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1 Introduction

Cluster algebras are a class of commutative algebras generated by special variables called cluster
variables, introduced by [FZ02a] in early 2000s. The cluster variables refer to the all variables
obtained sequentially by an operation called mutation, and it is known that the combinatorial
structure of the cluster variable and the mutation appear in various fields such as Teichmüller
theory, Poisson geometry, representation theory of quiver, gauge theory, knot theory, etc. Cluster
algebra theory is also closely related to number theory. In this thesis, we explain our results on
the cluster algebra theory, which were written in our papers [Mat21] and [GM23].

This thesis is divided into two parts.
In the first part, which focuses on the foundations of cluster algebra, our results are related

to cluster scattering diagrams. We prove the consistency relations of rank 2 cluster scattering
diagrams of affine type using an infinite repetition of pentagon relations. This part is based on
[Mat21].

In the second part, which concerns the application of cluster algebras to number theory, we
use generalized cluster algebras to solve some Diophantine equations. Positive integer solutions
of Markov equations can be obtained in chains by using the Vieta jumping, and it is well-known
that this can be explained by using the Laurent phenomenon of a cluster algebra. We generalized
this kind of equations by using generalized cluster algebras introduced by [CS14]. This part is
based on [GM23].

1.1 General theory of cluster algebra

Let P be a semifield, i.e., P has an addition ⊕ and a multiplication · which are commutative,
associative and distributive, and there are multiplicative inverses for all elements. Remark that
it has no unit of addition unless it has only one element. The group ring ZP is a integral domain,
and let QP be its fields of fraction. Let F be a field which is isomorphic to the rational function
field over QP whose transcendence degree is n. In the following, we define a cluster algebra as
a ZP-subalgebra of F .

Definition 1.1. A matrix B is skew-symmetrizable if there is a diagonal matrix D whose
diagonal elements are positive rational numbers such that BD is skew-symmetric. A seed is a
triplet (x,y, B) where x is an n-tuple (x1, . . . , xn) of transcendental basis of F over QP, y is an
n-tuple (y1, . . . , yn) of P and B is an n×n skew-symmetrizable matrix. Each x is called cluster,
and each component xi of a cluster is called cluster variable.

For a real number a, we define [a]+ = max(a, 0).

Definition 1.2 (mutation). Let (x,y, B) be a seed and k be a element of {1, . . . , n}. A mutation
in direction k is an operation making a new seed (x′,y′, B′) such that B′ = (b′ij) is defined by

b′ij :=

{
−bij (i = k or j = k),

bij + [−bik]+bkj + bik[bkj ]+ (otherwise),

y′ = (y′1, . . . , y
′
n) is defined by

y′j =

{
yk
−1 (j = k),

yjyk
[bkj ]+(yk ⊕ 1)−bkj (j 6= k),

and x′ = (x′1, . . . , x
′
n) is defined by

x′i =


yk
∏n

i=1 xi
[bik]+ +

∏n
i=1 xi

[−bik]+

(yk ⊕ 1)xk
(j = k),

xi (j 6= k).

(1.1)

The relation of the case that j = k of (1.1) is called the exchange relation.
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Let Tn be an n-regular tree. For each vertex of Tn, let the edges which are adjacent to the
vertex be labeled by elements of {1, . . . , n} and all labels be distinct. Abusing a symbol, we
denote the vertex set of Tn as Tn.

Definition 1.3 (cluster algebra). A cluster pattern Σ is a map that assigns to each vertex
t ∈ Tn a seed Σt = (xt,yt, Bt), where xt = (x1;t, . . . , xn;t),yt = (y1;t, . . . , yn;t), Bt = (bij;t), and
if t, t′ are adjacent to each other through an edge labeled by k, then Σt and Σt′ are related
by mutation each other. The cluster algebra AΣ of a cluster pattern Σ is ZP-subalgebra of F
generated by {xi;t | i = 1, . . . n, t ∈ Tn}.

The following is one of the most significant property of cluster algebras and called the Laurent
phenomenon:

Theorem 1.1 ([FZ02a]). Let Σ be a cluster pattern and (x1, . . . , xn) be cluster variables of a
seed of Σ. The cluster algebra AΣ of the cluster pattern Σ is contained in the Laurent polynomial
ring ZP[x±11 , . . . , x±1n ].

For a skew-symmetrizable matrix B0 and a vertex t0 of Tn, we recursively define families

of n × n matrices {BB0;t0
t = (bB

0;t0
ij;t )}t∈Tn , {C

B0;t0
t = (cB

0;t0
ij;t )}t∈Tn , {G

B0;t0
t = (gB

0;t0
ij;t )}t∈Tn

and a family of rational functions {FB0;t0
i;t }t∈Tn,i=1,...,n of n variables y1, . . . , yn as follows. For

simplicity, we omit superscripts B0 and t0 if they are obvious from the context. As initial data,
let Bt0 be B0, let Ct0 and Gt0 be identity matrix and let Fi;t0 be 1. For any i, j = 1, . . . , n and
t, t′ ∈ Tn, if t, t

′ are adjacent through edges labeled by l, we define

bij;t′ :=

{
−bij;t (i = l or j = l),

bij;t + [−bil;t]+blj;t + bil;t[blj;t]+ (otherwise),

cij;t′ =

{
−cil;t (j = l),

cij;t + cil;t[blj;t]+ + [cil;t]+blj;t (j 6= l),

gij;t′ =


gil;t (j 6= l),

gil;t +
n∑

k=1

gik;t[bkl;t]+ −
n∑

k=1

bik;t[ckl;t]+ (j = l),

Fi;t′ =


Fi;t (i 6= l),∏n

k=1 y
[ckl;t]+
k

∏n
k=1(Fk;t)

[bkl;t]+ +
∏n

k=1 y
[−ckl;t]+
k

∏n
k=1(Fk;t)

[−bkl;t]+

Fl;t
(i = l).

These matrices Ct and Gt are called C-matrices and G-matrices respectively, and the column
vectors of these matrices are called c-vectors and g-vectors, respectively. From these data, we
can construct each cluster variable xi;t. Before explaining that, a little preparation is required.
The universal semifield Qsf(y1, . . . , yn) generated by variables {y1, . . . , yn} is the multiplicative
subgroup of the rational function field Q(y1, . . . , yn) consisting of elements that have subtraction-
free expression. The addition is defined by usual one in Q(y1, . . . , yn). For example, (1−x3)/(1−
x) is element of Qsf(x) since that has a subtraction-free expression 1 + x + x2. Note that all
FB;t0
i;t are clearly in Qsf(y1, . . . , yn) because recursion steps are expressed without subtractions.

For any semifield P and its n elements p1, . . . , pn, there is unique semifield homomorphism
from Qsf(y1, . . . , yn) to P which assigns pi to yi for all i = 1, . . . , n. We denote the image
of F ∈ Qsf(y1, . . . , yn) by F |P(p1, . . . , pn). On the other hand, for F ∈ Qsf(y1, . . . , yn) and n
elements f1, . . . , fn of F , we denote the element made by a usual substitution by F |F (f1, . . . , fn).

3



Theorem 1.2 ([FZ07]). If cluster pattern Σ has a seed ((x1, . . . , xn), (y1, . . . , yn), B
0) at a vertex

t0 ∈ Tn, then each cluster variable xl;t is described as

xl;t =
FB0;t0
l;t |F (ŷ1, . . . , ŷn)

FB0;t0
l;t |P(y1, . . . , yn)

n∏
i=1

x
g
B0;t0
il;t

i (1.2)

where ŷj = yj
∏n

i=1 x
bij
i .

This formula is called separation formula because it separates the usual addition + of F and
the addition ⊕ of P into numerator and denominator. The following was conjectured in [FZ02a]
and proved in [GHKK18].

Theorem 1.3 (Positivity of the Laurent phenomenon). Let Σ be a cluster pattern and t be a
vertex of tree Tn. For each cluster algebra AΣ and any cluster variable x, the Laurent polynomial
which expresses x in terms of the cluster variables from a seed Σt has coefficients which are
nonnegative integer linear combinations of elements in P.

The following was conjectured in [FZ07] and proved in [GHKK18].

Theorem 1.4 (Sign coherence of c-vector). For skew-symmetrizable matrix B0, any t0, t ∈ Tn

and j ∈ {1, . . . , n}, a c-vector (cB0;t0
1j;t , . . . , cB0;t0

nj;t ) has either all entries nonnegative or all entries
nonpositive.

These two important theorems were proved by using scattering diagram methods. Scattering
diagrams for cluster algebras are characterized by the consistency relations in their structure
groups G.

1.2 Overview of Part I

The structure group G of a given cluster scattering diagram is generated by the special elements
called dilogarithm elements Ψ[n] parameterized by some lattice points n [GHKK18, Nak23].
(We note that this character ‘n’ does not mean natural number as in the previous section.) The
precise definition of the group G and the family of elements Ψ[n] is given in §3. These elements
satisfy the significant relations called the pentagon relations :

Ψ[n]cΨ[n′]c = Ψ[n]cΨ[n+ n′]cΨ[n]c

where {n, n′} = c−1.
In this thesis, we prove the consistency relations of rank 2 cluster scattering diagrams of

affine type, namely types A
(1)
1 and A

(2)
2 . More precisely, we prove the following theorem. For

simplicity, let

[
n1

n2

]
= Ψ[(n1, n2)].

Theorem 1.5 ([Mat21, Theorem 1]). The following relations holds:[
0
1

]2 [
1
0

]2
=

[
1
0

]2 [
2
1

]2 [
3
2

]2
· · ·

 ∞∏
j=0

[
2j

2j

]22−j
 · · · [2

3

]2 [
1
2

]2 [
0
1

]2

=
−→∏
p≥0

[
p+ 1
p

]2 ∞∏
j=0

[
2j

2j

]22−j
←−∏

p≥0

[
p

p+ 1

]2
, (1.3)

[
0
1

]4 [
1
0

]
=

[
1
0

] [
1
1

]4 [
3
4

] [
2
3

]4 [
5
8

] [
3
5

]4
· · ·

×

[1
2

]6 ∞∏
j=1

[
2j

2j+1

]22−j
 · · · [ 5

12

] [
2
5

]4 [
3
8

] [
1
3

]4 [
1
4

] [
0
1

]4
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=

−→∏
p≥0

[
2p+ 1
4p

] [
p+ 1
2p+ 1

]4[1
2

] ∞∏
j=1

[
2j

2j+1

]22−j
←−∏

p≥0

[
2p+ 1
4p+ 4

] [
p

2p+ 1

]4 , (1.4)

where the right hand sides of them converge with respect to topology of G, whose details are
explained in §3. The symbols

∏−→ and
∏←− are defined by equation (4.1) in §4. Moreover,

these formulas can be reduced to trivial relations by iterated applications of the pentagon relations.

