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Summary 

Infrastructure has historically served as the essential framework for human 

societies, forging a vital and unbreakable connection between socioeconomic progress, 

social welfare, and the built environment. As urbanization continues to accelerate, the 

development and maintenance of infrastructure systems inherently demand significant 

consumption of materials and energy, leading to substantial carbon emissions and other 

environmental impacts. This research retrospectively examines the historical material 

stock (MS) evolution and material composition of roads and buildings in Japan, the two 

main components of infrastructure in Japan, from a spatiotemporal viewpoint. 

Subsequently, this research projects future trends in MS for expected road networks and 

the floor area and MS of serviceable buildings in Japanese Shared Socioeconomic 

Pathway scenarios (SSPs). Lastly, this research explores the spatial expansion patterns 

of land use types, including road and construction areas. It predicts the future changes 

and spatial distribution of these land use types by leveraging the land use and land cover 

change model. 

The first chapter introduces the critical role of MS in infrastructure, especially 

buildings and roads, in addressing environmental challenges and fostering sustainable 

urban development. Then, the main research questions are proposed, followed by the 

research objectives and thesis structure. 

The second chapter begins with a review of theoretical foundations: industrial 

ecology and material flow and stock analysis. It then delves into a literature review that 

thoroughly examines the state of the art of MS accounting based on the bottom-up 

approach and the dynamic evaluation of MS through various methods. This discussion 

sets the stage for highlighting the academic gaps this research aims to fill. 

The third chapter examines how various building attributes influence the material 

intensity (MI) coefficient. MI is vital for quantifying the MS of buildings and other 

constructed facilities. However, the application of MI in MS accounting faces 

significant challenges, primarily due to its regional variability. Feature importance is 
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measured using an innovative random forest (RF) model. An overarching hierarchy of 

MI was established, and a full hierarchical MI dataset of six selected building materials 

was predicted by the RF model. The analysis of building features importance on MI is 

necessary and meaningful for not only the building MS estimation, but also the local 

MI database setup. 

The fourth chapter analyzes the spatiotemporal evolution of roadway MS in Japan 

and forecasts the anticipated road MS in each prefecture by the year 2050 under 

Japanese SSPs. Historical data shows that the total road MS exhibited substantial 

growth. A notable trend was observed where most prefectures experienced significant 

expansion in their road networks from 1965 to 1995. However, in the last decade, most 

of these regions saw an average annual growth rate of less than 1%, indicating a 

slowdown in the expansion of road infrastructure. The forecast results under five SSPs 

in all prefectures revealed diverse trends. Some regions exhibited varying trends 

depending on the SSP scenario, while others demonstrated more consistent patterns of 

increase or decrease. 

The fifth chapter aims to gain a spatial understanding of the dynamics and 

distribution patterns of building MS over time, with three major metropolitan areas in 

Japan selected as the study area. This chapter first analyzes the evolution of building 

MS and the material composition of MS. Then it predicts the floor area and MS of 

serviceable buildings until 2050 under the SSPs, taking into account a significant 

population reduction. Although the overall building MS has gradually increased until 

2020, the trends of all SSPs show that the serviceable building area and MS will 

decrease. 

The sixth chapter explores the potential mechanisms driving infrastructure 

development within three major metropolitan areas in Japan. This chapter analyzes the 

historical changes in land use types, including construction areas and roads, in these 

areas. It uses the patch-generating land use simulation (PLUS) model to predict the 

future distribution and changes of different land use types by 2050. The random forest 

classification method is adopted to identify and quantify the contributions of various 
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driving factors behind the expansion of each land use type. Simulation results of the 

PLUS model show continued urban expansion and reduction in cropland and wasteland 

areas, reflecting the consequences of urbanization trends and population decline in 

Japan’s three metropolitan areas. 

The seventh chapter concludes the findings of chapters 3, 4, 5, and 6. Implications 

for urban sustainability of this research are explained. Finally, the limitations and future 

work of this research are stated. 
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1. Introduction 

1.1 Background 

The growth in affluence over the past half-century has significantly outpaced the 

mitigation offered by technological advances, leading to increased resource utilization 

and pollutant emissions. The profound changes to Earth's life-sustaining systems, 

driven by human activity, underscore the failures in addressing environmental 

degradation and the existential threats posed to societies, economies, and natural 

systems (Wiedmann et al., 2020). Infrastructure has historically served as the essential 

framework for human societies, forging a vital and unbreakable connection between 

socioeconomic progress, social welfare, and the built environment. However, they also 

necessitate substantial material resource consumption and energy use, often resulting 

in considerable carbon emissions and other environmental impacts. A recent report 

reveals that 79% of all greenhouse gas emissions and 88% of adaptation costs were 

contributed by infrastructure, positioning it at the forefront of efforts to meet the 

objectives of the Paris Agreement and Sustainable Development Goals (UNEP, 2021). 

The report calls for a revolutionary shift in how governments conceive and manage 

infrastructure to emphasize its vital part in mitigating and adapting to climate change. 

As societies grow and develop, there is an increased demand for infrastructure—

such as transportation networks and buildings—that underpins economic activities and 

supports quality of life. However, the construction, maintenance, and operation of this 

infrastructure entail substantial material use, ranging from concrete and steel to rare 

earth elements, which in turn contributes to significant environmental impacts. The 

extraction of raw materials often leads to habitat destruction, biodiversity loss, and soil 

degradation, while the manufacturing processes are energy-intensive and result in 

considerable greenhouse gas emissions. Furthermore, the disposal and degradation of 

infrastructure at the end of its life cycle generate waste and pollution. Thus, the 

relationship between society, infrastructure, and material use is a critical focal point for 

sustainable development initiatives that aim to mitigate environmental impacts while 
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supporting human well-being. 

The buildings and construction sector (including both direct and indirect emissions 

from buildings and construction) accounted for around 37% of global energy-related 

CO2 emissions in 2021 (UNEP, 2022), while the transport sector contributed more than 

20% of global CO2 emissions (IEA, 2019). The material composition of these 

infrastructures plays a critical role in their overall environmental impact, both in terms 

of embodied energy and emissions associated with their resource extraction, 

construction, maintenance, and end-of-life stages (Krausmann et al., 2017). 

Furthermore, the lifespan and durability of materials used in buildings and road 

networks directly influence the frequency and scale of maintenance and reconstruction 

activities, which in turn affect resource consumption and waste generation. As 

urbanization continues to accelerate, through analyzing the spatiotemporal evolution 

and patterns of infrastructure’s material stock (MS), we can identify the hotspots and 

trends of material accumulation and consumption, and identify opportunities for 

material recycling and reuse, thus providing insights for minimizing the carbon 

footprint of infrastructure development while ensuring its efficiency and resilience. 

(1) Built environment stock 

Built environment stock is the backbone of modern human well-being by offering 

a range of desired services essential for daily life and societal functioning. It evolves 

over time, primarily through a series of material production, construction, and 

demolition activities, leading to substantial environmental impacts such as greenhouse 

gas (GHG) emissions, extensive land use, and massive construction waste generation 

(Berrill and Hertwich, 2021; Peng et al., 2021). However, on the other hand, building 

MS, as an integral part of the built environment, is increasingly regarded not just as a 

consumer of resources but also as a potential reservoir of secondary resources. In the 

concept of recycling strategy, materials used in construction are seen not as waste at the 

end of their life cycle, but as valuable resources that can be reclaimed and reused. 

Globally, more than half of the total extracted material is transformed and stored in 

building MS (Fu et al., 2021; Krausmann et al., 2017). This substantial volume of 
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material embedded in buildings and infrastructure has attracted numerous MS studies 

to set up foundation for embodied GHG emission reduction (De Wolf et al., 2020; De 

Wolf et al., 2016), urban mining and further circular economy (Lanau and Liu, 2020; 

Lederer et al., 2020). 

(2) Road infrastructure stock 

Roads are an indispensable infrastructure element, serving as the essential 

backbone of transportation networks globally. They facilitate the movement of people 

and goods across vast distances. By offering a means of access to services, employment 

opportunities, education, and markets, the road system help fulfill fundamental human 

needs, facilitate economic growth, and allow trade and commerce to flourish (Meijer et 

al., 2018; Wu et al., 2023; Wudad et al., 2021). However, roads and transport sector are 

vulnerable to climate change impacts such as changing precipitation patterns, 

temperature fluctuations, and the increasing frequency and severity of extreme weather 

events. Such impacts pose significant challenges, as they can increase maintenance 

costs, impede road safety, and disrupt mobility (Chinowsky et al., 2013; Koetse and 

Rietveld, 2009; Markolf et al., 2019). Moreover, road construction and maintenance 

require substantial quantities of materials, such as asphalt, concrete, and steel. The 

production and utilization of these materials entail considerable environmental impacts 

throughout their life cycle, including carbon emissions, habitat loss, and the depletion 

of natural resources (Jullien et al., 2014; Miatto et al., 2021; Yu et al., 2021). Given 

these environmental concerns and the increasing impacts of climate change, there is a 

growing need to rethink road design and maintenance. The focus needs to shift toward 

creating and maintaining roads that are not only resilient to these impacts but also 

sustainable in the long term. The goal is to ensure that roads continue to serve their vital 

function in society while minimizing their environmental impact and adapting to the 

changing climate conditions. 

(3) Simulating spatiotemporal dynamics of infrastructure 

Roads and buildings constitute pivotal components of the infrastructure fabric that 

require careful analysis and planning. In Japan, about 70% of materials are stored in 
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buildings and roads, with buildings accounting for 43%, followed by roads at 26% 

(Tanikawa et al., 2015). The spatiotemporal changes in these infrastructural elements 

are not merely physical transformations but are intrinsically linked to socio-economic 

dynamics. This interlinkage underlines the necessity to comprehend and anticipate the 

future spatial dynamics of roads and buildings, which are fundamental to the sustenance 

and evolution of urban landscapes. The theoretical underpinning of the interdependence 

between land use and infrastructure networks is encapsulated in the infrastructure land-

use feedback cycle. This cycle illuminates the bidirectional relationship wherein the 

development of infrastructures, such as roads, enhances local accessibility, thereby 

escalating the demand for urban development. Conversely, urbanization intensifies 

local transport movements and subsequently amplifies the demand for transport 

networks (Kasraian et al., 2016). This cyclical interaction underscores the significance 

of roads and buildings as dynamic agents in urban ecosystems, necessitating a focused 

analysis of their future spatial changes. 

In this regard, land use and land cover change (LULCC) models emerge as potent 

tools to simulate these future spatial transformations. LULCC, characterized by its 

spatiotemporal pattern changes, such as urbanization, encapsulates dynamic processes 

where land transitions adhere to specific rules or relationships (Sohl and Claggett, 2013; 

Wang et al., 2022). This dynamicity is a fundamental aspect of LULCC, rendering it a 

comprehensive framework to examine and project changes in land use patterns. 

LULCC models can assimilate and quantify the combined effects of anthropogenic and 

environmental drivers on landscape patterns. Moreover, by incorporating dynamic 

elements of urban growth and infrastructure development, it harnesses the dynamic 

nature of LULCC to provide comprehensive insights into the future of urban 

infrastructure, thereby enabling more informed and sustainable urban planning and 

development. 

1.2 Research problem statement 

Buildings and road networks not only facilitate essential services and societal 

activities but also represent major sources of material consumption and waste 



8 
 

generation, accumulating vast quantities of construction materials such as steel, cement, 

aggregate, and timber. These materials constitute the second-largest mass flow into 

urban areas only after water, and are the primary contributors to urban waste (Augiseau 

and Barles, 2017; Krausmann et al., 2017). Furthermore, the extraction, production, and 

utilization of these virgin construction materials exert a substantial impact on the global 

environment. Currently, decoupling MS from socioeconomic growth is a critical 

strategy in addressing the environmental challenges posed by the current economic 

development, and is vital for supporting sustainable, resilient, and equitable 

development. To fulfill this objective, it is imperative to address key research questions 

that form the foundation of MS dynamics: What are the factors influencing MS, and 

what mechanisms underlie these influences? 

On the other hand, Japan is experiencing a significant population decline and an 

increasing proportion of elderly citizens. Japan’s estimated future total population is 

expected to decrease to 70% of the current population in 50 years, with people aged 65 

and over accounting for about 40% of the population (National Institute of Population 

and Social Security Research, 2023). The demographic trajectory of Japan presents a 

unique challenge for urban planning and environmental management. This 

demographic shift profoundly impacts land use, necessitating a re-evaluation of 

infrastructure practices and environmental strategies, particularly in Japan's major 

metropolitan areas. This raises another question: How are these stocks expected to 

transform in the future based on current trends and future scenarios? Understanding the 

MS of these infrastructural elements is vital for sustainable urban development, 

particularly in the face of Japan's declining population. This forward-looking study not 

only contributes to the understanding of infrastructure and material use but also informs 

policymakers and urban planners in developing strategies that align with demographic 

trends and sustainability goals. 

1.3 Research objectives 

In order to explore the retrospective progress and prospective trends of building 

and roadway MS from a spatiotemporal perspective, the following questions are studied: 



9 
 

(1) Factors affecting building MI: What are the attributes influencing MS, and how do 

these building attributes influence MI? (2) Historical evolution patterns: What patterns 

have historically characterized the evolution of buildings and roadways MS? (3) Future 

projections: How are the quantity and distribution of MSs expected to transform in the 

future based on current trends and future scenarios? (4) Simulation at future spatial 

scales: What will be the spatial distribution of roadways and buildings in the future, and 

what are the mechanisms underlie these changes? 

1.4 Framework of thesis 

The thesis begins with introduction and literature review, followed by analyses of 

corresponding methods, results and discussions according to the research process. 

Finally, the main findings and research implications are summarized. Each chapter is 

introduced in detail below. 

Chapter 1 introduces the critical role of MS in infrastructure, especially buildings 

and roads, in addressing environmental challenges and fostering sustainable urban 

development, as well as statements of research questions, research objectives, and 

thesis structure. 

Chapter 2 begins with a review of theoretical foundations, and then delves into a 

literature review that thoroughly examines the state of the art of MS accounting based 

on bottom-up approach and the dynamic evaluation of MS through various methods.  

Chapter 3 examines how various building attributes influence material intensity 

(MI) coefficient and a full hierarchical MI dataset of six selected building materials 

were predicted by the RF model. 

Chapter 4 analyzes the spatiotemporal evolution of roadway's MS in Japan and 

forecasts the anticipated road MS in each prefecture by the year 2050 under Japanese 

SSPs.  

Chapter 5 delves into the dynamics of building MS over time and its spatial 

distribution across different urban zones within three major metropolitan areas in Japan 

and predicts the future building MS by 2050 under Japanese SSPs. 

Chapter 6 explores the potential mechanisms driving infrastructure MS in the same 
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three metropolitan areas. The focus expands to include various land use types including 

buildings and roadways. This chapter also analyzes the historical changes in land use 

types in these areas, utilizing the patch-generating land use simulation (PLUS) model 

to predict the future land use distribution and changes by 2050. 

Chapter 7 concludes the findings of chapters 3, 4, 5, and 6. Implications for urban 

sustainability of this research are explained. Finally, limitations and future work of this 

research are stated. 

2. Theories and state of the art 

2.1 Theoretical foundations 

2.1.1 Industrial ecology and sustainability 

The origin and development of industrial ecology (IE) are rooted in the quest to 

understand and optimize the circulation of materials and energy flows within industrial 

systems, aligning them more closely with the functioning of natural ecosystems, aiming 

to restructure industrial processes to mimic the function observed in natural ecosystems 

(Erkman, 1997). The field of IE was significantly shaped by the introduction of the 

concept of industrial metabolism by Robert U. Ayres in 1988. This concept plays a key 

role in IE, focusing on understanding the societal use of natural resources and 

comprehensively assessing their environmental impacts (Anderberg, 1998). IE has 

evolved from recognizing the inadequacies of traditional industrial waste treatment to 

developing a holistic approach that seeks to emulate the efficiency and sustainability of 

natural ecosystems. It represents a significant paradigm shift in how industrial 

processes are understood and managed, with a focus on sustainability and 

environmental management (Saavedra et al., 2018). 

IE is usually portrayed as the scientific component of sustainability, focusing on 

the industrial sector's metabolism within an ecological framework. In IE, resource flows 

in industrial systems undergo transformations. However, IE doesn't limit itself to 

material and energy flows but also considers information flows and interactions 

between different system components, including government, society, and industry. 
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This holistic approach incorporates aspects of social ecology. A key principle in IE is 

the concept of waste minimization, inspired by natural ecosystems where waste from 

one process serves as input for another, exemplifying a circular approach to resource 

use (Jonker and Harmsen, 2012). It integrates ecological principles into industrial 

processes, emphasizing sustainability, waste minimization, and efficient resource use. 

IE provides knowledge essential for comprehensive design context understanding and 

assessing design outcomes. It forms the scientific basis for industrial-oriented 

sustainable development and guides principles like design for environment and 

sustainability, and it also emphasizes the importance of tools like life cycle assessment 

for sustainable design (Jonker and Harmsen, 2012). 

2.1.2 Material flow and stock analysis 

Material flow analysis (MFA) and MS analysis are essential methodologies in the 

realm of IE, each playing a pivotal role in the sustainable management of material and 

energy flows within various systems. MFA is a technique primarily utilized to quantify 

and assess the flow of materials within a spatially and temporally defined system, which 

could range from a specific industrial process to broader regional or sectoral scales. Its 

principal objective is to systematically evaluate the inputs, outputs, and transformations 

of materials and energy, thereby elucidating the "metabolism" of industrial systems. 

This approach is crucial for understanding the dynamics of material use and waste 

generation. It enables the identification of efficient pathways for resource utilization, 

waste minimization, and overall environmental impact reduction. MFA has been 

effectively applied in diverse contexts, from national level assessments to urban 

metabolism studies, offering valuable insights for environmental policy and 

management (Broto et al., 2012; Graedel, 2019). 

In contrast, MS analysis focuses on the accumulated materials within a system, 

such as in buildings, infrastructure, or products. This analysis is instrumental in 

understanding the dynamics of MS accumulation over time and evaluating the 

relationships between stocks, flows, and services. It provides an in-depth perspective 

on the potential for secondary resource recovery and the implications of embodied 
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carbon emissions in various materials. By quantifying the materials accumulated in 

built environments and other infrastructures, MS analysis plays a critical role in guiding 

sustainable resource management and promoting circular economy practices (Fishman 

et al., 2016; Gillott et al., 2023). While MFA offers insights into the movement and 

transformation of materials within a system, MS analysis complements this by shedding 

light on the accumulation and potential reuse of materials.  

