Deformation of Kahler Metrics and an Eigenvalue Problem for
the Laplacian on a Compact Kahler Manifold
(AV T b r—F—2RIKICBI 27— —3RBOER L 775> 7 Y OEFHERE)

Kazumasa Narita



CONTENTS

1. Introduction
2.  Preliminaries

2.1. Notations and basic facts in Kéhler geometry

2.2. Hyperplane separation 10
3. Behaviors of eigenvalues with respect to metric deformations 12
4. Work by Apostolov—Jakobson—Kokarev 16
5. A Ap-extremal Kéahler metric 23
6. Complex Tori 31
References 42

1. INTRODUCTION

Let M be a compact manifold (without boundary) of dimension m. Given
a Riemannian metric ¢ on M, the volume Vol(M, g) and the Laplace-Beltrami
operator A, are defined. Let 0 = Xo(g) < M(g) < Aa(g) < ---Ae(g) < -+ be the
eigenvalues of A,. The quantity A(g)Vol(M, g)>/™ is invariant under scaling of the
metric g. Hersch [16] proved that on a 2-dimensional sphere S?, the scale-invariant
quantity A;(g)Area(g) is maximized exactly when ¢ is a round metric. Inspired by

the work, Berger [2] posed the question whether

3w

A1 (M) :=sup A\ (g)Vol(M, g)

9
is finite for a compact manifold M of dimension m. For a surface M, A;(M) is
bounded by a constant depending on the genus [41, 17]. Berger [2] also conjec-
tured that for a 2-dimensional torus T2, the equilateral flat metric attains A (7%).
Nadirashvili [27] settled Berger’s conjecture affirmatively. In the same paper, he
proved a theorem that if a metric g on a given surface M is extremal for the func-
tional Ay : g — Ar(g) with respect to all the volume-preserving deformations of
the metric, then (M, g) admits an isometric minimal immersion into a Euclidean
sphere by first eigenfunctions. After that, El Soufi-Tlias [11] simplified the proof
of the theorem and generalized it to a compact manifold M of any dimension for

k = 1. Later, El Soufi-Ilias [13] improved this result and proved the following:

Theorem 1.1 ([27], [11], [13]). (Theorem 3.4) Let (M, g) be a compact m-dimensional
Riemannian manifold. If the metric g is extremal for the functional Ay with re-

spect to all the volume-preserving deformations of the metric, then there exists a



finite collection of Ai(g)-eigenfunctions {fi,..., fx} such that F := (f1,---, fn) :
(M,g) — RN is an isometric minimal immersion into SY=1(y/m/\(g)) € RY.

For k = 1, the converse also holds.

For the precise definition of extremality of the functional \;, see Definition 3.3
in Section 3. For a surface M, there has been a remarkable progress in the study
of Ay(M) such as [30], [18], [31], [32] and [19].

On the other hand, on any compact manifold M with m > 3, one can construct
a 1-parameter family {g; };0 such that the quantity \;(g,)Vol(M, g;)*/™ diverges to
infinity as ¢ goes to infinity [8]. (See also [6], [26], [25], [37] and [38].) This motivates
us to restrict ourselves to studying the functional A\; only in a certain class of
metrics. For example, for a given Riemannian metric g on M, the restriction of
the functional A; to the metrics in its conformal class with fixed volume is bounded
20, 10]. El Soufi-Ilias [12, 13] proved the following:

Theorem 1.2 ([12], [13]). (Theorem 3.7) Let (M, g) be a compact m-dimensional
Riemannian manifold. If the metric g is extremal for the functional Ay with re-
spect to all the volume-preserving deformations within its conformal class, then
there exists a finite collection of Ai(g)-eigenfunctions { f1,..., fx} such that F :=
(fi, -, fn) : (M, g) — RY is a harmonic map into SY~1(1/m/Ai(g)) € RN with

2=

constant energy density |dF m. For k = 1, the converse also holds.

On the other hand, Bourguignon—Li—Yau [7] proved the following result:

Theorem 1.3 ([7]). (Theorem 4.1) Let (M, J) be a compact complex n-dimensional
manifold that admits a full holomorphic immersion ® : (M, J) — CPY. Let ops
be the Fubini-Study form on CPY with constant holomorphic sectional curvature

1. Then, for any Kéhler form w on (M, J), the first eigenvalue \;(w) satisfies

N—i—lfM(I)*JFg/\w”_l
n .

)\1(0)) S N fM o

Stokes theorem implies that A;(w) is bounded by a constant depending on only
n, N, ® and the Kéhler class [w]. The above theorem implies that the Fubini-
Study metric on CPY is a A;-maximizer in its Kéhler class. Biliotti-Ghigi [5]
generalized this result and showed that the canonical Kahler-Einstein metric on
a Hermitian symmetric space of compact type is a A\j-maximizer in its Kahler
class (Theorem 4.2). Motivated by these results, Apostolov—Jakobson-Kokarev [1]
proved the following:



Theorem 1.4 ([1]). (Theorem 4.10) Let (M, J, g,w) be a compact Kahler manifold
of complex dimension n. If the Kahler metric ¢ is extremal for the functional A\

within its K&hler class, then there exists a nontrivial finite collection of Ai(g)-

eigenfunctions {fi,..., fx} satisfying the equation
N N N

(1.1) M(9)? Y 17 = 22(9) Y IVF1P+ ) lddefi? = 0.
=1 j=1 j=1

For k = 1, the converse also holds.

Although we do not explain the precise definition of the extremality in Theorem
1.4 here, we remark that the metric maximizing \; in its Kahler class is extremal
for the functional A\; within its K&hler class. (See Definition 4.3 for the precise
definition of the extremality of a Kéhler metric within its K&hler class.) Using

(1.1), Apostolov—Jakobson-Kokarev [1] also proved the following:

Proposition 1.5. ([1])(Proposition 4.14) The metric on a compact homogeneous
Kahler-Einstein manifold of positive scalar curvature is extremal for the functional

A1 within its Kahler class.

However, compared to Theorem 1.1 and Theorem 1.2, the geometric meaning of
(1.1) is not clear, whence further study should be done.

Let (M, J) be a compact complex manifold satisfying the assumption of Theorem
1.3. Let H"Y(M, J;R) :== HYY (M, J) N H3p(M). Then the map

H" (M, J;R) = R, [w] r—>/ P*opg AW
M

is a well-defined continuous function. Thus this is bounded on the compact subset
{lw] € HY' (M, J;R) | [,,w™ = 1}. In other words, the functional ), is bounded
on the set of Kéhler metrics with fixed volume on (M, J). However, the property
of the A\;-maximizing Kahler metrics has not been studied.

In the main part of this thesis, on a compact complex manifold (M, J), we intro-
duce the notion of A\g-extremal Kéhler metric by considering all volume-preserving
deformations of the Kahler metric. Be cautioned that we fix the complex struc-
ture J and consider only .J-compatible Kahler metrics. (See Definition 5.1 for the
precise definition of the Ag-extremality.) The notion of A\j-extremality introduced
by the author is stronger than the extremality in Theorem 1.4, but weaker than

that in Theorem 1.1. The first main theorem is the following:

Theorem 1.6. (Theorem 5.8) Let (M, J, g,w) be a compact Kéhler manifold.

The Kahler metric g is Aj-extremal if and only if there exists a finite collection of



N
=1

4 N
H (Z fjddcfj> = —w,
j=1
N N N
Ai(g)? (Z ff) —2)(9) <Z |ij|2> +) " lddefiP =0
j=1 j=1 j=1

hold. Here H is the harmonic projector, which is defined due to the Hodge decom-

eigenfunctions { f; such that the equations

(1.2)

\

position on a compact Kéahler manifold.

It is obvious that (1.2) implies (1.1). We also give an example of a Kéhler metric
that is Aj-extremal within its Kahler class, but not so for all volume-preserving
deformations of the Kéhler metric (Example 5.14 and Example 5.15).

In the final part of this thesis, we consider flat complex tori. It is known that
for a flat tori, the multiplicity of each eigenvalue is even. We have the following

proposition, which should be compared with Proposition 1.5.

Proposition 1.7. (Proposition 6.2) Let (7}, g) be a flat complex torus determined
by a lattice I' C C". Then the flat metric g is extremal for the functional A\; within

its Kahler class.

Montiel-Ros [23] showed that among all the real 2-dimensional flat tori, only the
square torus R?/Z? admits an isometric minimal immersion into a 3-dimensional
Euclidean sphere by first eigenfunctions. Later, using Theorem 1.1, El Soufi-Ilias
[11] improved this result. That is, they proved that a real 2-dimensional flat torus
admits an isometric minimal immersion into a Euclidean sphere of some dimension
by first eigenfunctions if and only if the torus is the square torus or the equilateral
torus. Recently, Lii-Wang—Xie [22] classified all the 3-dimensional tori and 4-
dimensional tori that admit an isometric minimal immersion into a Euclidean
sphere of some dimension by first eigenfunctions. For (real) dimension higher than
4, the standard torus is the only currently known example that admits an isometric
minimal immersion into a Euclidean sphere by the first eigenfunctions. We will

prove the following:

Theorem 1.8. (Theorem 6.3) Let (71, g) be a flat n-dimensional complex torus.
Let {w,,}f,(i’{(g)) be linearly independent vectors in I'* satisfying \y(g) = 47%|w, |?,

where [(A\(g)) is half of the multiplicity of Ax(g). If the flat metric g is Ag-extremal

for all the volume-preserving deformations of the Kahler metric then there exists



{R, > O}f,(i’j(g ) such that the following equations hold:

( 1(Ae(9))
Ra%w? =0 for 1<a#p<n,
v=1
1(Ax(9))
Z RJwef> =1 for 1<a<n.

\ v=1

For k = 1, the converse also holds.

The notion of A\j-extremality in the above theorem is stronger than the extremal-
ity in Theorem 1.4, but weaker than that in Theorem 1.1. Hence Theorem 1.8 gives
a necessary condition for a flat complex torus to admit an isometric minimal im-
mersion into a Euclidean sphere by first eigenfunctions. This is the only currently
known necessary condition for a flat torus of dimension higher than 5 to admit
an isometric minimal immersion into a Euclidean sphere by first eigenfunctions.
We also show that if the multiplicity of the first eigenvalue of a flat complex torus
is 2, then the flat metric on the torus is not Aj-extremal in our sense (Corollary
6.4). We also show that the flat torus R™/D,, (m > 3), where D,, is a lat-
tice called the checkerboard lattice, admits an isometric minimal immersion by
first eigenfunctions (Proposition 6.7). This result was obtained by Lii-Wang—Xie
[22] for m = 3,4. For (real) dimension higher than 4, the standard torus is the
only currently known example that admits an isometric minimal immersion into
a Euclidean sphere by the first eigenfunctions. Hence R™/D,, (m > 3) are new
examples. We consider several examples of 2-dimensional complex tori and see
that the notion of A\;-extremality actually depends on the complex structure on an
underlying compact manifold (Example 6.8 and Example 6.9).