We remark that the relations (1.3) first proved by [Rei10] by using quiver representations.
Also, the relations (1.3) and (1.4) were proved by cluster mutation technique by [Rea20]. The

relations (1.3) and (1.4) are the (unique) consistency relations of type A
(1)
1 and type A

(2)
2 ,

respectively.
We say a product of dilogarthm elements is ordered, (resp. anti-ordered) if, for any adjacent

pair

[
n1

n2

] [
n′1
n′2

]
, the inequality n1/n2 ≥ n′1/n

′
2 (resp. n1/n2 ≤ n′1/n

′
2) holds. The consistency

relations of scattering diagrams in R2 have the form of

“anti-ordered product” = “ordered product”.

It was shown that the consistency relations are generated by the pentagon relation [Nak23], and
the above theorem provides an simplest examples involving the infinite product.

In §3, we introduce dilogarithm elements and the pentagon relations. In §4, we prove a
generalization of the formula (1.3). In §5, we prove a generalization of the formula (1.4) by
using results of §4.

1.3 Overview of Part II

In the second part of this thesis, we deal with some Diophantine equations. One of equations
with which we deal has the following form:

x2 + y2 + z2 + k3xy + k1yz + k2zx = (3 + k1 + k2 + k3)xyz, (1.5)

where k1, k2, k3 ∈ Z≥0. We describe all positive integer solutions to (1.5) in a combinatorial way.
We give a rooted tree Tk1,k2,k3 with triplets of positive integers as its vertices in the following
steps.

(1) The root vertex is (1, 1, 1),

(2) the triplet (1, 1, 1) has three children, (k1 + 2, 1, 1), (1, k2 + 2, 1), (1, 1, k3 + 2),

(3) the generation rule below (k1 + 2, 1, 1), (1, k2 + 2, 1), (1, 1, k3 + 2) is as follows:

(i) if a is the maximal number in (a, b, c), then (a, b, c) has two children(
a,

a2 + k2ac+ c2

b
, c

)
and

(
a, b,

a2 + k3ab+ b2

c

)
,

(ii) if b is the maximal number in (a, b, c), then (a, b, c) has two children(
b2 + k1bc+ c2

a
, b, c

)
and

(
a, b,

a2 + k3ab+ b2

c

)
,

(iii) if c is the maximal number in (a, b, c), then (a, b, c) has two children(
b2 + k1bc+ c2

a
, b, c

)
and

(
a,

a2 + k2ac+ c2

b
, c

)
.
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We remark that, for any triplets (a, b, c) in the rooted tree Tk1,k2,k3 , the case that a = b > c
(similarly b = c > a, c = a > b) does not occur. This can be proved by using Lemma 8.1 and
the fact that (a, b, c) is a solution of equation (1.5).

For example, when k1 = 1, k2 = 2, k3 = 0, the first few terms of T1,2,0 are as follows:

(1, 1, 1)

(3, 1, 1)

(1, 4, 1)

(1, 1, 2)

(3, 16, 1)

(3, 1, 10)

(21, 4, 1)

(1, 4, 17)

(7, 1, 2)

(1, 9, 2)

(91, 16, 1) · · ·

(3, 16, 265) · · ·

(37, 1, 10) · · ·

(3, 169, 10) · · ·

(21, 121, 1) · · ·

(21, 4, 457) · · ·

(373, 4, 17) · · ·

(1, 81, 17) · · ·

(7, 81, 2) · · ·

(7, 1, 25) · · ·

(103, 9, 2) · · ·

(1, 9, 41) · · ·

������������

??
??

??
??

??
??

������������������
lllllll

lllllll

RRRR
RRR

RRRR
RRR

::
::

::
::

::
::

::
::

::

ddddddddd
ZZZZZZZZZ

ddddddddd
ZZZZZZZZZ

ddddddddd
ZZZZZZZZZ

ddddddddd
ZZZZZZZZ

Z

dddddddddd
ZZZZZZZZ

ZZ

dddddddddd
ZZZZZZZZ

ZZ

. (1.6)

The first main result in Part II is the following theorem:

Theorem 1.6 ([GM23, Theorem 1]). Every positive integer solution to (1.5) appears exactly
once in Tk1,k2,k3.

When k1 = k2 = k3 = 0, the equation (1.5) is the Markov Diophantine equation

x2 + y2 + z2 = 3xyz. (1.7)

This is an equation that has received much attention since the work on the Markov spectrum,
and is now being studied in relation to combinatorial objects such as Christoffel words, perfect
matchings of graphs, and continuous fractions (for detail, see Aigner’s book [Aig13]). The proof
of Theorem 1.6 for the case of k1 = k2 = k3 = 0 is known, for example, by [Aig13, Section 3.1].

Moreover, when k1 = k2 = k3 = 1, the equation (1.5) is a Diophantine equation

(x+ y)2 + (y + z)2 + (z + x)2 = 12xyz. (1.8)

studied in [Gyo22]. The positive integer solutions to this equation, as well as the Markov
equation, have been shown to be closely related to perfect matchings of graphs and continuous
fractions. The specialized version of Theorem 1.6 for the case of k1 = k2 = k3 = 1 is proved by
[Gyo22, Theorem 1.1].

Furthermore, Lampe proved specialized version of Theorem 1.6 for the case of k1 = 0, k2 =
k3 = 2 in [Lam16, Lemma 2.7], that is, the description of all positive integer solutions to

x2 + y2 + z2 + 2xy + 2zx = 7xyz. (1.9)
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In [Lam16], this theorem is used to describe all positive integer solutions to

x2 + y4 + z4 + 2xy2 + 2zx2 = 7xy2z2. (1.10)

In this thesis, we also deal with the generalized version of the equation (1.10),

x2 + y4 + z4 + ky2z2 + 2xy2 + 2xz2 = (7 + k)xy2z2, (1.11)

where k ∈ Z≥0.
As in (1.5), we describe all positive integer solutions to (1.11) in a combinatorial way. We

give a tree Tk with triplets of positive integers as its vertices in the following steps.

(1) The root vertex is (1, 1, 1),

(2) the triplet (1, 1, 1) has three children, (k + 2, 1, 1), (1, 2, 1), (1, 1, 2),

(3) the generation rule below (k + 2, 1, 1), (1, 2, 1), (1, 1, 2) is as follows:

(i) if a is the maximal number in (a, b2, c2), then (a, b, c) has two children(
a,

a+ c2

b
, c

)
and

(
a, b,

a+ b2

c

)
,

(ii) if b2 is the maximal number in (a, b2, c2), then (a, b, c) has two children(
b4 + kb2c2 + c4

a
, b, c

)
and

(
a, b,

a+ b2

c

)
,

(iii) if c2 is the maximal number in (a, b2, c2), then (a, b, c) has two children(
b4 + kb2c2 + c4

a
, b, c

)
and

(
a,

a+ c2

b
, c

)
.

When k = 1, the first few terms of T1 are as follows:

(1, 1, 1)

(3, 1, 1)

(1, 2, 1)

(1, 1, 2)

(3, 4, 1)

(3, 1, 4)

(21, 2, 1)

(1, 2, 5)

(21, 1, 2)

(1, 5, 2)

(91, 4, 1) · · ·

(3, 4, 19) · · ·

(91, 1, 4) · · ·

(3, 19, 4) · · ·

(21, 11, 1) · · ·

(21, 2, 25) · · ·

(741, 2, 5) · · ·

(1, 13, 5) · · ·

(21, 1, 11) · · ·

(21, 25, 2) · · ·

(741, 5, 2) · · ·

(1, 5, 13) · · ·

������������

??
??

??
??

??
??

������������������
lllllll

lllllll

RRRR
RRR

RRRR
RRR

::
::

::
::

::
::

::
::

::

dddddddddd
ZZZZZZZZ

ZZ

dddddddddd
ZZZZZZZZ

ZZ

ddddddddd
ZZZZZZZZ

Z

dddddddddd
ZZZZZZZZ

ZZ

ddddddddd
ZZZZZZZZ

Z

dddddddddd
ZZZZZZZZ

ZZ

. (1.12)
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The second main result in Part II is the following theorem:

Theorem 1.7 ([GM23, Theorem 2]). Every positive integer solution to (1.11) appears exactly
once in Tk.

This is a generalization of Lampe’s result [Lam16, Theorem 2.6]. In Lampe’s paper, the case
k = 0 was shown as mentioned above. To prove it, the k1 = 0, k2 = k3 = 2 case of Theorem
1.6 is used in his paper. In the proof of Theorem 1.7, we use the k1 = k, k2 = k3 = 2 case of
Theorem 1.6, which is its generalization.

The methods of enumerating the positive integer solutions to the equations mentioned above
have one thing in common: it has a structure that can generate three another positive integer
solutions from one positive integer solution. This operation is called the Vieta jumping and is
the key operation of the two main theorems given in this part. We also explain that these Vieta
jumpings and positive integer solutions have a structure derived from cluster algebra theory.
Immediately after the birth of cluster algebra, it was shown that the integer sequences called
Somos-4 and Somos-5 can be seen as cluster variables, and the recurrence formula that gives
it can be seen as a specialization of mutation (see [FZ02b]). In the context of the Diophantine
problem, it was first known that the Vieta jumpings and positive integer solutions of the Markov
Diophantine equation (1.7) are a specialization of a class of mutations and cluster variables (for
example, there is a description of it in [FZW16]), and then it was found by [Lam16] that those of
equation (1.10) are given by a specialization of another class of mutation and cluster variables.
Recently, it was found by [Gyo22] that those of the equation (1.8) can be given as a specialization
of the mutation and cluster variable associated with the generalized cluster algebra by [CS14].
In this thesis, we will discuss the generalized cluster algebra structure of equations (1.5) and
(1.11), including all of the above mentioned.

At the end of this part, we will consider whether there are any other Diophantine equations
with the structure of a generalized cluster algebra like these equations.
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Part I

Consistency relations of rank 2 cluster
scattering diagrams of affine type and
pentagon relation

The content of this part is based on [Mat21].

2 Cluster scattering diagrams

In this section, we define cluster scattering diagrams following [GHKK18]. We will use only the
case that N = Nuf = Z2, but we now define that in general case. First, we fix the following
data:

• A lattice N , i.e., a free abelian group of finite rank.

• A skew-symmetric Z-bilinear form {·, ·} : N ×N −→ Q. For a subsets A,B ⊂ N , we write
{A,B} := {{a, b} | a ∈ A, b ∈ B}.

• A saturated sublattice Nuf ⊂ N , i.e., N/Nuf is torsion-free.

• An index set I such that |I| = rankN .

• A subset Iuf of I such that |Iuf | = rankNuf .

• A family of positive numbers di (i ∈ I) whose greatest common divisor is 1.

• A sublattice N◦ ⊂ N which satisfies |N/N◦| <∞, {Nuf , N
◦} ⊂ Z and {N,Nuf ∩N◦} ⊂ Z.

• The dual lattices M = Hom(N,Z), M◦ = Hom(N◦,Z).

We need to assume the map p∗1 : Nuf −→M◦, n 7→ {n, ·} is injective. This injectivity assumption
always holds in the case that N = Nuf = Z2 and the skew-symmetric form {·, ·} is not zero.

