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1. Introduction

Let M be a compact manifold (without boundary) of dimension m. Given

a Riemannian metric g on M , the volume Vol(M, g) and the Laplace-Beltrami

operator ∆g are defined. Let 0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ · · ·λk(g) ≤ · · · be the

eigenvalues of ∆g. The quantity λk(g)Vol(M, g)2/m is invariant under scaling of the

metric g. Hersch [16] proved that on a 2-dimensional sphere S2, the scale-invariant

quantity λ1(g)Area(g) is maximized exactly when g is a round metric. Inspired by

the work, Berger [2] posed the question whether

Λ1(M) := sup
g
λ1(g)Vol(M, g)

2
m

is finite for a compact manifold M of dimension m. For a surface M , Λ1(M) is

bounded by a constant depending on the genus [41, 17]. Berger [2] also conjec-

tured that for a 2-dimensional torus T 2, the equilateral flat metric attains Λ1(T
2).

Nadirashvili [27] settled Berger’s conjecture affirmatively. In the same paper, he

proved a theorem that if a metric g on a given surface M is extremal for the func-

tional λk : g 7→ λk(g) with respect to all the volume-preserving deformations of

the metric, then (M, g) admits an isometric minimal immersion into a Euclidean

sphere by first eigenfunctions. After that, El Soufi–Ilias [11] simplified the proof

of the theorem and generalized it to a compact manifold M of any dimension for

k = 1. Later, El Soufi–Ilias [13] improved this result and proved the following:

Theorem 1.1 ([27], [11], [13]). (Theorem 3.4) Let (M, g) be a compactm-dimensional

Riemannian manifold. If the metric g is extremal for the functional λk with re-

spect to all the volume-preserving deformations of the metric, then there exists a
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finite collection of λk(g)-eigenfunctions {f1, . . . , fN} such that F := (f1, · · · , fN) :
(M, g) → RN is an isometric minimal immersion into SN−1(

√
m/λk(g)) ⊂ RN .

For k = 1, the converse also holds.

For the precise definition of extremality of the functional λk, see Definition 3.3

in Section 3. For a surface M , there has been a remarkable progress in the study

of Λ1(M) such as [30], [18], [31], [32] and [19].

On the other hand, on any compact manifold M with m ≥ 3, one can construct

a 1-parameter family {gt}t>0 such that the quantity λ1(gt)Vol(M, gt)
2/m diverges to

infinity as t goes to infinity [8]. (See also [6], [26], [25], [37] and [38].) This motivates

us to restrict ourselves to studying the functional λ1 only in a certain class of

metrics. For example, for a given Riemannian metric g on M , the restriction of

the functional λ1 to the metrics in its conformal class with fixed volume is bounded

[20, 10]. El Soufi-Ilias [12, 13] proved the following:

Theorem 1.2 ([12], [13]). (Theorem 3.7) Let (M, g) be a compact m-dimensional

Riemannian manifold. If the metric g is extremal for the functional λk with re-

spect to all the volume-preserving deformations within its conformal class, then

there exists a finite collection of λk(g)-eigenfunctions {f1, . . . , fN} such that F :=

(f1, · · · , fN) : (M, g) → RN is a harmonic map into SN−1(
√
m/λ1(g)) ⊂ RN with

constant energy density |dF |2 ≡ m. For k = 1, the converse also holds.

On the other hand, Bourguignon–Li–Yau [7] proved the following result:

Theorem 1.3 ([7]). (Theorem 4.1) Let (M,J) be a compact complex n-dimensional

manifold that admits a full holomorphic immersion Φ : (M,J) → CPN . Let σFS

be the Fubini-Study form on CPN with constant holomorphic sectional curvature

1. Then, for any Kähler form ω on (M,J), the first eigenvalue λ1(ω) satisfies

λ1(ω) ≤ n
N + 1

N

∫
M
Φ∗σFS ∧ ωn−1∫

M
ωn

.

Stokes theorem implies that λ1(ω) is bounded by a constant depending on only

n, N , Φ and the Kähler class [ω]. The above theorem implies that the Fubini-

Study metric on CPN is a λ1-maximizer in its Kähler class. Biliotti–Ghigi [5]

generalized this result and showed that the canonical Kähler-Einstein metric on

a Hermitian symmetric space of compact type is a λ1-maximizer in its Kähler

class (Theorem 4.2). Motivated by these results, Apostolov–Jakobson–Kokarev [1]

proved the following:
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Theorem 1.4 ([1]). (Theorem 4.10) Let (M,J, g, ω) be a compact Kähler manifold

of complex dimension n. If the Kähler metric g is extremal for the functional λk

within its Kähler class, then there exists a nontrivial finite collection of λk(g)-

eigenfunctions {f1, . . . , fN} satisfying the equation

(1.1) λk(g)
2

N∑
j=1

f 2
j − 2λk(g)

N∑
j=1

|∇fj|2 +
N∑
j=1

|ddcfj|2 = 0.

For k = 1, the converse also holds.

Although we do not explain the precise definition of the extremality in Theorem

1.4 here, we remark that the metric maximizing λ1 in its Kähler class is extremal

for the functional λ1 within its Kähler class. (See Definition 4.3 for the precise

definition of the extremality of a Kähler metric within its Kähler class.) Using

(1.1), Apostolov–Jakobson–Kokarev [1] also proved the following:

Proposition 1.5. ([1])(Proposition 4.14) The metric on a compact homogeneous

Kähler-Einstein manifold of positive scalar curvature is extremal for the functional

λ1 within its Kähler class.

However, compared to Theorem 1.1 and Theorem 1.2, the geometric meaning of

(1.1) is not clear, whence further study should be done.

Let (M,J) be a compact complex manifold satisfying the assumption of Theorem

1.3. Let H1,1(M,J ;R) := H1,1(M,J) ∩H2
dR(M). Then the map

H1,1(M,J ;R) → R, [ω] 7→
∫
M

Φ∗σFS ∧ ωn−1

is a well-defined continuous function. Thus this is bounded on the compact subset

{[ω] ∈ H1,1(M,J ;R) |
∫
M
ωn = 1}. In other words, the functional λ1 is bounded

on the set of Kähler metrics with fixed volume on (M,J). However, the property

of the λ1-maximizing Kähler metrics has not been studied.

In the main part of this thesis, on a compact complex manifold (M,J), we intro-

duce the notion of λk-extremal Kähler metric by considering all volume-preserving

deformations of the Kähler metric. Be cautioned that we fix the complex struc-

ture J and consider only J-compatible Kähler metrics. (See Definition 5.1 for the

precise definition of the λk-extremality.) The notion of λk-extremality introduced

by the author is stronger than the extremality in Theorem 1.4, but weaker than

that in Theorem 1.1. The first main theorem is the following:

Theorem 1.6. (Theorem 5.8) Let (M,J, g, ω) be a compact Kähler manifold.

The Kähler metric g is λ1-extremal if and only if there exists a finite collection of
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eigenfunctions {fj}Nj=1 such that the equations

(1.2)


H

(
N∑
j=1

fjdd
cfj

)
= −ω,

λ1(g)
2

(
N∑
j=1

f 2
j

)
− 2λ1(g)

(
N∑
j=1

|∇fj|2
)

+
N∑
j=1

|ddcfj|2 = 0

hold. Here H is the harmonic projector, which is defined due to the Hodge decom-

position on a compact Kähler manifold.

It is obvious that (1.2) implies (1.1). We also give an example of a Kähler metric

that is λ1-extremal within its Kähler class, but not so for all volume-preserving

deformations of the Kähler metric (Example 5.14 and Example 5.15).

In the final part of this thesis, we consider flat complex tori. It is known that

for a flat tori, the multiplicity of each eigenvalue is even. We have the following

proposition, which should be compared with Proposition 1.5.

Proposition 1.7. (Proposition 6.2) Let (T n
Γ , g) be a flat complex torus determined

by a lattice Γ ⊂ Cn. Then the flat metric g is extremal for the functional λ1 within

its Kähler class.

Montiel–Ros [23] showed that among all the real 2-dimensional flat tori, only the

square torus R2/Z2 admits an isometric minimal immersion into a 3-dimensional

Euclidean sphere by first eigenfunctions. Later, using Theorem 1.1, El Soufi–Ilias

[11] improved this result. That is, they proved that a real 2-dimensional flat torus

admits an isometric minimal immersion into a Euclidean sphere of some dimension

by first eigenfunctions if and only if the torus is the square torus or the equilateral

torus. Recently, Lü–Wang–Xie [22] classified all the 3-dimensional tori and 4-

dimensional tori that admit an isometric minimal immersion into a Euclidean

sphere of some dimension by first eigenfunctions. For (real) dimension higher than

4, the standard torus is the only currently known example that admits an isometric

minimal immersion into a Euclidean sphere by the first eigenfunctions. We will

prove the following:

Theorem 1.8. (Theorem 6.3) Let (T n
Γ , g) be a flat n-dimensional complex torus.

Let {wν}l(λk(g))
ν=1 be linearly independent vectors in Γ∗ satisfying λk(g) = 4π2|wν |2,

where l(λk(g)) is half of the multiplicity of λk(g). If the flat metric g is λk-extremal

for all the volume-preserving deformations of the Kähler metric then there exists
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{Rν ≥ 0}l(λk(g))
ν=1 such that the following equations hold:

l(λk(g))∑
ν=1

Rνw
α
νw

β
ν = 0 for 1 ≤ α 6= β ≤ n,

l(λk(g))∑
ν=1

Rν |wα
ν |2 = 1 for 1 ≤ α ≤ n.

For k = 1, the converse also holds.

The notion of λ1-extremality in the above theorem is stronger than the extremal-

ity in Theorem 1.4, but weaker than that in Theorem 1.1. Hence Theorem 1.8 gives

a necessary condition for a flat complex torus to admit an isometric minimal im-

mersion into a Euclidean sphere by first eigenfunctions. This is the only currently

known necessary condition for a flat torus of dimension higher than 5 to admit

an isometric minimal immersion into a Euclidean sphere by first eigenfunctions.

We also show that if the multiplicity of the first eigenvalue of a flat complex torus

is 2, then the flat metric on the torus is not λ1-extremal in our sense (Corollary

6.4). We also show that the flat torus Rm/Dm (m ≥ 3), where Dm is a lat-

tice called the checkerboard lattice, admits an isometric minimal immersion by

first eigenfunctions (Proposition 6.7). This result was obtained by Lü–Wang–Xie

[22] for m = 3, 4. For (real) dimension higher than 4, the standard torus is the

only currently known example that admits an isometric minimal immersion into

a Euclidean sphere by the first eigenfunctions. Hence Rm/Dm (m ≥ 3) are new

examples. We consider several examples of 2-dimensional complex tori and see

that the notion of λ1-extremality actually depends on the complex structure on an

underlying compact manifold (Example 6.8 and Example 6.9).

The main part of this thesis is based on the author’s preprint [29].

Organization of this thesis. In Section 2, we review basic facts in Kähler

geometry and convex geometry for later use. In Section 3, we review previous

studies on behaviors of eigenvalues with respect to metric deformations. In Section

4, we review the work by Apostolov–Jakobson–Kokarev [1]. Section 5 and Section

6 are the main part of this thesis. In Section 5, we introduce the notion of λk-

extremal Kähler metric different from that due to Apostolov et al., and prove

Theorem 1.6 (Theorem 5.8). In Section 6, we consider whether the flat metric on

a complex torus is λk-extremal. We prove Proposition 1.7 (Proposition 6.2) and

Theorem 1.8 (Theorem 6.3).
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2. Preliminaries

2.1. Notations and basic facts in Kähler geometry. In this subsection, we

fix some notations and review some basic facts in Kähler geometry for later use.

We refer the readers to the textbooks [14], [24] and [34].

Let (M,J) be a complex manifold of complex dimension n. For 0 ≤ r ≤ n, let

ΛrT ∗M be the exterior cotangent bundle and Ωr(M) be the set of smooth sections

of ΛrT ∗M . Let ΛrT ∗M ⊗R C be the complexification of ΛrT ∗M . We define a

complex bundle Λp,qM by

Λp,qM :=
⋃
x∈M

{x} × spanC{(dzj1)x ∧ · · · ∧ (dzjp)x ∧ (dzk1)x ∧ · · · ∧ (dzkq)x

| j1 < · · · < jp, k1 < · · · < kq},

where {zj}nj=1 is a local holomorphic coordinate around x ∈ M . Λp,qM is a well-

defined complex subbundle of Λp+qT ∗M ⊗R C. We have

ΛrT ∗M ⊗R C =
⊕
p+q=r

Λp,qM.

