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Multifractal Analysis for Birkhoff Sums and Word
Appearance in Symbolic Dynamics

Abstract

Given a topologically mixing subshift of finite type, the Hausdorff dimension
of the level sets given by the limit of the quotient of the Birkhoff sums of two
observables has been well studied. When the limit of the quotient is a € R, the
level set is called the a-level set. At the points in the a-level set, the difference
between the n-th Birkhoff sum 5,7 of one observable i) and the n-th Birkhoff
sum .S, v of another observable v scaled by « is o(n) as n tends to infinity. This
thesis studies the a-uniform level set, where this difference is bounded.

We shall first present the known results which describe the Hausdorff dimen-
sion of the level sets using thermodynamic formalism in ergodic theory. Then, we
shall show that the a-uniform level set has the same Hausdorff dimension as the
a-level set for all @ € R. Furthermore, we consider sequences in the a-uniform
level set which satisfy some conditions on the words appearing in them. We shall
show that the set of these sequences also has the same Hausdorff dimension as the
a-level set, for all but two o € R.

One of our results will be applied to the study of the Holder regularity of a
Gibbs measure on the real line R. To be more precise, we will study the set of
points in R at which the upper and lower a-Ho6lder derivatives of the cumulative
distribution function of the Gibbs measure are positive and finite. We will show
that, for all but two a € R, the Hausdorff dimension of this set is equal to the
Hausdorff dimension of the —a-level set of the quotient of the Birkhoff sums of
two observables which are chosen in terms of the Gibbs measure.
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Chapter 1

Introduction

This thesis presents the results the author obtained in the preprint [Liu23]. Some
of the claims are weakened so that we can avoid some technical arguments in the
original proofs.

Hausdorff Dimension of Uniform Level Sets and Their Subsets

Symbolic dynamical systems are well-adopted prototypes for dynamical systems.
Historically, symbolic dynamics arose naturally in the study on the geodesics on
a surface of negative curvature [Mor21; MH38]. Nowadays it has become clear
that a wide range of dynamical systems can be modelled by a symbolic dynam-
ical system using a Markov partition. For instance, the basic sets of axiom A
diffeomorphisms admit Markov partitions and thus have symbolic representations
[Sma67; Bow08]. Another example is the dynamical system given by an open,
expanding continuous mapping on a compact metric space. Chapter 4 of [PU10]
shows the existence of Markov partitions and gives the resulting symbolic repre-
sentations of the dynamical system. In fractal geometry, symbolic dynamics also
plays an important role in many situations. For instance, there are various inter-
esting fractals generated by iterated function systems as their limit sets; see e.g.
[Fal03]. When an iterated function system satisfies a separation condition called
the open set condition, the limit set of this iterated function system has a natu-
ral symbolic representation [Fal03]. A more flexible notion generalizing iterated
function systems, called a graph directed Markov system (GDMS), was introduced
in [MUO3]. When a GDMS satisfies the open set condition and some regular-
ity conditions, it is called a conformal graph directed Markov system (CGDMS)
[MUO3]. The limit set of a CGDMS also can also be encoded into a symbolic dy-
namical system [MUO3]. There is a special class of CGDMSs, called conformal
graph directed systems (CGDSs). In Chapter 5, we shall study a Gibbs measure in
R. The support of this measure will be the limit set of a CGDS.



Chapter 1. Introduction

In this thesis, by a symbolic dynamical system, we mean a one-sided subshift of
finite type (SFT) [Kit98]. An SFT consists of a compact set X called the shift space
and a continuous map o : > — X called the left shift. The shift space X is specified
by a finite set of symbols A and a matrix Ml : Ax A — {0, 1} called the incidence
matrix. The elements of X are infinite sequences & = £;&; - - - over A satisfying
that M((&, &k41) = 1 for any positive integer k. A sequence in ¥ is called an
admissible sequence. The map o : ¥ — X is called the left shift, which sends
£1és -+ € Yto&és - - - € Y. Endowed with a topology to be defined in Subsection
2.1.1, X is compact. Moreover, the left shift o is continuous. Therefore, an SFT
is a topological dynamical system. For simplicity, we shall basically focus on
topologically mixing SFTs in this thesis when we state our main results; the precise
definition of topological mixing will be given in Subsection 2.1.1. The theorems in
[Liu23] are proved for topologically transitive SFTs, which are more general than
topologically mixing SFTs. Until the end of this introduction, we shall always
assume that the SFT we consider is topologically mixing.

From a perspective of mechanics, 3. can be thought of as the phase space, and a
sequence in X can be regarded as a state. Then, naturally, o : ¥ — ¥, as a mapping
sending one state to another state, describes the evolution of the states. If the initial
state is &, then for any non-negative integer k, the state at time k& will be o*(&).
Viewing a function f : ¥ — R as an observable, f(&) is the number produced
by the measurement for the observable f when the current state is 5 Thus, for a
positive integer n, the n-th Birkhoff sum of f, whichis S,, f = Zk o foo”, can
be interpreted as the sum of the values that the observable f takes from the tlme 0
until the time n — 1. By convention, we set Sj f to be the constant function 0.

For a pair of continuous functions ¢) : ¥ — Randv : ¥ — (0,400), we
would like to compare the asymptotic growth of Birkhoff sums of ¢) and v. We
thus define

a _ Sutp(€) _ 1.
7/1711_{562 n£1>+OOS’U<£)_a}7
ucs,, = {§€ S| sup [S,6(6) - aSw(E)| < +oo},
n—-+00

for any o € R. The set L7, , is a well-studied set [PW97], which is usually called
a level set of quotients of Blrkhoff sums. The set UL}, , is a set which is rarely
considered in the existing literature. Indeed, [FS03] and [GJK22] introduced sets
similar to ULy, ,, but not exactly the same; in both [FS03] and [GIJK22], v was
taken to be the constant function 1. In this thesis, we shall call /L, a uniform
level set. Note that a sequence in U LY, , is a sequence { € X for Wthh Sp(€) =
aS,v(€) + O(1). From the compactness of ¥ and the continuity of v, we see that
a sequence in L is a sequence § for which S,1(§) = aS,v(§) + o(n). Hence,
clearly, we have UL}, , C L7 forany o € R.

6



Chapter 1. Introduction

We are interested in the Hausdorff dimension of £, and ULy ,. For that
purpose, we need to define a metric on X. For a Holder continuous function u :
Y — (0,4+00), we will define a metric d,, in Subsection 2.1.2; the meaning of
Holder continuity of a function on X will also be made clear in Subsection 2.1.2.
With the assumption of Holder continuity of u, we shall see in Proposition 3.3
that the Hausdorff dimension with respect to the metric d,, coincides with the u-
dimension, which is a notion introduced by Barreira and Schmeling in [BS00].
Hence, for a subset £ of ¥, the Hausdorff dimension of E with respect to d,, will
be simply called the u-dimension of £ and denoted by dim, (E).

Henceforth assume that ¢ and v are Holder continuous. For any a € R, the

u-dimension of L  is a well-studied topic [PW97; Sch99]. Define
Sap(§) . & Sntp(§)

i« . = suplimsu
v 5612) n—>+ocI>) Shu(&)

o = IEIMINES )

Then, L7, , is non-empty if and only if o)y, < o < O@Z,v [Sch99]. Pesin and Weiss
gave an expression for dim, (£y ) when v = v and a € (ay,, a;;v) in [PW96;
PW97]. Also when v = u, for a € {ay,, ;) , }, a formula for dim, (L) can
be found in [Sch99]. Using the ideas in [PW97 Sch99] and some arguments han-
dling the case for a € { Qs O‘wm }, we extend the theorems in [PW97; Sch99] to
the case where v is not necessarily equal to u. The corresponding theorems will
be Theorem 4.1 and Theorem 4.2. We remark that the setting in [Clil13] is much
more general than ours. In the setup of [Cli13], the dynamical system is not nec-
essarily an SFT, and the level sets are defined in terms of any finitely many pairs
of observables (¢, vy, , ¥, vn). For a € (ay,, oszrv) [Cli13] also gives the
u-dimension of L7 , in a sense weaker than what we shall claim in Theorem 4.1
and Theorem 4.2. The existence of maximizing measures v* in Theorem 4.1 can
be shown in our setting, but not in the setting of [Clil3]. In turn, we can use
this to show the real analyticity of the spectrum in Theorem 4.2, which was not
contained in [Cli13]. The existence of the maximizing measures can also be em-
ployed to show the continuity of the dimension spectrum on the closed interval
la,, o], as we shall see in Theorem 4.2.

We have seen that the u-dimension of £ is well understood. It is thus natural

to ask whether
dimu(Z/{lja’v) = dimu(ﬁfz‘,’v) (1.1)

forall o € R. If (1.1) always holds, then the formula for dimu(ﬁgﬂ)) also serves as
a formula for dim,, (U Ly, ). Hence, dim, (U Ly ,) can be well understood as well.

Indeed, if one adds some extra assumptions, (1.1) has been shown. Fan and
Schmeling showed (1 1) in [FS03], when « is a constant function, o 1s a full shift
and o, , < @ < o% In a recent article [GJK22] by Groger, Jaerisch and Kesse-
bohmer, the authors essentially showed the same assertion when o is a full shift

7



Chapter 1. Introduction

and o, < o < aj . In other words, the proof in [GJK22] does not need the
function v : ¥ — (0, 400) to be constant. In this thesis, we shall see in Proposi-
tion 4.6 that (1.1) is valid for all &« € R in general. Therefore, we immediately get
a formula for the u-dimension of ULy, .

Now we turn our attention to two types of subsets of UL}, ,. A word over A
is said to be admissible if it is a subword of some £ € >.. Let VV be a finite set of

admissible words. Define for each positive integer &,

Fwi =[] {& € 2| all the words in W are the subwords of &1 -+ &ni }

n=0

and then set 7,y = U;—, Fwyx. In words, an element of 7y is an admissible
sequence in which all words from W appears regularly. For every non-negative
integer n, we define the n-th power of a word w as w" = w---w, where the
right-hand side is the n-fold concatenation of w. More formally, define w° as
the empty word, and for each positive integer n, define w” = w" 'w. Define
Fy = Une1 Foy s Where for any positive integer k,

{/v,k = ﬂ { Eel ‘ ¢ does not contain w” as a subword } .
wew

In words, the sequences in F7,, are those in which none of the words in V) appears
with arbitrarily high power. For the subsets ULy, , N Fyy and UL, N Fyy,, we
shall show in Theorem 4.7 and Theorem 4.8 that

dim, (UL, N F) = dim, (UL, N Fyy) = dim,(£3,), (1.2)

fora & { oy, ap, )

Remark 1.1. It might happen that w is admissible but w? is not. Indeed, all the
powers of an admissible word w are admissible if and only if w? is admissible. If
we define

W = {we W | w?is admissible } ,

we will clearly have F; = Fj,. Hence, when we prove dim, (UL, N Fyy) =
dim, (L ) for a ¢ { oy, o, }, we may assume, without loss of generality, that
W is a (possibly empty) finite set of words whose powers are all admissible.

Fora ¢ {ay,, O‘j/:,v }, clearly, (1.2) is stronger than (1.1) because

ULS N Fw CULS, C L3,
ULS N Fy CULS, C L3,
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We shall show (1.2) for o ¢ {ay,,,ay, } in Subsection 4.2.2 by improving an
argument in [GJK22]. For a € {a,,,a;, }, we shall see in Subsection 4.2.3
that dim, (U Ly, , N Fw) < dim, (L ,) can happen. On the other hand, it remains
unclear to me whether dim, (UL, , N Fyy,) = dim, (L ) holds or not for v €
{ag,, o), } As we claimed before, dim, (UL; ) = dim, (L) even for a €
{ oy, ), }. This will be proved using some facts from the theory of ergodic
optimization.

Holder Regularity of Gibbs Measure in R

As an application of the results we have claimed for symbolic dynamics, we study
the Holder regularity of a Gibbs measure on R. It is natural to consider Gibbs
measures from the viewpoint of thermodynamic formalism. In the context of ther-
modynamic formalism, a Gibbs measure is usually defined on a shift space; see
e.g. [Bow08]. The precise definition of a Gibbs measure on a shift space is given
in Subsection 2.2.2. The definition of a Gibbs measure on R will be explained as
follows. The full details will be given in Section 5.1.

In order to define a Gibbs measure on R, we first describe its support. The
support of a Gibbs measure is generated by a finitely generated conformal graph
directed system (CGDS) in R. Roughly speaking, a finitely generated CGDS in
R mainly consists of a finite family of compact intervals Z = { I, | p € V } with
pairwise disjoint interiors and a finite family of contractions ® = {g. | e € £ }.
Each contraction g, € ® maps one I, () € Zinto I, () € Z, where p_ and p,, are
mappings from € to V. An incidence matrix Ml : £ x € — { 0,1} is then defined
by M(e,e’) = 1 ifand only if p, (e) = p_(€’) for any e, ¢’ € £. Thus, we have an
SFT o : ¥ — %, for which Y contains admissible sequences over £.

For any £ € X, the composition {; o --- 0 &, : I, (c,) — Ip_(¢) is well-
defined for any positive integer n. By the assumption that the maps in ® are all
contractions,

[&---ﬁn = (fl 0---0 €n>(Ip+(§n))

descends to a singleton contained in I,_(¢,)as n approaches infinity. Hence, we
can define a map 7 : X — R by letting

{7} =) laen

for any £ € ¥. The map 7 is called the coding map, and the limit set of ® is
defined as A = 7(3) C R. The precise definitions will be given in Section 5.1, in
which we basically follow [MUO3]. The limit set A is compact, and it will be the
support of the Gibbs measure in R we shall consider.
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Let ¢ : ¥ — R be a Holder continuous function satisfying that the topological
pressure of ¢ is zero. We refer to Subsection 2.2.2 for the definition of the topo-
logical pressure. A Gibbs measure v, for 1 is a Borel probability measure on X
for which there is a constant C,, > 1 such that for any positive integer n and any
admissible word w of length n,

c,! eXp(giEIg] Sp(€)) < v([w]) <0, CXP(SU[P] Saib(§)),

where [w| ={£ € X | & - & =w}. A Gibbs measure in R is then the pushfor-
ward measure 7,1, which means that for any Borel subset £ of R,

Ty (E) = vy(rY(E)). (1.3)

As we shall see in Proposition 5.4, the coding map 7 : ¥ — R is continuous, so
7 Y(E) in (1.3) is Borel.
For a continuous function f : R — R, a > 0 and x € R, we define

D*f(z) = 1jmjnfM;
Yy—x |.CE _ y|a

ﬁo‘f(x) = lim sup M,
y—x |QZ — y|a

LIDO‘:{xGR|0<Q°‘f(a:)§5af(x)<—l—oo}.

When f is non-decreasing, we call D f(z) the lower a-Holder derivative of f at
. Likewise, D" f(z) is called the upper a-Holder derivative of f at . The points
in UD$ can be interpreted as the points at which f(y) changes neither too rapidly
nor too slowly compared with |y — x| as y varies in a small neighbourhood of .
The a-Holder regularity of a Gibbs measure 7,1, we shall consider in this thesis
is reflected by the set YD, where F' is the cumulative distribution function of
T s 1/1/, .

Our main result for this application is Theorem 5.5, which relates the Haus-
dorff dimension of D5, denoted by dimy (UD%), with the u-dimension of £,
where u : ¥ — (0, 400) is the volume potential of the CGDS @ to be defined in
Subsection 5.1.3. More precisely, we have

dimy (UDG) = dim, (L5,),

for any a ¢ {-ay,,—a;,}. Hence, the formula for dim,(£,5) we men-

tioned in the previous section also can be used to express dimy (UD%) for « ¢
{ _a;nﬁ _O‘/'Ib’—,u }
The key observation for showing Theorem 5.5 is the following inclusion in
Lemma 5.8:
UL N Fy Cat(UDg) CULS, (1.4)

10
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where o > 0 and WV is a finite set of admissible words to be defined in Section 5.2.
This suggests that Theorem 4.8, which gives that

dim, (UL,% N Fy) = dim, (£,%) (1.5)

fora ¢ {—ay,, _O‘:Z,u }, can be applied to prove Theorem 5.5. Following this
idea, we shall give a proof in Section 5.2.

There have been many known results on the Holder regularity of Gibbs mea-
sures on R in different senses. Some articles studying the Holder differentiability
of F, but with a focus on sets different from ¢/D%. For instance, Kessebohmer
and Stratmann evaluated in [KS09] the Hausdorff dimension of the set

{z €eR|D*F(x) < D"F(z) = 00 }.

At these points, F' fails to be a-Holder differentiable.

There are also a series of articles studying pointwise Holder exponents of F/,
which are closely related to our result. Here, by pointwise Holder exponents of F',
we roughly mean the limiting behavior of

log |F(z) — F(y)|
log |z — y|

as y approaches x. For instance, one may consider the limit

i 108 [F'(x) = F(y)]
yoe loglr —yl

at = where this limit exists. One may also consider the limit inferior, the limit
superior and accumulation points of log | F'(x) — F'(y)|/ log |x —y| as y approaches
x. In [Pat97], Patzschke showed that the Hausdorft dimension of

lim log|F(x+¢) — F(z —¢)] :a}
e—0+ loge

5“:{xeR (1.6)

is equal to dim,,(£%,). As a continuation of this result, Jaerisch and Sumi studied
extensively in [JS20] various types of sets that contain £ as a subset, including

{x e R | liming 281F @) = FU)I :a};

yoe loglr —yl
log|F(x) — F

{xeR lim sup og| F'(x) W)l :a};
y—ow log |z — y

log | F(z) — F(y,
z € R | I(yn)o2, converging to x such that lim og|F(x) (Yn)| —a b
n—s+o00 log ‘x — yn|

11
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They proved that all these sets have the same Hausdorft dimension as £*. The
Hausdorff dimension and also the packing dimension of some sets even larger than
the sets in [JS20] are given in [BOS07]. Difterent from [BOS07] and [JS20], in
which the sets larger than £¢ are considered, the set /D% we consider is actually
a subset of £¢. Hence, our result is a continuation of the previous works on the
pointwise Holder exponent.

It is also worth noticing that the results in [JS20] give the Hausdorff dimension
of

“={zeR|sup{v>0|D'Flz)<+c}=0a}.

