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Multifractal Analysis for Birkhoff Sums and Word
Appearance in Symbolic Dynamics

Abstract

Given a topologically mixing subshift of finite type, the Hausdorff dimension
of the level sets given by the limit of the quotient of the Birkhoff sums of two
observables has been well studied. When the limit of the quotient is α ∈ R, the
level set is called the α-level set. At the points in the α-level set, the difference
between the n-th Birkhoff sum Snψ of one observable ψ and the n-th Birkhoff
sum αSnv of another observable v scaled by α is o(n) as n tends to infinity. This
thesis studies the α-uniform level set, where this difference is bounded.

We shall first present the known results which describe the Hausdorff dimen-
sion of the level sets using thermodynamic formalism in ergodic theory. Then, we
shall show that the α-uniform level set has the same Hausdorff dimension as the
α-level set for all α ∈ R. Furthermore, we consider sequences in the α-uniform
level set which satisfy some conditions on the words appearing in them. We shall
show that the set of these sequences also has the same Hausdorff dimension as the
α-level set, for all but two α ∈ R.

One of our results will be applied to the study of the Hölder regularity of a
Gibbs measure on the real line R. To be more precise, we will study the set of
points in R at which the upper and lower α-Hölder derivatives of the cumulative
distribution function of the Gibbs measure are positive and finite. We will show
that, for all but two α ∈ R, the Hausdorff dimension of this set is equal to the
Hausdorff dimension of the −α-level set of the quotient of the Birkhoff sums of
two observables which are chosen in terms of the Gibbs measure.
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Chapter 1

Introduction

This thesis presents the results the author obtained in the preprint [Liu23]. Some
of the claims are weakened so that we can avoid some technical arguments in the
original proofs.

Hausdorff Dimension of Uniform Level Sets and Their Subsets
Symbolic dynamical systems are well-adopted prototypes for dynamical systems.
Historically, symbolic dynamics arose naturally in the study on the geodesics on
a surface of negative curvature [Mor21; MH38]. Nowadays it has become clear
that a wide range of dynamical systems can be modelled by a symbolic dynam-
ical system using a Markov partition. For instance, the basic sets of axiom A
diffeomorphisms admit Markov partitions and thus have symbolic representations
[Sma67; Bow08]. Another example is the dynamical system given by an open,
expanding continuous mapping on a compact metric space. Chapter 4 of [PU10]
shows the existence of Markov partitions and gives the resulting symbolic repre-
sentations of the dynamical system. In fractal geometry, symbolic dynamics also
plays an important role in many situations. For instance, there are various inter-
esting fractals generated by iterated function systems as their limit sets; see e.g.
[Fal03]. When an iterated function system satisfies a separation condition called
the open set condition, the limit set of this iterated function system has a natu-
ral symbolic representation [Fal03]. A more flexible notion generalizing iterated
function systems, called a graph directedMarkov system (GDMS), was introduced
in [MU03]. When a GDMS satisfies the open set condition and some regular-
ity conditions, it is called a conformal graph directed Markov system (CGDMS)
[MU03]. The limit set of a CGDMS also can also be encoded into a symbolic dy-
namical system [MU03]. There is a special class of CGDMSs, called conformal
graph directed systems (CGDSs). In Chapter 5, we shall study a Gibbs measure in
R. The support of this measure will be the limit set of a CGDS.
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Chapter 1. Introduction

In this thesis, by a symbolic dynamical system, wemean a one-sided subshift of
finite type (SFT) [Kit98]. An SFT consists of a compact setΣ called the shift space
and a continuousmap σ : Σ → Σ called the left shift. The shift spaceΣ is specified
by a finite set of symbolsA and a matrixM : A×A→ { 0, 1 } called the incidence
matrix. The elements of Σ are infinite sequences ξ = ξ1ξ2 · · · over A satisfying
that M(ξk, ξk+1) = 1 for any positive integer k. A sequence in Σ is called an
admissible sequence. The map σ : Σ → Σ is called the left shift, which sends
ξ1ξ2 · · · ∈ Σ to ξ2ξ3 · · · ∈ Σ. Endowed with a topology to be defined in Subsection
2.1.1, Σ is compact. Moreover, the left shift σ is continuous. Therefore, an SFT
is a topological dynamical system. For simplicity, we shall basically focus on
topologically mixing SFTs in this thesis when we state our main results; the precise
definition of topological mixing will be given in Subsection 2.1.1. The theorems in
[Liu23] are proved for topologically transitive SFTs, which are more general than
topologically mixing SFTs. Until the end of this introduction, we shall always
assume that the SFT we consider is topologically mixing.

From a perspective of mechanics,Σ can be thought of as the phase space, and a
sequence inΣ can be regarded as a state. Then, naturally, σ : Σ → Σ, as a mapping
sending one state to another state, describes the evolution of the states. If the initial
state is ξ, then for any non-negative integer k, the state at time k will be σk(ξ).
Viewing a function f : Σ → R as an observable, f(ξ) is the number produced
by the measurement for the observable f when the current state is ξ. Thus, for a
positive integer n, the n-th Birkhoff sum of f , which is Snf =

∑n−1
k=0 f ◦ σk, can

be interpreted as the sum of the values that the observable f takes from the time 0
until the time n− 1. By convention, we set S0f to be the constant function 0.

For a pair of continuous functions ψ : Σ → R and v : Σ → (0,+∞), we
would like to compare the asymptotic growth of Birkhoff sums of ψ and v. We
thus define

Lαψ,v =
{
ξ ∈ Σ

∣∣∣∣ lim
n→+∞

Snψ(ξ)

Snv(ξ)
= α

}
;

ULαψ,v =
{
ξ ∈ Σ

∣∣∣∣ sup
n→+∞

|Snψ(ξ)− αSnv(ξ)| < +∞
}
,

for any α ∈ R. The set Lαψ,v is a well-studied set [PW97], which is usually called
a level set of quotients of Birkhoff sums. The set ULαψ,v is a set which is rarely
considered in the existing literature. Indeed, [FS03] and [GJK22] introduced sets
similar to ULαψ,v, but not exactly the same; in both [FS03] and [GJK22], v was
taken to be the constant function 1. In this thesis, we shall call ULαψ,v a uniform
level set. Note that a sequence in ULαψ,v is a sequence ξ ∈ Σ for which Snψ(ξ) =
αSnv(ξ) +O(1). From the compactness of Σ and the continuity of v, we see that
a sequence in Lαψ is a sequence ξ for which Snψ(ξ) = αSnv(ξ) + o(n). Hence,
clearly, we have ULαψ,v ⊆ Lαψ,v for any α ∈ R.
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Chapter 1. Introduction

We are interested in the Hausdorff dimension of Lαψ,v and ULαψ,v. For that
purpose, we need to define a metric on Σ. For a Hölder continuous function u :
Σ → (0,+∞), we will define a metric du in Subsection 2.1.2; the meaning of
Hölder continuity of a function on Σ will also be made clear in Subsection 2.1.2.
With the assumption of Hölder continuity of u, we shall see in Proposition 3.3
that the Hausdorff dimension with respect to the metric du coincides with the u-
dimension, which is a notion introduced by Barreira and Schmeling in [BS00].
Hence, for a subset E of Σ, the Hausdorff dimension of E with respect to du will
be simply called the u-dimension of E and denoted by dimu(E).

Henceforth assume that ψ and v are Hölder continuous. For any α ∈ R, the
u-dimension of Lαψ,v is a well-studied topic [PW97; Sch99]. Define

α−
ψ,v = inf

ξ∈Σ
lim inf
n→+∞

Snψ(ξ)

Snv(ξ)
; α+

ψ,v = sup
ξ∈Σ

lim sup
n→+∞

Snψ(ξ)

Snv(ξ)
.

Then, Lαψ,v is non-empty if and only if α−
ψ,v ≤ α ≤ α+

ψ,v [Sch99]. Pesin and Weiss
gave an expression for dimu(Lαψ,v) when v = u and α ∈ (α−

ψ,v, α
+
ψ,v) in [PW96;

PW97]. Also when v = u, for α ∈ {α−
ψ,v, α

+
ψ,v }, a formula for dimu(Lαψ,v) can

be found in [Sch99]. Using the ideas in [PW97; Sch99] and some arguments han-
dling the case for α ∈ {α−

ψ,v, α
+
ψ,v }, we extend the theorems in [PW97; Sch99] to

the case where v is not necessarily equal to u. The corresponding theorems will
be Theorem 4.1 and Theorem 4.2. We remark that the setting in [Cli13] is much
more general than ours. In the setup of [Cli13], the dynamical system is not nec-
essarily an SFT, and the level sets are defined in terms of any finitely many pairs
of observables (ψ1, v1, · · · , ψn, vn). For α ∈ (α−

ψ,v, α
+
ψ,v), [Cli13] also gives the

u-dimension of Lαψ,v in a sense weaker than what we shall claim in Theorem 4.1
and Theorem 4.2. The existence of maximizing measures να in Theorem 4.1 can
be shown in our setting, but not in the setting of [Cli13]. In turn, we can use
this to show the real analyticity of the spectrum in Theorem 4.2, which was not
contained in [Cli13]. The existence of the maximizing measures can also be em-
ployed to show the continuity of the dimension spectrum on the closed interval
[α−
ψ,v, α

+
ψ,v], as we shall see in Theorem 4.2.

We have seen that the u-dimension ofLαψ,v is well understood. It is thus natural
to ask whether

dimu(ULαψ,v) = dimu(Lαψ,v) (1.1)

for all α ∈ R. If (1.1) always holds, then the formula for dimu(Lαψ,v) also serves as
a formula for dimu(ULαψ,v). Hence, dimu(ULαψ,v) can be well understood as well.

Indeed, if one adds some extra assumptions, (1.1) has been shown. Fan and
Schmeling showed (1.1) in [FS03], when u is a constant function, σ is a full shift
and α−

ψ,v < α < α+
ψ,v. In a recent article [GJK22] by Gröger, Jaerisch and Kesse-

böhmer, the authors essentially showed the same assertion when σ is a full shift
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Chapter 1. Introduction

and α−
ψ,v < α < α+

ψ,v. In other words, the proof in [GJK22] does not need the
function u : Σ → (0,+∞) to be constant. In this thesis, we shall see in Proposi-
tion 4.6 that (1.1) is valid for all α ∈ R in general. Therefore, we immediately get
a formula for the u-dimension of ULαψ,v.

Now we turn our attention to two types of subsets of ULαψ,v. A word over A
is said to be admissible if it is a subword of some ξ ∈ Σ. Let W be a finite set of
admissible words. Define for each positive integer k,

FW,k =
∞⋂
n=0

{ ξ ∈ Σ | all the words inW are the subwords of ξn+1 · · · ξn+k } ,

and then set FW =
⋃∞
k=1 FW,k. In words, an element of FW is an admissible

sequence in which all words from W appears regularly. For every non-negative
integer n, we define the n-th power of a word ω as ωn = ω · · ·ω, where the
right-hand side is the n-fold concatenation of ω. More formally, define ω0 as
the empty word, and for each positive integer n, define ωn = ωn−1ω. Define
F ′

W =
⋃∞
k=1 F ′

W,k, where for any positive integer k,

F ′
W,k =

⋂
ω∈W

{
ξ ∈ Σ

∣∣ ξ does not contain ωk as a subword } .
In words, the sequences in F ′

W are those in which none of the words inW appears
with arbitrarily high power. For the subsets ULαψ,v ∩ FW and ULαψ,v ∩ F ′

W , we
shall show in Theorem 4.7 and Theorem 4.8 that

dimu(ULαψ,v ∩ FW) = dimu(ULαψ,v ∩ F ′
W) = dimu(Lαψ,v), (1.2)

for α /∈ {α−
ψ,v, α

+
ψ,v }.

Remark 1.1. It might happen that ω is admissible but ω2 is not. Indeed, all the
powers of an admissible word ω are admissible if and only if ω2 is admissible. If
we define

W̃ = {ω ∈ W | ω2 is admissible } ,

we will clearly have F ′
W̃ = F ′

W . Hence, when we prove dimu(ULαψ,v ∩ F ′
W) =

dimu(Lαψ,v) for α /∈ {α−
ψ,v, α

+
ψ,v }, we may assume, without loss of generality, that

W is a (possibly empty) finite set of words whose powers are all admissible.

For α /∈ {α−
ψ,v, α

+
ψ,v }, clearly, (1.2) is stronger than (1.1) because

ULαψ,v ∩ FW ⊆ ULαψ,v ⊆ Lαψ,v;
ULαψ,v ∩ F ′

W ⊆ ULαψ,v ⊆ Lαψ,v.
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Chapter 1. Introduction

We shall show (1.2) for α /∈ {α−
ψ,v, α

+
ψ,v } in Subsection 4.2.2 by improving an

argument in [GJK22]. For α ∈ {α−
ψ,v, α

+
ψ,v }, we shall see in Subsection 4.2.3

that dimu(ULαψ,v ∩ FW) < dimu(Lαψ,v) can happen. On the other hand, it remains
unclear to me whether dimu(ULαψ,v ∩ F ′

W) = dimu(Lαψ,v) holds or not for α ∈
{α−

ψ,v, α
+
ψ,v }. As we claimed before, dimu(ULαψ,v) = dimu(Lαψ,v) even for α ∈

{α−
ψ,v, α

+
ψ,v }. This will be proved using some facts from the theory of ergodic

optimization.

Hölder Regularity of Gibbs Measure in R
As an application of the results we have claimed for symbolic dynamics, we study
the Hölder regularity of a Gibbs measure on R. It is natural to consider Gibbs
measures from the viewpoint of thermodynamic formalism. In the context of ther-
modynamic formalism, a Gibbs measure is usually defined on a shift space; see
e.g. [Bow08]. The precise definition of a Gibbs measure on a shift space is given
in Subsection 2.2.2. The definition of a Gibbs measure on R will be explained as
follows. The full details will be given in Section 5.1.

In order to define a Gibbs measure on R, we first describe its support. The
support of a Gibbs measure is generated by a finitely generated conformal graph
directed system (CGDS) in R. Roughly speaking, a finitely generated CGDS in
R mainly consists of a finite family of compact intervals I = { Ip | p ∈ V } with
pairwise disjoint interiors and a finite family of contractions Φ = { ge | e ∈ E }.
Each contraction ge ∈ Φmaps one Ip+(e) ∈ I into Ip−(e) ∈ I , where p− and p+ are
mappings from E to V . An incidence matrixM : E × E → { 0, 1 } is then defined
byM(e, e′) = 1 if and only if p+(e) = p−(e

′) for any e, e′ ∈ E . Thus, we have an
SFT σ : Σ → Σ, for which Σ contains admissible sequences over E .

For any ξ ∈ Σ, the composition ξ1 ◦ · · · ◦ ξn : Ip+(ξn) → Ip−(ξ1) is well-
defined for any positive integer n. By the assumption that the maps in Φ are all
contractions,

Iξ1···ξn = (ξ1 ◦ · · · ◦ ξn)(Ip+(ξn))

descends to a singleton contained in Ip−(ξ1)as n approaches infinity. Hence, we
can define a map π : Σ → R by letting

{ π(ξ) } =
∞⋂
n=1

Iξ1···ξn ,

for any ξ ∈ Σ. The map π is called the coding map, and the limit set of Φ is
defined as Λ = π(Σ) ⊆ R. The precise definitions will be given in Section 5.1, in
which we basically follow [MU03]. The limit set Λ is compact, and it will be the
support of the Gibbs measure in R we shall consider.
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Chapter 1. Introduction

Let ψ : Σ → R be a Hölder continuous function satisfying that the topological
pressure of ψ is zero. We refer to Subsection 2.2.2 for the definition of the topo-
logical pressure. A Gibbs measure νψ for ψ is a Borel probability measure on Σ
for which there is a constant Cνψ > 1 such that for any positive integer n and any
admissible word ω of length n,

C−1
νψ

exp( inf
ξ∈[ω]

Snψ(ξ)) ≤ ν([ω]) ≤ Cνψ exp( sup
ξ∈[ω]

Snψ(ξ)),

where [ω] = { ξ ∈ Σ | ξ1 · · · ξn = ω }. A Gibbs measure in R is then the pushfor-
ward measure π∗νψ, which means that for any Borel subset E of R,

π∗νψ(E) = νψ(π
−1(E)). (1.3)

As we shall see in Proposition 5.4, the coding map π : Σ → R is continuous, so
π−1(E) in (1.3) is Borel.

For a continuous function f : R → R, α ≥ 0 and x ∈ R, we define

Dαf(x) = lim inf
y→x

|f(x)− f(y)|
|x− y|α

;

D
α
f(x) = lim sup

y→x

|f(x)− f(y)|
|x− y|α

;

UDα
f =

{
x ∈ R

∣∣ 0 < Dαf(x) ≤ D
α
f(x) < +∞

}
.

When f is non-decreasing, we call Dαf(x) the lower α-Hölder derivative of f at
x. Likewise,Dα

f(x) is called the upper α-Hölder derivative of f at x. The points
in UDα

f can be interpreted as the points at which f(y) changes neither too rapidly
nor too slowly compared with |y − x|α as y varies in a small neighbourhood of x.
The α-Hölder regularity of a Gibbs measure π∗νψ we shall consider in this thesis
is reflected by the set UDα

F , where F is the cumulative distribution function of
π∗νψ.

Our main result for this application is Theorem 5.5, which relates the Haus-
dorff dimension of UDα

F , denoted by dimH(UDα
F ), with the u-dimension of L−α

ψ,u,
where u : Σ → (0,+∞) is the volume potential of the CGDS Φ to be defined in
Subsection 5.1.3. More precisely, we have

dimH(UDα
F ) = dimu(L−α

ψ,u),

for any α /∈ {−α−
ψ,u,−α

+
ψ,u }. Hence, the formula for dimu(L−α

ψ,u) we men-
tioned in the previous section also can be used to express dimH(UDα

F ) for α /∈
{−α−

ψ,u,−α
+
ψ,u }.

The key observation for showing Theorem 5.5 is the following inclusion in
Lemma 5.8:

UL−α
ψ,u ∩ F ′

W ⊆ π−1 (UDα
F ) ⊆ UL−α

ψ,u, (1.4)

10



Chapter 1. Introduction

where α ≥ 0 andW is a finite set of admissible words to be defined in Section 5.2.
This suggests that Theorem 4.8, which gives that

dimu(UL−α
ψ,u ∩ F ′

W) = dimu(L−α
ψ,u) (1.5)

for α /∈ {−α−
ψ,u,−α

+
ψ,u }, can be applied to prove Theorem 5.5. Following this

idea, we shall give a proof in Section 5.2.
There have been many known results on the Hölder regularity of Gibbs mea-

sures on R in different senses. Some articles studying the Hölder differentiability
of F , but with a focus on sets different from UDα

F . For instance, Kesseböhmer
and Stratmann evaluated in [KS09] the Hausdorff dimension of the set

{x ∈ R | DαF (x) < D
α
F (x) = +∞} .

At these points, F fails to be α-Hölder differentiable.
There are also a series of articles studying pointwise Hölder exponents of F ,

which are closely related to our result. Here, by pointwise Hölder exponents of F ,
we roughly mean the limiting behavior of

log |F (x)− F (y)|
log |x− y|

as y approaches x. For instance, one may consider the limit

lim
y→x

log |F (x)− F (y)|
log |x− y|

at x where this limit exists. One may also consider the limit inferior, the limit
superior and accumulation points of log |F (x)−F (y)|/ log |x−y| as y approaches
x. In [Pat97], Patzschke showed that the Hausdorff dimension of

Eα =

{
x ∈ R

∣∣∣∣ lim
ε→0+

log |F (x+ ε)− F (x− ε)|
log ε

= α

}
(1.6)

is equal to dimu(L−α
ψ,u). As a continuation of this result, Jaerisch and Sumi studied

extensively in [JS20] various types of sets that contain Eα as a subset, including{
x ∈ R

∣∣∣∣ lim inf
y→x

log |F (x)− F (y)|
log |x− y|

= α

}
;{

x ∈ R
∣∣∣∣ lim sup

y→x

log |F (x)− F (y)|
log |x− y|

= α

}
;{

x ∈ R
∣∣∣∣ ∃(yn)∞n=1 converging to x such that lim

n→+∞

log |F (x)− F (yn)|
log |x− yn|

= α

}
.
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Chapter 1. Introduction

They proved that all these sets have the same Hausdorff dimension as Eα. The
Hausdorff dimension and also the packing dimension of some sets even larger than
the sets in [JS20] are given in [BOS07]. Different from [BOS07] and [JS20], in
which the sets larger than Eα are considered, the set UDα

F we consider is actually
a subset of Eα. Hence, our result is a continuation of the previous works on the
pointwise Hölder exponent.

It is also worth noticing that the results in [JS20] give the Hausdorff dimension
of

Hα
F =

{
x ∈ R

∣∣ sup{ γ > 0
∣∣ Dγ

F (x) < +∞
}
= α

}
.

This set is interesting in that at points inHα
F , α can be regarded as the exact Hölder

exponent locally. Indeed, the Hausdorff dimension of Hα
F is also equal to the

Hausdorff dimension of Eα [JS20]. Note that for a point x ∈ Hα
F , we do not know

any information about the values of DαF (x) and Dα
F (x), while for a point x in

the set
UDα

F =
{
x ∈ R

∣∣ 0 < DαF (x) ≤ D
α
F (x) < +∞

}
which we consider, we know thatDαF (x) must be positive andDα

F (x) must be
finite. Hence, our result complements [JS20] by showing that UDα

F , in which the
conditions on the values DαF (x) and Dα

F (x) are imposed, has the same Haus-
dorff dimension asHα

F .
Finally, we mention that there are also many articles studying some sort of

Hölder regularity of a self-affine function; see [Dub18; All20] for the definition
of a self-affine function. Firstly, the Hausdorff dimension ofHα

f for f in a certain
class of self-affine functions was studied in [All18]. There is one sort of Hölder
regularity different from any other Hölder regularity we have seen. For a compact
interval I , α > 0 and x ∈ I , a continuous function f : I → R is said to be in
Cα(x) if there exists a polynomial h of degree less than α such that

sup
x∈I

|f(y)− h(y)|
|y − x|α

< +∞, (1.7)

and define αf (x) = sup {α′ ≥ 0 | f ∈ Cα′
(x) } [Jaf97; All20]. This αf (x) is

called the pointwise Hölder exponent of f at x in [Jaf97; All20], and called the
Hölder cut of f at x in [Dub18]. As we have used the expression pointwise Hölder
exponent, we shall follow [Dub18] to call αf (x) the Hölder cut of f at x. The mul-
tifractal analysis for the Hölder cut of a self-affine function studies the Hausdorff
dimension of the set

Cαf = {x ∈ I | αf (x) = α } .