Let Ωp,q(M) be the set of smooth sections of Λp,qM , each element of which is called

a (p, q)-form.

A Riemannian metric g on (M,J) is called Hermitian if g satisfies

g(X,Y ) = g(JX, JY )

for all vector fields X,Y . The C-bilinear extension of g to the complexified tangent

bundle TM ⊗R C is also denoted by g. Set

gjk := g

(
∂

∂zj
,
∂

∂zk

)
in a local holomorphic coordinate {zj}nj=1. Then the n × n matrix (gjk) is a

Hermitian matrix. A (p, q)-form α is called real if α satisfies the condition that

α = α. It immediately follows that if a (p, q)-form α is real, then α is a (p, p)-form.

When a (1, 1)-form α is locally expressed as α =
√
−1αjkdz

j ∧ dzk, α is real if and
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only if the matrix (αjk) is Hermitian. For a Hermitian metric g on (M,J), the

formula

ω(X,Y ) := g(JX, Y )

defines a real (1, 1)-form ω. In a local holomorphic coordinate {zj}nj=1, ω can be

locally expressed as

(2.1) ω =
√
−1gjkdz

j ∧ dzk.

The Riemannian volume form dµ on (M,J, g, ω) is given by

(2.2) dµ =
ωn

n!
.

If ω is d-closed, then the Hermitian metric g is called a Kähler metric, ω is called

a Käher form and (M,J, g, ω) is called a Kähler manifold. The following lemma

is very useful in computations:

Lemma 2.1. Let (M,J, g, ω) be a Kähler manifold of complex dimension n. For

any x ∈ M , there exists a local holomorphic coordinate {zj}nj=1 around x such

that the equations

gjk(x) = δjk,
∂gjk
∂zl

(x) = 0,
∂gjk
∂zl

(x) = 0

hold for any 1 ≤ j, k, l ≤ n.

Hereinafter, suppose that (M,J, g, ω) is a compact Kähler manifold (without

boundary) of complex dimension n. Let dµ be its volume form. For α ∈ Ω1(M),

a vector field α♯ is uniquely defined so that

α(X) = g(α♯, X)

for any vector field X. This correspondence gives an isomorphism between T ∗M

and TM . We define a fiber metric g∗ on T ∗M by

g∗(α, β) := g(α♯, β♯).

For α1, . . . , αr, β1, . . . , βr ∈ Ω1(M), we define

gΛr(α1 ∧ · · · ∧ αr, β1 ∧ · · · ∧ βr) := det
(
g∗(αj, βk)

)
1≤j,k≤r

.

We extend this R-bilinearly and define a fiber metric gΛr on ΛrT ∗M . The metric

gΛr can also be extendedC-bilinearly to ΛrT ∗M⊗RC and we use the same notation

gΛr for the fiber metric. We define a Hermitian fiber metric hΛr on ΛrT ∗M ⊗R C

by

hΛr(α, β) := gΛr(α, β).
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If β is real, then we clearly have hΛr(α, β) = gΛr(α, β). In what follows, we

abbreviate hΛr as h when there is no room for confusion. By (2.1), we have

(2.3) |ω|2 := h(ω, ω) = −gjkglm det

(
gjl gjm

gkl gkm

)
= gjkglmg

jmglk = δmk δ
k
m = n.

The following lemma will be used later:

Lemma 2.2. ([34, Lemma 4.7], [1]) Let (M,J, g, ω) be a Kähler manifold of com-

plex dimension n. For any pair of real (1, 1)-forms α and β, one has

h(α, β)ωn = h(α, ω)h(β, ω)ωn − n(n− 1)α ∧ β ∧ ωn−2.

For any 0 ≤ p, q ≤ n, we define a C-linear map ∗ : Λp,qM → Λn−q,n−pM by

α ∧ ∗β = h(α, β)dµ for any α, β ∈ Ωp,q(M).

This map ∗ is called the Hodge ∗-operator. We have (∗|Λp,qM)2 = (−1)p+q and so

∗ : Λp,qM → Λn−q,n−pM is an isomorphism. Using (2.2) and (2.3), one obtains

ω ∧ (∗ω) = n · dµ =
ωn

(n− 1)!

and so

∗ω =
ωn−1

(n− 1)!
.

This implies that the equation

(2.4) α ∧ ωn−1 = (n− 1)!α ∧ ∗ω = (n− 1)!h(α, ω)
ωn

n!
=

1

n
h(α, ω)ωn

holds for any (1, 1)-form α.

Set dc :=
√
−1(∂ − ∂). Then we have

ddc =
√
−1(∂ + ∂)(∂ − ∂) = 2

√
−1∂∂.

Set

δ := − ∗ d∗, δc := − ∗ dc∗,

∂∗ := − ∗ ∂∗, ∂
∗
:= − ∗ ∂ ∗ .

Then they are L2-adjoint operators of d, dc, ∂ and ∂ respectively. We define the

Laplacian ∆g by ∆g := dδ + δd. Since g is Kähler, we have

(2.5) ∆g = 2(∂∂
∗
+ ∂

∗
∂) = 2(∂∂∗ + ∂∗∂).

If there exists f ∈ C∞(M)\{0} such that ∆gf = λf , then λ is called an eigenvalue

of the Laplacian ∆g. It is known that the eigenvalues of the Laplacian ∆g are

nonnegative and form a discrete sequence that diverges to +∞. We denote the
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eigenvalues by 0 = λ0(g) < λ1(g) ≤ λ2(g) ≤ · · ·λk(g) ≤ · · · . For any k ∈ N,

let Ek(g) be the vector space of real-valued eigenfunctions of ∆g corresponding

to λk(g). That is, Ek(g) is given by Ek(g) = Ker(∆g − λk(g)I), where I is the

identity map acting on functions. It is also known that Ek(g) is finite dimensional

for any k ∈ N. The positive integer dimEk(g) is called the multiplicity of λk(g).

The eigenvalue λk(g) is called simple if its multiplicity is exactly 1. For a complex-

valued function f , ∆gf can be locally expressed as

(2.6) ∆gf = −2gjk
∂2f

∂zj∂zk

in a local holomorphic coordinate {zj}nj=1 (see [34, p. 33]). Hence we have

(2.7) ∆gf = −2gjk
∂2f

∂zj∂zk
= −2h(

√
−1∂∂f, ω) = −h(ddcf, ω).

Thus (2.4) and (2.7) imply

(2.8) nddcf ∧ ωn−1 = h(ddcf, ω)ωn = −(∆gf)ω
n.

A (p, q)-form α is called harmonic if it satisfies ∆gα = 0, which is equivalent to

the condition that α satisfies both ∂α = 0 and ∂
∗
α = 0. Set

Hp,q(M) := {α ∈ Ωp,q(M) | ∆gα = 0}.

We state the Hodge–Dolbeault theorem:

Theorem 2.3. Let (M,J, g, ω) be a compact Kähler manifold. Then Hp,q(M)

is finite dimensional. Furthermore, there exist unique operators H : Ωp,q(M) →
Hp,q(M) and G : Ωp,q(M) → Ωp,q(M) such that all of the following hold:

G(Hp,q(M)) = 0, ∂G = G∂, ∂
∗
G = G∂

∗
and

α = H(α) +
1

2
∆gG(α) for any α ∈ Ωp,q(M).

Since we have (2.5), any α ∈ Ωp,q(M) can be written as

α = ∂
∗ (
∂G(α)

)
+H(α) + ∂

(
∂
∗
G(α)

)
.

This gives the following L2-orthogonal decomposition:

(2.9) Ωp,q(M) = ∂
∗
Ωp,q+1(M)⊕Hp,q(M)⊕ ∂Ωp,q−1(M).

We call the L2-orthogonal projection H a harmonic projector. We have the follow-

ing lemma:

Lemma 2.4. Let (M,J, g, ω) be a compact Kähler manifold. Let H : Ωp,p(M) →
Hp,p(M) be the harmonic projector. Then H(α) is real for any real (p, p)-form α.
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We state the ddc-lemma:

Lemma 2.5. (ddc-lemma) Let (M,J, g, ω) be a compact Kähler manifold and α

a real d-closed (1, 1)-form. If α is d-, ∂- or ∂-exact, then there exists a real valued

smooth function φ such that α = ddcφ.

2.2. Hyperplane separation. In this subsection, we recall some basic facts about

hyperplane separation in a finite dimensional vector space for later use. For details,

we refer the readers to the book [15] for example.

Definition 2.6. ([15, p.42, p.46]) Let V be a finite dimensional vector space over

R. If x ∈ V can be expressed as x =
∑n

j=1 ajxj for some {xj}nj=1 ⊂ V and

{aj ≥ 0}nj=1 with
∑n

j=1 aj = 1, then x is called a convex combination of {xj}nj=1.

Let A be a subset of V . The convex hull of A is defined as the set of all convex

combinations of points in A. Let U := {u1, . . . , un} be a nonempty finite subset of

V . The positive hull of U is defined as the set

{a1u1 + · · · anun ∈ V | aj ≥ 0 for all 1 ≤ j ≤ n} .

We have the following propositions:

Proposition 2.7. ([15, p.44]) Let V be a finite dimensional vector space over R.

If a subset A ⊂ V is compact, then the convex hull of A in V is also compact.

Proposition 2.8. ([15, p.46]) Let V be a finite dimensional vector space over R.

Let U := {u1, . . . , un} be a nonempty finite subset of V . The positive hull of U in

V is a closed convex cone.

Definition 2.9. ([15, pp. 53-54]) Let (V, 〈·, ·〉) be a finite dimensional inner prod-

uct space over R. Let S be a closed subset of V and x its boundary point. HS(x)

is called a support hyperplane of S at x if it satisfies the following:

(1) HS(x) is a hyperplane containing x with some normal vector u ∈ V . That

is, HS(x) is given by

HS(x) = {y ∈ V | 〈y − x, u〉 = 0}

for some u ∈ V \ {0}.

(2) S is contained in H−
S (x) := {y ∈ V | 〈y − x, u〉 ≤ 0}.

For a support hyperplane HS(x), the closed half-space H−
S (x) is called a support

half-space of S at x.
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Note that HS(x) is not necessarily unique.

Theorem 2.10. ([15, pp. 54-55]) Let (V, 〈·, ·〉) be a finite dimensional inner prod-

uct space over R. Let S be a closed convex subset of V that has an interior point.

Then there exists a support hyperplane HS(x) for any boundary point x ∈ ∂S.

Furthermore, S is precisely the intersection of all the support half-spaces of S at

the boundary points.

We state the hyperplane separation theorem in such a way that it can be used

in the proofs of Proposition 4.9 and Theorem 5.7.

Theorem 2.11. Let (V, 〈·, ·〉) be a finite dimensional inner product space over R.

(1) Let S be a closed convex subset of V that has an interior point. Suppose

that 0 /∈ S. Then there exists u ∈ V such that 〈s, u〉 < 0 for all s ∈ S.

(2) Let S be a positive hull of some finite points. For any v /∈ S, there exists

u ∈ V such that 〈v, u〉 > 0 and 〈y, u〉 ≤ 0 for all y ∈ S.

Proof. Suppose that 0 /∈ S. Then by Theorem 2.10, there exists x ∈ ∂S and a

support hyperplane HS(x) such that 0 /∈ H−
S (x). Let u be the normal vector of

HS(x). Then we have 〈−x, u〉 > 0. Hence for any y ∈ S, we have

〈y, u〉 ≤ 〈x, u〉 < 0.

Hence the assertion (1) is proved.

We show the assertion (2). By Proposition 2.8, S is closed and convex. Theorem

2.10 implies that for any v /∈ S, there exists x ∈ ∂S and a support hyperplane

HS(x) such that v /∈ H−
S (x). Let u be the normal vector of HS(x). Then we have

〈v−x, u〉 > 0. Since S is a positive hull, we have 2x, 0 ∈ S ⊂ H−
S (x) in particular.

Hence we have

〈2x− x, u〉 ≤ 0 and 〈0− x, u〉 ≤ 0.

Hence we obtain 〈x, u〉 = 0. Thus we have 〈v, u〉 > 0 and H−
S (x) is represented as

H−
S (x) = {y ∈ V | 〈y, u〉 ≤ 0}.