So far, the evolution of MS research can be mainly divided into three phases, each 

with distinct characteristics as illustrated in Fig. 1 (Fu et al., 2021). The first phase 

established the groundwork for material stock research, with a simple keyword network 

focusing on "material flow analysis," "copper," and "metal." Research topics included 

material account, waste management, and macro-resource management for metal 

stocks. Next it developed into the second phase: extensive exploration. This phase saw 

a significant expansion in thematic exploration, involving a complex network. The 

focus shifted to resource recycling in the field of "industrial ecology," with "in-use 

stock" and "material flow analysis" emerging as dominant topics. Research in this phase 

expanded to include various metals like iron, steel, aluminum, and nickel, with studies 

often employing a top-down approach based on MFA. In addition, there was an 

increased interest in hibernating stocks (obsolete materials with future urban resource 

exploitation potential) and more specific product stocks. The third phase presented a 

concentrated development, marking a further condensation and clarity in research 

topics. In this phase, the research continued to focus on "in-use stock" and MFA, but 

with an increasing emphasis on "material stocks" instead of flow, and on "construction" 

environmental stock. There was a notable shift towards bottom-up stock analysis 

methods. Studies began to concentrate more on the role and function of MS, considering 

the influence of stocks in the complex societal context. There was also a development 

of comprehensive MS studies at smaller scales, providing insights for high-resolution 

resource management policies. The MS analysis has provided a framework for 

analyzing and optimizing the use of materials and energy, supporting the transition 

towards more sustainable industrial and societal systems, and is vital for policy 
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development, efficient resource management, and the advancement of a circular 

economy. 

 
Fig. 1 Three phases of MS analysis in the evolutionary process (Fu et al., 2021) 

 

2.2 Literature review and state of the art 

2.2.1 Bottom-up approach in material flow and stock accounting 

Material flow and stock accounting is crucial for understanding and managing 

material use in the context of sustainability, urban planning, and environmental 

conservation. The estimating approaches which are generally categorized into top-

down, bottom-up, and their combination and extension (Lanau et al., 2019). 

The top-down method estimates MS by analyzing aggregate data over large spatial 

and temporal scales. It calculates stock based on the cumulative difference between 

material inflows and outflows, using data such as national material flow statistics. This 

method often includes socioeconomic variables to refine calculations, making it 

suitable for national-level or larger regional assessments. While the top-down method 

is relatively quick to compile, it generally lacks spatial distribution details and depends 

heavily on the accuracy of lifetime distribution assumptions and parameters (Miatto et 

al., 2017a; Zhang, Y.P. et al., 2019). In contrast, the bottom-up method constructs with 
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the MI coefficient (for building MS, i.e., material mass per unit of building inventory) 

and a physical inventory of MS at a specified level, such as individual buildings or 

products, and aggregates this information to estimate total stocks (Arora et al., 2019; 

Mesta et al., 2019). Compared with a top-down manner, bottom-up stock accounting 

results are considered more accurate in terms of space and content variation as 

providing a granular view of MSs, including their spatial distribution, which is 

particularly useful for local or city-level assessments and is beneficial for identifying 

secondary resource sources and for more precise material recycling and recovery 

strategies (Arora et al., 2019; Lanau et al., 2019; Schiller et al., 2017). Thus far, the 

bottom-up method has been extensively applied to quantify material stocks at different 

spatial resolution, ranging from a section of a city (Marcellus-Zamora et al., 2016), to 

urban (Huang et al., 2017), national (Han et al., 2018; Tanikawa et al., 2015), and global 

scales (Deetman et al., 2020; Marinova et al., 2020), with temporal scopes containing 

a snapshot of a specific year (Guo et al., 2014) and the evolution over time (Han et al., 

2018; Hong et al., 2016; Nageli et al., 2020), using diverse source data such as statistics 

(Huang et al., 2013; Shi et al., 2012) and geographical information system (GIS) 

(Heeren et al., 2013; Miatto et al., 2019; Tanikawa and Hashimoto, 2009). 

In the bottom-up method, MI is a crucial coefficient for converting the physical 

number of objects into mass stock and flow regardless of the spatial and temporal scales 

(Kavgic et al., 2010; Lanau et al., 2019). The uncertainty of MI is directly propagated 

to the stock estimation results. MI varies with different building-level attributes such as 

structures, building service types, construction years, regions, and even case by case in 

the real world. This, on the one hand, implies the MI is barely likely to capture the true 

MS value. On the other hand, the collection from an on-site survey (Kleemann et al., 

2016), construction company data (Marcellus-Zamora et al., 2016), construction 

standards (Tanikawa and Hashimoto, 2009), and integration of high-quality and 

representative MI data have always been challenging, making it scarce and only 

applicable to limited areas without random sampling (Heeren and Fishman, 2019; 

Sprecher et al., 2022), and only a handful of studies randomly selected samples such as 



15 
 

(Lederer et al., 2021). However, for regions that have experienced substantial urban 

construction and thus where rapidly growing stock needs to be properly managed, no 

harmonized dataset has been created so far. In the case of China, the Construction 

Project Investment Estimation Handbook (Yu and Li, 1999) and building sample survey 

(Liu and Hu, 2006; Gu, 2009) are the sole sources of MIs used for most previous studies 

on Chinese building MS accounting owing to the lack of a compiled MI dataset (Guo 

et al., 2019; Hu, M. et al., 2010; Huang et al., 2013; Shi et al., 2012). 

The diversity of data sources renders inconsistency to the categorization basis of 

MI in different regions. The MI of buildings in Japan is usually presented by distinct 

structures (e.g., wooden, steel, and reinforced concrete) (Tanikawa et al., 2015; 

Tanikawa and Hashimoto, 2009), while in Europe and the USA, it is classified by 

utilization purpose (i.e., residential and non-residential) (Daxbeck et al., 2009; Haberl 

et al., 2021; Kleemann et al., 2017), occupation status (Gonti et al., 2018; Reyna and 

Chester, 2015; Wiedenhofer et al., 2015), and cohorts (Kleemann et al., 2017; Miatto et 

al., 2019; Schebek et al., 2017). Efforts have been made to harmonize MI values for 

comparison and transferability; for example, Schiller et al. (2019) discussed the options 

and limitations of the transferability of domestic building’s MIs between German and 

Japanese, while Lederer et al. (2021) addressed the question of the unit of the building 

inventory, which can be ground area, gross and net floor area, or even the volume 

(Heeren and Fishman, 2019). However, the following questions still prevail: which 

building attribute is the most important for MI? Or do these attributes have the same 

level of influence on building MI? These questions are critical for the harmonious study 

of the building MS in different regions of the world; however, no single study has 

provided the answer to them. 

Efforts have been made to explore the plausible solutions. To explore the extent 

building features can explain the MI variance, Heeren and Fishman (2019) conducted 

a statistical tool of analysis of variance (ANOVA) to detect whether apparent MI 

differences occur between publications from distinct journals. Ordinary least squares 

regression can be deployed to investigate how MI changes when a certain building 
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feature varies from one level to another level, where all building features are input into 

the model as a series of dummy variables (Heeren and Fishman, 2019). However, these 

methods are usually developed with strict examination of assumptions (e.g., normal 

distribution, independence, and homogeneity of the variances), under which realistic 

observation data likely fail. Meanwhile, researchers usually use average MI values as 

the important coefficient for material stock accounting (Hu, M. et al., 2010; Huang et 

al., 2013; Kleemann et al., 2017). To avoid the arbitrary determination of the MI, (Cao 

et al., 2018) identified the probability distribution of MI and estimated material stock 

using the Monte Carlo process through pseudo-random sampling, which reveals the 

uncertainty in providing the confidence interval, though this greatly increases the 

volume of calculations. (Arceo et al., 2021) investigated the MI variability of wood 

framed buildings by quantifying the MI of 40 single-family residences in Toronto, 

Canada, but with limited data sources and a single building type. (Vilaysouk et al., 2022) 

proposed a semisupervised machine learning method to classify MI for clustering 

building MI dataset and presented the probability distribution of residential buildings’ 

MI for five clusters. However, the use of limited data from different regions of the world 

provided by Heeren and Fishman (2019) makes the representativeness of the results an 

obvious concern. 

Is there a feasible way to identify the importance of each attribute while reducing 

the uncertainty associated with the average value? This needs to be supported by novel 

tools that can simultaneously consider multiple variables affecting MI and identify the 

respective importance of different variables. RF is a machine-learning technique 

developed to represent the superstructure of a ready-made decision tree data mining 

technique (Lin et al., 2021a; Lin et al., 2021b; Wang et al., 2018). RF effectively 

integrates the strengths of both statistical and machine learning methodologies. In this 

research, the RF model was employed, inputting a database of MI from Chinese 

buildings to identify the building attribute most crucially affecting MI (Yang et al., 

2020). To measure the degree of influence of different variables on MI and gain a deeper 

insight into their relationships with MI, partial dependence analysis was implemented. 
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Furthermore, a hierarchical MI dataset was predicted using the RF model. This 

approach departs from traditional average-based methods by incorporating the 

importance of different building attributes. This technique has the potential to extend 

the structural hierarchy of MI according to available information levels, offering a 

possibility to alleviate the data limitations in current built environment studies. 

2.2.2 The evolution and projection of MS 

The SSPs have emerged as a pivotal tool for comprehending the potential impacts 

of climate change across various societal dimensions. These pathways depict the 

possible future trajectories of global social and economic development in the 21st 

century, influenced by factors such as demographics, economic development, and 

income disparities (O'Neill et al., 2017; Riahi et al., 2017; Schandl, Heinz et al., 2020). 

Represented by SSP1-5, these scenarios encapsulate coherent narratives portraying 

sustainability, middle-of-the-road development, regional rivalry, inequality, and fossil-

fueled development, respectively. Researchers have utilized these pathways to 

investigate diverse issues, addressing the intricate challenges posed by climate change 

(Bauer et al., 2017; Popp et al., 2017; Schandl, Heinz et al., 2020). While SSPs serve 

as global development scenarios for climate change mitigation and adaptation, 

constructing regional or local extended versions of these scenarios is essential to ensure 

their applicability to specific areas (Frame et al., 2018). This is imperative due to the 

potential lack of region-specific drivers, unique national policy perspectives, and the 

unification of data in global narratives. For instance, Japan's specific challenges, such 

as an aging society and the need to obtain labor force from abroad, may not be explicitly 

incorporated in global scenarios (Chen et al., 2020). Given the crucial role of buildings 

and roads in the whole infrastructure and their impact on economic development, 

societal dynamics, and environmental sustainability, projecting future scale based on 

regional or local socioeconomic scenarios that reflect unique local circumstances 

becomes imperative. 

Several studies have been focusing on projecting the future building development 

trends. For instance, (Arehart et al., 2022) specifically examines the evolution of 
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structural systems and estimates the floor space in the U.S. building stock from 2020 to 

2100 under four SSP scenarios. (Le Boulzec et al., 2023) is more focused on the 

material requirements and energy demand of the materials production for the building 

sector up to the year 2100 under the SSP scenarios. Despite their insightful 

contributions, (Arehart et al., 2022) focus on the US building stock but with the 

scenarios of global trends, which may not capture possible local characteristics in the 

future. However, the extrapolation of historical data in (Le Boulzec et al., 2023) might 

not account for regional variations in building practices, materials, and regulations. 

On the other hand, the literature on road infrastructure and the transportation sector 

has overlooked the resource-related aspects of adaptation measures in the transportation 

sector, despite the significant role of transport infrastructure in societal material 

turnover (Augiseau and Barles, 2017; Tanikawa et al., 2015; Tanikawa and Hashimoto, 

2009). Although research on climate change impacts on road infrastructure and the 

transportation sector has grown, they mainly focus on identifying adaptation measures 

and assessing their effectiveness (de Abreu et al., 2022; Eisenack et al., 2012), so there 

is still insufficient in providing detailed, site-specific adaptation measures for countries 

with distinctive future regional development features like Japan. 

Given the long lifespan of infrastructure and its profound impact, evaluating future 

resource requirements at an early stage is crucial (Gassner et al., 2021). This research 

employed material flow analysis and MS analysis to depict the evolution of MS in road 

networks and buildings, aiming to project the expected MS in Japan by 2050 based on 

the national SSPs, ensuring that local unique characteristics are thoroughly considered. 

The evaluation of the anticipated MS allows for a detailed assessment of whether there 

will be continued demand or a potential decline, particularly considering factors such 

as population decrease and the consequent reduction in facility utilization. A 

comprehensive understanding of the relationship between MS evolution and material 

consumption can offer critical insights for informed decisions to optimize resource 

utilization and minimize adverse environmental impacts. Moreover, it is integral to 

developing sustainable infrastructure policies and practices that are responsive to 
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evolving demographic and economic trends. 

2.2.3 Dynamic simulation of future land use types 

Given the dominant role of the MS of buildings and road networks in the overall 

MS of infrastructure, it is fundamental to understand and simulate the spatial changes 

of roads and buildings for sustainable urban and regional planning. These simulations 

are vital for anticipating future development patterns, managing natural resources 

efficiently, and mitigating environmental impacts. Land use and land cover change 

(LULCC) models serve as essential tools in this context as it can effectively simulate 

the dynamics of land-use systems, revealing critical interactions between land use 

changes and environmental consequences, thus providing insights into the dynamics of 

urban and infrastructural expansion (Wang et al., 2022). It transcends traditional static 

planning approaches by incorporating dynamic elements of urban growth and 

infrastructure development. This capability is crucial in understanding the evolving 

patterns of roads and buildings, which are central to urban development. By offering a 

clear view of these dynamics, LULCC models aid policymakers and urban planners in 

making informed decisions, especially in strategic planning where decisions have long-

lasting socio-economic and environmental implications (Jantz et al., 2004; Pongratz et 

al., 2021). Furthermore, LULCC models can project future land-use patterns under 

various scenarios (Le Boulzec et al., 2023; Yang et al., 2019; Zhang et al., 2017), 

allowing planners to anticipate and prepare for future expansions or modifications in 

road networks and building distributions. 

The integration of LULCC models with other systems such as cellular automata 

and dynamics models enhances their applicability in urban planning by improving the 

accuracy of urban expansion simulations (Berberoğlu et al., 2016; Clarke, 2008; Wang 

et al., 2022). This integrative approach helps in optimizing land-use patterns and 

improving sustainable land management. Therefore, LULCC models play a pivotal role 

in guiding sustainable urban and regional planning efforts, making them indispensable 

in modern urban development and environmental conservation strategies. This research 

utilized LULCC model along with GIS tool for simulating the spatial changes of land 
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use changes in Japan's three major metropolitan areas, especially for construction areas 

and road networks. Unlike traditional data analysis models that may overlook the spatial 

dimension, GIS explicitly incorporates geographic and spatial data, allowing for a more 

nuanced understanding of spatial patterns. At the same time, LULCC Models integrate 

spatial data with temporal dynamics, enabling a deeper understanding of how land use 

and land cover have evolved over time and how they might change in the future. 

Japan's three major metropolitan areas – the Greater Tokyo area, Kenki 

metropolitan area (Osaka), and Chukyo metropolitan area (Nagoya) was selected as the 

focus area for analyzing and predicting land use changes, particularly in road and 

construction sectors. As principal economic hubs of Japan, these metropolitan areas 

contribute substantially to the national Gross Domestic Product (GDP). Their dense 

population presents both challenges and opportunities in urban planning and land use 

management. On the other hand, Japan’s population continues to decline and age, the 

demand for infrastructure and its utilization patterns will undergo significant changes. 

In terms of infrastructure adaptation, with a declining population, there is less stimulus 

for new infrastructure development, allowing for a more efficient allocation of 

resources towards the maintenance and optimization of existing structures. Furthermore, 

the aging population necessitates a shift towards enhancing accessibility and safety for 

the elderly. Additionally, the aging and reduction in population are expected to lead to 

a decrease in housing demand, particularly in suburban and rural areas, resulting in a 

rise in vacant properties, thus potentially leading to urban decay and land 

underutilization. By providing spatially explicit and temporally dynamic predictions, 

these models can help in identifying potential areas for urban development, 

infrastructure needs, resource management, or conservation efforts, grounded in a 

spatial understanding of the landscape. By focusing on road and construction areas 

within these regions, the study can provide critical insights into infrastructure needs and 

urban growth trends, which are essential for addressing the requirements of a densely 

populated area and planning for sustainable urban expansion. Furthermore, urban 

expansion, particularly in road and construction sectors, has profound environmental 
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consequences. The insights derived from such analyses are pivotal in informing urban 

planning and policy decisions, aiming to optimize land use for material metabolism, 

environmental sustainability, and societal wellbeing. 

2.2.4 Comparative analysis of MS prediction models 

Understanding the current MS of roadways and buildings is vital for optimizing 

infrastructure management and assessing the ecological footprint of construction and 

maintenance activities. Long-term prediction of MS is essential for ensuring the 

continued functionality, safety, and sustainability of infrastructure, enabling informed 

decisions about future resource allocation and investments in construction, maintenance, 

and upgrades. However, research on future MS estimation of road network 

infrastructure remains scarce, with data-driven methods such as machine learning 

primarily concentrated in road safety (Shaik et al., 2021; Sohail et al., 2023; Tang et al., 

2020). Few previous studies have either focused solely on past road stock in regions 

(e.g., Burghardt et al., 2022; Miatto et al., 2017b; Nguyen et al., 2019) or on disaster 

response scenarios. For instance, (Yuan et al., 2022) predicted near-future flooding 

status of road segments by employing a deep learning framework on fine-grained traffic 

data of their own and adjacent road segments. In contrast, Laurance et al. (2014) and 

Meijer et al. (2018) provided a global perspective on road length and estimated a 

significant increase in road length by 2050. In contrast, research on predicting future 

building MS is relatively abundant, using methods such as scenario analysis (Hirvonen 

et al., 2021) and dynamic stock-driven approach (Göswein et al., 2018; Stephan and 

Athanassiadis, 2018; Zhang et al., 2023). However, there are few simulations and 

analyzes on future spatial scales.  

In this context, this study stands out by examining historical road network changes 

over several decades, projecting future road and building in Japan based on regional 

SSP scenarios reflecting unique local conditions, and comparing various prediction 

models, including The Autoregressive Integrated Moving Average eXogenous Model 

(ARIMAX), Support Vector Regression(SVR), ARIMAX-SVR, Multiple Linear 

Regression (MLR), and other machine learning methods such as RF, Artificial Neural 
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Networks (ANN). Machine learning algorithms offer several significant advantages in 

analyzing and simulating data. Their abilities such as efficiently processing and 

analyzing large, complex datasets, adapting to new data, and capturing complex, non-

linear relationships make them increasingly popular tools in environmental science and 

sustainability research. Through data-based analysis and projection, this research can 

offer a deeper understanding of the MS evolution of roads and buildings in Japan, 

thereby providing information on facilitating resource allocation and policy 

formulation in infrastructure management under different regional SSP scenarios. 

