

R3
A0

(
3

3 + 4β
J̄2
0 + J̄2

min

)
≥ 1 + 2β

3 + 4β
RA0 + 2

3 + 2β

3 + 4β

J̄2
min

R3
A0

, (1.15)

where p
(int)
r is regarded as the radial pressure in the interior region of σ0 (See Eq. (3.91)).

(d) Refined areal inequality theorem for TAGPS-r (Lee et al. [15]). In the same setup
and under the same assumption as those in the refined areal inequality theorem for LAGPS-k,
we have an inequality for TAGPS-r σ0, which possesses non-negative mean curvature,

mADM + p(int)r −mext ≥
γT
3
RA0 +

J̄2
0 + J̄2

min

R3
A0

≥ γT
3
RA0 + 2

J̄2
min

R3
A0

. (1.16)

As a specific example, we also consider areal inequalities for AGPSs in axisymmetric vacuum
cases, incorporating the Komar angular momentum. See also Theorems 3.11, 3.15, 3.19 and
3.22 for the details.

1.2.3 Organization and notation

The rest of this thesis is organized as follows. In Chap. 2, we introduce general relativity.
We also review the Penrose inequality with the proof by Jang and Wald [10]. In addition, we
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shall give the review for the LTS, DTTS and AGPS. In Chap. 3, we provide the definition of
new AGPSs and areal inequalities of four-types of AGPSs. In the first section, we prepare the
setup and some key formulas for the proofs of the areal inequalities of AGPSs. Then, the next
two sections present the areal inequalities of AGPSs with proofs. Note that Chap. 3 is based
on my original work [14, 15]. The last chapter summarizes the entire thesis.

Throughout the thesis, we use the unit that the speed of light c and the gravitational
constant G are c = G = 1. We use the abstract index notation by Wald as follows [3].
The vector is denoted by va with a latin index where it represents the vector itself, not its
component. In the same way, the dual vector is also denoted by wa. Therefore, the (k, l)-type
tensor is expressed in T a1···ak

b1···bl . We use the Einstein notation that we take the sum over the
repeated index. We also use the notation ∂µ instead of ∂/∂xµ.

Acknowledgments
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Chapter 2

General relativity and some basics

In this chapter, we provide a brief review of general relativity, covering topics such as
the trapped surface, the Penrose inequality, and recent developments associated with these
concepts, particularly those motivated by observations of black holes.

In Sec. 2.1, we present the fundamentals of Lorentzian geometry. Then, in Sec. 2.2, we
introduce the Schwarzschild black hole solutions to the Einstein equation. We also see the
event horizon and photon sphere which is composed of the circular orbit of photons. Next, in
Sec. 2.3, we review the Penrose inequality [9] and its proof following Ref. [10]. In Sec. 2.4, we
give the definition of the Komar angular momentum for axisymmetric spacetime [16] because
we will focus on vacuum and axisymmetric cases in a part of the next chapter. We also present
the result by Anglada, which provides a refined version of the Penrose-like inequality involving
the Komar angular momentum [13]. In Sec. 2.5, we introduce the generalization of photon
sphere, that is, the photon surface [5], LTS [6] and DTTS [7]. We provide the areal inequalities
for LTS and DTTS without the proofs because they are included in the proofs for our new areal
inequalities given in the next chapter. In Sec. 2.6, we also consider the AGPS [8] which is the
generalization of the LTS so that it covers weak gravity region too.

2.1 General relativity

General relativity is a theory for four-dimensional spacetimes described by the Riemann
geometry (M, gab) with the Lorentzian metric gab which has the sign of (−,+,+,+). The
covariant derivative ∇a is determined by the Levi-Civita connection, such that ∇cgab = 0
and we also require the torsionless, which satisfies ∇a∇bψ = ∇b∇aψ for scalar ψ in M . The
Riemann curvature tensor Rabc

d is defined as

Rabc
dvd := (∇a∇b −∇b∇a)vc, (2.1)

where va is the vector in M . It is supposed that, the metric gab satisfies the Einstein equation

Gab := Rab −
1

2
Rgab = 8πTab, (2.2)

where Rab := Racb
c is the Ricci tensor, R := Ra

a is the scalar curvature, and Tab is the
energy-momentum tensor, which is zero if we consider the vacuum case.

In Lorentzian geometry, the vector va is classified by the three types, that is, timelike, null
and spacelike depending on the following conditions for the norm,

gabv
avb < 0, (2.3)

gabv
avb = 0, (2.4)

gabv
avb > 0, (2.5)
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respectively. The hypersurface can also be characterized by its normal vector, where a timelike,
null, or spacelike hypersurface corresponds to a spacelike, null, or timelike normal vector,
respectively.

For every point p in the manifoldM , we consider the null cone, which is the null hypersurface
that passes through p at the origin of the tangent space. We assume that at each point p, the
null cone is divided into two halves, known as the future half and the past half. These halves
can be distinguished along every continuous curve in M . Accordingly, a future-directed vector
is defined as one that lies within the future half of the null cone.

2.2 Black hole

In 1916, Schwarzschild discovered a significant exact solution to the Einstein equation [17].
Initially, it is thought that this solution was singular. However, its true structure was clarified
by Kruskal in 1960 and then we know that the Schwarzschild spacetime describes the black
hole [18]. Moreover, in the Schwarzschild spacetime, due to the strong gravity, there is the
unstable circular orbit of photons outside the black hole. In Subsec 2.2.1, we look at the detail
of the Schwarzschild spacetime. In another development, the Kerr solution, which describes
a rotating vacuum black hole, was discovered in 1963 [19]. This solution will be presented in
Subsec. 2.2.2.

2.2.1 Schwarzschild black hole

The Schwarzschild spacetime is the static and spherically symmetric solution to the vacuum
Einstein equation, namely Gab = 0. It is known that the Schwarzschild solution is the only
spherically symmetric solution to the vacuum Einstein equations [20]. Remarkably, it has also
been proven that the static vacuum black hole is unique to be the Schwarzschild solution [21].

The metric of the Schwarzschild solution is given by

ds2 = −f(r)dt2 + f−1(r)dr2 + r2(dθ2 + sin2 θdϕ2), (2.6)

where

f(r) = 1− 2m

r
(2.7)

and m is a constant which is the black hole mass.
The (t, t) and (r, r)-components of Eq. (2.6) become singular at r = 0 and r = rSch := 2m.

The Kretschmann scalar RabcdR
abcd = 12r2Sch/r

6 diverges at r = 0, so that we call r = 0
(curvature) singularity. On the other hand, the Kretschmann scalar is finite at r = rSch.

To analyze the r = rSch surface, we consider the null geodesic along the radial direction in
the Schwarzschild spacetime. So, we have

dt

dr
= ± 1

f(r)
(2.8)

and then

t = ±
∫

1

f(r)
dr = ±r∗, (2.9)

where r∗ = r + rSch log (r/rSch − 1). Using the new coordinate v and u defined by

v = t+ r∗, (2.10)

u = t− r∗, (2.11)
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the metric is rewritten as

ds2 = −
(
1− rSch

r

)
dvdu+ r2(dθ2 + sin2 θdϕ2), (2.12)

where r is related to u and v as (v − u)/2 = r + rSch log (r/rSch − 1). Finally, introducing the
Kruskal coordinate (T,R) defined by

T =
V + U

2
, R =

V − U

2
, (2.13)

where V = ev/2rSch and U = −e−u/2rSch , we rewrite the metric (2.12) as

ds2 =
4r3Sche

−r/rSch

r
(−dT 2 + dR2) + r2(dθ2 + sin2 θdϕ2). (2.14)

From the definition of T and R, it is easy to see that

−T 2 +R2 = (r/rSch − 1)er/rSch , (2.15)

(T +R)/(R− T ) = et/rSch (2.16)

hold. Note that the metric (2.14) is nonsingular at r = rSch as expected from the behavior of
the Kretschmann invariant.

Now we draw the diagram by using the coordinates (T,R) (See Fig. 2.1). r = 0 and
r = rSch correspond to −T 2 + R2 = −1 and R = ±T , respectively. The radial null geodesics
are represented by the lines where T + R and T − R are constants. The region where T > 0
and −1 < −T 2 + R2 < 0 is defined as the black hole region because every future-directed null
geodesic originating from any point within this region goes to −T 2 +R2 = −1. We refer to the
boundary of this region, where r equals rSch, as the event horizon.

Figure 2.1: The Kruskal diagram in (T,R).

Since the main topic of this thesis is the areal inequalities in gravitational fields, we look at
the area of event horizon of the Schwarzschild black hole

ASch = 4π(2m)2. (2.17)

As shown in Sec. 2.3, one will be able to see that this gives us the upper bound of the areal
inequality for the outermost trapped surface.
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Next we consider another strong gravity indicator outside black holes. We consider null
geodesics with angular momentum in the Schwarzschild spacetime. For the null geodesic
with the tangent vector ka on the θ = π/2-plane, we have the following conserved quantities
associated with the two Killing vectors ξa = (∂t)

a, ϕa = (∂ϕ)
a as

kaξa = −f(r)ṫ =: −E, (2.18)

kaϕa = r2ϕ̇ =: L, (2.19)

where the dot denotes the derivative with respect to the affine parameter. Using these conserved
quantities, we rewrite the null condition kaka = 0 as

ṙ2 +
f(r)L2

r2
= E2. (2.20)

Then, we can identify the effective potential for the radial motion as

Veff :=
f(r)L2

r2
=
L2

r2

(
1− 2m

r

)
. (2.21)

Since

∂rVeff = −2L2

r3

(
1− 3m

r

)
, (2.22)

it is easy to see that there are unstable circular orbits at r = 3m. By virtue of the spherical
symmetry, the set of the unstable circular orbits has the shape of the sphere. We call this set
the photon sphere.

From the above, we see that in the Schwarzschild spacetime, the black hole horizon and the
photon sphere are located at r = 2m and r = 3m, respectively. Then, the region 2m < r ≤ 3m
can be regarded as the strong gravity region. In Subsec. 2.5.3 and Sec. 2.6, inspired by the
above region in the Schwarzschild black hole, we will characterize strong gravity region for
general cases.

2.2.2 Kerr black hole

Since objects are rotating in general, it is natural to consider a rotating black hole.
Surprisingly, one knows that, under certain conditions, the stationary vacuum black hole is
unique to be the Kerr spacetime given the mass and angular momentum [22].