The main part of this thesis is based on the author’s preprint [29].

Organization of this thesis. In Section 2, we review basic facts in Kéahler
geometry and convex geometry for later use. In Section 3, we review previous
studies on behaviors of eigenvalues with respect to metric deformations. In Section
4, we review the work by Apostolov—Jakobson—Kokarev [1]. Section 5 and Section
6 are the main part of this thesis. In Section 5, we introduce the notion of Ag-
extremal Kéahler metric different from that due to Apostolov et al., and prove
Theorem 1.6 (Theorem 5.8). In Section 6, we consider whether the flat metric on
a complex torus is Ag-extremal. We prove Proposition 1.7 (Proposition 6.2) and
Theorem 1.8 (Theorem 6.3).
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2. PRELIMINARIES

2.1. Notations and basic facts in Kahler geometry. In this subsection, we
fix some notations and review some basic facts in Kahler geometry for later use.
We refer the readers to the textbooks [14], [24] and [34].

Let (M, J) be a complex manifold of complex dimension n. For 0 < r < n, let
A"T*M be the exterior cotangent bundle and Q" (M) be the set of smooth sections
of A"T*M. Let A"T*"M ®gr C be the complexification of A"T*M. We define a
complex bundle APYM by

APIN = | {z} x spang{(dz")o A+ A (d2?)y A (dZ5)p A= A (dZF),
zeM

’jl<”'<jp7 ]{'1<"'</{3q},

where {27}_, is a local holomorphic coordinate around x € M. APIM is a well-
defined complex subbundle of APTT*M @r C. We have

ANT*M@r C= @ AM.
ptg=r
Let QP7(M) be the set of smooth sections of AP9M , each element of which is called

a (p, q)-form.
A Riemannian metric g on (M, J) is called Hermitian if g satisfies

9(X,Y)=g(JX,JY)

for all vector fields X, Y. The C-bilinear extension of g to the complexified tangent
bundle 7'M ®@g C is also denoted by g. Set

’ o 0
%= 9\ 57 g

in a local holomorphic coordinate {2’}7_,. Then the n x n matrix (g;z) is a
Hermitian matrix. A (p,q)-form « is called real if « satisfies the condition that
@ = «. It immediately follows that if a (p, ¢)-form « is real, then « is a (p, p)-form.

When a (1, 1)-form « is locally expressed as a = / —1043%de AdZzF, o is real if and



only if the matrix (o) is Hermitian. For a Hermitian metric g on (M, J), the
formula

w(X,Y) :=g(JX,Y)
defines a real (1,1)-form w. In a local holomorphic coordinate {2’ }i—1, w can be

locally expressed as

(2.1) w=V—1gzdz' A dz"*.
The Riemannian volume form du on (M, J, g,w) is given by
wn

If w is d-closed, then the Hermitian metric ¢ is called a Kdhler metric, w is called
a Kdher form and (M, J, g,w) is called a Kdhler manifold. The following lemma

is very useful in computations:

Lemma 2.1. Let (M, J,g,w) be a Kéhler manifold of complex dimension n. For
any x € M, there exists a local holomorphic coordinate {2/}7_, around z such

that the equations

ang

99,%
97(x) = dj, W@) =0, -

ozt (@) =0

hold for any 1 < j,k,1 < n.
Hereinafter, suppose that (M, J, g,w) is a compact Kahler manifold (without

boundary) of complex dimension n. Let du be its volume form. For a € QY(M),

a vector field of is uniquely defined so that
a(X) = g(of, X)

for any vector field X. This correspondence gives an isomorphism between 7™M
and T'M. We define a fiber metric ¢g* on T*M by

g*(a, B) == g(of, 5%).
For at,...,a", B, ..., 8" € QY(M), we define
gar(@' Ao Aa” BEA A BT = det (g*(aj,ﬁk))lgxkg.

We extend this R-bilinearly and define a fiber metric gx» on A”T™* M. The metric
gar can also be extended C-bilinearly to A"T™* M ®g C and we use the same notation
gar for the fiber metric. We define a Hermitian fiber metric hyr on A"T*M Qg C
by

har(a, B) := gar (@, B).



If § is real, then we clearly have hxr(a,3) = gar(a,3). In what follows, we

abbreviate hyr as h when there is no room for confusion. By (2.1), we have

km

) gt g i 0E smsk
(2.3)  |w]" = h(w,w) = —gz9m det e = g;x9mg’"g" = 0y'6,, = 1.
The following lemma will be used later:

Lemma 2.2. ([34, Lemma 4.7], [1]) Let (M, J, g,w) be a Kdhler manifold of com-

plex dimension n. For any pair of real (1,1)-forms o and /3, one has
h(a, B)w™ = h(a,w)h(B,w)w™ —n(n — a A B AW 2
For any 0 < p,q < n, we define a C-linear map * : APIM — A""2""P)M by
aAxf = h(a,B)du  for any a, f € QPI(M).

This map = is called the Hodge *-operator. We have (x|arars)? = (—1)P and so
% APIM — A"~2""P M is an isomorphism. Using (2.2) and (2.3), one obtains

wA (xw) =n-du =

(n—1)!

and so
wnfl
o)

This implies that the equation

|
2.4 a/\w”_lzn—l!a/\*w:n—l!h&,ww—:—ha,ww"

|

nl n

holds for any (1,1)-form a.
Set d° := /—1(0 — 0). Then we have

dd® = /=1(0 + 9)(0 — 9) = 2+/—100.
Set
0:= —xd*, 0°:=—x*d°*,
O = —x0x, 0 :=—%0x.

Then they are L?*-adjoint operators of d, d¢, 9 and O respectively. We define the
Laplacian Ay by Ay := do 4 dd. Since g is Kahler, we have

(2.5) A, =2(00" +9°0) = 2(30" + 9*0).

If there exists f € C*°(M)\{0} such that A, f = Af, then A is called an eigenvalue
of the Laplacian A,. It is known that the eigenvalues of the Laplacian A, are

nonnegative and form a discrete sequence that diverges to +o0o. We denote the



eigenvalues by 0 = Ao(g) < Ai(g9) < Aa(g) < -~ Mel(g) < ---. For any k € N,
let Ex(g) be the vector space of real-valued eigenfunctions of A, corresponding
to Ak(g). That is, Ex(g) is given by Ei(g) = Ker(A, — A\e(g)I), where I is the
identity map acting on functions. It is also known that Ej(g) is finite dimensional
for any k € N. The positive integer dimFy(g) is called the multiplicity of A\.(g).
The eigenvalue A\i(g) is called simple if its multiplicity is exactly 1. For a complex-

valued function f, A,f can be locally expressed as

92
2.6 Ay f=—2¢"—
( ) gf g azjazk
in a local holomorphic coordinate {27}7_; (see [34, p. 33]). Hence we have
- 0? —
(2.7) A, f = —2¢7" S —2h(V/—100f,w) = —h(dd° f,w).

021 0z"
Thus (2.4) and (2.7) imply
(2.8) ndd®f A"t = h(dd°f, w)w" = — (A, fw"™.

A (p, q¢)-form « is called harmonic if it satisfies Aja = 0, which is equivalent to
the condition that « satisfies both da = 0 and & o = 0. Set

HPUM) = {a € QPI(M) | Ayja = 0}.
We state the Hodge-Dolbeault theorem:

Theorem 2.3. Let (M, J, g,w) be a compact Kdhler manifold. Then HP4(M)
is finite dimensional. Furthermore, there exist unique operators H : QP4(M) —
HPI(M) and G : QP9(M) — QP9(M) such that all of the following hold:

GHPI(M)) =0, dG=Gd, 8 G=GI and

1
a=H(a)+ §A9G(a) for any a € QP9(M).

Since we have (2.5), any o € QP9(M) can be written as
o =0 (3G(a)) + H(a)+ D (5*G(a)> .
This gives the following L?-orthogonal decomposition:
(2.9) OPYM) = 9" QP (M) @ HPI(M) @ I~ (M).

We call the L?-orthogonal projection H a harmonic projector. We have the follow-

ing lemma:

Lemma 2.4. Let (M, J, g,w) be a compact Kéhler manifold. Let H : QPP(M) —
HPP(M) be the harmonic projector. Then H(«) is real for any real (p, p)-form a.



We state the dd°-lemma:

Lemma 2.5. (dd‘lemma) Let (M, J, g,w) be a compact Kéhler manifold and «
a real d-closed (1, 1)-form. If « is d-, 0- or D-exact, then there exists a real valued

smooth function ¢ such that a = ddp.

2.2. Hyperplane separation. In this subsection, we recall some basic facts about
hyperplane separation in a finite dimensional vector space for later use. For details,

we refer the readers to the book [15] for example.

Definition 2.6. ([15, p.42, p.46]) Let V' be a finite dimensional vector space over
R. If + € V can be expressed as x = 7 | a;z; for some {z;}}_;, C V and
{a; > 0}7_, with >°7 | a; = 1, then x is called a convexr combination of {x;}}_,.
Let A be a subset of V. The convex hull of A is defined as the set of all convex
combinations of points in A. Let U := {uy,...,u,} be a nonempty finite subset of
V. The positive hull of U is defined as the set

{amqus + -+~ apu, €V |a; >0forall 1 <j<n}.
We have the following propositions:

Proposition 2.7. ([15, p.44]) Let V' be a finite dimensional vector space over R.

If a subset A C V is compact, then the convex hull of A in V' is also compact.

Proposition 2.8. ([15, p.46]) Let V' be a finite dimensional vector space over R.
Let U := {uy,...,u,} be a nonempty finite subset of V. The positive hull of U in

V is a closed convex cone.

Definition 2.9. ([15, pp. 53-54]) Let (V, (-, -)) be a finite dimensional inner prod-
uct space over R. Let S be a closed subset of V' and z its boundary point. Hg(z)
is called a support hyperplane of S at x if it satisfies the following:

(1) Hg(z) is a hyperplane containing x with some normal vector v € V. That

is, Hg(x) is given by
Hy(z) ={y € V[ (y —z,u) = 0}
for some u € V'\ {0}.

(2) S is contained in Hg (z) :={y € V | (y —x,u) <0}.

For a support hyperplane Hg(x), the closed half-space Hg (x) is called a support
half-space of S at x.

10



Note that Hg(z) is not necessarily unique.