3. Building MS accounting: exploring the role of MI 

3.1 Data and variables 

The raw MI database was compiled using data from 813 building samples 

spanning across China, constructed between 1949 and 2015. This comprehensive 

dataset is thoroughly detailed in (Yang et al., 2020) and is accessible via Zenodo (Yang 

et al., 2019). A more intuitive introduction and the distribution and sample size of each 

material in the dataset are illustrated in Fig. 2. A total of 769 buildings were included 

as samples; among them, 767 building samples contained steel materials; 758 samples, 

cement, and samples containing gravel are the least (696). For building structures, the 

majority was brick-wood structure (54.62%), and the sample size of steel structure was 

the smallest, accounting for only 1.56%. In terms of construction period and use type, 

buildings constructed in 1980s and residential types are the most frequent, accounting 

for 38.75% and 48.89%, respectively. Buildings constructed in 2000s and industrial use 

were the least frequent, with percentages of 6.24% and 18.34%, respectively. The 

sample size of buildings in southern and northern region of China is relatively even, 

with the proportion of northern to southern buildings being 1.12 to 1. 
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Fig. 2 Size and composition of building samples 

 

The MI values were calculated by dividing the mass of each building material by 

the corresponding building's gross floor area. The original database encompassed 10 

construction materials used in foundations and structural components of buildings. In 

subsequent analyses, six key materials - cement, steel, sand, gravel, wood, and brick - 

were chosen due to: (1) the sum of their MI values accounted for approximately 95% 

of the total value at average level, which is consistent with the results from other regions 

(Gonti et al., 2018; Guo et al., 2019), and (2) there are relatively more sufficient MI 

data samples for these materials than the others. Each building in the database was 

categorized based on four attributes: geographic location (i.e., northern or southern 

regions of China), use type (i.e., industrial, public, or residential), structural 

composition (i.e., steel, brick-concrete, brick-wood, or reinforced concrete), and 

construction era (i.e., 1970s and before, 1980s, 1990s, 2000s and after). These 

categories were selected to ensure a sufficient sample size and are considered as factors 

impacting MI, with their importance estimated in the subsequent sections. Wooden 

structures were excluded because of the small number of its samples in the original MI 

database and the scarcity of wooden buildings in current China (Luo et al., 2018). 

3.2 Correlation analysis 
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Several studies have indicated that high feature correlations can influence the 

feature importance measures in RF models, but a clear consensus on this impact is yet 

to be established (Gregorutti et al., 2017; Tolosi and Lengauer, 2011). Therefore, a 

correlation analysis was conducted to examine potential associations between features 

and their strength of the associations. Given that the four variables in this study are 

categorical variables, the chi-square test was employed to investigate whether there is 

an association between the variables, and to measure the pairwise correlations between 

four categorical variables. While the chi-square test effectively identifies the 

significance of the associations, it does not quantify the strength of the association. To 

address this, Cramer's V coefficient, which is a Pearson's chi-squared test-based 

measure, was utilized to quantify the strength of the association between two variables. 

This coefficient is not affected by sample size and therefore useful for large sample 

sizes as in the present study. The bias-corrected Cramer’s V was applied to further 

evaluate the strength of pairwise correlations between the four categorical variables 

(Bergsma, 2013). Cramer’s V ranges from 0, indicating no association, to 1, indicating 

a complete association between two categorical variables. In addition, the association 

between building materials was quantified using Pearson’s correlation coefficient, 

which lies between -1 and 1. A correlation coefficient nearing the absolute value of 1 

suggests a stronger association between the variables. 

3.3 Methodology: RF regressor 

The RF algorithm is an ensemble tool relying on the integration of multiple 

decision trees, encompassing both classification and regression trees used for predicting 

discrete and continuous variables, respectively (Dou et al., 2019). An individual 

regression tree is prone to high variance, resulting in unstable and imprecise predictions. 

Bagging regression tree enhances prediction performance by aggregating multiple 

models, which averages the outputs to minimize the variability inherent in single trees 

and reduces the risk of overfitting. However, the effectiveness of bagging can be 

compromised by correlations between trees, potentially diminishing the model's overall 

performance. RF addresses this issue by constructing a large collection of decision trees, 
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which is an evolution and refinement of bagging approach. Each component tree within 

the RF framework is developed through randomness, distinguishing RF as an enhanced 

tool of single decision tree. This learning algorithm is generally recognized for its good 

prediction accuracy, demonstrating robust and accurate performance in dealing with 

complex datasets (Dou et al., 2019; Wang et al., 2018). 

3.3.1 RF model development 

RF procedures are conducted in a series of steps: a) random resampling from the 

original dataset with the bootstrap method; b) constructing a regression tree for each 

bootstrapped dataset, selecting the best variable from a random subset when the node 

is split; c) repeating the first two steps to build numerous trees, until the predetermined 

number of trees is reached; d) aggregating information of all decision trees to make 

predictions by averaging the outputs from all the trees (Nguyen et al., 2013). 

Within this procedure, three parameters are crucial for RF modeling and need to 

be determined: ntree (the number of trees established in the RF model), mtry (the 

number of variables sampled randomly for splitting at each node), and nodesize (the 

minimum size in terminal nodes). The ntree parameter controls the number of trees 

grown in the RF model; a higher number of trees can stabilize model, but an excessively 

high number of trees increases computational demands without proportional efficiency 

gains (Wang et al., 2018). In this research, after computational tests (illustrated in Fig. 

3), the default ntree parameter of 500 trees was applied. Regarding mtry parameter, 

when the total number of variables is used, model is equivalent to bagging; when setting 

mtry to 1, the completely random splitting variable can lead to over-biased results. 

Given the presence of four variables in this research, the mtry parameter was set to 3, 

and the corresponding test results of mtry are detailed in Table 1. The nodesize 

parameter affects tree depth and computation time; larger nodesize results in shallower 

trees and less computation time, but limited nodes would result in some patterns in the 

data to be unlearnable. The default nodesize value of 5, widely used in prior research, 

was also employed here (Sun et al., 2016; Wang et al., 2018). 
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Fig. 3 Computation test of the number of trees (ntree) 

 

Table 1 Test results of mtry parameter 

 Steel Wood Cement Brick Sand Gravel 

mtry=2 0.238 0.747 0.620 21.273 27.335 30.339 

mtry=3 0.069 0.561 0.114 4.980 8.602 14.474 

 

The methods in this section were executed using the open-source R statistical 

computing environment, incorporating the following packages: randomForest 

(Breiman, 2001) for classification and regression based on a forest of trees using 

random inputs, caret (Kuhn, 2015) for data splitting and generating stratified bootstrap 

Steel Cement

Wood

Sand Gravel

Brick
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samples, and DALEX (Maksymiuk et al., 2020) for assessing variable importance and 

partial dependence. 

3.3.2 Identification of the building feature importance 

There are three measures of RF variable importance, namely, selection frequency, 

Gini importance, and permutation accuracy importance (Strobl et al., 2007). The 

technique of randomly permuting variable values can disturb the original association 

between the variables and the output: if a variable is associated with the output, 

substituting it with the randomly permuted one can significantly decrease the model's 

predictive performance (Wang et al., 2018). Therefore, the importance of variables was 

evaluated by measuring the model performance loss after the permutation of a selected 

variable. The method to measure variable importance is described in the literature 

(Biecek and Burzykowski, 2021). The Root Mean Square Error (RMSE) was utilized to 

evaluate the model's goodness-of-fit and overall performance. RMSE can identify large 

errors and evaluates fluctuations in the model response with respect to variance. RMSE 

is the square root of the Mean Squared Error (MSE) and indicates the sample standard 

deviation of the residuals. RMSE is defined as follows: 

!"#$ = √"#$ = 	(!
" 	∑ (ŷ# − -#)$"

#  =	(!
" 	∑ /#$"

#  (1) 

where n is the number of observations available; ŷi is the predicted value for the i-th 

observation; yi is the observed value of the dependent variables for the i-th observation; 

and ri is the residual for the i-th observation. In this analysis, 50 permutations were 

performed for each variable to measure the effect on the model caused by randomly 

permuting the values of variables. The importance for each variable was then quantified 

as follows: 

VIX,j = 
∑ ('()*!"#
"$% 	–	'()*!&)

.  (2) 

where VIX,j represents the variable importance for building feature X (i.e., structure, 

construction year, use type, and region) for material j after m permutations; m means 

the number of permutations (m = 50 in this analysis); RMSEji means the RMSE value 

for the i-th permutation for material j; and RMSEj0 means the RMSE value for the 

original, unpermuted data for material j. 
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In built environment stock studies that simultaneously measure multiple building 

materials, it is essential to maintain a consistent categorization of MI across different 

material types for convenient and efficient MI utilization. Thus, to measure and 

compare the overall importance of the four features across all materials, a normalization 

analysis was conducted to establish a consistent order of feature importance. The 

importance of each variable for each material was normalized using the most important 

variable as the criterion. The normalized variable importance is given by: 

NVIX,j = 
/0',!
/0)',!

 (3) 

where NVIX,j denotes the normalized importance of variable X for material j, and VIMX,j 

represents the importance of the most important variable for material j. The overall 

variable importance was then determined as the average importance across all materials. 

3.3.3 Effects of building features on MI: partial dependence 

Partial dependence (PD) plots were depicted to further analyze the relationships 

between MI and various building properties in the RF model. PD plots, introduced by 

(Friedman, 2001), graphically represent how the expected outcome of the model varies 

with alterations in a specific explanatory variable, while holding all other variables 

constant, in other words, showing the corresponding behavior of the expected model 

value with the changes in only a selected explanatory variable. A thorough explanation 

of this method is available in (Biecek and Burzykowski, 2021). The PD plots are 

particularly valued for their intuitiveness and have been widely applied as they allow 

to understand what influence the explanatory variable has on the model’s predictions 

separately. 

3.3.4 RF-based MI estimation 

The final MI values, based on the RF model, were estimated by averaging 

individual prediction of each tree across all 500 developed trees. A hierarchical 

structure for MI was constructed, reflecting the established order of overall variable 

importance. In this hierarchical MI estimation, upper-level MIs were calculated by 

averaging the MIs of all buildings within each upper category. The overall framework 

of this analysis is illustrated in Fig. 4. This joint prediction approach enhances the 
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stability of the RF model and reduces the risk of major errors by equalizing the effects 

of the training data (Wang et al., 2018). 

 

Fig. 4 The overall framework of building MI analysis using RF model 

3.4 Results 

3.4.1 Correlation analysis 

The Cramer's V coefficients, illustrating the relationships between four categorical 

variables for each building material, are displayed in Fig. 5, with all associated p-values 

are below 0.01. Across all materials, the strongest association was observed between 

construction year and region, as indicated by the highest Cramer's V value, suggesting 

a significant correlation. Moreover, the structure showed a moderate association with 

the construction year, and relatively high Cramer's V values, approximately 0.4, were 

also noted between structure and region. It should be noted that the dataset in this study 

might exhibit uneven sample distribution across different categories, potentially 

influenced by external factors during sampling, which could contribute to the observed 

strong correlations between certain categories. 
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Fig. 5 Correlation analysis: Cramer’s V test results of categorical variables. S: 

structure; Y: construction year; U: use type; R: region 

 

Pearson’s correlation coefficients between six building materials are presented in 

Fig. 6. A notable high correlation coefficient of 0.62 was observed between steel and 

cement, consistent with findings in other research (Heeren and Fishman, 2019). 

Additionally, sand displayed a moderate correlation with cement. The following section 

will individually measure the variable importance for the MI of each building material. 
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Fig. 6 Correlation analysis: Pearson’s correlation test results of building materials 

 

3.4.2 Building feature importance 

Fig.7 illustrates the variable importance measures in the RF model, derived from 

50 permutations. The length of each bar reflects the average variable importance 

(RMSE loss value) across 50 permutations, with longer bars indicating greater 

importance due to higher loss upon random permutation. The accompanying box plots 

on the bars represent the distribution of RMSE loss values over the 50 permutations. 

Different patterns emerged for the four building attributes across different materials. 

For steel and brick, the structure was identified as the most influential variable, 

followed by construction year. In the case of cement, structure was also most influential 

variable, with use type and construction year showing comparable levels of importance. 

For the other materials, construction year emerged as the most important feature. Sand 

and gravel displayed similar patterns in variable significance, whereas wood differed, 

showing comparable importance for region and construction year. 
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Fig. 7 Building feature importance: Means of variable importance measures over 50 

permutations with RMSE as the loss-function for the RF model; Values on the 

horizontal axis represent mean RMSE loss values and left edge of horizontal axis as 

shown in dashed lines represents the loss function for the full model (before variables 

are randomly permuted) over 50 permutations. S: structure; Y: construction year; U: use 

type; R: region 

 

To further investigate the impact of variable correlations on importance and assess 

the robustness of feature importance, new models with three of the variables were 

established after excluding one of the variables. These new models were performed 

using 50 permutations to calculate the mean variable importance (RMSE loss value) of 

three variables for each material (shown in Fig. 8). The most notable correlation, as 

depicted in Figure 5, was between construction year and region across all materials. 

Excluding the construction year variable revealed that structure became the most 

critical variable for all materials except wood. Removing the region variable also 

yielded an importance order for all materials other than wood consistent with findings 

of Fig. 7. Given the significant influence of construction year and region on wood's MI, 

their strong correlation likely affected the model in assessing wood's variable 
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importance. When both construction year and region were included (i.e., excluding only 

structure or use type), the importance order for wood aligned with Fig. 7. For sand and 

gravel, structure became more important than construction year upon the exclusion of 

use type. When structure was removed, the importance of region increased for steel, 

cement, brick, and gravel, as compared to Fig. 7. Overall, these findings reaffirmed that 

structure and construction year were the two factors that had the greatest impact on MI 

across these materials after removing one of the variables. 

 

Fig. 8 Building feature importance: Means of variable importance measures over 50 

permutations with RMSE as the loss-function for the RF model after removing one of 

the variables. Values on the horizontal axis represent mean RMSE loss values and left 

edge of horizontal axis as shown in dashed lines represents the loss function for the full 
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model (before variables are randomly permuted) over 50 permutations. S: structure; Y: 

construction year; U: use type; R: region 

 

The variable importance results were normalized to harmonize importance of 

various building attributes across materials, as shown in Fig. 9. Structure and 

construction year were found to be relatively more influential for the MI of these six 

analyzed materials. Use type and region, though of some importance, were not the 

major variables affecting material intensities of steel, brick, sand, and gravel. In contrast, 

for wood and cement, region and use type respectively demonstrated relatively high 

importance. The overall analysis underscored structure as the most significant variable 

impacting a building's MI, followed by construction year, with use type ranking third 

but showing a considerable gap in importance from construction year. The region was 

identified as the least impactful variable among the four building attributes. 

 

Fig. 9 Normalized variable importance for the RF model 

 

3.4.3 Effects of building features on MI 
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In Fig. 10, PD plots are utilized to depict the impact of selected variables on 

predictions made by the RF model. The vertical axis of each plot represents the model’s 

response to a specific variable, assuming all other variables remain constant at their 

average levels. 

For the six materials analyzed, PD plots relating to structure reveal that steel 

buildings significantly influence the MIs of steel, cement, sand, and gravel, more so 

than other building types. Conversely, MIs of brick and wood are highly dependent on 

buildings related to brick (i.e., brick-wood and brick-concrete) and wood (i.e., brick-

wood), respectively. The PD plots in terms of construction year show a general trend in 

the MIs of different materials over time. For instance, the MIs of steel and cement 

exhibit an increasing trend, while those of brick and gravel have decreased since the 

1980s. The MIs of wood and sand have remained relatively stable since the 1980s, with 

minor variations. 

Despite use type and region being identified as less significant for MI compared 

to structure and construction year (as per Fig. 9), their PD plots still offer some 

interesting insights. Buildings intended for public use tend to consume higher material 

quantities per unit space, with the exception of brick and sand. In the right-hand column 

of Fig. 10, a consistent pattern across all materials indicates that buildings in the 

northern region of China have higher MIs than those in the southern region, particularly 

for steel, brick, wood, and cement. This distinction in MI between the two regions 

which has not been considered in previous studies (Hu, M. et al., 2010; Huang et al., 

2013; Shi et al., 2012), and provides new insights into the refined research. 
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Fig. 10 Effects of building attributes on MI: partial dependence plots. The values on the 

vertical axis represent the predicted average marginal effects for a given variable 

 

3.4.4 RF-based MI 

A RF model was utilized to predict the MI of six building materials. The findings 

for building MI for one of key materials, cement, are presented in Fig. 11. The RF-

based MI predictions of other materials is visualized in Appendix 1 and the dataset for 

all materials is also provided as Table in Appendix 2 so that researchers can easily 

access it and convert to other units as needed. Fig. 11 as well as Figures in Appendix 1 

show the hierarchical RF-based MI results of six building materials. The leaves 

represent the MI of the corresponding category, and the size of the leaf reflects the value 

of the MI. The darkness of leaf color indicates the uncertainty difference of MI 
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application results from inside to outside. The darker color indicates greater uncertainty 

and vice versa, as the MI of the upper category level considers fewer building attributes. 

For instance, the highest category level considers only structural attributes of the 

building, while the lowest level considers all four building attributes. The complete 

dataset for all materials is also accessible in an Excel format in Supplementary 

Information of (Zhang, R. et al., 2022), facilitating easy access and unit conversion for 

researchers. A quick MI calculator is provided in sheet "RF-based MI dataset". If MI 

with some building attributes is need, use the filter function of Excel to select the 

required attributes, and the filtered MI information of each material will be 

automatically calculated and displayed in cells of sheet.  

Taking a branch as an explanatory example (highlighted in red in Fig. 11), if only 

taking structure into account, the cement MI for a reinforced concrete structure is 

estimated to be 18.5 tons per 100 square meters, the highest intensity among all 

structures. This high intensity is attributed to the structural reliance on reinforced 

concrete and structural steel in the load-bearing frames of cement-intensive reinforced 

concrete buildings (Wang et al., 2015). In contrast, brick-wood buildings exhibit the 

lowest cement MI. Further down the hierarchy, buildings constructed after 2000 in the 

reinforced concrete category required 21.22 tons of cement per 100 square meters. 