The metric of Kerr spacetime is [19, 23]

ds2 = −∆

ρ2

(
dt− J

m
sin2 θdϕ2

)2

+
ρ2

∆
dr2 + ρ2dθ2 +

sin2 θ

ρ2

[
J

m
dt−

(
r2 +

J2

m2

)
dϕ

]2
, (2.23)

where J is the angular momentum and

∆ := r2 − 2mr + J2/m2, (2.24)

ρ2 := r2 + (J2/m2) cos2 θ. (2.25)

It is known that the event horizon is located at r = rKerr := m +
√
m2 − J2/m2, which is one

of the roots of ∆ = 0 for m2 ≥ |J |.
Note that the area of event horizon of the Kerr black hole is

AKerr = 8πm
(
m+

√
m2 − J2/m2

)
, (2.26)

and this is the upper bound of the inequality (1.2).
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2.3 Penrose inequality

It is known that, under certain assumptions, the trapped surface is behind the event horizon
and the area of event horizon is monotonically increasing [4]. From the above theorems, Penrose
inequality is proposed that if the black hole settles down to the stationary state, then the area
of the outermost trapped surface will be smaller than that of the event horizon at the final
state of the black hole [9]. Since the Schwarzschild black hole has the largest area among all
stationary black holes with the same mass and angular momentum, one can guess that Eq. (1.1)
holds if black hole is actually formed.

In this section, we give the proof for the Penrose inequality by Jang and Wald [10]. We will
employ it for proving the Penrose-like inequality of AGPSs in the next chapter. In Subsec. 2.3.1,
after giving the definition of the trapped surface, we present a feature on totally geodesic
spacelike hypersurface. In Subsec. 2.3.2, we introduce the Geroch energy and the inverse mean
curvature flow to show the Penrose inequality. Then, we present the proof of the Penrose
inequality by Jang and Wald in Subsec. 2.3.3.

2.3.1 Trapped surface

A trapped surface is introduced to describe the strong gravity region [1]. Let Σ be a
three-dimensional spacelike hypersurface with the induced metric qab in the four-dimensional
spacetime M . On Σ, we consider the two-surface σ with the induced metric hab. In the above
setup, the trapped surface is defined as follows.

Definition 2.1 (trapped surface [2, 3]). Let σ be a smooth compact two-surface in spacelike
hypersurface Σ. σ is a trapped surface, if and only if the expansion θ := hab∇akb at all points
in σ is negative where ka is both the ingoing1 and outgoing future-directed null geodesics
orthogonal to σ.

One can consider the null hypersurface generated by the null geodesic congruence emanating
from σ. Then, the expansion θ is rewritten as θ = (1/2)hab£khab = £k log

√
dethab, where £

is the Lie derivative in (M, gab). Therefore, θ describes the variation of the area of the null
congruence per unit area along the null geodesic.

One of the interesting geometrical object is the outer boundary of region where trapped
surfaces exist. We call this the outermost trapped surface and one can show that θ = 0 holds on
outermost trapped surface (See Theorem 12.2.5 in [3] and Proposition 9.2.9 in [2]). Interestingly,
on a totally geodesic spacelike hypersurface2, one can show that the mean curvature of the
outermost trapped surface vanishes.

Proposition 2.2. For the totally geodesic spacelike hypersurface, the outermost trapped surface
σ has the zero mean curvature.

Proof. Let na and ra be the timelike and spacelike unit normal vector to σ, respectively, and they
are mutually orthogonal. One may take the outgoing future-directed null geodesics orthogonal
to σ, ka = (na + ra)/

√
2, the expansion is calculated as3

θ = hab∇akb =
1√
2
hab∇a(rb + nb) =

1√
2
(k + habKab), (2.29)

1Note that the ingoing future-directed null geodesics are not relevant for characterizing strong gravity.
Therefore, they will not be used from now on.

2If every geodesic of Σ is also a geodesic on M , we call Σ totally geodesic spacelike hypersurface, where it is
known that Σ satisfies if and only if the extrinsic curvature of Σ is zero.

3The extrinsic curvature of Σ and the extrinsic curvature of σ are defined as

Kab := qa
cqb

d∇cnd (2.27)
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where k is the mean curvature, that is, k := ka
a. Since θ = 0 holds at the outermost

trapped surface, one can see from Eq. (2.29) that k = 0 holds on the totally geodesic spacelike
hypersurface.

2.3.2 Geroch energy and inverse mean curvature flow

In this subsection, we introduce the Geroch energy and the inverse mean curvature flow.
The Geroch energy is defined as follows.

Definition 2.3 (Geroch energy [24]). Geroch energy is the functional of σ defined as

E :=
A1/2

64π3/2

∫
σ

(
2(2)R− k2

)
dA, (2.30)

where (2)R is the Ricci scalar of σ and A is the area of σ.

If σ is a two-sphere at spatial infinity, we can see that the Geroch energy becomes the
Arnowitt-Deser-Misner (ADM) mass defined in an asymptotically flat spacelike hypersurface
as follows.

Definition 2.4 (Arnowitt-Deser-Misner (ADM) mass [25, 3]). Let Σ be an asymptotically
flat spacelike hypersurface that there exists a coordinate system {xi} such that at large r, i.e.
r → ∞, the induced metric of Σ in this system behaves

qij = δij +O(1/r), (2.31)

where r := [
∑

i(x
i)2]

1/2
. Then, the ADM mass is defined by

mADM :=
1

16π
lim
r→∞

∫
Sr

(∂iqij − ∂jqi
i)rjdA, (2.32)

where Sr is a two-sphere with radius r and ri is outward unit normal vector.

At a large sphere, the mean curvature of two-surface is given by

k =
2

r

(
1− mADM

r

)
+O

(
1

r3

)
, (2.33)

where mADM is the ADM mass. By using Eq. (2.33) and the Gauss-Bonnet theorem, we can
compute the Geroch energy as

lim
r→∞

E(r) = lim
r→∞

r

32π

[
16π − 4πr2

(
2

r

(
1− mADM

r

))2
]
= mADM, (2.34)

where we used A(r) = 4πr2[1 + O(1/r)]. Then, we could confirm that the Geroch energy
coincides with the ADM mass at spatial infinity.

Interestingly, one can show the monotonicity of the Geroch energy under certain assumptions
which plays the important role in the proof of the Penrose inequality. We consider

and
kab := ha

chb
d∇crd, (2.28)

respectively, where na is the timelike unit normal vector to Σ and ra is the spacelike unit normal vector to σ.
For the totally geodesic hypersurface, Kab = 0 holds.

12



three-dimensional spacelike hypersurface Σ with the metric qab where Σ is supposed to be
foliated by the spacelike two-surface {σy}y∈R with the induced metric hab. The metric qab is
decomposed as

qab = hab + rarb, (2.35)

where ra is the spacelike unit normal vector of σy, and there is a radial lapse function φ so that
one can write ra as ra = φ(dy)a. For {σy}y∈R, we take the inverse mean curvature flow (IMCF)
specified by the condition kφ = 1. In addition, we suppose that each σy is homeomorphic to a
two-sphere (See Fig. 2.2).

Figure 2.2: Spacelike hypersurface Σ is foliated with smooth inverse mean curvature flow
(IMCF) {σy}y∈R satisfying kφ = 1. The dotted two-surfaces stand for the each leaf σy.

It is easy to see that the IMCF exists in the spherically symmetric case. The induced metric
of a spherically symmetric Σ can be written as

qijdx
idxj = g(r)dr2 + r2(dθ2 + sin2 θdϕ2) = φ2dy2 + r2(y)(dθ2 + sin2 θdϕ2), (2.36)

where g(r) is a function of r. The lapse function φ and the mean curvature of σy are given by

φ = g1/2
dr

dy
(2.37)

and

k =
2

r

1

g1/2
, (2.38)

respectively. On the IMCF, the condition kφ = 1 implies

r(y) = r(0)ey/2. (2.39)

In general, on the IMCF, it is easy to see the following property for the area of σy.

Proposition 2.5 ([10]). We assume that it is possible to take a smooth IMCF {σy}y∈R on the
spacelike hypersurface Σ. Then, for the area A(y) of σy,

d

dy
A(y) = A(y) (2.40)

holds.
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Proof. From the direct calculation,

d

dy
A(y) =

d

dy

∫
σy

dA =

∫
σy

kφdA =

∫
σy

dA = A(y), (2.41)

where we used kφ = 1 in the third equality.

By using the above proposition, we have the following proposition for the Geroch energy.

Proposition 2.6 ([24]). We assume that it is possible to take a smooth IMCF {σy}y∈R on the
spacelike hypersurface Σ, where the each leaf σy is homeomorphic to a two-sphere. Then, we
obtain

dE

dy
=

A1/2

64π3/2

∫
σy

[
2φ−2(Dφ)2 + (3)R + k̃abk̃

ab
]
dA, (2.42)

where (3)R is the Ricci scalar of Σ, Da is covariant derivative on σy and k̃ab is the traceless part
of the extrinsic curvature kab of σy, i.e. k̃ab = kab− (k/2)hab with the induced metric of σy, hab.

Proof. First we note that the Geroch energy becomes

E(y) =
A1/2(y)

4π1/2
− A1/2(y)

64π3/2

∫
σy

k2dA, (2.43)

where we used the Gauss-Bonnet theorem for σy, that is,
∫
σy

(2)RdA = 8π. By using Eq. (A.8)

in Appendix A and the double trace for the Gauss equations on σy in Σ,

(2)R = (3)R− 2(3)Rabr
arb + k2 − kabk

ab, (2.44)

the derivative for the second term in the right-hand side of Eq. (2.43) with respect to y is
computed as

d

dy

∫
σy

k2dA = −
∫
σy

(
2φ−1D2φ+ (3)R + k̃abk̃

ab
)
dA+ 8π − 1

2

∫
σy

k2dA. (2.45)

Then, Eqs. (2.43) and (2.45) with Proposition 2.5 imply Eq. (2.42).

If (3)R ≥ 0 holds, one can easily see the monotonicity of the Geroch energy.

Corollary 2.7. In the same setup as those in Proposition 2.6, we assume that (3)R ≥ 0 holds
on Σ. Then, the Geroch energy of σy is monotonically nondecreasing.

2.3.3 Proof of Penrose inequality by Jang and Wald

If (3)R ≥ 0 on the spacelike hypersurface Σ, we have the following theorem from
Corollary 2.7.