Definition 2.1. A seed is a Z-basis s = (ei)i∈I of N such that {ei | i ∈ Iuf} is a basis of Nuf

and {diei | i ∈ I} is a basis of N◦.

For seed s, we can define the subset of N by

N+ := N+
s :=

∑
i∈Iuf

aiei

∣∣∣∣∣∣ ai are non-negative integers

 \ {0}.
We fix a Z-linear map d : N → Z such that d(n) > 0 for n ∈ N+.
We denote M ⊗R by MR. We can naturally regard M as a subset of MR. The R-linear map

M ⊗ R→M◦ ⊗ R induced by the Z-linear map M →M◦, f 7→ f |N◦ is isomorphism. Thus we
can also regard M◦ as a subset of MR.

We review some terms used in arguments about polyhedral cones.

Definition 2.2. Let V be a R-linear space. A subset σ ⊂ V is the polyhedral cone if there is a
finite subset {v1, . . . vn} ⊂ V such that

σ = {r1v1 + · · ·+ rnvn | ri ≥ 0, i = 1, . . . , n}.

Definition 2.3. Let σ be a polyhedral cone in V .
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• A cone σ is top dimensional if V = {v − w | v, w ∈ σ}.

• A cone σ is strictly convex if σ includes no one-dimensional vector spaces.

• Let V = MR. A cone σ is rational if σ is generated by finite subset of M .

We fix a top dimensional strictly convex polyhedral cone σ ⊂ MR such that p∗1(ei) is in
(σ ∩ M◦) \ {0} for all i ∈ Iuf In fact, we can take such a convex cone under the injectivity
assumption. For example, a convex cone generated by {p∗1(ei) | i ∈ Iuf} ∪ {e∗i | i ∈ I} is such
one, where {e∗i | i ∈ I} is the dual basis of the seed {ei | i ∈ I}. We next consider a monoid
P := σ ∩M◦ and monoid ring k[P ] over a field of characteristic 0. We denote by J the ideal of
the monoid ring which is generated by P \ {0}. We denote the completion with respect to J by

k̂[P ] := lim←−
k

k[P ]/Jk :=

{
(ai + J i)i∈N ∈

∏
i∈N

k[P ]/J i

∣∣∣∣∣ ai ∈ k[P ], ai − aj ∈ J i, i < j

}
.

We identify an element of k̂[P ] with a formal power series a =
∑

m∈P amxm in natural way. For

m ∈ M◦, n ∈ N◦, we denote m(n) by 〈m,n〉. We define a Lie algebra Θ̂(k[P ]) := k̂[P ] ⊗Z N◦

whose Lie bracket is defined by

[zp∂n, z
p′∂n′ ] = zp+p′∂⟨p′,n⟩n′−⟨p,n′⟩n,

where we denote zp ⊗ n by zp∂n. Consider the Lie subalgebra JΘ̂(k[P ]) := (J k̂[P ]) ⊗ N◦

of Θ̂(k[P ]), in which we define the group structure by using the Baker–Campbell–Hausdorff

formula, i.e., for ξ, η ∈ JΘ̂(k[P ]), we define

ξ ∗ η = ξ + η +
1

2
[ξ, η] +

1

12
[ξ, [ξ, η]] + · · · .

Consider the subspace

g :=
∑

n∈N+

gn, gn := kzp
∗
1(n)∂n

of Θ̂(k[P ]). Then, for n, n′ ∈ N+, we have

[zp
∗
1(n)∂n, z

p∗1(n
′)∂n′ ] = zp

∗
1(n)+p∗1(n

′)∂{n′,n}n′−{n,n′}n

= zp
∗
1(n)+p∗1(n

′)∂{n′,n}(n+n′)

= {n′, n}zp∗1(n+n′)∂n+n′ ,

and thus [gn, gn′ ] = gn+n′ . For each natural number k, we consider the ideal g>k :=
∑

d(n)>k gn

of the Lie algebra g and the nilpotent Lie algebras g≤k := g/g>k. We can define the group
multiplication ∗ on each g≤k by using the Baker–Campbell–Hausdorff formula. We denote the
groups (g≤k, ∗) by G≤k and define G := exp(g) := lim←−k

G≤k. We denote the set bijection

g≤k → G≤k by exp. For any n0 ∈ N+, we define

g||n0
=
∑
k>0

gk·n0 ⊂ g,

G||n0
= exp(g||n0

) ⊂ G.

We remark that g
||
n0 are commutative Lie subalgebras of g, and thus G

||
n0 are abelian groups.
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Definition 2.4. Let n0 ∈ N+ and m0 := p∗1(n0). For f ∈ 1 + zm0k[[zm0 ]] ⊂ k̂[P ], we define

pf ∈ Aut(k̂[P ]) by

pf (z
m) = f ⟨m,n′

0⟩zm,

where n′0 is the generator of the monoid R≥0n0 ∩N◦.

Lemma 2.1 ([GHKK18, Lemma 1.3]). Let n0 ∈ N+, m0 = p∗1(n0) and d = min{r ∈ Q | rn0 ∈
N◦, r > 0}. Then, G||n0 is identical with {pf | f ∈ 1 + zm0k[[zm0 ]]} as a subgroup of Aut(k̂[P ]).

An element n ∈ N+ is primitive if k · n′ = n implies n′ = n for each natural number k and
element n′ of N+.

Definition 2.5. A wall in MR with respect to N+ and g is a pair d = (supp d, gd) which
satisfying

1. there exists n0 ∈ N+ satisfying gd ∈ G
||
n0 .

2. supp d ⊂ n⊥0 = {m ∈MR | 〈m,n0〉 = 0}.

3. supp d is a (rankN − 1)-dimensional rational polyhedral cone.

Definition 2.6. A scattering diagram D with respect to N+ and g is a collection of walls which
satisfy that for every degree k, the set

Dk := {d ∈ D | The image of gd in G≤k is not unit}

is a finite collection. We call Dk by reducted scattering diagram of D with respect to a degree
k.

Here we remark that the term collection is used to mean a multiset, i.e., a set in which the
multiplicity is considered. For a scattering diagram D, we define the support Supp(D) and the
set Sing(D) of singular points by

Supp(D) =
⋃
d∈D

supp(d), Sing(D) =
⋃
d∈D

∂d ∪
⋃

d1,d2∈D
dim d1∩d2=n−2

d1 ∩ d2

We fix a scattering diagram D and will define a path-ordered product with respect to D. Consider
the smooth embedding

γ : [0, 1] −→MR \ Sing(D)

such that γ(0), γ(1) 6∈ Supp(D) and γ intersects transversally with any walls crossing to γ. Fix
a degree k and we first consider the reducted scattering diagram Dk having finite cardinality.
Later, we will define the path-ordered product with respect to D by taking the limit of reducted
ones. To define the path-ordered product of Dk, consider the finite sequence 0 < t1 ≤ t2 ≤ · · · ≤
ts < 1 which satisfies the following:

1. For each i = 1, . . . , s, there exists di ∈ Dk such that γ(ti) ∈ di.

2. ti = tj ⇒ di 6= dj .

3. 0 < t1 ≤ t2 ≤ · · · ≤ ts < 1 is the longest among sequences satisfying 1 and 2.

11



For each i, we define

ϵi =

{
+1 if 〈n0, γ

′(ti)〉 < 0,

−1 if 〈n0, γ
′(ti)〉 > 0,

where n0 is the element of N+ satisfying di ⊂ n⊥0 . We define the path-ordered product with
respect to γ in Dk by

pkγ,D := gϵsds · · · g
ϵ1
d1

and we define the path-ordered product with respect to γ in D by

pγ,D = lim←−
k

pkγ,D.

Definition 2.7. Two scattering diagrams D and D′ are equivalent if for any curve γ such that
both pγ,D and pγ,D′ are defined, pγ,D = pγ,D′ holds.

We define the most important concept in the theory of scattering diagrams:

Definition 2.8. A scattering diagram is consistent if the path-ordered product pγ,D is only
depends on the end points of the curve γ with which pγ,D is defined.

It is difficult to imagine examples of consistent scattering diagrams from the definition, but
we can construct scattering diagrams from some sort of given data. In order to explain this, we
introduce some terminologies.

Definition 2.9. Let d ⊂ n⊥0 be a wall.

• A wall d is incoming if p∗1(n0) is in d.

• A wall d is outgoing if p∗1(n0) is not in d.

Definition 2.10. For a seed (ei)i∈I , we define as follows.

• (e∗i )i∈I ⊂M is a dual basis of (ei)i∈I ⊂ N .

• (fi)i∈I ⊂M◦ is a dual basis of (diei)i∈I ⊂ N◦.

• ϵij := {ei, ej}dj (i, j ∈ I).

• vi := p∗1(ei) ∈ P (i ∈ Iuf).

• Ai := zfi ∈ Z[M◦] (i ∈ I).

For seed s, we define the scattering diagram that consists of some sort of incoming walls by

Din,s := {(e⊥i , 1 + zvi) | i ∈ Iuf} =

(e⊥i , 1 +
∏
j∈I

A
ϵij
j )

∣∣∣∣∣∣ i ∈ Iuf

 ,

which is not consistent generally. We can construct the consistent scattering diagram from Din,s

by adding only outgoing walls. Namely, the following theorem holds.

Theorem 2.2 ([GHKK18, Theorem 1.12]). For a seed s, there is a scattering diagram Ds

satisfying the following:

1. Ds is consistent.

2. Din,s ⊂ Ds.

3. Ds \Din,s consists of only outgoig walls.

Moreover, such Ds is determined uniquely up to equivalence.

We will construct consistent scattering diagrams in heuristic ways in the case of N = Nuf =
Z2 by using the special elements of G called dilogarithm elements and their significant relations
called pentagon relations in the following sections.
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3 Dilogarithm elements and pentagon relation

From now, we mainly consider the case of N = Nuf = N◦ = Z2. For the sake of the later
arguments, we rewrite the above setting in simpler ways. Let N be a rank 2 lattice with a
skew-symmetric bilinear form

{·, ·} : N ×N −→ Q.

Let e1, e2 be a basis of N , and we define

N+ := {a1e1 + a2e2 | a1, a2 ∈ Z≥0, a1 + a2 > 0}.

Let k be a field of characteristic 0, and we define an N+-graded Lie algebra g over k with
generators Xn such that

g =
⊕
n∈N+

gn, gn = kXn, [Xn, Xn′ ] = {n, n′}Xn+n′ .

Let L := {L ⊂ N+ | N+ + L ⊂ L,#(N+ \ L) < ∞}. For L ∈ L, we define a Lie algebra ideal
gL :=

⊕
n∈L gn and the quotient of g by gL

gL := g/gL =
⊕

n∈N+\L

gn (as a vector space).