Since we have S ⊂ H−
S (x), the proof is completed. □
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3. Behaviors of eigenvalues with respect to metric deformations

Let (M, g) be a compact Riemannian manifold without boundary. As in the

previous subsection, the Laplacian is denoted by ∆g and eigenvalues Laplacian ∆g

are denoted by 0 = λ0(g) < λ1(g) ≤ λ2(g) · · · ≤ λk(g) ≤ · · · . For any positive

integer k, we regard λk as a functional on the set of Riemannian metrics on M .

It is classically known that for any 1-parameter family of Riemannian metrics

{gt} that is continuous in t, λk(gt) is continuous in t. Using the Kato–Rellich

perturbation theory of self-adjoint operators, Berger [2] and Bando–Urakawa [3]

proved the following:

Theorem 3.1 ([2], [3]). Let (M, g) be a compact Riemannian manifold without

boundary. Let I ⊂ R be an open interval containing 0. Let {gt}t∈I be a 1-

parameter family of Riemannian metrics that depends real analytically on t with

g0 = g . Set τ := dimEk(g). Then there exist {Λi(t)}τi=1 ⊂ R and {ui(t)}τi=1 ⊂
C∞(M) satisfying all the following:

(1) For any 1 ≤ i ≤ τ , Λi(t) and ui(t) are defined over I and depend real

analytically on t.

(2) For any 1 ≤ i ≤ τ and any t ∈ I, ∆gtui(t) = Λi(t)ui(t) holds.

(3) For any 1 ≤ i ≤ τ , Λi(0) = λk(g) holds.

(4) For any t ∈ I, {ui(t)}τi=1 is L2(gt)-orthonormal.

Using the above theorem, El Soufi–Ilias [13] proved the following theorem:

Theorem 3.2 ([13]). Let (M, g) be a compact Riemannian manifold without

boundary. Let I ⊂ R be an open interval containing 0. Let {gt}t be a 1-parameter

family of Riemannian metrics that depends real-analytically on t with g0 = g.

Let Πk : L2(M, g) → Ek(g) be the orthogonal projection onto Ek(g). Define the

operator Pk : Ek(g) → Ek(g) by

(3.1) Pk(f) := Πk

(
d

dt

∣∣∣∣
t=0

∆gtf

)
.

Then the following hold:

12



(1) The function I 3 t 7→ λk(gt) admits left and right derivatives at t = 0, i.e.
d
dt

∣∣
t=0−

λk(gt) and
d
dt

∣∣
t=0+

λk(gt) exist.

(2) d
dt

∣∣
t=0−

λk(gt) and
d
dt

∣∣
t=0+

λk(gt) are eigenvalues of Pk.

(3) If λk(g) > λk−1(g), then
d
dt

∣∣
t=0−

λk(gt) and d
dt

∣∣
t=0+

λk(gt) are the greatest

and the least eigenvalues of Pk.

(4) If λk(g) < λk+1(g), then
d
dt

∣∣
t=0−

λk(gt) and
d
dt

∣∣
t=0+

λk(gt) are the least and

the greatest eigenvalues of Pk.

(5) Pk is symmetric with respect to L2(g)-inner product.

Proof. Set τ := dimEk(g). By the assumption, there exist {Λi(t)}τi=1 ⊂ R and

{ui(t)}τi=1 ⊂ C∞(M) as in Theorem 3.1. For any 1 ≤ i ≤ τ , Λi(t) is continuous in

t and satisfies Λi(0) = λk(g). Hence there exist integers 1 ≤ p, q ≤ τ such that

(3.2) λk(gt) =

{
Λp(t) for − δ ≤ t ≤ 0

Λq(t) for 0 ≤ t ≤ δ.

Λi(t) is real analytic in t for any 1 ≤ i ≤ τ and so we obtain

d

dt

∣∣∣∣
t=0−

λk(gt) = Λ′
p(0)

and

d

dt

∣∣∣∣
t=0+

λk(gt) = Λ′
q(0).

This proves the assertion (1).

By Theorem 3.1 (2), ∆gtui(t) = Λi(t)ui(t) holds for any 1 ≤ i ≤ τ and any t ∈ I.

Differentiating the both sides of this equation at t = 0, one obtains

(3.3)

(
d

dt

∣∣∣∣
t=0

∆gtui

)
+∆gu

′
i = Λ′

i(0)ui + λk(g)u
′
i,

where ui := ui(0) and u
′
i :=

d
dt

∣∣
t=0

ui(t). Let dµ be the Riemannian measure with

respect to g. By Theorem 3.1 (4), {ui}τi=1 is an L2(g)-orthonormal basis of Ek(g).

13



Hence by (3.3) and Stokes Theorem, one obtains∫
M

uj

(
d

dt

∣∣∣∣
t=0

∆gtui

)
dµ = Λ′

i(0)

∫
M

ujuidµ+ λk(g)

∫
M

uju
′
idµ−

∫
M

uj∆gu
′
idµ

= Λ′
i(0)δij + λk(g)

∫
M

uju
′
idµ−

∫
M

(∆guj)u
′
idµ

= Λ′
i(0)δij + λk(g)

∫
M

uju
′
idµ− λk(g)

∫
M

uju
′
idµ

= Λ′
i(0)δij.

Since {ui}τi=1 is an L
2(g)-orthonormal basis of Ek(g), one has Pk(ui) = Λ′

i(0)ui for

any 1 ≤ i ≤ τ . Hence the assertion (2) follows from this equation and the equation

(3.2).

Next we prove the assertion (3). For any 1 ≤ i ≤ τ , we have Λi(0) = λk(g) and

Λi(t) is continuous in t ∈ I. Hence there exists δ > 0 such that Λi(t) > λk−1(gt)

for any t ∈ (−δ, δ) and any 1 ≤ i ≤ τ . Since Λi(t) is an eigenvalue of ∆gt , one can

deduce that Λi(t) ≥ λk(gt) for any t ∈ (−δ, δ) and any 1 ≤ i ≤ τ . This implies

that λk(gt) = min{Λ1(t), . . . ,Λτ (t)}. Since we have Λi(0) = λk(g) for 1 ≤ i ≤ τ ,

we conclude that

d

dt

∣∣∣∣
t=0−

λk(gt) = max{Λ′
1(0), . . . ,Λ

′
τ (0)} and

d

dt

∣∣∣∣
t=0+

λk(gt) = min{Λ′
1(0), . . . ,Λ

′
τ (0)}.

The assertion (3) is proved.

The proof of the assertion (4) is similar to that of (3) and so is omitted.

Take any u, v ∈ Ek(g). Let dµt be the Riemannian measure with respect to gt.

By Stokes Theorem, we have∫
M

uPk(v)dµ

=

∫
M

u

(
d

dt

∣∣∣∣
t=0

∆gtv

)
dµ

=
d

dt

∣∣∣∣
t=0

(∫
M

u∆gtvdµt

)
−
∫
M

u(∆v)

(
d

dt

∣∣∣∣
t=0

dµt

)
=

d

dt

∣∣∣∣
t=0

(∫
M

(∆gtu)vdµt

)
− λk(g)

∫
M

uv

(
d

dt

∣∣∣∣
t=0

dµt

)
=

∫
M

(
d

dt

∣∣∣∣
t=0

∆gtu

)
vdµ+

∫
M

(∆u)v

(
d

dt

∣∣∣∣
t=0

dµt

)
− λk(g)

∫
M

uv

(
d

dt

∣∣∣∣
t=0

dµt

)
=

∫
M

(
d

dt

∣∣∣∣
t=0

∆gtu

)
vdµ

=

∫
M

Pk(u)vdµ.
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The proof is completed. □

We introduce the following notion:

Definition 3.3 ([27], [11], [13]). Let (M, g) be a compact Riemannian manifold

without boundary. The metric g is said to be λk-extremal if the inequality(
d

dt

∣∣∣∣
t=0−

λk(gt)

)
·
(
d

dt

∣∣∣∣
t=0+

λk(gt)

)
≤ 0.

holds for any volume-preserving 1-parameter family of Riemannian metrics {gt}t∈I
that depends real analytically on t and satisfies g0 = g.

Nadirashvili [27] proved that if a metric g on a given surface M is λk-extremal,

then there exists a finite collection of λk(g)-eigenfunctions {fj}Nj=1 such that F :=

(f1, · · · , fN) : (M, g) → RN is an isometric minimal immersion into a round sphere

in RN . After that, El Soufi–Ilias [11] simplified the proof of this theorem and

generalized it to a compact manifold M of any dimension for k = 1. Later, El

Soufi–Ilias [13] improved this result and proved the following:

Theorem 3.4 ([27], [11], [13]). Let (M, g) be a compact m-dimensional Riemann-

ian manifold without boundary. Let Ek(g) be the space of λk(g)-eigenfunctions. If

the metric g is λk-extremal, then there exists a finite collection of λk(g)-eigenfunctions

{f1, . . . , fN} ⊂ Ek(g) such that F := (f1, · · · , fN) : (M, g) → RN is an isometric

minimal immersion into SN−1(
√
m/λk(g)) ⊂ RN . For k = 1, the existence of

such a finite collection of λk(g)-eigenfunctions is also a sufficient condition for the

metric g to be λ1-extremal.

Example 3.5 ([35], [11]). A homogeneous manifold G/K is said to be isotropy

irreducible if the linear isotropy representation of the isotropy subgroup K at the

point eK ∈ G/K is irreducible. Takahashi [35] proved that a compact isotropy

irreducible homogeneous Riemannian manifold admits an isometric minimal im-

mersion into a Euclidean sphere by first eigenfunctions. Hence the metric on a

compact isotropy irreducible homogeneous manifold is λ1-extremal.

In contrast to the above theorem, we can restrict ourselves to considering volume-

preserving metric deformations only in a certain class of metrics. El Soufi–Ilias

[12] considered all the volume-preserving deformations of a given metric within its

conformal class.

Definition 3.6 ([12]). Let (M, g) be a compact Riemannian manifold without

boundary. Let C(g) be the conformal class of g. The metric g is said to be
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λk-extremal within its conformal class if the inequality(
d

dt

∣∣∣∣
t=0−

λk(gt)

)
·
(
d

dt

∣∣∣∣
t=0+

λk(gt)

)
≤ 0.

holds for any volume-preserving 1-parameter family of Riemannian metrics {gt}t∈I ⊂
C(g) that depends real analytically on t and satisfies g0 = g.

Theorem 3.7 ([12]). Let (M, g) be a compact m-dimensional Riemannian man-

ifold without boundary. Let Ek(g) be the space of λk(g)-eigenfunctions. If the

metric g is λk-extremal within its conformal class, then there exists a finite col-

lection of λk(g)-eigenfunctions {f1, . . . , fN} ⊂ Ek(g) such that F := (f1, · · · , fN) :
(M, g) → RN is a harmonic map into SN−1(

√
m/λk(g)) ⊂ RN with constant

energy density |dF |2 ≡ m. For k = 1, the existence of such a finite collection of

λk(g)-eigenfunctions is also a sufficient condition for the metric g to be λ1-extremal.

It is well known that a smooth map ϕ = (ϕ1, . . . , ϕN) : (M, g) → SN−1(c) ⊂
RN is a harmonic map if and only if the condition ∆gϕj = c−2|dϕ|2ϕj holds for

any 1 ≤ j ≤ N . Hence an isometric minimal immersion consisting of λk(g)-

eigenfunctions F = (f1, . . . , fN) : (M, g) → SN−1(
√
m/λk(g)) is in particular a

harmonic map with constant energy density |dF |2 ≡ m. This is a natural fact

since the assumption of the above theorem is weaker than that of Theorem 3.4.

Example 3.8 ([12]). The metric on a compact homogeneous Riemannian manifold

is λ1-extremal within its conformal class.

4. Work by Apostolov–Jakobson–Kokarev

In this section, we review the work by Apostolov–Jakobson–Kokarev [1]. To ex-

plain their research backgrounds, we quote the following result due to Bourguignon–

Li–Yau [7]:

Theorem 4.1 ([7]). Let (M,J) be a compact complex n-dimensional manifold ad-

mitting a full holomorphic immersion Φ : (M,J) → CPN . Let σFS be the Fubini-

Study form on CPN with constant holomorphic sectional curvature 1. Then, for

any Kähler form ω on (M,J), the first eigenvalue λ1(ω) satisfies

λ1(ω) ≤ n
N + 1

N

∫
M
Φ∗σFS ∧ ωn−1∫

M
ωn

.