This set is interesting in that at points in %, a can be regarded as the exact Holder
exponent locally. Indeed, the Hausdorff dimension of H% is also equal to the
Hausdorff dimension of £ [JS20]. Note that for a point x € H%, we do not know
any information about the values of D®F(x) and D" F (), while for a point z in
the set

UDG ={z€R|0<D"F(z) < D"F(z) < +oo }

which we consider, we know that D®F (x) must be positive and D" F (x) must be
finite. Hence, our result complements [JS20] by showing that /D%, in which the
conditions on the values D“F(z) and D" F(x) are imposed, has the same Haus-
dorff dimension as H%.

Finally, we mention that there are also many articles studying some sort of
Holder regularity of a self-affine function; see [Dub18; All20] for the definition
of a self-affine function. Firstly, the Hausdorff dimension of 7} for f in a certain
class of self-affine functions was studied in [All18]. There is one sort of Holder
regularity different from any other Holder regularity we have seen. For a compact
interval I, « > 0 and x € I, a continuous function f : I — R is said to be in
C*(x) if there exists a polynomial & of degree less than « such that

sup |f(y) — h(y)|

< +oo, (1.7)
zel |y - x|a

and define oy () = sup{a’ > 0| f € C*(x) } [Jaf97; AlI20]. This as(z) is
called the pointwise Holder exponent of f at = in [Jaf97; All20], and called the
Holder cut of f at z in [Dub18]. As we have used the expression pointwise Hélder
exponent, we shall follow [Dub18] to call o ¢(z) the Holder cut of f at 2. The mul-
tifractal analysis for the Holder cut of a self-affine function studies the Hausdorff
dimension of the set

Ci={zellar)=a}.

Generally speaking, the set C is different from any other set we have seen so far,
but for @ < 1, we have Cf = H¢, because when v < 1, the polynomial % in (1.7)
must be of degree 0 and thus equal to the constant function f(z).

12
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Unsolved Questions

The author here raises two questions which are not answered by our results. The
first one, which we have already asked, is whether

dim, (ULS, N Fyy) = dim, (L],
holds for o € { o, ;) ,, }. The second question is whether
dimy (UDG) = dim, (L5,),

for a € { —Qy _O‘:Zu }. These two questions are actually closely related. Sup-
pose that the first question can be answered affirmatively. Then, (1.5) is true for
a€{—a,,, —a;f,u }. Hence, combining this with (1.4), we can readily see that
the answer to the second question is positive as well.

Organization of Thesis

This thesis is organized as follows. In Chapter 2 and Chapter 3, we lay the back-
ground for our discussions in subsequent chapters. Chapter 4 is the central part
of this thesis. Section 4.1 presents simplified versions of the known results on the
u-dimension of level sets L , following the ideas in [PW97] and [Sch99]. Sec-
tion 4.2 presents the original results in the preprint [Liu23] of the author, which
gives the u-dimension of ULy , for all @ € R in Proposition 4.6, and the u-
dimension of ULy, N Fyy and ULy, , N Fy, for o ¢ {ay,, o, } in Theorem
4.7 and 4.8. Chapter 5 is also based on [Liu23]; it studies the Holder regularity of
a Gibbs measure in R.

13



Conventions

The following notations will be used throughout the dissertation.

» Z-q denotes the set of all positive integers.

* Z>( denotes the set of all non-negative integers.

Int(F) denotes the interior of a subset £ of a topological space.

« E denotes the closure of a subset F of a topological space.

diam(E) = sup, , p dx (7, y) denotes the diameter of a subset £ of a metric
space (X, dx).

14



Chapter 2

Preliminaries on Dynamics

2.1 Symbolic Dynamics

2.1.1 Subshifts of Finite Type

In this subsection, we define the subshifts of finite type. The definitions in this
subsection can be found in many textbooks; see e.g. [Kit98].

Definition. Let A be a finite set containing at least two elements. LetM : AxXA —
{0, 1} satisfy that for each a € A, there exists some b € A such that M(a, b) = 1.
We call M satisfying this condition an incidence matrix. Define the shift space as

S={{=&& - € AP0 VE> 1, M(&, &) =1}

A sequence & in AZ>° is said to be admissible if and only if ¢ € . The left
shift on X is the map o : ¥ — X defined by 0(§1&y--+) = &&3 -+, for any

{=&& €N

The ordered pair (X, o) is called a subshift of finite type (SFT). Besides the
ordered pair (X, 0), it is also widely accepted to denote this SFT by o : ¥ — .
For every n € Z~,,

At ={w=w; - w, |[Vke{l,--- n},w €A}

is the set of all words of length n over A. For n = 0, A" is a singleton containing
one element called the empty word. The empty word is not in any of A™, forn > 1.
Hence, A N A" = @ for any two distinct non-negative integers m and n. The
length of a word w will be denoted by |w|; the empty word has length 0. The set
of all words over A will be denoted by A*. More formally, A* =~ , A™.

Among all the words over A, we are especially interested in the words appear-
ing in some sequence £ € Y. Such words are said to be admissible. The precise
definition is given as follows.

15
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Definition. Define Ay, = A° = { empty word } and A}; = A' = A. For every
integer n > 2, define

Ay ={w=w--w, € A" |VEke{l,--- ,n—1}, M(wg,wr41) =1}.
Define Ay = .~y Ay, whose elements are called admissible words.

Definition. The cylinder set of a word w over A is

wWl={¢eX & gu=w}.
The length of |w| is defined as |w

, namely the length of the word w.

Clearly, the cylinder set [w] of w is non-empty if and only if w is admissible.
The set of all the cylinder sets generates a topology, thus turning 3. into a
topological space.

Proposition 2.1 ([Kit98]). For any SFT o : > — X, we have that ¥ is compact
and o is continuous.

A (discrete-time) topological dynamical system consists of a topological space
X and a continuous map 7' : X — X. As the notation we adopted for an SFT, a
topological dynamical system given by X and 7" : X — X will be denoted simply
by 7' : X — X. Thus, by Proposition 2.1, an SFT ¢ : ¥ — X is a topological
dynamical system.

We will often consider topologically mixing dynamical systems, whose defi-
nition is given as follows.

Definition. A4 topological dynamical system T : X — X is said to be topologi-
cally mixing if and only if for any two non-empty open subsets O, Oy of X, there
exists a positive integer M such that o™ (O1) N Oy # @ for any integer m > M.

For SFTs, there is a criterion for the topological mixing condition.

Proposition 2.2 ([Bow08, Lemma 1.3)). Let o : X2 — X be an SFT, given by the
set of symbols A and the incidence matrix M. Then, o : ¥ — ¥ is topologically
mixing if and only if there exists some non-negative integer | such that for any two
symbols a,b € A, there exists some p € AL, such that the word apb is admissible.

Definition. An SFT o : ¥ — X is called a full shift if M(a,b) = 1 for any two
symbols a,b € A.

From Proposition 2.2, we see that a full shift is topologically mixing; indeed,
[ in Proposition 2.2 can be taken to be any non-negative integer.

16
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2.1.2 Metrics on Shift Space

The shift space 32, endowed with the topology we introduced in the previous sub-
section, is metrizable. In this subsection, we shall define a family of metrics, any
of which induces this topology.

We first define one metric that induces the topology of ¥ as follows.

Definition. For any two £,&' € X5, we write £ \ &' to denote the longest common
initial block of ¢ and &' If ¢ = &, then E NE' =€ =& Defined; : ¥ x X — R
by di(&,€) = 0and dy(&€,&') = exp(—|& A E'|) for any two distinct £, &' € ..

As we shall see from Proposition 2.4, d; is an ultrametric. The open balls taken
with respect to d; are precisely the cylinder sets, so d; induces the topology we
defined previously for ..

Recall that the a-Holder continuity of a map between two metric spaces means
the following.

Definition. Let (X, dx) and (Y,dy) be two metric spaces. Then, for any o > 0,
amap [ X — Y is said to be a-Holder continuous if and only if

ap { 1012

dx(x,x)

x,x’GX,x#x'}<+oo.

Commonly, 1-Holder continuous maps are also called Lipschitz continuous maps.
A Holder continuous map is a map which is a-Hélder continuous for some o > 0.

Given a function ¢ : X — R, when we say that ¢ is Holder continuous, we
mean that ¢ is Holder continuous with the metric of Y taken to be d; and the metric
of R taken to be the Euclidean metric.

Definition. Let 0 : X — X be an SFT, and ¢ : ¥ — R be a continuous
function. Then, the n-th Birkhoff sum of ¢ is S,,¢ = Z;é ¢ o oF, for any
n € Zso. We also define Sy¢ to be the constant function 0. Moreover, we de-
fine S,¢ = supgc Sw@(§), for any non-empty word w € Ay for w being the
empty word, we define S,¢ = 0.

Definition. Let o : X — X be an SFT. Then, for any Holder continuous ¢ : ¥ —
R, we define the distortion constant of ¢ to be

V¢ = Sup Ssup | ‘S|w|¢(€) - S\W|¢(€/)| )

weAf §,¢/Ew

The bounded distortion property below asserts that the distortion constant of
any Holder continuous function on X is finite.
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Proposition 2.3 ((MUO3, Lemma 2.3.1]). Let 0 : ¥ — X be an SFT. For any
Holder continuous ¢ : ¥ — R, we have Vy < +00.

Now we introduce a family of metrics, all of which induce the same topology.

Definition. Let u : ¥ — (0,400) be a Holder continuous function. Define d,, :
EXxE—=Rbyd,(&E) =0andd, (&, &) = exp(Seaer(—u)), for any two distinct
§,¢ e

An even broader family of metrics is defined in [KS04].

Proposition 2.4. For any Holder continuous function u : ¥ — (0,400), d,, is an
ultrametric.

Proof. Tt is clear that for any &, & € X, d,(§,¢') > 0 with equality if and only
if ¢ = ¢, and d,(£,¢) = du(¢,€). Therefore, it suffices to show that for any
§,¢,¢" X,

du(&, &) <max{d,(§,¢"),du(&,€") } (2.1)

Clearly, we only need to deal with the situation where £, &', £” are distinct. Note
that either £ A £” is an initial block of &’ A " or £’ A £” is an initial block of € A £”.
Due to the symmetry of (2.1), without loss of generality, we may further assume
that £ A £” is an initial block of & A £”.

IfENE" =& NE", then we have that £ A £ must be an initial block of £ A £'.
IfENE" #£ & NE", since we have assumed that £ A £” is an initial block of &' A £”,
we have £ A &' = £ A E". Therefore, in any case, we always have that £ A £” is an
initial block of £ A ¢’. Hence, we have [ A &'] C [EAE | and [EANE| > [ENE,
implying that

SﬁA&’(_U): sup —S\§A§'|U(C>

CEENE]
< sup —SigagulC) < sup  —Siengru(C) = Seaer (—u).
CelEne”] CEENE"]

Thus, we conclude that d,,(¢,&') < d,(&,£") < max {d,(§,¢"),d. (£, &)} O

When w is the constant function 1, then d,, is precisely the metric d; we defined
at the beginning of this subsection. Therefore, the definition of d,, is consistent
with our definition of d;.

Proposition 2.5 ([Liu23]). Letu : 3 — (0, +00) be a Holder continuous function.

Then, for any f : ¥ — R, f is Héolder continuous if and only if f is Hélder
continuous with the metric of X being replaced by d,,.

18
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Hence, when we say that a function is Holder continuous, we can alternatively
say that it is Holder continuous with respect to another d,, rather than d;, provided
that u 1s Holder continuous.

Proof. Since u is a positive continuous function on the compact space X2, we have

. < ‘
0< rgggu((’) < rgleaz):(u(g) < 400

Also note that, for any &, ¢’ € ¥, by definition, we have
max U(C) IOg dl (57 é-/) < log du(é-a §/> < min u(() IOg dl <§7 £/>
ez es

From these facts and the definition of Holder continuity, our claim follows. [

2.2 Facts From Ergodic Theory

2.2.1 Theorems for Measure-Preserving Dynamical Systems

In this subsection, we shall state several theorems for measure-preserving dy-
namical systems. In order to avoid lengthy discussions for the general cases, in
what follows, we shall state all the theorems only for a topologically mixing SFT
o:X— 2.

Definition. 4 Borel probability measure |1 on Y is said to be o-invariant, if
equals the pushforward measure o1, meaning that for any Borel E C %, u(E) =

ouu(E) = plo~ 1 (B)).
A o-invariant Borel probability measure i on 3. is said to be ergodic, if for any
Borel set E C Y, 07'(E) = E implies u(E) € {0,1}.

Theorem 2.6 (Birkhoft’s ergodic theorem, [Wal82, Theorem 1.14]). Leto : ¥ —
Y. be an SFT, and . be a o-invariant Borel probability measure on Y. Then, for
any u-integrable function f : 3 — R, we have that

1
lim =S, f(&) exists, for u-a.e. £ € 3,

n—4+oo N,

and that for any Borel set E satisfying c™'E = E,

1
/ lim —Snfdu=/fdu-

If v is ergodic, then we further have lim,_, ;o n™ 'S, f = [ fdu, p-a.e.
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For the ergodic case above, if [, f di = 0, then we have

1
lim —S,f(§) =0, for u-a.e. £ € 2.

n—-+oo N,

Atkinson showed in [Atk76] that in this case, one also has

1im+inf|Snf(§)] =0, for p-a.e. £ € X. (2.2)

For the convenience of later reference, we state it as a theorem.

Theorem 2.7 ([Atk76]). Let i be an ergodic o-invariant Borel probability mea-
sure on X.. Then, for any p-integrable function f : ¥ — R, we have fz fdu=20

if and only if f satisfies (2.2).

One may regard (X, ;1) as the underlying probability space of a random walk
on R. In this sense, (2.2) means the recurrence of this random walk on R, and
Theorem 2.7 provides a criterion for the recurrence.

Lastly, we state Shannon-McMillan-Breiman theorem. For this purpose, we
need to introduce the notion of measure-theoretic entropy, which is also known as
the Kolmogorov-Sinai entropy.

Definition. 7/e Kolmogorov-Sinai entropy of a o-invariant Borel probability mea-
sure | on X is defined as

hies() = tim —— 37 pu(lu]) log(u((])).

n—-+oo n
weAY

It is a convention that 0 - log(0) = 0. The limit in the defining equation of the
Kolmogorov-Sinai entropy exists, because

ne = plw]) log(u([w]))

wEAY

is in fact a subadditive sequence.
We calculate the Kolmogorov-Sinai entropy of a particular family of measures
as follows.

Example 2.8 (Kolmogorov-Sinai entropy of Bernoulli measure, [Wal82, p. 102]).
Let m be a positive integer no less than 2. Let o : 3 — X be the full shift for which
the set of symbols is A = {1,--- ,m}. Let (A1, ,\,) be a non-negative of
positive integers satisfying > ;" ; Ay = 1. The Bernoulli measure associated with
(A1, -+, A\p) is then the unique Borel probability measure v satisfying
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1. v([k]) = M\ forany k € A;

v([w]) = HM1 v([w;]) for any word w over A,

It is not hard to see that v is o-invariant [Wal82, p. 21]. Note that for any n € Z~,

> v([w]) log(v Z Z v([w]) log(v([w;]))

weEA™ 7=1 w1, wn€A
—Z > w07V w)) log(v([wy)))
j=1 w;eA
= nz k]) log(v([k])) = nz A log( ).
keA k=1

Therefore, we have hxg(v) = — >/, Mg log(Ag).
Now we can state the Shannon-McMillan-Breiman theorem as follows.

Theorem 2.9 (Shannon-McMillan-Breiman theorem, [PU10, Theorem 2.5.4 &
Theorem 2.5.5]). Let i be a o-invariant Borel probability measure on Y. For any
n € Z~y, define a function L, : X — R by

Zn(§) = —log(u([& - -+ &al)),

for every & € X.. Then, I,,/n converges to a p-integrable function both p-a.e. and
in L'-norm, and

7,
/ lim 2 dpu = hycs(u).
>

n—+oo M

Moreover, if 1 is ergodic, then lim,,_, L, /n = hgs(u), u-a.e.

2.2.2 Thermodynamic Formalism

In some situations, there is no Borel probability measure specified on the topolog-
ical dynamical system we consider. Hence, one needs to pick a suitable measure
so as to apply the powerful theorems we stated in the previous subsection. Ther-
modynamic formalism provides one way to pick such measures, which are called
equilibrium states. For simplicity, we will still state all the assertions for SFTs.

Definition ([Wal82]). Let o : ¥ — X be an SFT. The topological pressure of a
continuous function ¢ : > — R is

P(¢) = lim —log Z exp(Su®).

n—-+oo N
wEAY
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As an example, we calculate the topological pressure of a function of the fol-
lowing type.

Example 2.10. As in Example 2.8, let the SFT o : ¥ — ¥ be a full shift, for
which the set of symbols is denoted by A. Suppose that ¢ : > — R is a function
which is constant on every cylinder of length 1. For every k& € A, let ¢, be the
real number for which ¢([k]) = { ¢« }. Then, for any n € Z-,,

Z exp(S,0) = Z HeXp(¢wj) = (Z exp(¢k)> :

wEAN wi, wn €A j=1 keA

Thus, we have P(¢) = log ), . 4 exp(¢x).

Although no measure appears in the definition of the topological pressure, the
topological pressure turns out to be the infimum of a functional on 91, (%), where
M, (%) denotes the set of all o-invariant Borel probability measures on X.

Theorem 2.11 ([PU10, Chapter 3 & Chapter 5]). Let o : X — X be a topologically
mixing SF'T. Suppose that ¢ : > — R is a Hélder continuous function. Then,

P(o) = sup { st + [ o ' u e M, (5) }

and there exists a unique o-invariant Borel probability measure v on X such that
P(¢) = hgs(v) + [ ¢ dv. Furthermore, this measure v is ergodic.

Definition. For any continuous function ¢ : ¥ — R, an equilibrium state for ¢ is
a o-invariant Borel probability measure v on 3 satisfying that P(¢) = hxgs(v) +

Js o dv.

Remark 2.12. Theorem 2.11 asserts that the topological pressure of ¢ is the supre-
mum of the sum of two functionals on 90, (X). One functional is /1 — [, ¢ dyand
the other is the entropy map hgs : p — hgs(i). Endow 0, (X) with the weak*
topology. Then, p +— fz ¢ dy is clearly affine and continuous. The entropy map
is also known to be affine [Wal82, Theorem 8.1]. In addition, the entropy map is
upper semi-continuous because o : > — X is expansive; see Theorem 3.5.6 in
[PU10] for details.

When ¢ : ¥ — R is Holder continuous, the unique equilibrium state for ¢ is
known to be a Gibbs measure for ¢ [Bow08]. The definition of a Gibbs measure
is given as follows.