Let GL be a group with a set bijection

expL : gL −→ GL

and the product is defined by a Baker–Campbell–Hausdorff (BCH) formula:

expL(X) expL(Y ) = expL(X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · · ). (3.1)

This product formula is well-defined because gL is nilpotent.
For L,L′ ∈ L such that L ⊂ L′, there exists the canonical Lie algebra homomorphism

gL −→ g′L, which induces the group homomorphism GL −→ G′L. Thus, by the inverse limit we
obtain a Lie algebra ĝ and a group G:

ĝ := lim←−
L∈L

gL, G := lim←−
L∈L

GL.

There is a set bijection

exp: ĝ −→ G, (XL)L∈L 7−→ (expL(XL))L∈L.

We use an infinite sum to express an element of ĝ.
We define important elements in G:

Definition 3.1 (Dilogarithm element). For any n ∈ N+, define

[n] := exp

∑
j>0

(−1)j+1

j2
Xjn

 ∈ G.

We call [n] the dilogarithm element for n.

For c ∈ Q and g = exp(X) ∈ G, we define gc := exp(cX).

Proposition 3.1 (Pentagon relation [GHKK18], [Nak23]). Let n, n′ ∈ N+. Then, the following
relations hold in G:
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1. If {n′, n} = 0, then
[n′][n] = [n][n′], (3.2)

2. If {n′, n} = c−1 (c ∈ Q \ {0}), then

[n′]c[n]c = [n]c[n+ n′]c[n′]c (pentagon relation). (3.3)

We will use the following formulas later.

Lemma 3.2 ([Mat21, Lemma 1]). If {n′, n} = c−1 (c ∈ Q \ {0}), we obtain

[n′]c[n]2c = [n]2c[2n+ n′]c[n+ n′]2c[n′]c, (3.4)

[n′]2c[n]c = [n]c[n+ n′]2c[n+ 2n′]c[n′]2c. (3.5)

Proof. The equality (3.4) can be proved by repeatedly applying the pentagon relation:

[n′]c[n]2c = [n′]c[n]c[n]c = [n]c[n+ n′]c[n′]c[n]c

= [n]c[n+ n′]c[n]c[n+ n′]c[n′]c = [n]2c[2n+ n′]c[n+ n′]2c[n′]c.

The equality (3.5) can be proved in the same way:

[n′]2c[n]c = [n′]c[n′]c[n]c = [n′]c[n]c[n+ n′]c[n′]c

= [n]c[n+ n′]c[n′]c[n+ n′]c[n′]c = [n]c[n+ n′]2c[n+ 2n′]c[n′]2c.

4 Proof of formula (1.3)

For a subset I = {i1 < i2 < i3 < · · · } of Z and a sequence (ai)i∈I of elements of G, we write

−→∏
i∈I

ai := ai1ai2ai3 · · · ,
←−∏
i∈I

ai := · · · ai3ai2ai1 . (4.1)

For example,
∏−→

i≥0 ai = a0a1a2 · · · and
∏←−

i≥0 ai = · · · a2a1a0.
The following is the main theorem of this section:

Theorem 4.1 ([Mat21, Theorem 2]). If {n′, n} = c−1 (c ∈ Q \ {0}), then

[n′]2c[n]2c =
−→∏
p≥0

[n+ p(n+ n′)]2c
∏
p≥0

[2p(n+ n′)]4c/2
p
←−∏
p≥0

[n′ + p(n+ n′)]2c. (4.2)

The case of c = 1, n = [(1, 0)], n′ = [(0, 1)] is nothing but the formula (1.3). We remark that
the factors of

∏
p≥0[2

p(n+ n′)]4c/2
p
are mutually commutative by equation (3.2) in Proposition

3.1 since {2p(n+ n′), 2q(n+ n′)} = 0 for any p, q ≥ 0.
To prove this theorem, we introduce some notations and lemmas.
Let L ∈ L. For two elements g1, g2 of G, let us denote g1 ≡ g2modL if their images in GL

are identical. For example, if n ∈ N+ is in L, then [n] ≡ exp(0) = 1GmodL. By the definition
of G, two elements g1, g2 of G are identical if and only if g1 ≡ g2modL for all L ∈ L.

The following is a key lemma:

Lemma 4.2 ([Mat21, Lemma 2]). Let l be a non-negative integer, and let n, n′ ∈ N+. If
{n′, n} = c−1,

[n′]2c

 −→∏
0≤p≤l

[n+ 2pn′]c

 = [n]c

 −→∏
1≤p≤2l+1

[n+ pn′]2c

 [n+ (2l + 2)n′]c[n′]2c (4.3)
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Proof. We will prove it by induction on l.
If l = 0, the equality (4.3) is nothing but (3.5).
Let l > 0. Suppose that the claim is true in the case of l−1, then by the induction hypothesis,

[n′]2c

 −→∏
0≤p≤l

[n+ 2pn′]c

 = [n′]2c

 −→∏
0≤p≤l−1

[n+ 2pn′]c

 [n+ 2ln′]c

= [n]c

 −→∏
1≤p≤2l−1

[n+ pn′]2c

 [n+ 2ln′]c[n′]2c[n+ 2ln′]c

= [n]c

 −→∏
1≤p≤2l+1

[n+ pn′]2c

 [n+ (2l + 2)n′]c[n′]2c.

In the last equality, we use

[n′]2c[n+ 2ln′]c = [n+ 2ln′]c[n+ (2l + 1)n′]2c[n+ (2l + 2)n′]c[n′]2c,

which is a specialization of (3.5).

Now we consider the limit of Lemma 4.2:

Lemma 4.3 ([Mat21, Lemma 3]). If {n′, n} = c−1, then

[n′]2c

−→∏
p≥0

[n+ 2pn′]c

 = [n]c

−→∏
p≥1

[n+ pn′]2c

 [n′]2c, (4.4)

←−∏
p≥0

[n′ + 2pn]c

 [n]2c = [n]2c

←−∏
p≥1

[n′ + pn]2c

 [n′]c. (4.5)

Proof. Let L ∈ L. Then, there exists some positive integer l such that n + 2ln′ ∈ L. Then, by
Lemma 4.2, we obtain

[n′]2c

−→∏
p≥0

[n+ 2pn′]c

 ≡ [n′]2c

 −→∏
0≤p≤l

[n+ 2pn′]c

modL

= [n]c

 −→∏
1≤p≤2l+1

[n+ pn′]2c

 [n+ (2l + 2)n]c[n′]2c

≡ [n]c

−→∏
p≥1

[n+ pn′]2c

 [n′]2cmodL.

Thus, the equality (4.4) holds.
Since {n, n′} = (−c)−1, by (4.4), we obtain

[n]−2c

−→∏
p≥0

[n′ + 2pn]−c

 = [n′]−c

−→∏
p≥1

[n′ + pn]−c

 [n]−2c. (4.6)

The the equality (4.5) is obtained by taking the inverse of the both sides of (4.6).
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Proof of Theorem 4.1. For L ∈ L and k ∈ Z>0, let PL(k) be the following assertion: for n, n′ ∈
N+ and c ∈ Q \ {0}, if {n′, n} = c−1 and k(n+ n′) ∈ L, then

[n′]2c[n]2c ≡
−→∏
p≥0

[n+ p(n+ n′)]2c
∏
p≥0

[2p(n+ n′)]4c/2
p
←−∏
p≥0

[n′ + p(n+ n′)]2cmodL. (4.7)

For any L ∈ L, there exists some positive integer k such that k(n + n′) ∈ L. Thus, if PL(k) is
true for any k ∈ Z>0 and L ∈ L, then a relation (4.7) holds for any L ∈ L, and Theorem 4.1 is
proved. Fix L ∈ L, and we prove PL(k) by induction on k.

If k = 1, the right hand side of (4.7) is equivalent to [n]2c[n′]2c because ln+ l′n′ ∈ L for any
l, l′ ∈ Z≥1. Since

[n′]c[n]c = [n]c[n+ n′]c[n′]c ≡ [n]c[n′]cmodL,

we obtain [n′]2c[n′]2c ≡ [n′]2c[n′]2cmodL.
Let k ≥ 2, and we suppose a proposition PL(k − 1) is true. By the equality (3.5),

[n′]2c[n]2c = ([n′]2c[n]c)[n]c

= [n]c[n+ n′]2c[n+ 2n′]c([n′]2c[n]c)

= [n]c[n+ n′]2c([n+ 2n′]c[n]c)[n+ n′]2c[n+ 2n′]c[n′]2c.

Since (k − 1)(n+ (n+ 2n′)) ∈ L and {n+ 2n′, n} = (c/2)−1, by the induction hypothesis,

[n+ 2n′]c[n]c = [n+ 2n′](c/2)·2[n](c/2)·2

≡
−→∏
p≥0

[n+ p(2n+ 2n′)]2·(c/2)
∏
p≥0

[2p(2n+ 2n′)]4·(c/2)/2
p

×
←−∏
p≥0

[(n+ 2n′) + p(2n+ 2n′)]2·(c/2) modL (by equation (4.7))

=

−→∏
p≥0

[n+ 2p(n+ n′)]c
∏
p≥1

[2p(n+ n′)]4c/2
p
←−∏
p≥0

[(n+ 2n′) + 2p(n+ n′)]c.

Since {n+ n′, n} = c−1 and {n+ 2n′, n+ n′} = c−1, by Lemma 4.3,

[n′]2c[n]2c ≡ [n]c[n+ n′]2c
−→∏
p≥0

[n+ 2p(n+ n′)]c
∏
p≥1

[2p(n+ n′)]4c/2
p

×
←−∏
p≥0

[(n+ 2n′) + 2p(n+ n′)]c

× [n+ n′]2c[n+ 2n′]c[n′]2cmodL

= [n]c[n]c

−→∏
p≥1

[n+ p(n+ n′)]c

 [n+ n′]2c
∏
p≥1

[2p(n+ n′)]4c/2
p

× [n+ n′]2c
←−∏
p≥1

[(n+ 2n′) + p(n+ n′)]c

× [n+ 2n′]c[n+ 2n′]c[n′]2c

=
−→∏
p≥0

[n+ p(n+ n′)]2c
∏
p≥0

[2p(n+ n′)]4c/2
p
←−∏
p≥0

[n′ + p(n+ n′)]2c.

This completes the proof of Theorem 4.1.
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5 Proof of formula (1.4)

The formula (1.4) is the case that c = −1, n = [(0, 1)], n′ = [(1, 0)] of the following theorem:

Theorem 5.1 ([Mat21, Theorem 3]). If {n′, n} = c−1 (c ∈ Q), then we obtain

[n′]c[n]4c =

−→∏
p≥0

([(2p+ 1)n+ pn′]4c[(4p+ 4)n+ (2p+ 1)n′]c)

× [2n+ n′]2c
∏
p≥0

[2p(2n+ n′)]4c/2
p

×
←−∏
p≥0

([(2p+ 1)n+ (p+ 1)n′]4c[4pn+ (2p+ 1)n′]c).

To prove this theorem, we consider some lemmas.