Stokes theorem implies that the functional λ1(ω) is bounded by a constant de-

pending on only n, N , Φ and the Kähler class [ω]. The above theorem implies that
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the Fubini-Study metric on CPN is a λ1-maximizer in its Kähler class. Biliotti-

Ghigi[5] generalized the fact as follows:

Theorem 4.2 ([5]). The Kähler-Einstein metric on an irreducible Hermitian sym-

metric space of compact type maximizes the functional λ1 in its Kähler class.

Motivated by these results, Apostolov–Jakobson–Kokarev [1] considered defor-

mations of a given Kähler metric within its Kähler class. Let (M,J, g, ω) be a

compact Kähler manifold (without boundary) of complex dimension n. Let dµ

be its volume form. Let Ek(g) be the real vector space of real-valued λk(g)-

eigenfunctions. Let K[ω](M,J) be the space of Kähler metrics whose Kähler forms

are cohomologous to ω. Set

C∞
0 (M ;R) :=

{
φ ∈ C∞(M ;R) |

∫
M

φ dµ = 0

}
.

Then the ddc-lemma (Lemma 2.5) gives a bijection between K[ω](M,J) and the

set

{φ ∈ C∞
0 (M ;R | ω + ddcφ > 0} ,

where ω+ddcφ > 0 means that the associated J-invariant bilinear form is positive

definite and so a Kähler metric. Apostolov–Jakobson–Kokarev [1] introduced the

following notion:

Definition 4.3 ([1]). Let (M,J, g, ω) be a compact Kähler manifold (without

boundary) of complex dimension n. Let K[ω](M,J) be the space of Kähler metrics

whose Kähler classes are all equal to [ω]. The Kähler metric g is said to be λk-

extremal within its Kähler class if the inequality(
d

dt

∣∣∣∣
t=0−

λk(gt)

)
·
(
d

dt

∣∣∣∣
t=0+

λk(gt)

)
≤ 0.

holds for any 1-parameter family of Kähler metrics {gt}t∈I ⊂ K[ω](M,J) that

depends real analytically on t and satisfies g0 = g.

Fix any 1-parameter family of Kähler metrics {gt}t∈I ⊂ K[ω](M,J) that depends

real analytically on t and satisfies g0 = g. Let Pk : Ek(g) → Ek(g) be the associated

operator given by (3.1). Pk is determined by g and d
dt

∣∣
t=0

gt. By Theorem 3.2(2),
d
dt

∣∣
t=0−

λk(gt) and
d
dt

∣∣
t=0+

λk(gt) are eigenvalues of Pk. Hence when we study λk-

extremality, we may assume that ωt = ω + tddcφ with φ ∈ C∞
0 (M ;R). Note that

since M is compact, the condition that ωt > 0 is satisfied for a sufficiently small

t. By Theorem 3.2 (5), Pk is symmetric with respect to the L2(g)-inner product.
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Hence one can consider the corresponding quadratic form Qφ on Ek(g), which is

given by

(4.1) Qφ(f) :=

∫
M

fPk(f) dµ =

∫
M

f

(
d

dt

∣∣∣∣
t=0

∆gtf

)
dµ.

The following proposition is an immediate consequence of Theorem 3.2 (2):

Proposition 4.4 ([1]). Let (M,J, g, ω) be a compact Kähler manifold. If the

metric g is λk-extremal within its Kähler class, then the quadratic form Qφ, defined

in (4.1), is indefinite on Ek(g) for any φ ∈ C∞
0 (M ;R).

We also have the following proposition, which follows form Theorem 3.2 (3) and

(4):

Proposition 4.5 ([1]). Let (M,J, g, ω) be a compact Kähler manifold. Suppose

that λk(g) > λk−1(g) or λk(g) < λk+1(g) holds. Then the metric g is λk-extremal

within its Kähler class if and only if the quadratic form Qφ is indefinite on Ek(g)

for any φ ∈ C∞
0 (M ;R).

The next corollary immediately follows.

Corollary 4.6 ([1]). Let (M,J, g, ω) be a compact Kähler manifold. Then the

metric g is λ1-extremal if and only if the quadratic form Qα is indefinite on E1(g)

for any φ ∈ C∞
0 (M ;R).

The following lemma is important in [1], but we omit the proof since we will

prove the generalization of this lemma (Theorem 5.6):

Lemma 4.7 ([1]). For any φ ∈ C∞
0 (M ;R), the quadratic form Qφ, which is given

by (4.1), can be expressed as

Qφ(f) =

∫
M

φδcδ(fddcf)dµ.

Motivated by this lemma, Apostolov–Jakobson–Kokarev[1] introduced the fourth

order differential operator L defined by L(f) := δcδ(fddcf), whence Qφ(f) can be

written as Qφ(f) =
∫
M
φL(f)dµ. Obviously we have

(4.2)

∫
M

L(f)dµ =

∫
M

h(ddc1, ddcf)dµ = 0.

L(f) does not have a simpler expression in general, but it does if f is an eigen-

function:
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Lemma 4.8 ([1]). Let (M,J, g, ω) be a compact Kähler manifold of complex di-

mension n. Let Ek(g) be the real vector space of real-valued λk(g)-eigenfunctions.

Then for any f ∈ Ek(g), L(f) is expressed as

L(f) = λk(g)
2f 2 − 2λk(g)|∇f |2 + |ddcf |2.

We give a proof relying on Lemma 2.1, which is different from the original one

due to Apostolov–Jakobson–Kokarev [1].

Proof. Fix an arbitrary point x ∈M . It suffices to prove the lemma at x. We have

ddc = 2
√
−1∂∂ and δcδ = 2

√
−1∂∗∂

∗
. Hence we have L(f) = −4∂∗∂

∗
(f∂∂f). By

Lemma 2.1, there exists a local holomorphic coordinate {zα}nα=1 around x such

that the equations

gαβ(x) = δαβ,
∂gαβ
∂zγ

(x) = 0,
∂gαβ
∂zγ

(x) = 0

hold for any 1 ≤ α, β, γ ≤ n. Then we have

dµ =
ωn

n!
= (

√
−1)ndz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

at x. Since ∂
∗
is a first order differential operator, we may compute ∂

∗
(f∂∂f) with

respect to this coordinate. Then it is straightforward to obtain

∗(f∂∂f) = (
√
−1)n

∑
α<β

f
∂2f

∂zα∂zβ
dz1 ∧ dz1 ∧ · · · ∧ d̂zα ∧ · · · ∧ d̂zβ ∧ · · · ∧ dzn ∧ dzn

− (
√
−1)n

∑
β≤α

f
∂2f

∂zα∂zβ
dz1 ∧ dz1 ∧ · · · ∧ d̂zβ ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn ∧ dzn

at x, where â denotes the omission of a. Hence we have

(∂∗)(f∂∂f) = −(
√
−1)n

n∑
α,β=1

∂

∂zβ

(
f

∂2f

∂zα∂zβ

)
dz1∧dz1∧· · ·∧ d̂zα∧· · ·∧dzn∧dzn

at x. Thus we obtain

∂
∗
(f∂∂f) =

n∑
j,k=1

∂

∂zβ

(
f

∂2f

∂zα∂zβ

)
dzα

=
n∑

j,k=1

(
∂f

∂zβ
∂2f

∂zα∂zβ
+ f

∂3f

∂zα∂zβ∂zβ

)
dzα

=
n∑

j,k=1

∂f

∂zβ
∂2f

∂zα∂zβ
dzα − λk(g)

2

n∑
j=1

f
∂f

∂zα
dzα

= (∂∂f)
(
·, (∂f)♯

)
− λk(g)

2
f∂f
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at x where (2.7) is used at the third equality. The rightmost side is coordinate-free.

Hence we may compute the value of L(f) = −4∂∗∂
∗
(f∂∂f) at x with respect to

the coordinate {zα}nα=1. Then we readily have

L(f) = −4∂∗∂
∗
(f∂∂f)

= 4
n∑

α,β=1

∂

∂zα

(
∂f

∂zβ
∂2f

∂zα∂zβ

)
− 2λk(g)

n∑
α=1

∂

∂zα

(
f
∂f

∂zα

)

= 4
n∑

α,β=1

∣∣∣∣ ∂2f

∂zα∂zβ

∣∣∣∣2 − 2λk(g)
n∑

β=1

∣∣∣∣ ∂f∂zβ
∣∣∣∣2 − 2λk(g)

n∑
α=1

∣∣∣∣ ∂f∂zα
∣∣∣∣2 + λk(g)

2f 2

= |ddcf |2 − 2λk(g)|∇f |2 + λk(g)
2f 2.

The proof is completed. □

Next we prove the following proposition:

Proposition 4.9 ([1]). Let (M,J, g, ω) be a compact Kähler manifold of complex

dimension n. The following are equivalent:

(1) For any φ ∈ C∞
0 (M ;R), the quadratic form Qφ given by (4.1) is indefinite

on the eigenspace Ek(g).

(2) There exists a nontrivial finite subset {f1, . . . , fN} ⊂ Ek(g) such that

(4.3)
N∑
j=1

L(fj) = λk(g)
2

N∑
j=1

f 2
j − 2λk(g)

N∑
j=1

|∇fj|2 +
N∑
j=1

|ddcfj|2 = 0.

Proof. Let K be a convex hull of {L(f) | f ∈ Ek(g),
∫
M
f 2 dµ = 1} in C∞(M ;R).

Since Ek(g) is finite dimensional, K is contained in a finite dimensional subspace

of C∞(M ;R). Let C∞(M ;R) be endowed with the L2-inner product. We assume

that 0 /∈ K. Then by Proposition 2.7 and the hyperplane separation theorem

(Theorem 2.11 (1)), there exists φ ∈ C∞(M ;R) such that

(4.4)

∫
M

φs dµ > 0

for any s ∈ K. Define φ̃ ∈ C∞
0 (M : R) by

φ̃ := φ− 1

Vol(M, g)

∫
M

φ dµ.
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Then by (4.2) and (4.4), we have

Qφ̃(f) =

∫
M

φL(f) dµ− 1

Vol(M, g)

(∫
M

φ dµ

)(∫
M

L(f) dµ

)
> 0

for any f ∈ Ek(g) \ {0}. Hence we have proved (1) ⇒ (2).

We show the converse. We assume that there exists a nontrivial finite subset

{f1, . . . , fN} ⊂ Ek(g) satisfying (4.3). Then for any φ ∈ C∞
0 (M ;R), we have

N∑
j=1

Qφ(fj) =
N∑
j=1

∫
M

φL(fj) dµ =

∫
M

φ

(
N∑
j=1

L(fj)

)
dµ = 0

and so Qφ is indefinite on Ek(g). The proof is completed. □

Combining Proposition 4.4, Corollary 4.6 and Proposition 4.9, one concludes the

following:

Theorem 4.10 ([1]). Let (M,J, g, ω) be a compact Kähler manifold of complex

dimension n. If g is λk-extremal within its Kähler class, then there exists a non-

trivial finite subset {f1, . . . , fN} ⊂ Ek(g) satisfying (4.3). If k = 1, the existence

of such a finite subset of Ek(g) is also a sufficient condition for the metric g to be

λ1-extremal within its Kähler class.

Corollary 4.11. [1] Let (M,J, g, ω) be a compact Kähler manifold. If the metric

g is λk-extremal within its Kähler class, then the eigenvalue λk(g) is not simple.

Proof. Assume that λk(g) is simple and take f ∈ Ek(g) \ {0} arbitrarily. Then

Ek(g) is a 1-dimensional space spanned by f . Hence if the metric g is λk-extremal

within its Kähler class, then we have

L(f) = λk(g)
2f 2 − 2λk(g)|∇f |2 + |ddcf |2 = 0.

SinceM is compact, f attains the maximum at some points. Then we have |∇f |2 =
0 at such points and so we conclude the maximum must be 0. Similarly, the

minimum of f must be 0. This is a contradiction and so the proof is completed. □

For a compact Riemann surface, considering all the volume-preserving deforma-

tions of the given metric in its conformal class is equivalent to considering those

in its Kähler class. Hence, considering both Theorem 3.7 and Theorem 4.10, one

can see that the following proposition is very natural:

Proposition 4.12 ([1]). Let (M,J, g, ω) be a compact Riemann surface. A non-

trivial finite collection of eigenfunctions {f1, . . . , fN} ⊂ Ek(g) satisfies (4.3) if and
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only if F := (f1, . . . , fN) : (M, g) → RN is a harmonic map into SN−1(c) with

constant energy density |dF |2 ≡ cλk(g) for some c > 0.