22



Chapter 2. Preliminaries on Dynamics

Definition. Let 0 : X — X be an SFT, and ¢ : ¥ — R be a Hélder continuous
Sunction. Then, a Borel probability measure vy is called a Gibbs measure for ¢ if
and only if there is some C,,, > 1 such that for any w € Ay,

-1 Vs ([w])
O = G0 — WP =

As we shall see in Theorem 2.13, Gibbs measures for a Holder continuous ¢
exist. Gibbs measures for ¢ are not unique. To see this, suppose that v, is a Gibbs
measure for ¢ and f : ¥ — (0, +00) is an arbitrary measurable function satisfying
that 0 < infecs f(§) < supgcy f(§) < +ooand [;, f dvg = 1. Define a new Borel
probability measure v by dvj, = f dvy. Then, v is also a Gibbs measure for ¢.
Take f satistying vy({§ € X | f(§) # 1}) > 0, and we will have v}, # vy.

The following theorem gives a characterization of the equilibrium state for
a Holder continuous function. It is a consequence of Ruelle’s Perron-Frobenius
theorem; see e.g. Chapter 1 of [Bow08] for details.

e

Theorem 2.13 ([Bow08]). Let o : ¥ — X be a topologically mixing SFT, and
¢ : X — R be a Hélder continuous function. Then, the unique equilibrium state
Vg for ¢ is the unique o-invariant Gibbs measure for ¢.

Finally, we need the following properties of the topological pressure.

Theorem 2.14 ([PP90; PU10]). Let 0 : ¥ — X be a topologically mixing SFT.
Let m be a positive integer and 1, ¢1, - - - , O, be real-valued Holder continuous
functions on X. Then, the multivariate function (ty,- - ,t.,) — P+ 1 tidr)
is real analytic and convex. Moreover, forany j € {1,--- ,m},

a m
%PW + Z%@) = /z¢j dvyprsm b6 (2.3)
J k=1

where vy s 4o, is the equilibrium state for ¥ + 3" | tp¢y.

Now let us consider the case where m in Theorem 2.14 is equal to 1. Denote
¢1 by simply ¢. Then, by Theorem 2.14, the function ¢t — P (¢ + t¢) is convex
and analytic, which implies that the second derivative of t — P(¢) + t¢) exists
and is non-negative. Indeed, there is a formula for the second derivative of ¢
P(¢ + t¢) due to D. Ruelle [Rue04]. We will not use this formula in this thesis,
so we shall omit it and refer to [PU10, Theorem 5.7.4] for precise statements.
However, in the subsequent discussions, we do need a criterion for the second
derivative of ¢t — P(v + t¢) being zero. Towards this end, we introduce the
following definition.
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Definition. Let 0 : X — X be an SFT. Let ¢1 : X — Rand ¢ : X — R be
two continuous functions. We say that ¢, is cohomologous fo ¢, if there exists a

continuous function f : 3 — R such that ¢, = ¢ + foo — f.

Clearly, the cohomology relation is an equivalence relation. The importance
of this relation is well captured by the following simple observation. For any two
mutually cohomologous continuous function ¢; and ¢, the difference between
their Birkhoff sums of the same degree is uniformly bounded. To be more pre-
cise, for any topological space X, the supremum norm of a bounded continuous
function f : X — R is defined to be || f|| = sup,cy |f(x)|. Then, for mutually
cohomologous continuous functions ¢1,¢s : ¥ — R and f : ¥ — R satisfying
¢1 = o+ f oo — f, wehave

sup sup |5, 01() — Snda2(§)| < sup [|f 0 0™(€) — fI| < 2[|f]] < +o00.

n€EZlso EEX nEl>o

From this observation, we can easily see that any two mutually cohomologous
Hoélder continuous functions on X have the same topological pressure, the same
equilibrium states and the same family of Gibbs measures.

Now we state the necessary and sufficient condition for the second derivative
of the function ¢ — P(¢ + t¢) being zero.

Theorem 2.15 ([PP90, Proposition 4.12]). Let o : X — X be a topologically
mixing SFT. Let ¢ : ¥ — Rand ¢ : ¥ — R be Holder continuous functions.
Then, ¢ is cohomologous to a constant function if and only if

d2
@P(@b +t¢)|,_, = 0.

2.2.3 Ergodic Optimization

Consider a topologically mixing SFT ¢ : ¥ — 3 and a Holder continuous function
¥ X — R. If we pick a o-invariant Borel probability measure p on X, then
Birkhoff’s ergodic theorem guarantees the almost everywhere convergence of the
Birkhoff averages S,,¢//n of 1. Slightly extending the scope of our discussion,
suppose that we have another Holder continuous function v : ¥ — (0, +00), and
we are interested in the limit lim,,_, o, S,/ .S, v. By Birkhoft’s ergodic theorem,
Sp/n and S, v/n both converge ji-a.e., SO

lim oY _ i Sn¥/n

n—o+too Spv n—too Spv/n

exists p-a.e. as well. Now our concern is the range of lim,,_, o, S,%/S,v. For
this purpose, we introduce the following two quantities.
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Definition. Let o : X — X be a topologically mixing SFT. For any two continuous
Sfunctions ¢ : ¥ — Rand v : ¥ — (0, 4+00), define

Snp(§) 4

a;, = infliminf ———>2; o' = sup limsup S"d}(g).
i £eX n—+too Snv(g) o (€Y n—+oo Snv(f)

It is clear that for every £ € 3,

_ . Satp(§)
W = B S 0(E)

+
< Qs

whenever the limit in the middle exists. In Section 4.1, we will study the set

sl
Jm g )

55;,,,:{562

for o € [ay,,, o ]. For the case where a € {ay ,, o), }, the theory of ergodic
optimization gives some useful facts. In what follows, we shall give the statements
and some implications of these facts.

Now, we can summarize the assertions we need from the theory of ergodic
optimization into one single theorem as follows.

Theorem 2.16 ([Sav99; Garl7; Jenl9]). Let 0 : X — ¥ be a topologically mix-
ing SFT, and ¢ : ¥ — R be a Hélder continuous function. Then, the following
statements are equivalent:

1. there is a Holder continuous function v : ¥ — (0, 400) such that a;fm <0

2. ozqtl <0;

3. a;;v < 0 for any Holder continuous function v : ¥ — (0, 4+00);

4. SUp,cz_, SUP¢ex SnP(§) < +00;

5. ¢ is cohomologous to some Hélder continuous ¢_ : ¥ — (—00,0).
Similarly, the following statements are equivalent as well:

1. there is a Holder continuous function v : ¥ — (0, 400) such that Wy >0y

2. Qg > 0;

3. ag, = 0for any Holder continuous function v : ¥ — (0, +00);
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5. @ is cohomologous to some Holder continuous ¢, : ¥ — [0, +00).

Proof. The equivalence among the first five statements implies the equivalence
among the last five statements, so we only need to show the equivalence among
the first five statements.

Clearly, the second statement implies the first, the third implies the second,
the fourth implies the third, and the fifth implies the fourth. Therefore, the only
non-trivial implication is that the first statement implies the fifth.

First note that the first statement also implies the second. To see this, suppose
that i), > 0. Then, there exists some 7 € ¥ such that limsup,, ,, . Sné(n)/n >
0. Thus, for any Holder continuous function v : ¥ — (0, 4+00), we have

Sno(n) > 1 fimsup Sno(n)

> 0.
||U|| n—+00 n

at > limsu
$v = n—H—OOp Sn”(ﬁ)

Therefore, the first statement implies the second. Now it only remains to show
that the second statement implies the fifth. This is a well-known fact. We refer
to [Sav99] for the proof. Besides, there is a different approach in [Garl7; Jen19].
The proof is thus complete. [

An immediate consequence of Theorem 2.16 is given as follows.

Corollary 2.17. Let 0 : X — X be a topologically mixing SFT, and ¢ : > — R
be a Holder continuous function. Then, the following statements are equivalent:

1. Qg = a;“’l =0;
2. Qg, = O‘;Eu = 0, for any Holder continuous v : ¥ — (0, +00),
3. sup,ez, 1929l < +oo.

For a topologically mixing SFT ¢ : ¥ — ¥, if a Holder continuous function
¢ : > — R satisfies one and thus all of the statements in Corollary 2.17, then we
also have that ¢ is cohomologous to the constant function 0. See Proposition 4.4.5
in [PU10].

The following proposition will be used later in Section 4.1. We state it here
because its proof only uses the facts we stated in this section.

Proposition 2.18. Let 0 : X — X be a topologically mixing SFT. Let ¢ : > —
Randv : ¥ — (0,400) be Hélder continuous. Let i be a o-invariant Borel
probability measure on 3. satisfying that j1(O) > 0 for any non-empty open set
O C X. Suppose that 0 € {ay o }. Then, if [ ¢du = 0, we have oy, =
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Proof. Suppose that oy, = 0. Then, by Theorem 2.16, ¢ is cohomologous to a
Hoélder continuous ¢_ : 3 — [0,400). Let f : ¥ — R be a continuous function
such that ¢ = ¢ + f o o0 — f. Then, by the o-invariance of 11, we have

/Egb_du:/E¢du+/zfoadu—[2fdu:0.

As ¢_ > 0, we have ¢_ = 0 p-a.e. Thus, weseethat {{ € X | ¢p_(£) >0} isan
open and p-null set. By our assumption on i, wehave {{ € ¥ | ¢_ () >0} = @.

As aresult, p_ = 0, so O‘;u = 0. Therefore, we have shown that if ag, =0, then
oz;fyv = 0.

Conversely, if a(;v = 0, applying what we have proved to —¢ and v, we can
casily see that o, , = 0 as well. This completes our proof. [
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Preliminaries on Dimension Theory

In this chapter, we state some preliminary facts related to the dimension theory.
The facts in this chapter are not new, but some of them take a form slightly different
from the corresponding theorems in our reference. For such facts, we will provide
their proofs.

Given a metric space (X, dx), B(z,r) = {y € X | dx(z,y) < r } is the open
ball with centre z € X and radius » > 0. For any £ C X, the diameter of E is
diam(E) = sup{dx(z,y) | x,y € E'}.

3.1 Hausdorff Dimension and u-Dimension

In this section, we shall give the definition of the Hausdorff dimension of a subset
of a metric space. In a similar manner, we shall also define the u-dimension of a
subset of the shift space of an SFT.

We begin with the definition of the Hausdorff dimension.

Definition. Let (X, dx) be a metric space. For any § > 0, a §-covering of an
arbitrary E C X is a coveringU of E satisfying that for any U € U, diam(U) < 4.
Fix some s > 0, and define

H3(E) = inf{ > diam(U)?

veld

U is a countable )-covering of E } 3.1

and H*(E) = lims_,o+ H3(E) = supy.o H3(E). The quantity H*(E) is called the
s-dimensional Hausdorff (outer) measure of E.

Remark 3.1. Note that for every U C X, diam(U) = diam(U). Therefore, the
infimum in (3.1) can be taken in a smaller range, namely the range of all countable
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closed §-coverings of E. Here we say a covering is closed if all its members are
closed. To put it more formally, we have

H3(E) = inf{ > diam(U)?

veu

U is a countable closed d-covering of } .

Note that by construction, for any 6 > 0 and any two positive numbers s; > so,
0 <HFH(E) <67 2HP(E). (3.2)
From this observation, the following proposition follows.

Proposition 3.2 ([Fol99, Proposition 11.19]). There exists one dimy (E) € [0, +00]
such that

1. forall s < dimg(F), H*(E) = +oo,
2. forall 8§ > dimy(E), H¥ (F) = 0.

The graph of s — H*(F) is illustrated by Figure 3.1. Clearly, this dimy(F)
1S unique.

Figure 3.1: Change of H*(F) as the dimension s changes

Definition. 7he Hausdorff dimension of E C X is dimy (E) satisfying the condi-
tions in Proposition 3.2.

Evidently, dimy (E) satisfies
dimy(F) = inf{s € [0, +o0] | H*(E) =0}
=sup{se[0,+o0] | H*(E) =400 }.

Here we set inf(&) = +oo and sup(@) = 0.

Now we shall turn our attention to subshifts of finite type. For any subset £ of
the shift space 3 and any continuous function u : ¥ — (0, +00), the u-dimension
of F is defined in [BS00] as follows.
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Definition. Let o : X — X be an SFT, and u : ¥ — (0, +00) be a continuous
function. Forevery EE C ¥, n € Z~ and s € R, define

Sn(E s ,u) = inf{ Z exp(—sS,u)

wew

U[w]QEandeGW, |w|2n},

wew

and S(E, s,u) = lim,_, ;o Sp(E, s,u). The u-dimension of E is then dim, (F) €
[0, +00] defined by

dim,(E) = inf{s € [0,400] | S(E,s,u) =0}
=sup{s € [0,+o0] | S(E,s,u) =+o0}.

As before, we set inf(&) = +o00 and sup(@) = 0.

The following proposition shows that, if u : ¥ — (0, +00) is Holder continu-
ous, then the u-dimension of a set is exactly its Hausdorff dimension with respect
to the metric d,,.

Proposition 3.3. Suppose that u : 3 — (0, 400) is Holder continuous. Take d,
as the metric of .. Then, for any E C %, dim, (F) = dimy (E).

Proof. Until the end of this proof, the metric of X will always be taken to be d,,.
Fix £ C Y and s > 0. Then, for any n € Z-( and any set VV of words of length
no less than n satisfying | J, .,y [w] 2 E, we have

> exp(—sSuu) > Y exp(sS,(—u) — sV,) = exp(—sV,) Y _ diam([w])’,

weWw weWw wew

and for every w € W, diam([w]) < exp(S,(—u)) < exp(—ninfeexy; u). Thus, on
the one hand, we have

S(E,s,u) > exp(—sV,)H*(E). (3.3)

On the other hand, let § > 0 and U/ be an arbitrary d-covering of F. For every
non-empty U € U, take an arbitrary £(U) € U, and w(U) be the longest initial
block of £(U) such that [w(U)] 2 U. Denote by w’ be the initial block of £(U)
whose length is |w(U)| + 1. Then, we have

diam([w(U)]) < exp([|ul)diam([w’]) < exp([|ul[)diam(U).  (3.4)
A lower bound of |w(U)| can thus be given as follows:

Suw)(—u) _ —log(diam(lw(U)]) | —log(d)

w(U)| = = >
= |lull i il
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Define W = {w(U) | U €U }. Clearly, |J,,.y[w] 2 E. The estimate in (3.5)
indicates that the lengths of the words in W diverge to +oo uniformly, as ¢ ap-
proaches 0. Moreover, by (3.4),

> diam(U)* > ) exp(—s|ul|)diam([w])® > exp(—slul|) Y exp(—sS,u).

veud wew wew
Therefore, we have H*(E) > exp(—s||u||)S(E, s, u). Combining this with (3.3),
we conclude that dim, (E) = dimy (FE). O

When we study the Hausdorff dimension of a subset of the shift space, it is
sometimes unclear which metric we choose. In order to eliminate this ambiguity,
we shall use the notion of the u-dimension when we consider a subset of the shift
space.

3.2 Basic Properties of Hausdorff Dimension

Some basic properties of the Hausdorff dimension are given in the following propo-
sition.

Proposition 3.4 ([Fal03, Proposition 2.2 & pp. 32-33]). Let (X, dx) be a metric
space. Then, the following statements hold.
1. If By C Ey C X, then we have dimyg (F,) < dimg (E»).

2. For any sequence (Ey)yez., of subsets of X, we have dimy (| J;—, Ex) =
SUPycz. , dimpy (E}).

3. For any countable set E C X, we have dimy(F) = 0.

4. Let (Y,dy) be a metric space, and f : X — Y be Lipschitz. Then, we
have dimy (f(X)) < dimy(X). If f is further bi-Lipschitz, then we have
dimy (f(X)) = dimp (X).

The second assertion in Proposition 3.4 is usually called the countable stability
of Hausdorff dimension.

3.3 Estimating Hausdorff Dimension With Measures

Given a metric space, the measures on this space carry rich information about its
Hausdorff dimension. The analysis of the measures is especially effective when
one attempts to obtain a lower bound for the Hausdorff dimension. The following
theorem, called the mass distribution principle, shows one way to give a lower
bound.
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Theorem 3.5 (Mass distribution principle, [Fal03, p. 60]). Let i» be a Borel mea-
sure on a metric space X. Suppose that for some s > 0, there are C' > 0 and
0 > 0 such that p(U) < Cdiam(U)?® for all closed sets U with diam(U) < 6.
Then for any Borel set E C X with u(E) > 0, we have H*(E) > C~'u(E) and

The Hausdorff dimension of a Borel probability measure on a metric space is
defined in the following way.

Definition. For any Borel probability measure p on the metric space (X, d), define

dimy(p) = inf{dimy(F) | E C X is Borel and u(E) = 1};
dim, (p) = inf{dimg(F) | E C X is Borel and j\(E) > 0} .

When dimp (1) = dim; (11, this common value is called the Hausdorff dimension
of 1, and denoted by dimy (11).

When X is the shift space > of an SFT o : ¥ — X and the metric on X is
d,, for some Holder continuous u : ¥ — (0, +00), the Hausdorff dimension of y
will be called the u-dimension of y, and will be denoted by dim, (1) rather than
dimpg (p).

Definition. Let ;1 be a Borel probability measure on a metric space (X, dy). Then,
the lower and upper pointwise dimensions of 1 at x € X are defined as

log(u(B(z,7)))

I

) = B og(r

dim,,(z) = lim sup IOg(/i ((5(% r))

b

respectively. When they coincide at some x € X, their common value dim,(x) is
called the pointwise dimension of 1 at x.

When X is the shift space > ofan SFT o : ¥ — X anﬂx is d,, for some
Hélder continuous v : 3 — (0, +00), we shall write dim, ,, dim,, ,, and dim,, ,, to

denote dim, ,, dim,, and dim,, respectively.

Proposition 3.6. Let (X, dx) be a metric space, and p be a Borel probability
measure on X. Then, dim, : X — RU{ +o0 } and dim,, : X — RU{ £o0 } are
measurable functions.

Proof. We shall only prove that dim , is measurable. The measurability of di_mu
can be shown in a similar way.
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By the monotone convergence theorem, for every = € X, r — u(B(x,r)) is
a left continuous function, so we have

o log(u(B(r,r) L log(u(B(z, 1)

reQN(0,1/n) log(r) r€(0,1/n) log(r)

Therefore, we have for every x € X,

dim (z) = sup inf log(n(B(x,7))) _ spinf log((B(z, 1))

€l r€(0,1/n) log(r) n€Zo r€QN(0,1/n) log(r)

As both the infimum and the supremum of countably many measurable functions
are also measurable, we only need to show that = — p(B(x,r)) is a measurable
for any r > 0.