Lemma 5.2 ([Mat21, Lemma 4]). If {n′, n} = c−1 (c ∈ Q \ {0}), then we obtain

[n′]c

 −→∏
0≤p≤l

[n+ pn′]2c

 = [n]2c

 −→∏
1≤p≤l

([2n+ (2p− 1)n′]c[n+ pn′]4c)


× [2n+ (2l + 1)n′]c[n+ (l + 1)n′]2c[n′]c.

Proof. We prove it by induction on l. The case of l = 0 is nothing less than the equality (3.4).
Let l > 0. Suppose that the claim is true in the case of l − 1, then

[n′]c

 −→∏
0≤p≤l

[n+ pn′]2c

 = [n′]c

 −→∏
0≤p≤l−1

[n+ pn′]2c

 [n+ ln′]2c

= [n]2c

 −→∏
1≤p≤l−1

([2n+ (2p− 1)n′]c[n+ pn′]4c)


× [2n+ (2l − 1)n′]c[n+ ln′]2c[n′]c[n+ ln′]2c

= [n]2c

 −→∏
1≤p≤l

([2n+ (2p− 1)n′]c[n+ pn′]4c)


× [2n+ (2l + 1)n′]c[n+ (l + 1)n′]2c[n′]c.

In the last equality, we use

[n′]c[n+ ln′]2c = [n+ ln′]2c[2n+ (2l + 1)n′]c[n+ (l + 1)n′]2c[n′]2,

which is a specialization of (3.4).

Now we consider the limit of Lemma 5.2:

Lemma 5.3. If {n′, n} = c−1, then we obtain

[n′]c

−→∏
p≥0

[n+ pn′]2c

 = [n]2c

−→∏
p≥1

[2n+ (2p− 1)n′]c[n+ pn′]4c

 [n′]c, (5.1)

←−∏
p≥0

[n′ + pn]2c

 [n]c = [n]c

←−∏
p≥1

[n′ + pn]4c[2n′ + (2p− 1)n]c

 [n′]2c. (5.2)
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Proof. Let L ∈ L. Then, there exist some positive integer l such that n + ln′ ∈ L. Then, by
Lemma 5.2, we obtain

[n′]c
−→∏
p≥0

[n+ pn′]2c ≡ [n′]c

 −→∏
0≤p≤l

[n+ pn′]2c

modL

= [n]2c

 −→∏
1≤p≤l

([2n+ (2p− 1)n′]c[n+ pn′]4c)


× [2n+ (2l + 1)n′]c[n+ (l + 1)n′]2c[n′]c

≡ [n]2c

−→∏
p≥1

[2n+ (2p− 1)n′]c[n+ pn′]4c

 [n′]cmodL.

Thus, the equality (5.1) holds.
Since {n, n′} = (−c)−1, by (5.1), we obtain

[n]−c

−→∏
p≥0

[n′ + pn]−2c

 = [n′]−2c

−→∏
p≥1

[2n′ + (2p− 1)n]−c[n′ + pn]−4c

 [n]−c.

By taking the inverse of both sides of this equality, we have the equality (5.2).

Proof of Theorem 5.1. Using the pentagon relations, Theorem 4.1 and Lemma 5.3, we can cal-
culate as follows:

[n′]c[n]4c = [n′]c[n]2c[n]2c = [n]2c[2n+ n′]c[n+ n′]2c[n′]c[n]2c (by equation (3.4))

= [n]2c[2n+ n′]c[n+ n′]2c[n]2c[2n+ n′]c[n+ n′]2c[n]c (by equation (3.4))

= [n]2c[2n+ n′]c

×

−→∏
p≥0

[n+ p(2n+ n′)]2c

∏
p≥0

[2p(2n+ n′)]4c/2
p

←−∏
p≥0

[n+ n′ + p(2n+ n′)]2c


× [2n+ n′]c[n+ n′]2c[n′]c (by equation (4.2))

= [n]2c × [n]2c

−→∏
p≥1

([2n+ (2p− 1)(2n+ n′)]c[n+ p(2n+ n′)]4c)

 [2n+ n′]c

×
∏
p≥0

[2p(2n+ n′)]4c/2
p

× [2n+ n′]c

←−∏
p≥1

[(n+ n′) + p(2n+ n′)]4c[2(n+ n′) + (2p− 1)(2n+ n′)]c

 [n+ n′]2c

× [n+ n′]2c[n′]c (by equations (5.1), (5.2))

=

−→∏
p≥0

[n+ p(2n+ n′)]4c[2n+ (2p+ 1)(2n+ n′)]c


× [2n+ n′]2c

∏
p≥0

[2p(2n+ n′)]4c/2
p

×

←−∏
p≥0

[(n+ n′) + p(2n+ n′)]4c[2(n+ n′) + (2p− 1)(2n+ n′)]c


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=

−→∏
p≥0

([(2p+ 1)n+ pn′]4c[(4p+ 4)n+ (2p+ 1)n′]c)

× [2n+ n′]2c
∏
p≥0

[2p(2n+ n′)]4c/2
p

×
←−∏
p≥0

([(2p+ 1)n+ (p+ 1)n′]4c[4pn+ (2p+ 1)n′]c).

In the second equality from the last, we used commutativity of [2n + n′]2c and
∏

p≥0[2
p(2n +

n′)]4c/2
p
. This completes the proof.
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Part II

Generalization of Markov Diophantine
equation via generalized cluster algebra

6 Markov equation

Consider the equation
x2 + y2 + z2 = 3xyz. (6.1)

This equation has a property that if (x0, y0, z0) is a solution of the equation (6.1) then(
y20 + z20

x0
, y0, z0

)
,

(
x0,

x20 + z20
y0

, z0

)
,

(
x0, y0,

x20 + y20
z0

)
(6.2)

are also solutions of the equation (6.1). This is checked by direct calculation. But we can also
calculate it as follows. First, we calculate sum and products of x0 and (y20 + z20)/x0:

x0 +
y20 + z20

x0
=

x20 + y20 + z20
x0

=
3x0y0z0

x0
= 3y0z0,

x0 ·
y20 + z20

x0
= y20 + z20 .

Then, by the relation between roots and coefficients of a quadratic equation, x0 and (y20+z20)/x0
are two solutions of the quadratic equation

X2 − 3y0z0X + y20 + z20 = 0 (6.3)

on a variable X. Comparing (6.1) and (6.3), we see that (X, y0, z0) is also a solution of (6.1). We
call the operation obtaining three solutions (6.2) from (x0, y0, z0) the first Vieta jumping, the
second Vieta jumping and the third Vieta jumping, respectively. These Vieta jumpings assign
positive integer solutions to positive integer solutions. In fact, if x0, y0, z0 are integers, then the
rational number obtained by the first Vieta jumping

y20 + z20
x0

=
3x0y0z0 − x20

x0
= 3y0z0 − x0

is also integers. In the same way, the solutions obtained by the second and third Vieta jumpings
are also integer solutions. Furthermore, if x0, y0, z0 are positive numbers, then all components of
solutions obtained by the Vieta jumpings are positive numbers. This is clear because expressions
(6.2) contains no subtractions. Since (x, y, z) = (1, 1, 1) is a positive integer solutions of (6.1),
we may obtain infinitely many solutions of the equation (6.1) by the repeating Vieta jumping
from (1, 1, 1).

This phenomenon can be explained by using a cluster algebra. Let the initial exchange
matrix be a matrix

B0 =

 0 2 −2
−2 0 2
2 −2 0


Then the mutations of B0 at any directions are −B0. Thus, in the case that the coefficients
semifield P is {1}, the exchange relations of all seeds are the same forms. Namely, for an arbitrary
seed ((x, y, z), (1, 1, 1), B), since the exchange matrix B is B0 or −B0, the exchange relations of
the mutations at direction 1, 2 and 3 are

xx′ = y2 + z2,
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yy′ = x2 + z2,

zz′ = x2 + y2,

respectively, where x′, y′ and z′ are cluster variable obtained by the mutations. Comparing
to the expression (6.2), you can see three clusters (x′, y, z), (x, y′, z) and (x, y, z′) are obtained
from the cluster (x, y, z) by the first, second and third Vieta jumping, respectively. Then the
phenomenon that any triplets obtained by the repeated Vieta jumping from (1, 1, 1) are posi-
tive integers is explained by using Laurent positivity of cluster variables. To explain this, let
((x0, y0, z0), (1, 1, 1), B0) be the initial seed. Then an arbitrary cluster variable is expressed by
the form of P (x0, y0, z0), where P is a Laurent polynomial with positive integer coefficients.
Thus P (1, 1, 1) is positive integer. Since numbers obtained by the repeated Vieta jumpings from
(1, 1, 1) are of the forms P (1, 1, 1), these are positive integers.

7 Generalized cluster pattern

We can generalize the above procedure by using generalized cluster patterns by [CS14]. From
now, we explain generalised cluster patterns. Let P be the semifield {1} (trivial semifield) and
F be a field isomorphic to a rational function field over QP = Q whose transcendence degree is
n as mentioned in the introduction. A labeled seed is a triplet (x, B,Z), where

• x = (x1, . . . , xn) is an n-tuple of elements of F forming a free generating set of F ,

• B = (bij) is an n × n integer matrix which is skew-symmetrizable, that is, there exists a
positive integer diagonal matrix S such that SB is skew-symmetric. We call S a skew-
symmetrizer of B,

• Z = (Z1, . . . , Zn) is an n-tuple of polynomials with the coefficient in N (= NP)

Zi(u) = zi,0 + zi,1u+ · · ·+ zi,diu
di

satisfying zi,0 = zi,di = 1.

In [CS14], [Nak23], the coefficients of Zi(u) are P. However the coefficients can be extended to
NP. We say that x is a cluster, and we refer to xi, B and Zi as the cluster variable, the exchange
matrix and the exchange polynomial, respectively. Furthermore, we set D = diag(d1, . . . , dn),
that is a positive integer diagonal matrix of rank n. We remark that degZi = di ≥ 1 for
i = 1, . . . , n.

For an integer b, we use the notation [b]+ = max(b, 0). Let (x, B,Z) be a labeled seed, and
let k ∈ {1, . . . , n}. The seed mutation µk in direction k transforms (x, B,Z) into another labeled
seed µk(x, B,Z) = (x′, B′,Z′) defined as follows:

• The entries of B′ = (b′ij) are given by

b′ij =

{
−bij if i = k or j = k,

bij + dk

(
[bik]+ bkj + bik [−bkj ]+

)
otherwise.

(7.1)

• The cluster variables x′ = (x′1, . . . , x
′
n) are given by

x′j =


(

n∏
i=1

x
[−bik]+
i

)dk

Zk

(
n∏

i=1
xbiki

)
xk

if j = k,

xj otherwise.

(7.2)
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• The exchange polynomials Z′ = (Z ′1, . . . , Z
′
n) are given by

Z ′j(u) =

{
udkZk(u

−1) if j = k,

Zj(u) otherwise.
(7.3)

The formula of the case that j = k in (7.2) is called the exchange relation. In [CS14], y-variables
and their mutaions are also considered. However we omit them since they are trivial when
P = {1}.