Theorem 2.8 ([10]). Let Σ be an asymptotically flat totally geodesic spacelike hypersurface with
non-negative scalar curvature (3)R ≥ 0, equipped with the inverse mean curvature flow {σy}y∈R
where σ0 is an outermost trapped surface. We suppose that each leaf σy is homeomorphic to a
two-surface. Then, we have an inequality for the outermost trapped surface σ0,

mADM ≥ RA0

2
, (2.46)

where mADM is the ADM mass and RA0 =
√
A0/4π with the area of σ0, A0.
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Proof. From Corollary 2.7, we see
dE

dy
≥ 0. (2.47)

The integral of the above inequality over y in the range 0 ≤ y ≤ ∞ gives us

mADM ≥ E(0). (2.48)

With Proposition 2.2, Eq. (2.43) shows us E(0) = RA0/2 and then we see Eq. (2.46).

2.4 Komar angular momentum

For axisymmetric spacetimes, we can naturally consider the angular momentum for the
two-surface associated with the axial Killing vector [16]. Here, we follow the setup of
Subsec. 2.3.1.

Definition 2.9 (Komar angular momentum [16]). Using the axial Killing vector ϕa, one can
define the Komar angular momentum J ,

J :=
1

8π

∫
σ

Kabϕ
arbdA. (2.49)

Note that if Σ is foliated by {σy}y∈R, J(y) does not depend on y when the vacuum Einstein
equation holds (See Ref. [13]), and hence, we simply denote J rather than J(y) in the case
of vacuum axisymmetric spacetimes. In the next chapter, we also use the Komar angular
momentum to refine the areal inequalities for the AGPSs in that case.

With the Komar angular momentum, Anglada proved the refined Penrose-like inequality for
the minimal surface in vacuum axisymmetric spacetimes as the following theorem. The proof
of the theorem is omitted in this section, as it will be included in the proof presented in the
next chapter.

Theorem 2.10 ([13]). Let M be an axisymmetric spacetime satisfying the vacuum Einstein
equation (2.2), and Σ be an asymptotically flat axisymmetric spacelike maximal hypersurface
equipped with the inverse mean curvature flow {σy}y∈R where σ0 is an compact and connected
minimal surface. We suppose that Σ has no other trapped surface and each leaf σy is
homeomorphic to a two-surface. Then, we have an inequality for the σ0,

mADM ≥ RA0

2
+

J2

R2
0RA0

, (2.50)

where mADM is the ADM mass, J is the angular momentum, RA0 :=
√
A0/4π and R0 = R(0)

is defined by
1

R2
:= 4πRA

∫ ∞

y

RA∫
σy′
ϕaϕadA

dy′. (2.51)

Multiplying Eq. (2.50) by RA0/2 with mADM ≥ RA0/2 implies [13]

m2
ADM ≥

(RA0

2

)2
+

J2

2R2
0

. (2.52)

We can see that the equality of Eq. (2.52) is similar to the following formula,

m2 =

(
R
2

)2

+
J2

R2
=

A

16π
+ 4π

J2

A
, (2.53)

where R :=
√
A/4π. In fact, the area of the event horizon for the Kerr black hole given by

Eq. (2.26) satisfies Eq. (2.53), i.e. A = AKerr.
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2.5 Generalization of photon sphere

In the Schwarzschild black hole spacetime, an unstable circular photon orbit (photon sphere)
exists. In this section, we introduce the photon surface, DTTS and LTS as the generalizations
of photon sphere. The Penrose-like inequalities for LTS and DTTS are presented in this section
without proofs, as these will be included in the discussions of the refined Penrose-like inequality
in the next chapter.

2.5.1 Photon surface

The photon sphere is an observable indicator of strong gravity, although it is defined only in
spherically symmetric spacetimes. The photon surface was proposed as a natural generalization
of the photon sphere to general cases:

Definition 2.11 (photon surface [5]). S is a photon surface if and only if it is a timelike
hypersurface such that every null geodesic in M originating from any point p ∈ S stays within
S.

One can see that the photon surface has the following property.

Proposition 2.12 ([5]). Let (S, pab) be the photon surface with the induced metric pab. Then,
on all points on S for any null tangent vector of the geodesic ka, we have

K̄abk
akb = 0, (2.54)

where K̄ab := pa
cpb

d∇crd is the extrinsic curvature with a unit normal vector to S, ra.

Proof. From the definition of the photon surface, on every point of S, there is a null geodesic in
M such that ka is the tangent vector so that, ka satisfies ka∇ak

b = 0. Since ka is also tangent
to S, rak

a = 0 holds. Then, we see

K̄abk
akb = kakbpa

cpb
d∇crd = ka∇arbk

b = ka∇a(rbk
b) = 0, (2.55)

where we used kapa
b = kb in the second equality and rak

a = 0 in the last equality.

On the photon surface S, it is also shown that K̄ab is traceless [5]. This is relatively strong
requirement for the geometry of S so that the photon surfaces do not exist in general. Moreover,
photon surfaces exist even in the Minkowski spacetime, indicating that they do not necessarily
represent regions of strong gravity. Then, it is nice to introduce another indicator for the strong
gravity.

2.5.2 Dynamically transversely trapping surface

To consider an extension of the photon surface, we give the setup and notations. Let us
consider a three-dimensional spacelike hypersurface (Σ, qab) and a three-dimensional timelike
hypersurface (S, pab) in a four-dimensional spacetime (M, gab). For our current purpose, we
suppose that there is the intersection of a surface (σ0, hab) between S and Σ, and Σ to be
orthogonal to S (See Fig. 2.3). With the future-directed timelike unit normal vector na to Σ
and the outward spacelike unit normal vector ra to S, the metric gab is decomposed as

gab = qab − nanb = pab + rarb = hab − nanb + rarb. (2.56)
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Let φ be the lapse function with respect to ra, i.e. ra = φ(dy)a where the coordinate y is chosen
so that a y = constant hypersurface corresponds to S. N is the lapse function with respect to
na, i.e. na = −N(dt)a where the coordinate t is chosen so that a t = constant hypersurface
corresponds to Σ. The extrinsic curvature of Σ and S are written by

Kab =
1

2
£nqab (2.57)

and

K̄ab =
1

2
£rpab, (2.58)

respectively, where £ is the Lie derivative in (M, gab). For (σ0, hab), one can define the two
extrinsic curvatures as

kab =
1

2
(3)£rhab (2.59)

and

κab =
1

2
(3)£̄nhab, (2.60)

where (3)£ and (3)£̄ are the Lie derivatives in Σ and S, respectively.

Figure 2.3: A picture of three-dimensional spacelike hypersurface Σ, three-dimensional timelike
hypersurface S and the intersection σ0.

In the above setup, we define the dynamically transversely trapping surface (DTTS) as
follows.

Definition 2.13 (dynamically transversely trapping surface [7]). A DTTS σ0 is defined by a
compact two-surface satisfying the following three conditions:

κ = 0, (2.61)

max(K̄abk
akb) = 0, (2.62)

(3)£̄nκ ≤ 0, (2.63)

where κ = habκab, k
a is an arbitrary null tangent vector to S and the lapse function N is taken

to be constant on σ0.

The conditions of Eqs. (2.61), (2.62) and (2.63) are called the momentarily non-expanding
condition, the marginally transversely trapping condition, and the accelerated contraction
condition, respectively.
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We analyze the Schwarzschild spacetime to see the conditions of Eqs. (2.61), (2.62) and
(2.63). For simplicity, we adopt Σ and S as the t = constant and r = constant hypersurfaces,
respectively. In this case, κ = 0 holds everywhere, and then the conditions of Eqs. (2.61) and
(2.63) are trivially satisfied, while the condition of Eq. (2.62) becomes non-trivial. Adopting
ka = na + sa, where sa is a spatial unit vector tangent to S and orthogonal to na, one can
compute K̄abk

akb as

K̄abk
akb = K̄(n) +

1

2
k =

1

r
√
f

(
1− 3m

r

)
, (2.64)

where we used K̄(n) := K̄abn
anb = −(1/2)f−1/2∂rf and k = 2f 1/2/r. Therefore, the condition

of Eq. (2.62) implies r = 3m, that is, the location of the photon sphere of the Schwarzschild
spacetime.

In the last of this subsection, we show the Penrose-like inequality for the DTTS. We skip
the proof because it will be included into that for Theorem 3.18 in Subsec. 3.3.1.

Theorem 2.14 ([7]). Let Σ be an asymptotically flat spacelike totally geodesic hypersurface
equipped with the inverse mean curvature flow {σy}y∈R where σ0 is a convex DTTS. We suppose
that each leaf σy is homeomorphic to a two-surface. Then, if (3)R ≥ 0, Gabr

arb ≤ 0 on σ0 and
k > 0 at least at one point on σ0, we have an inequality for the DTTS σ0,

mADM ≥ RA0

3
, (2.65)

where mADM is the ADM mass and RA0 =
√
A0/4π with the area of σ0, A0.

2.5.3 Loosely trapped surface

In previous two subsections, the photon surface and DTTS were defined based on the
behavior of the null geodesic. On the other hand, the loosely trapped surface (LTS) is defined
by the mean curvature as follows.

Definition 2.15 (loosely trapped surface [6]). Let k be the mean curvature of σ0 on the
three-dimensional spacelike hypersurface Σ. An LTS σ0 is defined by a compact two-surface
satisfying k > 0 and

(3)£rk ≥ 0. (2.66)

Let us consider the Schwarzschild spacetime with the metric (2.6). For r = constant surfaces
in t = constant hypersurfaces, the left-hand side of Eq. (2.66) is computed as

(3)£rk = − 2

r2

(
1− 3m

r

)
. (2.67)

The condition of Eq. (2.66) holds for r ≤ 3m and the equality gives us r = 3m, that is, the
location of the photon sphere of the Schwarzschild spacetime.

In the similar way to the proof of Theorem 2.8 on the Penrose inequality, we can have the
Penrose-like inequality for the LTS. We skip the proof because it will be included into that for
Theorem 3.9 in Subsec. 3.2.1.

Theorem 2.16 ([6]). Let Σ be an asymptotically flat spacelike hypersurface with non-negative
scalar curvature (3)R ≥ 0, equipped with the inverse mean curvature flow {σy}y∈R where σ0 is
an LTS. We suppose that each leaf σy is homeomorphic to a two-surface. Then, we have an
inequality for the LTS σ0,

mADM ≥ RA0

3
, (2.68)

where mADM is the ADM mass and RA0 =
√
A0/4π with the area of σ0, A0.
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2.6 Attractive gravity probe surface

Attractive gravity probe surface (AGPS) was proposed as an extension of the LTS to weak
gravity region as well as strong one [8]. The definition is as follows.