Generally speaking, the set Cαf is different from any other set we have seen so far,
but for α ≤ 1, we have Cαf = Hα

f , because when α ≤ 1, the polynomial h in (1.7)
must be of degree 0 and thus equal to the constant function f(x).

12



Chapter 1. Introduction

Unsolved Questions
The author here raises two questions which are not answered by our results. The
first one, which we have already asked, is whether

dimu(ULαψ,v ∩ F ′
W) = dimu(Lαψ,v)

holds for α ∈ {α−
ψ,v, α

+
ψ,v }. The second question is whether

dimH(UDα
F ) = dimu(L−α

ψ,u),

for α ∈ {−α−
ψ,u,−α

+
ψ,u }. These two questions are actually closely related. Sup-

pose that the first question can be answered affirmatively. Then, (1.5) is true for
α ∈ {−α−

ψ,u,−α
+
ψ,u }. Hence, combining this with (1.4), we can readily see that

the answer to the second question is positive as well.

Organization of Thesis
This thesis is organized as follows. In Chapter 2 and Chapter 3, we lay the back-
ground for our discussions in subsequent chapters. Chapter 4 is the central part
of this thesis. Section 4.1 presents simplified versions of the known results on the
u-dimension of level sets Lαψ,v, following the ideas in [PW97] and [Sch99]. Sec-
tion 4.2 presents the original results in the preprint [Liu23] of the author, which
gives the u-dimension of ULαψ,v for all α ∈ R in Proposition 4.6, and the u-
dimension of ULαψ,v ∩ FW and ULαψ,v ∩ F ′

W for α /∈ {α−
ψ,v, α

+
ψ,v } in Theorem

4.7 and 4.8. Chapter 5 is also based on [Liu23]; it studies the Hölder regularity of
a Gibbs measure in R.

13



Conventions

The following notations will be used throughout the dissertation.

• Z>0 denotes the set of all positive integers.

• Z≥0 denotes the set of all non-negative integers.

• Int(E) denotes the interior of a subset E of a topological space.

• E denotes the closure of a subset E of a topological space.

• diam(E) = supx,y∈E dX(x, y) denotes the diameter of a subsetE of a metric
space (X, dX).

14



Chapter 2

Preliminaries on Dynamics

2.1 Symbolic Dynamics

2.1.1 Subshifts of Finite Type
In this subsection, we define the subshifts of finite type. The definitions in this
subsection can be found in many textbooks; see e.g. [Kit98].

Definition. LetA be a finite set containing at least two elements. LetM : A×A→
{ 0, 1 } satisfy that for each a ∈ A, there exists some b ∈ A such thatM(a, b) = 1.
We callM satisfying this condition an incidence matrix. Define the shift space as

Σ = { ξ = ξ1ξ2 · · · ∈ AZ>0 | ∀k ≥ 1, M(ξk, ξk+1) = 1 } .

A sequence ξ in AZ>0 is said to be admissible if and only if ξ ∈ Σ. The left
shift on Σ is the map σ : Σ → Σ defined by σ(ξ1ξ2 · · · ) = ξ2ξ3 · · · , for any
ξ = ξ1ξ2 · · · ∈ Σ.

The ordered pair (Σ, σ) is called a subshift of finite type (SFT). Besides the
ordered pair (Σ, σ), it is also widely accepted to denote this SFT by σ : Σ → Σ.

For every n ∈ Z>0,

An = {ω = ω1 · · ·ωn | ∀k ∈ { 1, · · · , n } , ωk ∈ A }

is the set of all words of length n over A. For n = 0, An is a singleton containing
one element called the empty word. The empty word is not in any ofAn, for n ≥ 1.
Hence, Am ∩ An = ∅ for any two distinct non-negative integers m and n. The
length of a word ω will be denoted by |ω|; the empty word has length 0. The set
of all words over A will be denoted by A∗. More formally, A∗ =

⋃∞
n=0A

n.
Among all the words over A, we are especially interested in the words appear-

ing in some sequence ξ ∈ Σ. Such words are said to be admissible. The precise
definition is given as follows.

15



Chapter 2. Preliminaries on Dynamics

Definition. Define A0
M = A0 = { empty word } and A1

M = A1 = A. For every
integer n ≥ 2, define

AnM = { ω = ω1 · · ·ωn ∈ An | ∀k ∈ { 1, · · · , n− 1 } , M(ωk, ωk+1) = 1 } .

Define A∗
M =

⋃∞
n=0A

n
M, whose elements are called admissible words.

Definition. The cylinder set of a word ω over A is

[ω] = { ξ ∈ Σ | ξ1 · · · ξ|ω| = ω } .

The length of [ω] is defined as |ω|, namely the length of the word ω.

Clearly, the cylinder set [ω] of ω is non-empty if and only if ω is admissible.
The set of all the cylinder sets generates a topology, thus turning Σ into a

topological space.

Proposition 2.1 ([Kit98]). For any SFT σ : Σ → Σ, we have that Σ is compact
and σ is continuous.

A (discrete-time) topological dynamical system consists of a topological space
X and a continuous map T : X → X . As the notation we adopted for an SFT, a
topological dynamical system given byX and T : X → X will be denoted simply
by T : X → X . Thus, by Proposition 2.1, an SFT σ : Σ → Σ is a topological
dynamical system.

We will often consider topologically mixing dynamical systems, whose defi-
nition is given as follows.

Definition. A topological dynamical system T : X → X is said to be topologi-
cally mixing if and only if for any two non-empty open subsets O1, O2 ofX , there
exists a positive integerM such that σm(O1) ∩O2 6= ∅ for any integerm ≥M .

For SFTs, there is a criterion for the topological mixing condition.

Proposition 2.2 ([Bow08, Lemma 1.3]). Let σ : Σ → Σ be an SFT, given by the
set of symbols A and the incidence matrix M. Then, σ : Σ → Σ is topologically
mixing if and only if there exists some non-negative integer l such that for any two
symbols a, b ∈ A, there exists some ρ ∈ AlM such that the word aρb is admissible.

Definition. An SFT σ : Σ → Σ is called a full shift if M(a, b) = 1 for any two
symbols a, b ∈ A.

From Proposition 2.2, we see that a full shift is topologically mixing; indeed,
l in Proposition 2.2 can be taken to be any non-negative integer.
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2.1.2 Metrics on Shift Space
The shift space Σ, endowed with the topology we introduced in the previous sub-
section, is metrizable. In this subsection, we shall define a family of metrics, any
of which induces this topology.

We first define one metric that induces the topology of Σ as follows.

Definition. For any two ξ, ξ′ ∈ Σ, we write ξ ∧ ξ′ to denote the longest common
initial block of ξ and ξ′. If ξ = ξ′, then ξ ∧ ξ′ = ξ = ξ′. Define d1 : Σ × Σ → R
by d1(ξ, ξ) = 0 and d1(ξ, ξ′) = exp(−|ξ ∧ ξ′|) for any two distinct ξ, ξ′ ∈ Σ.

Aswe shall see from Proposition 2.4, d1 is an ultrametric. The open balls taken
with respect to d1 are precisely the cylinder sets, so d1 induces the topology we
defined previously for Σ.

Recall that the α-Hölder continuity of a map between two metric spaces means
the following.

Definition. Let (X, dX) and (Y, dY ) be two metric spaces. Then, for any α > 0,
a map f : X → Y is said to be α-Hölder continuous if and only if

sup
{
dY (f(x), f(x

′))

dX(x, x′)α

∣∣∣∣ x, x′ ∈ X, x 6= x′
}
< +∞.

Commonly, 1-Hölder continuous maps are also called Lipschitz continuousmaps.
A Hölder continuous map is a map which is α-Hölder continuous for some α > 0.

Given a function ϕ : Σ → R, when we say that ϕ is Hölder continuous, we
mean that ϕ is Hölder continuous with the metric ofΣ taken to be d1 and the metric
of R taken to be the Euclidean metric.

Definition. Let σ : Σ → Σ be an SFT, and ϕ : Σ → R be a continuous
function. Then, the n-th Birkhoff sum of ϕ is Snϕ =

∑n−1
k=0 ϕ ◦ σk, for any

n ∈ Z>0. We also define S0ϕ to be the constant function 0. Moreover, we de-
fine Sωϕ = supξ∈[ω] S|ω|ϕ(ξ), for any non-empty word ω ∈ A∗

M; for ω being the
empty word, we define Sωϕ = 0.

Definition. Let σ : Σ → Σ be an SFT. Then, for any Hölder continuous ϕ : Σ →
R, we define the distortion constant of ϕ to be

Vϕ = sup
ω∈A∗

M

sup
ξ,ξ′∈[ω]

∣∣S|ω|ϕ(ξ)− S|ω|ϕ(ξ
′)
∣∣ .

The bounded distortion property below asserts that the distortion constant of
any Hölder continuous function on Σ is finite.

17
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Proposition 2.3 ([MU03, Lemma 2.3.1]). Let σ : Σ → Σ be an SFT. For any
Hölder continuous ϕ : Σ → R, we have Vϕ < +∞.

Now we introduce a family of metrics, all of which induce the same topology.

Definition. Let u : Σ → (0,+∞) be a Hölder continuous function. Define du :
Σ× Σ → R by du(ξ, ξ) = 0 and du(ξ, ξ′) = exp(Sξ∧ξ′(−u)), for any two distinct
ξ, ξ′ ∈ Σ.

An even broader family of metrics is defined in [KS04].

Proposition 2.4. For any Hölder continuous function u : Σ → (0,+∞), du is an
ultrametric.

Proof. It is clear that for any ξ, ξ′ ∈ Σ, du(ξ, ξ′) ≥ 0 with equality if and only
if ξ = ξ′, and du(ξ, ξ′) = du(ξ

′, ξ). Therefore, it suffices to show that for any
ξ, ξ′, ξ′′ ∈ Σ,

du(ξ, ξ
′) ≤ max { du(ξ, ξ′′), du(ξ′, ξ′′) } . (2.1)

Clearly, we only need to deal with the situation where ξ, ξ′, ξ′′ are distinct. Note
that either ξ ∧ ξ′′ is an initial block of ξ′ ∧ ξ′′ or ξ′ ∧ ξ′′ is an initial block of ξ ∧ ξ′′.
Due to the symmetry of (2.1), without loss of generality, we may further assume
that ξ ∧ ξ′′ is an initial block of ξ′ ∧ ξ′′.

If ξ ∧ ξ′′ = ξ′ ∧ ξ′′, then we have that ξ ∧ ξ′′ must be an initial block of ξ ∧ ξ′.
If ξ ∧ ξ′′ 6= ξ′ ∧ ξ′′, since we have assumed that ξ ∧ ξ′′ is an initial block of ξ′ ∧ ξ′′,
we have ξ ∧ ξ′ = ξ ∧ ξ′′. Therefore, in any case, we always have that ξ ∧ ξ′′ is an
initial block of ξ ∧ ξ′. Hence, we have [ξ ∧ ξ′] ⊆ [ξ ∧ ξ′′] and |ξ ∧ ξ′| ≥ |ξ ∧ ξ′′|,
implying that

Sξ∧ξ′(−u) = sup
ζ∈[ξ∧ξ′]

−S|ξ∧ξ′|u(ζ)

≤ sup
ζ∈[ξ∧ξ′′]

−S|ξ∧ξ′|u(ζ) ≤ sup
ζ∈[ξ∧ξ′′]

−S|ξ∧ξ′′|u(ζ) = Sξ∧ξ′′(−u).

Thus, we conclude that du(ξ, ξ′) ≤ du(ξ, ξ
′′) ≤ max { du(ξ, ξ′′), du(ξ′, ξ′′) }.

When u is the constant function 1, then du is precisely the metric d1 we defined
at the beginning of this subsection. Therefore, the definition of du is consistent
with our definition of d1.

Proposition 2.5 ([Liu23]). Let u : Σ → (0,+∞) be aHölder continuous function.
Then, for any f : Σ → R, f is Hölder continuous if and only if f is Hölder
continuous with the metric of Σ being replaced by du.
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Hence, when we say that a function is Hölder continuous, we can alternatively
say that it is Hölder continuous with respect to another du rather than d1, provided
that u is Hölder continuous.

Proof. Since u is a positive continuous function on the compact space Σ, we have

0 < min
ζ∈Σ

u(ζ) ≤ max
ζ∈Σ

u(ζ) < +∞.

Also note that, for any ξ, ξ′ ∈ Σ, by definition, we have

max
ζ∈Σ

u(ζ) log d1(ξ, ξ′) ≤ log du(ξ, ξ′) ≤ min
ζ∈Σ

u(ζ) log d1(ξ, ξ′).

From these facts and the definition of Hölder continuity, our claim follows.

2.2 Facts From Ergodic Theory

2.2.1 Theorems for Measure-Preserving Dynamical Systems
In this subsection, we shall state several theorems for measure-preserving dy-
namical systems. In order to avoid lengthy discussions for the general cases, in
what follows, we shall state all the theorems only for a topologically mixing SFT
σ : Σ → Σ.

Definition. A Borel probability measure µ on Σ is said to be σ-invariant, if µ
equals the pushforward measure σ∗µ, meaning that for any BorelE ⊆ Σ, µ(E) =
σ∗µ(E) = µ(σ−1(E)).

A σ-invariant Borel probability measure µ onΣ is said to be ergodic, if for any
Borel set E ⊆ Σ, σ−1(E) = E implies µ(E) ∈ { 0, 1 }.

Theorem 2.6 (Birkhoff’s ergodic theorem, [Wal82, Theorem 1.14]). Let σ : Σ →
Σ be an SFT, and µ be a σ-invariant Borel probability measure on Σ. Then, for
any µ-integrable function f : Σ → R, we have that

lim
n→+∞

1

n
Snf(ξ) exists, for µ-a.e. ξ ∈ Σ,

and that for any Borel set E satisfying σ−1E = E,∫
E

lim
n→+∞

1

n
Snf dµ =

∫
E

f dµ.

If µ is ergodic, then we further have limn→+∞ n−1Snf =
∫
Σ
f dµ, µ-a.e.
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For the ergodic case above, if
∫
Σ
f dµ = 0, then we have

lim
n→+∞

1

n
Snf(ξ) = 0, for µ-a.e. ξ ∈ Σ.

Atkinson showed in [Atk76] that in this case, one also has

lim inf
n→+∞

|Snf(ξ)| = 0, for µ-a.e. ξ ∈ Σ. (2.2)

For the convenience of later reference, we state it as a theorem.

Theorem 2.7 ([Atk76]). Let µ be an ergodic σ-invariant Borel probability mea-
sure on Σ. Then, for any µ-integrable function f : Σ → R, we have

∫
Σ
f dµ = 0

if and only if f satisfies (2.2).

One may regard (Σ, µ) as the underlying probability space of a random walk
on R. In this sense, (2.2) means the recurrence of this random walk on R, and
Theorem 2.7 provides a criterion for the recurrence.

Lastly, we state Shannon-McMillan-Breiman theorem. For this purpose, we
need to introduce the notion of measure-theoretic entropy, which is also known as
the Kolmogorov-Sinai entropy.

Definition. TheKolmogorov-Sinai entropy of a σ-invariant Borel probability mea-
sure µ on Σ is defined as

hKS(µ) = lim
n→+∞

− 1

n

∑
ω∈AnM

µ([ω]) log(µ([ω])).

It is a convention that 0 · log(0) = 0. The limit in the defining equation of the
Kolmogorov-Sinai entropy exists, because

n 7→ −
∑
ω∈AnM

µ([ω]) log(µ([ω]))

is in fact a subadditive sequence.
We calculate the Kolmogorov-Sinai entropy of a particular family of measures

as follows.

Example 2.8 (Kolmogorov-Sinai entropy of Bernoulli measure, [Wal82, p. 102]).
Letm be a positive integer no less than 2. Let σ : Σ → Σ be the full shift for which
the set of symbols is A = { 1, · · · ,m }. Let (λ1, · · · , λm) be a non-negative of
positive integers satisfying

∑m
k=1 λk = 1. The Bernoulli measure associated with

(λ1, · · · , λm) is then the unique Borel probability measure ν satisfying
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1. ν([k]) = λk for any k ∈ A;

2. ν([ω]) =
∏|ω|

j=1 ν([ωj]) for any word ω over A.

It is not hard to see that ν is σ-invariant [Wal82, p. 21]. Note that for any n ∈ Z>0,∑
ω∈An

ν([ω]) log(ν([ω])) =
n∑
j=1

∑
ω1,··· ,ωn∈A

ν([ω]) log(ν([ωj]))

=
n∑
j=1

∑
ωj∈A

ν(σ−(j−1)[ωj]) log(ν([ωj]))

= n
∑
k∈A

ν([k]) log(ν([k])) = n

m∑
k=1

λk log(λk).

Therefore, we have hKS(ν) = −
∑m

k=1 λk log(λk).

Now we can state the Shannon-McMillan-Breiman theorem as follows.

Theorem 2.9 (Shannon-McMillan-Breiman theorem, [PU10, Theorem 2.5.4 &
Theorem 2.5.5]). Let µ be a σ-invariant Borel probability measure on Σ. For any
n ∈ Z>0, define a function In : Σ → R by

In(ξ) = − log(µ([ξ1 · · · ξn])),

for every ξ ∈ Σ. Then, In/n converges to a µ-integrable function both µ-a.e. and
in L1-norm, and ∫

Σ

lim
n→+∞

In
n

dµ = hKS(µ).

Moreover, if µ is ergodic, then limn→+∞ In/n = hKS(µ), µ-a.e.

2.2.2 Thermodynamic Formalism
In some situations, there is no Borel probability measure specified on the topolog-
ical dynamical system we consider. Hence, one needs to pick a suitable measure
so as to apply the powerful theorems we stated in the previous subsection. Ther-
modynamic formalism provides one way to pick such measures, which are called
equilibrium states. For simplicity, we will still state all the assertions for SFTs.

Definition ([Wal82]). Let σ : Σ → Σ be an SFT. The topological pressure of a
continuous function ϕ : Σ → R is

P (ϕ) = lim
n→+∞

1

n
log

∑
ω∈AnM

exp(Sωϕ).
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As an example, we calculate the topological pressure of a function of the fol-
lowing type.

Example 2.10. As in Example 2.8, let the SFT σ : Σ → Σ be a full shift, for
which the set of symbols is denoted by A. Suppose that ϕ : Σ → R is a function
which is constant on every cylinder of length 1. For every k ∈ A, let ϕk be the
real number for which ϕ([k]) = {ϕk }. Then, for any n ∈ Z>0,

∑
ω∈An

exp(Sωϕ) =
∑

ω1,··· ,ωn∈A

n∏
j=1

exp(ϕωj) =

(∑
k∈A

exp(ϕk)

)n

.

Thus, we have P (ϕ) = log
∑

k∈A exp(ϕk).

Although no measure appears in the definition of the topological pressure, the
topological pressure turns out to be the infimum of a functional onMσ(Σ), where
Mσ(Σ) denotes the set of all σ-invariant Borel probability measures on Σ.

Theorem 2.11 ([PU10, Chapter 3&Chapter 5]). Let σ : Σ → Σ be a topologically
mixing SFT. Suppose that ϕ : Σ → R is a Hölder continuous function. Then,

P (ϕ) = sup
{
hKS(µ) +

∫
Σ

ϕ dµ
∣∣∣∣ µ ∈ Mσ(Σ)

}
,

and there exists a unique σ-invariant Borel probability measure ν on Σ such that
P (ϕ) = hKS(ν) +

∫
Σ
ϕ dν. Furthermore, this measure ν is ergodic.

Definition. For any continuous function ϕ : Σ → R, an equilibrium state for ϕ is
a σ-invariant Borel probability measure ν on Σ satisfying that P (ϕ) = hKS(ν) +∫
Σ
ϕ dν.

Remark 2.12. Theorem 2.11 asserts that the topological pressure of ϕ is the supre-
mum of the sum of two functionals onMσ(Σ). One functional is µ 7→

∫
Σ
ϕ dµ and

the other is the entropy map hKS : µ 7→ hKS(µ). Endow Mσ(Σ) with the weak*
topology. Then, µ 7→

∫
Σ
ϕ dµ is clearly affine and continuous. The entropy map

is also known to be affine [Wal82, Theorem 8.1]. In addition, the entropy map is
upper semi-continuous because σ : Σ → Σ is expansive; see Theorem 3.5.6 in
[PU10] for details.

When ϕ : Σ → R is Hölder continuous, the unique equilibrium state for ϕ is
known to be a Gibbs measure for ϕ [Bow08]. The definition of a Gibbs measure
is given as follows.
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Definition. Let σ : Σ → Σ be an SFT, and ϕ : Σ → R be a Hölder continuous
function. Then, a Borel probability measure νϕ is called a Gibbs measure for ϕ if
and only if there is some Cνϕ > 1 such that for any ω ∈ A∗

M,

C−1
νϕ

≤ νϕ([ω])

exp(Sωϕ− |ω|P (ϕ))
≤ Cνϕ .

As we shall see in Theorem 2.13, Gibbs measures for a Hölder continuous ϕ
exist. Gibbs measures for ϕ are not unique. To see this, suppose that νϕ is a Gibbs
measure for ϕ and f : Σ → (0,+∞) is an arbitrary measurable function satisfying
that 0 < infξ∈Σ f(ξ) ≤ supξ∈Σ f(ξ) < +∞ and

∫
Σ
f dνϕ = 1. Define a new Borel

probability measure ν ′ϕ by dν ′ϕ = f dνϕ. Then, ν ′ϕ is also a Gibbs measure for ϕ.
Take f satisfying νϕ({ ξ ∈ Σ | f(ξ) 6= 1 }) > 0, and we will have ν ′ϕ 6= νϕ.

The following theorem gives a characterization of the equilibrium state for
a Hölder continuous function. It is a consequence of Ruelle’s Perron-Frobenius
theorem; see e.g. Chapter 1 of [Bow08] for details.