Delving deeper, the cement MI for public buildings is estimated at 26.41 tons per 100 

square meters. Additionally, regional variations are considered at the lowest hierarchy, 

with cement MI for public buildings in northern and southern regions of China being 

31.86 and 20.96 tons per 100 square meters, respectively. 
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Fig. 11 RF-based MI for cement (Unit: ton/100 m2). BC: brick-concrete; BW: brick-

wood; S: steel; RC: reinforced concrete; 70s: 1970s and before; 80s: 1980s; 90s: 1990s; 

00s: 2000s and after; I: industrial; P: public; R: residential; S: southern; N: northern 

3.5 Discussion 

3.5.1 Comparison with mean values of MI 

Several previous studies on quantifying the MS of Chinese buildings have 

traditionally determined the MI of archetype buildings using mean values (Hu, M. et 

al., 2010; Huang et al., 2013; Shi et al., 2012), usually categorized based on structure 

(Guo et al., 2019; Hu, D. et al., 2010; Wang et al., 2015) and use type (Huang et al., 

2013; Shi et al., 2012), occasionally incorporating construction year (Han and Xiang, 

2013; Huang et al., 2013; Shi et al., 2012). This approach is executed by assigning equal 

weight to each influencing factor. For example, in calculating the average MI for a 

Cement
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building type defined by structure, other impacting factors like construction year, use 

type, and area are deemed equally important. However, our variable importance 

analysis (Fig. 7) suggests that these features vary in their importance for different 

materials. To validate the RF-based MI values and reveal the strength of hierarchical 

MI, results of this part were compared with mean values from (Yang et al., 2020) using 

the same MI database, as shown in Fig. 12. 

 

Fig. 12 Difference between RF-based MI and mean values of MI. The boundaries of 

the upper and lower whiskers represent the minimum and maximum (excluding 

outliers), respectively; the upper and lower boundaries of the box represent the upper 

and lower quartile, respectively; outliers are values that lie outside 1.5 times the 

interquartile range from either end of the box; the line in the middle represents the 

median and the blue mark represents the mean value 

 

As region factor is not included in Yang et al. (2020), the RF-based MIs used for 

comparison also consider only the three factors—structure, use type, and construction 
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period. On an average, the RF-based MIs generally exceed the mean values for most 

materials, except for steel. Nonetheless, the median differences between RF-based 

values and the mean are negligible across all comparisons. Notably, many outliers were 

observed in categories from the 1970s, where data variability was high (Yang et al., 

2020). A significant reason for these outliers is the averaging method's inability to 

account for regional variations due to incomplete sampling. For instance, the raw 

samples for the RC-I-1990s category comprised only data from China's northern region, 

regardless of differences in MI between the north and the south, making the average MI 

unrepresentative of the entire country. Similar regional biases were noted in other 

outlier categories, which only include data from the northern (e.g., RC-R-1970s, RC-

P-1970s, RC-I-1990s, RC-P-1990s, and S-P-2000s) or southern regions (BC-P-1970s 

and BC-R-1970s). The average value's reliance on sampling data highlights its potential 

for bias, if some features in the current category is missing, then the feature cannot be 

fully represented, and the result will be biased. However, this is mitigated in the RF 

model by capturing intrinsic dataset features, thus showcasing the RF model's 

superiority over mean-based methods. 

3.5.2 Application in material stock and flow analysis 

In bottom-up approach of building MS accounting, the physical dimensions of 

buildings, such as floor area or volume, are crucial alongside MI. However, obtaining 

definite and comprehensive building information is challenging. So far, various 

methods, such as GIS-based data (Heeren et al., 2013; Kleemann et al., 2017; Miatto et 

al., 2019), remote sensing images (Haberl et al., 2021; Liang et al., 2017; Schandl, H. 

et al., 2020), and conventional statistical data (Han and Xiang, 2013; Hu, D. et al., 2010; 

Hu, M. et al., 2010), are commonly used to gather physical building inventories, but 

each with varying and limited capabilities in capturing building typology information. 

For instance, GIS tool has been widely used for their spatial explicitness and it has a 

relatively greater potential to obtain diverse properties (Heeren et al., 2013; Kleemann 

et al., 2017; Tanikawa and Hashimoto, 2009). In areas such as Japan, all these four 

building attributes are explicitly integrated with a GIS dataset (Tanikawa et al., 2015; 
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Tanikawa and Hashimoto, 2009), while some areas can only access building GIS data 

with limited features (e.g., location, shape, and size) (Guo et al., 2019; Wang et al., 

2019). For remote sensing, the acquisition of physical quantity data with attributes is 

more limited compared with GIS. Remote sensing itself has been hard to identify 

building archetypes, despite with the development of auxiliary tools such as machine-

learning methods (Haberl et al., 2021; Schandl, H. et al., 2020). 

Given these challenges in data quality and availability in material stock and flow 

analysis, the RF-based MI dataset can offer substantial aid. In cases where information 

is lacking, the RF-based MI dataset estimated in this study can also be applied. For 

example, when building quantity data is limited to construction year and purpose of use, 

the adjusted MI can be derived from the RF-based MIs in Table 1, averaging the MIs 

under each category. This approach enables researchers to adapt the comprehensive RF-

based MIs to available building feature data. A user-friendly MI calculator in (Zhang, 

R. et al., 2022)have also been developed. This hierarchical MI database significantly 

enhances MS and flow studies on Chinese buildings, especially when combined with 

the varied tools and methodologies discussed above. 

Table 2 Estimated MI with construction year and use type information (Unit: ton/100 

m2) 

Construction 

year 
Use type Steel Brick Cement Wood Sand Gravel 

1970s and 

before 

Industrial 

Public 

Residential 

3.95 

4.93 

4.06 

76.37 

81.00 

76.53 

10.18 

13.32 

14.52 

4.26 

4.39 

4.75 

54.22 

40.67 

36.59 

36.58 

55.07 

46.95 

1980s 

Industrial 

Public 

Residential 

3.54 

3.89 

3.00 

69.69 

70.23 

62.70 

11.63 

14.41 

13.92 

2.64 

2.59 

2.63 

58.05 

58.22 

56.57 

61.55 

58.59 

55.90 

1990s 

Industrial 

Public 

Residential 

4.12 

7.48 

3.09 

64.10 

58.89 

47.92 

5.78 

20.10 

15.07 

2.52 

2.88 

2.70 

58.74 

60.74 

55.10 

56.89 

67.68 

51.74 
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2000s and 

after 

Industrial 

Public 

Residential 

4.19 

5.51 

4.29 

41.24 

34.43 

32.40 

12.44 

19.05 

16.91 

2.61 

2.95 

2.48 

60.05 

66.95 

54.79 

40.95 

42.50 

44.96 

 

3.5.3 Rethinking the MI in different regions 

The hierarchy for MI in buildings varies significantly across different studies. In 

Europe and the USA, buildings’ MIs are often classified based on utilization purpose, 

such as residential or non-residential (Haberl et al., 2021; Kleemann et al., 2017; 

Marcellus-Zamora et al., 2016; Miatto et al., 2019). In contrast, Japanese studies 

typically categorize MIs based on construction technology, like wooden, steel, or 

reinforced concrete structures (Tanikawa et al., 2015; Tanikawa and Hashimoto, 2009). 

Such inconsistency in hierarchy (i.e., construction-based typologies and use-based 

typologies) and varying reference units (e.g., gross or net floor area, ground area, 

volume) not only hinders comparisons between studies but also hampers the 

transferability of MI data (Lanau et al., 2019; Schiller et al., 2019). These findings 

suggest that structural attributes are crucial for Chinese buildings, aligning with 

Japanese studies but diverging from studies in western regions. However, in studies 

focusing on use-based typologies, it has not been examined yet whether use type is 

indeed the most influential factor, because both national statistics and researchers in 

Europe omitted attribute of structure while collecting MI data. If the evidence proved 

so in the future, then the MIs obtained with different categorization systems in different 

regions should be considered equally reliable, and thus the transferability of MI would 

become unfeasible among regions due to inconsistent hierarchy. 

Therefore, this underscores the importance of analyzing the influence of building 

features on MI, not only for estimating building MS but also for establishing local MI 

databases. Comprehensive and region-specific MI data collection through random 

sampling is essential, particularly in areas like Europe where buildings have longer 

lifespans and undergo extensive renovation activities. Considering the renovation status 

in these regions is vital. The RF-based approach used in this study offers a valuable 
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reference for identifying the most influential building attributes in different regions, 

once sufficient MI data is gathered. 

4. Roadway MS accounting: mapping historical patterns and projecting future 

trends 

4.1 Methodology 

4.1.1 Estimation of road MS in Japan with bottom-up method for 1965-2020 

The historical road MS can depict the evolution of Japan’s road system and serves 

as the cornerstone for predicting future road MS. The total road MS was determined 

using a bottom-up material flow analysis method, a common approach for detailed 

stock status evaluation in MS of materials or infrastructure (Arora et al., 2019; Dai and 

Yue, 2023; Gassner et al., 2020; Li et al., 2022) for its detailed description of stock 

status and the capability to display spatial differences in results (Lanau et al., 2019; 

Tanikawa et al., 2015). The methodology framework is outlined in Fig. 13. This 

quantification covered all prefectures in Japan, categorizing roads into highways, 

national roads, prefectural roads, and municipal roads. These roads were further 

segmented by width into five groups: greater than 19.5 meters, between 13.0 and 19.5 

meters, between 5.5 and 13.0 meters, between 3.5 and 5.5 meters, and less than 3.5 

meters. For the widest and narrowest categories, widths were standardized at 19.5 

meters and 3.5 meters, respectively. For the middle three categories, the average width 

of each category was used. Additionally, national, prefectural, and municipal roads in 

each prefecture were classified into concrete and asphalt types, according to the local 

proportions of concrete and asphalt pavement in each type of road. All roads narrower 

than 3.5 meters were categorized as simple asphalt paving. The total road MS in Japan 

from 1965 to 2019 was calculated as follows: 

"#1 = ∑ ("#12!,4,# +	1"#1,4,#4,# )                 (4) 

1"#1,# = ∑ (21,5 −	212!,5) · 41,5 · "51,5,#5              (5) 

where "#1 represents the total road MS of Japan in a given year t; 1"#1,4,# 	indicates 

the net addition to the MS of material i in prefecture p in year t; 21,5	is the length of 
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road type y in year t; 41,5 refers to the width of road type y in year t; and "51,5,# 
stands for the MI of material i used in road type y in year t. Tanikawa et al. (2015) 

provide a more comprehensive explanation of MI. Due to the unavailability of 2020 

data and the relative stability of road MS in recent years, the net addition to MS from 

2019 to 2020 was estimated based on the 2018 to 2019 data, assuming that the net 

addition to MS of 2019 to 2020 was the same as that from 2018 to 2019. Data for 

Okinawa prefecture roads starts from 1971 due to historical data constraints. 

After collecting MS data for each prefecture for four materials from 1965 to 2020 

through material flow analysis, GIS software, specifically ArcGIS, was used to merge 

this road MS data with geospatial information for each prefecture. This was achieved 

by superimposing the MS data onto maps for each prefecture. The resultant thematic 

maps graphically display the distribution of road MS across different prefectures over 

various years. These maps utilize varying color gradients and legends to clearly indicate 

different levels of MS, facilitating easy interpretation and understanding of the spatial 

distribution of road MS. 

4.1.2 Models: ARIMAX, SVR, hybrid ARIMAX-SVR, ANN, RF, and MLR 

The Autoregressive Integrated Moving Average (ARIMA) model is a prevalent 

tool for analyzing and forecasting time series data, using initial values of a given time 

series, lagged forecast errors, and lags. As MS growth can be driven by multiple 

processes, such as government policy and various forms of shocks, including 

international crises and price changes, the intrinsic trend and effects-based approach of 

ARIMA allows for forecasts of time-series data without explicitly identifying the 

causes of such trends and shocks (Fishman et al., 2016). In contrast, the ARIMAX 

model, which incorporates ARIMA's approach with additional explanatory variables, 

can provide more precise forecasts by integrating key historical data and relevant 

variables (Hossain et al., 2021; Yan et al., 2017). ARIMA model is delineated by 3 

parameters: p,d,q where,  

p is the order of autoregressive (AR) term; 

q is the order of moving average (MA) term; 
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d is the number of differences to make the time series stationary. 

The "Auto Regressive" in ARIMA means a linear regression model using its lags 

as predictors. p is related to the number of lags. q is related to the number of lagged 

forecast errors that should comply with the ARIMA model. The ARIMA model can be 

written in backshift notation as follows: 

61 − ∅!9 −⋯−	∅494;	(1 − 9)6-1 = < + 61 + =!9 +⋯+ =797 	;>1   (6) 

where -1 (1 ≤ t ≤ n) is the time series at time t; < is the mean term; B is the backshift 

operator (9-1 =	-12!); ∅# is the coefficient of AR term of lag i; =# is the coefficient 

of MA term of lag i; and >1 is the random error or white noise. 

ARIMAX model is an extension of Arima model, and it is a combination of AR 

model (using previous states), MA model (using past residuals); and ordinary 

regression model (using external variables on integrated series) (Bolanle and 

Oluwadare, 2017). An ARIMAX model can be expressed as: 

-1 =	∑?8@128 +	∅(9)2!=(9)>1                   (7) 

where @1 is a covariate at time t; β is the coefficient of the covariate; ∅(9)	is the AR 

operator; and =(9)	is the MA operator; where 

∅(9) = 	1 − ∅!9 −⋯−	∅494                   (8) 

=(9) = 	1 + =!9 +⋯+ =797 	                   (9) 

The stationarity of time series for each prefecture was tested using the 

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. The order of AR term (p) and MA 

term (q) were selected by minimizing the value of Akaike's Information Criterion (AIC) 

to decide the suitable model for each prefecture. The utilized methods were 

implemented using the open-source R statistical computing environment using R’s 

forecast package. The residual diagnostics was performed by Ljung-Box test and 

autocorrelation function and partial autocorrelation function plots. More detailed 

information of the ARIMAX model, and model selection and fitting procedures can be 

found in the references (Bolanle and Oluwadare, 2017; Hossain et al., 2021; Hyndman 

and Athanasopoulos, 2018; Hyndman and Khandakar, 2008). 

SVR is a non-parametric machine learning method based on Support Vector 
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Machine principles, tailored for regression problems (Awad and Khanna, 2015; Smola 

and Schölkopf, 2004). Unlike traditional regression, SVR does not assume a specific 

statistical distribution for input data. It uses kernel functions for fitting nonlinear data 

and focuses on finding the optimal hyperplane that maximizes the margin between 

predicted and actual values (Awad and Khanna, 2015; Ma et al., 2022; Mechelli and 

Viera, 2019), making it effective for handling complex datasets characterized by high 

variability and nonlinearity and has been widely used to solve various regression 

problems (Dash et al., 2021; Fan et al., 2021; Zhong et al., 2019). 

The ARIMAX-SVR hybrid model combines ARIMAX's and SVR's strengths. 

Assuming that the time series comprises both a linear autocorrelation component and a 

nonlinear residual component, it first utilized ARIMAX to predict future MS values, 

treating the deviation between these predictions and actual values as the residual, which 

was subsequently recorded as the nonlinear component. This residual was then used to 

build SVR model for future residual predictions (Xu et al., 2020). The outputs from 

both models were combined for a final and comprehensive MS forecast. ARIMAX 

models the linear aspects and external variables of the time series, while SVR addresses 

the nonlinear relationships. This hybrid approach leverages the strengths of both linear 

and nonlinear models and is expected to improve prediction accuracy compared to 

using either model alone. It has found application in diverse fields (Che and Wang, 

2010; Staffini, 2022; Xu et al., 2020; Xu et al., 2022; Zhang, Y.M. et al., 2019). 

Different models possess unique strengths and limitations, and their suitability for 

specific regression problem domains varies. For a holistic evaluation of these models, 

a comparative analysis involving three popular machine learning techniques—SVR, 

ANN, and RF—along with the widely used statistical method, MLR was conducted. 

ANN is a computational model that emulates the structure and function of 

biological neurons, consisting of interconnected layers of nodes that process 

information and learn from data. ANNs are particularly well-suited for various 

regression tasks, especially when dealing with large datasets and complex patterns. 

They excel in capturing intricate relationships and handling noisy data (Krogh, 2008; 
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Yegnanarayana, 2009). RF, an ensemble of decision trees, is robust against outliers and 

noisy data. Additionally, it demonstrates notable performance in the presence of 

irrelevant features and effectively handles missing data (Breiman, 2001; Cutler et al., 

2012). MLR serves as a baseline for comparison against the other machine learning 

methods. By including multiple independent variables to predict a continuous 

dependent variable, MLR aims to determine the best-fitting linear equation that 

explains the variation in the target variable based on the values of the predictors. This 

can provide insights into the strengths and weaknesses of machine learning models 

relative to traditional statistical approaches. 

4.1.3 Explanatory variables 

Four explanatory variables were utilized to forecast the expected future road MS: 

population, gross regional product (GRP), passenger transportation (measured in 

passenger-kilometer, pkm), and cargo transportation (measured in tonne-kilometer, 

tkm). Population and GRP were chosen for their comprehensive representation of both 

demographic and economic aspects as covering both population and affluence, 

recognized as two main ultimate drivers of environmental impact (Ehrlich and Holdren, 

1971; Meijer et al., 2018). The transportation data, divided into passenger and cargo 

transportation, reflects the demand and supply dynamics of transport services in a given 

region. Vehicle ownership was a critical factor in predicting transportation trends, as it 

directly influences traffic patterns and holds immense potential in anticipating and 

explaining future travel behaviors (Moody et al., 2021; Yang et al., 2017). 

Transportation data was computed by multiplying the number of vehicles and the 

individual vehicle transport index (IVTI) (MLIT, 2023a). 

Vehicles were categorized into passenger and commercial types. Passenger 

vehicles included private cars and buses, while commercial vehicles encompassed 

trucks and other commercial vehicles in addition to buses. In 2020, private passenger 

cars made up 79% of total vehicles, and there was a strong correlation between the 

number of passenger vehicles and the GRP in each prefecture. Consequently, linear 

regression models were established for each prefecture to predict the number of 
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passenger vehicles up to 2050, based on GRP projections for five SSPs (Wu et al., 2014). 

The R-square values and significance of these regression models are detailed in Table 

3. For commercial vehicles, which typically respond to population needs, future 

numbers were estimated based on the population projections of the five SSPs for each 

prefecture. It was noted that the ratio of commercial vehicles per capita had stabilized 

in recent years in each prefecture. 