Definition 2.17 (attractive gravity probe surface [8]). An attractive gravity probe surface
(AGPS) is defined by a compact two-surface satisfying k > 0 on spacelike hypersurface Σ and

(3)£rk ≥ αk2, (2.69)

where α is a constant greater than −1/2.

Note that one can specify the strength of gravity by the intensity parameter α. We imposed
α > −1/2 because the situation satisfying α ≤ −1/2 would correspond to the case that the
gravity is repulsive. An AGPS with α being close to minus one half exists near asymptotic
infinity and thus it is likely that our inequality for an AGPS holds even for weak gravity.

As a simple example, let us consider the Schwarzschild spacetime. When we assume that
m in the metric (2.6) is non-negative and α > −1/2, the condition of Eq. (2.69) implies

r ≤ 3 + 4α

1 + 2α
m. (2.70)

For α → −1/2, the right-hand side diverges and the condition can be satisfied by a surface
with an arbitrarily large r. We see that r ≤ 3m for α = 0 and r ≤ 2m for the α → ∞ limit.

To discuss the meaning of Definition 2.17 further, it is nice to see more general static
spherically symmetric spacetimes with the metric

ds2 = −f1(r)dt2 +
dr2

f2(r)
+ r2(dθ2 + sin2 θdϕ2). (2.71)

For this, the condition of Eq. (2.69) becomes

(3)£rk − αk2 =
1

r

[
f ′
2 −

2(1 + 2α)

r
f2

]
≥ 0. (2.72)

Supposing the positivity of f2, we rewrite it as

f ′
2 ≥

2(1 + 2α)

r
f2 ≥ 0. (2.73)

Then, one can see that f2 is a monotonically increasing function, which corresponds to the
attractive property of gravity, as long as α > −1/2 holds.

The monotonicity of the Geroch energy and IMCF gives us the Penrose-like inequality. We
again skip the proof because it will be included into that for Theorem 3.9 in Subsec. 3.2.1.

Theorem 2.18 ([8]). Let Σ be an asymptotically flat spacelike hypersurface with non-negative
scalar curvature (3)R ≥ 0, equipped with the inverse mean curvature flow {σy}y∈R where σ0 is
an AGPS. We suppose that each leaf σy is homeomorphic to a two-surface. Then, we have the
inequality for the AGPS σ0,

mADM ≥ 1 + 2α

3 + 4α
RA0, (2.74)

where mADM is the ADM mass and RA0 =
√
A0/4π with the area of σ0, A0.
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Chapter 3

Refined areal inequalities for four-types
of attractive gravity probe surfaces

In Subsecs. 2.5.2, 2.5.3 and Sec. 2.6, we presented generalizations and extensions of the
photon sphere, including the DTTS, LTS, and AGPS [6, 7, 8]. Additionally, we discussed areal
inequalities for these surfaces. However, these inequalities did not account for contributions
from angular momentum, gravitational waves, and matters. Recently, Anglada proposed
a refined Penrose-like inequality that incorporates angular momentum for minimal surfaces
in axisymmetric spacetimes (Theorem 2.10) [13]. We also plan to extend DTTS to cover
weak gravity regions and introduce a new method for characterizing gravity’s intensity. This
chapter introduces refined areal inequalities for four types of AGPSs: the original AGPS,
an extension from LTS, and two from DTTS, without any imposed symmetry. We will also
explore axisymmetric vacuum cases as a specific example. Sec. 3.1 reviews geometric formulas
and re-examines the variation of Geroch energy with IMCF crucial for the main theorem in the
final two sections. The concluding two sections focus on refining the Penrose-like inequalities
for AGPSs. This chapter lies in my original works [14, 15].

3.1 Preliminaries

In the proof of the Penrose inequality by Jang and Wald, the monotonicity of the Geroch
energy along IMCF played an important role (See Theorem 2.8). In this section, we refine the
variation of Geroch energy with IMCF taking into account of the contribution from the angular
momentum, gravitational waves and matters.

3.1.1 Some key formula

In this subsection, we consider the same setup as in Subsec. 2.5.2. For the convenience, we
decompose the extrinsic curvature Kab and K̄ab as

Kab = K(r)rarb + κab + varb + vbra (3.1)

and

K̄ab = K̄(n)nanb + kab + vanb + vbna, (3.2)

where K(r) := Kabr
arb, K̄(n) := K̄abn

anb, and va := habr
cKc

b = −habncK̄c
b. Then, from the

definition of the Ricci tensor and by using the Gauss equation, we obtain the following two key
identities as propositions.
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Proposition 3.1 ([14, 15]). In the same setup as those in Subsec. 2.5.2,

(3)£rk =
1

2
(2)R−Gabn

anb + κK(r) +
1

2

(
κ2 − κabκ

ab − k2 − kabk
ab
)
− vav

a − φ−1D2φ (3.3)

holds, where (2)R is the Ricci scalar of (σ0, hab), Gab is the Einstein tensor for (M, gab) and Da

is the covariant derivative with respect to (σ0, hab).

Proof. The Lie derivative of the trace of mean curvature k of σ0 along the ra-direction is
calculated as (See Appendix A)

(3)£rk = −(3)Rabr
arb − kabk

ab − φ−1D2φ, (3.4)

where (3)Rab is the Ricci tensor of (Σ, qab). With the double trace of the Gauss equations on σ0
in Σ and Σ in M , we have

(2)R = (3)R− 2(3)Rabr
arb + k2 − kabk

ab (3.5)

and
(3)R = 2Gabn

anb −K2 +KabK
ab, (3.6)

where (3)R is Ricci scalar of (Σ, qab). Then, with Eqs. (3.5) and (3.6), Eq. (3.4) becomes

(3)£rk =
1

2
(2)R−Gabn

anb +
1

2

(
K2 −KabK

ab − k2 − kabk
ab
)
− φ−1D2φ, (3.7)

and, using Eq. (3.1), we have Eq. (3.3).

Proposition 3.2 ([15]). In the same setup as those in Proposition 3.1,

(3)£̄nκ = −1

2
(2)R−Gabr

arb − kK̄(n) +
1

2

(
k2 − kabk

ab − κ2 − κabκ
ab
)
+ vav

a +N−1D2N. (3.8)

Proof. Similarly to Eq. (3.4), the Lie derivative of κ along the na-direction is written as (See
Appendix A)

(3)£̄nκ = −(3)R̄abn
anb − κabκ

ab +N−1D2N, (3.9)

where (3)R̄ab is the Ricci tensor of (S, pab). Taking the double trace for the Gauss equations on
σ0 in S and S in M , we have

(2)R = (3)R̄ + 2(3)R̄abn
anb − κ2 + κabκ

ab (3.10)

and
(3)R̄ = −2Gabr

arb + K̄2 − K̄abK̄
ab, (3.11)

where (3)R̄ is Ricci scalar of (S, pab). Then, with Eqs. (3.10) and (3.11), Eq. (3.9) is rewritten
as

(3)£̄nκ = −1

2
(2)R−Gabr

arb +
1

2

(
K̄2 − K̄abK̄

ab − κ2 − κabκ
ab
)
+N−1D2N, (3.12)

and, using (3.2), we obtain Eq. (3.8)

Note that we have not used the Einstein equation up to now, and the above equations are
geometric identities.

In this section, by taking account of contribution from angular momentum, gravitational
waves and matters, we give the derivation for the key formula obtained through the
monotonicity of Geroch energy on the hypersurface equipped with the inverse mean curvature
flow (IMCF). The integration of Eq. (2.42) over y in the range 0 ≤ y < ∞ leads us to the key
formula of this thesis.
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Lemma 3.3 ([14]). We assume that spacetime M satisfies the Einstein equation (2.2) and Σ is
an asymptotically flat spacelike maximal hypersurface equipped with the inverse mean curvature
flow {σy}y∈R. We suppose that each leaf σy is homeomorphic to a two-surface. If ρ := Tabn

anb ≥
0 holds where na is the future-directed unit normal vector to Σ, the following inequality holds

mADM −mext −
RA0

2
+

RA0

32π

∫
σ0

dAk2 ≥ 1

16π

∫ ∞

0

dyRA(y)

∫
σy

dAvava, (3.13)

where mADM is the ADM mass, RA(y) is the areal radius defined by RA(y) :=
√
A(y)/4π and

RA0 = RA(0). And mext is defined as

mext := 2π

∫ ∞

0

dyRA
3(y)ρ̄tot(y), (3.14)

where ρ̄tot is the surface-averaged one for the total energy density ρtot := ρ+ ρgw,

ρ̄tot(y) :=
1

A

∫
σy

dAρtot (3.15)

and

8πρgw :=
1

2
(κ̃abκ̃

ab + k̃abk̃
ab), (3.16)

where κ̃ab and k̃ab are the traceless part of κab and kab, respectively.

Proof. Using Eqs. (3.6) and (3.1) with the Hamiltonian constraint of the Einstein equations,
Gabn

anb = 8πTabn
anb, we rewrite the three-dimensional Ricci scalar (3)R of Σ as

(3)R = 16πρ+ 2vav
a + κ̃abκ̃

ab − 2κK(r) −
1

2
κ2. (3.17)

Using Eq. (3.17) with the maximal slice condition (i.e., K = K(r) + κ = 0) and the positivity
of energy density for matters, ρ ≥ 0, then, from Eq. (2.42), we find

dE

dy
=

A1/2

64π3/2

∫
σy

[
2φ−2(Dφ)2 + 16πρtot + 2vav

a +
3

2
κ2
]
dA ≥ 0. (3.18)

Then, we obtain Eq. (3.13) by integrating Eq. (3.18) over y in the range 0 ≤ y <∞.

Note that mext is a measure of the total rest mass of the matters and gravitational waves in
the region between y = 0 and infinity and ρ̄tot(y) is the surface-averaged total energy density.
Since the fact thatRA ∝ ey/2 in IMCF gives 2π

∫
dyR3

A = (4π/3)R3
A, the definition of Eq. (3.14)

is merely natural. Note that ρgw can be interpreted as the energy density of gravitational waves1.
Since the right-hand side of Eq. (3.18) is non-negative, this inequality gives the so-called Geroch
monotonicity.