Theorem 2.13 ([Bow08]). Let σ : Σ → Σ be a topologically mixing SFT, and
ϕ : Σ → R be a Hölder continuous function. Then, the unique equilibrium state
νϕ for ϕ is the unique σ-invariant Gibbs measure for ϕ.

Finally, we need the following properties of the topological pressure.

Theorem 2.14 ([PP90; PU10]). Let σ : Σ → Σ be a topologically mixing SFT.
Let m be a positive integer and ψ, ϕ1, · · · , ϕm be real-valued Hölder continuous
functions onΣ. Then, the multivariate function (t1, · · · , tm) 7→ P (ψ+

∑m
k=1 tkϕk)

is real analytic and convex. Moreover, for any j ∈ { 1, · · · ,m },

∂

∂tj
P (ψ +

m∑
k=1

tkϕk) =

∫
Σ

ϕj dνψ+∑m
k=1 tkϕk

, (2.3)

where νψ+∑m
k=1 tkϕk

is the equilibrium state for ψ +
∑m

k=1 tkϕk.

Now let us consider the case where m in Theorem 2.14 is equal to 1. Denote
ϕ1 by simply ϕ. Then, by Theorem 2.14, the function t 7→ P (ψ + tϕ) is convex
and analytic, which implies that the second derivative of t 7→ P (ψ + tϕ) exists
and is non-negative. Indeed, there is a formula for the second derivative of t 7→
P (ψ + tϕ) due to D. Ruelle [Rue04]. We will not use this formula in this thesis,
so we shall omit it and refer to [PU10, Theorem 5.7.4] for precise statements.
However, in the subsequent discussions, we do need a criterion for the second
derivative of t 7→ P (ψ + tϕ) being zero. Towards this end, we introduce the
following definition.
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Definition. Let σ : Σ → Σ be an SFT. Let ϕ1 : Σ → R and ϕ2 : Σ → R be
two continuous functions. We say that ϕ1 is cohomologous to ϕ2 if there exists a
continuous function f : Σ → R such that ϕ1 = ϕ2 + f ◦ σ − f .

Clearly, the cohomology relation is an equivalence relation. The importance
of this relation is well captured by the following simple observation. For any two
mutually cohomologous continuous function ϕ1 and ϕ2, the difference between
their Birkhoff sums of the same degree is uniformly bounded. To be more pre-
cise, for any topological space X , the supremum norm of a bounded continuous
function f : X → R is defined to be ‖f‖ = supx∈X |f(x)|. Then, for mutually
cohomologous continuous functions ϕ1, ϕ2 : Σ → R and f : Σ → R satisfying
ϕ1 = ϕ2 + f ◦ σ − f , we have

sup
n∈Z>0

sup
ξ∈Σ

|Snϕ1(ξ)− Snϕ2(ξ)| ≤ sup
n∈Z>0

‖f ◦ σn(ξ)− f‖ ≤ 2‖f‖ < +∞.

From this observation, we can easily see that any two mutually cohomologous
Hölder continuous functions on Σ have the same topological pressure, the same
equilibrium states and the same family of Gibbs measures.

Now we state the necessary and sufficient condition for the second derivative
of the function t 7→ P (ψ + tϕ) being zero.

Theorem 2.15 ([PP90, Proposition 4.12]). Let σ : Σ → Σ be a topologically
mixing SFT. Let ψ : Σ → R and ϕ : Σ → R be Hölder continuous functions.
Then, ϕ is cohomologous to a constant function if and only if

d2

dt2
P (ψ + tϕ)

∣∣
t=0

= 0.

2.2.3 Ergodic Optimization
Consider a topologically mixing SFT σ : Σ → Σ and a Hölder continuous function
ψ : Σ → R. If we pick a σ-invariant Borel probability measure µ on Σ, then
Birkhoff’s ergodic theorem guarantees the almost everywhere convergence of the
Birkhoff averages Snψ/n of ψ. Slightly extending the scope of our discussion,
suppose that we have another Hölder continuous function v : Σ → (0,+∞), and
we are interested in the limit limn→+∞ Snψ/Snv. By Birkhoff’s ergodic theorem,
Snψ/n and Snv/n both converge µ-a.e., so

lim
n→+∞

Snψ

Snv
= lim

n→+∞

Snψ/n

Snv/n

exists µ-a.e. as well. Now our concern is the range of limn→+∞ Snψ/Snv. For
this purpose, we introduce the following two quantities.
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Definition. Let σ : Σ → Σ be a topologically mixing SFT. For any two continuous
functions ψ : Σ → R and v : Σ → (0,+∞), define

α−
ψ,v = inf

ξ∈Σ
lim inf
n→+∞

Snψ(ξ)

Snv(ξ)
; α+

ψ,u = sup
ξ∈Σ

lim sup
n→+∞

Snψ(ξ)

Snv(ξ)
.

It is clear that for every ξ ∈ Σ,

α−
ψ,v ≤ lim

n→+∞

Snψ(ξ)

Snv(ξ)
≤ α+

ψ,v,

whenever the limit in the middle exists. In Section 4.1, we will study the set

Lαψ,v =
{
ξ ∈ Σ

∣∣∣∣ lim
n→+∞

Snψ(ξ)

Snv(ξ)
= α

}
,

for α ∈ [α−
ψ,v, α

+
ψ,v]. For the case where α ∈ {α−

ψ,v, α
+
ψ,v }, the theory of ergodic

optimization gives some useful facts. In what follows, we shall give the statements
and some implications of these facts.

Now, we can summarize the assertions we need from the theory of ergodic
optimization into one single theorem as follows.

Theorem 2.16 ([Sav99; Gar17; Jen19]). Let σ : Σ → Σ be a topologically mix-
ing SFT, and ϕ : Σ → R be a Hölder continuous function. Then, the following
statements are equivalent:

1. there is a Hölder continuous function v : Σ → (0,+∞) such that α+
ϕ,v ≤ 0;

2. α+
ϕ,1 ≤ 0;

3. α+
ϕ,v ≤ 0 for any Hölder continuous function v : Σ → (0,+∞);

4. supn∈Z>0
supξ∈Σ Snϕ(ξ) < +∞;

5. ϕ is cohomologous to some Hölder continuous ϕ− : Σ → (−∞, 0].

Similarly, the following statements are equivalent as well:

1. there is a Hölder continuous function v : Σ → (0,+∞) such that α−
ϕ,v ≥ 0;

2. α−
ϕ,1 ≥ 0;

3. α−
ϕ,v ≥ 0 for any Hölder continuous function v : Σ → (0,+∞);

4. infn∈Z>0 infξ∈Σ Snϕ(ξ) > −∞;
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5. ϕ is cohomologous to some Hölder continuous ϕ+ : Σ → [0,+∞).

Proof. The equivalence among the first five statements implies the equivalence
among the last five statements, so we only need to show the equivalence among
the first five statements.

Clearly, the second statement implies the first, the third implies the second,
the fourth implies the third, and the fifth implies the fourth. Therefore, the only
non-trivial implication is that the first statement implies the fifth.

First note that the first statement also implies the second. To see this, suppose
that α+

ϕ,1 > 0. Then, there exists some η ∈ Σ such that lim supn→+∞ Snϕ(η)/n >
0. Thus, for any Hölder continuous function v : Σ → (0,+∞), we have

α+
ϕ,v ≥ lim sup

n→+∞

Snϕ(η)

Snv(η)
≥ 1

‖v‖
lim sup
n→+∞

Snϕ(η)

n
> 0.

Therefore, the first statement implies the second. Now it only remains to show
that the second statement implies the fifth. This is a well-known fact. We refer
to [Sav99] for the proof. Besides, there is a different approach in [Gar17; Jen19].
The proof is thus complete.

An immediate consequence of Theorem 2.16 is given as follows.

Corollary 2.17. Let σ : Σ → Σ be a topologically mixing SFT, and ϕ : Σ → R
be a Hölder continuous function. Then, the following statements are equivalent:

1. α−
ϕ,1 = α+

ϕ,1 = 0;

2. α−
ϕ,v = α+

ϕ,v = 0, for any Hölder continuous v : Σ → (0,+∞);

3. supn∈Z>0
‖Snϕ‖ < +∞.

For a topologically mixing SFT σ : Σ → Σ, if a Hölder continuous function
ϕ : Σ → R satisfies one and thus all of the statements in Corollary 2.17, then we
also have that ϕ is cohomologous to the constant function 0. See Proposition 4.4.5
in [PU10].

The following proposition will be used later in Section 4.1. We state it here
because its proof only uses the facts we stated in this section.

Proposition 2.18. Let σ : Σ → Σ be a topologically mixing SFT. Let ϕ : Σ →
R and v : Σ → (0,+∞) be Hölder continuous. Let µ be a σ-invariant Borel
probability measure on Σ satisfying that µ(O) > 0 for any non-empty open set
O ⊆ Σ. Suppose that 0 ∈ {α−

ϕ,v, α
+
ϕ,v }. Then, if

∫
Σ
ϕ dµ = 0, we have α−

ϕ,v =

α+
ϕ,v = 0.
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Proof. Suppose that α−
ϕ,v = 0. Then, by Theorem 2.16, ϕ is cohomologous to a

Hölder continuous ϕ− : Σ → [0,+∞). Let f : Σ → R be a continuous function
such that ϕ− = ϕ+ f ◦ σ − f . Then, by the σ-invariance of µ, we have∫

Σ

ϕ− dµ =

∫
Σ

ϕ dµ+

∫
Σ

f ◦ σ dµ−
∫
Σ

f dµ = 0.

As ϕ− ≥ 0, we have ϕ− = 0 µ-a.e. Thus, we see that { ξ ∈ Σ | ϕ−(ξ) > 0 } is an
open and µ-null set. By our assumption on µ, we have { ξ ∈ Σ | ϕ−(ξ) > 0 } = ∅.
As a result, ϕ− = 0, so α+

ϕ,v = 0. Therefore, we have shown that if α−
ϕ,v = 0, then

α+
ϕ,v = 0.
Conversely, if α+

ϕ,v = 0, applying what we have proved to −ϕ and v, we can
easily see that α−

ϕ,v = 0 as well. This completes our proof.
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Chapter 3

Preliminaries on Dimension Theory

In this chapter, we state some preliminary facts related to the dimension theory.
The facts in this chapter are not new, but some of them take a form slightly different
from the corresponding theorems in our reference. For such facts, we will provide
their proofs.

Given a metric space (X, dX),B(x, r) = { y ∈ X | dX(x, y) < r } is the open
ball with centre x ∈ X and radius r > 0. For any E ⊆ X , the diameter of E is
diam(E) = sup { dX(x, y) | x, y ∈ E }.

3.1 Hausdorff Dimension and u-Dimension
In this section, we shall give the definition of the Hausdorff dimension of a subset
of a metric space. In a similar manner, we shall also define the u-dimension of a
subset of the shift space of an SFT.

We begin with the definition of the Hausdorff dimension.

Definition. Let (X, dX) be a metric space. For any δ > 0, a δ-covering of an
arbitraryE ⊆ X is a coveringU ofE satisfying that for anyU ∈ U , diam(U) ≤ δ.
Fix some s ≥ 0, and define

Hs
δ(E) = inf

{∑
U∈U

diam(U)s

∣∣∣∣∣ U is a countable δ-covering of E

}
(3.1)

andHs(E) = limδ→0+ Hs
δ(E) = supδ>0 Hs

δ(E). The quantityHs(E) is called the
s-dimensional Hausdorff (outer) measure of E.

Remark 3.1. Note that for every U ⊆ X , diam(U) = diam(U). Therefore, the
infimum in (3.1) can be taken in a smaller range, namely the range of all countable
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closed δ-coverings of E. Here we say a covering is closed if all its members are
closed. To put it more formally, we have

Hs
δ(E) = inf

{∑
U∈U

diam(U)s

∣∣∣∣∣ U is a countable closed δ-covering of E

}
.

Note that by construction, for any δ > 0 and any two positive numbers s1 > s2,

0 ≤ Hs1
δ (E) ≤ δs1−s2Hs2

δ (E). (3.2)

From this observation, the following proposition follows.

Proposition 3.2 ([Fol99, Proposition 11.19]). There exists one dimH(E) ∈ [0,+∞]
such that

1. for all s < dimH(E),Hs(E) = +∞;

2. for all s′ > dimH(E),Hs′(E) = 0.

The graph of s 7→ Hs(E) is illustrated by Figure 3.1. Clearly, this dimH(E)
is unique.

+∞

s0 dimH(A)

Hs(E)

Figure 3.1: Change ofHs(E) as the dimension s changes

Definition. The Hausdorff dimension of E ⊆ X is dimH(E) satisfying the condi-
tions in Proposition 3.2.

Evidently, dimH(E) satisfies

dimH(E) = inf { s ∈ [0,+∞] | Hs(E) = 0 }
= sup { s ∈ [0,+∞] | Hs(E) = +∞} .

Here we set inf(∅) = +∞ and sup(∅) = 0.
Now we shall turn our attention to subshifts of finite type. For any subsetE of

the shift space Σ and any continuous function u : Σ → (0,+∞), the u-dimension
of E is defined in [BS00] as follows.
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Definition. Let σ : Σ → Σ be an SFT, and u : Σ → (0,+∞) be a continuous
function. For every E ⊆ Σ, n ∈ Z>0 and s ∈ R, define

Sn(E, s, u) = inf

{ ∑
ω∈W

exp(−sSωu)

∣∣∣∣∣ ⋃
ω∈W

[ω] ⊇ E and ∀ω ∈ W , |ω| ≥ n

}
,

and S(E, s, u) = limn→+∞ Sn(E, s, u). The u-dimension of E is then dimu(E) ∈
[0,+∞] defined by

dimu(E) = inf { s ∈ [0,+∞] | S(E, s, u) = 0 }
= sup { s ∈ [0,+∞] | S(E, s, u) = +∞} .

As before, we set inf(∅) = +∞ and sup(∅) = 0.

The following proposition shows that, if u : Σ → (0,+∞) is Hölder continu-
ous, then the u-dimension of a set is exactly its Hausdorff dimension with respect
to the metric du.

Proposition 3.3. Suppose that u : Σ → (0,+∞) is Hölder continuous. Take du
as the metric of Σ. Then, for any E ⊆ Σ, dimu(E) = dimH(E).

Proof. Until the end of this proof, the metric of Σ will always be taken to be du.
Fix E ⊆ Σ and s ≥ 0. Then, for any n ∈ Z>0 and any set W of words of length
no less than n satisfying

⋃
ω∈W [ω] ⊇ E, we have∑

ω∈W

exp(−sSωu) ≥
∑
ω∈W

exp(sSω(−u)− sVu) = exp(−sVu)
∑
ω∈W

diam([ω])s,

and for every ω ∈ W , diam([ω]) ≤ exp(Sω(−u)) ≤ exp(−n infξ∈Σ u). Thus, on
the one hand, we have

S(E, s, u) ≥ exp(−sVu)Hs(E). (3.3)

On the other hand, let δ > 0 and U be an arbitrary δ-covering of E. For every
non-empty U ∈ U , take an arbitrary ξ(U) ∈ U , and ω(U) be the longest initial
block of ξ(U) such that [ω(U)] ⊇ U . Denote by ω′ be the initial block of ξ(U)
whose length is |ω(U)|+ 1. Then, we have

diam([ω(U)]) ≤ exp(‖u‖)diam([ω′]) ≤ exp(‖u‖)diam(U). (3.4)

A lower bound of |ω(U)| can thus be given as follows:

|ω(U)| ≥
Sω(U)(−u)
−‖u‖

=
− log(diam([ω(U)]))

‖u‖
≥ − log(δ)

‖u‖
− 1. (3.5)
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Define W = {ω(U) | U ∈ U }. Clearly,
⋃
ω∈W [ω] ⊇ E. The estimate in (3.5)

indicates that the lengths of the words in W diverge to +∞ uniformly, as δ ap-
proaches 0. Moreover, by (3.4),∑
U∈U

diam(U)s ≥
∑
ω∈W

exp(−s‖u‖)diam([ω])s ≥ exp(−s‖u‖)
∑
ω∈W

exp(−sSωu).

Therefore, we have Hs(E) ≥ exp(−s‖u‖)S(E, s, u). Combining this with (3.3),
we conclude that dimu(E) = dimH(E).

When we study the Hausdorff dimension of a subset of the shift space, it is
sometimes unclear which metric we choose. In order to eliminate this ambiguity,
we shall use the notion of the u-dimension when we consider a subset of the shift
space.

3.2 Basic Properties of Hausdorff Dimension
Some basic properties of theHausdorff dimension are given in the following propo-
sition.

Proposition 3.4 ([Fal03, Proposition 2.2 & pp. 32-33]). Let (X, dX) be a metric
space. Then, the following statements hold.

1. If E1 ⊆ E2 ⊆ X , then we have dimH(E1) ≤ dimH(E2).

2. For any sequence (Ek)k∈Z>0 of subsets of X , we have dimH(
⋃∞
k=1Ek) =

supk∈Z>0
dimH(Ek).

3. For any countable set E ⊆ X , we have dimH(E) = 0.

4. Let (Y, dY ) be a metric space, and f : X → Y be Lipschitz. Then, we
have dimH(f(X)) ≤ dimH(X). If f is further bi-Lipschitz, then we have
dimH(f(X)) = dimH(X).

The second assertion in Proposition 3.4 is usually called the countable stability
of Hausdorff dimension.

3.3 EstimatingHausdorff DimensionWithMeasures
Given a metric space, the measures on this space carry rich information about its
Hausdorff dimension. The analysis of the measures is especially effective when
one attempts to obtain a lower bound for the Hausdorff dimension. The following
theorem, called the mass distribution principle, shows one way to give a lower
bound.
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Theorem 3.5 (Mass distribution principle, [Fal03, p. 60]). Let µ be a Borel mea-
sure on a metric space X . Suppose that for some s ≥ 0, there are C > 0 and
δ > 0 such that µ(U) ≤ Cdiam(U)s for all closed sets U with diam(U) ≤ δ.
Then for any Borel set E ⊆ X with µ(E) > 0, we have Hs(E) ≥ C−1µ(E) and
dimH(E) ≥ s.

The Hausdorff dimension of a Borel probability measure on a metric space is
defined in the following way.

Definition. For any Borel probability measureµ on themetric space (X, d), define

dimH(µ) = inf { dimH(E) | E ⊆ X is Borel and µ(E) = 1 } ;
dimH(µ) = inf { dimH(E) | E ⊆ X is Borel and µ(E) > 0 } .

When dimH(µ) = dimH(µ), this common value is called theHausdorff dimension
of µ, and denoted by dimH(µ).

When X is the shift space Σ of an SFT σ : Σ → Σ and the metric on X is
du for some Hölder continuous u : Σ → (0,+∞), the Hausdorff dimension of µ
will be called the u-dimension of µ, and will be denoted by dimu(µ) rather than
dimH(µ).

Definition. Let µ be a Borel probability measure on ametric space (X, dX). Then,
the lower and upper pointwise dimensions of µ at x ∈ X are defined as

dimµ(x) = lim inf
r→0+

log(µ(B(x, r)))

log(r)
;

dimµ(x) = lim sup
r→0+

log(µ(B(x, r)))

log(r)
,

respectively. When they coincide at some x ∈ X , their common value dimµ(x) is
called the pointwise dimension of µ at x.

When X is the shift space Σ of an SFT σ : Σ → Σ and dX is du for some
Hölder continuous u : Σ → (0,+∞), we shall write dimµ,u, dimµ,u and dimµ,u to
denote dimµ, dimµ and dimµ respectively.

Proposition 3.6. Let (X, dX) be a metric space, and µ be a Borel probability
measure onX . Then, dimµ : X → R∪{±∞} and dimµ : X → R∪{±∞} are
measurable functions.

Proof. We shall only prove that dimµ is measurable. The measurability of dimµ

can be shown in a similar way.

32



Chapter 3. Preliminaries on Dimension Theory

By the monotone convergence theorem, for every x ∈ X , r 7→ µ(B(x, r)) is
a left continuous function, so we have

inf
r∈Q∩(0,1/n)

log(µ(B(x, r)))

log(r)
= inf

r∈(0,1/n)

log(µ(B(x, r)))

log(r)
.

Therefore, we have for every x ∈ X ,

dimµ(x) = sup
n∈Z>0

inf
r∈(0,1/n)

log(µ(B(x, r)))

log(r)
= sup

n∈Z>0

inf
r∈Q∩(0,1/n)

log(µ(B(x, r)))

log(r)
.

As both the infimum and the supremum of countably many measurable functions
are also measurable, we only need to show that x 7→ µ(B(x, r)) is a measurable
for any r > 0.

Fix r > 0 arbitrarily. For the rest of this proof, we will show that the function
x 7→ µ(B(x, r)) is lower-semicontinuous, which implies the measurability. Let x
be an arbitrary point inX . Note that for any sequence (xn)n∈Z>0 inX converging
to x, we have B(x, r) ⊆

⋃∞
k=1

⋂∞
l=k B(xn, r). By Fatou’s lemma, we thus have

µ(B(x, r)) ≤ µ

(
∞⋃
k=1

∞⋂
l=k

B(xn, r)

)
≤ lim inf

n→+∞
µ(B(xn, r)).

As this holds for any x and any sequence (xn)n∈Z>0 converging to x, we conclude
that x 7→ µ(B(x, r)) is lower-semicontinuous.

In this dissertation, the lower pointwise dimension is more important than the
upper pointwise dimension, in that the lower pointwise dimension can be used to
estimate the Hausdorff dimensions of measures and sets. This will be made clear
in Theorem 3.7. The upper pointwise dimension is known to be related to the
packing dimension [PU10], which we will not consider in this dissertation.

Before stating Theorem 3.7, let us recall two notions from the measure the-
ory. Let (X,µ) be a measure space; the σ-algebra is omitted here. Then, for any
measurable function f : X → R ∪ {±∞}, the essential infimum of f and the
essential supremum of f are defined as

ess inf
x∈X

f(x) = sup { s ∈ R | µ(f−1([−∞, s))) = 0 } ;

ess sup
x∈X

f(x) = inf { s ∈ R | µ(f−1((s,+∞])) = 0 } ,

respectively.
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Theorem 3.7 (cf. [PU10, Theorem 8.6.3 & Theorem 8.6.5]). Let (X, dX) be a
separable metric space. Let µ be a Borel probability measure on X . Then, we
have

dimH(µ) = ess inf
x∈X

dimµ(x);

dimH(µ) = ess sup
x∈X

dimµ(x).