Fix r > 0 arbitrarily. For the rest of this proof, we will show that the function
x +— p(B(z,r)) is lower-semicontinuous, which implies the measurability. Let
be an arbitrary point in X. Note that for any sequence (z,,),ez., in X converging
to z, we have B(z,r) C U;—, N2 B(zn, ). By Fatou’s lemma, we thus have

u(B(z,r)) < p (U ﬂ B(:cn,r)) < liminf u(B(xp,1)).

n—-+00
k=11=k

As this holds for any = and any sequence (z,,),ez., converging to =, we conclude
that x — u(B(x,r)) is lower-semicontinuous. O

In this dissertation, the lower pointwise dimension is more important than the
upper pointwise dimension, in that the lower pointwise dimension can be used to
estimate the Hausdorff dimensions of measures and sets. This will be made clear
in Theorem 3.7. The upper pointwise dimension is known to be related to the
packing dimension [PU10], which we will not consider in this dissertation.

Before stating Theorem 3.7, let us recall two notions from the measure the-
ory. Let (X, ;1) be a measure space; the o-algebra is omitted here. Then, for any
measurable function f : X — R U { oo }, the essential infimum of f and the
essential supremum of f are defined as

essinf f(x) =sup{s €R | M(f_l([—oo,s))) =0};

esssup f(x) = inf (s € B | n(f ™ (s, +oc])) = 0}

respectively.
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Theorem 3.7 (cf. [PU10, Theorem 8.6.3 & Theorem 8.6.5]). Let (X, dx) be a
separable metric space. Let |1 be a Borel probability measure on X. Then, we
have

dimy (1) = ess infdim, (z);
dimy (1) = ess sup dim ().
rzeX

Moreover, for any Borel subset E of X, we have dimy (E) < sup,.p dim ().

The corresponding theorems in [PU10] are stated for X being a Borel subset
of'a Euclidean space. As we shall apply Theorem 3.7 to the shift space ., we need
Theorem 3.7 to be in this slightly more general form. As Theorem 3.7 does not
directly follow from the assertions in [PU10], we provide a proof in Appendix A.

Now we turn our focus from the general case to the symbolic case. The follow-
ing theorem is called the volume lemma. Theorem 9.1.11 in [PU10] gives similar
statements in a slightly different setup; the underlying space of the dynamical sys-
tem is not the shift space but a conformal repeller in a Euclidean space. Therefore,
we shall give a proof.

We first prove an elementary fact in real analysis.

Lemma 3.8. Let (X, A, i) be a probability space. Let f; - X — Rand fy : X —
(0, +00) be p-integrable functions. Then,

fX fl }) > O

fX f2 dlu’

,u({xGX
2\ T

(z)
() ~
(et i)

2(& fX fadp
Moreover, the following statements are equivalent.
L fi/fa < [ fidu/ [ f2dp prace;
2. fi/f2 > [y fidu/ [ f2dp, p-ace.;
3. N/ fa= [y fidu/ [y fadp, p-ace.

Proof. Note that
f Jidu
fid X7 T £ du.
/ YT T Ran

All our claims follow from this observation. ]

fi(z
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Theorem 3.9 (cf. [PU10, Theorem 9.1.11]). Let o : ¥ — X be an SFT, u : ¥ —
(0, +00) be a Holder continuous function and 1 be a o-invariant Borel probability
measure on .. Then, di_mmu = dim,, , p-a.e., and

dim, (1) < E%Z < @im, (1) (3.6)

where the first inequality is an equality if and only if the second is an equality.
When p is ergodic, we further have

dim, (1) = dim, (1) = T, (1) = 1250 (3.7

- Jyude
Proof. Define ry = exp(— supcy u(§)). Then, forany § € ¥ and any r € (0,79),
there is a unique positive integer n(r, ) such that

(€1 &nprey1]) © BE, 1) C &1 &nmo))-

From the inclusion relations above and the definition of d,, we have for every
¢ e Yandevery r € (0,79),

Luw)(§)  _ log(u(B(x,r)) _ _ Zapg+1(E)
Snrg+1u(§) log(r) = Suprgu(§) + Vi

where Z,,(§) = —log(u([&---&,))) for any n € Z-( and any £ € X, as in the
statement of Shannon-McMillan-Breiman theorem. Since « is Holder continuous,
the distortion constant V,, is finite. By Shannon-McMillan-Breiman theorem and
Birkhoft’s ergodic theorem, we have

In-i-l (5) limn—H-oo In+1 (6)/71 _ limn—H-oo I, (6)/71

P SO+ Ve i (Syu(€) + Vi) im, e Syu(€)/m

(3.8)

for p-a.e. £ € 2. Therefore, on the one hand, we have that for any ¢ € 3 at which
the previous equality holds,

log(p(B(x,1)))

dim,, ,,(¢) = limsup

r—0+ IOg(T)
, Ln(r)+1(8)
< lim sup :
rosot On(re(§) + Vu

- n—+o00 Snu(f) + Vi B limn—H-oo Snu(f)/n
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The second to last equality here holds because for any £ € ¥, the image of n(-, §)
contains all sufficiently large integers and lim, o+ n(r,§) = +o00. On the other
hand, using a similar argument, we have for p-a.e. £ € %,

. limn—>+oo 7, (5)/71
dl—mmu(g) = limn—H-oo Sn“(ﬁ)/n

Therefore, for pi-a.e. £ € ¥, dim,, ,,(§) exists and

. _ limn—H-oo In(f)/n
dim,, ,(§) = i, Syu()/n (3.9)

By Shannon-McMillan-Breiman theorem and Birkhoff’s ergodic theorem, we have

/ lim lIn(f)d,u:hKS(u) and/ lim lSnu(f)du:/ud,u.
> > 2

n—+oo N n—-+oo N

Hence, by Theorem 3.7 and Lemma 3.8, we have

) . . . limn—H—oo 1z, (5)/” hKS (,U)
i, (1) = e (€)= i == b <

dim, () = esssupdim,, ,(§) = esssup - > .
(k) gex wl6) ey My yo0 Spu(§)/n — [judp

Hence, (3.6) is proven. Lemma 3.8 also implies that the first inequality in (3.6) is
an equality if and only if the second inequality in (3.6) is an equality.

Lastly, if 4 is ergodic, then we can see from the Shannon-McMillan-Breiman
theorem and Birkhoff’s ergodic theorem that

dim,,..(§) = lim,,_, oo Spu(€)/n Jyudu’

for p-a.e. £ € X. Therefore, by Theorem 3.7, we conclude that (3.7) holds when
1 is ergodic. [

Remark 3.10. If the measure ;o in Theorem 3.9 is further the equilibrium state
vy, for some Holder continuous 7 : ¥ — R, then the lower and upper pointwise
dimensions of v, can be written in the following way:

Sntp(§) = nP(¢)

dim,,(¢) = lim inf — e (3.10)
dim,, , (¢) = limsup Supl§) = nP(y) (3.11)

n——+0oo - Snu(f) ’
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for every £ € Y. Note that different from (3.9) which is stated for p-a.e. £ € 3,
(3.10) and (3.11) are state for all £ € X. Let Z,,(§) = —log(vy([&1 -+ - &) for
any n € Z-o and £ € 2. Then, the key ingredients to show (3.10) and (3.11) are
the inequalities in (3.8) and the observation that

sup sup| — Z,(€) — (S,(&) — nP(®))] < +oc,

nEl>o EEX

which is a consequence of the fact that v, is a Gibbs measure for ¢.

3.4 wu-Dimension of Shift Space

In this section, we describe the u-dimension of the shift space of an SFT, using the
notions from thermodynamic formalism. The formula for the u-dimension of the
shift space will be given in Theorem 3.12.

Lemma 3.11. Let 0 : X — X be a topologically mixing SFT. Let ¢ : > — R and
u X — (0,+00) be Holder continuous functions. Then, there exists a unique

B € R such that P(¢ — Pu) = 0.

Proof. Since u is a positive function, P(¢ — tu) monotonically decreases as t
increases. Therefore, there is at most one 5 € R such that P(¢ — fu) = 0.

To show the existence of (3, take real numbers ¢; < t5 such that ¢ — tyu > 0
and ¢ — tou < —log#A. Then, we have

1
P(¢ — tiu) > P(0) = liril - log(#Ay; - exp(0)) > 0;

1
P(¢ — tou) < P(—log#A) = nEI-il:loo - log(#Ay - (#A)™") < 0.

Since the function ¢t — P(¢ — tu) is continuous, we can thus conclude from the
intermediate value theorem that there is one § € [t1, 2] such that P(¢ — pu) = 0.
This completes the proof. ]

The u-dimension of the shift space can be characterized by the topological
pressure in the following manner.

Theorem 3.12 ([BS00, Proposition 6.4]). Let o : X — X be a topologically
mixing SFT, and u : ¥ — (0, +00) be a Hélder continuous function. Then, there
exists a unique 3 > 0 such that P(—fu) = 0, and we have dim,(X) = (.

This type of result was first discovered by Bowen in his study on the Hausdorff
dimension of quasi-circles [Bow79].
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Proof. By Lemma 3.11, there is a unique § € R such that P(—fpu) = 0. The
number ¢; in the proof of Lemma 3.11 can be taken as 0, where ¢ is set as the
constant function 0. Then, as in the proof of Lemma 3.11, we have 5 > t; = 0.

In order to prove that 3 cannot be zero, it suffices to show that P(0) > 0.
Since o : ¥ — X is topologically mixing, by Proposition 2.2, there is some pos-
itive integer [ such that for any a,b € A, there exists some admissible word p
of length [ such that apb is admissible. This means that for any integer & > 2
and any a,,--- ,a; € A, there are pt), ... p*=D ¢ Al such that the word
a1pWMas - - - a1 p%*Vay, whose length is clearly ki + k — [, is admissible. Hence,
we have #AM 1 > (#A)k. 1t thus follows that

i log(#ARTED) o 1 klog(#A)  log(#A)
kvtoo kl+k—1 ~hotookl+k—1  1+1°

P(0) =

As we always assume that A contains at least two elements, we have P(0) > 0.
Take v_g, as the equilibrium state for —3u. Then, using the fact that v_g,, is
a Gibbs measure, we have for any £ € 3,

dlmy—ﬁu (6) = HETOO _Snu(f) = 6
Thus, from Theorem 3.7, we can conclude that dim, (X) = f. O
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Chapter 4

Multifractal Analysis for Symbolic
Dynamics

In this chapter, we shall conduct the multifractal analysis of level sets and uniform
level sets in symbolic dynamics. To be more precise, fix an arbitrary real number
«. We shall estimate the u-dimensions of the a-level set L, the uniform a-
level set ULy, , and two types of subsets of ULy, . We handle L | in Section 4.1,
following the ideas in [PW97; Sch99]. In Section 4.2, we treat the u-dimensions
of U L7, , and two types of subsets of it. Section 4.2 contains the work of the author
in [Liu23].

4.1 Multifractal Analysis of Level Sets

4.1.1 wu-Dimensions of Level Sets

In this section, we study the u-dimension of

s
S0~ @ } ’

55;,,,,:{&2

forany « € R. Forany a € R and ¢ € R, Lemma 3.11 guarantees that there
is a unique (,(q) € R such that P(q(¢» — av) — Ba(q)u) = 0. For each «, the
u-dimension of £y , can be characterized by the function 5, : R — R in the
following way.

Theorem 4.1 (cf. [PW97; Sch99]). Let o : > — X be a topologically mixing SFT.
Let : ¥ - R v: X — (0,+00) and u : ¥ — (0, +00) be Holder continuous
Junctions. Then, L , is non-empty if and only if i)y, < a < o@’v.
Ifay,,= a;q}, then L3, , = @ for a # «, , and L3, , = X for o = oy .
Ifoy, < ag,v, then the following statements hold.
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1. Forany o € (ay,, oy ), there exists a unique q, € R such that

_ fz(zb — av) dv®

Ba(da) [oudve

=0,

where v* is the equilibrium state for the potential q, (¢ — av) — Bo(qa)u.
We have that v* (L3, ) = 1 and
dimu(ﬁfjj,v) = dim, (v*) = min B,(q) = Ba(qa)-

q€eR

2. Foranya € { Qs af;v }, there is a o-invariant Borel probability measure
v such that v* (L) = 1 and

dim, (£5,) = dim, (") = inf f(q).

Theorem 4.2 (cf. [Sch99]). Let o : X — X be a topologically mixing SFT. Let
Y > Rwov:YX — (0,+400) and u : X — (0,+00) be Holder continuous
functions. Then, the function o — dim,, (L, ) is real analytic on the open interval
(ayy» 3),,) and continuous on the compact interval [o, ,, o) |

The proofs of Theorem 4.1 and Theorem 4.2 will be given in the next subsec-
tion.

When v = wu, in addition to all the properties stated in Theorem 4.1, we also
have the concavity of the dimension spectrum a — dim,, (£ ,) on [, ,, o |-

Corollary 4.3 ([Sch99, Theorem 2.1]). Let o : X — 3. be a topologically mixing
SFT Let : ¥ — Randu : ¥ — (0,+00) be Holder continuous functions.
Suppose that o, < O‘zt,u- Define 5y : R — R by letting P(q¥) — Po(q)u) = 0 for
each q € R. Then, we have

1. forany a € (ay,,,, o), there exists a unique q,, € R such that (qa) =
for this q,,

mm(¢J=$%%@%%w=%@J—a%;

2. forany a € {ay,,ay, }, dim,(L5,) = infer Bo(q) — ag;
3. the function o — dim, (L3 ) is concave on [ay,, o .

Proof. As in Theorem 4.1, for each @ € [ay,,aj ], define f, : R — R by
letting P(q(v) — au) — Ba(q)u) = 0 for every ¢ € R. For each «, comparing the
definitions of 3, and (3, we immediately see that 5,(q) = 5o(q) — aq for every
q € R. Hence, the first two items are direct consequences of Theorem 4.1. The
last item follows from the properties of Legendre transform; see Theorem 12.2 in
[Roc70] for the details. [
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We conclude this section with the following proposition which gives informa-
tion on « for which dim, (£} ) attains dim,, ().

Proposition 4.4. Let 0 : X — X be a topologically mixing SFT. Let ¢ : ¥ — R,
v: X — (0,+00) and u : ¥ — (0,400) be Hélder continuous functions. Then
there is a unique o € R such that dim, (L3 ) = dim,(X). Moreover, this o
satisfies either a, = o = o) oray <o <oy,

The proof of this proposition is also postponed to the next subsection.

4.1.2 Proofs

We begin with the proof of Theorem 4.1. As we shall see in the proof of Theorem
4.1, the properties of the function (3, we need can be deduced from the following
lemma.

Lemma 4.5. Let 0 : X — X be a topologically mixing SFT, and ¢ : ¥ — R and
u : X — (0, 4+00) be Holder continuous functions. For every q € R, set f(q) as
the unique real number such that P(q¢ — $(q)u) = 0. Then, we have

1. B :R — Ris real analytic and

f ¢ dvgp—p(q)u
B(q) = 4.1)
fz U dVgp—p(q)u

forany q € R, where vyg_g5(q)u is the unique equilibrium state for qp—[(q)u;
2. B:R — Ris convex,
3. limy1o0 f(q) = +o0if g, <0 < af;.
Proof. By (2.3) in Theorem 2.14, we have

2P(qqu —bu) = — / wdvgg—p, < —minu(€) <0,
8b » €

35))

for any ¢,b € R. Hence, by Theorem 2.14 and the analytic implicit function
theorem, we have the real analyticity of the function 5 : R — R. Again by
Theorem 2.14,

0= 8@ - = 3-Plad = Ala) = .

Rearranging the terms above, we obtain (4.1). Therefore, the first item is true.
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To show the second item, take ¢1,¢> € R and s € [0, 1] arbitrarily. Let gy =
sq1 + (1 — $)ga. Then, we need to show that 5(qp) < s8(q1) + (1 — s)5(gz2). By
the convexity in Theorem 2.14, we have

P(qo¢ — (sB(q1) + (1 = 5)B(g2))u)
< sP(q1¢ — Blqi)u) + (1 — 5)P(q2¢ — B(g2)u) = 0 = P(qo¢ — B(qo)u).

Since u > 0, we have 3(qo) < sf(q1)+ (1 —5)5(go). This shows the second item.

Now we show the last item. Suppose that oy, <0 < af 4.1- Fixanarbitrary g €
R. We shall show that §(q) > 0. Equivalently, we may instead prove P(q¢) > 0.
When g = 0, we have seen in the proof of Theorem 3.12 that P(0) > 0. For ¢ # 0,
asay, <0<aj,wehavea_,, <0 <ag,,. It thus follows that

P(q¢) = lim —log Z exp(S,

n—+oo N
wEAY,

qSnd(€)

> sup lim sup =ag,, > 0.
(e¥ n—+oo ’

This shows our claim.
Since 8(q) > 0, we have g — B(q)u > g6 — B(g)lu|. Hence,

4Sn9(§)
n

sup lim sup
£ey¥ n—+oo

B(g)|Jull < P (q¢ — B(q)|lul)
< P (q¢ — B(q)u) = 0.

Therefore, we have 3(q) > qa ,/||ul| for¢ > 0,and 5(q) > qor, /||ul| for g < 0.
As oy < 0 < o, we deduce that lim, 1o 5(¢) = +oc. O

Now we move on to the proof of Theorem 4.1. We shall basically follow the
proof ideas in [PW97] and [Sch99].

Proof of Theorem 4.1. Fix an arbitrary o € R. Define 9, = ¢ — awv.

It is clear from the definitions of «a;, , and O‘:br,v that £y , is empty for any
a ¢ [ay,, o)) Fora € [a,, af ], we shall show that there is a probability
measure v such that v*(Lj ) = 1, which in particular implies that £} , is non-
empty.

The statements for the case where oz; o = oz:; are straightforward, so we only
need to handle the case where o, < a . For the rest of the proof, assume that
ay,, < aj . Let a be an arbitrary number in the closed interval [a, , cf ].