Table 3 R-square and significance of linear regressions for each prefecture in Japan 

between the number of passenger vehicles and GRP 

Prefecture R2 Adjusted R2 Significance 
Hokkaido 
Aomori 
Iwate 

Miyagi 
Akita 

Yamagata 
Fukushima 

Ibaraki 
Tochigi 
Gumma 
Saitama 
Chiba 
Tokyo 

Kanagawa 
Yamanashi 

Niigata 
Toyama 
Ishikawa 
Nagano 
Fukui 
Gifu 

Shizuoka 
Aichi 
Mie 

Shiga 
Kyoto 
Osaka 
Nara 

Wakayama 
Hyogo 
Tottori 

0.90 
0.86 
0.84 
0.89 
0.81 
0.85 
0.85 
0.93 
0.91 
0.90 
0.95 
0.94 
0.96 
0.97 
0.80 
0.85 
0.85 
0.87 
0.89 
0.88 
0.90 
0.92 
0.93 
0.94 
0.89 
0.94 
0.92 
0.89 
0.89 
0.91 
0.73 

0.89 
0.86 
0.84 
0.89 
0.80 
0.85 
0.85 
0.93 
0.91 
0.90 
0.95 
0.94 
0.96 
0.97 
0.79 
0.84 
0.84 
0.87 
0.89 
0.88 
0.90 
0.92 
0.93 
0.94 
0.89 
0.93 
0.92 
0.88 
0.88 
0.91 
0.72 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 
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Shimane 
Okayama 
Hiroshima 
Yamaguchi 
Tokushima 

Kagawa 
Ehime 
Kochi 

Fukuoka 
Saga 

Nagasaki 
Kumamoto 

Oita 
Miyazaki 

Kagoshima 
Okinawa 

0.86 
0.85 
0.84 
0.90 
0.95 
0.86 
0.85 
0.85 
0.91 
0.87 
0.85 
0.85 
0.85 
0.89 
0.88 
0.90 

0.86 
0.84 
0.84 
0.90 
0.95 
0.85 
0.84 
0.85 
0.91 
0.87 
0.84 
0.84 
0.84 
0.88 
0.88 
0.90 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 

*** 
*p**p***p<0.01 

 

4.1.4 Forecast of road MS in Japan by 2050 

The estimation of future road MS until the year 2050 was conducted by 

incorporating prospective explanatory variables, namely population, GRP, passenger 

transportation, and cargo transportation, for each prefecture across five SSPs. The 

evaluation of the relationship between road MS and these explanatory variables 

involved a multistep process, as illustrated in the overview figure of Fig. 13. 

 

Fig. 13 Overview and research methodology 
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Initially, the ARIMAX model was developed for time series data spanning from 

1965 to 2020. The dataset was partitioned into training data (1965 to 2015) and testing 

data (road MS data after 2015). Akaike's Information Criterion (AIC) was used to select 

the most suitable model, considering its performance on predicting the testing dataset. 

Model performance was assessed using the RMSE and mean absolute error (MAE) 

metrics, which are negatively-oriented and lower values indicated higher prediction 

accuracy. They are calculated as follows: 

RMSE = (∑ (5"2ý")*+
"$%

"                         (10) 

MAE = 
∑ |5"2ý"|+
"$%

"                          (11) 

where -#  denotes the actual value; ý#  represents the predicted value; n means the 

number of observations. 

Subsequently, the SVR model was employed to predict the residuals of the 

ARIMAX model. Understanding the order of SVR model residuals and their impact on 

subsequent period residuals was crucial. To achieve this, a series of k time-ordered 

residual data was collected at each time point, arranged chronologically, and the aligned 

matrix was used as input for the SVR model. The SVR model outputs k + 1 data points, 

preserving the data error (Xu et al., 2020). The grid search algorithm was applied to 

optimize the epsilon parameter and cost parameter of the SVR model. 

Finally, the prediction results from both the ARIMAX and SVR models were 

combined to derive integrated results from the ARIMAX-SVR model. To address 

multicollinearity, the performance of the ARIMAX-SVR model and the ARIMAX 

model alone was examined, incorporating population and GRP as explanatory variables 

after excluding transportation data. The final model, demonstrating the highest 

prediction accuracy, was selected. All methodologies were implemented using the 

open-source R statistical computing environment. 

For MLR, SVR, ANN, and RF models, 10-fold cross-validation was applied to 

relate road MS for each prefecture to explanatory variables. Evaluation metrics, RMSE 

and MAE, were used, and these methods were implemented on the Weka platform, a 
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popular and widely used open-source software suite for data mining and machine 

learning tasks, primarily based on the Java programming language (Eibe et al., 2016; 

Hall et al., 2009). Hyperparameters for these models are provided in Table 4. This study 

did not consider qualitative differences between SSPs, such as technological 

development (Fishman et al., 2021; Meijer et al., 2018; Yokoi et al., 2022). The 

comprehensive analysis and comparison of these machine learning models offer 

insights into their performance for road MS prediction. 

Table 4 Information and parameters for MLR, SVR, ANN, and RF models on Weka 

platform 

Models Information and parameters 

MLR Eliminate colinear attributes: True 

SVR Kernel: Polynomial Kernel; Exponent:1.0; Parameter C: 1.0 

ANN Learning rate: 0.2; Momentum: 0.2; Number of Epochs: 500 

RF ntree: 500; number of randomly chosen features: 3;  

*For other hyperparameters not showed, the default values of the Weka software were 

utilized. 

 

4.1.5 Data sources 

Historical road statistical data and road MI from 1965 to 2020 for each prefecture 

were obtained from the Ministry of Land, Infrastructure, Transport and Tourism of 

Japan (MLIT, 2022) and (Tanikawa et al., 2015), respectively. Data on historical 

population in Japan were collected from the portal site for Japanese Government 

Statistics (e-Stat, 2022), while data on future population under the five SSPs were 

obtained through the Adaptation Information Platform of Japan (A-PLAT, 2022). 

Historical GRP data were retrieved from the Cabinet Office, Government of Japan 

(COGA, 2022), and the average future GRP of each prefecture under the five Japanese 

SSPs were obtained from (Honjo et al., 2021). Historical data on vehicle numbers and 

transportation were collected from the Automobile Inspection and Registration 

Information Association of Japan (AIRIA, 2023) and the Ministry of Land, 
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Infrastructure, Transport and Tourism of Japan (MLIT, 2023a), respectively. 

4.2 Results 

4.2.1 Evolution trends and material decomposition of road MS over the past half 

century 

Fig. 14 illustrates the material and regional composition as well as the 

chronological distribution of road MS. In this diagram, the width of nodes on the left 

denotes the quantity of road MS in each prefecture, the width of nodes in the middle 

corresponds to the amount of different types of road materials, and on the right, the 

width of nodes represents the distribution of road MS across different years. Through 

the analysis of the inter-node flow, this diagram facilitates the identification of 

disparities in road MS among various regions and variations in the quantities of 

materials utilized. Consequently, this graph offers an intuitive understanding of the 

distribution of road MS and its changes over time. 
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Fig. 14 The material and regional composition 

 

Hokkaido, the prefecture with the largest amount of road MS, contributed 7.6% to 

12.4% and 9.4% to 15.2% of aggregate and asphalt, respectively, across the four periods. 

However, only 2% to 3.1% of concrete and 2.5% to 3.5% of iron were attributed to 

Hokkaido. The distribution of asphalt, concrete, and iron in each prefecture to some 

extent reflects variations in road types across different regions. For instance, clear flows 

from Hokkaido and Aichi are visible in asphalt, while in concrete, Shizuoka, Nagano, 

and Niigata contribute relatively substantial flows (Fig. 14). 

Fig. 15 presents the material composition with values in each prefecture for 

different periods and Fig. 16 illustrates the change in the percentage of each material 

from 1965 to 2020. Aggregate emerged as the predominant material in road MS, 

constituting over 70% in each period, followed by asphalt, ranging from 16% to 21%. 

The contribution of iron was minimal, as it was only included in concrete roads, with 

asphalt roads being more prevalent than concrete roads in Japan. 
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Fig. 15 The material composition with values in each prefecture for different period 
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(Unit: Mt) 

 

 

Fig. 16 The change in the percentage of each road material from 1965 to 2020 

 

Fig. 17 presents the growth in road MS and the Average Annual Growth Rate 

(AAGR) for each prefecture across four periods (i.e., 1965-1980, 1980-1995, 1995-

2010, and 2010-2020). While the growth varied regionally, the AAGR exhibited a 

consistent trend. Owing to its expansive area and ongoing road system development, 

Hokkaido demonstrated a notably higher road MS growth over the past few decades 

compared to other prefectures (Fig. 17a). It is noteworthy that, during 1965-1980, due 

to a lack of initial year data in Okinawa, the road MS in Okinawa in 1980 is presented 

instead of the increase from 1965 to 1980. In the first two periods (1965-1980 and 1980-

1995), most prefectures experienced substantial growth. Conversely, in the last decade, 

Osaka and Kyoto even witnessed a decline in road MS by 1.21 and 0.32 Mt, respectively. 

In terms of AAGR, the majority of prefectures exhibited a gradual decrease over the 

four periods, particularly in the last decade, suggesting that the road MS is reaching 

saturation. The AAGR, initially ranging from 6% to 10% in the first fifteen years, 

dropped to 0.19% to about 1% in the last decade, except for Shizuoka, Osaka, and 

Kyoto. Shizuoka was the sole prefecture with an improved AAGR compared to 1995-

2010, while Osaka and Kyoto recorded AAGRs of -0.13% and -0.06% over the last ten 

years, respectively. 
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Fig. 17 Trends in road MS over the past half century: a) The amount of road MS growth 

for each prefecture (Unit: Mt); b) The average annual growth rate for each prefecture 

 

4.2.2 Spatiotemporal evolution and prefectural differences of road MS in Japan 

Fig. 18 illustrates the evolution of total road MS for each prefecture in Japan in 

1965, 1980, 1995, 2010, and 2020. Over 55 years, the total road MS in Japan increased 

by 5.5 times, rising from 758.39 Mt in 1965 to 4917.92 Mt in 2020, with significant 

growth observed in the eastern, central, and southern regions in each period. In 2020, 

Hokkaido prefecture contributed over 11% of the national total road MS, experiencing 

an 8.6-fold increase from 1965 to 2020. Aichi prefecture followed, comprising more 

than 4% of the country's total road MS in 2020, while the growth was much less 

compared to Hokkaido, with a growth of less than four times over 55 years. 

Nevertheless, the regions with substantial road MS did not necessarily exhibit the 

fastest growth. For instance, the road MS of Shimane prefecture soared from 5.07 Mt 

in 1965 to 66.18 Mt in 2020, an increase of 12 times, followed by a tenfold increase of 

Iwate prefecture, from 11.93 Mt in 1965 to 132.8 Mt in 2020. In contrast, Tokyo, Osaka, 
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and Kyoto showed more modest growth rates of 1.4, 2.2, and 2.4 times, respectively, 

over the past five decades, collectively accounting for 2%, 1.9%, and 1% of the national 

total road MS in 2020. 

 
Fig. 18 The evolution of the total road MS in 1965, 1980, 1995, 2010, and 2020 

 

4.2.3 Projection of expected road MS by 2050 

The model information and performance metrics of the ARIMAX-SVR and 

ARIMAX models for each prefecture, considering various combinations of explanatory 

variables are presented in Table 5. In Table 6, the model performance of MLR, SVR, 

ANN, and RF models is evaluated based on RMSE and MAE, considering all 

explanatory variables. Among these four models, both ANN and RF demonstrated 

superior performance when compared to MLR and SVR. However, only specific 

prefectures, such as Chiba and Aichi, exhibited significantly improved predictive 

performance compared to ARIMAX and ARIMAX-SVR models. Interestingly, the 

hybrid ARIMAX-SVR model did not outperform the ARIMAX model alone in many 

prefectures, as evidenced by the performance measures (RMSE and MAE) on the 
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testing dataset. This could be attributed to the possibility that the residuals did not 

contain enough non-linear patterns to be captured by the SVR model. This could be 

attributed to the fact that the residuals generated by the ARIMAX model had been too 

small and too close to zero for the SVR model to detect any significant non-linear 

patterns. Consequently, the model with better predictive accuracy, whether ARIMAX 

or the hybrid model, was selected for forecasting future road MS for each prefecture. 
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Table 5 The model information and performance of ARIMAX-SVR and ARIMAX alone for each prefecture 

Prefectures 

Four variables Two variables 

ARIMAX 

model 

(p,d,q) 

Fitting accuracy ARIMAX 
Hybrid ARIMAX-

SVR 

ARIMAX 

model 

(p,d,q) 

Fitting accuracy ARIMAX 
Hybrid ARIMAX-

SVR 

 RMSE MAE RMSE MAE RMSE MAE  RMSE MAE RMSE MAE RMSE MAE 

Hokkaido 

Aomori 

Iwate 

Miyagi 

Akita 

Yamagata 

Fukushima 

Ibaraki 

Tochigi 

Gumma 

Saitama 

Chiba 

Tokyo 

Kanagawa 

Yamanashi 

Niigata 

(1,2,0) 

(1,2,0) 

(1,2,1) 

(1,2,1) 

(1,2,0) 

(1,2,0) 

(1,2,0) 

(1,2,0) 

(1,2,1) 

(0,2,1) 

(1,2,1) 

(1,2,0) 

(1,2,1) 

(1,2,1) 

(1,2,0) 

(1,2,0) 

1.73 

0.29 

0.42 

0.35 

0.34 

0.32 

0.61 

0.53 

0.41 

0.35 

0.49 

0.56 

0.50 

0.40 

0.50 

0.27 

0.93 

0.14 

0.25 

0.17 

0.18 

0.18 

0.30 

0.21 

0.25 

0.21 

0.33 

0.24 

0.22 

0.16 

0.27 

0.13 

7.42 

0.91 

0.59 

2.37 

1.01 

0.86 

4.22 

0.40 

0.80 

1.06 

0.70 

4.49 

0.73 

1.27 

0.32 

0.14 

7.42 

0.89 

0.56 

2.04 

1.00 

0.85 

4.22 

0.35 

0.71 

1.01 

0.49 

3.94 

0.71 

1.19 

0.29 

0.12 

6.82 

0.95 

0.74 

2.58 

1.10 

1.00 

4.34 

0.50 

0.79 

1.15 

0.76 

4.61 

0.66 

1.28 

0.37 

0.29 

6.71 

0.92 

0.69 

2.24 

1.05 

0.98 

4.34 

0.43 

0.66 

1.06 

0.56 

4.03 

0.63 

1.20 

0.31 

0.23 

(1,1,2) 

(1,1,0) 

(1,1,1) 

(1,1,0) 

(1,1,1) 

(1,1,1) 

(1,1,0) 

(1,1,0) 

(2,1,1) 

(0,2,3) 

(3,2,0) 

(0,2,3) 

(0,2,3) 

(0,2,3) 

(2,1,2) 

(1,1,0) 

1.75 

0.30 

0.47 

0.36 

0.35 

0.33 

0.63 

0.53 

0.42 

0.35 

0.54 

0.56 

0.52 

0.40 

0.52 

0.27 

1.06 

0.14 

0.25 

0.17 

0.18 

0.18 

0.30 

0.24 

0.26 

0.20 

0.24 

0.27 

0.21 

0.16 

0.25 

0.15 

0.50 

0.35 

0.38 

1.76 

0.84 

0.07 

0.09 

0.17 

0.68 

1.23 

1.48 

4.04 

0.18 

1.18 

0.19 

0.09 

0.39 

0.28 

0.30 

1.50 

0.82 

0.06 

0.06 

0.15 

0.59 

1.12 

1.28 

3.54 

0.14 

1.09 

0.12 

0.08 

0.51 

0.37 

0.85 

2.02 

0.93 

0.43 

0.24 

0.32 

0.63 

1.34 

1.42 

4.18 

0.12 

1.18 

0.25 

0.24 

0.41 

0.31 

0.72 

1.77 

0.84 

0.28 

0.17 

0.26 

0.54 

1.17 

1.22 

3.63 

0.10 

1.08 

0.19 

0.20 
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Toyama 

Ishikawa 

Nagano 

Fukui 

Gifu 

Shizuoka 

Aichi 

Mie 

Shiga 

Kyoto 

Osaka 

Nara 

Wakayama 

Hyogo 

Tottori 

Shimane 

Okayama 

Hiroshima 

Yamaguchi 

Tokushima 

Kagawa 

Ehime 

(1,2,0) 

(1,2,0) 

(1,2,1) 

(1,2,1) 

(2,2,0) 

(2,2,1) 

(2,2,3) 

(1,2,0) 

(0,1,3) 

(1,2,0) 

(3,2,2) 

(1,2,0) 

(3,2,1) 

(1,2,1) 

(0,2,1) 

(2,2,0) 

(1,2,0) 

(1,2,2) 

(1,2,0) 

(0,2,1) 

(0,2,1) 

(2,2,1) 

0.31 

0.29 

0.24 

0.38 

0.42 

3.01 

0.80 

0.42 

0.26 

0.20 

0.86 

0.44 

0.24 

0.37 

0.10 

0.20 

0.45 

0.48 

0.36 

0.12 

0.17 

0.21 

0.16 

0.14 

0.16 

0.24 

0.19 

1.21 

0.58 

0.25 

0.18 

0.10 

0.51 

0.21 

0.13 

0.21 

0.04 

0.12 

0.22 

0.30 

0.21 

0.06 

0.09 

0.13 

0.80 

0.42 

0.89 

3.05 

1.63 

3.01 

5.00 

0.94 

1.22 

0.93 

1.88 

0.25 

0.85 

0.85 

0.19 

1.22 

0.95 

0.80 

0.32 

0.35 

0.83 

0.43 

0.75 

0.41 

0.70 

3.03 

1.63 

2.50 

4.69 

0.89 

1.20 

0.83 

1.82 

0.22 

0.78 

0.72 

0.17 

1.21 

0.79 

0.71 

0.32 

0.34 

0.79 

0.34 

0.76 

0.46 

0.95 

3.23 

1.66 

3.55 

5.78 

0.91 

1.11 

0.89 

2.65 

0.29 

0.88 

1.59 

0.23 

1.26 

1.05 

0.97 

0.31 

0.34 

0.80 

0.57 

0.67 

0.46 

0.70 

3.17 

1.66 

3.08 

5.35 

0.86 

1.06 

0.80 

2.35 

0.26 

0.77 

1.20 

0.19 

1.25 

0.83 

0.80 

0.27 

0.34 

0.75 

0.44 

(1,2,1) 

(2,1,0) 

(1,1,1) 

(3,1,1) 

(1,1,0) 

(1,1,1) 

(2,2,3) 

(2,1,3) 

(0,1,2) 

(2,1,0) 

(1,1,0) 

(1,2,0) 

(1,1,2) 

(1,1,1) 

(0,2,1) 

(2,1,1) 

(2,1,1) 

(1,1,1) 

(0,2,2) 

(2,1,2) 

(2,1,0) 

(1,1,1) 