Proof. By (2.7), we have ddcψ = −(∆gψ)ω for any smooth function ψ on a com-

pact Riemann surface (M,J, g, ω). Hence for any nontrivial finite collection of

eigenfunctions {f1, . . . , fN} ⊂ Ek(g), we have

(4.5) ∆g

(
N∑
j=1

f 2
j

)
= 2λk(g)

2

N∑
j=1

f 2
j −

N∑
j=1

|∇fj|2 =
1

λk(g)

N∑
j=1

L(fj).

Hence {f1, . . . , fN} ⊂ Ek(g) satisfies (4.3) if and only if F := (f1, . . . , fN) :

(M, g) → RN is a map into a Euclidean sphere of some radius c > 0. Since

f ′
js are λk(g)-eigenfunctions, such a map F : (M, g) → SN−1(c) is a harmonic map

with constant energy density |dF |2 ≡ cλk(g). □

Apotolov–Jakobson–Kokarev [1] studied the λ1-extremality of a product Kähler

metric within its Kähler class. Before stating the result, we recall basic facts

about the first Laplace eigenvalue of a product Riemannian metric. Let (M, g)

and (M ′, g′) be compact Riemannian manifolds. For a function f ∈ C∞(M ;R),

we define the function f × 1 on M ×M ′ by

(f × 1)(x, y) := f(x), (x, y) ∈M ×M ′.

For a function h ∈ C∞(M ′;R), we define the function 1×h onM×M ′ in a similar

manner. Suppose that λ1(g) ≤ λ1(g
′). Then the first eigenvalue λ1(g × g′) of the

product Riemannian manifold (M ×M ′, g × g′) is equal to λ1(g). E1(g × g′), the

space of λ1(g × g′)-eigenfunctions on M ×M ′, is given by

E1(g × g′) =

span{f × 1, 1× h | f ∈ E1(g), h ∈ E1(g
′)} (if λ1(g) = λ1(g

′))

span{f × 1 | f ∈ E1(g)} (if λ1(g) < λ1(g
′)).

For details of the above, see [33, p. 286, pp.336-337]. Then we state the following

result:

Proposition 4.13 ([1]). Let (M,J, g, ω) and (M ′, g′, J ′, ω′) be compact Kähler

manifolds. Suppose that λ1(g) ≤ λ1(g
′) and the metric g is λ1-extremal within

its Kähler class on (M,J). Then the product Kähler metric g × g′ is λ1-extremal

within its Kähler class on (M,J)× (M ′, J ′).

Proof. By hypothesis and Theorem 4.10, there exists a nontrivial collection of

λ1(g)-eigenfunctions {f1, . . . , fN} onM such that
∑N

j=1 LM(fj) = 0. Since we now

assume that λ1(g) ≤ λ1(g
′), {f1 × 1, . . . , fN × 1} is a nontrivial finite collection of
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λ1(g×g′)-eigenfunctions onM×M ′. Since we clearly have LM×M ′(f×1) = LM(f)

for any smooth function f defined on M , we immediately obtain

N∑
j=1

LM×M ′(f × 1) =
N∑
j=1

LM(fj) = 0.

Hence Theorem 4.10 concludes the assertion. □

We end this section with the following proposition:

Proposition 4.14 ([1]). Let (M,J, g, ω) be a compact homogeneous Kähler-Einstein

manifold with positive scalar curvature. Then the metric g is λ1-extremal within

its Kähler class.

5. A λk-extremal Kähler metric

In this section, on a compact complex manifold (M,J) that admits a Kähler

metric, we introduce the notion of λk-extremal Kähler metric by considering all

the volume preserving deformations of the given Kähler metric. Be cautioned that

we fix the complex structure J and consider only J-compatible Kähler metrics.

(See Definition 5.1 for the precise definition of the λk-extremality.)

Let (M,J, g, ω) be a compact Kähler manifold (without boundary) of complex

dimension n. By scaling the metric, we assume that Vol(M, g) = 1. Let dµ = ωn/n!

be the volume form.

Let Z1,1(M ;R) be the real vector space of d-closed real (1, 1)-forms on (M,J).

Let Z1,1
0 (M ;R) be its subspace defined by

Z1,1
0 (M ;R) :=

{
α ∈ Z1,1(M ;R) |

∫
M

h(α, ω)dµ = 0

}
.

Fix an arbitrary element α ∈ Z1,1
0 (M ;R). We consider the volume-preserving

deformation of ω in the direction of α. The (1, 1)-form

(5.1) ω̃t := ω + tα

is clearly real and d-closed. Since M is compact, the J-invariant symmetric (0, 2)-

tensor g̃t, which is defined by g̃t(X,Y ) = ω̃t(X, JY ), is positive definite for a suffi-

ciently small t. Hence ω̃t is a Kähler form for a sufficiently small t. In particular,

if we consider α = ddcφ for a real-valued function φ, then α satisfies∫
M

h(α, ω)dµ = −
∫
M

∆gφdµ = 0,
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and so we have α ∈ Z1,1
0 (M ;R). As we have seen in the previous section, the case

where α = ddcφ, which is a deformation of ω in its Kähler class [ω], was studied

by Apostolov–Jakobson–Kokarev [1]. Set

(5.2) gt := Vol(M, g̃t)
−1/ng̃t, ωt := Vol(M, g̃t)

−1/nω̃t.

Then we have g0 = g and ω0 = ω. We also see that (gt)t is a volume-preserving

1-parameter family of Kähler metrics that depends analytically on t, and ωt is the

Kähler form associated with gt. Moreover, we can verify that d
dt

∣∣
t=0

ωt = α. (See

(5.4) below.)

Definition 5.1. The Kähler metric g on a compact Kähler manifold (M,J, g, ω)

is called λk-extremal (for all the volume-preserving deformations of the Kähler

metric) if the inequality(
d

dt

∣∣∣∣
t=0−

λk(gt)

)
·
(
d

dt

∣∣∣∣
t=0+

λk(gt)

)
≤ 0

holds for any 1-parameter family of volume-preserving Kähler metrics (gt)t that

depends real analytically on t.

Remark 5.2. When we consider whether a Kähler metric g on (M,J) is λk-

extremal, we may rescale the metric so that Vol(M, g) = 1. Let (gt)t be a 1-

parameter family of volume-preserving Kähler metrics that depends real analyti-

cally on t. Let ωt be the Kähler form associated with gt. Then Theorem 3.2 implies

that d
dt

∣∣
t=0−

λk(gt) and
d
dt

∣∣
t=0+

λk(gt) depend on only ω and d
dt

∣∣
t=0

ωt. Since (ωt)t

is volume-preserving, we have d
dt

∣∣
t=0

ωt ∈ Z1,1
0 (M ;R). Hence it suffices to consider

(ωt)t given by (5.2). Thus a Kähler metric g on (M,J) with Vol(M, g) = 1 is λk-

extremal if and only if for any α ∈ Z1,1
0 (M ;R), the associated volume-preserving

1-parameter family of Kähler metrics (gt)t defined by (5.2) satisfies(
d

dt

∣∣∣∣
t=0−

λk(gt)

)
·
(
d

dt

∣∣∣∣
t=0+

λk(gt)

)
≤ 0.

Let (M,J, g, ω) be a compact Kähler manifold of complex dimension n with

Vol(M, g) = 1. For any α ∈ Z1,1
0 (M ;R), the associated volume-preserving 1-

parameter family of Kähler metrics (gt)t given by (5.2) defines the associated op-

erator Pk,α : Ek(g) → Ek(g) by (3.1). Since Pk,α is symmetric with respect to

the L2(g)-inner product by Theorem 3.2 (5), one can consider the corresponding

quadratic form on Ek(g), given by

(5.3) Qα(f) :=

∫
M

fPk,α(f)dµ =

∫
M

f

(
d

dt

∣∣∣∣
t=0

∆gtf

)
dµ.
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The following proposition is an immediate consequence of Theorem 3.2 (2):

Proposition 5.3. Let (M,J, g, ω) be a compact Kähler manifold. If the metric

g of (M,J, g, ω) is λk-extremal, then the quadratic form Qα, defined in (5.3), is

indefinite on Ek(g) for any α ∈ Z1,1
0 (M ;R).

We also have the following proposition, which follows form Theorem 3.2 (3) and

(4):

Proposition 5.4. Let (M,J, g, ω) be a compact Kähler manifold. Suppose that

λk(g) > λk−1(g) or λk(g) < λk+1(g) holds. Then the metric g of (M,J, g) is

λk-extremal if and only if the quadratic form Qα is indefinite on Ek(g) for any

α ∈ Z1,1
0 (M ;R).

The next corollary immediately follows.

Corollary 5.5. Let (M,J, g, ω) be a compact Kähler manifold. Then the metric

g is λ1-extremal if and only if the quadratic form Qα is indefinite on E1(g) for any

α ∈ Z1,1
0 (M ;R).

Theorem 5.6. Let (M,J, g, ω) be a compact Kähler manifold of complex dimen-

sion n with Vol(M, g) = 1. For any α ∈ Z1,1
0 (M ;R), the quadratic form Qα, given

by (5.3), can be expressed as

Qα(f) =

∫
M

h(fddcf, α)dµ.

We remark that if α = ddcφ, then this theorem immediately implies Lemma 4.7.

Proof. First we calculate d
dt

∣∣
t=0

Vol(M, g̃t) and d
dt

∣∣
t=0

ωt. The volume form d̃µt,

determined by ω̃t, can be written as

d̃µt =
1

n!
ω̃n
t =

1

n!

(
ωn + tnα ∧ ωn−1

)
+O(t2) = [1 + th(α, ω)]dµ+O(t2).

Hence one obtains

Vol(M, g̃t) =

∫
M

d̃µt = 1 + t

∫
M

h(α, ω)dµ+O(t2) = 1 + O(t2),

where in the last equality we have used the the assumptions that Vol(M, g) = 1

and α ∈ Z1,1
0 (M ;R). Hence this implies d

dt

∣∣
t=0

Vol(M, g̃t) = 0. Thus one obtains

(5.4)
d

dt

∣∣∣∣
t=0

ωt =
d

dt

(
Vol(M, g̃t)

−1/nω̃t

)
= Vol(M, g̃0)

−1/n d

dt

∣∣∣∣
t=0

ω̃t = α.

Next we differentiate

(5.5) nddcf ∧ ωn−1
t = −(∆gtf)ω

n
t ,
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which comes from (2.8). Differentiating the left hand side at t = 0, one obtains

n(n− 1)ddcf ∧
(
d

dt

∣∣∣∣
t=0

ωt

)
∧ ωn−2 = n(n− 1)ddcf ∧ α ∧ ωn−2,

where (5.4) is used. On the other hand, differentiating the right hand side of (5.5)

at t = 0, one obtains

−
(
d

dt

∣∣∣∣
t=0

∆gtf

)
ωn − n(∆gf)

(
d

dt

∣∣∣∣
t=0

ωt

)
∧ ωn−1

= −
(
d

dt

∣∣∣∣
t=0

∆gtf

)
ωn − n(∆gf)α ∧ ωn−1

= −
(
d

dt

∣∣∣∣
t=0

∆gtf

)
ωn − (∆gf)h(α, ω)ω

n,

where (2.4) is used for the last equality. Hence one obtains

(5.6)

(
d

dt

∣∣∣∣
t=0

∆gtf

)
ωn = −n(n− 1)ddcf ∧ α ∧ ωn−2 − (∆gf)h(α, ω)ω

n.

Thus using Lemma 2.2 and the equation (2.7), one obtains(
d

dt

∣∣∣∣
t=0

∆gtf

)
ωn = h(ddcf, α)ωn.

Hence one concludes
d

dt

∣∣∣∣
t=0

∆gtf = h(ddcf, α)

and thus the assertion follows. □

In the above calculations, we consider α ∈ Z1,1
0 (M ;R). Hereinafter, we use the

Hodge decomposition, and consider both the harmonic part and the exact part of

α. Let H1,1(M ;R) be the vector space of real harmonic (1, 1)-forms. Set

H1,1
0 (M ;R) :=

{
α ∈ H1,1(M ;R) |

∫
M

h(α, ω)dµ = 0

}
and

C∞
0 (M ;R) :=

{
φ ∈ C∞(M ;R) |

∫
M

φdµ = 0

}
.