Theorem 2.10. ([15, pp. 54-55]) Let (V, (-,)) be a finite dimensional inner prod-
uct space over R. Let S be a closed convex subset of V' that has an interior point.
Then there exists a support hyperplane Hg(x) for any boundary point = € 05.
Furthermore, S is precisely the intersection of all the support half-spaces of S at

the boundary points.

We state the hyperplane separation theorem in such a way that it can be used

in the proofs of Proposition 4.9 and Theorem 5.7.

Theorem 2.11. Let (V, (-, -)) be a finite dimensional inner product space over R.

(1) Let S be a closed convex subset of V' that has an interior point. Suppose
that 0 ¢ S. Then there exists u € V such that (s,u) < 0 for all s € S.

(2) Let S be a positive hull of some finite points. For any v ¢ S, there exists
u € V such that (v,u) >0 and (y,u) <0 for all y € S.

Proof. Suppose that 0 ¢ S. Then by Theorem 2.10, there exists x € 95 and a
support hyperplane Hg(x) such that 0 ¢ Hg(z). Let u be the normal vector of
Hg(x). Then we have (—z,u) > 0. Hence for any y € S, we have

(y,uy < (x,u) <0.

Hence the assertion (1) is proved.

We show the assertion (2). By Proposition 2.8, S is closed and convex. Theorem
2.10 implies that for any v ¢ S, there exists © € 95 and a support hyperplane
Hg(x) such that v ¢ Hg (x). Let u be the normal vector of Hg(z). Then we have
(v—m,u) > 0. Since S is a positive hull, we have 22,0 € S C Hg (x) in particular.

Hence we have
(2x —x,u) <0 and (0—z,u) <O0.
Hence we obtain (z,u) = 0. Thus we have (v,u) > 0 and Hg (x) is represented as

Hg(x) ={y €V |(y,u) <0}.

Since we have S C Hg (z), the proof is completed. O

11



3. BEHAVIORS OF EIGENVALUES WITH RESPECT TO METRIC DEFORMATIONS

Let (M, g) be a compact Riemannian manifold without boundary. As in the
previous subsection, the Laplacian is denoted by A, and eigenvalues Laplacian A,
are denoted by 0 = A(g9) < Ai(g) < Xa(g) -+ < M(g) < ---. For any positive
integer k, we regard \; as a functional on the set of Riemannian metrics on M.
It is classically known that for any 1l-parameter family of Riemannian metrics
{g:} that is continuous in ¢, A.(g;) is continuous in ¢t. Using the Kato—Rellich
perturbation theory of self-adjoint operators, Berger [2] and Bando—Urakawa [3]
proved the following:

Theorem 3.1 ([2], [3]). Let (M, g) be a compact Riemannian manifold without
boundary. Let I C R be an open interval containing 0. Let {g;};e; be a 1-
parameter family of Riemannian metrics that depends real analytically on ¢ with
go =g . Set 7 := dimFEj(g). Then there exist {A;(¢)}7_; C R and {w;(t)}_, C
C>(M) satisfying all the following:

(1) For any 1 < i < 7, A;j(t) and wu;(t) are defined over I and depend real

analytically on t.
(2) Forany 1 <i <7 and any t € I, Ayu;(t) = A;(t)u;(t) holds.
(3) For any 1 <i <7, A;(0) = Ax(g) holds.

(4) For any t € I, {u;(t)}7_, is L*(g;)-orthonormal.

Using the above theorem, El Soufi-Ilias [13] proved the following theorem:

Theorem 3.2 ([13]). Let (M, g) be a compact Riemannian manifold without
boundary. Let I C R be an open interval containing 0. Let {g;}; be a 1-parameter
family of Riemannian metrics that depends real-analytically on t with gy = g.
Let I : L*(M, g) — FEi(g) be the orthogonal projection onto Ejx(g). Define the
operator Py : Ex(g) — Ei(g) by

d

(3.1) Py(f) =11, (E

Agtf) .

t=0

Then the following hold:

12



(1) The function I >t +— A;(g;) admits left and right derivatives at ¢ = 0, i.e.

%‘t:of Ar(g:) and %‘t:w Ak (ge) exist.
(2) %‘t:of Ak(g:) and %’t:m Ak(ge) are eigenvalues of P.

(3) If Ae(g) > Ak—1(g), then %L:Of Ak (g¢) and %}t:OJF Ai(g¢) are the greatest

and the least eigenvalues of P.

(4) If M\i(9) < Agy1(g), then %}t:O* Ak (g¢) and %‘t:w Ai(g:) are the least and

the greatest eigenvalues of P.

(5) Py is symmetric with respect to L*(g)-inner product.

Proof. Set 7 := dimFE}y(g). By the assumption, there exist {A;(¢)}7_; € R and
{u;(t)}7_, € C*°(M) as in Theorem 3.1. For any 1 < i <7, A;(¢) is continuous in
t and satisfies A;(0) = Ax(g). Hence there exist integers 1 < p,q < 7 such that

(3.2) Me(ge) = { Ay(t) for —6<t<0

| A for0<t<a.

A;(t) is real analytic in ¢ for any 1 <1 < 7 and so we obtain

d

— A =N

|, Ml =80
and

d Ak(g:) = A (0)

dt ot k gt - q

This proves the assertion (1).
By Theorem 3.1 (2), Ay, u;(t) = A;(t)w;(t) holds for any 1 <7 < 7 and any ¢t € I.
Differentiating the both sides of this equation at ¢ = 0, one obtains

d
33) (G Bu) + At = KOs+ Mo
t=0

where u; := u;(0) and u} := £| o Ui(t). Let du be the Riemannian measure with

respect to g. By Theorem 3.1 (4), {u;}7_; is an L?(g)-orthonormal basis of Ej(g).
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Hence by (3.3) and Stokes Theorem, one obtains

o
u._
a\dt]

Agtuz’) dp = AQ(O)/ ujuidp + Ak(g)/ ujudp —/ uj Agugdp
t=0 M M M

=M@%+M@/

wd [ (B0
M M

= K06+ M) [ wuldn = ulg) [ apuidn
M M

= Aj(0)d;.
Since {u;}7_, is an L?(g)-orthonormal basis of Fy(g), one has Py (u;) = A;(0)u; for
any 1 < i < 7. Hence the assertion (2) follows from this equation and the equation
(3.2).

Next we prove the assertion (3). For any 1 <i < 7, we have A;(0) = \z(g) and
A;(t) is continuous in ¢ € I. Hence there exists § > 0 such that A;(¢) > A\e—1(gr)
for any t € (—6,0) and any 1 < ¢ < 7. Since A,(t) is an eigenvalue of A,,, one can
deduce that A;(t) > A\(g:) for any t € (—0,9) and any 1 < i < 7. This implies
that A\g(g:) = min{A;(¢),...,A-(t)}. Since we have A;(0) = A\i(g) for 1 <i < 7,
we conclude that

d

p Ae(gr) = max{A7(0),...,A(0)} and 4 Ae(ge) = min{A}(0),...,AL(0)}.

dt|,_o+

=0~

The assertion (3) is proved.
The proof of the assertion (4) is similar to that of (3) and so is omitted.
Take any u,v € Ey(g). Let dy; be the Riemannian measure with respect to g;.

By Stokes Theorem, we have
/ uPy.(v)dp
M

- [l

Agtv) dp
t=0

d d

== Ay vdpy | — Av) (= d
., ([ rawe) = [ o (] )
d d
=il (L @wntn) ot [l (5] )

d d
/M (dt . gtu> vdu—i—/M( u)v (dt i
= / ( d Agtu> vdp

M t=0

dt |,_
— / Pu(u)vdp.

M

14



The proof is completed. H

We introduce the following notion:

Definition 3.3 ([27], [11], [13]). Let (M, g) be a compact Riemannian manifold

without boundary. The metric g is said to be \,-extremal if the inequality

(% i) (5 wi) <o

holds for any volume-preserving 1-parameter family of Riemannian metrics {g; }ie;

t=0"*

that depends real analytically on ¢ and satisfies gy = g¢.

Nadirashvili [27] proved that if a metric g on a given surface M is \g-extremal,
then there exists a finite collection of A (g)-eigenfunctions {f;}L, such that F :=
(fi, -+, fn) s (M, g) — RY is an isometric minimal immersion into a round sphere
in RN, After that, El Soufi-Ilias [11] simplified the proof of this theorem and
generalized it to a compact manifold M of any dimension for £ = 1. Later, El

Soufi-Ilias [13] improved this result and proved the following:

Theorem 3.4 ([27], [11], [13]). Let (M, g) be a compact m-dimensional Riemann-
ian manifold without boundary. Let Fj(g) be the space of A\;(g)-eigenfunctions. If
the metric g is Ag-extremal, then there exists a finite collection of A (g)-eigenfunctions
{fi,.-., fn} C Ei(g) such that F := (fi,---, fx) : (M,g) — R is an isometric
minimal immersion into SY'(y/m/M(g)) € RY. For k = 1, the existence of
such a finite collection of A\i(g)-eigenfunctions is also a sufficient condition for the

metric g to be A\j-extremal.

Example 3.5 ([35], [11]). A homogeneous manifold G/K is said to be isotropy
irreducible if the linear isotropy representation of the isotropy subgroup K at the
point eK € G/K is irreducible. Takahashi [35] proved that a compact isotropy
irreducible homogeneous Riemannian manifold admits an isometric minimal im-
mersion into a Euclidean sphere by first eigenfunctions. Hence the metric on a

compact isotropy irreducible homogeneous manifold is Aj-extremal.

In contrast to the above theorem, we can restrict ourselves to considering volume-
preserving metric deformations only in a certain class of metrics. El Soufi-Ilias
[12] considered all the volume-preserving deformations of a given metric within its

conformal class.

Definition 3.6 ([12]). Let (M, g) be a compact Riemannian manifold without
boundary. Let C(g) be the conformal class of g. The metric ¢ is said to be

15



Ap-extremal within its conformal class if the inequality

(% N /\k(gt)> - (% Ak(gt)) <.

holds for any volume-preserving 1-parameter family of Riemannian metrics {g; }e; C

t=0t

C(g) that depends real analytically on ¢ and satisfies gy = g.

Theorem 3.7 ([12]). Let (M, g) be a compact m-dimensional Riemannian man-
ifold without boundary. Let FEj(g) be the space of \(g)-eigenfunctions. If the
metric g is \i-extremal within its conformal class, then there exists a finite col-
lection of A (g)-eigenfunctions {fi,..., fx} C Ex(g) such that F := (f1, -+, fn) :
(M,g) — RY is a harmonic map into S¥1(y/m/A(g)) € RY with constant
energy density |dF|> = m. For k = 1, the existence of such a finite collection of

Ak (g)-eigenfunctions is also a sufficient condition for the metric g to be Aj-extremal.