0.32 

0.29 

0.26 

0.39 

0.42 

3.11 

0.81 

0.41 

0.31 

0.20 

1.08 

0.44 

0.24 

0.39 

0.10 

0.20 

0.46 

0.50 

0.37 

0.12 

0.17 

0.21 

0.16 

0.15 

0.16 

0.23 

0.20 

1.27 

0.57 

0.26 

0.23 

0.11 

0.68 

0.19 

0.14 

0.21 

0.04 

0.12 

0.22 

0.31 

0.20 

0.07 

0.10 

0.13 

1.29 

0.11 

0.53 

1.38 

0.13 

4.91 

8.04 

0.88 

0.29 

0.88 

0.99 

0.70 

0.50 

1.62 

0.26 

0.54 

1.22 

0.18 

0.15 

0.07 

0.34 

0.42 

1.16 

0.10 

0.43 

1.32 

0.10 

4.47 

7.80 

0.81 

0.27 

0.78 

0.74 

0.64 

0.44 

1.39 

0.22 

0.54 

1.11 

0.15 

0.14 

0.06 

0.27 

0.34 

1.25 

0.25 

0.61 

1.70 

0.11 

3.82 

8.89 

0.87 

0.52 

0.88 

1.06 

0.66 

0.64 

2.01 

0.31 

0.58 

1.21 

0.50 

0.23 

0.09 

0.33 

0.38 

1.12 

0.19 

0.44 

1.55 

0.09 

3.27 

8.52 

0.75 

0.45 

0.77 

0.75 

0.55 

0.57 

1.55 

0.26 

0.58 

1.05 

0.32 

0.20 

0.08 

0.24 

0.34 
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Kochi 

Fukuoka 

Saga 

Nagasaki 

Kumamoto 

Oita 

Miyazaki 

Kagoshima 

Okinawa 

(2,2,1) 

(0,2,1) 

(1,2,0) 

(0,2,1) 

(1,2,0) 

(0,2,1) 

(1,1,0) 

(1,2,0) 

(1,1,0) 

0.23 

0.44 

0.23 

0.26 

0.26 

0.22 

0.42 

0.50 

0.53 

0.14 

0.26 

0.11 

0.15 

0.12 

0.11 

0.25 

0.28 

0.31 

0.48 

0.60 

0.40 

0.87 

1.61 

0.83 

1.15 

1.60 

1.81 

0.39 

0.59 

0.39 

0.75 

1.49 

0.81 

0.96 

1.46 

1.63 

0.61 

0.56 

0.36 

0.92 

1.69 

0.78 

0.94 

1.67 

1.89 

0.50 

0.53 

0.34 

0.83 

1.55 

0.74 

0.72 

1.54 

1.76 

(2,1,1) 

(0,2,2) 

(1,1,0) 

(2,1,0) 

(1,1,1) 

(1,1,3) 

(2,1,1) 

(1,2,0) 

(1,1,0) 

0.25 

0.44 

0.23 

0.25 

0.26 

0.19 

0.41 

0.52 

0.28 

0.15 

0.25 

0.12 

0.13 

0.13 

0.12 

0.23 

0.25 

0.12 

0.11 

0.64 

0.49 

3.04 

1.09 

0.12 

0.81 

4.87 

0.06 

0.10 

0.63 

0.49 

2.79 

0.98 

0.10 

0.74 

4.47 

0.05 

0.26 

0.76 

0.52 

3.09 

1.15 

0.21 

0.79 

4.89 

0.06 

0.19 

0.75 

0.50 

2.82 

1.05 

0.19 

0.74 

4.49 

0.05 

Note: Four variables indicate population, gross regional product (GRP), passenger transportation, and cargo transportation; Two variables indicate 

population and GRP, which are widely considered to be the two main ultimate drivers for environmental impact. 

 

Table 6 The model performance of MLR, SVR, ANN, and RF for each prefecture 

Prefectures 
MLR SVR ANN RF 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

Hokkaido 

Aomori 

Iwate 

Miyagi 

Akita 

Yamagata 

Fukushima 

14.86 

2.94 

2.12 

3.58 

1.60 

1.61 

2.72 

12.5 

2.67 

1.68 

2.99 

1.24 

1.41 

2.40 

14.95 

3.33 

2.15 

3.67 

1.57 

1.80 

2.79 

12.61 

2.98 

1.66 

2.99 

1.20 

1.48 

2.30 

6.39 

0.65 

1.16 

2.33 

0.8 

0.73 

1.98 

5.34 

0.53 

0.97 

1.90 

0.67 

0.61 

1.71 

8.36 

1.33 

2.29 

1.55 

1.44 

1.24 

3.31 

6.55 

1.07 

1.78 

1.27 

1.10 

0.96 

2.38 
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Ibaraki 

Tochigi 

Gumma 

Saitama 

Chiba 

Tokyo 

Kanagawa 

Yamanashi 

Niigata 

Toyama 

Ishikawa 

Nagano 

Fukui 

Gifu 

Shizuoka 

Aichi 

Mie 

Shiga 

Kyoto 

Osaka 

Nara 

Wakayama 

2.09 

2.09 

1.41 

1.63 

3.42 

2.71 

6.63 

5.11 

2.54 

3.96 

1.97 

0.78 

3.78 

2.85 

8.53 

2.22 

2.17 

1.49 

1.51 

1.23 

3.29 

1.86 

1.64 

1.79 

1.14 

1.33 

3.00 

2.29 

5.65 

4.45 

2.16 

3.25 

1.74 

0.63 

3.10 

2.36 

7.11 

1.84 

1.81 

1.31 

1.26 

0.97 

2.66 

1.46 

2.04 

2.16 

1.48 

1.71 

3.78 

3.86 

3.15 

5.35 

2.94 

4.29 

2.11 

0.77 

4.00 

3.19 

10.49 

2.52 

2.49 

1.57 

1.66 

1.24 

3.36 

1.89 

1.60 

1.85 

1.23 

1.32 

3.24 

3.00 

2.28 

4.60 

2.30 

3.26 

1.82 

0.62 

3.27 

2.43 

6.77 

1.98 

1.86 

1.29 

1.36 

0.96 

2.71 

1.48 

1.55 

1.76 

1.11 

1.98 

2.87 

1.24 

1.06 

1.84 

1.22 

1.65 

0.85 

0.71 

2.99 

2.30 

5.90 

2.05 

2.23 

0.99 

1.10 

1.37 

2.47 

0.64 

1.31 

1.53 

0.95 

1.59 

2.37 

0.98 

0.91 

1.50 

1.04 

1.38 

0.73 

0.58 

2.43 

1.90 

4.64 

1.71 

1.87 

0.83 

0.86 

1.13 

2.04 

0.55 

2.40 

1.93 

1.81 

1.59 

1.34 

1.31 

1.01 

2.91 

1.08 

1.07 

0.84 

1.20 

2.56 

1.78 

3.77 

2.20 

1.89 

0.72 

0.88 

1.41 

2.14 

0.70 

1.94 

1.51 

1.41 

1.26 

1.09 

0.98 

0.76 

2.26 

0.88 

0.85 

0.65 

0.89 

2.13 

1.49 

2.66 

1.77 

1.42 

0.58 

0.68 

1.10 

1.72 

0.56 
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Hyogo 

Tottori 

Shimane 

Okayama 

Hiroshima 

Yamaguchi 

Tokushima 

Kagawa 

Ehime 

Kochi 

Fukuoka 

Saga 

Nagasaki 

Kumamoto 

Oita 

Miyazaki 

Kagoshima 

Okinawa 

0.98 

1.28 

2.82 

3.09 

5.65 

1.66 

1.08 

1.40 

2.17 

1.02 

4.64 

1.73 

1.72 

2.97 

2.94 

2.67 

4.77 

0.67 

0.86 

1.11 

2.34 

2.45 

4.89 

1.36 

0.89 

1.20 

1.93 

0.92 

3.74 

1.46 

1.41 

2.45 

2.62 

2.29 

4.02 

0.58 

1.04 

1.37 

2.87 

3.62 

6.68 

1.67 

1.14 

1.61 

2.31 

1.13 

5.01 

2.06 

1.91 

3.76 

3.14 

2.91 

5.49 

0.72 

0.86 

1.17 

2.01 

2.44 

5.15 

1.36 

0.90 

1.24 

2.05 

0.97 

4.03 

1.44 

1.42 

2.87 

2.80 

2.49 

3.92 

0.59 

0.62 

0.48 

0.80 

3.13 

3.79 

1.05 

0.56 

0.92 

0.84 

0.59 

2.51 

0.66 

0.70 

1.47 

1.26 

1.16 

1.39 

0.78 

0.50 

0.39 

0.65 

2.58 

3.14 

0.88 

0.47 

0.77 

0.70 

0.49 

2.17 

0.56 

0.58 

1.21 

1.02 

0.96 

1.13 

0.67 

0.66 

0.78 

0.89 

1.66 

2.31 

1.23 

0.57 

0.65 

1.02 

0.78 

1.58 

0.71 

0.91 

1.51 

1.85 

0.95 

1.83 

0.59 

0.54 

0.61 

0.73 

1.29 

1.81 

0.93 

0.46 

0.52 

0.83 

0.63 

1.32 

0.56 

0.73 

1.16 

1.28 

0.76 

1.41 

0.49 
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The prediction results for each prefecture under the five SSPs by 2050 were 

obtained using either the ARIMAX or ARIMAX-SVR model, incorporating 

explanatory variables such as population, GRP, and transportation data (passenger and 

cargo transportation). These results can be categorized into three patterns according to 

the growth pattern of expected road MS: 1) Starting to shrink, where MS reaches 

saturation and start to decline in subsequent years; 2) Staying stable or varying with 

scenarios, where expected road MS remains stable or exhibits dissimilarity across 

different SSPs; 3) Continuing to grow, where expected MS continues to increase until 

midcentury. Fig. 19 illustrates examples of expected road MS under each SSP scenario, 

with additional results for other prefectures provided in Appendix 3. 

In most prefectures, SSP5 displayed the highest expected road MS, followed by 

SSP1, while SSP3 represented the scenario with the lowest expected MS. SSP2, as the 

"middle of the road" scenario, demonstrated a moderate MS value. However, 

conflicting results were observed in certain regions, such as Akita and Okayama, where 

SSP3 emerged as the most demanding scenario (Appendix 3). Despite Hokkaido having 

the highest road MS in Japan, the expected MS was projected to shrink in the coming 

years. In Aichi prefecture, expected MS increased in SSP5 but exhibited a decreasing 

trend in SSP3, showcasing variability across the five SSPs. Some prefectures displayed 

similar trends in all scenarios with insignificant differences, such as Nagano, where MS 

was generally stable in the following years (Appendix 3). Conversely, road MS 

projections for certain prefectures, including Shiga and Osaka, indicated a notable 

downward trend across each SSP scenario, suggesting an expected decrease in road 

usage in these areas given the existing road infrastructure. 
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Fig. 19 Examples of expected road MS with five SSPs. Pattern 1: Starting to shrink; 

Pattern 2: Staying stable or varying with scenarios; Pattern 3: Continuing to grow 

 
4.2.4 Future regional differences in the magnitude of road MS discrepancies 

To illustrate the anticipated future trends and regional differences in road MS for 

each prefecture under SSP1-5, Fig. 20 illustrates the disparities in road MS between the 

current state in 2020 and the projected state in 2050, providing insights into the road 

material composition and the magnitude of the discrepancies. The discrepancy in road 

MS was classified into five levels based on percentage differences: a difference within 

10% is considered a slight fluctuation, an increase between 10% and 20% is categorized 

as moderate demand, and an increase of over 20% is deemed highly demanding. 

Conversely, a decrease in anticipated MS in 2050 compared to 2020 implies a reduction 

in road utilization, with a decrease of 10% to 20% considered a moderate reduction and 

a decrease of over 20% categorized as a severe reduction in utilization. 
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The most notable increase in road MS is observed in SSP5, where only Kyoto 

exhibits a severe reduction in road utilization, and Osaka shows a moderate reduction. 

For the remaining prefectures, projected road MS either shows slight fluctuations or 

further growth in the future. Conversely, SSP3 depicts the most significant decrease in 

road utilization, with 13 prefectures displaying a reduction trend, of which three exhibit 

a severe reduction in road utilization. Regarding the amount of the discrepancy and the 

material composition of road MS, aggregate emerges as the dominant material among 

the four road materials, followed by asphalt in most prefectures. However, in certain 

regions such as Yamanashi, Nagano, and Wakayama, the amount of concrete exhibits 

more variation than asphalt. This variation is primarily attributed to the relatively high 

proportion of concrete roads in the road types of these areas. 

 

Fig. 20 Discrepancies in road material magnitude and composition between road MS 

in 2020 and projected road MS in 2050 under five SSPs 

4.3 Discussion 

4.3.1 Identifying opportunities for material allocation under climate change 

Based on the projected outcomes, the anticipated future road MS in most Japanese 

prefectures by 2050 continues to exhibit an upward trend compared to the current state, 
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as depicted in Fig. 20. This suggests a sustained demand for road materials. However, 

the expansion of road infrastructure comes with trade-offs, considering the evolving 

societal needs. Previous studies have underscored the contribution of transport 

infrastructure investment to economic growth (Hong et al., 2011; Sanchez and Albert, 

2015; Yu et al., 2012), while simultaneously acknowledging the significant 

environmental impacts arising from material production in road construction and 

maintenance, including substantial carbon emissions (Yu et al., 2021). Moreover, given 

Japan's susceptibility to natural disasters and the increasing frequency of extreme 

weather events due to climate change, reinforcing the road network and incorporating 

disaster prevention features into existing facilities are crucial for ensuring the safety of 

aging infrastructure (MLIT, 2021). 

Therefore, balancing the escalating demand for materials with environmental 

concerns and enhancing resilience to climate change is pivotal for developing 

adaptation measures in future scenarios. A potentially effective strategy involves 

improving resource efficiency, closely aligned with the 3R initiative (reduce, reuse, 

recycle) promoted by the Japanese government (ME, 2023). Policies and regulations 

have been implemented in Japan to manage construction waste effectively, including 

the establishment of waste management facilities and the mandate for waste reduction 

plans in construction projects. Additionally, the increased utilization of recycled 

materials, such as recycled asphalt, steel, and reclaimed aggregates, in road construction 

and maintenance emerges could be a remarkable option to minimize the need for new 

materials and minimize waste (dos Reis et al., 2021; Poulikakos et al., 2017). The 

quantification of current road MS performed in this study provides great significance 

in understanding potential of secondary materials that could be reused in the future. 

Furthermore, Japan has one of the world's most extensive public transportation systems, 

with an extensive network of trains, buses, and subways. Strategically harnessing public 

transportation resources and prioritizing future transportation requirements for public 

transit could represent a promising approach to mitigate the environmental impact of 

future road construction. Embracing technological innovation and cultivating green 

infrastructure are also adaptive strategies to enhance the resilience of road infrastructure 

against the impacts of climate change. 

4.3.2 Road infrastructure management in a highly urbanized and aging society 

The projections for road MS in certain prefectures indicate significant downward 
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trends in some SSPs or even across all SSPs, as illustrated in Fig. 19. Given the 

prolonged lifespan of roads, this declining demand for MS may result in reduced road 

usage in these areas under existing infrastructure conditions. However, if zoom in on 

these regions, there is an uneven demand for road infrastructure within these regions. 

As road networks play a pivotal role in connecting people, facilitating goods and 

services movement, and influencing economic development and population distribution, 

they create opportunities for economic development while also encourage migration to 

urban centers to influence population distribution. Since the late 1990s, the population 

of non-metropolitan areas in Japan has been declining rapidly, largely due to the 

economic recession, and people from non-metropolitan areas have been moving to 

work in metropolitan areas (Lee et al., 2021). Increasing concentration of the population 

in metropolitan areas has led to increased traffic volume and demand for road 

infrastructure in these areas. Addressing this challenge necessitates improvements in 

road networks and transportation systems to prevent traffic congestion and longer 

commute times. The Japanese government has been gradually establishing policies to 

reduce the pressure on infrastructure in metropolitan areas. For instance, new regional 

development projects are being initiated in cities such as Tokyo, and evolving 

technologies such as intelligent transportation systems are being leveraged to address 

the issue (MLIT, 2021). 

Despite the implementation of policies to alleviate infrastructure pressure in 

metropolitan areas, depopulation in non-metropolitan areas poses a potential reduction 

in local demand for road infrastructure. This may result in diminished road maintenance 

and development, potentially leading to increased safety risks and challenges in 

handling extreme weather conditions. Moreover, Japan's aging population, coupled 

with the younger demographic's tendency to migrate to urban areas, leaves the elderly 

as the primary residents in non-metropolitan areas, relying more on public transit than 

private vehicles. This dynamic may result in inefficient road use and increased emphasis 

on road safety. The inefficient road use and maintenance costs not justified by the 

demand level pose significant financial and labor challenges for policymakers. To 

address these challenges, local governments must engage in comprehensive 

transportation planning that considers evolving demographic and transportation needs, 

allocating resources accordingly to ensure safe and efficient transportation while 

optimizing road space usage. 
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5. Building MS dynamics: analyzing spatial patterns and forecasting future 
developments 

5.1 Study area 

The three major metropolitan areas of Japan, namely the Greater Tokyo Area, the 

Kenki Metropolitan Area, and the Chukyo Metropolitan Area, represent pivotal hubs of 

economic, cultural, and political activity in the nation. More than half of the country's 

population lived in three major metropolitan areas in 2022 (Statistics Bureau of Japan, 

2023). The designated areas are displayed in Fig. 21. These regions were designated 

due to their significant population densities, economic output, and strategic roles in both 

national and international contexts (MIC, 2013). 

The Greater Tokyo Area, encompassing the Tokyo Metropolis along with the 

surrounding prefectures, stands as the preeminent urban and economic region of Japan. 

It is the most populous urban area in the country, with a population exceeding 36.8 

million in 2022, accounting for 29.5% of Japan’s total population (Statistics Bureau of 

Japan, 2023). This region is not only the center of Japan's economic activity, 

contributing significantly to the national GDP, but also a global hub for multinational 

corporations, financial institutions, and cutting-edge industries. In addition, the Kinki 

Metropolitan Area is located in the Kansai region of Japan. This area is a major 

economic hub with diversified industries, including manufacturing and pharmaceuticals. 