Moreover, for any Borel subset E of X , we have dimH(E) ≤ supx∈E dimµ(x).

The corresponding theorems in [PU10] are stated for X being a Borel subset
of a Euclidean space. As we shall apply Theorem 3.7 to the shift spaceΣ, we need
Theorem 3.7 to be in this slightly more general form. As Theorem 3.7 does not
directly follow from the assertions in [PU10], we provide a proof in Appendix A.

Nowwe turn our focus from the general case to the symbolic case. The follow-
ing theorem is called the volume lemma. Theorem 9.1.11 in [PU10] gives similar
statements in a slightly different setup; the underlying space of the dynamical sys-
tem is not the shift space but a conformal repeller in a Euclidean space. Therefore,
we shall give a proof.

We first prove an elementary fact in real analysis.

Lemma 3.8. Let (X,A, µ) be a probability space. Let f1 : X → R and f2 : X →
(0,+∞) be µ-integrable functions. Then,

µ

({
x ∈ X

∣∣∣∣ f1(x)f2(x)
≤
∫
X
f1 dµ∫

X
f2 dµ

})
> 0;

µ

({
x ∈ X

∣∣∣∣ f1(x)f2(x)
≥
∫
X
f1 dµ∫

X
f2 dµ

})
> 0.

Moreover, the following statements are equivalent.

1. f1/f2 ≤
∫
X
f1 dµ/

∫
X
f2 dµ, µ-a.e.;

2. f1/f2 ≥
∫
X
f1 dµ/

∫
X
f2 dµ, µ-a.e.;

3. f1/f2 =
∫
X
f1 dµ/

∫
X
f2 dµ, µ-a.e.

Proof. Note that ∫
X

f1 dµ =

∫
X

∫
X
f1 dµ∫

X
f2 dµ

f2 dµ.

All our claims follow from this observation.
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Theorem 3.9 (cf. [PU10, Theorem 9.1.11]). Let σ : Σ → Σ be an SFT, u : Σ →
(0,+∞) be a Hölder continuous function and µ be a σ-invariant Borel probability
measure on Σ. Then, dimµ,u = dimµ,u µ-a.e., and

dimu(µ) ≤
hKS(µ)∫
Σ
u dµ

≤ dimu(µ), (3.6)

where the first inequality is an equality if and only if the second is an equality.
When µ is ergodic, we further have

dimu(µ) = dimu(µ) = dimu(µ) =
hKS(µ)∫
Σ
u dµ

. (3.7)

Proof. Define r0 = exp(− supξ∈Σ u(ξ)). Then, for any ξ ∈ Σ and any r ∈ (0, r0),
there is a unique positive integer n(r, ξ) such that

[ξ1 · · · ξn(r,ξ)+1] ⊆ B(ξ, r) ⊆ [ξ1 · · · ξn(r,ξ)].

From the inclusion relations above and the definition of du, we have for every
ξ ∈ Σ and every r ∈ (0, r0),

In(r,ξ)(ξ)
Sn(r,ξ)+1u(ξ)

≤ log(µ(B(x, r)))

log(r)
≤

In(r,ξ)+1(ξ)

Sn(r,ξ)u(ξ) + Vu
, (3.8)

where In(ξ) = − log(µ([ξ1 · · · ξn])) for any n ∈ Z>0 and any ξ ∈ Σ, as in the
statement of Shannon-McMillan-Breiman theorem. Since u is Hölder continuous,
the distortion constant Vu is finite. By Shannon-McMillan-Breiman theorem and
Birkhoff’s ergodic theorem, we have

lim
n→+∞

In+1(ξ)

Snu(ξ) + Vu
=

limn→+∞ In+1(ξ)/n

limn→+∞(Snu(ξ) + Vu)/n
=

limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

for µ-a.e. ξ ∈ Σ. Therefore, on the one hand, we have that for any ξ ∈ Σ at which
the previous equality holds,

dimµ,u(ξ) = lim sup
r→0+

log(µ(B(x, r)))

log(r)

≤ lim sup
r→0+

In(r,ξ)+1(ξ)

Sn(r,ξ)u(ξ) + Vu

= lim
n→+∞

In+1(ξ)

Snu(ξ) + Vu
=

limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

.

35



Chapter 3. Preliminaries on Dimension Theory

The second to last equality here holds because for any ξ ∈ Σ, the image of n(·, ξ)
contains all sufficiently large integers and limr→0+ n(r, ξ) = +∞. On the other
hand, using a similar argument, we have for µ-a.e. ξ ∈ Σ,

dimµ,u(ξ) ≥
limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

.

Therefore, for µ-a.e. ξ ∈ Σ, dimµ,u(ξ) exists and

dimµ,u(ξ) =
limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

. (3.9)

By Shannon-McMillan-Breiman theorem andBirkhoff’s ergodic theorem, we have∫
Σ

lim
n→+∞

1

n
In(ξ) dµ = hKS(µ) and

∫
Σ

lim
n→+∞

1

n
Snu(ξ) dµ =

∫
Σ

u dµ.

Hence, by Theorem 3.7 and Lemma 3.8, we have

dimu(µ) = ess inf
ξ∈Σ

dimµ,u(ξ) = ess inf
ξ∈Σ

limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

≤ hKS(µ)∫
Σ
u dµ

;

dimu(µ) = ess sup
ξ∈Σ

dimµ,u(ξ) = ess sup
ξ∈Σ

limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

≥ hKS(µ)∫
Σ
u dµ

.

Hence, (3.6) is proven. Lemma 3.8 also implies that the first inequality in (3.6) is
an equality if and only if the second inequality in (3.6) is an equality.

Lastly, if µ is ergodic, then we can see from the Shannon-McMillan-Breiman
theorem and Birkhoff’s ergodic theorem that

dimµ,u(ξ) =
limn→+∞ In(ξ)/n
limn→+∞ Snu(ξ)/n

=
hKS(µ)∫
Σ
u dµ

,

for µ-a.e. ξ ∈ Σ. Therefore, by Theorem 3.7, we conclude that (3.7) holds when
µ is ergodic.

Remark 3.10. If the measure µ in Theorem 3.9 is further the equilibrium state
νψ for some Hölder continuous ψ : Σ → R, then the lower and upper pointwise
dimensions of νψ can be written in the following way:

dimνψ ,u
(ξ) = lim inf

n→+∞

Snψ(ξ)− nP (ψ)

−Snu(ξ)
; (3.10)

dimνψ ,u(ξ) = lim sup
n→+∞

Snψ(ξ)− nP (ψ)

−Snu(ξ)
, (3.11)
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for every ξ ∈ Σ. Note that different from (3.9) which is stated for µ-a.e. ξ ∈ Σ,
(3.10) and (3.11) are state for all ξ ∈ Σ. Let In(ξ) = − log(νψ([ξ1 · · · ξn])) for
any n ∈ Z>0 and ξ ∈ Σ. Then, the key ingredients to show (3.10) and (3.11) are
the inequalities in (3.8) and the observation that

sup
n∈Z>0

sup
ξ∈Σ

∣∣− In(ξ)− (Snψ(ξ)− nP (ψ))
∣∣ < +∞,

which is a consequence of the fact that νϕ is a Gibbs measure for ϕ.

3.4 u-Dimension of Shift Space
In this section, we describe the u-dimension of the shift space of an SFT, using the
notions from thermodynamic formalism. The formula for the u-dimension of the
shift space will be given in Theorem 3.12.

Lemma 3.11. Let σ : Σ → Σ be a topologically mixing SFT. Let ϕ : Σ → R and
u : Σ → (0,+∞) be Hölder continuous functions. Then, there exists a unique
β ∈ R such that P (ϕ− βu) = 0.

Proof. Since u is a positive function, P (ϕ − tu) monotonically decreases as t
increases. Therefore, there is at most one β ∈ R such that P (ϕ− βu) = 0.

To show the existence of β, take real numbers t1 < t2 such that ϕ − t1u ≥ 0
and ϕ− t2u ≤ − log #A. Then, we have

P (ϕ− t1u) ≥ P (0) = lim
n→+∞

1

n
log(#AnM · exp(0)) ≥ 0;

P (ϕ− t2u) ≤ P (− log #A) = lim
n→+∞

1

n
log(#AnM · (#A)−n) ≤ 0.

Since the function t 7→ P (ϕ − tu) is continuous, we can thus conclude from the
intermediate value theorem that there is one β ∈ [t1, t2] such that P (ϕ− βu) = 0.
This completes the proof.

The u-dimension of the shift space can be characterized by the topological
pressure in the following manner.

Theorem 3.12 ([BS00, Proposition 6.4]). Let σ : Σ → Σ be a topologically
mixing SFT, and u : Σ → (0,+∞) be a Hölder continuous function. Then, there
exists a unique β > 0 such that P (−βu) = 0, and we have dimu(Σ) = β.

This type of result was first discovered by Bowen in his study on the Hausdorff
dimension of quasi-circles [Bow79].
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Proof. By Lemma 3.11, there is a unique β ∈ R such that P (−βu) = 0. The
number t1 in the proof of Lemma 3.11 can be taken as 0, where ϕ is set as the
constant function 0. Then, as in the proof of Lemma 3.11, we have β ≥ t1 = 0.

In order to prove that β cannot be zero, it suffices to show that P (0) > 0.
Since σ : Σ → Σ is topologically mixing, by Proposition 2.2, there is some pos-
itive integer l such that for any a, b ∈ A, there exists some admissible word ρ
of length l such that aρb is admissible. This means that for any integer k ≥ 2
and any a1, · · · , ak ∈ A, there are ρ(1), · · · , ρ(k−1) ∈ AlM such that the word
a1ρ

(1)a2 · · · ak−1ρ
(k−1)ak, whose length is clearly kl+k− l, is admissible. Hence,

we have #Akl+k−lM ≥ (#A)k. It thus follows that

P (0) = lim
k→+∞

log(#Akl+k−lM )

kl + k − l
≥ lim

k→+∞

k log(#A)
kl + k − l

=
log(#A)
l + 1

.

As we always assume that A contains at least two elements, we have P (0) > 0.
Take ν−βu as the equilibrium state for −βu. Then, using the fact that ν−βu is

a Gibbs measure, we have for any ξ ∈ Σ,

dimν−βu(ξ) = lim
n→+∞

−βSnu(ξ)
−Snu(ξ)

= β.

Thus, from Theorem 3.7, we can conclude that dimu(Σ) = β.
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Multifractal Analysis for Symbolic
Dynamics

In this chapter, we shall conduct the multifractal analysis of level sets and uniform
level sets in symbolic dynamics. To be more precise, fix an arbitrary real number
α. We shall estimate the u-dimensions of the α-level set Lαψ,v, the uniform α-
level set ULαψ,v and two types of subsets of ULαψ,v. We handle Lαψ,v in Section 4.1,
following the ideas in [PW97; Sch99]. In Section 4.2, we treat the u-dimensions
of ULαψ,v and two types of subsets of it. Section 4.2 contains the work of the author
in [Liu23].

4.1 Multifractal Analysis of Level Sets

4.1.1 u-Dimensions of Level Sets
In this section, we study the u-dimension of

Lαψ,v =
{
ξ ∈ Σ

∣∣∣∣ lim
n→+∞

Snψ(ξ)

Snv(ξ)
= α

}
,

for any α ∈ R. For any α ∈ R and q ∈ R, Lemma 3.11 guarantees that there
is a unique βα(q) ∈ R such that P (q(ψ − αv) − βα(q)u) = 0. For each α, the
u-dimension of Lαψ,v can be characterized by the function βα : R → R in the
following way.

Theorem 4.1 (cf. [PW97; Sch99]). Let σ : Σ → Σ be a topologically mixing SFT.
Let ψ : Σ → R, v : Σ → (0,+∞) and u : Σ → (0,+∞) be Hölder continuous
functions. Then, Lαψ,v is non-empty if and only if α−

ψ,v ≤ α ≤ α+
ψ,v.

If α−
ψ,v = α+

ψ,v, then Lαψ,v = ∅ for α 6= α−
ψ,v, and Lαψ,v = Σ for α = α−

ψ,v.
If α−

ψ,v < α+
ψ,v, then the following statements hold.
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1. For any α ∈ (α−
ψ,v, α

+
ψ,v), there exists a unique qα ∈ R such that

β′
α(qα) =

∫
Σ
(ψ − αv) dνα∫

Σ
u dνα

= 0,

where να is the equilibrium state for the potential qα(ψ − αv) − βα(qα)u.
We have that να(Lαψ,v) = 1 and

dimu(Lαψ,v) = dimu(ν
α) = min

q∈R
βα(q) = βα(qα).

2. For any α ∈ {α−
ψ,v, α

+
ψ,v }, there is a σ-invariant Borel probability measure

να such that να(Lαψ,v) = 1 and

dimu(Lαψ,v) = dimu(ν
α) = inf

q∈R
βα(q).

Theorem 4.2 (cf. [Sch99]). Let σ : Σ → Σ be a topologically mixing SFT. Let
ψ : Σ → R, v : Σ → (0,+∞) and u : Σ → (0,+∞) be Hölder continuous
functions. Then, the function α 7→ dimu(Lαψ,v) is real analytic on the open interval
(α−

ψ,v, α
+
ψ,v) and continuous on the compact interval [α

−
ψ,v, α

+
ψ,v].

The proofs of Theorem 4.1 and Theorem 4.2 will be given in the next subsec-
tion.

When v = u, in addition to all the properties stated in Theorem 4.1, we also
have the concavity of the dimension spectrum α 7→ dimu(Lαψ,v) on [α−

ψ,v, α
+
ψ,v].

Corollary 4.3 ([Sch99, Theorem 2.1]). Let σ : Σ → Σ be a topologically mixing
SFT. Let ψ : Σ → R and u : Σ → (0,+∞) be Hölder continuous functions.
Suppose that α−

ψ,u < α+
ψ,u. Define β0 : R → R by letting P (qψ − β0(q)u) = 0 for

each q ∈ R. Then, we have

1. for any α ∈ (α−
ψ,u, α

−
ψ,u), there exists a unique qα ∈ R such that β′

0(qα) = α;
for this qα,

dimu(Lαψ,u) = min
q∈R

β0(q)− αq = β0(qα)− αqα;

2. for any α ∈ {α−
ψ,u, α

+
ψ,u }, dimu(Lαψ,u) = infq∈R β0(q)− αq;

3. the function α 7→ dimu(Lαψ,u) is concave on [α−
ψ,u, α

+
ψ,u].

Proof. As in Theorem 4.1, for each α ∈ [α−
ψ,u, α

+
ψ,u], define βα : R → R by

letting P (q(ψ − αu)− βα(q)u) = 0 for every q ∈ R. For each α, comparing the
definitions of βα and β0, we immediately see that βα(q) = β0(q) − αq for every
q ∈ R. Hence, the first two items are direct consequences of Theorem 4.1. The
last item follows from the properties of Legendre transform; see Theorem 12.2 in
[Roc70] for the details.
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We conclude this section with the following proposition which gives informa-
tion on α for which dimu(Lαψ,v) attains dimu(Σ).

Proposition 4.4. Let σ : Σ → Σ be a topologically mixing SFT. Let ψ : Σ → R,
v : Σ → (0,+∞) and u : Σ → (0,+∞) be Hölder continuous functions. Then
there is a unique α ∈ R such that dimu(Lαψ,v) = dimu(Σ). Moreover, this α
satisfies either α−

ψ,v = α = α+
ψ,v or α

−
ψ,v < α < α+

ψ,v.

The proof of this proposition is also postponed to the next subsection.

4.1.2 Proofs
We begin with the proof of Theorem 4.1. As we shall see in the proof of Theorem
4.1, the properties of the function βα we need can be deduced from the following
lemma.

Lemma 4.5. Let σ : Σ → Σ be a topologically mixing SFT, and ϕ : Σ → R and
u : Σ → (0,+∞) be Hölder continuous functions. For every q ∈ R, set β(q) as
the unique real number such that P (qϕ− β(q)u) = 0. Then, we have

1. β : R → R is real analytic and

β′(q) =

∫
Σ
ϕ dνqϕ−β(q)u∫

Σ
u dνqϕ−β(q)u

(4.1)

for any q ∈ R, where νqϕ−β(q)u is the unique equilibrium state for qϕ−β(q)u;

2. β : R → R is convex;

3. limq→±∞ β(q) = +∞ if α−
ϕ,1 < 0 < α+

ϕ,1.

Proof. By (2.3) in Theorem 2.14, we have

∂

∂b
P (qϕ− bu) = −

∫
Σ

u dνqϕ−bu ≤ −min
ξ∈Σ

u(ξ) < 0,

for any q, b ∈ R. Hence, by Theorem 2.14 and the analytic implicit function
theorem, we have the real analyticity of the function β : R → R. Again by
Theorem 2.14,∫

Σ

(ϕ− β′(q)u) dνqϕ−β(q)u =
d
dq
P (qϕ− β(q)u) = 0.

Rearranging the terms above, we obtain (4.1). Therefore, the first item is true.
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To show the second item, take q1, q2 ∈ R and s ∈ [0, 1] arbitrarily. Let q0 =
sq1 + (1− s)q2. Then, we need to show that β(q0) ≤ sβ(q1) + (1− s)β(q2). By
the convexity in Theorem 2.14, we have

P (q0ϕ− (sβ(q1) + (1− s)β(q2))u)

≤ sP (q1ϕ− β(q1)u) + (1− s)P (q2ϕ− β(q2)u) = 0 = P (q0ϕ− β(q0)u).

Since u > 0, we have β(q0) ≤ sβ(q1)+(1−s)β(q2). This shows the second item.
Nowwe show the last item. Suppose thatα−

ϕ,1 < 0 < α+
ϕ,1. Fix an arbitrary q ∈

R. We shall show that β(q) > 0. Equivalently, we may instead prove P (qϕ) > 0.
When q = 0, we have seen in the proof of Theorem 3.12 that P (0) > 0. For q 6= 0,
as α−

ϕ,1 < 0 < α+
ϕ,1, we have α

−
qϕ,1 < 0 < α+

qϕ,1. It thus follows that

P (qϕ) = lim
n→+∞

1

n
log

∑
ω∈AnM

exp(Sω(qϕ))

≥ sup
ζ∈Σ

lim sup
n→+∞

qSnϕ(ζ)

n
= α+

qϕ,1 > 0.

This shows our claim.
Since β(q) ≥ 0, we have qϕ− β(q)u ≥ qϕ− β(q)‖u‖. Hence,

sup
ξ∈Σ

lim sup
n→+∞

qSnϕ(ξ)

n
− β(q)‖u‖ ≤ P (qϕ− β(q)‖u‖)

≤ P (qϕ− β(q)u) = 0.

Therefore, we have β(q) ≥ qα+
ϕ,1/‖u‖ for q ≥ 0, and β(q) ≥ qα−

ϕ,1/‖u‖ for q ≤ 0.
As α−

ϕ,1 < 0 < α+
ϕ,1, we deduce that limq→±∞ β(q) = +∞.

Now we move on to the proof of Theorem 4.1. We shall basically follow the
proof ideas in [PW97] and [Sch99].

Proof of Theorem 4.1. Fix an arbitrary α ∈ R. Define ψα = ψ − αv.
It is clear from the definitions of α−

ψ,v and α+
ψ,v that Lαψ,v is empty for any

α /∈ [α−
ψ,v, α

+
ψ,v]. For α ∈ [α−

ψ,v, α
+
ψ,v], we shall show that there is a probability

measure να such that να(Lαψ,v) = 1, which in particular implies that Lαψ,v is non-
empty.

The statements for the case where α−
ψ,v = α+

ψ,v are straightforward, so we only
need to handle the case where α−

ψ,v < α+
ψ,v. For the rest of the proof, assume that

α−
ψ,v < α+

ψ,v. Let α be an arbitrary number in the closed interval [α−
ψ,v, α

+
ψ,v].

Consider the case where α−
ψ,v < α < α+

ψ,v. Then, α−
ψα,v

< 0 < α+
ψα,v

.
Hence, by Lemma 4.5 with ϕ taken to be ψα, βα is real analytic and convex and
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limq→±∞ βα(q) = +∞. Consequently, by the mean value theorem, there is some
qα ∈ R such that β′

α(qα) = 0. This qα is further unique. To see this, assume that
there is another q′α 6= qα satisfying β′

α(q
′
α) = 0. Without loss of generality, we may

assume that qα < q′α. Then, by the convexity of βα, for all q ∈ [qα, q
′
α], β′

α(q) = 0.
By the real analyticity of βα, this implies that βα is a constant function, which con-
tradicts the fact that limq→±∞ βα(q) = +∞. Therefore, there is only one qα ∈ R
satisfying that β′

α(qα) = 0. By (4.1) and Birkhoff’s ergodic theorem, we then have

lim
n→+∞

Snψα
Snu

=

∫
Σ
(ψ − αv) dνα∫

Σ
u dνα

= β′
α(qα) = 0, να-a.e., (4.2)

where να is the equilibrium state for qαψα − βα(qα)u, which is ergodic. It is not
hard to see that for any ξ ∈ Σ,

lim
n→+∞

∣∣∣∣Snψα(ξ)Snu(ξ)

∣∣∣∣ = 0 if and only if lim
n→+∞

∣∣∣∣Snψ(ξ)Snv(ξ)
− α

∣∣∣∣ = 0.

This implies that

Lαψ,v =
{
ξ ∈ Σ

∣∣∣∣ lim
n→+∞

Snψα(ξ)

Snu(ξ)
= 0

}
. (4.3)

Combining this observation with (4.2), we have να(Lαψ,v) = 1. Note that from the
observation in Remark 3.10, we have

dimνα,u(ξ) = lim
n→+∞

qαSnψα(ξ)− βα(qα)Snu(ξ)

−Snu(ξ)
= βα(qα),

for any ξ ∈ Lαψ,v. By Theorem 3.7, we thus have

dimu(ν
α) = dimu(Lαψ,v) = βα(qα).

As βα is convex and β′
α(qα) = 0, we further have minq∈R βα(q) = βα(qα).

Now let us consider the case where α = α−
ψ,v. For α = α+

ψ,v, one can make
arguments similar to what we shall give below for α = α−

ψ,v. For each q ∈ R, let
να,q denote the equilibrium state for qψα− βα(q)u. Then, by the weak* compact-
ness of the spaceMσ(Σ) of all σ-invariant Borel probability measures on Σ, there
exists a monotonically decreasing sequence (qk)k∈Z>0 diverging to −∞ such that
να,qk weak* converges to some να ∈ Mσ(Σ) as k approaches infinity.