It is well known that a smooth map ¢ = (¢1,...,9n) : (M,g) — S¥1(c) C
R”Y is a harmonic map if and only if the condition A,¢; = ¢ 2|d¢|?¢; holds for
any 1 < 57 < N. Hence an isometric minimal immersion consisting of Ax(g)-
eigenfunctions F' = (f1,..., fx) : (M,g) — SN71(\/m/Ax(g)) is in particular a
harmonic map with constant energy density |dF|*> = m. This is a natural fact

since the assumption of the above theorem is weaker than that of Theorem 3.4.

Example 3.8 ([12]). The metric on a compact homogeneous Riemannian manifold

is A\j-extremal within its conformal class.

4. WORK BY APOSTOLOV—JAKOBSON-KOKAREV

In this section, we review the work by Apostolov—Jakobson-Kokarev [1]. To ex-
plain their research backgrounds, we quote the following result due to Bourguignon—
Li—Yau [7]:

Theorem 4.1 ([7]). Let (M, J) be a compact complex n-dimensional manifold ad-
mitting a full holomorphic immersion ® : (M, J) — CPY. Let ops be the Fubini-
Study form on CPY with constant holomorphic sectional curvature 1. Then, for
any Kéahler form w on (M, J), the first eigenvalue A\;(w) satisfies

N 1 q)* A n—1
A(w) <n 1y P ors A :
N fM wn

Stokes theorem implies that the functional A;(w) is bounded by a constant de-

pending on only n, N, ® and the Ké&hler class [w]. The above theorem implies that
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the Fubini-Study metric on CP" is a A\;-maximizer in its Kéhler class. Biliotti-

Ghigi[5] generalized the fact as follows:

Theorem 4.2 ([5]). The Kahler-Einstein metric on an irreducible Hermitian sym-

metric space of compact type maximizes the functional \; in its Kahler class.

Motivated by these results, Apostolov—Jakobson—Kokarev [1] considered defor-
mations of a given Ké&hler metric within its Kéhler class. Let (M, J,g,w) be a
compact Kéhler manifold (without boundary) of complex dimension n. Let du
be its volume form. Let Ej(g) be the real vector space of real-valued Ai(g)-
eigenfunctions. Let K, (M, J) be the space of Kahler metrics whose Kahler forms

are cohomologous to w. Set
CE(M;R) = {(,0 € C*(M;R) | / wdu = 0}.
M

Then the dd®-lemma (Lemma 2.5) gives a bijection between K, (M, J) and the

set
{p e CE(M;R | w+dd°p > 0},

where w+ dd“p > 0 means that the associated J-invariant bilinear form is positive
definite and so a Kahler metric. Apostolov—Jakobson—Kokarev [1] introduced the

following notion:

Definition 4.3 ([1]). Let (M, J,g,w) be a compact Kéhler manifold (without
boundary) of complex dimension n. Let K, (M, J) be the space of Kahler metrics
whose Kéhler classes are all equal to [w]. The Ké&hler metric g is said to be Aj-

extremal within its Kahler class if the inequality

(., ) (@

holds for any l-parameter family of Kahler metrics {g:}cr C Ky (M, J) that

)\k(gt)) <0.

t=0*t

depends real analytically on ¢ and satisfies gy = g¢.

Fix any 1-parameter family of Kahler metrics {g; }ser C K (M, J) that depends
real analytically on ¢ and satisfies g = g. Let Py : Ex(g) — Ex(g) be the associated
operator given by (3.1). P is determined by ¢g and %‘ 1o 9t~ By Theorem 3.2(2),
%‘t:O* Ai(g¢) and %L:m Ai(g¢) are eigenvalues of P,. Hence when we study \gx-
extremality, we may assume that w; = w + tdd®p with ¢ € C°(M;R). Note that
since M is compact, the condition that w; > 0 is satisfied for a sufficiently small

t. By Theorem 3.2 (5), P, is symmetric with respect to the L?(g)-inner product.
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Hence one can consider the corresponding quadratic form @, on Ej(g), which is

given by

(4.1) Qu(f) ::/prk(f) d“:/Mf(%

The following proposition is an immediate consequence of Theorem 3.2 (2):

Agtf) d:u

t=0

Proposition 4.4 ([1]). Let (M, J,g,w) be a compact Kéhler manifold. If the
metric g is Ap-extremal within its Kéhler class, then the quadratic form @), defined
in (4.1), is indefinite on Ej(g) for any ¢ € C5°(M;R).

We also have the following proposition, which follows form Theorem 3.2 (3) and

(4):

Proposition 4.5 ([1]). Let (M, J, g,w) be a compact Kéhler manifold. Suppose
that Ap(g) > A—1(g) or A\g(g9) < Aky1(g) holds. Then the metric g is Ag-extremal
within its Kéhler class if and only if the quadratic form @, is indefinite on Ej(g)
for any ¢ € C5°(M;R).

The next corollary immediately follows.

Corollary 4.6 ([1]). Let (M, J, g,w) be a compact Kéhler manifold. Then the
metric g is Aj-extremal if and only if the quadratic form @, is indefinite on E;(g)
for any ¢ € C5°(M;R).

The following lemma is important in [1], but we omit the proof since we will

prove the generalization of this lemma (Theorem 5.6):

Lemma 4.7 ([1]). For any ¢ € C§°(M;R), the quadratic form @, which is given
by (4.1), can be expressed as

Qu(f) = /M 65 fdd f)dp.

Motivated by this lemma, Apostolov—Jakobson—Kokarev[1] introduced the fourth
order differential operator L defined by L(f) := 0°0(fdd°f), whence Q,(f) can be
written as Qu(f) = [y, ¢L(f)du. Obviously we have
(4.2) / L(f)du = / h(dd‘1, dd° f)du = 0.

M M

L(f) does not have a simpler expression in general, but it does if f is an eigen-

function:
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Lemma 4.8 ([1]). Let (M, J,g,w) be a compact Kéhler manifold of complex di-
mension n. Let Ej(g) be the real vector space of real-valued Ay (g)-eigenfunctions.
Then for any f € Ex(g), L(f) is expressed as

L(f) = Me(9)* 2 = 2X\(9) [V f|* + |dd° f .

We give a proof relying on Lemma 2.1, which is different from the original one

due to Apostolov—Jakobson-Kokarev [1].

Pmof. Fix an arbitrary point « € M. It suffices to prove the lemma at x. We have
d° = 2/=100 and 6°6 = 2/—10*8 . Hence we have L(f) = —49*0 (f00f). B

Lemma 2.1, there exists a local holomorphic coordinate {z“}"_, around x such

that the equations

99,5

0z7

09,3
ga5($) = 501,37 azf (QJ) =0,

(z) =0
hold for any 1 < «a, 8,7 < n. Then we have
wn

dp = = (V=1)"dz" NdZ" N+ Ad2" A dZ"

at z. Since 9 is a first order differential operator, we may compute 2_9*( fOOf) with

respect to this coordinate. Then it is straightforward to obtain

«(fOOf) = Zf6 aﬁd UNAZYA - AdZOA - Ad2B A - Ad2" A dZ"
2207z

V=D fS a_ﬂdzl/\dEl/\~-/\gz\5/\~-~/\@/\-~/\dz"/\d3"
¢

B<a

at x, where @ denotes the omission of a. Hence we have

028 \" 0z20z°

(0%)(f00f) = =(V=D)" ) 0 (f o/ )dzl/\dzl/\---/\d/z\“A---Adz"Adz”
a,f=1

at . Thus we obtain

I A, 2F \ .
0 (J90] )_J;l 527 (f azaasz)dz

" rof 0 o f
e d o
2 (azﬁ o0z ) Geanio ) ©

J,k=1

of 0*f Lo Me(9) N, Of
j;l 927 9o T 2 ;f g.a 0
— (001 (- 1) - 9 g
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at = where (2.7) is used at the third equality. The rightmost side is coordinate-free.
Hence we may compute the value of L(f) = —49*0 (f00f) at = with respect to

the coordinate {2*}7_,. Then we readily have

L(f) = —40°0 (f90f)

B o (of 0°f
=4 Z 0z* <825 (9z0‘826> 279 Z 0z* ( 82’0‘)

a,f=1
. ~|of of I 2 o
=1 — 2Xx( —— | — 2 — A
Z azaazﬁ k(g ; 928 — M >; gze| TGN
= ‘ddcfP —2X(9) VI + Ae(9)”
The proof is completed. O

Next we prove the following proposition:

Proposition 4.9 ([1]). Let (M, J, g,w) be a compact Kéhler manifold of complex

dimension n. The following are equivalent:

(1) For any ¢ € C3°(M;R), the quadratic form @, given by (4.1) is indefinite

on the eigenspace Ej(g).

(2) There exists a nontrivial finite subset {f1,..., fn} C Ex(g) such that

N N

(4.3) DL = M) 7 = 2Xlg Z|Vfg!2+2|dd°’fg|2—0

J=1 Jj=1

Proof. Let K be a convex hull of {L(f) | f € Ex(g), [, f* dp =1} in C(M;R).
Since Fk(g) is finite dimensional, K is contained in a finite dimensional subspace
of C*(M;R). Let C*(M;R) be endowed with the L*inner product. We assume
that 0 ¢ K. Then by Proposition 2.7 and the hyperplane separation theorem
(Theorem 2.11 (1)), there exists p € C*°(M;R) such that

(4.4) / ws dp >0
M

for any s € K. Define ¢ € C3°(M : R) by

1 / ]
TV TNO(M, g) Jy T
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Then by (4.2) and (4.4), we have

Qz(f) Z/MsoL(f) du—m (/Msodu> (/ML(f) du) >0
for any f € Ey(g) \ {0}. Hence we have proved (1) = (2).

We show the converse. We assume that there exists a nontrivial finite subset
{f1,..., [n} C Ex(g) satistying (4.3). Then for any ¢ € C5°(M;R), we have

ZQ«»(J‘}) = Z/MwL(fj) dp = /M<p <Z L(fj)> dp =0

and so (), is indefinite on Ej(g). The proof is completed. O

Combining Proposition 4.4, Corollary 4.6 and Proposition 4.9, one concludes the

following:

Theorem 4.10 ([1]). Let (M, J,g,w) be a compact Kéhler manifold of complex
dimension n. If g is Ag-extremal within its K&hler class, then there exists a non-
trivial finite subset {fi,..., fn} C Fx(g) satisfying (4.3). If £ = 1, the existence
of such a finite subset of Ej(g) is also a sufficient condition for the metric g to be

Ai-extremal within its Kahler class.