This metropolitan area has a combined population of approximately 18 million people 

in 2022, marking it as Japan's second-largest urban agglomeration (Statistics Bureau of 

Japan, 2023). The Chukyo Metropolitan Area, centered around Nagoya in Aichi 

Prefecture and extending into surrounding prefectures, boasts a population of 11 million 

in 2022, ranking as the third-largest metropolitan area in Japan (Statistics Bureau of 

Japan, 2023). This region is known for its robust industrial strength, and its strategic 

central location facilitates trade and connectivity within Japan and internationally. 
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Fig. 21 Location of the three major metropolitan areas in Japan 

 

5.2 Methodology 

5.2.1 Estimation of historical spatial building MS 

The estimation of historical spatial MS and its material composition of buildings 

in three metropolitan regions was conducted through a bottom-up methodology. This 

granular approach, which emphasizes the accumulation and analysis of individual data 

points to infer a comprehensive whole, is elaborately delineated in section 2.2.1. To 

create a detailed GIS database of construction MSs for study areas, data on the detailed 

locations and distributions of buildings is required. In this chapter, Zmap-TOWNII 

(2009, 2016, 2020) provided by Zenrin Co., Ltd. as the base data was utilized. Zmap-

TOWNII is a residential map database, created by survey staff walking the areas. In 

urban areas, surveys are conducted annually, and in other districts, they are conducted 

every few years to update changes. Therefore, the more recent the data year, the more 

refined the shape of the building polygons in urban areas. By utilizing stored 

information such as the shape of polygons, number of floors, types of buildings, the MS 

for each building was calculated by multiplying the total floor area of each building and 

the amount of construction materials of per unit floor area (i.e., MI, material input per 

unit area) (Tanikawa et al., 2015; Tanikawa and Hashimoto, 2009). MS of buildings in 

study area in 2009, 2016, and 2020 was estimated. 

5.2.2 Projection of serviceable building MS by 2050 

To forecast the MS of buildings within the designated study area, the anticipated 

future spatial distribution of the population across three metropolitan areas was 

employed as a foundational reference, framed within five SSPs. Due to constraints in 
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data availability, mesh data consisting of 1 km × 1 km resolution grids detailing 

population distribution for the year 2015 and building floor area data for the year 2016 

were utilized to establish a regression model within each mesh unit. A suite of 

regression techniques, including LR, polynomial regression (PR), RF, gradient boosting 

model (GBM), and SVR, were employed to capture the intricate relationship between 

population and building floor area within each mesh. LR, RF, and SVR were explained 

and conducted in the previous chapters. In addition to that, PR allows for capturing the 

non-linear relationship between variables, and can fit a wide range of data shapes, 

making it suitable for trend analysis and forecasting (Edwards, 2002; Ostertagová, 

2012). GBM can handle complex and non-linear relationships between features and the 

target variable by combining multiple weak predictive models, typically decision trees, 

into a strong model. It is less prone to overfitting, especially with the use of 

regularization techniques and because it builds trees sequentially, each one correcting 

the errors of the previous (Bentéjac et al., 2021; Natekin and Knoll, 2013). The model 

demonstrating the best performance after validation processes, was subsequently 

adopted as the final predictive tool to forecast future building floor area under the five 

SSP scenarios. Given the challenges in projecting future building structure types, these 

five aforementioned predictive models were also leveraged to capture the intricate 

relationship between floor area and MS within each mesh. The model that emerged with 

the best fit was then used as the ultimate approach to project the MS of buildings in the 

future, based on the forecasted floor area under the five SSPs. 

It is important to note that projections indicate a significant decline in Japan's 

future population, which logically infers a concomitant reduction in the demand for 

buildings. Nevertheless, considering the long lifespan typical of buildings, a substantial 

volume of existing structures is likely to become obsolete. Hence, the projected floor 

area, grounded on population trends, effectively represents the "functional space" - the 

quantum of building floor area that is not only utilized but also aligns with the needs of 

the residents. In the subsequent section, the projected floor area and MS of buildings 

were referred as "projected serviceable building floor area" and "projected MS of 

serviceable buildings," respectively. The term "serviceable building" is indicative of 

structures that are neither vacant nor obsolete, underscoring their utility and occupancy 

relevance in the future urban landscape. 

5.2.3 Data sources 
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 As previously mentioned, building data from the years 2009, 2016, and 2020 was 

acquired from Zenrin Co., Ltd (Zenrin Co., Ltd. 2023). Additionally, population 

distribution data for the year 2015 was sourced from ESRI Japan 2022 (ESRI Japan, 

2022). Projections for future population distribution under the five SSPs were obtained 

from the A-PLAT platform (A-PLAT, 2023). 

5.2.4 Model fitting for relationship between floor area, population, and building MS 

The performances of various regression models were evaluated through a common 

split of 80% for training and 20% for testing dataset, a methodological choice that aligns 

with standard practices in statistical model validation. The evaluation metrics employed 

were RMSE, and MAE and performance results of all models are presented in Table 7. 

For the regression predicting floor area from population, the GBM manifested superior 

predictive accuracy, evidenced by the lowest RMSE and MAE values, suggesting a 

robust capacity of this model in capturing the underlying patterns in the data. The SVR 

model exhibited closely comparable performance. In contrast, the LR model, while 

reasonable, lagged in predictive precision, as indicated by its higher metrics. For the 

regression predicting total MS from floor area, the PR and GBM demonstrated similar 

performance, with relatively high RMSE and MAE. The SVR model showed a 

relatively lower RMSE, indicating its potential robustness against large errors. Thus, 

GBM and SVR model were selected as the projection models for the future floor area 

and total MS of buildings under 5 SSPs until 2050 respectively. 

Table 7 Performance results of LR, PR, RF, GBM, and SVR 

 LR PR RF GBM SVR 

Floor area ~ 

Population 

RMSE: 

44795.87 

MAE: 

30440.27 

RMSE: 

34015.36 

MAE: 

20329.26 

RMSE: 

35671.89 

MAE: 

18924.76 

RMSE: 

32159.19 

MAE: 

17299.03 

RMSE: 

32366.98 

MAE: 

17380.96 

Total MS ~ 

Floor area 

RMSE: 

140695.9 

MAE: 

85612.84 

RMSE: 

166711.7 

MAE: 

51927.01 

RMSE: 

184446.6 

MAE: 

56515.14 

RMSE: 

163633.4 

MAE: 

51674.23 

RMSE: 

120043.8 

MAE: 

42750.6 

 

5.3 Results 

5.3.1 Evolution and material composition of building MS  
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The spatial evolution and material composition of building MS in three 

metropolitan areas in Japan over a period spanning from 2009 to 2020 is displayed in 

Fig. 22. The vast majority of materials are concentrated in Japan's major urban 

agglomerations. From east to west, these include the Greater Tokyo Area, the Nagoya 

metropolitan area, and the Osaka-Kyoto-Kobe region. In the northern and central parts, 

several smaller MS distributions also visible, but the building MS is distributed in these 

areas at a lower density. A clear trend of increase is observable across all categories of 

materials. In 2009, the total building material stock was approximately 6.58 billion tons, 

with concrete being the predominant material, accounting for about 76% of the total. 

Gravel, steel, mortar, timber, and other materials constituted the remainder, with gravel 

at 8.6%, steel at 5.1%, mortar at 3.2%, timber at 3.2%, and other materials at 3.7%. By 

2016, the total material stock had risen to nearly 6.95 billion tons. Concrete remained 

the most substantial component, though its proportion slightly decreased to around 75.9% 

of the total stock. The shares of other materials increased marginally. In 2020, the total 

building material stock further increased to approximately 7.07 billion tons. Concrete's 

share saw a minor decline to approximately 75.6%, whereas the shares of other 

materials showed a slight increase with gravel to 8.8%, steel to 5.1%. The data indicates 

a gradual but consistent growth in the overall building material stock, with a slight 

redistribution among the various material types. Despite minor fluctuations in the 

proportions of each material, concrete dominants the material composition through the 

years. 
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Fig. 22 The spatial evolution and material composition of building MS in three 

metropolitan areas in Japan in 2009, 2016, and 2020 

 
5.3.2 Projections of floor area and MS of serviceable buildings under five SSPs 

The projections for floor area and MS of serviceable buildings in three 

metropolitan areas in Japan, under five SSPs until the year 2050 is presented in Fig. 23. 

SSP1 to SSP5 each encapsulate distinct narratives on how socioeconomic factors might 

evolve over time. The trend across all SSPs shows a decline in serviceable building 

floor area, with SSP1 starting at approximately 3.71 billion m2 in 2025 and diminishing 

steadily to about 3.33 billion m2 by 2050. Similarly, SSP2 through SSP5 all indicate a 

gradual reduction, aligning with the anticipated decrease in Japan's future population 

and the consequent reduction in demand for buildings providing services, potentially 

leading to an increase in vacant properties. This contraction mirrors trends in MS, which 

in SSP1, for instance, is projected to fall from around 5.73 billion tons in 2025 to 

approximately 5.25 billion tons in 2050. The overarching implication of these 

projections suggests an impending surplus in built environment capacity relative to the 

population's needs, which could result in a significant number of unoccupied buildings, 

considering the long lifespan of such structures. These results underscore the need for 

strategic urban planning, including the repurposing or deconstruction of existing 
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buildings to align with the demographic shifts anticipated in the coming decades. 

 

Fig. 23 The projections for serviceable building floor area and MS of serviceable 

buildings under five SSPs until the year 2050 

 

5.4 Discussions 

Japan is experiencing a significant decrease in population. This trend is 

particularly evident in rural areas, where a decrease in population has led to a lower 

demand for serviceable buildings, thus an increase in vacant house (Kubo and Yui, 

2020). In contrast, metropolitan areas are witnessing an increase in built areas due to 

the influx of population. The ongoing expansion in urban centers and metropolitan 

cities necessitates continuous material inputs for new construction. This conflicting 

phenomenon creates unique challenges in managing building resources. 

In the context of future population decline, vacant house issue raises concerns 
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regarding the management of these structures and the associated demolish waste. This 

rise in vacant properties necessitates efficient management strategies for demolition 

waste to mitigate environmental impacts. A key strategy in this regard is the shift 

towards circular material use (Gillott et al., 2023). This approach involves recycling or 

repurposing materials from demolished buildings, thereby reducing the need for new 

material production and minimizing construction waste. The concept of urban mining 

emerges as a pivotal opportunity in this scenario. This involves the extraction of 

valuable materials from vacant buildings for reuse or recycling, reducing the demand 

for new building materials and minimizing construction waste. This practice 

significantly reduces the demand for new building materials, offering a sustainable 

solution to resource management (Peng et al., 2021). The implementation of urban 

mining not only provides environmental benefits but also holds the potential to 

stimulate local economies. It can create new industries focused on the recycling and 

repurposing of building materials, thereby contributing to economic growth and 

sustainability in the face of demographic changes. 

On the other hand, the ongoing expansion of urban centers and metropolitan areas 

in Japan necessitates a continuous input of materials. Construction is a carbon intensive 

process stemming both from the production of building materials and their 

transportation to construction sites (You et al., 2011; Zhang, Y. et al., 2019). To mitigate 

these environmental impacts, innovative and sustainable approaches are essential. One 

effective strategy is the utilization of secondary materials in new construction. These 

materials, sourced from recycled demolition waste, not only help in reducing waste 

accumulation but also play a crucial role in curbing carbon emissions associated with 

the production of new building materials. The use of secondary materials effectively 

closes the loop in the building materials lifecycle, contributing to a more sustainable 

construction industry (Peng et al., 2021). Another approach is the renovation of existing 

structures. Renovating buildings can significantly reduce the demand for new 

construction materials and decrease the volume of construction waste generated. 

Moreover, renovating buildings to enhance their energy efficiency is a critical step 

towards reducing operational carbon emissions. This approach not only can mitigate 

the environmental impacts of its urban expansion while promoting sustainable urban 

development. 

6. Urban infrastructure evolution: identifying driving mechanisms and assessing 
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land use changes 

6.1 Methodology 

6.1.1 Models for LULCC simulation 

There are two primary types of models for future land use simulation and 

prediction: spatial causal models and discrete dynamic models (Gao et al., 2022). 

Spatial causal models, such as the CLUE-S, predicts the future land use based on the 

cause-effect relationships between various factors and land use changes but doesn't 

fully capture the underlying processes (Verburg et al., 2002). In contrast, discrete 

dynamic models, notably cellular automata (CA), is adept at simulating the complex 

self-organizing behavior of land use by accounting for inter-patch interactions, with the 

foundational concept being the extraction of land-use transition rules to determine the 

probability of land type occurrences within each cellular unit (Tobler, 1979). 

For CA-based models, two main strategies are employed for deducing 

transformation rules: transition analysis strategy (TAS) and pattern analysis strategy 

(PAS). Models that utilize TAS, such as logistic-CA and ANN-CA, analyze land use 

changes between two time periods but can become complex as the variety of land uses 

increases (Arsanjani et al., 2013; Munshi et al., 2014; Yang et al., 2016; Zeshan et al., 

2021). PAS-based models, such as CA-Markov and future land use simulation (FLUS) 

model, use land use data from a single period to predict future land use, which simplifies 

calculations but may not capture specific transition rules or the dynamic nature of land-

use changes (Hamad et al., 2018; Lin et al., 2020; Liu et al., 2017; Sang et al., 2011). 

An emergent model, known as PLUS model, proposed by Liang et al. (2021), was 

applied in this research for future land use simulation. PLUS model merges the 

strengths and resolves the limitations of both TAS and PAS, and offers an innovative 

approach to mining land use transition rules based on data from two periods. This CA-

based model employs a strategy that generates multiple types of patches, making it more 

suitable for simulating actual landscapes. Moreover, PLUS can dynamically simulate 

the interactions between various driving factors and land use compositions. This 

capability is essential for understanding the complex interplay of factors that contribute 

to land use changes. PLUS model has been applied to various scenarios, such as urban 

land use simulations (Koko et al., 2023), habitat quality prediction (Zhao et al., 2022), 

ecological risk projection (Zhang, S. et al., 2022), and ecological service value 

simulation (Li et al., 2021). 
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6.1.2 Land use change simulation with PLUS model 

The PLUS model was utilized to simulate the evolution of land use types. PLUS 

model mainly consists of two parts: (1) a rule mining framework based on the land 

expansion analysis strategy (LEAS), which investigates potential transition rules using 

two land use datasets from 2009 and 2021. This transition analysis strategy involves 

selecting random sampling points according to the changing land use, and the RF 

classification (RFC) algorithm is employed to assess the interrelationships between 

land use compositions and several driving factors, ultimately deriving the transition 

rules for land use composition (Yao et al., 2017). In this research, 13 driving factors 

were chosen to calculate the occurrence probability of each land use type (Fig. 24), 

encompassing socio-economic factors as well as climatic and environmental factors. 

10% of the cell units was used with uniform sampling method for training and the 

number of regression trees is set to 500 in this research. (2) the application of a CA-

based multiple random seeds (CARS), to project land use dynamics. The CARS module 

is a CA model that creates land use patches using random seeds of multiple types. The 

CA model is a land use simulation model that is driven by scenarios and combines 

global land use demands with local land use competition effects (Liang et al., 2021). 

Open water bodies were designated as spatial constraints. The neighborhood effects 

were quantified using a 3×3 Moore neighborhood. 

Markov chain and LR models were used to simulate future land use demands. The 

Markov-chain method, with its probabilistic nature, is adept at handling the inherent 

uncertainties in land use change predictions. It effectively captures the temporal 

dynamics of land use transitions, essential for short- to medium-term forecasting. The 

method's simplicity, coupled with its ability to capture complex temporal land use 

change processes, makes it a popular choice. Conversely, LR offers a quantitative 

framework for understanding the relationships between various driving factors, such as 

economic, demographic, and environmental variables, and land use changes. This 

method's strength lies in its data-driven insights, which are grounded in historical data 

and observed trends, thereby enhancing the model's predictive capabilities. Moreover, 

the flexibility and adaptability of linear regression models allow for continuous 

refinement and adjustment as more data becomes available. 

Since in land use forecasting, the Markov chain model calculates the land use 

transition probabilities based on data from two input time points and then uses these 
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transition probabilities to predict future land use conditions. Therefore, Markov chain 

models are usually used to forecast future states over the same time intervals (Han et 

al., 2015). Hence, this research used the predicted land use demand results for the year 

2049 as the results for 2050. This study used the changes in the total area of each land 

use type from 2009 to 2021 to represent the neighborhood weights of the corresponding 

land use types from 2021 to 2050 (Zhang, S. et al., 2022). For specific parameters 

setting and the simulation process, see (Liang et al., 2021). 
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Socioeconomic factors:

Climatic and environmental factors:
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Fig. 24 Driving factors 

 
6.1.3 Data sources 

Land use data for the study area of the years 2009, 2014, 2016, and 2021 was 

obtained from the Ministry of Land, Infrastructure, Transport and Tourism of Japan, 

featuring a resolution of 100 meters (MLIT, 2023b). This dataset categorizes land use 

within each 100 m mesh, designating various types such as paddy fields, agricultural 

land, forests, wastelands, building areas, main transportation lands, lakes, rivers, etc. 

For drive factors, among socioeconomic factors, GDP distribution data were obtained 

from (Chen et al., 2022). The other spatial distribution data of drive factors such as 

public facility, bus stop, railway, etc. were obtained from the Ministry of Land, 

Infrastructure, Transport and Tourism of Japan (MLIT, 2023b) The patterns of distance 

were calculated by Euclidean distance analysis with ArcGIS software. Data of climatic 

and environmental factors were derived from the Ministry of Land, Infrastructure, 

Transport and Tourism of Japan (MLIT, 2023b). 

The land use data underwent a process of spatial aggregation using ArcGIS 

software, transforming the resolution from 100 m to 500 m. During this transformation, 

the land use types were reclassified into seven categories: forest, water area, cropland, 

road, construction area, other land, and wasteland. The reclassification, along with the 

original land use type classification and definitions, is thoroughly detailed in Table 8.  

Table 8 Land use type and code 

Code 
Land use 

type 
Definition 

Reclassification 
code 

Reclassification 
land use type 

0100 Cropland 

Paddy field, dry field, 
swamp field, lotus field, 

and other fields classified 
as 'cropland'. 

3 

Cropland 

0200 
Other 

agricultural 
land 

Land for cultivating 
wheat, rice, vegetables, 
grasslands, turf, apples, 
pears, peaches, grapes, 

tea, paulownia, wax tree, 
paper mulberry, and palm 

tree. 

3 

0300 - - - - 
0400 - - - - 

0500 Forest 
Areas densely with 

perennial plants. 
1 Forest 

0600 Wasteland 
Lands identified as 

wasteland, cliffs, rocks, 
7 Wasteland 
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perennial snow, wetlands, 
mining areas, etc., based 
on former land use data. 

0700 
Building 

site 

Residential areas, urban 
areas, etc., where 

buildings are densely 
situated. 

5 
Construction 

area 

0800 - - - - 

0901 Road 
Roads and such, captured 

as areas. 
4 

Road 
0902 Railway 

Railways, marshalling 
yards, etc., captured as 

areas. 
4 

1000 Other 

Athletic stadiums, 
airports, racecourses, 

baseball fields, schools, 
port districts, vacant land 
in artificially reclaimed 

areas, etc. 