Consider the case where o, < a < aj,. Then, a, , < 0 < aj .
Hence, by Lemma 4.5 with ¢ taken to be v, [, is real analytlc and convex and
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lim,_, 1 Ba(q) = +oo. Consequently, by the mean value theorem, there is some
¢o € R such that 8/, (q,) = 0. This g, is further unique. To see this, assume that
there is another ¢/, # q, satisfying 5/ (¢/,) = 0. Without loss of generality, we may
assume that ¢, < ¢,,. Then, by the convexity of 3, for all ¢ € (¢, ¢.], 5.(q) = 0.
By the real analyticity of /3, this implies that /3, is a constant function, which con-
tradicts the fact that lim,_, . 5,(q) = +oo. Therefore, there is only one ¢, € R
satisfying that 5/, (¢,) = 0. By (4.1) and Birkhoff’s ergodic theorem, we then have

lim Snwa _ fz(w - OéU) dv®

= Ba(da) = 0, v*-ae. 42
n—+oo S,U fEUdVO‘ ﬂa(Qa) 0, v%-a.e., 4.2)

where v* is the equilibrium state for ¢,%, — 5a(ga)u, which is ergodic. It is not
hard to see that for any £ € X2,

.| Snta . e 1 |Sn
n1—1>I—I|—100 S:bT((fg))' = (0 if and only 1fnl_1>rJ£1Oo Sn:f((g —al =
This implies that
o _ - Sutha(§)
Ly, = { EeXx ngrfoo Soule) 0 } . (4.3)

Combining this observation with (4.2), we have ya(ﬁiw) = 1. Note that from the
observation in Remark 3.10, we have

. o . QQSnwa(g) - Ba(qa)snu(é.)
dim (€)= lim —S.u(©)

= 6&(%34)7
for any £ € LY . By Theorem 3.7, we thus have

dim,, (v*) = dim,( i,v) = Balqa)-

As f3, is convex and 3/, (¢,) = 0, we further have min g 54(q) = Ba(¢a)-

Now let us consider the case where a = «, . For a = a , one can make
arguments similar to what we shall give below for v = «; . For each ¢ € R, let
v denote the equilibrium state for qi), — 5, (q)u. Then, by the weak* compact-
ness of the space M1, (X) of all o-invariant Borel probability measures on ¥, there
exists a monotonically decreasing sequence (gy)xez., diverging to —oo such that
v® % weak* converges to some v* € M, (X) as k approaches infinity.

We claim that v*(Lf, ) = 1. Towards this end, we first show that

ad Q,qk
lim A (q) = lim Jptadren 4.4)

k—+o00 k—+o00 fz w dyax
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The first equality is given by Lemma 4.5; the limits exist because [, is con-
vex. Since o = 0y » WE have Qyow = 0. Hence, by Theorem 2.16, we have
fz 1, dv®? > 0 for any ¢ € R, so on the one hand, we have

. / . fE g dv ™k >
k:ggloo Ba(qk) kgr-il:loo fE u dVO‘ Ak 0

We here remark that combining fz Yo dv*? > 0 and Proposition 2.18, we further
have

/ o dv®1 > 0, (4.5)
>

for any ¢ € R. On the other hand, note that by Theorem 2.16, o, , = 0 implies
that oy, , = 0, which further implies that 04;%’1 = 0 for any ¢ < 0. As in the
proof of the last item in Lemma 4.5, we can show that P(q¢.) > o, | = 0 for
any ¢ € R. Therefore, inf,<o 5,(¢) > 0. As a consequence, we have

Balq)
q
Therefore, (4.4) is true. Using Birkhoft’s ergodic theorem and (4.4), we have

Sl oo Sytbfndv®  [opdvt [ dues
_ " lim _

Js limy, oo Spv/n dve n fz?}dl/a k—too [ v dvear N

. , _ <
kgr—&{loo Ba(Qk) qlll’l’l 0.

Note that

- = >, =a,vi-ae.
lim, 1o Spv/n n—too Snv Y

By Lemma 3.8, we thus obtain that

.Sy limy, o Sy /n N
lim = — = «a, v”-a.e.
n—+too Spv - limy, 400 Spv/n

This is equivalent to v*(Lj ) = 1.

Next we evaluate the u-dimension of v as well as the u-dimension of L7, , .
By Theorem 3.9 and the upper semi-continuity of the entropy map, we have, on
the one hand,

: —— his(v?)
dim,, (£7,) > dim, (v*) > ————=
¥, J udv
&,qk
k—+o00 fz u
. dk fz 77/}04 dy .
_ Ik P .
lim sup o gs) [udem = inf fa(q)
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On the other hand, by Remark 3.10, for any £ € L7, and any g € R,

. o . qSM%(f) - Ba<Q>Snu(£)
dimeaa(€) = lim —S,ul®)

= 501(@'

Therefore, by the last claim of Theorem 3.7, we have dim,, (£, ) < infycr 84(q).
Hence, dim, (L5 ) = dim, (v*) = hgs(v®)/ [ udv® = infyer Ba(q). Combin-

ing this with Theorem 3.9, we also have dim (v*) = dim, (%), so the proof of
the second item for the case where o, , < o, is complete. O

Proof of Theorem 4.2. Without loss of generality, we assume that o, , < O‘J,v-
Throughout this proof, for any o € R, we still use 1, to denote the function
1 — aw. We shall begin with the proof of the real analyticity. An argument similar
to the proof we shall present below can be found in [1J15].

Consider the function (¢, a, b) — P(qi, — bu). As in the proof of the first
claim of Lemma 4.5, we deduce from (2.3) in Theorem 2.14 that for any ¢, o, b €

R, 5
—P(quq — bu) = — / wdvgy, —pu <0,
ob 5

where Vg, —py, 15 the equilibrium state for g, — bu. Hence, by Theorem 2.14 and
the analytic implicit function theorem, (g, o) — [,(q) is real analytic.

Now we claim that the function o > g, with its domain being (o, ,, ),
which is defined in Theorem 4.1, is real analytic as well. Towards this end, we

first show )

0
8—q2P(q¢a — bu) > 0, (4.6)

for any o € (o, Oz:/;v), any ¢ € R and any b € R. Suppose otherwise. By the
convexity stated in Theorem 2.14, the second derivative above cannot be negative.
Hence, there exist o* € (a,, ,, a,),) and ¢*,b* € R such that

82

a—qu(qwa* —bu)| _ . =0

q=q*

Combining this with Theorem 2.15, we have that 1,,« is cohomologous to a con-
stant, say C' € R. Thus, by (4.1) in Lemma 4.5, for any ¢ € R,

9Pax(q) _ fz Vor gy, — B, (g) _ C
dq Jsudvgy, . g, () Js wdvgp,. g, ()
By taking ¢ = ¢,+, we have

C _ 85&* (Q> ‘ —
fE u dl/qa*wa*fﬂa* (Q(x*) 8q 1o
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Consequently, C' = 0. It thus follows that for any £ € 3,

Jim Sw(e)

This means that o, = oz;z , = o, which contradicts the assumption that v, <
o) . Therefore, (4.6) is proved.
Fix an arbitrary ag € (o, a; ). Note that, on the one hand, since

P(qwao - ﬁao (Q>u) =0

for any ¢ € R, we have

2

23 P(0%ag = Pay(@)u) = 0 4.7)

for any ¢ € R. On the other hand, let P(¢,b) = P(qis, — bu) be a function of
two variables ¢ and b. Then, for any g € R,

d2P(q, Buy(q)) _ d (OP opP
BT dq( 5 (4 Beol@)) + 755 (4, Bao g ))./3%@)
32 8215

G @ B@) + 55 0.8 (0) - (0

' i <%§> ( Bao( )) ) ﬁao(Q) aP(QaBa()( )) ’ Bao(q)'

Take ¢ = Gq,. Then, since 3;, (¢a,) = 0, we have

d2P(q, Bao(9))

dq2 |q:qa0 a 2
Combining this with (4.6) and (4.7), we have

. ~
s Boltea)) + . (s Boles)) - 5y ().

op _O*P
ﬁgo(qOéo) ’ %(Qamﬂao(qao)) = a 2 (QOco:BOéo(cho)) <0.
Therefore, 57, (¢a,) # 0. Since ay is taken arbitrary from (a, ,, o ), we deduce

that 525, ()
alq
8q2 ‘q:qa #

forany o € (a,,,, o ,). As (¢, @) — Ba(q) is real analytic on R?, by the analytic
implicit function theorem, we have that o — ¢, 1s a real analytic function on the
open interval (a, , af ).
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Now that we have shown that v — ¢, is a real analytic function on ()
and (q, @) — B.(q) is a real analytic function on R?, we have that the function
a > dim, (L ,) = Ba(ga) is real analytic on (ay, ,, o@v) as well.

The analyticity of a — dim, (L) on (ay,,, a,; ) implies the continuity on
this open interval. Therefore, we only need to show the continuity of the function
a — dim, (L ), with its domain restricted to [, ,, o) ], at a € {a;v, ay, }-
This means that we need to show the right continuity of a — dim, (Ly ) at o,
and the left continuity of a +— dim,, (£ ) at a; . In what follows, we shall only
prove the right continuity at c,  ; the proof of the left continuity at %),v is similar.
For the rest of this proof, we shall also use o™ to denote «, , for simplicity.

We divide the proof of the right continuity of o — dim,,( . g ,) at o~ into two
steps. In this paragraph, we shall show the lower semi-continuity, and leave the
proof of the upper semi-continuity to the next paragraph. As (a,q) — B.(q) is
real analytic on R?, we have that (o, ¢) — 3, (¢) is continuous on R?. From (4.5),
we see that 5/ (¢) > 0 for any ¢ € R. Thus, by the continuity of (o, q) — 5, (q),
we have that for o € (ay,,, o ) sufficiently close to o™ = o, ,, Br,(—=1) > 0 =
Bl,(qa). By the convexity of 5./, we have ¢, < —1. Hence, for such o’ and any
§ € Ly, we have

dim

() = lim inf 2o Sn¥er (&) = Bor (o) Suu(€)

n—+oo — nu(é-)

_ ing —dr(a” = @)5,00)
= Bor(gor) + lim inf Spu(€)
< 50/((]0/)'

Z/O‘u

By the last assertion of Theorem 3.7, we can thus deduce that dim, (L5 ,) <
Lo (Gor) = dlmu([%v) for o € (ozwv,o%v) sufficiently close to o= = a,,.
Therefore, o — dim,, (L ,) is right lower semi-continuous at a™.

Suppose that o +— dim,,( >, o ,) is not right upper semi-continuous at &~ . Then,
by the weak* compactness of 91, (X), there is a decreasing sequence ()ez-.,
converging to a~ such that lim;_, | o dimu(ﬁzfv) > dim,,( f‘[v) and v* weak*
converges to some v € M, (X) as [ tends to infinity. Then,

Jsdv _ limyy o [5 1 v = lim oy =a~
Jovdy — Tim o [odver  ises ! '

As before, we have lim,,, o St /Spmv > a,, =0, v-ae.,so by Lemma 3.8,
we deduce that
St _
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orequivalently, v(Ly ) = 1. Again, by Theorem 3.9 and the upper semi-continuity
of the entropy map,

. - T . hKS(Val) . .
dim, (L, ) > dim,(v) > lim sup ———— = limsup dim,, (L}, ).
(£8,) 2 @m,(v) 2 limsup ©5 050 = limsup dim, (£,

However, the sequence (o)ez., We took satisfies that

lim sup dim,, (£3',) > dim, (L5 ).

=400

From this contradiction, we can conclude that o + dim, (L3 ) is right upper
semi-continuous at &~ . Our proof is thus complete. [

Proof of Proposition 4.4. When oy, , = oz;,v, our claim is a direct consequence of
Theorem 4.1. For the rest of the proof, we assume that oy, < O‘:pr,u-

As in Theorem 3.12, set § = dim,,(X) and v_g, to be the unique equilibrium
state for —Bu. By Birkhoff’s ergodic theorem and the ergodicity of v_g,,, we have

hm anv/} . wadV—Bu

notoo Spu [ vdr_g,

y V—py-a.C.

Thus, by either the first or the second assertion of Theorem 3.7 and Theorem 3.12,
we have dim, (L ) = dim,(X) for o = [ ¢ dv_g./ [¢ vdr_g,.

For o ¢ [a,,,, ) |, we have dim, (L3 ,) = 0 < dim, (), where the last
inequality was shown in Theorem 3.12. For @ = a, , note that 3,(0) = 3. In
addition, (4.5) implies that 3/,(q) > 0 for any ¢ € R. Consequently, we have

dim,(£3,,) = inf 5ulq) < Ba(0) = 8.

By symmetry, we also have dim,, (£ ) < § fora = o .
Now, it only remains to show that for any a € (a, o) ) satisfying

Oé7é wadV*/BU
Jsvdrog,’

we have dim, (L} ,) < dim,(X). Fix such an «, and define g, and v* as in
Theorem 4.1. In addition, we shall still use 1, to denote 1) — av. Observe that
vopu(Ly,) = 0 while v*(L3} ) = 1, s0 v* # v_g,. Therefore, by the uniqueness
of the equilibrium state, we have on the one hand,

hics (™) — / Budi® < P(—pu) = 0.
b))
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On the other hand, by Theorem 4.1, we have fz Y, dv® = 0, which implies

pres(v) = [ pudv = husv) + | (gati - ) o
= hics(") + | (@utha = Balau)) 4"
+ (Bulan) = 8) [ wdvr
= Plgothn = alau)) + (alan) = B) [ ud”
~ (Bulan) = ) [ wdwr,

Consequently, dim, (L5 ,) = fa(¢a) < B = dim,(X) if a € (ay,, ;). Our
proof is thus complete. ]

4.2 Multifractal Analysis of Uniform Level Sets

In this section, we shall explore the u-dimensions of the uniform a-level set

ucgw:{gez

sup 15u(6) — aSy0()] < +oo }

and two types of subsets of it.

4.2.1 Main Theorems and Related Discussions

In this subsection, we shall state our main theorems, namely Proposition 4.6 and,
more importantly, Theorem 4.7 and Theorem 4.8. The proofs of these results will
be postponed to the next subsection. After that, we shall give an immediate corol-
lary. At the end of this subsection, we shall point out that the results in this sub-
section cannot be proved directly by the arguments using equilibrium states as we
presented in the previous section.

Firstly, we claim that whichever a we take, the u-dimension of U L7, , is always
equal to the u-dimension of L .

Proposition 4.6 ([Liu23]). Let o : X — X be a topologically mixing SFT and let
the functions ¢ : ¥ — R, v : ¥ — (0,400) and u : ¥ — (0,+00) be Holder
continuous. Then, for any o € R, we have

1. UL, = @ ifand only if a € [y, ) ],
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2. dim,(ULS,) = dim, (£3,,).

Now we proceed to the two main theorems, namely Theorem 4.7 and Theo-
rem 4.8. In order to give the precise statements, we need to define some notations
for each of them.

Let W be a finite set of admissible words. Define for each positive integer £,

Fwi =[] {& € T | all the words in W are the subwords of &1 -+ &ni }
n=0

and then set Fyy = (J,—; Fyv,x. When W contains only one word, say w, then Fy
will also be denoted by F,,.

Theorem 4.7 ([Liu23]). Let 0 : X — X be a topologically mixing SFT and let
the functions v : ¥ — R, v : ¥ — (0,400) and u : ¥ — (0, +00) be Holder
continuous. Suppose that YV is a finite set of admissible words over A. Then, for
any a ¢ {ay .o, }, we have

dim, (ULS,, N F) = dim,(L3,). (4.8)

For every non-negative integer [, we define the [-th power of a word w as w! =
w - - - w, where the right-hand side is the [-fold concatenation of w. More formally,
define w® as the empty word, and for each positive integer [, define w! = w!~lw.

Define F7, = ;2 Fy1» where for any positive integer [,

wa=[) { &€ X &does not contain w' as a subword } .
wew

Theorem 4.8 ([Liu23]). Let 0 : X — X be a topologically mixing SFT and let
the functions ¢ : ¥ — R, v : ¥ — (0,400) and u : X — (0,400) be Holder
continuous. Suppose that VV is a finite set of admissible words over A. Then, for
any a ¢ {ay ,, o, }, we have

dim, (ULS,, N Fy) = dim,(L3,). (4.9)

The proofs of Proposition 4.6, Theorem 4.7 and Theorem 4.8 will be postponed
to the next subsection, namely Subsection 4.2.2.

The two main theorems above in particular imply that 7,y and F;,, both have
full u-dimension for any finite W C Af,.

Corollary 4.9 ([Liu23]). Let 0 : X — X be a topologically mixing SFT and let
u: X — (0, 4+00) be a Holder continuous function. Suppose that W is a finite set
of admissible words over A. Then, dim,(Fy) = dim,(F,,) = dim,(3).
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Proof. Take Holder continuous ¢ : ¥ — Rand v : ¥ — (0,+00) such that
a,,,, < o, . Then, by Proposition 4.4, there is a unique a € (v, ,, ;) such that
dim, (L ,) = dim,(X). For this o, by Theorem 4.7 and Theorem 4.8, we have
that for any finite set JV of admissible words,

dim, () = dim, (£3,) = dim,(ULS, N Fw) < dim,(Fw)
dim, (%) = dim, (L3 ,) = dim,ULS, N Fyy) < dim,(Fy,) < dim,, ().

This completes the proof. [

At the end of this subsection, we remark that the previous results do not follow
from Theorem 4.1. To make it more precise, we state the following proposition.

Proposition 4.10. Let 0 : X — X be a topologically mixing SFT, and 1 be an
ergodic Borel probability measure on Y. satisfying that ;1(O) > 0 for every non-
empty open subset O of . Let the functions 1 : ¥ — R and v : ¥ — (0, +00) be
Hoélder continuous. Let VW be a non-empty finite set of admissible words. Then,

1. (Fw) = 0, if W contains at least one admissible word w whose length is
no less than #A + 1;

2. u(Fy) =0, if W contains at least one word ' satisfying that (w')* = w'w’

is admissible;

3. pULs,) =0, forany o ¢ {ay,.af, }.

Remark 4.11. When showing Theorem 4.1, we used the equilibrium state v to
estimate the u-dimension of L . If UL, had positive v* measure, then by the
mass distribution principle, we would have dim, (L ) = dim, (L7, ) immedi-
ately. Proposition 4.10 shows that v*(ULy, ) = 0 for o & { oy, a, }, 50 we
cannot deduce Proposition 4.6, Theorem 4.7 and Theorem 4.8 from Theorem 4.1
directly. It suggests that we need to construct a new measure for which UL, ,
has positive measure, so that we can use the mass distribution principle to give a
lower bound for dim,, (/L7 ). In a similar sense, Proposition 4.10 also suggests
that dim,,(Fyy) and dim,,(F},,) cannot be estimated by one single equilibrium state
in general.