We claim that να(Lαψ,v) = 1. Towards this end, we first show that

lim
k→+∞

β′
α(qk) = lim

k→+∞

∫
Σ
ψα dνα,qk∫

Σ
u dνα,qk

= 0. (4.4)
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The first equality is given by Lemma 4.5; the limits exist because βα is con-
vex. Since α = α−

ψ,v, we have α−
ψα,v

= 0. Hence, by Theorem 2.16, we have∫
Σ
ψα dνα,q ≥ 0 for any q ∈ R, so on the one hand, we have

lim
k→+∞

β′
α(qk) = lim

k→+∞

∫
Σ
ψα dνα,qk∫

Σ
u dνα,qk

≥ 0.

We here remark that combining
∫
Σ
ψα dνα,q ≥ 0 and Proposition 2.18, we further

have ∫
Σ

ψα dνα,q > 0, (4.5)

for any q ∈ R. On the other hand, note that by Theorem 2.16, α−
ψα,v

= 0 implies
that α−

ψα,1
= 0, which further implies that α+

qψα,1
= 0 for any q < 0. As in the

proof of the last item in Lemma 4.5, we can show that P (qψα) ≥ α+
qψα,1

= 0 for
any q ∈ R. Therefore, infq<0 βα(q) ≥ 0. As a consequence, we have

lim
k→+∞

β′
α(qk) = lim

q→−∞

βα(q)

q
≤ 0.

Therefore, (4.4) is true. Using Birkhoff’s ergodic theorem and (4.4), we have∫
Σ
limn→+∞ Snψ/n dνα∫

Σ
limn→+∞ Snv/n dνα

=

∫
Σ
ψ dνα∫

Σ
v dνα

= lim
k→+∞

∫
Σ
ψ dνα,qk∫

Σ
v dνα,qk

= α.

Note that
limn→+∞ Snψ/n

limn→+∞ Snv/n
= lim

n→+∞

Snψ

Snv
≥ α−

ψ,v = α, να-a.e.

By Lemma 3.8, we thus obtain that

lim
n→+∞

Snψ

Snv
=

limn→+∞ Snψ/n

limn→+∞ Snv/n
= α, να-a.e.

This is equivalent to να(Lαψ,v) = 1.
Next we evaluate the u-dimension of να as well as the u-dimension of Lαψ,v.

By Theorem 3.9 and the upper semi-continuity of the entropy map, we have, on
the one hand,

dimu(Lαψ,v) ≥ dimu(ν
α) ≥ hKS(ν

α)∫
Σ
u dνα

≥ lim sup
k→+∞

hKS(ν
α,qk)∫

Σ
u dνα,qk

= lim sup
k→+∞

βα(qk)−
qk
∫
Σ
ψα dνα,qk∫

Σ
u dνα,qk

≥ inf
q∈R

βα(q).
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On the other hand, by Remark 3.10, for any ξ ∈ Lαψ,v and any q ∈ R,

dimνα,q ,u(ξ) = lim
n→+∞

qSnψα(ξ)− βα(q)Snu(ξ)

−Snu(ξ)
= βα(q).

Therefore, by the last claim of Theorem 3.7, we have dimu(Lαψ,v) ≤ infq∈R βα(q).
Hence, dimu(Lαψ,v) = dimu(ν

α) = hKS(ν
α)/
∫
Σ
u dνα = infq∈R βα(q). Combin-

ing this with Theorem 3.9, we also have dimu(ν
α) = dimu(ν

α), so the proof of
the second item for the case where α−

ψ,v < α+
ψ,v is complete.

Proof of Theorem 4.2. Without loss of generality, we assume that α−
ψ,v < α+

ψ,v.
Throughout this proof, for any α ∈ R, we still use ψα to denote the function
ψ−αv. We shall begin with the proof of the real analyticity. An argument similar
to the proof we shall present below can be found in [IJ15].

Consider the function (q, α, b) 7→ P (qψα − bu). As in the proof of the first
claim of Lemma 4.5, we deduce from (2.3) in Theorem 2.14 that for any q, α, b ∈
R,

∂

∂b
P (qψα − bu) = −

∫
Σ

u dνqψα−bu < 0,

where νqψα−bu is the equilibrium state for qψα− bu. Hence, by Theorem 2.14 and
the analytic implicit function theorem, (q, α) 7→ βα(q) is real analytic.

Now we claim that the function α 7→ qα with its domain being (α−
ψ,v, α

+
ψ,v),

which is defined in Theorem 4.1, is real analytic as well. Towards this end, we
first show

∂2

∂q2
P (qψα − bu) > 0, (4.6)

for any α ∈ (α−
ψ,v, α

+
ψ,v), any q ∈ R and any b ∈ R. Suppose otherwise. By the

convexity stated in Theorem 2.14, the second derivative above cannot be negative.
Hence, there exist α∗ ∈ (α−

ψ,v, α
+
ψ,v) and q∗, b∗ ∈ R such that

∂2

∂q2
P (qψα∗ − b∗u)

∣∣
q=q∗

= 0.

Combining this with Theorem 2.15, we have that ψα∗ is cohomologous to a con-
stant, say C ∈ R. Thus, by (4.1) in Lemma 4.5, for any q ∈ R,

∂βα∗(q)

∂q
=

∫
Σ
ψα∗ dνqψα∗−βα∗ (q)∫
Σ
u dνqψα∗−βα∗ (q)

=
C∫

Σ
u dνqψα∗−βα∗ (q)

.

By taking q = qα∗ , we have

C∫
Σ
u dνqα∗ψα∗−βα∗ (qα∗ )

=
∂βα∗(q)

∂q

∣∣
q=qα∗

= 0.
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Consequently, C = 0. It thus follows that for any ξ ∈ Σ,

lim
n→+∞

Snψ(ξ)

Snv(ξ)
= α∗.

This means that α−
ψ,v = α+

ψ,v = α∗, which contradicts the assumption that α−
ψ,v <

α+
ψ,v. Therefore, (4.6) is proved.
Fix an arbitrary α0 ∈ (α−

ψ,v, α
+
ψ,v). Note that, on the one hand, since

P (qψα0 − βα0(q)u) = 0

for any q ∈ R, we have

d2

dq2
P (qψα0 − βα0(q)u) = 0 (4.7)

for any q ∈ R. On the other hand, let P̃ (q, b) = P (qψα0 − bu) be a function of
two variables q and b. Then, for any q ∈ R,

d2P̃ (q, βα0(q))

dq2
=

d
dq

(
∂P̃

∂q
(q, βα0(q)) +

∂P̃

∂b
(q, βα0(q)) · β′

α0
(q)

)

=
∂2P̃

∂q2
(q, βα0(q)) +

∂2P̃

∂q∂b
(q, βα0(q)) · β′

α0
(q)

+
d
dq

(
∂P̃

∂b

)
(q, βα0(q)) · β′

α0
(q) +

∂P̃

∂b
(q, βα0(q)) · β′′

α0
(q).

Take q = qα0 . Then, since β′
α0
(qα0) = 0, we have

d2P̃ (q, βα0(q))

dq2
∣∣
q=qα0

=
∂2P̃

∂q2
(qα0 , βα0(qα0)) +

∂P̃

∂b
(qα0 , βα0(qα0)) · β′′

α0
(qα0).

Combining this with (4.6) and (4.7), we have

β′′
α0
(qα0) ·

∂P̃

∂b
(qα0 , βα0(qα0)) = −∂

2P̃

∂q2
(qα0 , βα0(qα0)) < 0.

Therefore, β′′
α0
(qα0) 6= 0. Since α0 is taken arbitrary from (α−

ψ,v, α
+
ψ,v), we deduce

that
∂2βα(q)

∂q2
∣∣
q=qα

6= 0

for any α ∈ (α−
ψ,v, α

+
ψ,v). As (q, α) 7→ βα(q) is real analytic on R2, by the analytic

implicit function theorem, we have that α 7→ qα is a real analytic function on the
open interval (α−

ψ,v, α
+
ψ,v).
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Now that we have shown that α 7→ qα is a real analytic function on (α−
ψ,v, α

+
ψ,v)

and (q, α) 7→ βα(q) is a real analytic function on R2, we have that the function
α 7→ dimu(Lαψ,v) = βα(qα) is real analytic on (α−

ψ,v, α
+
ψ,v) as well.

The analyticity of α 7→ dimu(Lαψ,v) on (α−
ψ,v, α

+
ψ,v) implies the continuity on

this open interval. Therefore, we only need to show the continuity of the function
α 7→ dimu(Lαψ,v), with its domain restricted to [α−

ψ,v, α
+
ψ,v], at α ∈ {α−

ψ,v, α
+
ψ,v }.

This means that we need to show the right continuity of α 7→ dimu(Lαψ,v) at α−
ψ,v

and the left continuity of α 7→ dimu(Lαψ,v) at α+
ψ,v. In what follows, we shall only

prove the right continuity at α−
ψ,v; the proof of the left continuity at α

+
ψ,v is similar.

For the rest of this proof, we shall also use α− to denote α−
ψ,v for simplicity.

We divide the proof of the right continuity of α 7→ dimu(Lαψ,v) at α− into two
steps. In this paragraph, we shall show the lower semi-continuity, and leave the
proof of the upper semi-continuity to the next paragraph. As (α, q) 7→ βα(q) is
real analytic on R2, we have that (α, q) 7→ β′

α(q) is continuous on R2. From (4.5),
we see that β′

α−(q) > 0 for any q ∈ R. Thus, by the continuity of (α, q) 7→ β′
α(q),

we have that for α′ ∈ (α−
ψ,v, α

+
ψ,v) sufficiently close to α− = α−

ψ,v, β′
α′(−1) ≥ 0 =

β′
α′(qα′). By the convexity of βα′ , we have qα′ ≤ −1. Hence, for such α′ and any
ξ ∈ Lα−

ψ,v, we have

dimνα′ ,u(ξ) = lim inf
n→+∞

qα′Snψα′(ξ)− βα′(qα′)Snu(ξ)

−Snu(ξ)

= βα′(qα′) + lim inf
n→+∞

−qα′(α− − α′)Snv(ξ)

Snu(ξ)

≤ βα′(qα′).

By the last assertion of Theorem 3.7, we can thus deduce that dimu(Lα
−

ψ,v) ≤
βα′(qα′) = dimu(Lα

′

ψ,v), for α′ ∈ (α−
ψ,v, α

+
ψ,v) sufficiently close to α− = α−

ψ,v.
Therefore, α 7→ dimu(Lαψ,v) is right lower semi-continuous at α−.

Suppose that α 7→ dimu(Lαψ,v) is not right upper semi-continuous at α−. Then,
by the weak* compactness of Mσ(Σ), there is a decreasing sequence (αl)l∈Z>0

converging to α− such that liml→+∞ dimu(Lαlψ,v) > dimu(Lα
−

ψ,v) and ναl weak*
converges to some ν ∈ Mσ(Σ) as l tends to infinity. Then,∫

Σ
ψ dν∫

Σ
v dν

=
liml→+∞

∫
Σ
ψ dναl

liml→+∞
∫
Σ
v dναl

= lim
l→+∞

αl = α−.

As before, we have limm→+∞ Smψ/Smv ≥ α−
ψ,v = α−, ν-a.e., so by Lemma 3.8,

we deduce that
lim

m→+∞

Smψ

Smv
= α−, ν-a.e.,
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or equivalently, ν(Lα−

ψ,v) = 1. Again, by Theorem 3.9 and the upper semi-continuity
of the entropy map,

dimu(Lα
−

ψ,v) ≥ dimu(ν) ≥ lim sup
l→+∞

hKS(ν
αl)∫

Σ
u dναl

= lim sup
l→+∞

dimu(Lαlψ,v).

However, the sequence (αl)l∈Z>0 we took satisfies that

lim sup
l→+∞

dimu(Lαlψ,v) > dimu(Lα
−

ψ,v).

From this contradiction, we can conclude that α 7→ dimu(Lαψ,v) is right upper
semi-continuous at α−. Our proof is thus complete.

Proof of Proposition 4.4. When α−
ψ,v = α+

ψ,v, our claim is a direct consequence of
Theorem 4.1. For the rest of the proof, we assume that α−

ψ,v < α+
ψ,v.

As in Theorem 3.12, set β = dimu(Σ) and ν−βu to be the unique equilibrium
state for−βu. By Birkhoff’s ergodic theorem and the ergodicity of ν−βu, we have

lim
n→+∞

Snψ

Snv
=

∫
Σ
ψ dν−βu∫

Σ
v dν−βu

, ν−βu-a.e.

Thus, by either the first or the second assertion of Theorem 3.7 and Theorem 3.12,
we have dimu(Lαψ,v) = dimu(Σ) for α =

∫
Σ
ψ dν−βu/

∫
Σ
v dν−βu.

For α /∈ [α−
ψ,v, α

+
ψ,v], we have dimu(Lαψ,v) = 0 < dimu(Σ), where the last

inequality was shown in Theorem 3.12. For α = α−
ψ,v, note that βα(0) = β. In

addition, (4.5) implies that β′
α(q) > 0 for any q ∈ R. Consequently, we have

dimu(Lαψ,v) = inf
q∈R

βα(q) < βα(0) = β.

By symmetry, we also have dimu(Lαψ,v) < β for α = α+
ψ,v.

Now, it only remains to show that for any α ∈ (α−
ψ,v, α

+
ψ,v) satisfying

α 6=
∫
Σ
ψ dν−βu∫

Σ
v dν−βu

,

we have dimu(Lαψ,v) < dimu(Σ). Fix such an α, and define qα and να as in
Theorem 4.1. In addition, we shall still use ψα to denote ψ − αv. Observe that
ν−βu(Lαψ,v) = 0 while να(Lαψ,v) = 1, so να 6= ν−βu. Therefore, by the uniqueness
of the equilibrium state, we have on the one hand,

hKS(ν
α)−

∫
Σ

βu dνα < P (−βu) = 0.
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On the other hand, by Theorem 4.1, we have
∫
Σ
ψα dνα = 0, which implies

hKS(ν
α)−

∫
Σ

βu dνα = hKS(ν
α) +

∫
Σ

(qαψα − βu) dνα

= hKS(ν
α) +

∫
Σ

(qαψα − βα(qα)u) dνα

+ (βα(qα)− β)

∫
Σ

u dνα

= P (qαψα − βα(qα)u) + (βα(qα)− β)

∫
Σ

u dνα

= (βα(qα)− β)

∫
Σ

u dνα.

Consequently, dimu(Lαψ,v) = βα(qα) < β = dimu(Σ) if α ∈ (α−
ψ,v, α

+
ψ,v). Our

proof is thus complete.

4.2 Multifractal Analysis of Uniform Level Sets
In this section, we shall explore the u-dimensions of the uniform α-level set

ULαψ,v =
{
ξ ∈ Σ

∣∣∣∣ sup
n∈Z>0

|Snψ(ξ)− αSnv(ξ)| < +∞
}

and two types of subsets of it.

4.2.1 Main Theorems and Related Discussions
In this subsection, we shall state our main theorems, namely Proposition 4.6 and,
more importantly, Theorem 4.7 and Theorem 4.8. The proofs of these results will
be postponed to the next subsection. After that, we shall give an immediate corol-
lary. At the end of this subsection, we shall point out that the results in this sub-
section cannot be proved directly by the arguments using equilibrium states as we
presented in the previous section.

Firstly, we claim that whicheverαwe take, the u-dimension ofULαψ,v is always
equal to the u-dimension of Lαψ,v.

Proposition 4.6 ([Liu23]). Let σ : Σ → Σ be a topologically mixing SFT and let
the functions ψ : Σ → R, v : Σ → (0,+∞) and u : Σ → (0,+∞) be Hölder
continuous. Then, for any α ∈ R, we have

1. ULαψ,v = ∅ if and only if α ∈ [α−
ψ,v, α

+
ψ,v];
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2. dimu(ULαψ,v) = dimu(Lαψ,v).

Now we proceed to the two main theorems, namely Theorem 4.7 and Theo-
rem 4.8. In order to give the precise statements, we need to define some notations
for each of them.

LetW be a finite set of admissible words. Define for each positive integer k,

FW,k =
∞⋂
n=0

{ ξ ∈ Σ | all the words inW are the subwords of ξn+1 · · · ξn+k } ,

and then setFW =
⋃∞
k=1 FW,k. WhenW contains only one word, say ω, thenFW

will also be denoted by Fω.

Theorem 4.7 ([Liu23]). Let σ : Σ → Σ be a topologically mixing SFT and let
the functions ψ : Σ → R, v : Σ → (0,+∞) and u : Σ → (0,+∞) be Hölder
continuous. Suppose that W is a finite set of admissible words over A. Then, for
any α /∈ {α−

ψ,v, α
+
ψ,v }, we have

dimu(ULαψ,v ∩ FW) = dimu(Lαψ,v). (4.8)

For every non-negative integer l, we define the l-th power of a word ω as ωl =
ω · · ·ω, where the right-hand side is the l-fold concatenation of ω. More formally,
define ω0 as the empty word, and for each positive integer l, define ωl = ωl−1ω.
Define F ′

W =
⋃∞
l=1 F ′

W,l, where for any positive integer l,

F ′
W,l =

⋂
ω∈W

{
ξ ∈ Σ

∣∣ ξ does not contain ωl as a subword } .
Theorem 4.8 ([Liu23]). Let σ : Σ → Σ be a topologically mixing SFT and let
the functions ψ : Σ → R, v : Σ → (0,+∞) and u : Σ → (0,+∞) be Hölder
continuous. Suppose that W is a finite set of admissible words over A. Then, for
any α /∈ {α−

ψ,v, α
+
ψ,v }, we have

dimu(ULαψ,v ∩ F ′
W) = dimu(Lαψ,v). (4.9)

The proofs of Proposition 4.6, Theorem 4.7 and Theorem 4.8 will be postponed
to the next subsection, namely Subsection 4.2.2.

The two main theorems above in particular imply that FW and F ′
W both have

full u-dimension for any finiteW ⊆ A∗
M.

Corollary 4.9 ([Liu23]). Let σ : Σ → Σ be a topologically mixing SFT and let
u : Σ → (0,+∞) be a Hölder continuous function. Suppose thatW is a finite set
of admissible words over A. Then, dimu(FW) = dimu(F ′

W) = dimu(Σ).
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Proof. Take Hölder continuous ψ : Σ → R and v : Σ → (0,+∞) such that
α−
ψ,v < α+

ψ,v. Then, by Proposition 4.4, there is a unique α ∈ (α−
ψ,v, α

+
ψ,v) such that

dimu(Lαψ,v) = dimu(Σ). For this α, by Theorem 4.7 and Theorem 4.8, we have
that for any finite setW of admissible words,

dimu(Σ) = dimu(Lαψ,v) = dimu(ULαψ,v ∩ FW) ≤ dimu(FW) ≤ dimu(Σ);

dimu(Σ) = dimu(Lαψ,v) = dimu(ULαψ,v ∩ F ′
W) ≤ dimu(F ′

W) ≤ dimu(Σ).

This completes the proof.

At the end of this subsection, we remark that the previous results do not follow
from Theorem 4.1. To make it more precise, we state the following proposition.

Proposition 4.10. Let σ : Σ → Σ be a topologically mixing SFT, and µ be an
ergodic Borel probability measure on Σ satisfying that µ(O) > 0 for every non-
empty open subset O of Σ. Let the functions ψ : Σ → R and v : Σ → (0,+∞) be
Hölder continuous. LetW be a non-empty finite set of admissible words. Then,

1. µ(FW) = 0, if W contains at least one admissible word ω whose length is
no less than #A+ 1;

2. µ(F ′
W) = 0, ifW contains at least one word ω′ satisfying that (ω′)2 = ω′ω′

is admissible;

3. µ(ULαψ,v) = 0, for any α /∈ {α−
ψ,v, α

+
ψ,v }.

Remark 4.11. When showing Theorem 4.1, we used the equilibrium state να to
estimate the u-dimension of Lαψ,v. If ULαψ,v had positive να measure, then by the
mass distribution principle, we would have dimu(Lαψ,v) = dimu(ULαψ,v) immedi-
ately. Proposition 4.10 shows that να(ULαψ,v) = 0 for α /∈ {α−

ψ,v, α
+
ψ,v }, so we

cannot deduce Proposition 4.6, Theorem 4.7 and Theorem 4.8 from Theorem 4.1
directly. It suggests that we need to construct a new measure for which ULαψ,v
has positive measure, so that we can use the mass distribution principle to give a
lower bound for dimu(ULαψ,v). In a similar sense, Proposition 4.10 also suggests
that dimu(FW) and dimu(F ′

W) cannot be estimated by one single equilibrium state
in general.

In order to show the first item of Proposition 4.10, we introduce the following
notation. For any a ∈ A, define P(a) to be the set of all non-empty admissible
words ω satisfying that

1. ωa is admissible;

2. ωj = a if and only if j = 1, for all j ∈ { 1, · · · , |ω| }.
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Lemma 4.12. Let σ : Σ → Σ be a topologically mixing SFT. Then, we have
#P(a) ≥ 2 for each a ∈ A.

Proof. Fix an arbitrary a ∈ A. It is clear from Proposition 2.2 that P(a) is non-
empty. Suppose that P(a) is a singleton, and let l be the length of the only word
in P(a). Then, for any word ρ satisfying that aρa is admissible, aρ must be a
power of the only word in P(a), thus implying that l divides |ρ| + 1. As the SFT
σ : Σ → Σ is topologically mixing, we deduce from Proposition 2.2 that l = 1,
which means that P(a) = { a }. As we always assume that #A ≥ 2, take b 6= a
fromA. Let ρa→b and ρb→a be the shortest words, possibly empty, such that aρa→bb
and bρb→aa are admissible. By construction, aρa→bbρb→a is an element of P(a)
and is obviously different from a, hence contradicting the claim P(a) = { a } we
have shown previously. Therefore, P(a) contains at least two words.