By the ddc-lemma, α ∈ Z1,1
0 (M ;R) can be decomposed as

α = H(α) + ddcφ.

By Lemma 2.4, H(α) is real. This decomposition gives an R-linear bijection

between Z1,1
0 (M ;R) andH1,1

0 (M ;R)×C∞
0 (M ;R). We prove the following theorem:

Theorem 5.7. Let (M,J, g, ω) be a compact Kähler manifold of complex dimen-

sion n. The following are equivalent:
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(1) For any α ∈ Z1,1
0 (M ;R), the quadratic form Qα given by (5.3) is indefinite

on the eigenspace Ek(g).

(2) There exists a finite subset {f1, · · · , fN} ⊂ Ek(g) such that the following

equations hold:

(5.7)


H

(
N∑
j=1

fjdd
cfj

)
= −ω

N∑
j=1

L(fj) = λk(g)
2

(
N∑
j=1

f 2
j

)
− 2λk(g)

(
N∑
j=1

|∇fj|2
)

+
N∑
j=1

|ddcfj|2 = 0.

The proof of this theorem is inspired by that of Proposition 4.9.

Proof. We may assume that Vol(M, g) = 1. We assume the condition (1). Let K

be the convex hull of {(H(fddcf), L(f)) | f ∈ Ek(g)} in H1,1(M ;R)×C∞(M ;R).

Set m := dimEk(g) and let {ua}ma=1 be an L
2(g)-orthonormal basis of Ek(g). Then

K is a positive hull of the finite points {H(uadd
cua), L(ua)}ma=1 and

{±H(uadd
cub),±δcδ(uaddcub)}1≤a ̸=b≤m. In particular, Proposition 2.8 implies that

K is a closed convex cone contained in a finite dimensional subspace of H1,1(M ;R)×
C∞(M ;R). We assume that (−ω, 0) /∈ K. Let V be a subspace in H1,1(M ;R) ×
C∞(M ;R) that contains K and (−ω, 0). We consider the product L2-inner metric

on V . Then the hyperplane separation theorem (Theorem 2.11(2)) implies that

there exists (α̃H , φ̃) ∈ H1,1(M ;R)× C∞(M ;R) such that the inequalities

(5.8)

∫
M

h(−ω, α̃H)dµ < 0 and

∫
M

h(η, α̃H)dµ+

∫
M

sφdµ ≥ 0

hold for all for all (η, s) ∈ K \{0}. Consider αH ∈ H1,1
0 (M ;R) and φ ∈ C∞

0 (M ;R)

respectively defined by

(5.9) αH := α̃H − 1

n

(∫
M

h(ω, α̃H)dµ

)
ω.

(5.10) φ := φ̃−
∫
M

φ̃dµ.

Set

α := αH + ddcφ = αH + ddcφ̃.

27



Then we have α ∈ Z1,1
0 (M ;R). For any f ∈ Ek(g) \ {0}, one has

Qα(f) =

∫
M

h(fddcf, α)dµ

=

∫
M

h(fddcf, αH)dµ+

∫
M

h(fddcf, ddcφ̃)dµ

=

∫
M

h(H(fddcf), α̃H)dµ− 1

n

[∫
M

h(fddcf, ω)dµ

] [∫
M

h(ω, α̃H)dµ

]
+

∫
M

L(f)φ̃dµ

=

∫
M

h(H(fddcf), α̃H)dµ+

∫
M

L(f)φ̃dµ+
λk(g)

n

[∫
M

f 2dµ

] [∫
M

h(ω, α̃H)dµ

]
> 0.

This contradicts the condition (1) and hence one concludes that (−ω, 0) ∈ K. This

implies that (1) ⇒ (2).

Conversely, we assume that there exists a finite subset {f1, · · · , fN} ⊂ Ek(g) sat-

isfying (5.7). Take α ∈ Z1,1
0 (M ;R) arbitrarily. Then there exist αH ∈ H1,1

0 (M ;R)

and φ ∈ C∞
0 (M ;R) such that α = αH + ddcφ. Then one has

N∑
j=1

Qα(fj) =
N∑
j=1

∫
M

h(fjdd
cfj, α)dµ

=

∫
M

h

(
N∑
j=1

fjdd
cfj, αH

)
dµ+

N∑
j=1

∫
M

h(fjdd
cfj, dd

cφ)dµ

=

∫
M

h(−ω, αH)dµ+
N∑
j=1

∫
M

L(fj)φdµ

= 0.

This implies that Qα is indefinite on Ek(g). This completes the proof. □

Combining Corollary 5.5 and Theorem 5.7, one concludes the following:

Theorem 5.8. Let (M,J, g, ω) be a compact Kähler manifold. Suppose that the

Kähler metric g is λk-extremal. Then there exists a finite subset {f1, · · · , fN} ⊂
Ek(g) satisfying (5.7). For k = 1, the existence of such a finite collection of eigen-

functions is also a sufficient condition for the Kähler metric g to be λ1-extremal.

Remark 5.9. For a compact Riemann surface, Theorem 4.10 and Theorem 5.8

are equivalent. In fact, (4.5) shows that if a nontrivial finite collection of λk(g)-

eigenfunctions {fj} satisfy
∑

j L(fj) = 0, then we have
∑

j f
2
j ≡ c for some c > 0.
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Hence we immediately obtain H(
∑

j fjdd
cfj) = −λk(g)c ω. This equivalence is

natural since deformations within the Kähler class and general volume-preserving

Kähler deformations are equivalent for a compact Riemann surface.

By Corollary 4.11, we immediately have the following:

Corollary 5.10. Let (M,J, g, ω) be a compact Kähler manifold. Suppose that

the Kähler metric g is λk-extremal. Then the eigenvalue λk(g) is not simple.

Recalling the remark before Proposition 4.13, one obtains the following from

Theorem 5.8:

Corollary 5.11. Let (M,J, g, ω) and (M ′, J ′, g′, ω′) be compact Kähler manifolds.

Assume that λ1(g) = λ1(g
′) and that g and g′ are both λ1-extremal for all the

volume-preserving deformations of the Kähler metrics. Then the product Kähler

metric g × g′ on (M,J) × (M,J) is λ1-extremal for all the volume-preserving

deformations of the Kähler metric.

Proof. By hypothesis, there exist finite subsets {fj} ⊂ E1(g) and {hk} ⊂ E1(g
′)

such that 
∑
j

HM (fjdd
cfj) = −ω,

∑
j

LM(fj) = 0

∑
k

HM ′ (hkdd
chk) = −ω′,

∑
k

LM ′(hk) = 0.

Then one has ∑
j

LM×M ′(fj × 1) +
∑
k

LM×M ′(1× hk)

=
∑
j

LM(fjdd
cfj) +

∑
k

LM ′(hk)

= 0.

We also have ∑
j

HM×M ′
(
(fj × 1)dM×M ′dcM×M ′(fj × 1)

)
=
∑
j

HM×M ′(fjdMd
c
Mfj ⊕ 0)

=
∑
j

HM(fjdMd
c
Mfj)⊕ 0

= −ω ⊕ 0.
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Similarly, we obtain∑
k

HM×M ′
(
(1× hk)dM×M ′dcM×M ′(1× hk)

)
= 0⊕−ω′.

Hence we obtain∑
j

H ((fj × 1)ddc(fj × 1)) +
∑
k

H ((1× hk)dd
c(1× hk)) = −ω ⊕−ω′,

where we omit the subscriptM×M ′. Thus one concludes that {fj×1}j∪{1×hk}k
satisfy (5.7). The proof is completed. □

From the above proof, one can immediately obtain the following corollary:

Corollary 5.12. Let (M,J, g, ω) and (M ′, J ′, g′, ω′) be compact Kähler manifolds.

Assume that λ1(g) 6= λ1(g
′). Then the product Kähler metric g × g′ on (M,J) ×

(M ′, J ′) is not λ1-extremal for all the volume-preserving deformations of the Kähler

metric.

The notion of λ1-extremality in Example 3.5 is stronger than that in Theorem

5.8. Hence we immediately obtain the following:

Example 5.13. Let G/K be a compact isotropy irreducible homogeneous Kähler

manifold. Then the metric is λ1-extremal for all the volume-preserving deforma-

tions of the Kähler metric.

We remark that one can also prove this fact directly from Theorem 5.8, using

a similar discussion to that in [35, Section 3]. It is known that the metric of a

compact isotropy irreducible homogeneous Kähler manifold is Einstein [40]. An

irreducible Hermitian symmetric space of compact type is a compact isotropy ir-

reducible homogeneous Kähler manifold. In fact, the converse also holds. That

is, a compact isotropy irreducible homogeneous Kähler manifold is an irreducible

Hermitian symmetric space of compact type [39, 21].

When the complex dimension is bigger than 1, the notion of λ1-extremality in

Corollary 5.11 is stronger than that in Proposition 4.13. The following example

shows the difference:

Example 5.14. Let (M,J, g, ω), (M ′, J ′, g′, ω′) be irreducible Hermitian symmet-

ric spaces of compact type with ρ = c ω and ρ′ = c′ω′ for some c, c′ > 0, where ρ

and ρ′ are the Ricci forms on M and M ′ respectively. By Example 5.13, g is λ1-

extremal for all the volume-preserving deformations of the Kähler metric and so is

g′. The result due to Nagano [28] shows that λ1(g) = 2c and λ1(g
′) = 2c′ (see also
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[36]). By Proposition 4.13, the product Kähler metric g×g′ on (M,J)×(M ′, J ′) is

λ1-extremal within its Kähler class. However, Corollary 5.11 and 5.12 imply that

the metric g × g′ is λ1-extremal for all the volume-preserving deformations of the

Kähler metric if and only if c = c′.

The simplest case of this example is the following:

Example 5.15. Let gFS be the Fubini-Study metric on the complex projective

space CP n. Take any c > 0. Then the product Kähler metric gFS × cgFS on

CP n × CP n is λ1-extremal in its Kähler class. Nevertheless, gFS × cgFS is λ1-

extremal for all the volume-preserving deformations of the Kähler metric if and

only if c = 1.

6. Complex Tori

In view of Theorem 5.8, the harmonic projector H and information about the

space of eigenfunctions are important. However, it is hard to find an explicit for-

mula for the harmonic projector H on a general Kähler manifold. It is also hard

to determine the space of eigenfunctions explicitly in general. However, the har-

monic projector H and the eigenfunctions can be written explicitly for a complex

torus. Using Theorem 4.10, we see that the metric on any flat complex torus is

λ1-extremal within its Kähler class. In addition, we use Theorem 5.8 to deduce

a condition for the flat metric to be λ1-extremal for all the volume-preserving

deformations of the Kähler metric.

Let γ1, . . . , γ2n be vectors in Cn that are linearly independent over R. We denote

by Γ the lattice inCn with basis {γ1, . . . , γ2n}. Let {zj}nj=1 be the standard complex

coordinates of Cn and {xj}2nj=1 the real coordinates defined by

zk = x2k−1 +
√
−1x2k (k = 1, . . . , n).

We remark that one should keep in mind this correspondence between the complex

and real coordinates in particular when considering examples that will appear later.

The lattice Γ acts on Cn by translation. Then the quotient space T n
Γ := Cn/Γ

becomes a complex manifold in a natural way. T n
Γ is called a complex torus. The

standard metric on Cn is given by
∑n

j=1 dz
j ⊗ dzj and its associated Kähler form

on Cn is given by

ω̃ :=

√
−1

2

n∑
j=1

dzj ∧ dzj.
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The canonical holomorphic projection Cn → Cn/Γ = T n
Γ induces a flat Kähler

metric g and a Kähler form ω on T n
Γ . If we express w1, w2 ∈ Cn as

wk = (w1
k, . . . , w

n
k ), wk = (u1k, . . . , u

2n
k ), wj

k = u2j−1
k +

√
−1u2jk (k = 1, 2)

in the complex coordinates (z1, · · · zn) and the real coordinates (x1, · · · , x2n) re-

spectively, then the standard inner product of w1 and w2 is given by

2n∑
j=1

uj1u
j
2 =

1

2
(w1 · w2 + w1 · w2).