In order to show the first item of Proposition 4.10, we introduce the following
notation. For any a € A, define P(a) to be the set of all non-empty admissible
words w satisfying that

1. wa is admissible;

2. wj=aifandonlyifj=1,forallje {1, - |w|}.
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Lemma 4.12. Let 0 : X — X be a topologically mixing SFT. Then, we have
#P(a) > 2 for each a € A.

Proof. Fix an arbitrary a € A. It is clear from Proposition 2.2 that P(a) is non-
empty. Suppose that P(a) is a singleton, and let [ be the length of the only word
in P(a). Then, for any word p satisfying that apa is admissible, ap must be a
power of the only word in P(a), thus implying that [ divides |p| + 1. As the SFT
o : X — X is topologically mixing, we deduce from Proposition 2.2 that [ = 1,
which means that P(a) = {a }. As we always assume that #4 > 2, take b # a
from A. Let p®~° and p°~¢ be the shortest words, possibly empty, such that ap®~%b
and bp’%a are admissible. By construction, ap®**bp*~? is an element of P(a)
and is obviously different from a, hence contradicting the claim P(a) = {a } we
have shown previously. Therefore, P(a) contains at least two words. ]

Proof of Proposition 4.10. We begin with the proof of the first claim. Takew € W
satisfying |w| > #A + 1. By the pigeonhole principle, there is at least one a € A
appearing in w at least twice. This further implies the existence of @ € P(a) which
satisfies that wa is a subword of w. By Lemma 4.12, there is some &’ € P(a) other
than @. Since @’ € P(a), the powers of &’ are all admissible. Moreover, Wa is
by construction not a subword of any of the powers of &@’. From this, we can
immediately see that w is not a subword of any of the powers of &’ either.
Fix an arbitrary positive integer [. By Birkhoff’s ergodic theorem, we have

: 1 A
Jm Esnﬂ[(d/)l] = u([(@')]) >0, prae.,
where 15 : ¥ — Ris the function satisfying 15(F) = {1 }and 1z(X\E) = {0}
for every E C Y. This in particular indicates that for py-a.e. & € X, (&) is
a subword of £. As we have seen that w is not a subword of (&')!, we deduce
p(Fwyer)) = 0 for each I € Z. Since |@'| > |a| = 1, [|&'| diverges to the
positive infinity as [ tends to the positive infinity. Note that (Fyy ;)jez., 1S an
ascending set sequence and JFy, = U;’il Fw.j, we have

u(Fw) = sup pu(Fwyer) = 0,
1€Z50
showing our first claim.

Now we prove the second claim. Let w’ be a word in W satisfying that (w')? =
w'w’ is admissible. Then, for any k € Z-, following the same arguments as in
the previous paragraph, we have that for p-a.e. £ € 3, (w')* is a subword of &.
Therefore, M(~7:1//v,k> = ( for any positive integer k. This shows our second claim.

Finally, we prove the last claim. For a ¢ [a,,,, a;;v], we have UL, C
Ly, = 2,0 u(UL;,) = 0. For the rest of the proof, we assume that o, <
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a < aw . For every M > 0, there is then an admissible word 7 such that S, >
2M + V.. Again by Birkhoft’s ergodic theorem, we see that for p-a.e. £ € X, 7
is a subword of £. For each ¢ € X satisfying that there is a non-negative integer
m such that 0™ (§) € [7], note that either S,, 1o (&) < —M or Syt ¥a(§) > M.
Therefore, we have

(=

for any M > 0, from which the third claim follows. U

sup |Spva (&) < M }) < u({€&€X|Tisnotasubword of £ })

n>0

=0

4.2.2 Proofs

We first prove Theorem 4.7, then Theorem 4.8 and lastly Proposition 4.6.

Let 0 : ¥ — X be a topologically mixing SFT, with A and M being the set

of symbols and the incidence matrix. Let¢y : ¥ — R, v : ¥ — (0,+00) and
u X — (0,400) be Holder continuous functions. Let WV be a finite subset of
Ajy. For each «, we still use 1), to denote the Holder continuous function 1) —
As o : ¥ — X is topologically mixing, by Proposition 2.2, there is some integer
[ such that for any two symbols a,b € A, there is some p € Al such that apb is
admissible. We fix this [, and will use it in the subsequent proofs. Finally, for any
M > 0,any a € R and any n € Z-, define

sup [Sptha(§)] < M }

§€fw]

and B, v = Un 1BZM
The proof of Theorem 4.7 needs the following lemma.

Lemma 4.13 ([Liu23]). Suppose that o, < a < a . Then, for any two con-
stants M > 2V, +1-||¢|| and M' > 0, there exists afnztefamzly S of admissible
words such that for any w € B, p, there is some 7 € S for which wt € B .

A similar lemma was shown in [GJK22] for ¢ : ¥ — X being a full shift. In
[Liu23], it was extended to topologically transitive, and in particular topologically
mixing, SFTs. The proof in [Liu23] was also more elementary than the original
proof in [GJK22]. The proof we are to give below is the one in [Liu23].

Proof. As o, < a < o, there exist{, &7 € Yand n™,nt € Z such that

Sn—wa(£7> < _M/ - 2V¢a —1- ‘|¢Oé|| < M/ + 2‘/1/1& +1- ||7vba|| < Sn'*‘wa(ng)‘
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Define
So={& & [1<k<n JU{& - [1<k<n"}U{empty word } ,

and S = {pr € Ay | pe Ay, 7 € Sy }. We claim that S is the family of words
we want. Clearly, S is a finite set of admissible words, so we only need to show
that S meets the last requirement.

Take an arbitrary w € B . Let & € [w]. Then, |[S,ta(§)| < M’. Consider
the case where S|, 14 (&) > 0. Take one p~ € Al such that wp™ ¢~ is admissible.
Note that

Stufri¥alwp™€7) 2 Sutal8) = Vi = 1 [l =2 Vi = - [[¢al]l.

If Sjyj+1%a(wp~&™) < 0, then the inequality above indicates that wp™ € Ba .
Otherwise, note that

Sleltitn=Va(Wp™E) < Suthal§) + Voo + 1 [[hall + Sn-1a(€7) < Vi
Hence, we can take the smallest k= € {1,--- ,n~ } such that
Stttk Yalwp™§7) < =Vy,. (4.10)
This means that S|, 14x-—1¥a(wp™E™) > =V, and therefore,
Stttk Ya(wWp™87) 2 Swprirr-—1¥alwp™§7) — [Yall = =Vi, — - [[¢al-

Combining this fact with (4.10), we can thus deduce that wp™&; -+ - & € Bawr,
when S|4, |¥a(wp™§7) > 0. We have thus shown that if S|, 94 (§) > 0, then

either wp™ orwp=&; - &, forsome k™ € {1,--- ,n~ },is in B, ps. This com-
pletes the proof for the case where S|,,|1)o () > 0. The case where S, 1o (§) < 0
can be treated in the same way. 0

Now we give the proof of Theorem 4.7. The proof is taken from [Liu23].
As Theorem 4.7 is weaker than the theorem claimed in [Liu23], the proof will
be slightly simpler than the one in [Liu23]. The proof which the author gave in
[Liu23] is greatly inspired by [GJK22].

Proof of Theorem 4.7. Whena ¢ [a, , o |, wehave ULy, N Fw = L3, = 2,
so our claim holds trivially. Thus, we only need to handle the case where o, <
a < aj . Assume that a , < o < o, for the rest of the proof.

Let @ be an admissible word in which all words from )V appear at least once.
Fix M > 2V, +1-||1a| and let M’ = 2M + (21 +|@|)|[1)a]|- For these M and M,
let S C Aj; satisfy the conditions in Lemma 4.13, and define ||S|| = max,¢s |T].
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Let ¢, € R and the measure v* be defined as in Theorem 4.1. Then, v is
ergodic and fz 1o dv® = 0. Hence, by Theorem 2.7, lim Jinf |Sntha| = 0, v¥-a.e.
n—-+00

Thus, for any M > 2V, +1-||¢a]|| > Vi, , by the Borel-Cantelli lemma, we have

wEBa, M

Combining the divergence of this series with the fact that v is a Gibbs measure
for gato, — Ba(qa)u With P(qate — Ba(ga)u) = 0, we have

Z eXp(Sw(Q(ﬂ/]oz - ﬁa(Qa)u)) = +o00.

WEBa, M

Assup,cp . |Su(gata)| < 400, this in turn gives

o, M

3 exp(—Balga)Sutr) = +oc.

wEBo, M

For any positive s < (,(¢a) = dim, (L ), pick a positive integer m such that

1 -
~ log > exp(—sSuu) > 2+ [[S] + [@]) [[ul.- (4.11)

e
weBa’M

To ease the notation, we shall write Cj to denote (20 + ||S|| + |©]) ||u].

We claim that dim,, (U L3, , N Fz) > s. To show this claim, we construct a
Borel probability measure j, for which ju,(ULy; , N F) = 1, and then apply the
mass distribution principle to this z,. Define by induction a sequence (Ay);>1 of
subsets of B, s as follows. Let A; = BZZM. For k > 2, fix w1 € A, ; and
w € Ay, and choose p, A € AL, satisfying that w*~Y pwA@ is admissible. Then,
since Ay, and A, are, by the induction hypothesis, both subsets of 3, s, we have

Sup ‘S|w<k*1)pw/\a;\wa(5)’ S M/.

e€lw =1 pwAd]

Therefore, there is some 7 € S such that w(k_l)prdm- € B,m- Note that
the word w*~Y pwA@r is constructed from w®* Y € A, ; and w € A, so
we may denote it by 0, (w*~ w). For every w* 1 € A;_;, define Ay(w) =
{Op(w,0') |w € A; }and A, = A (w). Tt is clear from our discussion
above that A;, C B, u.

Now we are ready to construct the Borel probability measure i, from the set
sequence (Ag)r>1. Set

wEAK_1

exp(—sS,mu)
EWGAI exp(—sS,u)

,US([W(D]) =
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for any w™) € A; and

b)) — exp(—sS,,0u) s ([w*])
ZweAk(w(k—l)) CXp(—SSwu)

s (Jw

for any w® € A (w* ), where k > 2 and w*~Y € A;_,. Clearly, for every
w1 € A;_; and every w®) € A (w), w™ is a continuation of w* 1), or equiv-
alently, we can say [w®] C [w*~V]. Moreover, for any w*~1) € A;_,, and any
two distinct w, w’ € A;, we claim that

[Or(w® D )] N B (WD, )] = @. (4.12)

Once we manage to prove (4.12), we can immediately deduce the existence and
uniqueness of the measure 15 from Kolmogorov consistency theorem. The proof
of (4.12) is given as follows. As before, we write 0, (w* D, w) = w*=YpwAdT,
For w’, we write 0 (w1 W) = wk=1p/w NGO’ in the same way as we wrote
0r(w*~1 w). This means that p and p’ are both in Al;. If p # o/, then we have

[0 (@* D, )] N B (WY, W] C W p Nt = o,
because p and p’ have the same length. If p = o/, then we have
[ (@*D, )] N B (WY, W) € WP pw] N W] = &,

because w and w’ are distinct words with the same length m. Therefore, in any of
the two possible cases above, (4.12) always holds.
By construction, /i, is supported on (1,2, ,c 4, [w]. Also note that for any

§ € ﬂzozl UweAk [WL
sup |Sn¢a(€)| < M + ||S|| ’ ||¢o¢||

n>1

Moreover, all subwords of ¢ with length no less than 2(m + 1+ |©|) + ||S|| contain
@ as a subword, thus containing all the words from W as subwords. Therefore,
we have p, (UL , N Fy) = 1.

Observe that for any integer £ > 2 and w € A;_1,

Z exp(—sS,u) > exp(—sS,u — sCp) Z exp(—sS,nu)

w/'€AL (w) w'EAI =B

> exp(—sSwu),
where the second inequality is due to (4.11). As a result, for any integer k£ > 2,

max s (W) _ (W)

wedr eXp(—8S,U) WAL D] e a () EXP(—8Sumu) T wedis exp(—sSyu)’
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thus implying that

ps([w]) ps([w])

ey exp(—sSyu) e exp(—sS,u)
By the mass distribution principle, dim,, (U/ Ly, , N Fyy) > s. Since s is an arbitrary
positive number smaller than dim, (L3, ), we conclude that dim,, (UL, , N Fw) >
dim, (Lg ). Since ULy, , N Fw C L7, the proof is complete. O

Now we use Theorem 4.7 to show Theorem 4.8.

Proof of Theorem 4.8. We construct an admissible word w* as follows. Let W™ =
{ww---|we W} C 3. Note that | J,~ , 6"W™ is finite. Thus, we can take one
admissible word w* whose cylinder set [w*] is disjoint from | -, c"W>. For this
w*, we claim that

Fur C Fy. (4.13)

To see this, take an arbitrary £ € F .. Then, there exists some k& € Z- such that

every subword of £ with length no less than k£ has w* appearing therein. For any

w € W, note that the word w* does not have w* as a subword, and has its length

being k - |w| > k. Hence, w” cannot appear in &, so £ € Fy,,. This proves (4.13).
Combining (4.13) with Theorem 4.7, we immediately have

dim, (UL, N Fyy) > dim, (UL, N F-) = dim, (L3, ),

forany a ¢ {ay,, o, }. Since UL, N Fy, € L3, the proof is complete. [
We conclude this subsection by showing Proposition 4.6 as follows.

Proof of Proposition 4.6. Without loss of generality, we may assume that o, , <
a < af;}v, for otherwise ULy, , and L}, , would both be empty. When o, , =
af;v = a, by Corollary 2.17, we have UL}, = L), = ¥, so the claim holds triv-
ially. Hence, we shall henceforth assume that ay, <ap,. Ifay, <a<aj,
note that ULy, , N Fyy C ULy, C L7, where W is an arbitrary finite set of ad-
missible words Therefore, by Theorem 4.7, we have dim, (UL ) = dim, (L ).
In order to show that {L{ , is non-empty, we shall prove that dim,, (£} ) > 0 for
u taken to be v as follows. Suppose that there exists some o € (ay, ,, a:g’v) such
that dim,,(£;°,) > 0 for u = v. Forany a € [a, ,, o) ] not equal to ay, clearly
there exists some o € [a, ,, ;] and s € (0, 1) such that ap = sa + (1 — s)o.
Recall that Corollary 4.3 asserts that when u = v, o + dim, (L ,) is a concave
function on the closed interval [, , ov; |. Therefore, we have

sdim, (£5,) + (1 — s) dim,(£]),) < dim, (£°,) = 0

57



Chapter 4. Multifractal Analysis for Symbolic Dynamics

provided thatu = v. Since 0 < s < 1 and the u-dimension is always non-negative,
we have
dim, (£ ,) = dim, (£ ,) = 0.

From this, we have that dim, (£ ,) = 0 for any o € [a,,, o) ] and for u = v.
However, Proposition 4.4 states that there is some o € [0@,@» agm] satisfying
dim, (L ,) = dim,(X), which is positive by Theorem 3.12. This contradic-
tion shows that dimu(ULﬁw ») = dim, (L3 ) > 0 for u taken to be v and for
any o € (ay,,, a,), ). This in particular implies that UL, , is non-empty for any
a € (o, 0f,)-

Now it only remains to handle the case where o, < o), and « is equal to
either oy, or o% Suppose that @ = ;. By Theorem 4.1, there exists a o-
invariant Borel probability measure »* such that v*(L£j ) = 1 and dim,(v*) =
dim, (L ,). In addition, Theorem 2.16 guarantees the existence of a continuous
[+ ¥ — Rosatisfying that ¢, + f oo — f > 0. Asv*(Lj ) = 1, by Birkhoff’s
ergodic theorem, we have [, ¢, dv* = 0. The o-invariance of v* then yields

[ Sutbat roa =gy =n [ ot foa— i —n [ vodr =
2 b b
for any n € Z~q. Forany n € Z-, since S, (¢, + f oo — f) > 0, we have

Spthe + fod" — f=85,(Yo+ foo—f)=0, v¥ae.

It follows that |S,1.| < 2[f]|, v*-a.e. Therefore, we have v*(UL;,,) = 1.
Hence, ULY, , is non-empty. Moreover, since dim,(v*) = dim, (L ), we de-
duce that dim, (U Ly, ,) = dim, (L} ,) when a = ;. By symmetry, we also
have the same result for o = a, . O

4.2.3 Remarks on Boundary of Dimension Spectrum

We assumed in both Theorem 4.7 and Theorem 4.8 that o ¢ {a , v, }. It s
thus natural to ask whether these two theorems remains true for o € { o, ,, ;) , }-
It is unclear if Theorem 4.8 holds for o € { o, ,, ;) , }. On the other hand, The-
orem 4.7, as we shall see below, fails in general fora € { o, , O‘:/:,v }.

Proposition 4.14. Let 0 : 3 — X be a topologically mixing SFT. Let i) : ¥ — R
and v : X — (0,+00) be Hélder continuous functions satisfying that o, <
aj;v. Then, for any o € {a;’v, al}v }, there is an admissible word w satisfying

UL NF, =

Remark 4.15. Pick ¢ such that o, , < o, a € {ay, o, } and dim, (L] ) >
0. Such a Holder continuous function v exists [Sch99]. Then, we immediately get
a counterexample for the claim of Theorem 4.7 when a € { o, Oéjbrﬂi }.
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Proof of Proposition 4.14. We only prove the proposition for the case where o =

. When a = aw ,» One can use a similar argument to prove the same claim.
We stlll let [ be a positive integer satisfying that for any two symbols a,b € A,
there is some p € Al such that apb is admissible.

Assume o = «,, . Since oz;z > %}u = a, there is some £* € X such that
inf,,>1 Sp1a(£*) = —oo. Take a positive integer n such that
Snta(§) < =V, = L [[¥al = C- =1, (4.14)

where C = sup,, -, Supc5; Smta(() is finite due to Theorem 2.16. Set

w:f’ik...f?*lpj

where p € Al satisfies that w? = ww is admissible. It then follows from (4.14)
that
Cseu[p] Sl¥a(C) < S¥al€”) + Vyo < —C- — 1. (4.15)
Given any { € F,,, we shall show that § ¢ U L7, which will complete the proof.
Since £ € F,,, we can find a strictly increasing sequence (1 )x>1 of positive
integers such that £ € ()~ o~ ™ [w] and n; — nj_; > |w| for each positive integer
J, where we set ny = 0. Then, for any integer £ > 2, from (4.15) and the definition
of C_, we see that

hE

Snk,é/}oc(g) S S”j_nj—lqu)a(o-nj_l (f))

1

<.
Il

k

Co Y Suta(0™(E)) + Suyny 1ol alo™H14(€)

J=2

IA

E

<C_+)» (-C_—-1+C)=C_—k+1.