Proof of Proposition 4.10. Webeginwith the proof of the first claim. Takeω ∈ W
satisfying |ω| ≥ #A + 1. By the pigeonhole principle, there is at least one a ∈ A
appearing in ω at least twice. This further implies the existence of ω̃ ∈ P(a)which
satisfies that ω̃a is a subword of ω. By Lemma 4.12, there is some ω̃′ ∈ P(a) other
than ω̃. Since ω̃′ ∈ P(a), the powers of ω̃′ are all admissible. Moreover, ω̃a is
by construction not a subword of any of the powers of ω̃′. From this, we can
immediately see that ω is not a subword of any of the powers of ω̃′ either.

Fix an arbitrary positive integer l. By Birkhoff’s ergodic theorem, we have

lim
n→+∞

1

n
Sn1[(ω̃′)l] = µ([(ω̃′)l]) > 0, µ-a.e.,

where 1E : Σ → R is the function satisfying 1E(E) = { 1 } and 1E(Σ\E) = { 0 }
for every E ⊆ Σ. This in particular indicates that for µ-a.e. ξ ∈ Σ, (ω̃′)l is
a subword of ξ. As we have seen that ω is not a subword of (ω̃′)l, we deduce
µ(FW,l|ω̃′|) = 0 for each l ∈ Z>0. Since |ω̃′| ≥ |a| = 1, l|ω̃′| diverges to the
positive infinity as l tends to the positive infinity. Note that (FW,j)j∈Z>0 is an
ascending set sequence and FW =

⋃∞
j=1 FW,j , we have

µ(FW) = sup
l∈Z>0

µ(FW,l|ω̃′|) = 0,

showing our first claim.
Now we prove the second claim. Let ω′ be a word inW satisfying that (ω′)2 =

ω′ω′ is admissible. Then, for any k ∈ Z>0, following the same arguments as in
the previous paragraph, we have that for µ-a.e. ξ ∈ Σ, (ω′)k is a subword of ξ.
Therefore, µ(F ′

W,k) = 0 for any positive integer k. This shows our second claim.
Finally, we prove the last claim. For α /∈ [α−

ψ,v, α
+
ψ,v], we have ULαψ,v ⊆

Lαψ,v = ∅, so µ(ULαψ,v) = 0. For the rest of the proof, we assume that α−
ψ,v <
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α < α+
ψ,v. For everyM > 0, there is then an admissible word τ such that Sτψα >

2M + Vψα . Again by Birkhoff’s ergodic theorem, we see that for µ-a.e. ξ ∈ Σ, τ
is a subword of ξ. For each ξ ∈ Σ satisfying that there is a non-negative integer
m such that σm(ξ) ∈ [τ ], note that either Smψα(ξ) < −M or Sm+|τ |ψα(ξ) > M .
Therefore, we have

µ

({
ξ ∈ Σ

∣∣∣∣ sup
n≥0

|Snψα(ξ)| ≤M

})
≤ µ ({ ξ ∈ Σ | τ is not a subword of ξ })

= 0

for anyM > 0, from which the third claim follows.

4.2.2 Proofs
We first prove Theorem 4.7, then Theorem 4.8 and lastly Proposition 4.6.

Let σ : Σ → Σ be a topologically mixing SFT, with A and M being the set
of symbols and the incidence matrix. Let ψ : Σ → R, v : Σ → (0,+∞) and
u : Σ → (0,+∞) be Hölder continuous functions. Let W be a finite subset of
A∗

M. For each α, we still use ψα to denote the Hölder continuous function ψ−αv.
As σ : Σ → Σ is topologically mixing, by Proposition 2.2, there is some integer
l such that for any two symbols a, b ∈ A, there is some ρ ∈ AlM such that aρb is
admissible. We fix this l, and will use it in the subsequent proofs. Finally, for any
M > 0, any α ∈ R and any n ∈ Z>0, define

Bnα,M =

{
ω ∈ AnM

∣∣∣∣∣ supξ∈[ω]
|Snψα(ξ)| ≤M

}
,

and Bα,M =
⋃∞
n=1 Bnα,M .

The proof of Theorem 4.7 needs the following lemma.

Lemma 4.13 ([Liu23]). Suppose that α−
ψ,v < α < α+

ψ,v. Then, for any two con-
stantsM > 2Vψα+l ·‖ψα‖ andM ′ > 0, there exists a finite family S of admissible
words such that for any ω ∈ Bα,M ′ , there is some τ ∈ S for which ωτ ∈ Bα,M .

A similar lemma was shown in [GJK22] for σ : Σ → Σ being a full shift. In
[Liu23], it was extended to topologically transitive, and in particular topologically
mixing, SFTs. The proof in [Liu23] was also more elementary than the original
proof in [GJK22]. The proof we are to give below is the one in [Liu23].

Proof. As α−
ψ,v < α < α+

ψ,v, there exist ξ−, ξ+ ∈ Σ and n−, n+ ∈ Z>0 such that

Sn−ψα(ξ
−) < −M ′ − 2Vψα − l · ‖ψα‖ < M ′ + 2Vψα + l · ‖ψα‖ < Sn+ψα(ξ

+).
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Define

S0 = { ξ−1 · · · ξ−k | 1 ≤ k ≤ n− } ∪ { ξ+1 · · · ξ+k | 1 ≤ k ≤ n+ } ∪ { empty word } ,

and S = { ρτ ∈ A∗
M | ρ ∈ AlM, τ ∈ S0 }. We claim that S is the family of words

we want. Clearly, S is a finite set of admissible words, so we only need to show
that S meets the last requirement.

Take an arbitrary ω ∈ Bα,M ′ . Let ξ ∈ [ω]. Then,
∣∣S|ω|ψα(ξ)

∣∣ ≤ M ′. Consider
the case where S|ω|ψα(ξ) ≥ 0. Take one ρ− ∈ AlM such that ωρ−ξ− is admissible.
Note that

S|ω|+lψα(ωρ
−ξ−) ≥ S|ω|ψα(ξ)− Vψα − l · ‖ψα‖ ≥ −Vψα − l · ‖ψα‖.

If S|ω|+lψα(ωρ
−ξ−) ≤ 0, then the inequality above indicates that ωρ− ∈ Bα,M .

Otherwise, note that

S|ω|+l+n−ψα(ωρ
−ξ−) ≤ S|ω|ψα(ξ) + Vψα + l · ‖ψα‖+ Sn−ψα(ξ

−) < −Vψα .

Hence, we can take the smallest k− ∈ { 1, · · · , n− } such that

S|ω|+l+k−ψα(ωρ
−ξ−) < −Vψα . (4.10)

This means that S|ω|+l+k−−1ψα(ωρ
−ξ−) ≥ −Vψα , and therefore,

S|ω|+l+k−ψα(ωρ
−ξ−) ≥ S|ω|+l+k−−1ψα(ωρ

−ξ−)− ‖ψα‖ ≥ −Vψα − l · ‖ψα‖.

Combining this fact with (4.10), we can thus deduce that ωρ−ξ−1 · · · ξ−k− ∈ Bα,M ,
when S|ω|+|ρ−|ψα(ωρ

−ξ−) > 0. We have thus shown that if S|ω|ψα(ξ) ≥ 0, then
either ωρ− or ωρ−ξ−1 · · · ξ−k− , for some k− ∈ { 1, · · · , n− }, is in Bα,M . This com-
pletes the proof for the case where S|ω|ψα(ξ) ≥ 0. The case where S|ω|ψα(ξ) < 0
can be treated in the same way.

Now we give the proof of Theorem 4.7. The proof is taken from [Liu23].
As Theorem 4.7 is weaker than the theorem claimed in [Liu23], the proof will
be slightly simpler than the one in [Liu23]. The proof which the author gave in
[Liu23] is greatly inspired by [GJK22].

Proof of Theorem 4.7. When α /∈ [α−
ψ,v, α

+
ψ,v], we have UL

α
ψ,v∩FW = Lαψ,v = ∅,

so our claim holds trivially. Thus, we only need to handle the case where α−
ψ,v <

α < α+
ψ,v. Assume that α−

ψ,v < α < α+
ψ,v for the rest of the proof.

Let ω̃ be an admissible word in which all words fromW appear at least once.
FixM > 2Vψα+l ·‖ψα‖ and letM ′ = 2M+(2l+ |ω̃|)‖ψα‖. For theseM andM ′,
let S ⊆ A∗

M satisfy the conditions in Lemma 4.13, and define ‖S‖ = maxτ∈S |τ |.
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Let qα ∈ R and the measure να be defined as in Theorem 4.1. Then, να is
ergodic and

∫
Σ
ψα dνα = 0. Hence, by Theorem 2.7, lim inf

n→+∞
|Snψα| = 0, να-a.e.

Thus, for anyM > 2Vψα + l · ‖ψα‖ ≥ Vψα , by the Borel-Cantelli lemma, we have∑
ω∈Bα,M

να([ω]) = +∞.

Combining the divergence of this series with the fact that να is a Gibbs measure
for qαψα − βα(qα)u with P (qαψα − βα(qα)u) = 0, we have∑

ω∈Bα,M

exp(Sω(qαψα − βα(qα)u)) = +∞.

As supω∈Bα,M |Sω(qαψα)| < +∞, this in turn gives∑
ω∈Bα,M

exp(−βα(qα)Sωu) = +∞.

For any positive s < βα(qα) = dimu(Lαψ,v), pick a positive integerm such that

1

s
log

∑
ω∈Bmα,M

exp(−sSωu) > (2l + ‖S‖+ |ω̃|) ‖u‖. (4.11)

To ease the notation, we shall write C0 to denote (2l + ‖S‖+ |ω̃|) ‖u‖.
We claim that dimu(ULαψ,v ∩ Fω̃) ≥ s. To show this claim, we construct a

Borel probability measure µs for which µs(ULαψ,v ∩ Fω̃) = 1, and then apply the
mass distribution principle to this µs. Define by induction a sequence (Ak)k≥1 of
subsets of Bα,M as follows. Let A1 = Bmα,M . For k ≥ 2, fix ω(k−1) ∈ Ak−1 and
ω ∈ A1, and choose ρ, λ ∈ AlM satisfying that ω(k−1)ρωλω̃ is admissible. Then,
sinceAk−1 andA1 are, by the induction hypothesis, both subsets ofBα,M , we have

sup
ξ∈[ω(k−1)ρωλω̃]

∣∣S|ω(k−1)ρωλω̃|ψα(ξ)
∣∣ ≤M ′.

Therefore, there is some τ ∈ S such that ω(k−1)ρωλω̃τ ∈ Bα,M . Note that
the word ω(k−1)ρωλω̃τ is constructed from ω(k−1) ∈ Ak−1 and ω ∈ A1, so
we may denote it by θk(ω(k−1), ω). For every ω(k−1) ∈ Ak−1, define Ak(ω) =
{ θk(ω, ω′) | ω′ ∈ A1 } and Ak =

⋃
ω∈Ak−1

Ak(ω). It is clear from our discussion
above that Ak ⊆ Bα,M .

Now we are ready to construct the Borel probability measure µs from the set
sequence (Ak)k≥1. Set

µs([ω
(1)]) =

exp(−sSω(1)u)∑
ω∈A1

exp(−sSωu)
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for any ω(1) ∈ A1 and

µs([ω
(k)]) =

exp(−sSω(k)u)µs([ω
(k−1)])∑

ω∈Ak(ω(k−1)) exp(−sSωu)

for any ω(k) ∈ Ak(ω
(k−1)), where k ≥ 2 and ω(k−1) ∈ Ak−1. Clearly, for every

ω(k−1) ∈ Ak−1 and every ω(k) ∈ Ak(ω), ω(k) is a continuation of ω(k−1), or equiv-
alently, we can say [ω(k)] ⊆ [ω(k−1)]. Moreover, for any ω(k−1) ∈ Ak−1, and any
two distinct ω, ω′ ∈ A1, we claim that

[θk(ω
(k−1), ω)] ∩ [θk(ω

(k−1), ω′)] = ∅. (4.12)

Once we manage to prove (4.12), we can immediately deduce the existence and
uniqueness of the measure µs from Kolmogorov consistency theorem. The proof
of (4.12) is given as follows. As before, we write θk(ω(k−1), ω) = ω(k−1)ρωλω̃τ .
For ω′, we write θk(ω(k−1), ω′) = ω(k−1)ρ′ω′λ′ω̃τ ′ in the same way as we wrote
θk(ω

k−1, ω). This means that ρ and ρ′ are both in AlM. If ρ 6= ρ′, then we have

[θk(ω
(k−1), ω)] ∩ [θk(ω

(k−1), ω′)] ⊆ [ω(k−1)ρ] ∩ [ωk−1ρ′] = ∅,

because ρ and ρ′ have the same length. If ρ = ρ′, then we have

[θk(ω
(k−1), ω)] ∩ [θk(ω

(k−1), ω′)] ⊆ [ω(k−1)ρω] ∩ [ωk−1ρ′ω′] = ∅,

because ω and ω′ are distinct words with the same lengthm. Therefore, in any of
the two possible cases above, (4.12) always holds.

By construction, µs is supported on
⋂∞
k=1

⋃
ω∈Ak [ω]. Also note that for any

ξ ∈
⋂∞
k=1

⋃
ω∈Ak [ω],

sup
n≥1

|Snψα(ξ)| ≤M ′ + ‖S‖ · ‖ψα‖.

Moreover, all subwords of ξ with length no less than 2(m+ l+ |ω̃|)+‖S‖ contain
ω̃ as a subword, thus containing all the words from W as subwords. Therefore,
we have µs(ULαψ,v ∩ FW) = 1.

Observe that for any integer k ≥ 2 and ω ∈ Ak−1,∑
ω′∈Ak(ω)

exp(−sSω′u) ≥ exp(−sSωu− sC0)
∑

ω′′∈A1=BmK

exp(−sSω′′u)

≥ exp(−sSωu),

where the second inequality is due to (4.11). As a result, for any integer k ≥ 2,

max
ω∈Ak

µs([ω])

exp(−sSωu)
= max

ω′∈Ak−1

µs([ω
′])∑

ω′′∈Ak(ω′) exp(−sSω′′u)
≤ max

ω′∈Ak−1

µs([ω
′])

exp(−sSω′u)
,
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thus implying that

max
ω∈Ak

µs([ω])

exp(−sSωu)
≤ max

ω∈A1

µs([ω])

exp(−sSωu)
.

By the mass distribution principle, dimu(ULαψ,v∩FW) ≥ s. Since s is an arbitrary
positive number smaller than dimu(Lαψ,v), we conclude that dimu(ULαψ,v ∩FW) ≥
dimu(Lαψ,v). Since ULαψ,v ∩ FW ⊆ Lαψ,v, the proof is complete.

Now we use Theorem 4.7 to show Theorem 4.8.

Proof of Theorem 4.8. Weconstruct an admissiblewordω∗ as follows. LetW∞ =
{ωω · · · | ω ∈ W } ⊆ Σ. Note that

⋃∞
n=0 σ

nW∞ is finite. Thus, we can take one
admissible word ω∗ whose cylinder set [ω∗] is disjoint from

⋃∞
n=0 σ

nW∞. For this
ω∗, we claim that

Fω∗ ⊆ F ′
W . (4.13)

To see this, take an arbitrary ξ ∈ Fω∗ . Then, there exists some k ∈ Z>0 such that
every subword of ξ with length no less than k has ω∗ appearing therein. For any
ω ∈ W , note that the word ωk does not have ω∗ as a subword, and has its length
being k · |ω| ≥ k. Hence, ωk cannot appear in ξ, so ξ ∈ F ′

W . This proves (4.13).
Combining (4.13) with Theorem 4.7, we immediately have

dimu(ULαψ,v ∩ F ′
W) ≥ dimu(ULαψ,v ∩ Fω∗) = dimu(Lαψ,v),

for any α /∈ {α−
ψ,v, α

+
ψ,v }. Since UL

α
ψ,v ∩ F ′

W ⊆ Lαψ,v, the proof is complete.

We conclude this subsection by showing Proposition 4.6 as follows.

Proof of Proposition 4.6. Without loss of generality, we may assume that α−
ψ,v ≤

α ≤ α+
ψ,v, for otherwise ULαψ,v and Lαψ,v would both be empty. When α−

ψ,v =

α+
ψ,v = α, by Corollary 2.17, we have ULαψ,v = Lαψ,v = Σ, so the claim holds triv-

ially. Hence, we shall henceforth assume that α−
ψ,v < α+

ψ,v. If α
−
ψ,v < α < α+

ψ,v,
note that ULαψ,v ∩ FW ⊆ ULαψ,v ⊆ Lαψ,v, where W is an arbitrary finite set of ad-
missible words. Therefore, by Theorem 4.7, we have dimu(ULαψ,v) = dimu(Lαψ,v).
In order to show that ULαψ,v is non-empty, we shall prove that dimu(Lαψ,v) > 0 for
u taken to be v as follows. Suppose that there exists some α0 ∈ (α−

ψ,v, α
+
ψ,v) such

that dimu(Lα0
ψ,v) > 0 for u = v. For any α ∈ [α−

ψ,v, α
+
ψ,v] not equal to α0, clearly

there exists some α′ ∈ [α−
ψ,v, α

+
ψ,v] and s ∈ (0, 1) such that α0 = sα + (1 − s)α′.

Recall that Corollary 4.3 asserts that when u = v, α 7→ dimu(Lαψ,v) is a concave
function on the closed interval [α−

ψ,v, α
+
ψ,v]. Therefore, we have

s dimu(Lαψ,v) + (1− s) dimu(Lα
′

ψ,v) ≤ dimu(Lα0
ψ,v) = 0
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provided that u = v. Since 0 < s < 1 and the u-dimension is always non-negative,
we have

dimu(Lαψ,v) = dimu(Lα
′

ψ,v) = 0.

From this, we have that dimu(Lαψ,v) = 0 for any α ∈ [α−
ψ,v, α

+
ψ,v] and for u = v.

However, Proposition 4.4 states that there is some α ∈ [α−
ψ,v, α

+
ψ,v] satisfying

dimu(Lαψ,v) = dimu(Σ), which is positive by Theorem 3.12. This contradic-
tion shows that dimu(ULαψ,v) = dimu(Lαψ,v) > 0 for u taken to be v and for
any α ∈ (α−

ψ,v, α
+
ψ,v). This in particular implies that ULαψ,v is non-empty for any

α ∈ (α−
ψ,v, α

+
ψ,v).

Now it only remains to handle the case where α−
ψ,v < α+

ψ,v and α is equal to
either α−

ψ,v or α
+
ψ,v. Suppose that α = α−

ψ,v. By Theorem 4.1, there exists a σ-
invariant Borel probability measure να such that να(Lαψ,v) = 1 and dimu(ν

α) =
dimu(Lαψ,v). In addition, Theorem 2.16 guarantees the existence of a continuous
f : Σ → R satisfying that ψα + f ◦ σ − f ≥ 0. As να(Lαψ,v) = 1, by Birkhoff’s
ergodic theorem, we have

∫
Σ
ψα dνα = 0. The σ-invariance of να then yields∫

Σ

Sn(ψα + f ◦ σ − f) dνα = n

∫
Σ

(ψα + f ◦ σ − f) dνα = n

∫
Σ

ψα dνα = 0,

for any n ∈ Z>0. For any n ∈ Z>0, since Sn(ψα + f ◦ σ − f) ≥ 0, we have

Snψα + f ◦ σn − f = Sn(ψα + f ◦ σ − f) = 0, να-a.e.

It follows that |Snψα| ≤ 2‖f‖, να-a.e. Therefore, we have να(ULαψ,v) = 1.
Hence, ULαψ,v is non-empty. Moreover, since dimu(ν

α) = dimu(Lαψ,v), we de-
duce that dimu(ULαψ,v) = dimu(Lαψ,v) when α = α−

ψ,v. By symmetry, we also
have the same result for α = α+

ψ,v.

4.2.3 Remarks on Boundary of Dimension Spectrum
We assumed in both Theorem 4.7 and Theorem 4.8 that α /∈ {α−

ψ,v, α
+
ψ,v }. It is

thus natural to ask whether these two theorems remains true for α ∈ {α−
ψ,v, α

+
ψ,v }.

It is unclear if Theorem 4.8 holds for α ∈ {α−
ψ,v, α

+
ψ,v }. On the other hand, The-

orem 4.7, as we shall see below, fails in general for α ∈ {α−
ψ,v, α

+
ψ,v }.

Proposition 4.14. Let σ : Σ → Σ be a topologically mixing SFT. Let ψ : Σ → R
and v : Σ → (0,+∞) be Hölder continuous functions satisfying that α−

ψ,v <

α+
ψ,v. Then, for any α ∈ {α−

ψ,v, α
+
ψ,v }, there is an admissible word ω satisfying

ULαψ,v ∩ Fω = ∅.

Remark 4.15. Pick ψ such that α−
ψ,v < α+

ψ,v, α ∈ {α−
ψ,v, α

+
ψ,v } and dimu(Lαψ,v) >

0. Such a Hölder continuous function ψ exists [Sch99]. Then, we immediately get
a counterexample for the claim of Theorem 4.7 when α ∈ {α−

ψ,v, α
+
ψ,v }.
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Proof of Proposition 4.14. We only prove the proposition for the case where α =
α−
ψ,v. When α = α+

ψ,v, one can use a similar argument to prove the same claim.
We still let l be a positive integer satisfying that for any two symbols a, b ∈ A,
there is some ρ ∈ AlM such that aρb is admissible.

Assume α = α−
ψ,v. Since α

+
ψ,v > α−

ψ,v = α, there is some ξ∗ ∈ Σ such that
infn≥1 Snψα(ξ

∗) = −∞. Take a positive integer n such that

Snψα(ξ
∗) < −Vψα − l · ‖ψα‖ − C− − 1, (4.14)

where C− = supm≥1 supζ∈Σ Smψα(ζ) is finite due to Theorem 2.16. Set

ω = ξ∗1 · · · ξ∗nρ,

where ρ ∈ AlM satisfies that ω2 = ωω is admissible. It then follows from (4.14)
that

sup
ζ∈[ω]

S|ω|ψα(ζ) ≤ S|ω|ψα(ξ
∗) + Vψα < −C− − 1. (4.15)

Given any ξ ∈ Fω, we shall show that ξ /∈ ULαψ,v, which will complete the proof.
Since ξ ∈ Fω, we can find a strictly increasing sequence (nk)k≥1 of positive

integers such that ξ ∈
⋂∞
k=1 σ

−nk [ω] and nj−nj−1 > |ω| for each positive integer
j, where we set n0 = 0. Then, for any integer k ≥ 2, from (4.15) and the definition
of C−, we see that

Snkψα(ξ) ≤
k∑
j=1

Snj−nj−1
ψα(σ

nj−1(ξ))

≤ C− +
k∑
j=2

S|ω|ψα(σ
nj−1(ξ)) + Snj−nj−1−|ω|ψα(σ

nj−1+|ω|(ξ))

< C− +
k∑
j=2

(−C− − 1 + C−) = C− − k + 1.