For later discussions, we define the area-averaged quasilocal angular momentum.

Definition 3.4 (area-averaged quasilocal angular momentum [14]).(
8πJ̄(y)

)2
:=

A2

6π

∫
σy

vav
adA. (3.19)

1We can regard Eq. (3.16) as the part of energy density of gravitational waves, i.e. 8πρgw = (1/2)[(£nhab)
2+

(£rhab)
2], where hab is the induced metric of σy.
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We also define its minimum value J̄min in the range 0 ≤ y <∞,

J̄min := min
{σy}

J̄(y). (3.20)

Using Eqs. (3.19) and (3.20), the right-hand side of Eq. (3.13) is evaluated as

1

16π

∫ ∞

0

dyRA

∫
σy

dAvava =
3

2

∫ ∞

0

dy
J̄2

R3
A

≥ 3

2
J̄2
min

∫ ∞

0

dy

R3
A

=
J̄2
min

R3
A0

, (3.21)

where we used the fact that RA = RA0e
y/2 holds in the IMCF. Thus, the right-hand side

of Eq. (3.13) is bounded by the area-averaged quasilocal angular momentum defined by
Definition 3.4.

Note that the definition of the area-averaged angular momentum (3.19) comes from the
observation for spherically symmetric cases and asymptotic behavior. In this sense, the validity
of the definition for general cases is far from canonical one based on conservation.

3.1.2 Some radii in axisymmetric spacetimes

At the beginning of this chapter, we mentioned that Anglada proved the refined Penrose-like
inequality for the minimal surface in vacuum and axisymmetric spacetimes. In Sec. 2.4, we
defined the Komar angular momentum J(y) of σy (See Definition 2.9) and it is known that
J(y) is conserved with respect to y in axisymmetric vacuum cases. Following Ref. [13], for our
later discussions, let us define two types of radii in axisymmetric spacetimes and then we will
present some of their features.

Definition 3.5 ([14]). For axisymmetric spacelike hypersurface Σ, the radii, Rϕ(y) and R(y)
are defined by

8π

3
R4

ϕ :=

∫
σy

ϕaϕ
adA, (3.22)

1

R2
:=

3

2
RA

∫ ∞

y

RA

R4
ϕ

dy′, (3.23)

where ϕa is the axisymmetric Killing vector.

Using them, the right-hand side of Eq. (3.13) can be rewritten as

1

16π

∫ ∞

0

dyRA

∫
σy

dAvava ≥
J2

R2
0RA0

, (3.24)

where R0 := R(0) and we used the following inequality obtained through the Cauchy-Schwarz
inequality and the Komar angular momentum (See Definition 2.9),

∫
σy

vavadA

∫
σy

ϕaϕadA ≥

(∫
σy

vaϕadA

)2

= (8πJ)2. (3.25)

For spherically symmetric cases, Rϕ and R coincide with the area radius RA, that is,
R = Rϕ = RA. Furthermore, for a convex σy, we have the following feature.
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Proposition 3.6 ([14]). We assume that Σ is an axisymmetric spacelike hypersurface equipped
with the inverse mean curvature flow {σy}y∈R. We suppose that each leaf σy is homeomorphic
to a two-surface. For a convex σy, we have

1

3
≤ R2

AR2

R4
ϕ

≤ 5

3
. (3.26)

Proof. Following Eq. (23) in Ref. [13], in IMCF, using A ∝ ey, we have

d

dy

(
A1/2∫

σy
ϕaϕadA

)
= −5

2

A1/2∫
σy
ϕaϕadA

+
2A1/2(∫

σy
ϕaϕadA

)2 ∫
σy

λθ
k
ϕaϕ

adA, (3.27)

= −1

2

A1/2∫
σy
ϕaϕadA

− 2A1/2(∫
σy
ϕaϕadA

)2 ∫
σy

λϕ
k
ϕaϕ

adA (3.28)

where λϕ is the principal curvature of σy in the direction of the Killing vector ϕa, λθ is the
other principal curvature of σy, so that k = λθ + λϕ, and we used the fact that ∂y(ϕaϕ

a) =
2φλϕϕaϕ

a = 2(λϕ/k)ϕaϕ
a [26].

For a convex σy, that is, λθ > 0, λϕ > 0, Eqs. (3.27) and (3.28) lead us to

−5

2

RA

R4
ϕ

≤ d

dy

(
RA

R4
ϕ

)
(3.29)

and
d

dy

(
RA

R4
ϕ

)
≤ −1

2

RA

R4
ϕ

, (3.30)

respectively, and then,

−5

2

RA

R4
ϕ

≤ d

dy

(
RA

R4
ϕ

)
≤ −1

2

RA

R4
ϕ

. (3.31)

Finally, its integration over y and Eq. (3.23) in Definition 3.5 give us Eq. (3.26).

If the shape of σy is oblate or prolate, one can also show the magnitude relation between
Rϕ and RA.

Proposition 3.7 ([14]). In the same setup and under the same assumption as those in
Proposition 3.6, for λθ ≥ λϕ > 0 (oblate case)

Rϕ ≥ RA (3.32)

holds, while for 0 < λθ ≤ λϕ (prolate case)

Rϕ ≤ RA (3.33)

holds.

Proof. In a way similar to the derivation for Eq. (3.27), we see that

d

dy

(
A2∫

σy
ϕaϕadA

)
=

A2(∫
σy
ϕaϕadA

)2 ∫
σy

λθ − λϕ
k

ϕaϕ
adA (3.34)

24



holds. For λθ ≥ λϕ > 0 (oblate), its integration over y gives us

RA

Rϕ

≤ RA

Rϕ

∣∣∣∣
y→∞

= 1, (3.35)

where we used RA/Rϕ → 1 at spatial infinity. On the other hand, for 0 < λθ ≤ λϕ (prolate),
we have

1 ≤ RA

Rϕ

. (3.36)

We show the magnitude relation between the area-averaged angular momentum J̄ and the
Komar angular momentum for vacuum and axisymmetric cases. From the definition (3.19) and
the Cauchy-Schwarz inequality (3.25), it is easy to see that the relation between J̄ and J

J̄2 ≥
(RA

Rϕ

)4
J2 (3.37)

holds. For 0 < λθ ≤ λϕ, together with Eq. (3.33), it tells us

J̄2 ≥ J2. (3.38)

3.2 Longitudinal attractive gravity probe surface

In this section, we will present two types of AGPSs as indicators of gravity, which are
generalizations of the LTS [6]. We refine the areal inequalities for these AGPSs using the
inequality (3.13) obtained from the monotonicity of the Geroch mass. In Subsec. 3.2.1, we
reexamine the original version of the AGPS associated with its mean curvature, as introduced
in Sec. 2.6. Then, we introduce a new variant of AGPS associated with its Ricci scalar in
Subsec. 3.2.2.

3.2.1 LAGPS associated with mean curvature (LAGPS-k)

In Sec. 2.6, we introduced the original AGPS (Definition 2.17) and discussed the Penrose-like
inequality (Theorem 2.18). The AGPS was defined by comparing the derivative of the mean
curvature k along the longitudinal direction and k2 in order to characterize the strength of
gravity. Then, we name it the longitudinal attractive gravity probe surface associated with
mean curvature (LAGPS-k), to differentiate it from the three additional types of AGPS that
will be presented in subsequent sections. For the sake of completeness, we will reiterate the
definition of LAGPS-k here.

Definition 3.8 (longitudinal attractive gravity probe surface associated with mean curvature
[8, 14, 15]). In the same setup as those in Subsec. 2.5.2, a longitudinal attractive gravity
probe surface associated with mean curvature (LAGPS-k) is defined by a compact two-surface
satisfying k > 0 and

(3)£rk ≥ αk2, (3.39)

where α is a constant greater than −1/2.

For the LAGPS-k, Lemma 3.3 gives us the following theorem.
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Theorem 3.9 ([14, 15]). We assume that spacetime M satisfies the Einstein equation (2.2)
and Σ is an asymptotically flat spacelike maximal hypersurface equipped with the inverse mean
curvature flow {σy}y∈R where σ0 is an LAGPS-k. We suppose that each leaf σy is homeomorphic
to a two-surface. If ρ := Tabn

anb ≥ 0 holds where na is the future-directed unit normal vector
to Σ, the following inequality for the LAGPS-k σ0 holds

mADM −
(
mext +

3

3 + 4α
mint

)
≥ 1 + 2α

3 + 4α
RA0 +

1

R3
A0

(
J̄2
min +

3

3 + 4α
J̄2
0

)
≥ 1 + 2α

3 + 4α
RA0 + 2

3 + 2α

3 + 4α

J̄2
min

R3
A0

, (3.40)

where RA0 =
√
A0/4π with the area of σ0, A0 and

mint :=
4π

3
R3

A0ρ̄tot(0). (3.41)

Proof. On the maximal slice Σ, the surface integral of Eq. (3.3) over the LAGPS-k σ0 with the
condition of Eq. (3.39) in the definition of the LAGPS-k implies(

1 +
4

3
α
)∫

σ0

dAk2 ≤ 16π

3
− 2

3

∫
σ0

dA(16πρtot + 2vav
a). (3.42)

Using J̄ defined by Eq. (3.19), we write Eq. (3.42) as(
1 +

4

3
α
)∫

S0

dAk2 ≤ 16π

3
− 32π

3
A0ρ̄tot0 − 32π

J̄2
0

R4
A0

. (3.43)

For the last term in the right-hand side of Eq. (3.13), we use the fact that Eq. (3.21) holds.
Then, with simple manipulation, we can see that Eqs. (3.13) and (3.43) imply Eq. (3.40).

Note that mint defined by Eq. (3.41) may be regarded as a mass in the region surrounded
by σ0.