Jj=2

We can thus conclude that § ¢ UL . O
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Chapter 5

Multifractal Analysis of Holder
Regularity of Gibbs Measures in R

In this chapter, we use Theorem 4.8 we proved in Section 4.2 to study the Holder
regularity of the cumulative distribution function of a Gibbs measure in R.

In Section 5.1, we define a conformal graph directed system, as well as its limit
set and the coding map. The limit set will be the support of the Gibbs measure in
R which we consider. In Section 5.2, we shall give some results on the Hausdorff
dimension of UD%, where F' is the cumulative distribution function of a Gibbs
measure in R.

5.1 Conformal Graph Directed Systems

In this section we basically follow [MUO03].

5.1.1 Directed Multigraph and Edge Shift

In this subsection, we define the notion of a directed multigraph and the edge shift
associated to it.

We begin with the definition of directed multigraphs. Let )V and £ be two
disjoint sets. The set V is a non-empty set, whose elements are called vertices.
The set & is a set disjoint from ), whose elements are called edges. For each edge
e € &, there are two vertices associated to e. One is the initial vertex p_(e) of e,
and the other is the terminal vertex p, (e) of e. This defines two mappings p_, p, :
E — V. A directed multigraph is then the tuple (V, &, p_, p, ). Henceforth, we
always make the following assumptions for every directed multigraph that will
appear in the subsequent discussions:

1. Vis finite;
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2. & contains at least two and at most countably many edges;
3. for any vertex p € V), there is at least one edge e € £ such that p = p_(e).

If an edge e € & satisfies that p_(e) = p,(e), it is called a self-loop. Note
that according to our definition, a directed graph may possibly have self-loops. In
addition, there might be two distinct edges e, ¢’ € £ such that p_(e) = p_(¢’) and
py(e) = py(€'). In some literature in graph theory, a directed multigraph can have
multiple edges with the same initial and terminal vertices, but is not allowed to
have a self-loop; see e.g. [BG10, p. 4]. Here we use the terminology in the same
way as [MUO03], in which directed multigraphs are allowed to have self-loops as
well.

Given a directed multigraph (V, &, p_, p, ) for which V and £ is finite, a nat-
ural SFT arises as follows. We call it the edge shift associated with the directed
multigraph as in Section 3.2 of [BS02].

Definition. Let (V, &, p_, p,) be a directed multigraph with finitely many vertices
and edges. Set A = £. Define M : A x A — {0,1} by letting M(e,e') = 1 if
and only if p, (e) = p_(€'), for any e, ¢’ € E. Then, the edge shift associated with
the directed multigraph (V,E,p_,p.) is the SFT o : ¥ — X for which the set of
symbols is A and the incidence matrix is M.

Note that the matrix M is an incidence matrix because we assumed that for
every vertex p € V), there is at least one edge e € £ such that p = p_(e).

A path in the directed multigraph is an admissible word e; - - - ¢, over A = &,
with the incidence matrix taken to be M defined above. For p = p_(e;) and
P = pi(e,), the path e; - - - e, is said to be a path from p to p’. Then, for SFTs
given by directed multigraphs, Proposition 2.2 can be rewritten as follows.

Proposition 5.1. The SFT o : X — X associated with a directed multigraph
(V,E,p_,py) is topologically mixing if and only if there exists a positive integer
| € Z~q such that for any two vertices p,p’ € V, there is a path ey - - - ¢ from p to

/

p.

5.1.2 Conformal Graph Directed Systems in R
In this subsection, we define the conformal graph directed systems in R.

Definition. 4 conformal graph directed system (CGDS) in R consists of a directed
multigraph (V, £, p_,p+), a family of compact intervals L = {1, |p € V } and a
Sfamily of contractions ® = { gc : I, () = I,_(e) | € € € } satisfying the following
conditions:

1. for eachp €V, I, has positive length;
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2. for any p € V, there is an open neighbourhood U, of I, such that for every
e € Ewith p,(e) = p, there is a C* diffeomorphism g. : U, — §.(U,) C
Up_(e) such that ge} = e

P

3. foreverye € &, |g.| is Holder continuous on I, (),

4. ® satisfies the open set condition, i.e. for any two distinct a,b € £,
Go(Int(Zp, (o)) N gu(Int(Lp, 1)) = 2.

We shall simply use ® = { g. | e € £ } to denote the CGDS as in [MUO03].

The original definition of a CGDS in a Euclidean space of an arbitrary finite
dimension was introduced in Section 4.2 of [MUO3]. For higher dimensions, the
contractions in ¢ are assumed to be conformal, which explains its name. In this
chapter, we shall only consider the CGDS in R, so the conformality of the con-
tractions trivially holds.

We shall only consider a CGDS for which the directed multigraph has merely
finitely many edges.

Definition. We say that a CGDS ® = {g. | e € £} in R is finitely generated if
and only if £ is finite.

For a finitely generated CGDS ® = { g. | ¢ € £ } in R, we define

|9e(x) — ge(y)]
A@ZIEEagisup{ Il‘—yT T,y €Ly o), TFY ¢
Clearly, \¢ < 1 because every g. € ® is a contraction. Similarly, for a finitely
generated CGDS © = {g. | e € £} in R, as |g.| is Holder continuous for each
e € &, there exist s > 0 and Mg > 1 such that for any e € £ and any x,y €
I, (c), we have

[19e(2)] = |9.(W)]| < M|z —y|*.

5.1.3 Limit Set and Coding Map of CGDS

Given a finitely generated CGDS ® = { g, | e € £ } in R, we construct a set called
the limit set of ®.

In what follows, the edge shift of ® means the edge shift of the directed multi-
graph of ®. Recall that when defining the edge shift o : > — >, we took the set
of symbols A to be £. For any non-empty admissible word w over A = &£, define

Jo = Gu1 © " O Guyy -
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Then, g, is clearly a contraction defined on I, (). Define I, = 9w (1, +(w|w\))'
Similarly, for any non-empty admissible word w over A = &, define
Ges = Gen © O Gy

where for each e € &, g, is the extension of g, to U, in the definition of CGDS.
With the definitions above defined, we have the following proposition.

Proposition 5.2 ((MUO3, Lemma 4.2.2]). For any finitely generated CGDS ® in
R, we have

wEAY, |x - y|8q>

log |g.,(x)| — log|d!
i Sup{! |92, (x)| — log |, (v)] | x’yelm(wlw)’x%y%m

In particular, we have

sup  sup |log|g.(z)| —log|g.(y)| | < +oo.

weARy x,yGIer(wlw‘)

We continue with our construction of the limit set of the CGDS &. Note that for
any non-empty admissible word w over A = £ and any positive integer k < |w|,
we have I, 2 1, [MUO03, p. 2]. For any £ € ¥ and any k& € Z~(, we have

wiwg 2

diam(I¢,..¢,) < A5 max diam(7 ).
ec

As A\ < 1, we see that limy,_, ;o diam(/¢, .., ) = 0. Hence, we can see that there
is a unique element in ()~ I¢,..¢,. Denote this element by 7(¢). Thus, we have
amap 7 : ¥ — J,cy Ip- This map 7 is called the coding map of ® and the limit

set of ® is .
A=7(2)=J )l

¢es k=1

From the definition, we can readily see that

T(§) = ger e, (m(07(E))), (5.1)

for any n € Z~ and any £ € 3.

The coding map is continuous; indeed we can say more about the coding map.
For this purpose, we introduce a metric on Y, which will be given by the volume
potential defined as follows.

Definition ([MUO03, Section 8.2]). The volume potential of a finitely generated
CGDS ® ={g. | e € £} inRis the function u : ¥ — R defined by

u(§) = —log|gg, (7(a(€)))]
for every £ € Y.
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Proposition 5.3. For any finitely generated CGDS ® in R, its volume potential u
is well-defined, positive and Holder continuous.

Proof. For any £ € X, note that (0 (&)) € Ie, C I, (ey) = Ip, (1), S0 m(0(§)) is
in the domain of ge,. As ge, isa C" diffeomorphism, g; (7(co(€))) cannot be zero.
Therefore, u is well-defined. Since every member of ® is a contraction, we also
have u > 0.

Finally, we shall show the Holder continuity of u. Take &,( € X satisfying
& = (; arbitrarily. Define n = |€ A (| > 1. Then, p_(&,41) = p—((ny1)- Hence,
by (5.1), we have

[7(0(8)) = m(@ ()] < A5 |m(0™ (&) — m(a™(O)] < Ag_lglggdiam(fp)-

Combining this with Proposition 5.2, we have the Holder continuity of w. 0

Note that by the chain rule, we have

Snu(§) = —log|ge, ¢, (m(a"(£)))],

forany £ € ¥ and n € Z~. Hence, as a consequence of Proposition 5.2, we have

sup sup sup ) — Su(€) —log |ge,..e, (7)] ‘ < +400. (5.2)

n€El~qg EED Zelp+(§n)

Proposition 5.3 enables us to endow the shift space ¥ with the metric d,,. For
this metric, we claim the following for the coding map 7.

Proposition 5.4. The coding map m : ¥ — UpEV I,, is Lipschitz continuous.
Moreover, for any compact X C 3 satisfying that o(X) C X, we have that

Proof. By the mean value theorem and (5.1), we have that for any two distinct
§,§ € Xwith & = ¢,

m(&) = m(€)] < sup { |Gerer(2)] | @ € Lpye) } ~max diam(Z; ),

where n = |£ A &'|. Hence, combining this observation with (5.2) and the Holder
continuity of v, we can deduce that 7 is Lipschitz continuous.

Regarding the second claim, we only need to show that w};(l is Lipschitz con-
tinuous under the assumption that 7 }  Isinjective and thus invertible. Again, using
the mean value theorem and (5.1), we have

[7(Q) = m(¢) = inf { [ge (@)] | 2 € L) } - Im(0™(C)) = 7 (a™ ()],
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for any two distinct ¢, (' € X with (; = (Jand m = |(A('|. Since o(X) C X, we
have that ¢ () and 6™ ((’) are both in X. Hence, |7 (0™ (¢)) — w(c™(¢"))| > co,
where

co = min{ inf inf |7(n) —7()||e, e €& e#e } :
ne

lelNX n'ele/INX
As long as we can show that the constant ¢, is positive, then as in the previous
paragraph, we can show that ﬂ; is Lipschitz continuous. Suppose that ¢y = 0.
Then, as [a] N X is compact for any a € &, there exist distincte, ¢’ € £, € [e]NX
and " € [¢/] N X such that w(n) = w(n'). This violates the injectivity of 7, so
co > 0. O

5.2 Multifractal Analysis of Holder Regularity

Suppose that we are given a Gibbs measure v on X of some Hdolder continuous
function ¥ : 3 — R, whose topological pressure P(1)) equals zero. The Gibbs
measure v for ¢, which is a measure supported on X, gives rise to a measure
supported on the limit set A, namely the pushforward measure 7, through the
coding map 7. Such a measure on A is called a Gibbs measure in R.

5.2.1 Main Results

Recall that for any continuous function f : R — R, any a > 0 and any = € R,

Df(z) = lim infM;

yor |y —x|@
D" f(x) = limsup 1) = f(@)] f(x)l;
y—z ly — x|~

UD} ={zeR|0<D"f(x) <D"f(z) < +o0 }.
The main theorem of this chapter is then given as follows.

Theorem 5.5 ([Liu23]). Let ® = { g. | e € £} be a finitely generated CGDS in
R. Let 0 : 3 — X be the edge shift associated with ®. We assume that o : > — X
is topologically mixing. Let ) : > — R be a Hélder continuous function satisfying
P(1)) = 0. Let v be a Gibbs measure for 1) and F' be the cumulative distribution
Sfunction of w.v, where T : X — R denotes the coding map. Let u : ¥ — (0, +00)
denote the volume potential of ®. Then, we have

dimy (UDE) < dim, (L)
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forany o > 0, and
dimp (UD5) = dim, (L,,5)

l.f‘Oé ¢ { _a;,zﬂ _Oé:/:,u }
Similar to Proposition 4.4, the following corollary of Theorem 5.5 holds.

Corollary 5.6. There is a unique oy € R such that dimy(UD) = dimgy(A).
Moreover; we have either ag = —av,, = = or —a < g < —ay, .

5.2.2 Proofs

In this subsection, we prove Theorem 5.5 and Corollary 5.6.

Our proof of Theorem 5.5 uses Theorem 4.8. It means that we need to first
construct a finite set YV of admissible words.

For every edge e € &, define P. = {min(/. N A),max(l.NA)}and P =
Ueeé' P e

Lemma 5.7 ([Liu23]). The set 7~ '(P) is finite. Moreover, there exists a non-
negative integer N such that for every ¢ € 7=Y(P), o™ () is a periodic sequence.

Proof. Note that for any two distinct admissible words w, 7 of the same length,
the open set condition implies that Int(/,,) N Int(/.) = @. It follows that, for any
x € A, 7' { x } has no more than two elements. Therefore, we have

#r H(P) < 2-#P < 4-#E < +oo.
In order to show the second claim, we prove the following claim:
o(n 'P) C a7 Y(P). (5.3)

Take ¢ € 7 !(P) arbitrarily. As g¢, : I, — I, is a C* diffeomorphism, it either
preserves or reverses the ordering. Note that g, (7(0(&))) = n(§) and 7(§) €
PNl = P, 80 ge, (m(o(€)) is either the minimum or the maximum of I, N A.
Therefore, by the monotonicity of g¢, we have m(c(§)) € P, C P. Since £ is
arbitrarily taken from 7—!(P), we conclude that o(7~*(P)) C 7~ }(P).
Combining (5.3) with the fact that 7—'(P) is a finite set, we see that for each
¢ € 7 1(P), we can take a non-negative integer N, such that o™V¢ (¢) is periodic.
Take an arbitrary N > max¢c.-1(p) Ve. This N then satisfies the requirement in
the second claim. ]

Take a non-negative integer /V satisfying the condition in Lemma 5.7. Then,
for each ¢ € 7 !(P), we are able to take one word w(&) such that o™ (¢) =
w(&)w(&) - - - . Henceforth, we always set

W={w(E)|Eer(P)}.
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Clearly, W is a finite set of admissible words.
Now we state the key lemma for the proof of Theorem 5.5. A similar assertion
for a more restricted situation appears in [KS09, Proposition 2.3].

Lemma 5.8 ([Liu23]). For any a > 0, we have
UL NTFyy Cat(UDG) CULLS. (5.4)

Proof. Fix a > 0. Define ¢_, = 9 + au. In this proof, given any two real
numbers x < y, the closed interval [x, y] can be denoted by [x, y] itself or [y, x].

We begin with the first inclusion in the proposition. Without loss of generality,
assume that L5, N F7, is non-empty and take an arbitrary { € UL N Fy,.
Now that ¢ € F; A , we have 0"¢ ¢ n~1(P) for any non-negative integer n. In
particular, 7(§) must lie in the interior of every I, ..¢,,.

Now fix an arbitrary y # 7(§) in I,. Since the set sequence (I¢,..¢, )n>1 1S
descending and (", I¢,..e, = {7(€) }, there exists a unique positive integer m
such that y € [51...5m \ [51...5m+1.

Note that I¢, ..., is connected, so on the one hand, we can readily see that

[7(&),y] C Iy g, (5.5)

On the other hand, take [ to be a positive integer such that { € F7,,,. Let NV be
a non-negative integer such that for any & € 7= 1(P), o™ (¢) is periodic. The
existence of this /V is guaranteed by Lemma 5.7. Define

L=(+1)|W|+N.

We claim that there is an admissible word 7 over £ of length L such that &, 17 is
admissible and

151-"§m+17' - [W(f),y]- (56)

To prove this claim, first note that g¢,..e,, | : I, — I¢ .., 1s invertible. Set

y = gf_ﬁ--ém_l(y) and ¢’ = o™~ 1(&). Define

m

z=max(ANl,e,..)
if (') < y/. Otherwise, define
z = mln(A N [€m§m+1)'

Take ¢ € [£,,&m+1] satisfying 7(¢) = z. By the monotonicity of ge,,, we see that
m(o(¢)) is in P, ,,. It follows that o™ **(() is periodic, and furthermore, there
exists an integer k € {1,--- ,||[W| } and a word w € W such that oV T1+*(() =
ww - - - . Take 7 as the unique admissible word of length L suchthat ¢ € [£,,&117].
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Then, on the one hand, we have that 7 contains w' as a subword. On the other
hand, since ¢ € ]—"{,\,,l, the word &,,,45 - - - &t .41 does not contain w' as a subword.
Therefore, &,,,&n117 and &, - - - &, .11 are distinct words of length L + 2, so their
cylinder sets are disjoint. As a result, we have

(&) & Lepenmir

As I¢, ¢, .- is connected, I¢, ¢, ., lies on one side of 7(¢'). By the same reason,
because v’ ¢ I¢, ¢, theinterval I . . - also lies on only one side of 3. By our
definition of z, we have z € [y, 7(¢')], so [/, m(§')] N I, ¢,.. .~ # . Combining
this with the fact that /¢ ¢ .., is on one side of 7(£’) and also on one side of ¥/,
we deduce that

I£m£m+l7— - [yluﬂ-(gl)]'
Applying g¢,...,,_, on both sides, we have

I€1~~5m+1‘r = gE1~~§m—1([€m5m+1T)
C [91em s (¥): 911 (T(E))] = [y, ()]

Note that the monotonicity of gg,.
By (5.5) and (5.6), we have

T ([y, m(§)]) < mev(lgyg,.) < Cpexp(Se,..g,, ) < Crexp(Vy) exp(Smih(€)),

and

-&m_, 1s used here. Therefore, 7 satisfies (5.6).

[y, 7(€)]) = mv(leyg,r) > Cpl exp(Seygyrt))
> Cptexp(— L] — Vi) exp(Smt(€)).

Then, by the mean value theorem and (5.2), there exists a constant C'; > 1 such
that

diam(Ig,..¢,,) < Cyexp(—Snu(f));
diam(Ie,..¢,) > O exp(—Su(€) - Lilull):

Combining these inequalities with (5.5) and (5.6), we have
Crtexp(=Spu(§) — Ljvl) < |7(€) — yl| < Crexp(=S,u(§)).