When D = diag(1, . . . , 1), labeled seeds and their mutations are nothing but ones of ordi-
nary cluster algebras explained in §1.1. (In the definitions of ordinary cluster algebras, skew-
symmetrizer of B is denoted by D instead of S. In the case of generalised cluster algebras,
however, we use a symbol D for denoting a diagonal matrix whose entries are degrees of poly-
nomials Zi.) Note that in the case that udkZk(u

−1) = Z(u), if exchange matrix B were replaced
by −B, the exchange relations would still have the same form. In fact,(

n∏
i=1

x
[−bik]+
i

)dk

Zk

(
n∏

i=1

xbiki

)
=

(
n∏

i=1

x
[−bik]+
i

)dk
(

n∏
i=1

xbiki

)dk

Zk

(
n∏

i=1

x−biki

)

=

(
n∏

i=1

x
[bik]+
i

)dk

Zk

(
n∏

i=1

x−biki

)
.

In the last equality, we used the formula

[−b]+ + b = [b]+ (b ∈ R).

Let Tn be the n-regular tree.

Definition 7.1 (generalized cluster pattern). A generalized cluster pattern Σ is a map that
assigns to each vertex t ∈ Tn a seed Σt = (xt, Bt,Zt) and if t, t′ are adjacent to each other
through an edge labeled by k then Σt and Σt′ are related by mutation each other.

The Laurent phenomenon holds in generalized cluster algebra similarly to ordinary cluster
algebra.

Theorem 7.1 ([CS14]). Let Σ be any generalized cluster pattern. Let t0, t ∈ Tn be any vertices.
Then, any cluster variable xi;t is expressed as a Laurent polynomial in xt0 with coefficients in
ZP.

Consider the case that D = diag(2, 2, 2) and the initial seed is (x, B0,Z) where Z =
(Z1, Z2, Z3),

B0 =

 0 1 −1
−1 0 1
1 −1 0

 , Zi(u) = 1 + kiu+ u2 (i = 1, 2, 3)

and k1, k2 and k3 are positive integers. In this case, µk(B0) = −B0, µk(Zi(u)) = Zi(u) and
udkZk(u

−1) = Z(u) (k, i = 1, 2, 3) hold. Thus the exchange relations of any seeds have the same
form. Namely, for an arbitrary cluster (x1, x2, x3), the exchange relations are

x1x
′
1 = x22(1 + k1x

−1
2 x3 + x−22 x23) = x22 + k1x2x3 + x23,

x2x
′
2 = x23(1 + k2x

−1
3 x1 + x−23 x21) = x23 + k2x3x1 + x21,

x3x
′
3 = x21(1 + k3x

−1
1 x2 + x−21 x22) = x21 + k3x1x2 + x23,

where x′1, x
′
2 and x′3 are new cluster variable obtained by a mutation at direction 1, 2 and 3,

respectively.
We now consider if there exists an equation F (x, y, z) = 0 in three variables which satisfies

the following two conditions:
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1. If (x1, x2, x3) is a solution of it, then(
x22 + k1x2x3 + x23

x1
, x2, x3

)
,

(
x1,

x23 + k2x3x1 + x21
x2

, x3

)
,

(
x1, x2,

x21 + k3x1x2 + x23
x3

)
are also solutions of the same equations, and

2. (1, 1, 1) is solution of it.

We call the equation satisfying these properties as generalised Markov equations. For example,
in [Gyo22], the equation

(x+ y)2 + (y + z)2 + (z + x)2 = 12xyz (7.4)

is considered. This is a generalized Markov equation in the case of k1 = k2 = k3 = 1. We
fortunately found out more generalised one

x2 + y2 + z2 + k1yz + k2zx+ k3xy = (3 + k1 + k2 + k3)xyz,

which is already mentioned in introduction as the equation (1.5).

Proposition 7.2 ([GM23, Proposition 3]). If (x, y, z) = (a, b, c) is a positive integer solution to

(1.5), then so are

(
b2 + k1bc+ c2

a
, b, c

)
,

(
a,

a2 + k2ac+ c2

b
, c

)
, and

(
a, b,

a2 + k3ab+ b2

c

)
. In

particular, the equation (1.5) is a generalised Markov equation.

Proof. Let (a, b, c) be a solution of (1.5). We will prove(
b2 + k1bc+ c2

a
, b, c

)
(7.5)

is also a solution of (1.5). This can be verified by direct calculation, but it is a somewhat
complicated calculation. It is easier to understand if we first consider the sum and product of

a and
b2 + k1bc+ c2

a
,

as in the discussion when Markov equation is considered:

a+
b2 + k1bc+ c2

a
=

a2 + b2 + c2 + k1bc

a
= (3 + k1 + k2 + k3)bc− k2c− k3b, (7.6)

a× b2 + k1bc+ c2

a
= b2 + k1bc+ c2.

In the equality (7.6), we used the fact that (a, b, c) is a solution of (1.5). By the relaion between
roots and coefficients, a and (b2 + k1bc+ c2)/a are two solutions of quadratic equation

X2 − {(3 + k1 + k2 + k3)bc− k2c− k3b}X + b2 + k1bc+ c2 = 0.

This equation can be rewritten as

X2 + b2 + c2 + k1bc+ k2Xc+ k3Xb = (3 + k1 + k2 + k3)Xbc.

Since this is obtained by substituting (x, y, z) = (X, b, c) in (1.5), (7.5) is solution of (1.5). By

the equation (7.6),
b2 + k1bc+ c2

a
is an integer.

The above argument even works for the equation (1.11) and we obtain the following theorem:
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Theorem 7.3 ([GM23, Theorem 17]). For each equation given in (1.5) and (1.11), B and Z
(and D) are set as in Table 1. Then, the generalized cluster pattern CP(x,B,Z) with a substi-

tution x1 = x2 = x3 = 1 gives the tree Tk1,k2,k3 or Tk giving positive integer solutions to the
corresponding equation (where we ignore exchange matrices in cluster pattern and consider only
clusters).

The top four rows in Table 1 are the case that k1 = k2 = k3 = 0, the case that k1 = k2 =
0, k3 6= 0, the case that k2 = 0, k1 6= 0, k3 6= 0 and the case that k1, k2, k3 are non zero of the
equation (1.5) from the top. The remaining two rows are the case that k = 0 and k 6= 0 of the
equation (1.11), respectively.

Equation B Z D

x2 + y2 + z2 = 3xyz

 0 2 −2
−2 0 2
2 −2 0



Z1(u) = 1 + u

Z2(u) = 1 + u

Z3(u) = 1 + u

1 0 0
0 1 0
0 0 1



x2 + y2 + z2 + k3xy = (3 + k3)xyz

 0 2 −1
−2 0 1
2 −2 0



Z1(u) = 1 + u

Z2(u) = 1 + u

Z3(u) = 1 + k3u+ u2

1 0 0
0 1 0
0 0 2


x2 + y2 + z2 + k3xy + k1yz

= (3 + k3 + k1)xyz

 0 2 −1
−1 0 1
1 −2 0



Z1(u) = 1 + k1u+ u2

Z2(u) = 1 + u

Z3(u) = 1 + k3u+ u2

2 0 0
0 1 0
0 0 2


x2 + y2 + z2 + k3xy + k1yz + k2zx

= (3 + k1 + k2 + k3)xyz

 0 1 −1
−1 0 1
1 −1 0



Z1(u) = 1 + k1u+ u2

Z2(u) = 1 + k2u+ u2

Z3(u) = 1 + k3u+ u2

2 0 0
0 2 0
0 0 2


x2 + y4 + z4 + 2xy2 + 2z2x

= 7xy2z2

 0 1 −1
−4 0 2
4 −2 0



Z1(u) = 1 + u

Z2(u) = 1 + u

Z3(u) = 1 + u

1 0 0
0 1 0
0 0 1


x2 + y4 + z4 + 2xy2 + ky2z2 + 2z2x

= (7 + k)xy2z2

 0 1 −1
−2 0 2
2 −2 0



Z1(u) = 1 + ku+ u2

Z2(u) = 1 + u

Z3(u) = 1 + u

2 0 0
0 1 0
0 0 1



Table 1: Equations and corresponding triplets (B,Z, D)

8 Proof of Theorem 1.6 and its corollaries

We will prove the first main theorem, Theorem 1.6, in Part II. We first determine the solutions
that contain two or more of the same number.

Lemma 8.1 ([GM23, Lemma 4]). In the positive integer solutions to (1.5), the only solutions
that contain repeated numbers are (1, 1, 1), (k1 + 2, 1, 1), (1, k2 + 2, 1) and (1, 1, k3 + 2).

Proof. Let (a, b, c) be a positive integer solution to (1.5) that contains repeated numbers. We
prove the case of a = b. Then, by substituting (a, a, c) for (x, y, z) in (1.5), we have

(2 + k3)a
2 + c2 + (k1 + k2)ac = (3 + k1 + k2 + k3)a

2c.
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Therefore, we have

c =
a2k3 + a2k1 + a2k2 + 3a2 − ak1 − ak2 ± a

√
(ak3 + (a− 1)k1 + (a− 1)k2 + 3a)2 − 4(k3 + 2)

2
.

We set k = ak3 + (a − 1)k1 + (a − 1)k2 + 3a > 0. In order for c to be an integer, the inside
of the square root must be a square number. Therefore, there exists an positive integer l such
that l2 = k2 − 4(k3 + 2). Since a ≥ 1, we have k ≥ k3 + 3. Therefore, k + l > k3 + 2
holds. Since (k + l)(k − l) = 4(k3 + 2), we have 1 ≤ k − l ≤ 3, and (k − l, k + l) must be

one of (1, 4(k3 + 2)), (2, 2(k3 + 2)),

(
3,

4(k3 + 2)

3

)
. Of the three, it cannot be (1, 4(k3 + 2)) and(

3,
4(k3 + 2)

3

)
because k =

(k + l) + (k − l)

2
is an integer. When (k − l, k + l) = (2, 2(k3 + 2)),

we have k = k3 + 3 and l = k3 + 1. Thus we have (a, a, c) = (1, 1, 1) or (1, 1, k3 + 2). The cases
that a = c and b = c can be proved in the same way.

The triples (1, 1, 1), (k1 + 2, 1, 1), (1, k2 + 2, 1) and (1, 1, k3 + 2) are said to be singular, and
other positive integer solutions to (1.5) are said to be nonsingular.

Proposition 8.2 ([GM23, Proposition 5]). Let (x, y, z) = (a, b, c) be a nonsingular positive
integer solution to (1.5), and we assume a > b > c. Then we have

(1)
a2 + k2ac+ c2

b
> a(> c),

(2)
a2 + k3ab+ b2

c
> a(> b),

(3) b >
b2 + k1bc+ c2

a
.

Proof. We prove (1). We have

a2 + k2ac+ c2

b
− a =

a2 + k2ac+ c2 − ab

b
>

a2 + k2ac+ c2 − a2

b
=

c2 + k2ac

b
> 0.