We can thus conclude that ξ /∈ ULαψ,v.
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Chapter 5

Multifractal Analysis of Hölder
Regularity of Gibbs Measures in R

In this chapter, we use Theorem 4.8 we proved in Section 4.2 to study the Hölder
regularity of the cumulative distribution function of a Gibbs measure in R.

In Section 5.1, we define a conformal graph directed system, as well as its limit
set and the coding map. The limit set will be the support of the Gibbs measure in
R which we consider. In Section 5.2, we shall give some results on the Hausdorff
dimension of UDα

F , where F is the cumulative distribution function of a Gibbs
measure in R.

5.1 Conformal Graph Directed Systems
In this section we basically follow [MU03].

5.1.1 Directed Multigraph and Edge Shift
In this subsection, we define the notion of a directed multigraph and the edge shift
associated to it.

We begin with the definition of directed multigraphs. Let V and E be two
disjoint sets. The set V is a non-empty set, whose elements are called vertices.
The set E is a set disjoint from V , whose elements are called edges. For each edge
e ∈ E , there are two vertices associated to e. One is the initial vertex p−(e) of e,
and the other is the terminal vertex p+(e) of e. This defines two mappings p−, p+ :
E → V . A directed multigraph is then the tuple (V , E , p−, p+). Henceforth, we
always make the following assumptions for every directed multigraph that will
appear in the subsequent discussions:

1. V is finite;
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2. E contains at least two and at most countably many edges;

3. for any vertex p ∈ V , there is at least one edge e ∈ E such that p = p−(e).

If an edge e ∈ E satisfies that p−(e) = p+(e), it is called a self-loop. Note
that according to our definition, a directed graph may possibly have self-loops. In
addition, there might be two distinct edges e, e′ ∈ E such that p−(e) = p−(e

′) and
p+(e) = p+(e

′). In some literature in graph theory, a directed multigraph can have
multiple edges with the same initial and terminal vertices, but is not allowed to
have a self-loop; see e.g. [BG10, p. 4]. Here we use the terminology in the same
way as [MU03], in which directed multigraphs are allowed to have self-loops as
well.

Given a directed multigraph (V , E , p−, p+) for which V and E is finite, a nat-
ural SFT arises as follows. We call it the edge shift associated with the directed
multigraph as in Section 3.2 of [BS02].

Definition. Let (V , E , p−, p+) be a directed multigraph with finitely many vertices
and edges. Set A = E . Define M : A × A → { 0, 1 } by letting M(e, e′) = 1 if
and only if p+(e) = p−(e

′), for any e, e′ ∈ E . Then, the edge shift associated with
the directed multigraph (V , E , p−, p+) is the SFT σ : Σ → Σ for which the set of
symbols is A and the incidence matrix isM.

Note that the matrix M is an incidence matrix because we assumed that for
every vertex p ∈ V , there is at least one edge e ∈ E such that p = p−(e).

A path in the directed multigraph is an admissible word e1 · · · en over A = E ,
with the incidence matrix taken to be M defined above. For p = p−(e1) and
p′ = p+(en), the path e1 · · · en is said to be a path from p to p′. Then, for SFTs
given by directed multigraphs, Proposition 2.2 can be rewritten as follows.

Proposition 5.1. The SFT σ : Σ → Σ associated with a directed multigraph
(V , E , p−, p+) is topologically mixing if and only if there exists a positive integer
l ∈ Z>0 such that for any two vertices p, p′ ∈ V , there is a path e1 · · · el from p to
p′.

5.1.2 Conformal Graph Directed Systems in R
In this subsection, we define the conformal graph directed systems in R.

Definition. A conformal graph directed system (CGDS) inR consists of a directed
multigraph (V , E , p−, p+), a family of compact intervals I = { Ip | p ∈ V } and a
family of contractionsΦ = { ge : Ip+(e) → Ip−(e) | e ∈ E } satisfying the following
conditions:

1. for each p ∈ V , Ip has positive length;
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2. for any p ∈ V , there is an open neighbourhood Up of Ip such that for every
e ∈ E with p+(e) = p, there is a C1 diffeomorphism g̃e : Up → g̃e(Up) ⊆
Up−(e) such that g̃e

∣∣
Ip
= ge;

3. for every e ∈ E , |g̃′e| is Hölder continuous on Ip+(e);

4. Φ satisfies the open set condition, i.e. for any two distinct a, b ∈ E ,

ga(Int(Ip+(a))) ∩ gb(Int(Ip+(b))) = ∅.

We shall simply use Φ = { ge | e ∈ E } to denote the CGDS as in [MU03].

The original definition of a CGDS in a Euclidean space of an arbitrary finite
dimension was introduced in Section 4.2 of [MU03]. For higher dimensions, the
contractions in Φ are assumed to be conformal, which explains its name. In this
chapter, we shall only consider the CGDS in R, so the conformality of the con-
tractions trivially holds.

We shall only consider a CGDS for which the directed multigraph has merely
finitely many edges.

Definition. We say that a CGDS Φ = { ge | e ∈ E } in R is finitely generated if
and only if E is finite.

For a finitely generated CGDS Φ = { ge | e ∈ E } in R, we define

λΦ = max
e∈E

sup
{

|ge(x)− ge(y)|
|x− y|

∣∣∣∣ x, y ∈ Ip+(e), x 6= y

}
.

Clearly, λΦ < 1 because every ge ∈ Φ is a contraction. Similarly, for a finitely
generated CGDS Φ = { ge | e ∈ E } in R, as |g̃′e| is Hölder continuous for each
e ∈ E , there exist sΦ > 0 and MΦ ≥ 1 such that for any e ∈ E and any x, y ∈
Ip+(e), we have ∣∣|g̃′e(x)| − |g̃′e(y)|

∣∣ ≤MΦ|x− y|sΦ .

5.1.3 Limit Set and Coding Map of CGDS
Given a finitely generated CGDSΦ = { ge | e ∈ E } inR, we construct a set called
the limit set of Φ.

In what follows, the edge shift of Φmeans the edge shift of the directed multi-
graph of Φ. Recall that when defining the edge shift σ : Σ → Σ, we took the set
of symbols A to be E . For any non-empty admissible word ω over A = E , define

gω = gω1 ◦ · · · ◦ gω|ω| .
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Then, gω is clearly a contraction defined on Ip+(ω|ω|). Define Iω = gω(Ip+(ω|ω|)).
Similarly, for any non-empty admissible word ω over A = E , define

g̃ω = g̃ω1 ◦ · · · ◦ g̃ω|ω| ,

where for each e ∈ E , g̃e is the extension of ge to Ue in the definition of CGDS.
With the definitions above defined, we have the following proposition.

Proposition 5.2 ([MU03, Lemma 4.2.2]). For any finitely generated CGDS Φ in
R, we have

sup
ω∈A∗

M

sup

{ ∣∣ log |g̃′ω(x)| − log |g̃′ω(y)|
∣∣

|x− y|sΦ

∣∣∣∣∣ x, y ∈ Ip+(ω|ω|), x 6= y

}
< +∞.

In particular, we have

sup
ω∈A∗

M

sup
x,y∈Ip+(ω|ω|)

∣∣ log |g̃′ω(x)| − log |g̃′ω(y)|
∣∣ < +∞.

We continue with our construction of the limit set of the CGDSΦ. Note that for
any non-empty admissible word ω over A = E and any positive integer k < |ω|,
we have Iω1···ωk ⊋ Iω [MU03, p. 2]. For any ξ ∈ Σ and any k ∈ Z>0, we have

diam(Iξ1···ξk) ≤ λk−1
Φ max

e∈E
diam(Ie).

As λΦ < 1, we see that limk→+∞ diam(Iξ1···ξk) = 0. Hence, we can see that there
is a unique element in

⋂∞
k=1 Iξ1···ξk . Denote this element by π(ξ). Thus, we have

a map π : Σ →
⋃
p∈V Ip. This map π is called the coding map of Φ and the limit

set of Φ is

Λ = π(Σ) =
⋃
ξ∈Σ

∞⋂
k=1

Iξ1···ξk .

From the definition, we can readily see that

π(ξ) = gξ1···ξn(π(σ
n(ξ))), (5.1)

for any n ∈ Z>0 and any ξ ∈ Σ.
The coding map is continuous; indeed we can say more about the coding map.

For this purpose, we introduce a metric on Σ, which will be given by the volume
potential defined as follows.

Definition ([MU03, Section 8.2]). The volume potential of a finitely generated
CGDS Φ = { ge | e ∈ E } in R is the function u : Σ → R defined by

u(ξ) = − log |g̃′ξ1(π(σ(ξ)))|

for every ξ ∈ Σ.
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Proposition 5.3. For any finitely generated CGDS Φ in R, its volume potential u
is well-defined, positive and Hölder continuous.

Proof. For any ξ ∈ Σ, note that π(σ(ξ)) ∈ Iξ2 ⊆ Ip−(ξ2) = Ip+(ξ1), so π(σ(ξ)) is
in the domain of g̃ξ1 . As g̃ξ1 is a C1 diffeomorphism, g̃′ξ1(π(σ(ξ))) cannot be zero.
Therefore, u is well-defined. Since every member of Φ is a contraction, we also
have u > 0.

Finally, we shall show the Hölder continuity of u. Take ξ, ζ ∈ Σ satisfying
ξ1 = ζ1 arbitrarily. Define n = |ξ ∧ ζ| ≥ 1. Then, p−(ξn+1) = p−(ζn+1). Hence,
by (5.1), we have

|π(σ(ξ))− π(σ(ζ))| ≤ λn−1
Φ |π(σn(ξ))− π(σn(ζ))| ≤ λn−1

Φ max
p∈V

diam(Ip).

Combining this with Proposition 5.2, we have the Hölder continuity of u.

Note that by the chain rule, we have

Snu(ξ) = − log |g̃′ξ1···ξn(π(σ
n(ξ)))|,

for any ξ ∈ Σ and n ∈ Z>0. Hence, as a consequence of Proposition 5.2, we have

sup
n∈Z>0

sup
ξ∈Σ

sup
x∈Ip+(ξn)

∣∣∣− Snu(ξ)− log
∣∣g̃′ξ1···ξn(x)∣∣ ∣∣∣ < +∞. (5.2)

Proposition 5.3 enables us to endow the shift space Σ with the metric du. For
this metric, we claim the following for the coding map π.

Proposition 5.4. The coding map π : Σ →
⋃
p∈V Ip is Lipschitz continuous.

Moreover, for any compact X ⊆ Σ satisfying that σ(X) ⊆ X , we have that
π
∣∣
X
: X → π(X) is bi-Lipschitz if and only if it is injective.

Proof. By the mean value theorem and (5.1), we have that for any two distinct
ξ, ξ′ ∈ Σ with ξ1 = ξ′1,

|π(ξ)− π(ξ′)| ≤ sup
{ ∣∣g̃′ξ∧ξ′(x)∣∣ ∣∣ x ∈ Ip+(ξn)

}
·max
p∈V

diam(Ip),

where n = |ξ ∧ ξ′|. Hence, combining this observation with (5.2) and the Hölder
continuity of u, we can deduce that π is Lipschitz continuous.

Regarding the second claim, we only need to show that π
∣∣−1

X
is Lipschitz con-

tinuous under the assumption that π
∣∣
X
is injective and thus invertible. Again, using

the mean value theorem and (5.1), we have

|π(ζ)− π(ζ ′)| ≥ inf
{ ∣∣g̃′ζ∧ζ′(x)∣∣ ∣∣ x ∈ Ip+(ζn)

}
· |π(σm(ζ))− π(σm(ζ ′))|,
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for any two distinct ζ, ζ ′ ∈ X with ζ1 = ζ ′1 andm = |ζ∧ζ ′|. Since σ(X) ⊆ X , we
have that σm(ζ) and σm(ζ ′) are both in X . Hence, |π(σm(ζ))− π(σm(ζ ′))| ≥ c0,
where

c0 = min
{

inf
η∈[e]∩X

inf
η′∈[e′]∩X

|π(η)− π(η′)|
∣∣∣∣ e, e′ ∈ E , e 6= e′

}
.

As long as we can show that the constant c0 is positive, then as in the previous
paragraph, we can show that π

∣∣−1

X
is Lipschitz continuous. Suppose that c0 = 0.

Then, as [a]∩X is compact for any a ∈ E , there exist distinct e, e′ ∈ E , η ∈ [e]∩X
and η′ ∈ [e′] ∩ X such that π(η) = π(η′). This violates the injectivity of π, so
c0 > 0.

5.2 Multifractal Analysis of Hölder Regularity
Suppose that we are given a Gibbs measure ν on Σ of some Hölder continuous
function ψ : Σ → R, whose topological pressure P (ψ) equals zero. The Gibbs
measure ν for ψ, which is a measure supported on Σ, gives rise to a measure
supported on the limit set Λ, namely the pushforward measure π∗ν through the
coding map π. Such a measure on Λ is called a Gibbs measure in R.

5.2.1 Main Results
Recall that for any continuous function f : R → R, any α ≥ 0 and any x ∈ R,

Dαf(x) = lim inf
y→x

|f(y)− f(x)|
|y − x|α

;

D
α
f(x) = lim sup

y→x

|f(y)− f(x)|
|y − x|α

;

UDα
f =

{
x ∈ R

∣∣ 0 < Dαf(x) ≤ D
α
f(x) < +∞

}
.

The main theorem of this chapter is then given as follows.

Theorem 5.5 ([Liu23]). Let Φ = { ge | e ∈ E } be a finitely generated CGDS in
R. Let σ : Σ → Σ be the edge shift associated with Φ. We assume that σ : Σ → Σ
is topologically mixing. Let ψ : Σ → R be a Hölder continuous function satisfying
P (ψ) = 0. Let ν be a Gibbs measure for ψ and F be the cumulative distribution
function of π∗ν, where π : Σ → R denotes the coding map. Let u : Σ → (0,+∞)
denote the volume potential of Φ. Then, we have

dimH(UDα
F ) ≤ dimu(L−α

ψ,u)
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for any α ≥ 0, and
dimH(UDα

F ) = dimu(L−α
ψ,u)

if α /∈ {−α−
ψ,u,−α

+
ψ,u }.

Similar to Proposition 4.4, the following corollary of Theorem 5.5 holds.

Corollary 5.6. There is a unique α0 ∈ R such that dimH(UDα0
F ) = dimH(Λ).

Moreover, we have either α0 = −α−
ψ,u = −α+

ψ,u or −α
+
ψ,u < α0 < −α−

ψ,u.

5.2.2 Proofs
In this subsection, we prove Theorem 5.5 and Corollary 5.6.

Our proof of Theorem 5.5 uses Theorem 4.8. It means that we need to first
construct a finite setW of admissible words.

For every edge e ∈ E , define Pe = {min(Ie ∩ Λ),max(Ie ∩ Λ) } and P =⋃
e∈E Pe.

Lemma 5.7 ([Liu23]). The set π−1(P ) is finite. Moreover, there exists a non-
negative integerN such that for every ξ ∈ π−1(P ), σN(ξ) is a periodic sequence.

Proof. Note that for any two distinct admissible words ω, τ of the same length,
the open set condition implies that Int(Iω) ∩ Int(Iτ ) = ∅. It follows that, for any
x ∈ Λ, π−1 {x } has no more than two elements. Therefore, we have

#π−1(P ) ≤ 2 · #P ≤ 4 · #E < +∞.

In order to show the second claim, we prove the following claim:

σ(π−1P ) ⊆ π−1(P ). (5.3)

Take ξ ∈ π−1(P ) arbitrarily. As gξ1 : Iξ2 → Iξ1ξ2 is a C1 diffeomorphism, it either
preserves or reverses the ordering. Note that gξ1(π(σ(ξ))) = π(ξ) and π(ξ) ∈
P ∩ Iξ1 = Pξ1 , so gξ1(π(σ(ξ)) is either the minimum or the maximum of Iξ1 ∩ Λ.
Therefore, by the monotonicity of gξ1 we have π(σ(ξ)) ∈ Pξ2 ⊆ P . Since ξ is
arbitrarily taken from π−1(P ), we conclude that σ(π−1(P )) ⊆ π−1(P ).

Combining (5.3) with the fact that π−1(P ) is a finite set, we see that for each
ξ ∈ π−1(P ), we can take a non-negative integer Nξ such that σNξ(ξ) is periodic.
Take an arbitrary N ≥ maxξ∈π−1(P )Nξ. This N then satisfies the requirement in
the second claim.

Take a non-negative integer N satisfying the condition in Lemma 5.7. Then,
for each ξ ∈ π−1(P ), we are able to take one word ω(ξ) such that σN(ξ) =
ω(ξ)ω(ξ) · · · . Henceforth, we always set

W = {ω(ξ) | ξ ∈ π−1(P ) } .
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Clearly,W is a finite set of admissible words.
Now we state the key lemma for the proof of Theorem 5.5. A similar assertion

for a more restricted situation appears in [KS09, Proposition 2.3].

Lemma 5.8 ([Liu23]). For any α > 0, we have

UL−α
ψ,u ∩ F ′

W ⊆ π−1 (UDα
F ) ⊆ UL−α

ψ,u. (5.4)

Proof. Fix α > 0. Define ψ−α = ψ + αu. In this proof, given any two real
numbers x < y, the closed interval [x, y] can be denoted by [x, y] itself or [y, x].

We begin with the first inclusion in the proposition. Without loss of generality,
assume that UL−α

ψ,u ∩ F ′
W is non-empty and take an arbitrary ξ ∈ UL−α

ψ,u ∩ F ′
W .

Now that ξ ∈ F ′
W , we have σnξ /∈ π−1(P ) for any non-negative integer n. In

particular, π(ξ) must lie in the interior of every Iξ1···ξn .
Now fix an arbitrary y 6= π(ξ) in Iξ1 . Since the set sequence (Iξ1···ξn)n≥1 is

descending and
⋂∞
n=1 Iξ1···ξn = { π(ξ) }, there exists a unique positive integer m

such that y ∈ Iξ1···ξm \ Iξ1···ξm+1 .
Note that Iξ1···ξm is connected, so on the one hand, we can readily see that

[π(ξ), y] ⊆ Iξ1···ξm . (5.5)

On the other hand, take l to be a positive integer such that ξ ∈ F ′
W,l. Let N be

a non-negative integer such that for any ξ′ ∈ π−1(P ), σN(ξ′) is periodic. The
existence of this N is guaranteed by Lemma 5.7. Define

L = (l + 1)‖W‖+N.

We claim that there is an admissible word τ over E of length L such that ξm+1τ is
admissible and

Iξ1···ξm+1τ ⊆ [π(ξ), y]. (5.6)

To prove this claim, first note that gξ1···ξm−1 : Iξm → Iξ1···ξm is invertible. Set
y′ = g−1

ξ1···ξm−1
(y) and ξ′ = σm−1(ξ). Define

z = max(Λ ∩ Iξmξm+1)

if π(ξ′) ≤ y′. Otherwise, define

z = min(Λ ∩ Iξmξm+1).

Take ζ ∈ [ξmξm+1] satisfying π(ζ) = z. By the monotonicity of gξm , we see that
π(σ(ζ)) is in Pξm+1 . It follows that σN+1(ζ) is periodic, and furthermore, there
exists an integer k ∈ { 1, · · · , ‖W‖} and a word ω ∈ W such that σN+1+k(ζ) =
ωω · · · . Take τ as the unique admissible word of lengthL such that ζ ∈ [ξmξm+1τ ].
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Then, on the one hand, we have that τ contains ωl as a subword. On the other
hand, since ξ ∈ F ′

W,l, the word ξm+2 · · · ξm+L+1 does not contain ωl as a subword.
Therefore, ξmξm+1τ and ξm · · · ξm+L+1 are distinct words of length L+2, so their
cylinder sets are disjoint. As a result, we have

π(ξ′) /∈ Iξmξm+1τ .

As Iξmξm+1τ is connected, Iξmξm+1τ lies on one side of π(ξ′). By the same reason,
because y′ /∈ Iξmξm+1 , the interval Iξmξm+1τ also lies on only one side of y′. By our
definition of z, we have z ∈ [y′, π(ξ′)], so [y′, π(ξ′)] ∩ Iξmξm+1τ 6= ∅. Combining
this with the fact that Iξmξm+1τ is on one side of π(ξ′) and also on one side of y′,
we deduce that

Iξmξm+1τ ⊆ [y′, π(ξ′)].

Applying gξ1···ξm−1 on both sides, we have

Iξ1···ξm+1τ = gξ1···ξm−1(Iξmξm+1τ )

⊆ [gξ1···ξm−1(y
′), gξ1···ξm−1(π(ξ

′))] = [y, π(ξ)].

Note that the monotonicity of gξ1···ξm−1 is used here. Therefore, τ satisfies (5.6).
By (5.5) and (5.6), we have

π∗ν([y, π(ξ)]) ≤ π∗ν(Iξ1···ξm) ≤ CF exp(Sξ1···ξmψ) ≤ CF exp(Vψ) exp(Smψ(ξ)),

and

π∗ν([y, π(ξ)]) ≥ π∗ν(Iξ1···ξmτ ) ≥ C−1
F exp(Sξ1···ξmτψ)

≥ C−1
F exp(−L‖ψ‖ − Vψ) exp(Smψ(ξ)).

Then, by the mean value theorem and (5.2), there exists a constant C1 ≥ 1 such
that

diam(Iξ1···ξm) ≤ C1 exp(−Smu(ξ));
diam(Iξ1···ξmτ ) ≥ C−1

1 exp(−Smu(ξ)− L‖u‖).

Combining these inequalities with (5.5) and (5.6), we have

C−1
1 exp(−Snu(ξ)− L‖v‖) ≤ |π(ξ)− y| ≤ C1 exp(−Snu(ξ)).