Consequently, there exists a constant C' > 1 such that for y # (&) sufficiently
close to 7(&),

O exp(Su(€)) < mav([m(€),y]) < Cexp(Sat(€)); (5.7
CFexp(=Syu()) < [7(8§) — yl < C exp(=Sau(s)). (5.8)
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From this we see that

C2exp(Spth—a(§)) < DF(w(€)) < D F(n(£)) < C*exp(Snth—al§)).

As { is taken from UL ¢, we have 7(§) € UDF. This shows the first half of (5.4).

Now it only remains to show the second half of (5.4). If 7~ (UUD%) is empty,
then the claim is trivial. Otherwise, take ¢ € 7~ (UUD%) arbitrarily.

We define a sequence (y,),>1 of points in [ in the following manner. For
any n > 1, let w™ be an admissible word of length m(n) < #A satisfying that
wa) = (41 and wy(:()n) # Cntm(n)- By construction, we have 7(¢) & I;,..¢, ), SO
there is a unique endpoint y,, of I .. ) satisfying that I., . o C [7(C),Ynl-
Since 7(¢) and y,, are both in I¢,...,, we also have [7(C), yn| C I¢,...c,. Therefore,
there is some constant C’ > 1 such that for all n € N,

Ty ([7(C), ynl)

L exp(Sutp-a(Q)) < < O exp(Sut—a(0)).

' 7(C) = ynl®
Clearly lim,, ,» y, = 7((), so the inequality above implies that ( € UL,
Hence, we may conclude that the second inclusion in (5.4) holds as well. [

Proof of Theorem 5.5. Firstnote thatUU D% C A for o > 0, because forany = ¢ A,
D°F(z) = D"F(z) = 0.

Endow > with the metric d,, given by u. Then, by Proposition 5.4, the coding
map 7 : 3 — A is Lipschitz continuous. Hence, on the one hand, by Proposition
4.6, Lemma 5.8 and Proposition 3.4, we have that for any o > 0,

dim, (£,%) = dim, (UL,5,) > dim, (7~ (UDE)) > dimy (UDF,).

On the other hand, for any integer [ > 1, it is clear that Jy,; is compact and
o(Fw,) € Fyy,- Also note that 7 is injective on F7,,.. Hence, by Proposition 5.4,
Proposition 3.4 and Lemma 5.8, we have that

dim, (UL, N Fyy,) = dimg(r (UL, 0 Fy,)) < dimg (UDS),

for any non-negative o ¢ { —a,,, —ay , } and any positive integer /. Therefore,
by the countable stability of Hausdorff dimension,

dim, (UL, N Fy) = supdim, (UL N Fy,) < dimg (UDG) .

>1

By Theorem 4.8, when a ¢ { —a, ,, —a) , }, all the inequalities above are equal-
ities, so dimp (UDF) = dim, (L,,5). O

Finally we prove Corollary 5.6.
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Proof of Corollary 5.6. First consider the case where ar;, < azzm. Then by Propo-
sition4.4. there isaunique oy € (—a;,,, —ay, ) suchthatdim, (£5°) = dim,(%).
By Theorem 5.5, we thus have

dimg (UDF) = dim,(L£,%7) = dim, (X)) = dimg(A),
and for any o # ay,
dimy (UDF) < dim,(L,5,) < dim, (%) = dimg (A).

This completes the proof for the case where o, < o@’u.
When a, , = oy, take ag tobe —a, , = —a;; . Then we only need to show
that
dlmH(uD%") = dll’l’lH(A)7 (59)

because for any non-negative a # ap, by Lemma 5.8, we have UDy. C (L) =
. To show (5.9), first note that by Lemma 5.8 and Corollary 4.9, we have

I = SN Fpy = UL N Fyy C 7 (UDR).
Also recall that we have seen in Corollary 4.9 that dim, (F),) = dim,(X), so
dimy (UDE) = dim, (7~ (UDS)) > dim,(X) = dimy(A).

Our proof is thus complete. O

5.2.3 Case Study

In this section, we apply our results to one family of Borel probability measures,
each of which is supported on [0, 1].

LetV = {p}and £ = {e; =0,es =1}. Then there is only one directed
multigraph for which the set of vertices is )V and the set of edges is £, for the initial
and terminal vertices of e; and e; must be p. It is easy to check using Proposition
5.1 that the associated edge shift o : X — X is topologically mixing.

Let I, = [0, 1]. Define g, , g, : I, — I, by letting

x/2;
r+1)/2,

Gey (x)
Ges (T)

for any = € I,. Then, it is clear that ® = { g.,, g., } is a CGDS in R. For any
arbitrary non-empty word w over £, we have
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This can be shown by induction on the length of w. Recall that any = € [0, 1] has
a binary expansion
v= 27,
j=1

where ¢; € {0,1} for any positive integer j. It is then clear that z € I¢, ..., for
any positive integer k. It thus follows that 7(§) = x. In particular, the limit set of
dis I, = [0, 1].

Now for any A € [0, 1], we define a Borel probability measure y, on I, by
letting

M}\(IUJ) — )\#{ k‘E{ 1, ,|UJ| }|wk’:€1 }(1 _ )\)#{ ]CE{ 1, 7|"J| }‘wk:e? }’ (5.10)

for any non-empty word w over £. When A\ = 1, p, is supported on { 0 }. When
A = 0, py is supported on {1 }. When A\ = 1/2, u, is precisely the Lebesgue
measure on [,. In what follows, we will focus on the non-trivial case, namely the
case where A € (0,1/2)U(1/2,1). Let F) : R — R be the cumulative distribution
function of 1.

We define the binary entropy function Hs : [0, 1] — R by

_ —tlog(t) — (1 —t)log(l — 1)
i) = log(2)

fort € (0,1) and Hy(t) = 0fort € {0,1}. Then, for A € (0,1/2)U(1/2,1), we
will show the following properties about F.

Proposition 5.9. For any A € (0,1/2) U (1/2, 1), the following statements hold.:
1. F, is strictly increasing on I, = [0, 1], and also continuous on R;

2. UD%, is non-empty if and only if o < o < oy, where

o =min{ —log(1 — A)/log(2), — log())/ log(2) } ;
ay = max { —log(1 — \)/log(2), —log()\)/log(2) } ;

3. forany a € [a_, ], we have

(5.11)

dimy; (UD, ) = Hy (alog(2) + log(1 — )\))

log(1 — \) — log(\)

As an example, the graph of o — dimy (Z/{D%m) is plotted in Figure 5.1.
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0 02 04 0.6 08 1 12 14 16

log(3)/log(2) — 1 log(3)/log(2) — 1/2 log(3)/log(2)

Figure 5.1: The dimension spectrum of U D%l/?).

Proof. Fix A € (0,1/2) U (1/2,1). We first show that x, is a Gibbs measure in
R, which is supported on /,. Define ¢) : ¥ — R by letting ¢([e;1]) = {log()) }
and ¢([es]) = {log(1 — X) }. By the formula we gave in Example 2.10, we have

P(¢) =log(A+1—-X)=0.

Note that the Bernoulli measure v, associated with the 2-tuple (A, 1 — ), which
was defined in Example 2.8, is a Gibbs measure for 1, so vy, is the unique equi-
librium state of ¢. Let 7 : X — I, be the coding map for the CGDS we defined.
Then, we have 1) = 7,1/, S0 ju) is a Gibbs measure in R. As v, is a Gibbs mea-
sure for ¢, we see that v,(O) > 0 for any non-empty open subset of 2. Hence, by
the continuity of the coding map 7, we have that the support of 1 is precisely I,.

Since the support of 1y is I, F) is strictly increasing. For any x € R, the
cardinality of 7~*({ z }) is no greater than 2. Thus, from the fact that v, (E) = 0
for any finite subset £ of ¥, we obtain that ) ({  }) = 0, implying the continuity
of I A-

In our case, the volume potential u of our CGDS & is clearly constantly equal
to log(2). Therefore, we have

Sap(§) _ maxjerioy¥(les])

—af = —suplimsu = =a_;
v T T TeR moes Suu(€) log(2)
—ay, = - inf liminf 2(8) _ _mitje1 Ylleg]) o
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Therefore, the second claim for « ¢ {«a_,a; } can be proved from Theorem
4.1, Theorem 4.8 and Lemma 5.8. For the rest of this paragraph, we assume that
a € {a_,a; }. In view of Lemma 5.8, we can see that the proof for our second
item will be complete if we can show that 7(£) ¢ UD%, for any & € UL,
When 7(£) € {0,1}, as F\ = 0 outside [0, 1], we have 7r( §) ¢ UDS,. When

(&) ¢{0,1},as€ € Z/lﬁw * there exist non-empty words w' and w? over & such
that (&) = m(wlejey -+ ) = w(w?ezeq - - - ). Note that

-~ W(wlerer -+ +) _ log()\);
n—-+00 S wu(wlerer---)  log(2)

lim Sp(w?egey -+ +) _ log(1 —\)
n—+oo Spu(w?eseq - - ) log(2)

Therefore, if w(§) were in UDF., , then by Lemma 5.8 we would have

é.e E log )/ log(2 ﬂﬁ log(l )\)/log(Q)

In particular, the intersection of the two level sets on the right would be non-empty,

thus indicating that A = 1/2. This contradicts our assumption that A # 1/2.

Hence, we see that 7(¢) ¢ UD?, . The proof of the second claim is thus complete.
Fora € {a_,a; }, we have

alog(2) +log(l — A)
log(1 — X\) — log())

As Hy(0) = Hy(1) = 0, we see that the right-hand side of (5.11) is zero. We have

seen that YD}, = & for v € { a_, oy }, so the left-hand side of (5.11) is zero as

well. Hence, (5.11) holds for @ € { a_, vy }. For a € (a_, vy ), there is a unique
€ (0, 1) such that

€{0,1}.

~ —tlog(\) — (1 —t)log(1l —\)
log(2) ’

or equivalently,
_alog(2) +log(1 —\)
~ log(1 —\) —log(\)

Let v be the Bernoulli measure associated with the 2-tuple (¢, 1 — ¢). Then, as v,
we also have that v is the equilibrium state for some function ¢ : ¥ — R, which is
constant on every cylinder of length 1. This in particular implies that v is ergodic,
so by Birkhoft’s ergodic theorem, we have

Sy Jgwdry o tlog(A) + (1 —t)log(1 — \)

1' g g _ — -d.C.
n-too Sy Js udv log(2) @ rae

(5.12)
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Hence, v(L,5,) = 1. Note that the the vector space of all functions on o which
are constant on each cylinder of length 1 is spanned by {,u }. Therefore, ¢
is a linear combination of ¢) and u. We have also seen in Remark 3.10 that the

pointwise dimension of v at £ € X is

| L 5.0(8) —nP(o)
dim,,(§) = lim ——c— @

if the limit exists. Hence, dim,,,, exists and is a constant function on Lqﬁj By
Theorem 3.7 and Theorem 3.9, we thus have

. L _ his(v)  —tlog(t) — (1 —t)log(l —1t)
dim, ,(§) = dim,(v) = fEZdI/ = og(2)

for any ¢ € Y, where the Kolmogorov-Sinai entropy of the Bernoulli measure v
has been calculated in Example 2.8. As we have seen that v(£,) = 1, by Theo-
rem 3.7, we have dim,(£%,) = Hz(t). Finally, combining this with Theorem 5.5
and (5.12), we can conclude that (5.11) holds for o € (av_, ) as well. O

= H(t),
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Appendix A

Proof of Theorem 3.7

In this appendix, we shall prove Theorem 3.7.

When one attempts to show the last inequality in Theorem 3.7, which gives the
upper bound of the Hausdorff dimension, it is standard to use a covering lemma.
The covering lemma we shall need here is asserted as follows.

Lemma A.1. Assume that (X, dx) is a separable metric space. Let C be a non-
empty family of open balls. For each open ball O € C, take o € X and ro >
0 satisfying O = B(xo,70). Suppose that sup,.o7o < 0o. Then, there is a
countable (possibly finite) subcollection C' C C of pairwise disjoint open balls
such that

U B(zo,970) 2 | O. (A.])

oec’ oeC

This lemma will play a role similar to Lemma 4.8 in [Fal03]. Lemma 4.8 in
[Fal03] is stated for a subset of a Euclidean space, so we cannot deduce Lemma A.1
from it directly. Therefore, we give a proof of Lemma A.1 as follows.

Proof. Let Cy be the collection of open balls O € C satisfying ro > ro//2 for
any O’ € C that intersects with O. We first show that Cy is non-empty. If C
were empty, there would exist a sequence of elements in C, denoted by (O™));>,
satisfying rox+1) > 2rox for any positive integer k. Consequently, we have

sup Towm > sup 287 'row = +oo,
kE€Z>0 k€Zo

contradicting the assumption that sup,.. ro < +oc. Therefore, Cy is non-empty.

By Zorn’s lemma, we may take a maximal pairwise disjoint subcollection C’
of Cy. Here, the maximality means there is no pairwise disjoint subcollection of
Cy that properly contains C’. We shall show that this C’ C C is what we desire.

The members of C" are by definition pairwise disjoint. Since X is separable,
there exists some countable dense subset £/ of X. Associate to each O € C’ one
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element po € ONE. Asthe members of C’ are pairwise disjoint, the map O — po
is an injection which maps C’ to E. Hence, we deduce that C’ is countable.
Now it only remains to show that (A.1) hold. Clearly, it suffices to show that
every O € C satisfies
O C |J B(zo,9r0). (A.2)
o'ec’
Note that any O € C must be a member of C’, or Cy \ C’, or C \ Cp. If O € C,
note that O = B(zo,7r0) C B(z0,970), s0 (A.2) holds. If O € Cy \ C’, due to the
maximality of C’, there exists some O’ € C’ such that ON O’ # @. Since O’ € C,,
we have ro, > rp /2. Take z € O N O’ arbitrarily. Then, for any y € O, we have

dx(zo,y) < dx(vo,2) +dx(z,20) + dx(xz0,y) < ror + 2ro < drov.

As O € C', (A.2) also holds for O € Cy \ C'.

Lastly, we assume that O € C\ Cy, and we shall show that (A.2) still holds. Let
O, = O. For any positive integer k, if we have defined Oy, and Oy, € C \ Cy, then
take one Oy1 € C satisfying that Oy, .1 MOy # D andrp,,, > 2ro,. This process
to take open balls must terminate in finitely many steps because sup,c. 70 <
+o00. Therefore, we finally get finitely many open balls Oy, --- ,O,,, for some
integer n > 2. It is clear that O,, € Cy. If O,, ¢ C', take O,,4; € C’ such that
O, N O,y # @. Otherwise, set O,,,1 = O,,. Then, again since O,,,; € Cy, we
have rp, < 2r¢,,,. Therefore, we have forany k € {1,--- ,n},

TOn1k <:227kron+1'
Now forevery j € {1,--- ,n}, take z; € O; N Oj41. Then, for any y € O, we

have

dx(y,7o,.,) < dx(y.70,) + ¥ _ dx(z0,,2) + dx (2, 70,,,)
j=1

n
<ZTOn+1+-2§£:Toj

J=1

= 0. 2270 < Toun (1 22 2) = 970,

k=1 k=1
Recall that O, is taken from C’, so (A.2) holds for O € C \ C, as well. O

Now we are able to give a proof of Theorem 3.7 as follows.
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Proof of Theorem 3.7. We first prove the last inequality using Lemma A.1. Fix an
arbitrary number s > sup,.p dim, (). Take d € (0, 1) arbitrarily. Then, for each
x € E, there exists some 7, € (0,0/9) such that

log(u(B(z,72)))
log(r)

< s,

from which we have p(B(z,7,)) > r3. Then, by Lemma A.1, there is a countable
(possibly finite) subset Ey of E satisfying that { B(z,r,) | © € Ey } is a family of
pairwise disjoint open balls and

U B(z,9r;) 2 U B(z,r,) D E.

zeFy zel

Consequently, we have

> diam(B(z,9r,))" <18° ) " s < 18° Y p(B(x,r,)) < 18°u(E) < 18°.

xeFy xeFy zeFy

Since { B(z,97,) | * € Ey } is a countable d-covering of F, we have H3(E) <
18°. As 0 is independent of s, we have H*(FE) < 18°. From Proposition 3.2, we
have that dimp (E) < s. As this holds for any s > sup, 5 dim, (z), we can see
that the last inequality in Theorem 3.7 holds.

Define £ = {y € X | dim,(y) < esssup,.ydim (z)}. Clearly, E¥ is a
Borel set and (E™) = 1. From the last inequality in Theorem 3.7 we have just
shown, we obtain

dimp (p) < dimy(E*) < sup dim, (y) < esssupdim (). (A.3)
yeET zeX

Similarly, define £ = {y € X | dim,(y) < essinf,cx dim (v) + ¢} for any
e > 0. Then, for any ¢ > 0, we have E_ is a Borel set, u(E£-) > 0 and

dimy (p) < dimg(E7) < sup dim,(y) < essglfdi_mu(x) +e.
yeET FAS

As ¢ is an arbitrary positive number, we have

dimy (1) < essinfdim, (). (A4)

rzeX

Now it only remains to show the reverse inequalities of (A.3) and (A.4). We
shall only show the reverse inequality of (A.3), namely

dimy (p1) > esssup dim,, (2);
reX
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the proof of the reverse inequality of (A.4) is easier. Without loss of generality,
assume that esssup, .y dim (z) > 0. Take an arbitrary positive number s’ <
esssup, .y dim (). Define ¢’ = esssup, .y dim (z) — s’ and

ES={ye X |dim,(y) > ess sup dim, (v) —'/2}

Then, by Egorov’s theorem, there are a Borel set £y C E satisfying u(E;) > 0
and some N € Z- such that for any integer n > N and any y € Ej,

/

1 B
g 2 o) = €)2 2 Ssspdin (1)~ = .

This means that for any r < 1/N and any y € Ey, u(B(y,7)) < r°.

Let X, be an arbitrary Borel subset of X satisfying u(X,) = 1. It is clear
that 11(Xo N Ey) = p(F1) > 0. Let U be an arbitrary non-empty Borel subset of
Xo N By with diam(U) < (2N)~!. We claim that

w(U) < 28 diam(U)* (A.5)

Take an arbitrary y; € U. If U = {yy }, then u(U) = inf,<1/n (B(yu,7)) = 0,
s0 (A.5) holds in this case. If U is not a singleton, we have U C B(yy, 2diam(U)).
It then follows that

u(U) < u(B(yy, 2diam(U))) < 2*'diam (V)"

so (A.5) is true in this case as well. Applying the mass distribution principle, we
then have dimy (FE; N Xp) > s'. As s" and X, are taken arbitrarily, we have
dimp (u) > esssup,y dim,(z). O
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