We can show (2) in the same way as (1). We will show (3). We set

f(x) := (x− a)

(
x− b2 + k1bc+ c2

a

)
= x2 − ((3 + k1 + k2 + k3)bc− k3b− k2c)x+ (b2 + c2 + k1bc)

It suffices to show that

f(b) = (2 + k3)b
2 − (3 + k1 + k2 + k3)b

2c+ (k1 + k2)bc+ c2 < 0.

We consider a function from R2 to R

g(y, z) = (2 + k3)y
2 − (3 + k1 + k2 + k3)y

2z + (k1 + k2)yz + z2. (8.1)

We remark that g(b, c) = f(b). By considering the partial derivative of g in the y direction, we
have

∂g

∂y
= 2(2 + k3)y − 2(3 + k1 + k2 + k3)yz + (k1 + k2)z.
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When y > z ≥ 1, we have

∂g

∂y
(y, z) < 2(2 + k3)y − 2(3 + k1 + k2 + k3)yz + (k1 + k2)y

= −y((6z − 4) + k3(2z − 2) + k1(2z − 1) + k2(2z − 1))

< −((6z − 4) + k3(2z − 2) + k1(2z − 1) + k2(2z − 1)) < 0.

Moreover, by considering the partial derivative of g in the z direction, we have

∂g

∂z
= −(3 + k1 + k2 + k3)y

2 + (k1 + k2)y + 2z.

When y > z ≥ 1, we have

∂g

∂z
(y, z) < −(3 + k1 + k2 + k3)y

2 + (k1 + k2)y + 2y

< −(3 + k1 + k2 + k3)y
2 + (k1 + k2)y

2 + 2y2 < −y2(1 + k3) < 0.

Therefore, g(y, z) is strictly monotonically decreasing in the y and z directions in the range
y > z ≥ 1. Since g(1, 1) = 0, we have g(b, c) = f(b) < 0.

In Proposition 8.2, we assume that a > b > c, but this assumption is not essential:

Corollary 8.3 ([GM23, Corollary 6]). Let (x, y, z) = (a, b, c) be a nonsingular positive integer
solution to (1.5). We set (a′, b, c) (resp. (a, b′, c), (a, b, c′)) as the first (resp. second, third) Vieta
jumping.

(1) If a is the maximal in (a, b, c), then a′ is not maximal in (a′, b, c), b′ is maximal in (a, b′, c),
and c′ is maximal in (a, b, c′),

(2) if b is the maximal in (a, b, c), then a′ is maximal in (a′, b, c), b′ is not maximal in (a, b′, c),
and c′ is maximal in (a, b, c′),

(3) if c is the maximal in (a, b, c), then a′ is maximal in (a′, b, c), b′ is maximal in (a, b′, c), and
c′ is not maximal in (a, b, c′).

Proof. When a > b > c, it is proved by Proposition 8.2. The other cases are proved in the same
way as the proof of Proposition 8.2.

Remark 8.1. By Corollary 8.3, for a nonsingular triplet (a, b, c) in Tk1,k2,k3 ,

(i) if a is the maximal number in (a, b, c), then the parent of (a, b, c) is

(
b2 + k1bc+ c2

a
, b, c

)
,

(ii) if b is the maximal number in (a, b, c), then the parent of (a, b, c) is

(
a,

a2 + k2ac+ c2

b
, c

)
,

(iii) if c is the maximal number in (a, b, c), then the parent of (a, b, c) is

(
a, b,

a2 + k3ab+ b2

c

)
.

Moreover, each non-singular triplet in Tk1,k2,k3 have a smaller maximum than its children. There-
fore, singular triplets cannot be children of non-singular triplets in Tk1,k2,k3 . Hence, each singular
triplet appears in Tk1,k2,k3 once, and the above facts (i),(ii),(iii) are also true for singular triplets
other than (1, 1, 1). Thus, in Tk1,k2,k3 , the three vertices adjacent to each vertex (a, b, c) are re-
spectively the one where a in (a, b, c) is replaced by another number, the one where b in (a, b, c)
is replaced by another number, and the one where c in (a, b, c) is replaced by another number.

Now, we will show Theorem 1.6.
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Proof of Theorem 1.6. By Proposition 7.2 and the fact that (x, y, z) = (1, 1, 1) is a positive
integer solution to (1.5), all vertices in Tk1,k2,k3 are positive integer solutions to (1.5). Suppose
that (x, y, z) = (a, b, c) is a nonsingular positive integer solution to (1.5). Then, by Corollary
8.3, there is one of the Vieta jumpings of (a, b, c) whose maximal number is smaller than that of
(a, b, c). This process can be continued as long as the solution is nonsingular. Since the solutions
that appear in this operation are always positive integer solutions, a singular solution will appear
in a finite number of the operations. By Lemma 8.1, when a nonsingular solution changes to a
singular solution, the singular solution is (k1 + 2, 1, 1), (1, k2 + 2, 1) or (1, 1, k3 + 2). Since any
Vieta jumping of a triplet in Tk1,k2,k3 is again in Tk1,k2,k3 by Remark 8.1, we see that (a, b, c) is
contained in the vertices of the tree Tk1,k2,k3 by following above operations in reverse. We prove
the uniqueness. If not, we see that (1, 1, 1) is not unique by repeating above operations. This is
a contradiction.

As in the Markov Diophantine equation (1.7) or the Gyoda’s equation (1.8), there are several
corollaries that can be established.

Corollary 8.4 ([GM23, Corollary 8]). For any positive integer solution (x, y, z) = (a, b, c) to
(1.5), all pairs in a, b, c are relatively prime.

Proof. The claim is true for (a, b, c) = (1, 1, 1). We prove only that a and b are relatively prime.
By transforming (1.5) as

z2 = (3 + k1 + k2 + k3)xyz − x2 − y2 − k3xy − k1yz − k2zx,

and substituting (x, y, z) = (a, b, c), if a, b have a common divisor d 6= 1, then we see that c
can be divided by a prime divisor d′ of d. Thus, d′ is a common divisor of a, b, c. Therefore,
by Proposition 7.2, the neighbor (a′, b′, c′) of (a, b, c) on the tree T whose maximal number is
smaller than max{a, b, c} has the common divisor d′. By repeating this operation, we see that
d′ is a common divisor of (1, 1, 1). Thus, we must d′ = 1. This is a contradiction. Therefore, we
have d = 1.

Corollary 8.5 ([GM23, Corollary 9]). Every number appearing in the tree Tk1,k2,k3 appears as
the maximal number of some positive integer solution to (1.5).

Proof. Let n be a number appearing in Tk1,k2,k3 . When n = 1, k1+2, k2+2, k3+2, they are the
maximal numbers of (1, 1, 1), (k1+2, 1, 1), (1, k2+2, 1) and (1, 1, k3+2), respectively. We assume
n 6= 1, k1 + 2, k2 + 2, k3 + 2. We take a positive integer solution (x, y, z) = (a, b, c) containing
n. We assume that a > b > c. If n = a, then we are done. If n = b, then n is the maximal
number in the neighbor of (a, b, c) in the tree Tk1,k2,k3 obtained by swapping a by Proposition
7.2. If n = c, as we traverse the neighbors with smaller maximal number, n becomes the second
largest. Therefore, this case is attributed to the n = b case. Even if the magnitude correlation
of a, b, and c are different, it is proved in the same way.

Remark 8.2. In the Markov case, that is, k1 = k2 = k3 = 0, there is a conjecture that triplets
with a common maximum will coincide if the order of the components is reordered (the Markov
Conjecture). However, in the general case, there can be essentially different triplets with a
common maximum (i.e., they will not coincide if the order of the components is reordered).
Actually, when k1 = 1, k2 = 2, k3 = 0, (1, 81, 17) and (7, 81, 2) are both solutions to (1.5), as
seen in (1.6). The Markov Conjecture is proved to be true when the largest number in a triplet
can be written as pn using the prime number p ([Sch96,But98]), but this counterexample shows
that even that does not hold in the general case.

Let us consider the case of k1 = k2 = k3 = 2, that is, the equation

x2 + y2 + z2 + 2xy + 2yz + 2zx = 9xyz. (8.2)

In this situation, we have the following theorem:
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Theorem 8.6 ([GM23, Theorem 11]). If positive integer triplet (a, b, c) is one of solutions to
the Markov equation (1.7), then we have (a2, b2, c2) is one of solutions to (8.2). Conversely,
if positive integer triplet (A,B,C) is one of solutions to (8.2), then (

√
A,
√
B,
√
C) is one of

positive integer solutions to (1.7).

Proof. We prove the former statement. When (a, b, c) = (1, 1, 1), it is clear. We assume that
(a2, b2, c2) is an integer solution to (8.2). It suffices to show that the Vieta jumpings of (a2, b2, c2)
in (8.2) are given by((

b2 + c2

a

)2

, b2, c2

)
,

(
a2,

(
a2 + c2

b

)2

, c2

)
,

(
a2, b2,

(
a2 + b2

c

)2
)
.

We only prove the case of the first Vieta jumping. The first Vieta jumping of (a2, b2, c2) in (8.2)
is (

(b2)2 + 2b2c2 + (c2)2

a2
, b2, c2

)
=

((
b2 + c2

a

)2

, b2, c2

)
,

as desired. We will show the latter statement. By Theorem 1.6, each positive solution to (8.2)
has the form (a2, b2, c2), where (a, b, c) is a solution to (1.7). This finishes the proof.

9 Proof of Theorem 1.7 and its corollaries

To prove Theorem 1.7, we consider the following equation:

X2 + Y 2 + Z2 + 2XY + kY Z + 2ZX = (7 + k)XY Z. (9.1)

This is the equation substituted (1.11) with X = x, Y = y2, Z = z2 and a specialization of (1.5)
with k3 = 2, k1 = k, k2 = 2. Then, the Vieta jumpings of (A,B,C) are(

B2 + kBC + C2

A
,B,C

)
,

(
A,

(A+ C)2

B
,C

)
,

(
A,B,

(A+B)2

C

)
.

Lemma 9.1 ([GM23, Lemma 12]). Every positive integer solution to (9.1) appears exactly once
in T2,k,2. Moreover, for any positive integer solution (A,B,C) to (9.1), there exist positive
integers b and c such that b2 = B and c2 = C.

Proof. The former statement follows from Theorem 1.6. We prove the latter statement. When
(X,Y, Z) = (1, 1, 1), it is clear. We assume that (A, b2, c2) is a solution to (9.1). The second

Vieta jumping of (A, b2, c2) in (9.1) is

(
A,

(
A+ c2

b

)2

, c2

)
. Since

(
A+ c2

b

)2

is an integer, so

is
A+ c2

b
. In the same way, we obtain

(
A, b2,

(
A+ b2

c

)2
)

from (A, b2, c2) by the third Vieta

jumping. These facts finish the proof.

Proposition 9.2 ([GM23, Proposition 13]). If a positive integer triplet (a, b, c) is one of solutions
to (9.1), then (a, b2, c2) is one of solutions to (1.11). Conversely, if a positive integer triplet
(A,B,C) is one of solutions to (1.11), then (A,

√
B,
√
C) is one of positive integer solutions to

(9.1).