Corollary 4.11. [1] Let (M, J, g,w) be a compact Kéhler manifold. If the metric

g is Ap-extremal within its K&hler class, then the eigenvalue A(g) is not simple.

Proof. Assume that \g(g) is simple and take f € Ei(g) \ {0} arbitrarily. Then
Ex(g) is a 1-dimensional space spanned by f. Hence if the metric ¢ is Ai-extremal

within its Kéahler class, then we have

L(f) = Me(9)*f* = 2\(9) [V f? + dd° f|* = 0.

Since M is compact, f attains the maximum at some points. Then we have |V f|? =
0 at such points and so we conclude the maximum must be 0. Similarly, the

minimum of f must be 0. This is a contradiction and so the proof is completed. [

For a compact Riemann surface, considering all the volume-preserving deforma-
tions of the given metric in its conformal class is equivalent to considering those
in its Kahler class. Hence, considering both Theorem 3.7 and Theorem 4.10, one

can see that the following proposition is very natural:

Proposition 4.12 ([1]). Let (M, J,g,w) be a compact Riemann surface. A non-
trivial finite collection of eigenfunctions {fi,..., fn} C Ex(g) satisfies (4.3) if and
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only if F' := (fi,...,fn) : (M,g) = RY is a harmonic map into SV~!(c) with
constant energy density |dF|* = c\y(g) for some ¢ > 0.

Proof. By (2.7), we have dd‘y) = —(A ¢)w for any smooth function 1 on a com-
pact Riemann surface (M, J, g,w). Hence for any nontrivial finite collection of
eigenfunctions {fi,..., fxv} C Ex(g), we have

N

(45) A, (fo)zzmg)ijffa VAP = A:(g)sz

Hence {fi,...,fnv} C Ex(g) satisfies (4.3) if and only if F' := (f1,...,fn) :

(M,g) — RY is a map into a Euclidean sphere of some radius ¢ > 0. Since

f}s are A(g)-eigenfunctions, such a map F : (M, g) — SV~'(c) is a harmonic map

with constant energy density |dF|? = cAi(g). O

Apotolov—Jakobson—Kokarev [1] studied the Aj-extremality of a product Kéahler
metric within its Kahler class. Before stating the result, we recall basic facts
about the first Laplace eigenvalue of a product Riemannian metric. Let (M, g)
and (M’,¢’) be compact Riemannian manifolds. For a function f € C*(M;R),
we define the function f x 1 on M x M’ by

(f x )(z,y) := f(z), (z,y) €M x M.

For a function h € C*(M’; R), we define the function 1 x h on M x M’ in a similar
manner. Suppose that Aj(g) < Ai1(¢'). Then the first eigenvalue A\;(g x ¢’) of the
product Riemannian manifold (M x M’ g x ¢') is equal to A\i(g). F1(g X ¢'), the

space of \j(g x ¢')-eigenfunctions on M x M’ is given by

span{f x L1 x h | f € Ex(g). h € Ei(q)}  (if M(g) = M(g))
span{f x 1| f € Ei(g)} (if A1 (g) < Mi(g)).
For details of the above, see [33, p. 286, pp.336-337]. Then we state the following

result:

Ei(gxg)=

Proposition 4.13 ([1]). Let (M, J,g,w) and (M’ ¢, J",w’) be compact Kéhler
manifolds. Suppose that \(g) < Ai(¢’) and the metric g is A\j-extremal within

its Kéhler class on (M, J). Then the product Kéhler metric g x ¢’ is Aj-extremal
within its Kéhler class on (M, J) x (M’,J").

Proof. By hypothesis and Theorem 4.10, there exists a nontrivial collection of
A1(g)-eigenfunctions { f1, ..., fnv} on M such that Zjvzl Ly(f;) = 0. Since we now
assume that A\ (g) < Ai(¢), {f1 X 1,..., fy x 1} is a nontrivial finite collection of
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A1(g x ¢')-eigenfunctions on M x M’. Since we clearly have Lys«nr(f X 1) = Ly(f)

for any smooth function f defined on M, we immediately obtain

> Lupar(f x 1) = ZLM(fj) = 0.

j=1

Hence Theorem 4.10 concludes the assertion. O

We end this section with the following proposition:

Proposition 4.14 ([1]). Let (M, J, g, w) be a compact homogeneous Kéhler-Einstein
manifold with positive scalar curvature. Then the metric g is A\j-extremal within

its Kahler class.

5. A \,-EXTREMAL KAHLER METRIC

In this section, on a compact complex manifold (M, J) that admits a Ké&hler
metric, we introduce the notion of Ai-extremal Kéhler metric by considering all
the volume preserving deformations of the given Kéahler metric. Be cautioned that
we fix the complex structure J and consider only J-compatible Kahler metrics.
(See Definition 5.1 for the precise definition of the A\j-extremality.)

Let (M, J, g,w) be a compact Kéhler manifold (without boundary) of complex
dimension n. By scaling the metric, we assume that Vol(M, g) = 1. Let du = w"/n!
be the volume form.

Let ZV1(M;R) be the real vector space of d-closed real (1,1)-forms on (M, J).
Let Zy' (M;R) be its subspace defined by

Zy (M R) = {a c Z"(M;R) | /Mh(a,w)du = 0} :

Fix an arbitrary element a € ZS’I(M ;R). We consider the volume-preserving

deformation of w in the direction of a. The (1, 1)-form
(5.1) W = w + ta

is clearly real and d-closed. Since M is compact, the J-invariant symmetric (0, 2)-
tensor g;, which is defined by ¢;(X,Y) = w,(X, JY'), is positive definite for a suffi-
ciently small ¢t. Hence w; is a Kahler form for a sufficiently small ¢. In particular,

if we consider av = dd“p for a real-valued function ¢, then « satisfies

/ h(a,w)dp = —/ Aypdp =0,
M M
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and so we have o € Zy'(M;R). As we have seen in the previous section, the case
where a = dd°p, which is a deformation of w in its Kéhler class [w], was studied
by Apostolov—Jakobson—Kokarev [1]. Set

(5.2) gr = Vol(M, 3,) V"G, wy := Vol(M, §,)~/"&,.

Then we have gy = g and wy = w. We also see that (g;); is a volume-preserving
1-parameter family of Kéhler metrics that depends analytically on ¢, and w; is the
Kéhler form associated with g;. Moreover, we can verify that %| oWt = . (See
(5.4) below.)

Definition 5.1. The Ké&hler metric g on a compact Kéhler manifold (M, J, g, w)

is called Ap-extremal (for all the volume-preserving deformations of the Kdihler
metric) if the inequality

(@, o)

holds for any 1-parameter family of volume-preserving Kéhler metrics (g;); that

Ak(gt)) <0

t=0+

depends real analytically on .

Remark 5.2. When we consider whether a Kéhler metric g on (M, J) is Ag-
extremal, we may rescale the metric so that Vol(M,g) = 1. Let (g:); be a 1-
parameter family of volume-preserving Kéahler metrics that depends real analyti-
cally on t. Let w; be the Kahler form associated with g;. Then Theorem 3.2 implies
that %’t:o— Ak(g) and %|t:0+ Ak(g:) depend on only w and %‘t:o wy. Since (wy)y
4] oWt € Zy'(M;R). Hence it suffices to consider
(we)e given by (5.2). Thus a Kéhler metric g on (M, J) with Vol(M, g) = 1 is M-

extremal if and only if for any a € ZS’I(M ;R), the associated volume-preserving

is volume-preserving, we have

1-parameter family of Kéhler metrics (g;); defined by (5.2) satisfies

(G wi)- (5] ww) <o

Let (M, J, g,w) be a compact Kéhler manifold of complex dimension n with

t=0*t

Vol(M,g) = 1. For any a € Zy'(M;R), the associated volume-preserving 1-
parameter family of Kahler metrics (g;); given by (5.2) defines the associated op-
erator Py, : Ex(9) — Ei(g) by (3.1). Since Py, is symmetric with respect to
the L?(g)-inner product by Theorem 3.2 (5), one can consider the corresponding

quadratic form on Ejy(g), given by

(5.3) Qalf) :Z/prkya(f)d/“‘:Af(%

Agtf) dpu.

t=0
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The following proposition is an immediate consequence of Theorem 3.2 (2):

Proposition 5.3. Let (M, J, g,w) be a compact Ké&hler manifold. If the metric
g of (M, J,g,w) is A\g-extremal, then the quadratic form @, defined in (5.3), is
indefinite on Ej(g) for any a € Zy' (M;R).

We also have the following proposition, which follows form Theorem 3.2 (3) and
(4):

Proposition 5.4. Let (M, J, g,w) be a compact Kéhler manifold. Suppose that
Me(g) > Mz1(g) or Ae(g) < Agri1(g) holds. Then the metric g of (M, J,g) is
Ap-extremal if and only if the quadratic form @, is indefinite on Ej(g) for any
a € Zy (M;R).

The next corollary immediately follows.

Corollary 5.5. Let (M, J, g,w) be a compact Kéahler manifold. Then the metric
g is Aj-extremal if and only if the quadratic form @, is indefinite on E;(g) for any
o€ Zy'(M;R).

Theorem 5.6. Let (M, J, g,w) be a compact Ké&hler manifold of complex dimen-
sion n with Vol(M, g) = 1. For any a € Zy''(M;R), the quadratic form Q,, given
by (5.3), can be expressed as

Qulf) = /M h(fddf, a)dp.

We remark that if o = ddyp, then this theorem immediately implies Lemma 4.7.

Proof. First we calculate 4| 1o Vol(M, g;) and 4 —owt- The volume form Elﬁt,
determined by w;, can be written as

~ 1. 1

dp, = mwf = (W" + tna AW ") + O(t?) = [1 + th(a,w)]du + O().

Hence one obtains
Vol(M, ) = [ dp, =1 +t/ h(a,w)dp + O(?) = 1+ O(t?),
M M

where in the last equality we have used the the assumptions that Vol(M,g) = 1

and o € Zy"'(M;R). Hence this implies %‘t:o Vol(M, g;) = 0. Thus one obtains
(5.4) i =L (Vol(M, g,)"/"@,) = Vol(M, go) /" 4 s —a
' dt|,_, = dt e ! 7 F

Next we differentiate

(5.5) nddf Awpt = —(Ay, fwi,
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which comes from (2.8). Differentiating the left hand side at ¢t = 0, one obtains

o /d
n(n —1)dd°f A (E

where (5.4) is used. On the other hand, differentiating the right hand side of (5.5)

at t = 0, one obtains
wt) Aw' !
t=0

d : d
- (G Aur)er —naun (G

d
(& awr)er—naunane
t=0

wt> AW 2 =nn—1)ddf Na Aw" 2,
=0

- (4] anr)er-@ppaoen

t=0
where (2.4) is used for the last equality. Hence one obtains

(5.6) (%

Agtf) W' =—n(n—1)ddf Na Aw"? — (A, fh(a,w)w".

t=0

Thus using Lemma 2.2 and the equation (2.7), one obtains

4
dt

Agtf> w" = h(dd°f, a)w".