Consequently, there exists a constant C ≥ 1 such that for y 6= π(ξ) sufficiently
close to π(ξ),

C−1 exp(Snψ(ξ)) ≤ π∗ν([π(ξ), y]) ≤ C exp(Snψ(ξ)); (5.7)
C−1 exp(−Snu(ξ)) ≤ |π(ξ)− y| ≤ C exp(−Snu(ξ)). (5.8)
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From this we see that

C−2 exp(Snψ−α(ξ)) ≤ DαF (π(ξ)) ≤ D
α
F (π(ξ)) ≤ C2 exp(Snψ−α(ξ)).

As ξ is taken from UL−α
ψ,u, we have π(ξ) ∈ UDα

F . This shows the first half of (5.4).
Now it only remains to show the second half of (5.4). If π−1(UDα

F ) is empty,
then the claim is trivial. Otherwise, take ζ ∈ π−1(UDα

F ) arbitrarily.
We define a sequence (yn)n≥1 of points in I in the following manner. For

any n ≥ 1, let ω(n) be an admissible word of length m(n) ≤ #A satisfying that
ω
(n)
1 = ζn+1 and ω

(n)
m(n) 6= ζn+m(n). By construction, we have π(ζ) /∈ Iζ1···ζnω(n) , so

there is a unique endpoint yn of Iζ1···ζnω(n) satisfying that Iζ1···ζnω(n) ⊆ [π(ζ), yn].
Since π(ζ) and yn are both in Iζ1···ζn , we also have [π(ζ), yn] ⊆ Iζ1···ζn . Therefore,
there is some constant C ′ ≥ 1 such that for all n ∈ N,

1

C ′ exp(Snψ−α(ζ)) ≤
π∗ν([π(ζ), yn])

|π(ζ)− yn|α
≤ C ′ exp(Snψ−α(ζ)).

Clearly limn→∞ yn = π(ζ), so the inequality above implies that ζ ∈ UL−α
ψ,u.

Hence, we may conclude that the second inclusion in (5.4) holds as well.

Proof of Theorem 5.5. First note thatUDα
F ⊆ Λ for α > 0, because for any x /∈ Λ,

DαF (x) = D
α
F (x) = 0.

Endow Σ with the metric du given by u. Then, by Proposition 5.4, the coding
map π : Σ → Λ is Lipschitz continuous. Hence, on the one hand, by Proposition
4.6, Lemma 5.8 and Proposition 3.4, we have that for any α ≥ 0,

dimu(L−α
ψ,u) = dimu(UL−α

ψ,u) ≥ dimu(π
−1(UDα

F )) ≥ dimH(UDα
F ).

On the other hand, for any integer l ≥ 1, it is clear that F ′
W,l is compact and

σ(F ′
W,l) ⊆ F ′

W,l. Also note that π is injective on F ′
W . Hence, by Proposition 5.4,

Proposition 3.4 and Lemma 5.8, we have that

dimu(UL−α
ψ,u ∩ F ′

W,l) = dimH(π(UL−α
ψ,u ∩ F ′

W,l)) ≤ dimH(UDα
F ),

for any non-negative α /∈ {−α−
ψ,u,−α

+
ψ,u } and any positive integer l. Therefore,

by the countable stability of Hausdorff dimension,

dimu

(
UL−α

ψ,u ∩ F ′
W
)
= sup

l≥1

dimu

(
UL−α

ψ,u ∩ F ′
W,l

)
≤ dimH (UDα

F ) .

By Theorem 4.8, when α /∈ {−α−
ψ,u,−α

+
ψ,u }, all the inequalities above are equal-

ities, so dimH(UDα
F ) = dimu(L−α

ψ,u).

Finally we prove Corollary 5.6.
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Proof of Corollary 5.6. First consider the casewhereα−
ψ,u < α+

ψ,u. Then by Propo-
sition 4.4. there is a uniqueα0 ∈ (−α+

ψ,u,−α
−
ψ,u) such that dimu(L−α0

ψ,u ) = dimu(Σ).
By Theorem 5.5, we thus have

dimH(UDα0
F ) = dimu(L−α0

ψ,u ) = dimu(Σ) = dimH(Λ),

and for any α 6= α0,

dimH(UDα
F ) ≤ dimu(L−α

ψ,u) < dimu(Σ) = dimH(Λ).

This completes the proof for the case where α−
ψ,u < α+

ψ,u.
When α−

ψ,u = α+
ψ,u, take α0 to be−α−

ψ,u = −α+
ψ,u. Then we only need to show

that
dimH(UDα0

F ) = dimH(Λ), (5.9)

because for any non-negative α 6= α0, by Lemma 5.8, we have UDα
F ⊆ π(L−α

ψ,u) =
∅. To show (5.9), first note that by Lemma 5.8 and Corollary 4.9, we have

F ′
W = Σ ∩ F ′

W = UL−α0
ψ,u ∩ F ′

W ⊆ π−1(UDα0
F ).

Also recall that we have seen in Corollary 4.9 that dimu(F ′
W) = dimu(Σ), so

dimH(UDα0
F ) = dimu(π

−1(UDα0
F )) ≥ dimu(Σ) = dimH(Λ).

Our proof is thus complete.

5.2.3 Case Study
In this section, we apply our results to one family of Borel probability measures,
each of which is supported on [0, 1].

Let V = { p } and E = { e1 = 0, e2 = 1 }. Then there is only one directed
multigraph for which the set of vertices is V and the set of edges is E , for the initial
and terminal vertices of e1 and e2 must be p. It is easy to check using Proposition
5.1 that the associated edge shift σ : Σ → Σ is topologically mixing.

Let Ip = [0, 1]. Define ge1 , ge2 : Ip → Ip by letting

ge1(x) = x/2;

ge2(x) = (x+ 1)/2,

for any x ∈ Ip. Then, it is clear that Φ = { ge1 , ge2 } is a CGDS in R. For any
arbitrary non-empty word ω over E , we have

Iω =

 |ω|∑
j=1

ωj2
−j,

|ω|∑
j=1

ωj2
−j + 2−|ω|


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This can be shown by induction on the length of ω. Recall that any x ∈ [0, 1] has
a binary expansion

x =
∞∑
j=1

ξj2
−j,

where ξj ∈ { 0, 1 } for any positive integer j. It is then clear that x ∈ Iξ1···ξk for
any positive integer k. It thus follows that π(ξ) = x. In particular, the limit set of
Φ is Ip = [0, 1].

Now for any λ ∈ [0, 1], we define a Borel probability measure µλ on Ip by
letting

µλ(Iω) = λ#{ k∈{ 1,··· ,|ω| }|ωk=e1 }(1− λ)#{ k∈{ 1,··· ,|ω| }|ωk=e2 }, (5.10)

for any non-empty word ω over E . When λ = 1, µλ is supported on { 0 }. When
λ = 0, µλ is supported on { 1 }. When λ = 1/2, µλ is precisely the Lebesgue
measure on Ip. In what follows, we will focus on the non-trivial case, namely the
case where λ ∈ (0, 1/2)∪(1/2, 1). Let Fλ : R → R be the cumulative distribution
function of µλ.

We define the binary entropy function H2 : [0, 1] → R by

H2(t) =
−t log(t)− (1− t) log(1− t)

log(2)

for t ∈ (0, 1) andH2(t) = 0 for t ∈ { 0, 1 }. Then, for λ ∈ (0, 1/2)∪ (1/2, 1), we
will show the following properties about Fλ.

Proposition 5.9. For any λ ∈ (0, 1/2) ∪ (1/2, 1), the following statements hold:

1. Fλ is strictly increasing on Ip = [0, 1], and also continuous on R;

2. UDα
Fλ

is non-empty if and only if α− < α < α+, where

α− = min {− log(1− λ)/ log(2),− log(λ)/ log(2) } ;
α+ = max {− log(1− λ)/ log(2),− log(λ)/ log(2) } ;

3. for any α ∈ [α−, α+], we have

dimH(UDα
Fλ
) = H2

(
α log(2) + log(1− λ)

log(1− λ)− log(λ)

)
. (5.11)

As an example, the graph of α 7→ dimH(UDα
F1/3

) is plotted in Figure 5.1.
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Figure 5.1: The dimension spectrum of UDα
F1/3

.

Proof. Fix λ ∈ (0, 1/2) ∪ (1/2, 1). We first show that µλ is a Gibbs measure in
R, which is supported on Ip. Define ψ : Σ → R by letting ψ([e1]) = { log(λ) }
and ψ([e2]) = { log(1− λ) }. By the formula we gave in Example 2.10, we have

P (ψ) = log(λ+ 1− λ) = 0.

Note that the Bernoulli measure νψ associated with the 2-tuple (λ, 1 − λ), which
was defined in Example 2.8, is a Gibbs measure for ψ, so νψ is the unique equi-
librium state of ψ. Let π : Σ → Ip be the coding map for the CGDS we defined.
Then, we have µλ = π∗νψ, so µλ is a Gibbs measure in R. As νψ is a Gibbs mea-
sure for ψ, we see that νψ(O) > 0 for any non-empty open subset of Σ. Hence, by
the continuity of the coding map π, we have that the support of µλ is precisely Ip.

Since the support of µλ is Ip, Fλ is strictly increasing. For any x ∈ R, the
cardinality of π−1({x }) is no greater than 2. Thus, from the fact that νψ(E) = 0
for any finite subset E of Σ, we obtain that µλ({x }) = 0, implying the continuity
of Fλ.

In our case, the volume potential u of our CGDS Φ is clearly constantly equal
to log(2). Therefore, we have

−α+
ψ,u = − sup

ξ∈Σ
lim sup
n→+∞

Snψ(ξ)

Snu(ξ)
= −

maxj∈{ 1,2 } ψ([ej])
log(2)

= α−;

−α−
ψ,u = − inf

ξ∈Σ
lim inf
n→+∞

Snψ(ξ)

Snu(ξ)
= −

minj∈{ 1,2 } ψ([ej])
log(2)

= α+.

72



Chapter 5. Multifractal Analysis of Hölder Regularity of Gibbs Measures in R

Therefore, the second claim for α /∈ {α−, α+ } can be proved from Theorem
4.1, Theorem 4.8 and Lemma 5.8. For the rest of this paragraph, we assume that
α ∈ {α−, α+ }. In view of Lemma 5.8, we can see that the proof for our second
item will be complete if we can show that π(ξ) /∈ UDα

Fλ
for any ξ ∈ UL−α

ψ,u.
When π(ξ) ∈ { 0, 1 }, as Fλ = 0 outside [0, 1], we have π(ξ) /∈ UDα

Fλ
. When

π(ξ) /∈ { 0, 1 }, as ξ ∈ UL−α
ψ,u, there exist non-empty words ω1 and ω2 over E such

that π(ξ) = π(ω1e1e1 · · · ) = π(ω2e2e2 · · · ). Note that

lim
n→+∞

Snψ(ω
1e1e1 · · · )

Snu(ω1e1e1 · · · )
=

log(λ)
log(2)

;

lim
n→+∞

Snψ(ω
2e2e2 · · · )

Snu(ω2e2e2 · · · )
=

log(1− λ)

log(2)
.

Therefore, if π(ξ) were in UDα
Fλ
, then by Lemma 5.8 we would have

ξ ∈ L− log(λ)/ log(2)
ψ,u ∩ L− log(1−λ)/ log(2)

ψ,u .

In particular, the intersection of the two level sets on the right would be non-empty,
thus indicating that λ = 1/2. This contradicts our assumption that λ 6= 1/2.
Hence, we see that π(ξ) /∈ UDα

Fλ
. The proof of the second claim is thus complete.

For α ∈ {α−, α+ }, we have

α log(2) + log(1− λ)

log(1− λ)− log(λ)
∈ { 0, 1 } .

AsH2(0) = H2(1) = 0, we see that the right-hand side of (5.11) is zero. We have
seen that UDα

Fλ
= ∅ for α ∈ {α−, α+ }, so the left-hand side of (5.11) is zero as

well. Hence, (5.11) holds for α ∈ {α−, α+ }. For α ∈ (α−, α+), there is a unique
t ∈ (0, 1) such that

α =
−t log(λ)− (1− t) log(1− λ)

log(2)
,

or equivalently,

t =
α log(2) + log(1− λ)

log(1− λ)− log(λ)
. (5.12)

Let ν be the Bernoulli measure associated with the 2-tuple (t, 1− t). Then, as νψ,
we also have that ν is the equilibrium state for some function ϕ : Σ → R, which is
constant on every cylinder of length 1. This in particular implies that ν is ergodic,
so by Birkhoff’s ergodic theorem, we have

lim
n→+∞

Snψ

Snu
=

∫
Σ
ψ dν∫

Σ
u dν

=
t log(λ) + (1− t) log(1− λ)

log(2)
= −α, ν-a.e.
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Hence, ν(L−α
ψ,u) = 1. Note that the the vector space of all functions on σ which

are constant on each cylinder of length 1 is spanned by {ψ, u }. Therefore, ϕ
is a linear combination of ψ and u. We have also seen in Remark 3.10 that the
pointwise dimension of ν at ξ ∈ Σ is

dimν,u(ξ) = lim
n→+∞

Snϕ(ξ)− nP (ϕ)

Snu(ξ)
,

if the limit exists. Hence, dimν,u exists and is a constant function on L−α
ψ,u. By

Theorem 3.7 and Theorem 3.9, we thus have

dimν,u(ξ) = dimu(ν) =
hKS(ν)∫
Σ
u dν

=
−t log(t)− (1− t) log(1− t)

log(2)
= H2(t),

for any ξ ∈ Σ, where the Kolmogorov-Sinai entropy of the Bernoulli measure ν
has been calculated in Example 2.8. As we have seen that ν(L−α

ψ,u) = 1, by Theo-
rem 3.7, we have dimu(L−α

ψ,u) = H2(t). Finally, combining this with Theorem 5.5
and (5.12), we can conclude that (5.11) holds for α ∈ (α−, α+) as well.
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Proof of Theorem 3.7

In this appendix, we shall prove Theorem 3.7.
When one attempts to show the last inequality in Theorem 3.7, which gives the

upper bound of the Hausdorff dimension, it is standard to use a covering lemma.
The covering lemma we shall need here is asserted as follows.

Lemma A.1. Assume that (X, dX) is a separable metric space. Let C be a non-
empty family of open balls. For each open ball O ∈ C, take xO ∈ X and rO >
0 satisfying O = B(xO, rO). Suppose that supO∈C rO < ∞. Then, there is a
countable (possibly finite) subcollection C ′ ⊆ C of pairwise disjoint open balls
such that ⋃

O∈C′

B(xO, 9rO) ⊇
⋃
O∈C

O. (A.1)

This lemma will play a role similar to Lemma 4.8 in [Fal03]. Lemma 4.8 in
[Fal03] is stated for a subset of a Euclidean space, so we cannot deduce LemmaA.1
from it directly. Therefore, we give a proof of Lemma A.1 as follows.

Proof. Let C0 be the collection of open balls O ∈ C satisfying rO > rO′/2 for
any O′ ∈ C that intersects with O. We first show that C0 is non-empty. If C0
were empty, there would exist a sequence of elements in C, denoted by (O(k))k≥1,
satisfying rO(k+1) ≥ 2rO(k) for any positive integer k. Consequently, we have

sup
k∈Z>0

rO(k) ≥ sup
k∈Z>0

2k−1rO(1) = +∞,

contradicting the assumption that supO∈C rO < +∞. Therefore, C0 is non-empty.
By Zorn’s lemma, we may take a maximal pairwise disjoint subcollection C ′

of C0. Here, the maximality means there is no pairwise disjoint subcollection of
C0 that properly contains C ′. We shall show that this C ′ ⊆ C is what we desire.

The members of C ′ are by definition pairwise disjoint. Since X is separable,
there exists some countable dense subset E of X . Associate to each O ∈ C ′ one
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element pO ∈ O∩E. As the members of C ′ are pairwise disjoint, the mapO 7→ pO
is an injection which maps C ′ to E. Hence, we deduce that C ′ is countable.

Now it only remains to show that (A.1) hold. Clearly, it suffices to show that
every O ∈ C satisfies

O ⊆
⋃
O′∈C′

B(xO′ , 9rO′). (A.2)

Note that any O ∈ C must be a member of C ′, or C0 \ C ′, or C \ C0. If O ∈ C ′,
note that O = B(xO, rO) ⊆ B(xO, 9rO), so (A.2) holds. If O ∈ C0 \ C ′, due to the
maximality of C ′, there exists someO′ ∈ C ′ such thatO∩O′ 6= ∅. SinceO′ ∈ C0,
we have rO′ > rO/2. Take z ∈ O ∩O′ arbitrarily. Then, for any y ∈ O, we have

dX(xO′ , y) ≤ dX(xO′ , z) + dX(z, xO) + dX(xO, y) < rO′ + 2rO < 5rO′ .

As O′ ∈ C ′, (A.2) also holds for O ∈ C0 \ C ′.
Lastly, we assume thatO ∈ C\C0, and we shall show that (A.2) still holds. Let

O1 = O. For any positive integer k, if we have defined Ok and Ok ∈ C \ C0, then
take oneOk+1 ∈ C satisfying thatOk+1∩Ok 6= ∅ and rOk+1

≥ 2rOk . This process
to take open balls must terminate in finitely many steps because supO∈C rO <
+∞. Therefore, we finally get finitely many open balls O1, · · · , On, for some
integer n ≥ 2. It is clear that On ∈ C0. If On /∈ C ′, take On+1 ∈ C ′ such that
On ∩ On+1 6= ∅. Otherwise, set On+1 = On. Then, again since On+1 ∈ C0, we
have rOn < 2rOn+1 . Therefore, we have for any k ∈ { 1, · · · , n },

rOn+1−k < 22−krOn+1 .

Now for every j ∈ { 1, · · · , n }, take zj ∈ Oj ∩ Oj+1. Then, for any y ∈ O, we
have

dX(y, xOn+1) ≤ dX(y, xO1) +
n∑
j=1

dX(xOj , zj) + dX(zj, xOj+1
)

< rOn+1 + 2
n∑
j=1

rOj

= rOn+1 + 2
n∑
k=1

rOn+1−k < rOn+1

(
1 + 2

∞∑
k=1

22−k

)
= 9rOn+1 .

Recall that On+1 is taken from C ′, so (A.2) holds for O ∈ C \ C0 as well.

Now we are able to give a proof of Theorem 3.7 as follows.
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Proof of Theorem 3.7. We first prove the last inequality using Lemma A.1. Fix an
arbitrary number s > supx∈E dimµ(x). Take δ ∈ (0, 1) arbitrarily. Then, for each
x ∈ E, there exists some rx ∈ (0, δ/9) such that

log(µ(B(x, rx)))

log(rx)
< s,

from which we have µ(B(x, rx)) > rsx. Then, by Lemma A.1, there is a countable
(possibly finite) subset E0 of E satisfying that {B(x, rx) | x ∈ E0 } is a family of
pairwise disjoint open balls and⋃

x∈E0

B(x, 9rx) ⊇
⋃
x∈E

B(x, rx) ⊇ E.

Consequently, we have∑
x∈E0

diam(B(x, 9rx))
s ≤ 18s

∑
x∈E0

rsx < 18s
∑
x∈E0

µ(B(x, rx)) ≤ 18sµ(E) ≤ 18s.

Since {B(x, 9rx) | x ∈ E0 } is a countable δ-covering of E, we have Hs
δ(E) ≤

18s. As δ is independent of s, we have Hs(E) ≤ 18s. From Proposition 3.2, we
have that dimH(E) ≤ s. As this holds for any s > supx∈E dimµ(x), we can see
that the last inequality in Theorem 3.7 holds.

Define E+ = { y ∈ X | dimµ(y) ≤ ess supx∈X dimµ(x) }. Clearly, E+ is a
Borel set and µ(E+) = 1. From the last inequality in Theorem 3.7 we have just
shown, we obtain

dimH(µ) ≤ dimH(E
+) ≤ sup

y∈E+

dimµ(y) ≤ ess sup
x∈X

dimµ(x). (A.3)

Similarly, define E−
ε = { y ∈ X | dimµ(y) ≤ ess infx∈X dimµ(x) + ε } for any

ε > 0. Then, for any ε > 0, we have E−
ε is a Borel set, µ(E−

ε ) > 0 and

dimH(µ) ≤ dimH(E
−
ε ) ≤ sup

y∈E−
ε

dimµ(y) ≤ ess inf
x∈X

dimµ(x) + ε.

As ε is an arbitrary positive number, we have

dimH(µ) ≤ ess inf
x∈X

dimµ(x). (A.4)

Now it only remains to show the reverse inequalities of (A.3) and (A.4). We
shall only show the reverse inequality of (A.3), namely

dimH(µ) ≥ ess sup
x∈X

dimµ(x);
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the proof of the reverse inequality of (A.4) is easier. Without loss of generality,
assume that ess supx∈X dimµ(x) > 0. Take an arbitrary positive number s′ <
ess supx∈X dimµ(x). Define ε′ = ess supx∈X dimµ(x)− s′ and

E+
ε′ = { y ∈ X | dimµ(y) ≥ ess sup

x∈X
dimµ(x)− ε′/2 } .

Then, by Egorov’s theorem, there are a Borel set E1 ⊆ E+
ε′ satisfying µ(E1) > 0

and some N ∈ Z>0 such that for any integer n ≥ N and any y ∈ E1,

inf
r≤1/n

logµ(B(y, r))

log(r)
≥ dimµ(y)− ε′/2 ≥ ess sup

x∈X
dimµ(x)− ε′ = s′.

This means that for any r ≤ 1/N and any y ∈ E1, µ(B(y, r)) ≤ rs
′ .

Let X0 be an arbitrary Borel subset of X satisfying µ(X0) = 1. It is clear
that µ(X0 ∩ E1) = µ(E1) > 0. Let U be an arbitrary non-empty Borel subset of
X0 ∩ E1 with diam(U) ≤ (2N)−1. We claim that

µ(U) ≤ 2s
′diam(U)s

′
. (A.5)

Take an arbitrary yU ∈ U . If U = { yU }, then µ(U) = infr≤1/N µ(B(yU , r)) = 0,
so (A.5) holds in this case. IfU is not a singleton, we haveU ⊆ B(yU , 2diam(U)).
It then follows that

µ(U) ≤ µ(B(yU , 2diam(U))) ≤ 2s
′diam(U)s

′
,

so (A.5) is true in this case as well. Applying the mass distribution principle, we
then have dimH(E1 ∩ X0) ≥ s′. As s′ and X0 are taken arbitrarily, we have
dimH(µ) ≥ ess supx∈X dimµ(x).
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