Consider

Γ∗ := {w ∈ Cn | 1
2
(v · w + v · w) ∈ Z for all v ∈ Γ}

= {w ∈ Cn | exp (πi(v · w + v · w)) = 1 for all v ∈ Γ}.

Γ∗ is also a lattice in Cn and called the dual lattice of Γ. For any w ∈ Γ∗, we define

a function Φw : T n
Γ → C by

Φw(z) := exp
(
π
√
−1(z · w + z · w)

)
.

Then Φw is actually a well-defined function on the complex torus T n
Γ . It is known

that λ is an eigenvalue of the Laplacian on (T n
Γ , g) if and only if there exists w ∈ Γ∗

such that λ = 4π2|w|2, where |w|2 = w ·w (see [33, pp.272-273], for instance). We

set

S(λ) := {w ∈ Γ∗ | λ = 4π2|w|2}.

For λ 6= 0, the number #S(λ) is an even integer and so we define l(λ) ∈ Z by

l(λ) = #S(λ)/2. S(λ) can be written as

(6.1) S(λ) = {±w1,±w2, · · · ,±wl(λ)},

where each wν (ν = 1, · · · , l(λ)) is an element of Γ∗ with λ = 4π2|wν |2. For w ∈ Γ∗,

set

(6.2) φw(z) :=

√
2

Vol(T n
Γ )

Re (Φw(z)) =

√
2

Vol(T n
Γ )

cos

(
2π

2n∑
k=1

xkuk

)
,

(6.3) ψw(z) :=

√
2

Vol(T n
Γ )

Im (Φw(z)) =

√
2

Vol(T n
Γ )

sin

(
2π

2n∑
k=1

xkuk

)
,

where we use the real coordinates z = (x1, · · · , x2n) and w = (u1, · · · , u2n). We

give a proof to the following well-known fact:

32



Lemma 6.1. Let Γ be a lattice in Cn and Γ∗ its dual lattice. Let T n
Γ be the flat

torus defined by Γ. Let λ be a positive eigenvalue of the Laplacian and E(λ) its

real eigenspace. Let S(λ) be as (6.1). For w ∈ Γ∗, define the functions φw and ψw

by (6.2) and (6.3). Then {φwν , ψwν | ν = 1, · · · , l(λ)} is an L2-orthonormal basis

of E(λ).

Proof. Let A be an invertible 2n× 2n matrix such that Γ = AZ2n. Then we have

Vol(T n
Γ ) = detA. We also have Γ∗ = (AT )−1Z2n. Hence for each 1 ≤ j ≤ l(λ),

there exists yj ∈ Z2n such that wj = (AT )−1yj, where wj is regarded as a vector in

R2n. Then we have

∫
Tn
Γ

φwj
(x)φwk

(x)dx

=
2

Vol(T n
Γ )

∫
Tn
Γ

cos(2πwT
j x) cos(2πw

T
k x)dx

=
1

Vol(T n
Γ )

∫
Tn
Γ

(
cos(2π(wj + wk)

Tx) + cos(2π(wj − wk)
Tx)
)
dx

=
1

Vol(T n
Γ )

∫
Tn
Γ

(
cos(2π(yj + yk)

TA−1x) + cos(2π(yj − yk)
TA−1x)

)
dx

=
1

Vol(T n
Γ )

1

|detA−1|

∫
Tn
Z2n

(
cos(2π(yj + yk)

Tu) + cos(2π(yj − yk)
Tu)
)
du

=

∫
[0,1]2n

(
cos(2π(yj + yk)

Tu) + cos(2π(yj − yk)
Tu)
)
du

= δjk.

Here be cautioned that yj = yk is equivalent to wj = wk and the case where

yj = −yk, that is, where wj = −wk, is impossible by the choice of {wν}l(λ)ν=1. By

similar computations, we also have

∫
Tn
Γ

ψwj
(x)ψwk

(x)dx

=

∫
[0,1]2n

(
− cos(2π(yj + yk)

Tu) + cos(2π(yj − yk)
Tu)
)
du

= δjk
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and ∫
Tn
Γ

φwj
(x)ψwk

(x)dx

=

∫
[0,1]2n

(
sin(2π(yj + yk)

Tu)− sin(2π(yj − yk)
Tu)
)
du

= 0.

The proof is completed. □

Apostolov–Jakobson–Kokarev [1] proved that the metric on a compact homoge-

neous Kähler-Einstein manifold of positive scalar curvature is λ1-extremal within

its Kähler class (Proposition 4.14). We show that the flat metric on a complex

torus is λ1-extremal within its Kähler class.

Proposition 6.2. Let (T n
Γ , g) be a flat complex torus. Then the metric g is λ1-

extremal within its Kähler class.

Proof. In the proof, we use the notations introduced above. Take w ∈ S(λ1(g))

arbitarily. By Theorem 4.10, it suffices to show that the equation

(6.4) L(φw) + L(ψw) = 0.

holds. By a straightforward calculation, we have

|∇φw|2 =
2

Vol(T n
Γ )

[
4π2

2n∑
j=1

(uj)2

]
sin2

(
2π

2n∑
k=1

xkuk

)
= λ1(g)ψ

2
w.

Similarly, we have

|∇ψw|2 = λ1(g)φ
2
w.

On the other hand, it is straightforward to obtain

(6.5) ddcφw = −2π2
√
−1φw

n∑
α,β=1

wαwβdzα ∧ dzβ.

Hence we obtain

|ddcφw|2 = 4π4φ2
w

∑
α,β,γ,δ

gαδgβγwαwβwγwδ

= 16π4φ2
w

∑
α,β

|wα|2|wβ|2

= λ1(g)
2φ2

w.
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Similarly, we have

(6.6) ddcψw = −2π2
√
−1ψw

n∑
α,β=1

wαwβdzα ∧ dzβ

and

|ddcψw|2 = λ1(g)
2ψ2

w.

Thus we have

L(φw) + L(ψw)

=
(
λ1(g)

2φw − 2λ1(g)
2ψ2

w + λ1(g)
2φ2

w

)
+
(
λ1(g)

2ψw − 2λ1(g)
2φ2

w + λ1(g)
2ψ2

w

)
= 0.

(6.7)

Hence (6.4) is proved. □

The harmonic projector H : Ω1,1(T n
Γ ) → H1,1(T n

Γ ) plays an important role in

Theorem 5.8. We explain that harmonic forms on a flat complex torus are forms

with constant coefficients and find the explicit expression of the harmonic projector

H. Let ϕ be a (p, q)-form on T n
Γ . Then ϕ is expressed as

ϕ =
∑

|J |=p,|K|=q

ϕJKdz
J ∧ dzK ,

where J and K are multi-indices, and each ϕJK is a Γ-periodic complex-valued

function globally defined on Cn. A straightforward calculation shows that ϕ is a

harmonic form if and only if each ϕJK is a harmonic function. Hence the maximum

principle implies that ϕ is a harmonic form if and only if each ϕJK is constant.

Thus the harmonic projector H : Ω1,1(T n
Γ ) → H1,1(T n

Γ ) is given by

H(ϕ) =
1

Vol(T n
Γ )

n∑
α,β=1

(∫
Tn
Γ

ϕαβdµ

)
dzα ∧ dzβ

for a (1, 1)-form ϕ =
∑n

α,β=1 ϕαβdz
α ∧ dzβ, where dµ is the volume form of (T n

Γ , g).

(For details of the Hodge decomposition on a complex torus, see [4, Section 1.4].)

Theorem 6.3. Let (T n
Γ , g) be a flat n-dimensional complex torus. Let {wν}l(λk(g))

ν=1

be linearly independent vectors in Γ∗ satisfying λk(g) = 4π2|wν |2. If the flat metric

g is λk-extremal for all the volume-preserving deformations of the Kähler metric,
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then there exists {Rν ≥ 0}l(λk(g))
ν=1 such that the following equations hold:

(6.8)



l(λk(g))∑
ν=1

Rνw
α
νw

β
ν = 0 for 1 ≤ α 6= β ≤ n,

l(λk(g))∑
ν=1

Rν |wα
ν |2 = 1 for 1 ≤ α ≤ n.

For k = 1, the existence of such {Rν ≥ 0}l(λ1(g))
ν=1 is also a sufficient condition for

the metric g to be λ1-extremal for all the volume-preserving deformations of the

Kähler metric.

Proof. First we prove the former assertion. By theorem 5.8, we must have

(6.9) H

(
N∑
j=1

fjdd
cfj

)
= −

√
−1

2

n∑
α=1

dzα ∧ dzα

for some finite collection of eigenfunctions {fj}Nj=1 ⊂ Ek(g). Each eigenfunction fj

is of the form

fj(z) =

l(λk(g))∑
ν=1

ajνφwν + bjνψwν (ajν , bjν ∈ R).

Using (6.5) and (6.6), we obtain

fjdd
cfj = −2π2

√
−1

n∑
α,β=1

l(λk(g))∑
ν,τ=1

wα
νw

β
ν [ajνajτφwνφwτ + ajνbjτφwνψwτ

+ ajτbjνφwτψwν + bjνbjτψwνψwτ ]dz
α ∧ dzβ.

Hence one obtains

H(fjdd
cfj) =

−2π2
√
−1

Vol(T n
Γ )

n∑
α,β=1

l(λk(g))∑
ν=1

wα
νw

β
ν (a

2
jν + b2jν)dz

α ∧ dzβ.

Thus one obtains

(6.10)
N∑
j=1

H(fjdd
cfj) =

−2π2
√
−1

Vol(T n
Γ )

n∑
α,β=1

l(λk(g))∑
ν=1

wα
νw

β
ν (

N∑
j=1

a2jν + b2jν)dz
α ∧ dzβ.

Then (6.9) and (6.10) imply that we must have

l(λk(g))∑
ν=1

wα
νw

β
ν (

N∑
j=1

a2jν + b2jν) = 0 for 1 ≤ α 6= β ≤ n,

l(λk(g))∑
ν=1

|wα
ν |2(

N∑
j=1

a2jν + b2jν) =
Vol(T n

Γ )

4π2
for 1 ≤ α ≤ n.
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Setting Rν := 4π2(
∑N

j=1 a
2
jν + b2jν)/Vol(T

n
Γ ), one concludes the foemer assertion.

Next we prove the latter assertion. We assume the existence of {Rν ≥ 0}l(λ1(g))
ν=1

satisfying (6.8). We use Theorem 5.8 to prove the proposition. We show that

{
√
Rνφwν ,

√
Rνψwν | ν = 1, · · · , l(λ1(g))} satisfies (5.7). By (6.7), we immediately

have

L(
√
Rνφwν ) + L(

√
Rνψwν ) = 0

for each ν. Hence we have
l(λ1(g)∑
ν=1

L(
√
Rνφwν ) + L(

√
Rνψwν ) = 0.

Thus it suffices to prove

l(λ1(g))∑
ν=1

Rν [H(φwνdd
cφwν ) +H(ψwνdd

cψwν )] = −aω

for some a > 0. Using (6.5) and (6.6), one obtains

l(λ1(g))∑
ν=1

Rν [H(φwνdd
cφwν ) +H(ψwνdd

cψwν )]

=
−2π2

√
−1

Vol(T n
Γ )

l(λ1(g))∑
ν=1

n∑
α,β=1

Rν

(∫
Tn
Γ

(ϕ2
wν

+ ψ2
wν
)dµ

)
wα

νw
β
νdz

α ∧ dzβ

=
−4π2

√
−1

Vol(T n
Γ )

l(λ1(g))∑
ν=1

n∑
α,β=1

Rνw
α
νw

β
νdz

α ∧ dzβ.

By hypothesis, the proof is completed. □

The notion of λ1-extremality in Theorem 6.3 is weaker than that in Theorem

3.4. Hence Theorem 6.3 gives a necessary condition for a flat complex torus to

admit an isometric minimal immersion into a Euclidean sphere of some dimension

by first eigenfunctions. This is the only currently known necessary condition for

a flat complex torus to admit an isometric minimal immersion into a Euclidean

sphere by first eigenfunctions. Since the condition (6.8) is not clear, we consider

simple cases in what follows. First we consider the case where dimEk(g) = 2, that

is, l(λk(g)) = 1. Then we have the following corollary:

Corollary 6.4. Let (T n
Γ , g) be a flat n-dimensional complex torus. Suppose that

dimEk(g) = 2 holds. Then the metric g is not λk-extremal.