Proof. The former statement is clear. The latter follows from Lemma 9.1.

Now, we prove Theorem 1.7.

28



Proof of Theorem 1.7. By Lemma 9.1 and Proposition 9.2, all positive integer solutions to (1.11)
are obtained from (1, 1, 1) by repeating the Vieta jumpings

(a, b, c) 7→
(
b4 + kb2c2 + c4

a
, b, c

)
, (a, b, c) 7→

(
a,

a+ c2

b
, c

)
, (a, b, c) 7→

(
a, b,

a+ b2

c

)
.

Since the three vertices adjacent to (a, b, c) in Tk are triplets replacing different components of
(a, b, c), respectively, as in T2,k,2, any Vieta jumping of a triplet in Tk is again in Tk. Therefore,
all positive integer solutions to (1.11) appear in Tk. The uniqueness follows from the uniqueness
of any triplet in T2,k,2. Thus we obtain Theorem 1.7.

Next, we prove an analogue of Corollary 8.4.

Corollary 9.3 ([GM23, Corollary 14]). For any positive integer solution (x, y, z) = (a, b, c) to
(1.11), all pairs in a, b, c are relatively prime.

Proof. By Corollary 8.4, (a, b2, c2) is relatively prime. Thus (a, b, c) is relatively prime.

Remark 9.1. An analogue of Corollary 8.5 does not hold in (1.11). Actually, when k = 1,
11 appears in positive integer solutions in (1.11) (for example, (21, 11, 1) is one of solutions).
However, 11 is not maximal number in any solutions containing it. See (1.12).

10 Questions and consideration of class of rank 2

The cluster patterns corresponding to the equations listed in Table 1 satisfy the following two
conditions:

Condition 1.

(1) The exchange matrix is multiplied by −1 for a mutation in any direction,

(2) the exchange polynomials are mutation invariant.

Moreover, these six triplets (B,Z, D) in the table in Theorem 7.3 can be divided into two

types: for the top four in the Table 1, BD =

 0 2 −2
−2 0 2
2 −2 0

 is satisfied, and for the remaining

two, BD =

 0 1 −1
−4 0 2
4 −2 0

 is satisfied. At present, we know a cluster pattern that satisfies

these two conditions and BD =

 0 1 −1
−4 0 2
4 −2 0

 but for which no corresponding equation has

been found. It is the cluster pattern determined by

B =

 0 1 −1
−1 0 2
1 −2 0

 ,


Z1(u) = 1 + k3u+ k1u

2 + k3u
3 + u4,

Z2(u) = 1 + u,

Z3(u) = 1 + u,

D =

4 0 0
0 1 0
0 0 1

 . (10.1)

Therefore, the following question can be considered.

Question 1. Is there a Diophantine equation corresponding to (10.1)?

As a more general question, the following problems are considered.

Question 2.
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(1) What kind of a triplet (B,Z, D) satisfying the two condition in Condition 1 such that BD

is neither

 0 2 −2
−2 0 2
2 −2 0

 nor

 0 1 −1
−4 0 2
4 −2 0

?
(2) Is there a general way to construct a Diophantine equation from information in (B,Z, D)?

We will now consider Question 2. All of cluster patterns of rank 2 satisfy Condition 1 (1).
Therefore, there are infinitely many cluster patterns of rank 2 which is the answer to Question
2 (1). In this class, there are cluster patterns whose corresponding equations are derived from
Theorem 7.3. Since all cluster patterns treated in Theorem 4.2 are of rank 3, each seed can
be mutated in three directions. We consider prohibiting mutaions in one of these directions.
By substituting 1 to the cluster variable corresponding to the direction in which the mutation
was prohibited, the cluster pattern that was originally rank 3 can be viewed as that of rank
2. In this case, the exchange matrix corresponding to the cluster pattern is a submatrix of the
original one that removes the row and column corresponding to the direction in which mutation
is prohibited. The equation corresponding to this cluster pattern is the equation that substitute
1 to the variable corresponding to the direction in which mutation is prohibited. Therefore, the
following theorem holds.

Theorem 10.1 ([GM23, Theorem 21]). We set equations, B and Z (and D) as in Table 2.
Then, the generalized cluster pattern CP(x,B,Z) with a substitution x1 = x2 = 1 gives the tree
giving all positive integer solutions to the corresponding equation (where we ignore exchange
matrices in cluster pattern and consider only clusters).

Equation B Z D

x2 + y2 + 1 = 3xy

[
0 2
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y2 + k3x+ 1 = (3 + k3)xy

[
0 1
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + k3u+ u2

[
1 0
0 2

]

x2 + y2 + k3x+ k1y + 1 = (3 + k3 + k1)xy

[
0 1
−1 0

] {
Z1(u) = 1 + k1u+ u2

Z2(u) = 1 + k3u+ u2

[
2 0
0 2

]

x2 + y4 + 2x+ 1 = 5xy2
[
0 1
−4 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y4 + ky2 + 2x+ 1 = (5 + k)xy2
[
0 1
−2 0

] {
Z1(u) = 1 + ku+ u2

Z2(u) = 1 + u

[
2 0
0 1

]

Table 2: Equations and corresponding triplets (B,Z, D)

Apart from the cluster pattern induced by Theorem 7.3, we give the equation induced by
the cluster pattern of type A2, i.e., the cluster pattern determined by

B =

[
0 1
−1 0

]
,

{
Z1(u) = 1 + u,

Z2(u) = 1 + u,
D =

[
1 0
0 1

]
.

This cluster pattern differs from the ones we have considered above in that it has finitely many
cluster variables. By computing the cluster variable according to the mutation rule

µ1(x1, x2) =

(
x2 + 1

x1
, x2

)
and µ2(x1, x2) =

(
x1,

x1 + 1

x2

)
,
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we see that clusters in the cluster pattern of type A2 are

(x1, x2),

(
x1,

x1 + 1

x2

)
,

(
x1 + x2 + 1

x1x2
,
x1 + 1

x2

)
,

(
x1 + x2 + 1

x1x2
,
x2 + 1

x1

)
,

(
x2,

x2 + 1

x1

)
, (10.2)

(x2, x1),

(
x1 + 1

x2
, x1

)
,

(
x1 + 1

x2
,
x1 + x2 + 1

x1x2

)
,

(
x2 + 1

x1
,
x1 + x2 + 1

x1x2

)
,

(
x2 + 1

x1
, x2

)
in total. Therefore, we want to find an equation such that the five pairs

(1, 1), (1, 2), (2, 1), (2, 3), (3, 2)

where 1 is substituted for x1 and x2 of (10.2), are all positive integer solutions.
The set consisting of cluster variables{

x1, x2,
x2 + 1

x1
,
x1 + x2 + 1

x1x2
,
x1 + 1

x2

}
appearing in (10.2) (it is called the Lyness 5-cycle) is invariant by the substitutions

(x1, x2) 7→
(
x2 + 1

x1
, x2

)
and (x1, x2) 7→

(
x1,

x1 + 1

x2

)
.

Therefore, we have the following proposition.

Proposition 10.2 ([GM23, Proposition 22]). Let f(a1, a2, a3, a4, a5) be a symmetric polynomial
of five variables. Then, the equation

f

(
x, y,

y + 1

x
,
x+ y + 1

xy
,
x+ 1

y

)
= f

(
x, y,

y + 1

x
,
x+ y + 1

xy
,
x+ 1

y

) ∣∣∣∣∣
x=y=1

(10.3)

has positive integer solutions

(x, y) = (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

Furthermore, the following proposition also holds:

Proposition 10.3 ([GM23, Proposition 23]). If f(a1, a2, a3, a4, a5) = a1 + a2 + a3 + a4 + a5 in
Proposition 10.2, then all positive integer solutions to

x2 + y2 + 2x+ 2y + x2y + xy2 + 1 = 9xy, (10.4)

which corresponds to (10.3), are

(x, y) = (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

Proof. We set
g(x, y) = x2 + y2 + 2x+ 2y + x2y + xy2 + 1− 9xy.

It suffices to show that positive integer pairs (x, y) satisfying g(x, y) = 0 are given by

(x, y) = (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

First, we will consider the case of x ≥ y. If x = y, then we can see that the positive solution
to g(x, y) = 0 is only (x, y) = (1, 1) immediately. We assume that x > y. By considering the
partial derivative of g in x direction, we have

∂g

∂x
= y2 + 2xy + 2x+ 2− 9y.
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Equation B Z D

x2 + y2 + 2x+ 2y + x2y + xy2 + 1 = 9xy

[
0 1
−1 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y2 + k3x+ k1y + 1 = (3 + k3 + k1)xy

[
0 1
−1 0

] {
Z1(u) = 1 + k1u+ u2

Z2(u) = 1 + k3u+ u2

[
2 0
0 2

]

x2 + y2 + k3x+ 1 = (3 + k3)xy

[
0 1
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + k3u+ u2

[
1 0
0 2

]

x2 + y4 + ky2 + 2x+ 1 = (5 + k)xy2
[
0 1
−2 0

] {
Z1(u) = 1 + ku+ u2

Z2(u) = 1 + u

[
2 0
0 1

]

x2 + y4 + 2x+ 1 = 5xy2
[
0 1
−4 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

x2 + y2 + 1 = 3xy

[
0 2
−2 0

] {
Z1(u) = 1 + u

Z2(u) = 1 + u

[
1 0
0 1

]

Table 3: Equations and corresponding triplets (B,Z, D)

By using x > y, we have
∂g

∂x
(x, y) > 3y2 − 7y + 2.

Therefore, if x > y ≥ 3, then we have
∂g

∂x
(x, y) > 0. On the other hand, by considering the

partial derivative of g in x direction, we have

∂g

∂y
= x2 + 2xy + 2y + 2− 9x =

(
x− 9

2

)2

+ 2xy + 2x− 73

4
.

Therefore, if x > y ≥ 3, then we have
∂g

∂y
(x, y) > 0. Now, since g(4, 3) = 16 > 0, we have

g(x, y) > 0 when x and y are integer and x > y ≥ 3. Second, we will consider the case of y > x.
By symmetry of g(x, y) for x and y, we have g(x, y) > 0 if x and y are integer and y > x ≥ 3.
Therefore, the only possible pairs of integers that satisfy g(x, y) = 0 are

(1, 1), (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2).

Of these, g(3, 1) = g(1, 3) = 4, thus (x, y) = (1, 3), (3, 1) are not solutions. The other five are all
solutions according to Proposition 10.2.

Remark 10.1. In Proposition 10.3, even though f(a1, a2, a3, a4, a5) = a1a2a3a4a5, the equation
corresponding to (10.3) is the same as (10.4).

From the above, the cluster pattern of rank 2 for which the corresponding equation is known
is given in Table 3. In order to find the answer to Question 2 (2) about the cluster patterns of
rank 2, the first thing to do is to consider the following question:

Question 3. Are there any laws between the triplets (B,Z, D) and the equations given in Table
3?
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