=0
Hence one concludes

d C
G| Buf =)

and thus the assertion follows. O

In the above calculations, we consider o € ZS’I(M ; R). Hereinafter, we use the
Hodge decomposition, and consider both the harmonic part and the exact part of
a. Let HY1(M;R) be the vector space of real harmonic (1, 1)-forms. Set

Ho' (M;R) == {a € HYY(M;R) | /M h(a,w)dp = o}
and
C(M:R) = {90 e xRy [ - o} .
By the dd*-lemma, a € ZS’I(M ;R) can be decomposed as
a= H(a)+ddp.

By Lemma 2.4, H(«) is real. This decomposition gives an R-linear bijection
between Z," (M; R) and ' (M; R)xC°(M; R). We prove the following theorem:

Theorem 5.7. Let (M, J, g,w) be a compact Ké&hler manifold of complex dimen-

sion n. The following are equivalent:
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(1) For any o € Zy'(M; R), the quadratic form Q, given by (5.3) is indefinite

on the eigenspace Ex(g).

(2) There exists a finite subset {fi,---, fv} C Ek(g) such that the following

equations hold:

(S g - -
D L) = Mlg)? (Z ff) — 2)i(9) (Z \vm?) + D lddfi[* = 0.

\ j=1 J=1

(5.7)

The proof of this theorem is inspired by that of Proposition 4.9.

Proof. We may assume that Vol(M,g) = 1. We assume the condition (1). Let K
be the convex hull of {(H(fdd°f), L(f)) | f € Ex(g)} in HYXY(M;R) x C>(M;R).
Set m := dimFE}y(g) and let {u,}™, be an L?(g)-orthonormal basis of Ej(g). Then
K is a positive hull of the finite points { H (u,dd“u,), L(u,)}™; and

{£H (uaddup), £ (uadd®up) }1<astb<m- In particular, Proposition 2.8 implies that
K is a closed convex cone contained in a finite dimensional subspace of H'!(M; R) x
C>(M;R). We assume that (—w,0) ¢ K. Let V be a subspace in H'!(M;R) x
C>(M;R) that contains K and (—w,0). We consider the product L*inner metric
on V. Then the hyperplane separation theorem (Theorem 2.11(2)) implies that
there exists (ag, ) € HM(M;R) x C*(M;R) such that the inequalities

(5.8) / h(—w,ay)dp < 0 and / h(n,&H)d,u+/ sodp >0
M M

M

hold for all for all (1, s) € K\ {0}. Consider ay € Hy'(M;R) and ¢ € C°(M;R)
respectively defined by

(5.9) = g — (/M hw, &H)du) w.

n

(5.10) Y= — / pdji.
M

Set

a = ayg +dd°p = ayg + dd°p.
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Then we have a € Zy''(M;R). For any f € Ei(g) \ {0}, one has
Qul) = [ hsdics.a)d
M

— [ hrdagamyda | b(fdada@n
M

M

-/ h(H(fdd#)ﬁH)du—%[ / h(fddCf,mdu} { / h(w,amdu]

+ /ML(f)sEdM

- [ wtsae . dwie+ [ L(f)@'du+AkT@[ / f?du] [ / h(w,amdu]

M
> 0.

This contradicts the condition (1) and hence one concludes that (—w,0) € K. This
implies that (1) = (2).

Conversely, we assume that there exists a finite subset {f1, -, fxv} C Ex(g) sat-
isfying (5.7). Take o € Zy'(M;R) arbitrarily. Then there exist oy € Hy' (M;R)
and ¢ € C3°(M;R) such that o = ag + dd°p. Then one has

N N
> Qul5) =3 [ hdd sy, e
:/j\/jh(jzlfjddcfj,ozg> du+jzl/]wh(fjddcfj,ddcgo)du

:/Mh(—w,ozH)d,u-f—i/ML(fj)deﬂ

= 0.
This implies that @, is indefinite on Ej(g). This completes the proof. O

Combining Corollary 5.5 and Theorem 5.7, one concludes the following:

Theorem 5.8. Let (M, J,g,w) be a compact Kéhler manifold. Suppose that the
Kéhler metric g is A\g-extremal. Then there exists a finite subset {f1, -+, fy} C
Ey(g) satistying (5.7). For k = 1, the existence of such a finite collection of eigen-

functions is also a sufficient condition for the Kéhler metric g to be Aj-extremal.

Remark 5.9. For a compact Riemann surface, Theorem 4.10 and Theorem 5.8
are equivalent. In fact, (4.5) shows that if a nontrivial finite collection of Ax(g)-
eigenfunctions {f;} satisfy >, L(f;) = 0, then we have ). f7 = ¢ for some ¢ > 0.
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Hence we immediately obtain H(_; f;dd°f;) = —Ai(g)cw. This equivalence is
natural since deformations within the Kahler class and general volume-preserving

Kéhler deformations are equivalent for a compact Riemann surface.
By Corollary 4.11, we immediately have the following:

Corollary 5.10. Let (M, J,g,w) be a compact Kahler manifold. Suppose that

the Kéhler metric g is Ag-extremal. Then the eigenvalue A\;(g) is not simple.

Recalling the remark before Proposition 4.13, one obtains the following from
Theorem 5.8:

Corollary 5.11. Let (M, J,g,w) and (M’, J', ¢’,w’) be compact Kéhler manifolds.
Assume that A;(g) = M\i(¢’) and that g and ¢’ are both \j-extremal for all the
volume-preserving deformations of the Kahler metrics. Then the product Kahler
metric g x ¢" on (M,J) x (M,J) is Aj-extremal for all the volume-preserving

deformations of the Kahler metric.

Proof. By hypothesis, there exist finite subsets {f;} C Ei(g) and {hy} C Ey(¢')
such that

ZHM f]ddcfj ZLM f]
ZHM/ hiddChy) = ZLM/ hi) =

Then one has

ZLMXM’(fj x 1) + ZLMXM/<1 X hy)
k

J
= Z Ly (fydde f;) + Z L (hy)
J k
=0.
We also have

ZHMXM’ i X Ddyrsar diynn (f x 1))

= Z Hypear (fidudiy [ € 0)
J

= Z Hys(fidardsy f;) @0

= —wod0.
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Similarly, we obtain
> Hupow (15 hi)dagsnrdypr (1% hy)) = 0@ o).
k
Hence we obtain
> CH((f; x D)dd(f; x 1)) + > H (1 x hy)dd*(1 x hy)) = —w @ —o,
J k

where we omit the subscript M x M’. Thus one concludes that { f; x 1}, U{1 x hy }
satisfy (5.7). The proof is completed. O

From the above proof, one can immediately obtain the following corollary:

Corollary 5.12. Let (M, J,g,w) and (M, J’, ¢',w’) be compact Kédhler manifolds.
Assume that A\ (g) # A\1(g’). Then the product Kéhler metric g x ¢’ on (M, J) x
(M’,J') is not \j-extremal for all the volume-preserving deformations of the Kéhler

metric.

The notion of A\j-extremality in Example 3.5 is stronger than that in Theorem

5.8. Hence we immediately obtain the following:

Example 5.13. Let G/K be a compact isotropy irreducible homogeneous Kéhler
manifold. Then the metric is A;-extremal for all the volume-preserving deforma-

tions of the Kahler metric.

We remark that one can also prove this fact directly from Theorem 5.8, using
a similar discussion to that in [35, Section 3]. It is known that the metric of a
compact isotropy irreducible homogeneous Kéhler manifold is Einstein [40]. An
irreducible Hermitian symmetric space of compact type is a compact isotropy ir-
reducible homogeneous Kahler manifold. In fact, the converse also holds. That
is, a compact isotropy irreducible homogeneous Kéahler manifold is an irreducible
Hermitian symmetric space of compact type [39, 21].

When the complex dimension is bigger than 1, the notion of A\j-extremality in
Corollary 5.11 is stronger than that in Proposition 4.13. The following example

shows the difference:

Example 5.14. Let (M, J, g,w), (M’, J', ¢',w’) be irreducible Hermitian symmet-
ric spaces of compact type with p = cw and p/ = W’ for some ¢, ¢ > 0, where p
and p’ are the Ricci forms on M and M’ respectively. By Example 5.13, g is A\;-
extremal for all the volume-preserving deformations of the Kéhler metric and so is
g'. The result due to Nagano [28] shows that A\;(g) = 2c and A\;(¢’) = 2¢ (see also
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[36]). By Proposition 4.13, the product Kahler metric g x ¢ on (M, J) x (M',J’) is
Ar-extremal within its Kéahler class. However, Corollary 5.11 and 5.12 imply that
the metric g x ¢’ is A\j-extremal for all the volume-preserving deformations of the

Kéhler metric if and only if ¢ = ¢.
The simplest case of this example is the following:

Example 5.15. Let grpg be the Fubini-Study metric on the complex projective
space CP". Take any ¢ > 0. Then the product Kéhler metric gpg X cgrs on
CP" x CP"™ is Aj-extremal in its Kahler class. Nevertheless, grps X cgps is Ai-
extremal for all the volume-preserving deformations of the Kéahler metric if and

only if ¢ = 1.

6. COMPLEX TORI

In view of Theorem 5.8, the harmonic projector H and information about the
space of eigenfunctions are important. However, it is hard to find an explicit for-
mula for the harmonic projector H on a general Kéhler manifold. It is also hard
to determine the space of eigenfunctions explicitly in general. However, the har-
monic projector H and the eigenfunctions can be written explicitly for a complex
torus. Using Theorem 4.10, we see that the metric on any flat complex torus is
A-extremal within its Kahler class. In addition, we use Theorem 5.8 to deduce
a condition for the flat metric to be Aj-extremal for all the volume-preserving
deformations of the Kahler metric.

Let 1, ..., 72, be vectors in C™ that are linearly independent over R. We denote
by I the lattice in C* with basis {71, ...,72.}. Let {27}7_ be the standard complex

coordinates of C" and {x’ }?Ql the real coordinates defined by
K= /12 (k=1,...,n).