We mentioned that LAGPS-k is the extension from the LTS, and characterize the strength
of gravity by setting the parameter α. For an LTS (α = 0), Eq. (3.40) becomes

mADM − (mext +mint) ≥
RA0

3
+
J̄2
0 + J̄2

min

R3
A0

≥ RA0

3
+ 2

J̄2
min

R3
A0

. (3.44)

This includes the inequality (2.68), mADM ≥ RA0/3 obtained in Ref. [6]. For a k = 0 surface
(α → ∞), Eq. (3.40) becomes

mADM −mext ≥
RA0

2
+
J̄2
min

R3
A0

. (3.45)

From this, one can obtain the Penrose inequality, mADM ≥ RA0/2, shown in Ref. [10] (See also
Refs. [11, 12]). By taking the square of Eq. (3.45),

(mADM −mext)
2 ≥

(RA0

2

)2
+
J̄2
min

R2
A0

+
( J̄2

min

R3
A0

)2
≥
(RA0

2

)2
+
J̄2
min

R2
A0

. (3.46)

Since we can see that the equality of Eq. (3.46) is exactly same with Eq. (2.53):

m2 =

(
R
2

)2

+
J2

R2
=

A

16π
+ 4π

J2

A
,

Eq. (3.46) gives us the refined Penrose inequality (1.2) taking account of the angular momentum.
The arithmetic-geometric mean of the right-hand side of Eq. (3.40) gives us a corollary.
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Corollary 3.10 ([14]). In the same setup and under the same assumption as those in Theorem
3.9,

∆mADM ≥ 2Cα
J̄min

RA0

(3.47)

holds for LAGPS-k, where

∆mADM := mADM −
(
mext +

3

3 + 4α
mint

)
(3.48)

and

Cα :=

√
2(1 + 2α)(3 + 2α)

(3 + 4α)2
. (3.49)

This corollary gives the lower bound for RA0 as

RA0 ≥ 2Cα
J̄min

∆mADM

. (3.50)

It is interesting to compare it to the universal inequality R ≳ J1/2 for an axisymmetric rotating
body shown by Dain [27] (See also Refs. [28, 29]). The ratio ϵα of the lower bound for RA0 to
Dain’s one is

ϵα ∼ J/m

J1/2
∼ a1/2, (3.51)

where a := J/m2 is the Kerr parameter. For astrophysical objects except for compact objects,
a is much larger than unity. Therefore, our inequality is relatively strong for such cases.

In the limit of α = −1/2, C−1/2 vanishes and thus the inequality (3.50) does not give any
constraint. Going back to the original inequality (3.40), however, we can give another lower
bound onRA0. Since the first term in the right-hand side of the inequality (3.40) is non-negative
for α ≥ −1/2, we have a weaker inequality,

mADM −
(
mext +

3

3 + 4α
mint

)
≥ 2

3 + 2α

3 + 4α

J̄2
min

R3
A0

. (3.52)

Due to the fact that mext ≥ 0, mint ≥ 0, we have

mADM ≥ 2
3 + 2α

3 + 4α

J̄2
min

R3
A0

. (3.53)

This is rearranged to

RA0 ≥
(
2
3 + 2α

3 + 4α

J̄2
min

mADM

)1/3

. (3.54)

Contrasted to Eq. (3.50), this inequality gives a meaningful condition for α = −1/2. We
could have the lower bound of Eq. (3.54) for the areal radius of LAGPS-k with α = −1/2 and
ϵ−1/2 ∼ (J2/3/m1/3)/J1/2 ∼ a1/6.

For vacuum and axisymmetric spacetimes, we rewrote the right-hand side of the key
formula (3.13) using Eq. (3.24), which is bounded by using the Komar angular momentum.
Thus, for the LAGPS-k, one has the following theorem.

Theorem 3.11 ([14, 15]). Let M be a vacuum and axisymmetric spacetime satisfying the
Einstein equation (2.2), and Σ be an asymptotically flat axisymmetric spacelike maximal
hypersurface equipped with the inverse mean curvature flow {σy}y∈R where σ0 is an LAGPS-k.
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We suppose that each leaf σy is homeomorphic to a two-surface. Then, we have an inequality
for the LAGPS-k σ0,

mADM −
(
m(ext)

gw +
3

3 + 4α
m(int)

gw

)
≥ 1 + 2α

3 + 4α
RA0 +

1 + χα

R2
0RA0

J2, (3.55)

where

χα :=
3

3 + 4α

R2
0R2

A0

R4
ϕ0

, (3.56)

m(ext)
gw := 2π

∫ ∞

0

dyR3
Aρ̄gw, (3.57)

m(int)
gw :=

4π

3
R3

A0ρ̄gw(0) (3.58)

and

ρ̄gw(y) :=
1

A

∫
σy

dAρgw. (3.59)

Since Eq. (3.26) holds for a convex σy in the IMCF, χα is bounded as

1

3 + 4α
≤ χα ≤ 5

3 + 4α
. (3.60)

Note that Eqs. (3.40) and (3.55) hold even for −1/2 > α > −3/4. However, bearing the bound
for the area in mind, we have imposed α > −1/2 in Definition 3.8.

For an LTS (α = 0), Eq. (3.55) becomes

mADM − (m(ext)
gw +m(int)

gw ) ≥ RA0

3
+ (1 + χ0)

J2

R2
0RA0

. (3.61)

For a surface which has the zero mean curvature (α → ∞), we recover Anglada’s result
(Theorem 2.10)

mADM −m(ext)
gw ≥ RA0

2
+

J2

R2
0RA0

. (3.62)

Applying the arithmetic-geometric mean for Eq. (3.55), we also have a similar result to
Corollary 3.10.

Corollary 3.12 ([14, 15]). In the same setup and assumption as Theorem 3.11,

mADM −
(
m(ext)

gw +
3

3 + 4α
m(int)

gw

)
≥ 2Fα

|J |
R0

(3.63)

holds for an LAGPS-k, where

Fα :=

√
(1 + χα)(1 + 2α)

3 + 4α
. (3.64)

Note that Fα depends on radii (See the definition of χα, Eq. (3.56)). For convex σy, however,

Eq. (3.60) for χα gives a lower bound of Fα as Fα ≥ 2
√

(1 + α)(1 + 2α)/(3 + 4α)2 =: Fmin.
Since Fmin is independent of radii, Eq. (3.63) gives a lower bound for R0 of AGPS,

R0 ≥ 2Fmin
|J |

mADM

. (3.65)

28



In the limit of α = −1/2, one can have a similar lower bound for a combination of radii, but
its form is not simple. Since the argument based on the order of magnitude is the same with
that in the previous section, here we do not show the derivation again.

We also point out that, applying the arithmetic-geometric mean after taking the square for
the inequality of Eq. (3.55), we have

m2
ADM ≥

(
1 + 2α

3 + 4α
RA0

)2

+ 2(1 + χα)
1 + 2α

3 + 4α

J2

R2
0

+

(
1 + χα

R2
0RA0

J2

)2

≥
(
1 + 2α

3 + 4α
RA0

)2

+ 2(1 + χα)
1 + 2α

3 + 4α

J2

R2
0

≥ ηα
RA0

R0

|J |, (3.66)

where

ηα :=

[
2(1 + 2α)

3 + 4α

]3/2
(1 + χα)

1/2. (3.67)

For the prolate LAGPS-k, we can show(
RA0

R0

)2

=
3

2
R3

A0

∫ ∞

0

R4
A

R4
ϕ

1

R3
A

dy

≥ 3

2
R3

A0

∫ ∞

0

1

R3
A

dy

= 1, (3.68)

where we used Proposition 3.7 that RA/Rϕ ≥ 1 holds for the prolate LAGPS-k in the second
line and RA = RA0e

y/2 in the third line. Then, Eq. (3.66) gives us

mADM ≥ η1/2α |J |1/2. (3.69)

For the limit α → ∞ where the LAGPS-k approaches the k = 0 surface, this inequality
reduces to mADM ≥ |J |1/2. This inequality has been shown in a different way by the authors of
Refs. [30, 31] for spacetimes close to the extreme Kerr solution.

3.2.2 LAGPS associated with Ricci scalar (LAGPS-r)

Here, we present the variant from the original version of the AGPS. Let us reconsider
Eq. (2.67) for the radial derivative of the mean curvature in the Schwarzschild case. Then, we
realize that one can relate the factor 2/r2 in the right-hand side to the two-dimensional Ricci
scalar (2)R. Thus, one can also define an attractive gravity probe surface associated with Ricci
scalar (2)R as follows.

Definition 3.13 (longitudinal attractive gravity probe surface associated with Ricci scalar
[15]). In the same setup as those in Subsec. 2.5.2, a longitudinal attractive gravity probe surface
associated with Ricci scalar (2)R (LAGPS-r) is defined by a compact two-surface satisfying k > 0
and

(3)£rk ≥ −(2)R(1− γL), (3.70)

where γL is a constant.
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For the Schwarzschild spacetime, the condition of Eq. (3.70) gives us

r ≤ 3m/γL (3.71)

for m > 0 and γL > 0. Therefore, for γL → +0, the radius r of the surface can be arbitrarily
large, while for γL = 1, the radius must be equal to or smaller than that of the photon sphere.
Note that the LAGPS-r with γL = 3/2 corresponds to the horizon in the Schwarzschild case.

For the LAGPS-r, we have the following theorem.

Theorem 3.14 ([15]). We assume that spacetime M satisfies the Einstein equation (2.2) and
Σ is an asymptotically flat spacelike maximal hypersurface equipped with the inverse mean
curvature flow {σy}y∈R where σ0 is an LAGPS-r. We suppose that each leaf σy is homeomorphic
to a two-surface. If ρ := Tabn

anb ≥ 0 holds where na is the future-directed unit normal vector
to Σ, the following inequality for the LAGPS-r σ0 holds

mADM − (mint +mext) ≥
γL
3
RA0 +

J̄2
0 + J̄2

min

R3
A0

≥ γL
3
RA0 + 2

J̄2
min

R3
A0

. (3.72)

Proof. One can show that the Willmore function,
∫
σ0
k2dA, on the LAGPS-r σ0 is bounded

from above. From the surface integral of Eq. (3.3) over the LAGPS-r σ0 and the condition of
Eq. (3.70), we have∫

σ0

[(
−γL +

3

2

)
(2)R−Gabn

anb + κK(r)

+
1

2

(
1

2
κ2 − κ̃abκ̃

ab − 3

2
k2 − k̃abk̃

ab

)
− vav

a − φ−2 (Dφ)2
]
dA ≥ 0. (3.73)

From the assumptions that the Einstein equation Gab = 8πTab to hold for the spacetime M , σ0
to be topologically sphere σ0 ≈ S2, k to be non-negative k ≥ 0, and Σ to be maximally sliced,
i.e. K = κ+K(r) = 0, Eq. (3.73) implies∫

σ0

k2dA ≤ 16π

3
(3− 2γL)−

2

3

∫
σ0

(
16πρtot + 2vav

a +
3

2
κ2 + 2φ−2 (Dφ)2

)
dA (3.74)

≤ 16π

3
(3− 2γL)−

2

3

∫
σ0

(16πρtot + 2vav
a) dA, (3.75)

where we used the Gauss-Bonnet theorem. Then, Eqs. (3.13), (3.21) and (3.75) give us
Eq. (3.72).