Proof. We prove the assertion by contradiction. Assume that the metric g is λk-

extremal. By hypothesis, there exists a pair w, −w ∈ Γ∗ ⊂ Cn uniquely up to
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sign such that λk(g) = 4π2|w|2. First we show that the vector w is of the form

w = (0, · · · , ξ, · · · , 0) for some ξ ∈ C. The first equation in (6.8) implies wαwβ = 0

for any pair of distinct integers (α, β). Since w = (w1, · · · , wn) is a nonzero vector,

we have wα 6= 0 for some α. Let wj = u2j−1 +
√
−1u2j for each 1 ≤ j ≤ n. Then

for any β 6= α, we have

(6.11) u2α−1u2β−1 = −u2αu2β

and

(6.12) u2αu2β−1 = u2α−1u2β.

Assume that u2α 6= 0 and u2β 6= 0. Then by (6.12), there exists c ∈ R such that

u2α−1 = cu2α and u2β−1 = cu2β. Substituting these for (6.11), one obtains

c2u2αu2β = −u2αu2β.

This is a contradiction and so we have u2α = 0 or u2β = 0.

If we have u2α = 0, then we must have u2α−1 6= 0 since we now assume wα 6= 0.

Hence by (6.12), we have u2β = 0. Then (6.11) immediately implies u2β−1 = 0.

Thus we have u2β−1 = u2β = 0, that is, wβ = 0.

If we have u2β = 0, then (6.12) implies that we have u2α = 0 or u2β−1 = 0. We

have already considered the case where u2α = 0. Hence we consider the case where

u2β−1 = 0, but this immediately implies wβ = 0.

Thus we conclude that w is of the form w = (0, · · · , ξ, · · · , 0). However, this

contradicts the second equation in (6.8). The proof is completed. □

Example 6.5. The standard lattice: Γ = Z2n. Consider the standard complex

torus Cn/Z2n with the flat metric g. Let {ej}nj=1 be the standard orthonormal

basis of Cn. Set

w2k−1 := ek, w2k :=
√
−1ek

for every 1 ≤ k ≤ n. Then we have S(λ1(g)) = {±wν}2nν=1 and l(λ1(g)) = 2n. It

is clear that (6.8) is equivalent to the condition where R2k−1 + R2k = 1 for any

1 ≤ k ≤ n and so the torus Cn/Z2n satisfies the assumption of Proposition 6.3.

Hence the metric g is λ1-extremal for all the volume-preserving deformations of

the Kähler metric. This fact is not new since the metric is λ1-extremal for all the

volume-preserving metric deformations. This can be seen from Theorem 3.4 and

the classical fact that the standard torus admits an isometric minimal immersion
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into a unit sphere by first eigenfunctions as follows:

Cn/Z2n → S4n−1

(√
n

2π2

)
,

(x1, . . . , x2n) 7→
(

1

2π
cos(2πx1),

1

2π
sin(2πx1), . . . ,

1

2π
cos(2πx2n),

1

2π
sin(2πx2n)

)
.

Example 6.6. The checkerboard lattice. First we consider the (real) 4-dimensional

checkerboard lattice D4, which is defined by

D4 := {(x1, . . . , x4) ∈ Z4 | x1 + · · ·+ x4 ∈ 2Z}.

The dual lattice D∗
4 is known to be the lattice in C2 with the basis (1, 0), (0, 1),

(
√
−1, 0), (1+

√
−1

2
, 1+

√
−1

2
). (See [9, pp.117-120], for instance.) Set

w1 := (1, 0), w2 := (0, 1), w3 := (
√
−1, 0), w4 := (0,

√
−1),

w5 :=

(
1 +

√
−1

2
,
1 +

√
−1

2

)
, w6 :=

(
1−

√
−1

2
,
1−

√
−1

2

)
,

w7 :=

(
1 +

√
−1

2
,−1 +

√
−1

2

)
, w8 :=

(
1−

√
−1

2
,−1−

√
−1

2

)
,

w9 :=

(
1 +

√
−1

2
,
1−

√
−1

2

)
, w10 :=

(
1 +

√
−1

2
,−1−

√
−1

2

)
,

w11 :=

(
1−

√
−1

2
,
1 +

√
−1

2

)
, w12 :=

(
1−

√
−1

2
,−1 +

√
−1

2

)
.

If we set R1 = · · · = R4 = 1/4, R5 = · · · = R12 = 1/8, then it is elementary to

check that (6.8) holds for k = 1. Hence by Theorem 6.3, the flat metric g on the

2-dimensional complex torus C2/D4 is λ1-extremal for all the volume-preserving

deformations of the Kähler metric. This fact is not new since the metric is λ1-

extremal for all the volume-preserving metric deformations. This follows from

Theorem 3.4 and the fact that there exists a 2-parameter family of isometric mini-

mal immersions by first eigenfunctions from C2/D4 into the unit sphere S
23 ⊂ R24.

(See Example 1.1 in [22].)

In fact, for any m ≥ 3, the checkerboard lattice Dm is defined as a lattice in Rm

by

Dm := {(x1, . . . , xm) ∈ Zm | x1 + · · ·+ xm ∈ 2Z}.

We show the following:

Proposition 6.7. For any m ≥ 3, the flat torus Rm/Dm admits an isometric

minimal immersion by first eigenfunctions into a Euclidean sphere. Hence the flat
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metric on Rm/Dm is λ1-extremal for all the volume-preserving metric deforma-

tions.

Proof. The property of Dm should be considered separately for the case m = 3,

m = 4 and m ≥ 5. For the case m = 3 and m = 4, the assertion has been

proved by Lü–Wang–Xie [22]. (See Example 4.3 in [22] for m = 3 and Example

1.1 in [22] for m = 4.) Hence it suffices to consider the case where m ≥ 5. For

m ≥ 5, D∗
m is a lattice with the basis {ej}m−1

j=1 ∪ {1
2

∑m
k=1 ek}, where {ej}mj=1 is

the standard basis in Rm. (See [9, p.120], for instance.) The shortest vectors are

exactly the 2m vectors {±ej}mj=1. Thus we have λ1(g) = 4π2 and E1(g) is spanned

by {cos(2πxj), sin(2πxj)}mj=1, where {xj}mj=1 is the standard coordinate in Rm. It

is obvious that the map

Rm/Dm → S2m−1

(√
m

2π

)
,

(x1, . . . , xm) 7→
(

1

2π
cos(2πx1),

1

2π
sin(2πx1), . . . ,

1

2π
cos(2πxm),

1

2π
sin(2πxm)

)
is an isometric minimal immersion. The latter assertion immediately follows from

the former one and Theorem 3.4. □

Before [22], only the standard torus (Example 6.5) had been an example of higher

dimensional tori that admit an isometric minimal immersion into a Euclidean

sphere by first eigenfunctions. Lü–Wang–Xie [22] classified all the 3-dimensional

and 4-dimensional tori that admit an isometric minimal immersion into a Euclidean

sphere of some dimension by first eigenfunctions. Hence only the standard torus

has been an example of tori of dimension higher than 4 that admit an isometric

minimal immersion into a Euclidean sphere by first eigenfunctions, but Proposition

6.7 gives new examples.

Example 6.8. For a, b ∈ [1,∞), consider the lattice Γa,b in C2 with the lat-

tice basis (1, 0), (a−1
√
−1, 0), (0, 1), (0, b−1

√
−1). Let T 2

a,b be the 2-dimensional

complex torus determined by Γa,b with the flat metric ga,b. Let Γa ⊂ C be the

lattice with the lattice basis (1, 0), (a−1
√
−1, 0) and (T 1

a , ha) the flat 1-dimensional

complex torus determined by Γa. Then (T 2
a,b, ga,b) is the product of (T 1

a , ha) and

(T 1
b , hb). We have λ1(T

1
a , ha) = 1 = λ1(T

1
b , hb). Hence Proposition 6.2, Re-

mark 5.9 and Corollary 5.11 imply that the metric ga,b on T 2
a,b is λ1-extremal

for all the volume-preserving deformations of the Kähler metric. However, since

we have E1(ga,b) = span{cos(2πx1), sin(2πx1), cos(2πx3), sin(2πx3)}, the flat torus
(T 2

a,b, ga,b) does not admit an isometric minimal immersion into a Euclidean sphere
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by first eigenfunctions. Thus ga,b is not λ1-extremal for all the volume-preserving

metric deformations.

Example 6.9. For a, b ∈ [1,∞), consider the lattice Γ̃a,b in C2 with the lattice

basis (1, 0), (
√
−1, 0), (0, a−1), (0, b−1

√
−1). Let T̃ 2

a,b be the 2-dimensional complex

torus determined by Γ̃a,b with the flat metric g̃a,b. Let (T 1
std, hstd) be the flat 1-

dimensional complex torus determined by the lattice with the lattice basis (1, 0),

(
√
−1, 0). Let (T 1

a,b, ha,b) be the flat 1-dimensional complex torus determined by the

lattice with the lattice basis (0, a−1), (0, b−1
√
−1). Then (T̃ 2

a,b, g̃a,b) is the product of

(T 1
std, hstd) and (T 1

a,b, ha,b). We have λ1(T
1
std, hstd) = 1 and λ1(T

1
a,b, ha,b) = min{a, b}.

Hence if we have a = 1 or b = 1, then Proposition 6.2, Remark 5.9 and Corollary

5.11 imply that the metric g̃a,b on T̃
2
a,b is λ1-extremal for all the volume-preserving

deformations of the Kähler metric. On the other hand, if we have a > 1 and

b > 1, then by Corollary 5.12, g̃a,b is not λ1-extremal for all the volume-preserving

deformations of the Kähler metric.

In Example 6.8 and Example 6.9, if we ignore the complex structure on C2 and

regard C2 as R4, then we have Γa,b = Γ̃a,b. However, whether the flat metric

is λ1-extremal is different in Example 6.8 and Example 6.9. Hence Example 6.8

and Example 6.9 show that the notion of λ1-extremality actually depends on the

complex structure.

Finally we give a 1-parameter family of 2-dimensional complex tori whose flat

metrics are not λ1-extremal for all the volume-preserving deformations of the

Kähler metric.

Example 6.10. For π/3 < θ < π/2, we consider the lattice Γθ ⊂ C2 with the

lattice basis (1, 0), (cos θ, sin θ), (
√
−1, 0), (

√
−1 cos θ,

√
−1 sin θ). Let gθ be the

flat metric on C2/Γθ. It is straightforward to check that the dual lattice Γ∗
θ

is the lattice with the basis w1 := (1,− cos θ/ sin θ), w2 := (0, 1/ sin θ), w3 :=

(
√
−1,− cos θ/ sin θ), w4 := (0,

√
−1/ sin θ). Then we have S(λ1(gθ)) = {±wν}4ν=1

and so the multiplicity of λ1(gθ) is 8. If g is λ1-extremal, then Theorem 6.3 implies

that there exists {Rν}4ν=1 such that

−cos θ

sin θ
(R1 +R3) = 0, R1 +R3 = 1,

1

sin2 θ
(R2 +R4) = 1.

Since we have π/3 < θ < π/2, this is a contradiction. Hence gθ is not λ1-extremal.

C2/Γθ is not a product of 1-dimensional flat complex tori. In fact, assume that

C2/Γθ is a product of (T1, h1) and (T2, h2), where each is a 1-dimensional flat

complex torus. If we had λ1(h1) = λ1(h2), then by Proposition 6.2, Remark 5.9
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and Corollary 5.11, gθ would be λ1-extremal. Hence we have λ1(h1) 6= λ1(h2).

We may assume λ1(h1) < λ1(h2). Then the multiplicity of of λ1(h1) is equal to

that of λ1(gθ), that is, 8. This is a contradiction since the multiplicity of the first

eigenvalue of a 1-dimensional flat complex torus is at most 6 (see [11], for example).

Thus C2/Γθ is not a product of 1-dimensional complex tori. Let Γ̃θ ⊂ R2 be the

lattice with the lattice basis (1, 0), (cos θ, sin θ). Let (R2/Γ̃θ, hθ) be the flat real

2-dimensional torus. If we ignore the complex structure on C2 and regard it as

R4, then (R4/Γθ, gθ) is a Riemannian product of (R2/Γ̃θ, hθ) and (R2/Γ̃θ, hθ).
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