We remark that one should keep in mind this correspondence between the complex
and real coordinates in particular when considering examples that will appear later.
The lattice I' acts on C" by translation. Then the quotient space T{# := C"/T’
becomes a complex manifold in a natural way. 77" is called a complex torus. The
standard metric on C" is given by 2?21 dz’ ® dz’ and its associated Kahler form
on C" is given by

I VEST

W =

5 Z dz? A dz
j=1
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The canonical holomorphic projection C* — C"/I' = T} induces a flat Kéhler
metric g and a Kahler form w on 7. If we express wy, wy € C" as
wi = (wp, ..., wy),  wp=(up, ..., w2, w=u? " +V=1u (k=1,2)

1 1 Qn)

in the complex coordinates (z',---2") and the real coordinates (z',--- , z°") re-

spectively, then the standard inner product of w; and wsy is given by
g Lo
2“1“2 = 5(“11 “ Wy + W - wa).

Consider
1
" :={weC"| §(U-E+E~w) €Z forallvel}
={weC"|exp(mi(v-w+7v-w)) =1 forallvel}.

['* is also a lattice in C" and called the dual lattice of I'. For any w € I'*, we define
a function ®,, : 11 — C by

D, (z) i=exp (TV—=1(z - W+7Z - w)).

Then ®,, is actually a well-defined function on the complex torus 7{. It is known
that A is an eigenvalue of the Laplacian on (7}, ¢) if and only if there exists w € I'*
such that A = 472|w|?, where |w|? = w - w (see [33, pp.272-273], for instance). We

set
S\ ={wel"| A= 47r2|w|2}.

For A\ # 0, the number #S5()) is an even integer and so we define [(\) € Z by
I(A) = #S(N\)/2. S(\) can be written as

(61> S<)\) = {:l:wlu :l:w27 ) :lZ'U)l()\)},
where each w, (v =1,--- ,I()\)) is an element of I'* with A = 47%|w,|?. For w € T'*,
set

2 2
(6.2) Vol Re( Vol( ( sz ) ’

9 2n

: I in | 2 Ful
(6.3) Vol( T” m ( Vol(TE) sm( sz:;x u ) ,
where we use the real coordinates z = (z!,--- ,2*) and w = (u',--- ,u*"). We

give a proof to the following well-known fact:
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Lemma 6.1. Let I' be a lattice in C" and I'* its dual lattice. Let T{" be the flat
torus defined by I". Let A be a positive eigenvalue of the Laplacian and E()\) its
real eigenspace. Let S(\) be as (6.1). For w € I'*, define the functions ¢,, and 1,
by (6.2) and (6.3). Then {py,,%w, | v =1,---,1(\)} is an L*-orthonormal basis
of E(N).

Proof. Let A be an invertible 2n x 2n matrix such that I' = AZ?". Then we have
Vol(T{) = detA. We also have I'* = (AT)"1Z?". Hence for each 1 < j < I()),
there exists y; € Z*" such that w; = (A”)"'y;, where w; is regarded as a vector in

R?". Then we have

/T RECENCE

2
= / cos(2rw! x) cos(2mwi x)dx
T’n

Vol(T}) j
1
B Vol(T{#) / (cos(2m(w; 4+ wi)"x) 4 cos(2m (w; — wi)" @) da
r)Jrp
1
~ Vol(T?) / (cos(2m(y; + y)T A1) + cos(2m(y; — yp) A~ x)) da
r)Jon
1 1
- Vol(T}) |[det A= Jopn (COS(QW(%‘ 4+ )T u) + cos(2m(y; — yk)Tu)) Ju
Z2n

- / (cos(2m(y; + yi) ") + cos(2m(y; — yr)"u)) du
[071}271

= jk'

Here be cautioned that y; = y; is equivalent to w; = wy and the case where
Yj = —Yi, that is, where w; = —wy, is impossible by the choice of {wy}f,(i)l By
similar computations, we also have

Uy ()0, () de
Iy

— / (= cos(2m(y; + yu)"u) + cos(2m(y; — yr) " w)) du
[071]211
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and

| @ a1

= / (sin(2m (y; + y)"w) — sin(2m(y; — y)"w)) du
[071}271
= 0.
The proof is completed. O

Apostolov—Jakobson—Kokarev [1] proved that the metric on a compact homoge-
neous Kahler-Einstein manifold of positive scalar curvature is Aj-extremal within
its Kéhler class (Proposition 4.14). We show that the flat metric on a complex

torus is A\j-extremal within its Kahler class.

Proposition 6.2. Let (11, g) be a flat complex torus. Then the metric g is A;-

extremal within its Kahler class.

Proof. In the proof, we use the notations introduced above. Take w € S(\1(g))
arbitarily. By Theorem 4.10, it suffices to show that the equation

(6.4) L(¢w) + L(¢y) = 0.

holds. By a straightforward calculation, we have

2n 2n
V> = Vol(T7) 4 Z(u]f] sin? (2#kauk) = M(g)2.
r j=1 k=1

Similarly, we have
Vo l* = Ai(g) .

On the other hand, it is straightforward to obtain

(6.5) dd°p,, = =27/ —1¢,, Z ww’dz* A dz°.

a,B=1
Hence we obtain

ddep,* = 4n*gl > ¥ g T 0w w’
a7B777§

= 16763 3w Plu?
a,B

= Mi(9)%¢%.
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Similarly, we have

(6.6) ddp, = =27V ~=11p,, Y W w’dz* A dz”

a,8=1
and
|dd“su|* = Ai(9)*5.
Thus we have

(6.7)
L(pw) + L(Yw)

= (M(9)*0w — 2M1(9)°02 + M(9)°¢%) + (M(9)*Yw — 2M1(9)%65 + M(9)*Y3)
— 0.

Hence (6.4) is proved. O

The harmonic projector H : QM (TE) — HYY(T{) plays an important role in
Theorem 5.8. We explain that harmonic forms on a flat complex torus are forms
with constant coefficients and find the explicit expression of the harmonic projector

H. Let ¢ be a (p, q)-form on T}{*. Then ¢ is expressed as

o= > ¢pd ndZ",
[J|=p,|K|=q
where J and K are multi-indices, and each ¢, is a I'-periodic complex-valued
function globally defined on C™. A straightforward calculation shows that ¢ is a
harmonic form if and only if each ¢ ;% is a harmonic function. Hence the maximum
principle implies that ¢ is a harmonic form if and only if each ¢ ;% is constant.
Thus the harmonic projector H : Qb (T) — HYL(TR) is given by

0 5 (oo

a»ﬁ:]- r

for a (1,1)-form ¢ =370 5 | d,5dz" A dz”, where dy is the volume form of (T}, g).

(For details of the Hodge decomposition on a complex torus, see [4, Section 1.4].)

1Ak (9))

Theorem 6.3. Let (11, g) be a flat n-dimensional complex torus. Let {w,},2}

be linearly independent vectors in T'* satisfying A\, (g) = 47%|w,|. If the flat metric

g is Ag-extremal for all the volume-preserving deformations of the Kéahler metric,

35



then there exists {R, > O}fj(i’i(g ) such that the following equations hold:

( 1(Mx(9))
Rawtw? =0 for 1<a#p3<n,
v=1
6.8
(68) Lk (9))
Z RJwi?=1 for 1<a<n.
\ v=1

For k = 1, the existence of such {R, > O}i(ill(g)) is also a sufficient condition for
the metric g to be Aj-extremal for all the volume-preserving deformations of the

Kahler metric.

Proof. First we prove the former assertion. By theorem 5.8, we must have

N n
(6.9) H (Z f,dde fj> = —g > dz Adz®
j=1 a=1

for some finite collection of eigenfunctions {f;}_; C Ei(g). Each eigenfunction f;

is of the form
I(Ae(9))
Z ajuSOwV + bjuwwl, (ajlla bjzz S R)

Using (6.5) and (6.6), we obtain

n 1(Ax(9))
fiddef; = =27/ —1 Z Z WOWE [0 jr P, o + WjubjrPro, Vi,
a,f=1 v,7=1

+ aijjVQqu—wwy + bjl/bj‘rwwywwq—]dza A dzﬁ

Hence one obtains

n (A (9)
H(f;dd°f;) = Z > wiwl(al, +b7,)d2" A dzP.
a,f=1 v=1
Thus one obtains
n  l(Ax(g
(6.10) ZH (f;ddf;) = VIT” Z Z T ﬂza +02,)dz A dZP
a,f=1 v=1 j=1

Then (6.9) and (6.10) imply that we must have

(1(k(9))
Z w;, ’BZa]V+b2 )=0 for 1<a#p<n,
v=1
l(/\k())
_ Vol(Ty
Zaw 62 = 04;;) for 1<a<n.
L v=1
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Setting R, := 47?(3V o1 @5, +03,) /Vol(T), one concludes the foemer assertion.
Next we prove the latter assertion. We assume the existence of {R, > 0}/21@)

satisfying (6.8). We use Theorem 5.8 to prove the proposition. We show that
{VRy@w,, VR bw, |v=1,--- 1(M(g))} satisfies (5.7). By (6.7), we immediately

have
L(vV/Rypuw,) + L(V/Rotbw,) = 0

for each v. Hence we have
I(Mi(g

(9)
L(\/R_V(IO'UJU) + L(\/R_V¢wu> = 0.

v=

Thus it suffices to prove

> Ry [H(pw,ddpy,) + H(tby, dd Py, )] = —aw

for some a > 0. Using (6.5) and (6.6), one obtains

1(A1(9))
Ry [H(pw,dd pu,) + H(u, dd )y, )]
r=1
2 l()\l 9) n
_ 2 2 —a, B« 8
= Nol(T) ) Zl aﬁle (/n o, +1/qu)d,u> wow,dz N\ dz
(M(g) n
Y >
= — R,w%wldz* A dz°.
Vol(T}) =
By hypothesis, the proof is completed. O

The notion of Aj-extremality in Theorem 6.3 is weaker than that in Theorem
3.4. Hence Theorem 6.3 gives a necessary condition for a flat complex torus to
admit an isometric minimal immersion into a Euclidean sphere of some dimension
by first eigenfunctions. This is the only currently known necessary condition for
a flat complex torus to admit an isometric minimal immersion into a Euclidean
sphere by first eigenfunctions. Since the condition (6.8) is not clear, we consider
simple cases in what follows. First we consider the case where dim Ey(g) = 2, that

is, [(Ak(g)) = 1. Then we have the following corollary:

Corollary 6.4. Let (11, g) be a flat n-dimensional complex torus. Suppose that
dimFEy(g) = 2 holds. Then the metric g is not Ag-extremal.