Note that assuming the non-negativity of the energy density of matters, ρ ≥ 0, when
γL = 3/2, the inequality (3.74) tells us

k = ρtot = va = κ = Daφ = 0 (3.76)

on σ0. Thus, we have a relatively strong consequence that σ0 is totally geodesic in Σ since
k = 0 and k̃ab = 0 from ρtot = ρgw = 0, where ρgw is defined by Eq. (3.16).

For vacuum and axisymmetric spacetimes, Lemma 3.3 gives us the following theorem.
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Theorem 3.15 ([15]). Let M be a vacuum and axisymmetric spacetime satisfying the Einstein
equation (2.2), and Σ be an asymptotically flat axisymmetric spacelike maximal hypersurface
equipped with the inverse mean curvature flow {σy}y∈R where σ0 is an LAGPS-r. We suppose
that each leaf σy is homeomorphic to a two-surface. Then, we have an inequality for the
LAGPS-r σ0,

mADM − (m(int)
gw +m(ext)

gw ) ≥ γL
3
RA0 +

1 + χ0

R2
0RA0

J2, (3.77)

where χ0 is defined by2

χ0 :=
R2

0R2
A0

R4
ϕ0

. (3.78)

Note that the arithmetic-geometric mean of the right-hand sides of Eqs. (3.72) and (3.77)
gives us similar results to Corollaries 3.10 and 3.12. Since the argument based on the order of
magnitude is the same with that in the previous subsection, here we do not show the derivation
again.

For the LAGPS-r, note that one cannot discuss with the k = 0 surfaces. Here, we focus on
the case of a k = 0 surface in vacuum and axisymmetric spacetimes. For an LAGPS-k with
α → ∞ that correspond to the k = 0 surface, and we have Eq. (3.62):

mADM −m(ext)
gw ≥ RA0

2
+

J2

R2
0RA0

from Eq. (3.55). On the other hand, for an LAGPS-r, setting γL = 3/2 which corresponds to
the k = 0 surface in the case of the Schwarzschild spacetime, we have

mADM −m(ext)
gw ≥ RA0

2
, (3.79)

where we used the fact that the angular momentum and ρgw vanishes on the LAGPS-r when
γL = 3/2 due to the discussion around Eq. (3.76). Thus, we cannot refine the inequalities
by including the contribution from the angular momentum. Therefore, the LAGPS-r does not
characterize the k = 0 surface in a direct way.

3.3 Transverse attractive gravity probe surface

As a generalization of the photon sphere, the photon surface was introduced based on the
null geodesics [5]. However, it is turned out that a geometrical constraint is required for the
existence of the photon surface. Then, the DTTS has been proposed to describe wider class of
spacetimes having strong gravity regions [7]. This section aims to discuss the generalizations
of the DTTS to characterize weak gravity region too as the TAGPS-k/TAGPS-r. which serve
to characterize the strength of gravity using an intensity parameter. Mirroring the approach
of the previous section, we introduce two types of generalizations associated with the mean
curvature and Ricci scalar and refine the Penrose-like inequalities for those surfaces.

3.3.1 TAGPS associated with mean curvature (TAGPS-k)

We first examine the second condition of the DTTS definition (Eq. (2.62))

max(K̄abk
akb) = 0,

2This is equal to the α = 0 case of χα (See Eq. (3.56)).
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where K̄ab is the extrinsic curvature of S, and ka is an arbitrary null tangent vector to S.
Eq. (2.62) characterizes the behavior of null geodesics emitting from σ0. In this subsection,
we propose a modification to the second condition of Eq. (2.62) to characterize weak gravity
region as well as strong gravity one. This leads to the introduction of a new surface. We refer to
this surface as the transverse attractive gravity probe surface associated with mean curvature
(TAGPS-k).

Before introducing the TGAPS-k, for later discussion, we point out that the left-hand side
of Eq. (2.62) satisfies the following inequality.

Proposition 3.16 ([15]). In the same setup as those in Subsec. 2.5.2, let K̄ab be the extrinsic
curvature of S with respect to the spacelike normal vector ra and k be the mean curvature of
σ0, then

max(K̄abk
akb) ≥ K̄(n) +

1

2
k, (3.80)

where ka is an arbitrary null tangent vector to S and K̄(n) := K̄abn
anb.

Proof. In general, with a timelike unit vector na orthogonal to σ0 and a spacelike unit vector
sa tangent to σ0, the null tangent vector to S can be given by ka = na + sa, and hence, the
left-hand side of Eq. (2.62) is evaluated as

max(K̄abk
akb) = max(K̄(n) + kabs

asb − 2sava)

= K̄(n) +
1

2
k +max(k̃abs

asb − 2sava)

≥ K̄(n) +
1

2
k +max(k̃abs

asb). (3.81)

Here, na is fixed and one takes the maximum among various sa in the S1 direction in the
second and the third lines. In deriving the third line, we used the fact that for ±sa which give
max(k̃abs

asb), one of max[k̃abs
asb − 2(±sa)va] must be equal to or greater than max(k̃abs

asb).
Since kab is symmetric tensor, there is the orthogonal basis {e1, e2} such that kab = k1(e1)a(e1)b+
k2(e2)a(e2)b. Then,

k̃abs
asb = (k1 − k2)

cos(2θ)

2
, (3.82)

where sa is parametrized as sa = cos θ(e1)
a + sin θ(e2)

a. Thus, we find

max(k̃abs
asb) =

max(k1, k2)−min(k1, k2)

2
≥ 0, (3.83)

and hence, we obtain Eq. (3.80).

As a trial for the extension of the DTTS to include an intensity parameter for gravity,
instead of the condition of Eq. (2.62), we may impose

max(K̄abk
akb) ≤ −βk (3.84)

and β is a constant larger than −1/2. Using Eq. (3.80) seen in Proposition 3.16, Eq. (3.84)
leads to

K̄(n) ≤ −2β + 1

2
k. (3.85)

For the Schwarzschild spacetime, Eq. (3.85) gives us

r ≤ 3 + 4β

1 + 2β
m. (3.86)
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It is easy to see that the coefficient of the right-hand side is monotonically decreasing function
of β. The right-hand side becomes 2m for the limit of β → ∞ and 3m for the β = 0 case. Since
we can regard β in Eq. (3.84) as an intensity parameter for gravity, we will adopt the condition
of Eq. (3.84) instead of Eq. (2.62) for the TAGPS-k. Note that the null tangent ka must be
normalized as the above argument for the Schwarzschild spacetime.

Definition 3.17 (transverse attractive gravity probe surface associated with mean curvature
[15]). In the same setup as those in Subsec. 2.5.2, a TAGPS-k σ0 is defined by a compact
two-surface satisfying the three conditions:

κ = 0, (3.87)

max(K̄abk
akb) ≤ −βk, (3.88)

(3)£̄nκ ≤ 0, (3.89)

where β is a constant greater than −1/2, ka is an arbitrary null tangent vector to S such that
pabk

b = na holds, and the lapse function N is taken to be constant on σ0.

For the TAGPS-k, Lemma 3.3 gives us the following theorem.

Theorem 3.18 ([15]). We assume that M satisfies the Einstein equation (2.2) and Σ is an
asymptotically flat spacelike maximal hypersurface equipped with the inverse mean curvature flow
{σy}y∈R where σ0 is an TAGPS-k with k ≥ 0. We suppose that each leaf σy is homeomorphic
to a two-surface. If ρ := Tabn

anb ≥ 0 holds where na is the future-directed unit normal vector
to Σ, the following inequality for the TAGPS-k σ0 holds

mADM +
3

3 + 4β
p(int)r −mext ≥

1 + 2β

3 + 4β
RA0 +

1

R3
A0

(
3

3 + 4β
J̄2
0 + J̄2

min

)
≥ 1 + 2β

3 + 4β
RA0 + 2

3 + 2β

3 + 4β

J̄2
min

R3
A0

, (3.90)

where

p(int)r :=
4π

3
R3

A0P̄
(tot)
r0 . (3.91)

And P̄
(tot)
r0 is the surface-averaged one for the total radial pressure P

(tot)
r = Pr + P

(gw)
r ,

P̄
(tot)
r0 =

1

A0

∫
σ0

P (tot)
r dA, (3.92)

where Pr := Tabr
arb and

8πP (gw)
r =

1

2
(k̃abk̃

ab + κ̃abκ̃
ab) = 8πρgw. (3.93)

Proof. Considering the surface integral of Eq. (3.8) over σ0 and then, using the inequality of
Eq. (3.85), which originates from the condition of Eq. (3.88), we have∫

σ0

[
−1

2
(2)R−Gabr

arb +

(
β +

3

4

)
k2 − 1

2

(
k̃abk̃

ab + κ̃abκ̃
ab
)
+ vav

a

]
dA ≤ 0, (3.94)
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where we used the fact that the time lapse function N is constant3 on σ0 and k is non-negative
on σ0 so that ∫

σ0

kK̄(n)dA ≤ −2β + 1

2

∫
σ0

k2dA. (3.96)

Note that on σ0, κab is a traceless quantity because of the condition of Eq. (3.87), i.e., κab = κ̃ab.
From the assumption that Einstein equation Gab = 8πTab to hold for the spacetime (M, gab)
and σ0 to be topologically sphere σ0 ≈ S2, Eq. (3.94) implies(

1 +
4

3
β
)∫

σ0

k2dA ≤ 16π

3
+

2

3

∫
σ0

(16πP (tot)
r − 2vav

a)dA. (3.97)

Then, Lemma 3.3, with Eqs. (3.21) and (3.97), gives us Eq. (3.90).

Note that in the limit of β → ∞, we can see that k = 0 holds on σ0. This consequence is
directly expected from Eq. (3.88).

In vacuum and axisymmetric cases, we obtain the following areal inequality for the
TAGPS-k.

Theorem 3.19 ([15]). Let M be a vacuum and axisymmetric spacetime satisfying the Einstein
equation (2.2), and Σ be an asymptotically flat axisymmetric spacelike maximal hypersurface
equipped with the inverse mean curvature flow {σy}y∈R where σ0 is an TAGPS-k with k ≥ 0.
We suppose that each leaf σy is homeomorphic to a two-surface. Then, we have an inequality
for the TAGPS-k σ0,

mADM +
3

3 + 4β
p(int)gw −m(ext)

gw ≥ 1 + 2β

3 + 4β
RA0 +

1 + χβ

R2
0RA0

J2, (3.98)

where

χβ :=
3

3 + 4β

R2
0R2

A0

R4
ϕ0

(3.99)

and

p(int)gw :=
4π

3
R3

A0P̄
(gw)
r0 . (3.100)

Since χβ has the same expression as χα introduced in Eq. (3.55), the same constraint as Eq.
(3.60) holds but α is replaced by β. Again, the arithmetic-geometric mean of the right-hand
sides of Eqs. (3.90) and (3.98) gives us the results similar to Corollaries 3.10 and 3.12.

3.3.2 TAGPS associated with Ricci scalar (TAGPS-r)

In this subsection, we give another extension of the DTTS to characterize the weak gravity
too. In contrast to the TAGPS-k, we keep the two conditions (2.61) and (2.62) in Definition 2.13

κ = 0,

max(K̄abk
akb) = 0,

3Inequality (3.94) is achieved even if N is not constant, because the contribution involving N is positive,∫
σ0

N−1D2N dA =

∫
σ0

(
N−1DN

)2
dA ≥ 0. (3.95)

Therefore, Theorems 3.18 and 3.19 hold even for non-constant N .
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and consider the modification to the third condition (2.63)

(3)£̄nκ ≤ 0.

For this purpose, we first examine a photon surface S of the Schwarzschild spacetime that
consists of a collection of worldlines of transversely emitted photons from an r = constant sphere
in a t = constant hypersurface, where the conditions of Eqs. (2.61) and (2.62) are satisfied. The
Lie derivative of κ with respect to na is

(3)£̄nκ =
2

r2

(
1− 3m

r

)
. (3.101)

Therefore, the condition of Eq. (2.63) implies r ≤ 3m. The equality of Eq. (2.63) states r = 3m,
which is exactly the same as the location of the photon sphere of the Schwarzschild spacetime.

As a trial of extension of the DTTS to include an intensity parameter for gravity strength,
instead of the condition of Eq. (2.63), we impose

(3)£̄nκ ≤ (2)R(1− γT ), (3.102)

where γT is a constant. For the Schwarzschild spacetime, this condition is reduced to

r ≤ 3m

γT
. (3.103)

Therefore, in the limit γT → +0, r can be arbitrarily large, and r ≤ 3m for the γT = 1 case,
and r ≤ 2m for the γT = 3/2 case. The parameter γT in Eq. (3.102) is regarded as the intensity
parameter for gravity. For this reason, we will adopt the condition of Eq. (3.102) instead of
Eq. (2.63) for the new definition of the TAGPS, which we call the transverse AGPS associated
with Ricci scalar (TAGPS-r).

Definition 3.20 (transverse attractive gravity probe surface associated with Ricci scalar [15]).
In the same setup as those in Subsec. 2.5.2, a TAGPS-r σ0 is defined by a compact two-surface
satisfying the three conditions:

κ = 0, (3.104)

max(K̄abk
akb) = 0, (3.105)

(3)£̄nκ ≤ (2)R(1− γT ), (3.106)

where γT is a constant. ka is an arbitrary null tangent vector to S such that pabk
b = na holds,

and the lapse function N is taken to be constant on σ0.

Here, several remarks are added. In the above definition, the quantity k (the trace of the
extrinsic curvature of σ0 in the spacelike hypersurface Σ) is not used. In this sense, the concept
of the TAGPS-r is free from the choice of the spacelike hypersurface. Physically, this reflects
the fact that the TAGPS-r is defined only in terms of the behavior of transversely emitted
photons from σ0. For this reason, similarly to the DTTS, the definition of the TAGPS-r needs
not be restricted to the setup of Subsec. 2.5.2. In particular, the TAGPS-r has the coordinate
invariance in the following sense: If σ0 is obtained as the TAGPS-r in the spacelike hypersurface
Σ, on a different spacelike hypersurface Σ′ which crosses Σ exactly at σ0, we can obtain σ0 as
the TAGPS-r as well.

For the TAGPS-r, Lemma 3.3 gives us the following theorem.
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Theorem 3.21 ([15]). We assume that M satisfies the Einstein equation (2.2) and Σ is an
asymptotically flat spacelike maximal hypersurface equipped with the inverse mean curvature flow
{σy}y∈R where σ0 is an TAGPS-r with k ≥ 0. We suppose that each leaf σy is homeomorphic
to a two-surface. If ρ := Tabn

anb ≥ 0 holds where na is the future-directed unit normal vector
to Σ, the following inequality for the TAGPS-r σ0 holds

mADM + p(int)r −mext ≥
γT
3
RA0 +

J̄2
0 + J̄2

min

R3
A0

≥ γT
3
RA0 + 2

J̄2
min

R3
A0

. (3.107)

Proof. Considering the surface integral of Eq. (3.8) over σ0, and then, imposing the condition
of Eq. (3.106), we have∫

σ0

[(
γT − 3

2

)
(2)R−Gabr

arb − kK̄(n) +
1

2

(
k2 − kabk

ab − κ̃abκ̃
ab
)
+ vav

a

]
dA ≤ 0. (3.108)

In the above, we used the fact that the time lapse function N is constant4 on σ0. Note that
on σ0, κab is a traceless quantity because of the condition of Eq. (3.104), i.e., κab = κ̃ab.
Proposition 3.16 implies that the condition of Eq. (3.105) is rewritten as

−K̄(n) ≥
1

2
k, (3.109)

so that with k ≥ 0 on σ0,

−
∫
σ0

kK̄(n)dA ≥ 1

2

∫
σ0

k2dA (3.110)

holds. Thus, Eq. (3.108) with Eq. (3.110) implies∫
σ0

k2dA ≤ 16π

3
(3− 2γT ) +

2

3

∫
σ0

(16πP (tot)
r − 2vav

a)dA, (3.111)

where we used the assumptions that the Einstein equation Gab = 8πTab holds for the spacetime
(M, gab) and σ0 is topologically sphere σ0 ≈ S2. Then, Eqs. (3.13), (3.21) and (3.111) give us
Eq. (3.107).

Note that in Eq. (3.111), if P
(tot)
r ≤ 0 is assumed on σ0,

k = P (tot)
r = va = 0 (3.112)

holds for γT = 3/2.
For vacuum and axisymmetric spacetimes, Eqs. (3.13), (3.24) and (3.111) give us the

following theorem. The same arguments as those found in the LAGPS-r in Subsec. 3.2.2 can
be made.

Theorem 3.22 ([15]). Let M be a vacuum and axisymmetric spacetime satisfying the Einstein
equation (2.2), and Σ be an asymptotically flat axisymmetric spacelike maximal hypersurface
equipped with the inverse mean curvature flow {σy}y∈R where σ0 is an TAGPS-r with k ≥ 0.
We suppose that each leaf σy is homeomorphic to a two-surface. Then, we have an inequality
for the TAGPS-r σ0,

mADM + p(int)gw −m(ext)
gw ≥ γT

3
RA0 +

1 + χ0

R2
0RA0

J2. (3.113)

4As with the case of Eq. (3.94), Eq. (3.108) can be obtained even if N is not constant. Therefore, Theorems
3.21 and 3.22 hold even for non-constant N .
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Chapter 4

Summary and outlook

As observable indicators of strong gravity regions, we reviewed the loosely trapped
surface (LTS) and dynamically transversely trapping surface (DTTS) as an alternative to
trapped surfaces. Additionally, we introduced the attractive gravity probe surface (AGPS) to
characterize weak gravity region too, extending the LTS. We also presented the areal inequalities
for these surfaces under certain conditions.

However, these inequalities did not account for contributions from angular momentum,
gravitational waves, and matters. There was no extension of DTTS to encompass weak
gravity regions. We reevaluated the AGPS proposed in Ref. [8] and subsequently introduced
four types of AGPSs, including the original: the longitudinal AGPS associated with mean
curvature (LAGPS-k) and Ricci scalar (LAGPS-r), and the transverse AGPS associated with
mean curvature (TAGPS-k) and Ricci scalar (TAGPS-r). For these AGPSs, we proved the
Penrose-like inequalities under certain conditions, taking account of the contributions from
angular momentum, gravitational waves, and matters.

Our theorems require the assumption that spacelike hypersurface is maximal. However,
for the Penrose inequality, there are attempts to relax such constraints [32]. Applying a
similar analysis to our cases would be interesting. Comparing our results with those for stable
isoperimetric surfaces [33] is also of interest.

37



Appendix A

Some geometric identities

We derive identities (3.4) and (3.9) used in the proofs of Proposition 3.1 and 3.2, respectively.
We follow the same setup of Subsec. 2.5.2.

For the spacelike normal vector ra of σ0 on the spacelike hypersurface Σ, the derivative of
ra is calculated by

Darb = (ha
c + rar

c)Dcrb, (A.1)

where Da is the covariant derivative on Σ, and we used the induced metric of σ0, hab. The lapse
function φ with respect to ra gives us

(ha
c + rar

c)Dcrb = kab + rar
cDc(φDby) (A.2)

= kab + rar
crbDc logφ+ rar

cφDb(φ
−1rc), (A.3)

where kab is the extrinsic curvature of σ0. Then, after some calculation, we have

Darb = kab − raDb logφ, (A.4)

where Da is the covariant derivative of σ0. The (r, r)-component of the Ricci tensor (3)Rab on
Σ is given by

(3)Rabr
arb = (3)Rc

acbr
arb (A.5)

= ra(DcDa −DaD
c)rc (A.6)

= Dc(raDarc)−DcraDarc − raDak, (A.7)

where k is the trace of kab. Thus, using Eq. (A.4), we obtain

(3)Rabr
arb = −φ−1D2φ− kabk

ab − raDak. (A.8)

For the timelike normal vector na of σ0 on the timelike hypersurface S, we also have

D̄anb = κab + naDb logN, (A.9)

where κab := ha
chb

dKcd, N is the lapse function with respect to na and D̄a is the covariant
derivative on S. Similar calculation of Eq. (A.8), by using the Ricci tensor (3)R̄ab on S, we
obtain

(3)R̄abn
anb = N−1D2N − κabκ

ab − naD̄aκ. (A.10)
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