Proof. We prove the assertion by contradiction. Assume that the metric g is Ag-

extremal. By hypothesis, there exists a pair w, —w € I'" C C" uniquely up to
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sign such that A\y(g) = 47%|w|?. First we show that the vector w is of the form
w=(0,--,&---,0) for some £ € C. The first equation in (6.8) implies w*w? = 0
for any pair of distinct integers (a, 3). Since w = (w',--- ,w™) is a nonzero vector,
we have w® # 0 for some a. Let w/ = u?~! + /—1u¥ for each 1 < j < n. Then

for any 8 # «, we have

(6.11) 21281 — 20,28
and
(612) w2281 — g 201,28

Assume that u?* # 0 and u?# # 0. Then by (6.12), there exists ¢ € R such that

u?~t = cu®® and u?~! = cu?®. Substituting these for (6.11), one obtains

2,,20,,28 _

cu 20,28

—u
This is a contradiction and so we have u2* = 0 or u?® = 0.

If we have u** = 0, then we must have u?*~1 # ( since we now assume w® # 0.
Hence by (6.12), we have u?) = 0. Then (6.11) immediately implies u?*~1 = 0.
Thus we have u?*~! = u?® = 0, that is, w® = 0.

If we have u?* = 0, then (6.12) implies that we have u** = 0 or u?~1 = 0. We
have already considered the case where u?>* = 0. Hence we consider the case where
u?#~1 = 0, but this immediately implies w® = 0.

Thus we conclude that w is of the form w = (0,---,§,---,0). However, this

contradicts the second equation in (6.8). The proof is completed. 0

Example 6.5. The standard lattice: I' = Z?". Consider the standard complex
torus C"/Z?" with the flat metric g. Let {ej}j=; be the standard orthonormal
basis of C". Set

Wop—1 := €k, Wok =V —ley

for every 1 < k < n. Then we have S(A\(g)) = {+w,}*", and I[(\(g)) = 2n. It
is clear that (6.8) is equivalent to the condition where Rg;_1 + R = 1 for any
1 < k < n and so the torus C"/Z?" satisfies the assumption of Proposition 6.3.
Hence the metric g is Aj-extremal for all the volume-preserving deformations of
the Kéhler metric. This fact is not new since the metric is Aj-extremal for all the
volume-preserving metric deformations. This can be seen from Theorem 3.4 and

the classical fact that the standard torus admits an isometric minimal immersion
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into a unit sphere by first eigenfunctions as follows:

n 2n In—1 i
c"/Z" — S (,/%2),

1 1 1 1
(', ..., 2*") <% cos(2rat), Py sin(2rat), ..., Py cos(2mz*"), Py sin(2m:2")) :

Example 6.6. The checkerboard lattice. First we consider the (real) 4-dimensional
checkerboard lattice D,, which is defined by

Dy:={(z*,....2*") € Z* | 2* +--- +2* € 2Z}.

The dual lattice D} is known to be the lattice in C? with the basis (1,0), (0, 1),
(v—1,0), (HT‘E, #) (See [9, pp.117-120], for instance.) Set

wy = (1,0), wy:=(0,1), wz:=(V=1,0), wy:=(0,V-1),
w5:2(1+\/—_1’1+\/—_1)’ wﬁzz(l_\/__l,l_\/__l),

2 2 2 2
L+v—1 141 1—v=1 1-+/-1
Wy = , — ,  Wg = y )
2 2 2 2
1++v—-1 1—+v-1 1+v-1 1-+-1
Wy = ) ) Wi = y )
2 2 2 2
1—+v/—-1 1++/-1 1—v—-1 1++v-1
w11 = s s Wig = , — .
2 2 2 2
If weset Ry =--- =Ry =1/4, Ry = --- = Ry3 = 1/8, then it is elementary to

check that (6.8) holds for k = 1. Hence by Theorem 6.3, the flat metric g on the
2-dimensional complex torus C? /Dy is Aj-extremal for all the volume-preserving
deformations of the Kéhler metric. This fact is not new since the metric is A;-
extremal for all the volume-preserving metric deformations. This follows from
Theorem 3.4 and the fact that there exists a 2-parameter family of isometric mini-
mal immersions by first eigenfunctions from C?/D, into the unit sphere S C R?.
(See Example 1.1 in [22].)

In fact, for any m > 3, the checkerboard lattice D,, is defined as a lattice in R™
by

Dy, = {(z',...,a™) € Z™ | ' + --- + 2™ € 2Z}.

We show the following:

Proposition 6.7. For any m > 3, the flat torus R™/D,, admits an isometric

minimal immersion by first eigenfunctions into a Fuclidean sphere. Hence the flat
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metric on R™/D,, is A\j-extremal for all the volume-preserving metric deforma-

tions.

Proof. The property of D,, should be considered separately for the case m = 3,
m = 4 and m > 5. For the case m = 3 and m = 4, the assertion has been
proved by Li—Wang—Xie [22]. (See Example 4.3 in [22] for m = 3 and Example
1.1 in [22] for m = 4.) Hence it suffices to consider the case where m > 5. For
m > 5, D is a lattice with the basis {e;}"5' U {3>°/", ex}, where {e;}7; is
the standard basis in R™. (See [9, p.120], for instance.) The shortest vectors are
exactly the 2m vectors {#e;}72,. Thus we have A (g) = 47* and E,(g) is spanned
by {cos(2ma’),sin(2r2?)}7 |, where {27}, is the standard coordinate in R™. It
is obvious that the map

R™/D,, — S* 1 (@) ,

2m
(zh,...,2™) (l cos(2rat), L sin(2rat), ..., L cos(2mx™), L sin(27m:m)>
2m 2m 2m 2m
is an isometric minimal immersion. The latter assertion immediately follows from

the former one and Theorem 3.4. O

Before [22], only the standard torus (Example 6.5) had been an example of higher
dimensional tori that admit an isometric minimal immersion into a Euclidean
sphere by first eigenfunctions. Lii-Wang—Xie [22] classified all the 3-dimensional
and 4-dimensional tori that admit an isometric minimal immersion into a Euclidean
sphere of some dimension by first eigenfunctions. Hence only the standard torus
has been an example of tori of dimension higher than 4 that admit an isometric
minimal immersion into a Euclidean sphere by first eigenfunctions, but Proposition

6.7 gives new examples.

Example 6.8. For a,b € [1,00), consider the lattice 'y, in C* with the lat-
tice basis (1,0), (a='v/~1,0), (0,1), (0,0~'v/=1). Let T?, be the 2-dimensional
complex torus determined by I',; with the flat metric g,;. Let I'; C C be the
lattice with the lattice basis (1,0), (a='y/—1,0) and (T}, h,) the flat 1-dimensional
complex torus determined by T'y. Then (77;, gap) is the product of (1, h,) and
(T}, hy). We have \(T) h,) = 1 = M\(T}, hy). Hence Proposition 6.2, Re-
mark 5.9 and Corollary 5.11 imply that the metric g,; on Tib is Aj-extremal
for all the volume-preserving deformations of the Kahler metric. However, since
we have E1(g,5) = span{cos(2rz!), sin(2mzt), cos(2ma?), sin(272?) }, the flat torus
(T3

2., Jap) does not admit an isometric minimal immersion into a Euclidean sphere
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by first eigenfunctions. Thus g, is not Aj-extremal for all the volume-preserving

metric deformations.

Example 6.9. For a,b € [1,00), consider the lattice fab in C? with the lattice
basis (1,0), (v/—1,0), (0,a™'), (0,67'y/—1). Let Ta2b be the 2-dimensional complex
torus determined by fa,b with the flat metric g,,. Let (T, haa) be the flat 1-
dimensional complex torus determined by the lattice with the lattice basis (1,0),
(vV=1,0). Let (T}, hay) be the flat 1-dimensional complex torus determined by the
lattice with the lattice basis (0,a™), (0,b71y/=1). Then (T2 o> Jap) is the product of
(Toyqs hsta) and (T, hap). We have Xy (T, hsta) = 1 and Ay (T, ,, hep) = min{a, b}
Hence if we have a = 1 or b = 1, then Proposition 6.2, Remark 5.9 and Corollary
5.11 imply that the metric g,; on T2 b 18 Aj-extremal for all the volume-preserving
deformations of the Kahler metric. On the other hand, if we have a > 1 and
b > 1, then by Corollary 5.12, g, is not A\j-extremal for all the volume-preserving

deformations of the Kahler metric.

In Example 6.8 and Example 6.9, if we ignore the complex structure on C? and
regard C? as R*, then we have Lop = I:Q,b. However, whether the flat metric
is A\j-extremal is different in Example 6.8 and Example 6.9. Hence Example 6.8
and Example 6.9 show that the notion of A\;-extremality actually depends on the
complex structure.

Finally we give a 1-parameter family of 2-dimensional complex tori whose flat
metrics are not Aj-extremal for all the volume-preserving deformations of the

Kahler metric.

Example 6.10. For 7/3 < 6 < 7/2, we consider the lattice I'y C C? with the
lattice basis (1,0), (cosf,sinf), (v/—1,0), (v/—1cosf,+/—1sinf). Let gy be the
flat metric on C?/Ty. It is straightforward to check that the dual lattice T}
is the lattice with the basis wy = (1, —cos/sinf), wy := (0,1/sinf), ws :=
(vV/=1,—cosf/sind), wy := (0,v/—1/sinf). Then we have S(\i(gq)) = {Fw, }2_,
and so the multiplicity of Ai(gy) is 8. If ¢ is Aj-extremal, then Theorem 6.3 implies
that there exists {R,}2_, such that

cos@ 1
=1
—r (Ri+ R3) =0, R+ R3 , Q(Rz + Ry) =

Since we have 7/3 < 6 < /2, thisis a Contradictlon. Hence gy is not A\;-extremal.

C? /Ty is not a product of 1-dimensional flat complex tori. In fact, assume that
C?/Ty is a product of (T1,hy) and (T, hy), where each is a 1-dimensional flat
complex torus. If we had Aj(h;) = Ai(ha), then by Proposition 6.2, Remark 5.9
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and Corollary 5.11, gy would be Aj-extremal. Hence we have A;(hy) # Ai(he).
We may assume Aj(h1) < A1(h2). Then the multiplicity of of A;(hy) is equal to
that of A\j(gg), that is, 8. This is a contradiction since the multiplicity of the first
eigenvalue of a 1-dimensional flat complex torus is at most 6 (see [11], for example).
Thus C2/Ty is not a product of 1-dimensional complex tori. Let I'y € R? be the
lattice with the lattice basis (1,0), (cos@,sinf). Let (R2/T'y, hg) be the flat real
2-dimensional torus. If we ignore the complex structure on C? and regard it as
R*, then (R*/Ty, go) is a Riemannian product of (R2/Ty, hg) and (R2/Ty, h).
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