6 Other 

1100 
River and 

lake 

Man-made lakes, natural 
lakes, ponds, fish farms, 
etc., which always hold 
water at normal water 

levels, and riverbeds in 
river areas. 

2 Water area 

1200 - - - - 
1300 - - - - 

1400 Seashore 
Beach areas consisting of 
sand, gravel, and rocks. 

2 

Water area 
1500 

Marine 
area 

Hidden rocks, mudflats, 
sea passes are also 

included in the sea area. 
2 

1600 
Golf 

course 

The boundaries of a golf 
course are the outer edges 

of the fairways and 
roughs and the border 

with the forest. 

6 Other 

 

6.1.4 Validation of PLUS model 

The Kappa coefficient was used in this research to measure the accuracy of PLUS 

model. The Kappa coefficient is a widely used statistical measure in land use change 

model validation and quantifies the degree of accuracy and reliability in a classification 

system, particularly in the context of comparing observed (actual) data to predicted 

(modeled) data. In the context of land use change models, the Kappa coefficient helps 

in assessing how well the model has predicted land use changes when compared to 
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actual observed changes. The equation for the Kappa coefficient (K) is: 

K = 
;,2	;-
!2	;-

                             (12) 

where B< is the observed agreement ratio, which is the proportion of instances where 

the model's predictions and the actual observations agree. C=  is the expected 

agreement ratio, which is the proportion of instances where agreement could be 

expected by random chance. 

The value of K ranges from -1 to 1. A value of 1 indicates perfect agreement 

between the model predictions and the actual data. A value of 0 indicates that the 

strength of agreement is poor. Negative values suggest a disagreement between 

predictions and observations. Value ranges from 0.61 to 0.80 indicates a substantial 

level of agreement. This suggests that the model is quite reliable in its predictions, with 

a significant proportion of its classifications aligning well with the observed reality. 

Value ranges from 0.81 to 1.00 indicates an almost perfect level of agreement. It reflects 

a very high level of precision in the model's classification ability, indicating that the 

model is effective in capturing and reproducing the patterns and relationships present 

in the observed data. In this research, the K of PLUS model is 0.82 and the overall 

accuracy is 0.90, indicating that the model's predictions are highly accurate and closely 

match the actual observed data. The detailed information is showed in Table 9. 

Table 9 Validation results of the PLUS model 

 Commission 

Error 

Omission 

Error 

Producer's 

Accuracy 

User's 

Accuracy 

Forest 

Water area 

Cropland 

Road 

Construction area 

Other land 

Wasteland 

0.05 

0.05 

0.18 

0.76 

0.12 

0.40 

0.42 

0.05 

0.11 

0.18 

0.77 

0.13 

0.38 

0.41 

0.95 

0.89 

0.82 

0.23 

0.87 

0.62 

0.59 

0.95 

0.95 

0.82 

0.24 

0.88 

0.60 

0.58 

 

6.2  Results 

6.2.1 Evolution of historical land use change 

The evolution of land use types for the years 2009, 2014, 2016, and 2021 across 
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three metropolitan areas in Japan is depicted in Fig. 25 a), with area shifts in the land 

use spaces shown in Fig. 25 b). The expansion of urban areas, as indicated by the red 

tones, appears in the peripheries of urban centers, where the encroachment into natural 

landscapes is more pronounced. The area shifts of historical land use data for three 

metropolitan areas demonstrate a complex interplay between urban expansion and the 

preservation of natural and agricultural landscapes, with the former exhibiting a steady 

increase at the potential expense of cropland, underscoring the challenges of sustainable 

urban planning. In 2009, construction areas representing urban development decreased. 

This is consistent with Tanikawa et al. (2015)’s finding that Japan’s building MS peaked 

in 2005-2008 and declined slightly thereafter. Interestingly, forested areas showed a 

decrease at first, but gradually began to recover. Cropland saw a significant decrease. 

Other land use categories such as water, other, and wasteland displayed minor variances. 

The road infrastructure increased from 264.5 km² to 991.75 km², signifying improved 

transportation networks, potentially to support the urban growth. 

 

20212016

2009 2014

a)
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Fig. 25 Historical land use changes: a) The spatial evolution of land use types; b) Area 

shifts in the land use types 

 
6.2.2 Identification of drive factor importance in three metropolitan areas of Japan 

Understanding the contribution of driving factors to the expansion of each type of 

land use is crucial for supporting the development of effective and sustainable land 

management strategies. The contributions of various driving factors to the expansion of 

different land use types through RFC are illustrated in Fig. 26, with driving factors 

arranging in order of contribution for each land use type. The expansions of 

construction area and wasteland were notably contributed by population, highlighting 

the role of demographic distribution in urban development. Forest areas are mostly 

influenced by slope, which aligns with the understanding that forests are often found in 

steeper, less accessible regions. Road expansions are considerably influenced by their 

proximity to existing rail networks, which may reflect planning strategies that favor 

connectivity. Expansion of other land type was contributed a lot with precipitation, 

underlining the importance of climatic factors in their distribution. 

2009 2014 2016 2021
Road 264.5 929.5 953 991.75
Wasteland 1349.25 1423.5 1415 1247
Other 3080.5 3077.5 3195.5 3445
Water area 5866 6409 6401.5 6444.75
Construction area 14467 14273.75 14337 14585.25
Cropland 18871.25 18648 18316 17675.25
Forest 77597.75 76735 76878.25 77154.75

0

20000

40000

60000

80000

100000

120000

140000

Unit: km2
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Fig. 26 Contributions of driving factors to the expansion of different land use types 

through RFC 

6.2.3 Estimating future land use demands 

The future land use demand was predicted by Markov chain and LR model, and 

the projected trends from these two models are displayed in Fig. 27. According to the 

LR model, there is a gradual and consistent decrease in cropland and wasteland areas 

over time, with cropland decreasing from 69600 cells (with resolution of 500m×500m) 

in 2022 to 54637 cells in 2050, and wasteland from 4768 to 1839 cells in the same 

period, suggesting a progressive conversion of these land types into other categories. 

Conversely, forest, water area, road, construction area, and 'other' land categories are 

projected to increase with LR model. The forest area is expected to grow modestly yet 

steadily, while construction area and road area show a notable increase from 56024 to 

60974 cells and from 4034 to 4983 cells, reflecting ongoing urbanization trends. 

On the other hand, projection results of Markov chain model indicate a similar 

downward trend for cropland, from 70701 cells in 2021 to 58656 cells by 2050, and a 

decline in wasteland from 4988 to 3932 cells over the same period. Markov chain model 

also suggests growth in forest area, which aligns with the LR model's predictions. Both 
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models predict an increase in the construction area, with the Markov chain model 

projecting a more pronounced growth from 58341 to 62303 cells by 2050, compared to 

the LR model. Roads also exhibit an upward trend in both models, with the LR model 

projecting an increase to 4983 cells by 2050 and the Markov chain suggesting a rise to 

4748 cells by 2050. 

 

Fig. 27 Prediction of the future land use demand by Markov chain and LR models 

6.2.4 Future land use projection in 2050 

After the training process of RFC in LEAS part, the development potential of each 

land use type on each cell was predicted by applying obtained RFCs. Finally, the PLUS 

model outputs seven development potential maps which will be used to simulate the 

future land use in CARS module. The development potential map of each land use type 

is presented in Fig. 28. 
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Fig. 28 The development potential maps of seven land use types 

The land use simulation results for the year 2050 based on Markov chain and LR 

scenarios are illustrated in Fig. 29. It is important to note that the final area of each land 

use category will be close to, but not necessarily equal to, the land use demand. This 

discrepancy is because the land use area is determined not only by the "top-down" land 

use demand but also by the "bottom-up" local geographic conditions. The final land use 

Forest Water area

Cropland
Road

Construction area Other

Wasteland
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area is a result of the interplay between these top-down and bottom-up influences. 

Despite slight differences in specific land category projections, a notable difference 

observed is that the distribution of wasteland is more concentrated in the LR scenario. 

Both models clearly indicate ongoing urban expansion and a reduction in cropland and 

wasteland areas, reflecting trends of urbanization and consequences of population 

decline. 

 

Fig. 29 Future land use simulation under Markov chain and LR scenarios 

6.3 Discussion 

This chapter employed a LULCC model to simulate the evolving landscape of 

three metropolitan areas in Japan to the year 2050. The simulation results indicate an 

increase in roads and construction areas, parallel with a decline in cropland and an 

increase in forest cover. This trend aligns with the broader demographic shifts in Japan, 

characterized by a decreasing population and an urban migration trend among the 

younger population (Iwasaki, 2021). These demographic changes have profound 

impacts on land use. As the living standards continue to improve in the future, there is 

a potential rise of demand for green infrastructure and public green areas in urban 

settings. The increasing population density in urban areas not only leads to increased 

demand for urban infrastructure but also emphasizes the necessity for expanding public 

facilities such as green spaces and parks. This expansion is not only essential for 

enhancing urban livability but also aligns with the goals of sustainable development, 

necessitating future land use simulation studies to measure these aspects accurately and 

comprehensively. As urban areas evolve, the material composition and usage in public 

infrastructure such as parks, recreational areas, and green spaces also become 

increasingly significant. Therefore, a comprehensive evaluation of MS in public 

Markov chain scenario Linear regression scenario
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facilities in the future work will provide a more holistic view of urban sustainability, 

enabling the creation of urban spaces that are not only green and livable but also 

resource-efficient and environmentally responsible. On the other hand, the 

depopulation of rural areas, particularly the outflow of younger people, contributes to 

the decline in agricultural activities, as evident in the decreasing cropland. This 

phenomenon potentially leads to underutilized rural landscapes, which may gradually 

transition into forested areas, either through natural succession or reforestation 

initiatives (Tsunoda and Enari, 2020). 

The expansion of green areas, such as forests, is beneficial for ecology such as the 

increased carbon absorption and sequestration, as forests act as carbon sinks, absorbing 

CO2 from the atmosphere, which is a crucial process in mitigating climate change 

(Nunes et al., 2020). However, the increasing built-up areas, particularly roads and 

construction, are associated with higher carbon emissions through the whole life cycle 

of urban infrastructure (Huo et al., 2020; Zhang, Y. et al., 2019), thus presenting a 

challenging trade-off in urban planning and environmental sustainability. While urban 

expansion continues to accommodate the shifting population, it is imperative to take 

adaptation measures which integrates urban development with environmental 

conservation such as incorporating green infrastructure, promoting urban green spaces 

that not only enhance urban livability but also contribute to carbon absorption (Liao et 

al., 2020). Moreover, sustainable urban design, including energy-efficient buildings and 

eco-friendly transportation systems, can also mitigate the carbon footprint of urban 

expansion.  

7 Conclusions 

7.1 Summary of the findings 

This research identifies how various building attributes influence MI and 

investigates the spatiotemporal evolution and patterns of MS within buildings and road 

networks. Future MS of anticipated road and serviceable buildings under Japanese SSPs 

is projected. A LULCC model is employed to explore and simulate the spatiotemporal 

changes in various land use types, encompassing roadways and construction area. 

The MI plays a crucial role in the field of IE, particularly in the accounting of MS. 

MI, essentially a measure of the amount of material used per unit of construction, is a 

key indicator for understanding the material demand and environmental impact of 
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infrastructure projects. To explore the impacts of building attributes on building’s MI, 

a raw MI database with Chinese building samples was utilized. This was done to 

measure the importance of four building attributes using an innovative RF methodology. 

The importance of each variable was normalized to establish an overarching hierarchy 

of MI. The influence of each building attribute on MI was examined through partial 

dependence. Findings revealed that building structure and construction periods hold 

greater importance compared to use type and region for buildings in China. PD plots 

uncover the disparity of MI between structures, construction periods, utilization 

purpose, and regions. Subsequently, a full hierarchical MI dataset of six selected 

building materials were predicted by the RF model. This hierarchical MI dataset allows 

researchers to choose and adjust complete RF-based MIs according to the building 

feature(s) available in their physical quantity data. 

As another major component of infrastructure, road networks have profound 

impacts on economic growth, social dynamics, and environmental sustainability. Thus, 

a comprehensive approach involving material flow analysis and MS analysis was 

utilized to delve into the historical evolution and development patterns of Japan's road 

network from 1965 to 2020. Results indicated that over 55 years, the total road MS in 

Japan increased by 5.5 times, rising from 758.39 Mt in 1965 to 4917.92 Mt in 2020, 

with significant growth observed in the eastern, central, and southern regions in each 

period. This MS growth was primarily dominated by the aggregate of four key materials 

constituting the road MS. Through a detailed examination of the road MS time series 

data, the study projected the anticipated road MS in each Japanese prefecture by the 

year 2050. This projection was based on national SSPs of Japan and included a range 

of explanatory variables such as population dynamics, economic indicators, passenger 

and cargo transportation. To achieve this, an array of forecasting models including 

ARIMAX, ARIMAX-SVR, MLR, SVR, ANN, and RF were compared and analyzed 

for their effectiveness. The projections of expected road MS under the five SSPs by 

2050 revealed diverse trends across prefectures. Some regions exhibited varying trends 

depending on the SSP scenario, while others demonstrated more consistent patterns of 

increase or decrease. 

Next, this study selected Japan's three major metropolitan areas as a research 

region to gain a spatial understanding of the evolution and distribution patterns of 

building MS. Within these areas, the study analyzed the evolution of building MS and 
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the composition of MS materials. Findings indicated a gradual growth in the overall 

building material stock, with a slight redistribution among the various material types. 

Additionally, floor area and MS of serviceable buildings up to 2050 under the SSPs in 

Japan were forecasted, considering the scenario of a significant population decrease. 

The trends across all SSPs showed a decline in both serviceable building floor area and 

MS. 

Subsequently, this research explored the underlying mechanisms driving 

infrastructure development by analyzing the contributions of various driving factors 

within three metropolitan areas. Furthermore, this research conducted an analysis of the 

historical changes in land use types within these areas, followed by a projection of the 

future distribution and changes of different land use types using PLUS model by 2050. 

RFC approach was employed to identify and quantify the contribution of various 

driving factors behind the expansion of each land use type. Both scenarios clearly 

indicated ongoing urban expansion and a reduction in cropland and wasteland areas, 

reflecting trends of urbanization and consequences of population decline in three 

metropolitan areas of Japan. 

7.2 Research implications 

Infrastructure has historically served as the essential framework for human 

societies, forging a vital and unbreakable connection between socioeconomic progress, 

social welfare, and the built environment. Analyzing the spatiotemporal evolution and 

patterns of infrastructure’s MS, we can identify opportunities for material recycling and 

reuse, thus providing insights for minimizing the carbon footprint of infrastructure 

development while ensuring its efficiency and resilience. MI is a key indicator in 

accounting the MS of infrastructure using bottom-up approach. However, the process 

of acquiring accurate MI data and relevant building information poses a substantial 

challenge in this domain. Gathering detailed and precise data about the materials used 

in construction requires comprehensive and often complex data collection methods. 

This difficulty is compounded in regions with a rich history of construction, where 

buildings may have been constructed over various periods and with differing techniques 

and materials. Moreover, the lack of standardized methods for collecting and reporting 

such data further complicates the process. Consequently, researchers and practitioners 

in the field often face hurdles in obtaining reliable and consistent MI data, which is 

essential for accurate material stock accounting and subsequent ecological analysis. 
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Given these complexities, there is a growing need for systematic approaches to 

harmonize MI categorization across different regions and develop robust 

methodologies for the collection and analysis of MI data. Addressing these challenges 

is critical for advancing the field of IE, particularly in improving the accuracy of 

material stock accounting and enhancing our understanding of the environmental 

implications of built environments. This research provides a valuable insight into 

identifying the most influential factors for MI of buildings. The RF-based hierarchical 

MI dataset enables researchers to select and adjust MIs based on the available 

hierarchical physical inventory, therefore not only contributing to the development of 

China’s future built environment stock studies, but also enhancing the comparability of 

MI research across different regions. Furthermore, the establishment of a hierarchical 

MI is of great importance for comprehending the potential of urban mining. It plays a 

key role in advancing societal goals such as the circular economy and urban 

sustainability. 

By closely examining the historical and forecasted MS, the study identifies areas 

where the demand for road infrastructure is likely to continue and regions where it may 

decline, potentially due to factors such as demographic shifts. This nuanced 

understanding is pivotal for a comprehensive assessment of the future evolution of road 

MS across Japan’s diverse prefectures. Such insights are invaluable for guiding 

resource allocation and shaping policy decisions in the realm of road infrastructure 

management. This approach not only contributes to a more informed planning process 

but also aids in the strategic development of road infrastructure that aligns with future 

societal and economic needs.  

Combining the analysis of MS in buildings with land use change dynamics. By 

forecasting the future needs for serviceable buildings and understanding the evolving 

patterns of land use, the study provides insights into urban development and 

infrastructure planning. This is particularly relevant in the context of Japan’s expected 

demographic shifts, as it helps in strategizing resource allocation and urban planning to 

accommodate future societal needs. Furthermore, the identification of key drivers 

behind land use changes through RFC offers a nuanced understanding of urban 

expansion and its environmental impacts. This knowledge is crucial for developing 

sustainable urban development strategies, particularly in the context of promoting a 

circular economy and reducing the ecological footprint of urban growth. 
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7.3 Limitations of research and future work 

Although this research provides insights into advancing goals such as circular 

economy and urban sustainable development, there are still some limitations. The first 

is from the aspect of data availability. MIs are influenced by multiple variables such as 

local construction preferences, regulations, climate, historical and economic factors, 

and urban and rural locations, which may influence MI but were not included in this 

study due to data limitations. Therefore, more variables should be considered as further 

data is collected. A more extensive collection of representative data and granular data 

also needs to be carried out in the future. Furthermore, although RF model is known for 

its robustness and versatility, like any algorithm, it has its limitations. Its 'black box' 

nature, especially when handling a large number of trees, limits the interpretability of 

the model's decision-making process. While Random Forest can manage a substantial 

number of features, its performance may not be optimal in cases of extremely high-

dimensional data, leading to a more complex model that demands significant 

computational resources. Additionally, there is a risk of overfitting in noisy datasets if 

the model is not properly tuned, and the algorithm shows inherent bias in calculating 

variable importance, favoring variables with more categories or those that are 

continuous over binary variables. 

Moreover, the timely updating of data is important. For instance, the population 

distribution data used in this study for both current and future projections are based on 

2015 estimates. However, due to various factors, the actual population changes may 

diverge from these past projections, potentially impacting the accuracy of simulation 

results that rely on this input data. Therefore, it becomes crucial to regularly update and 

revise the data in accordance with realistic developments to ensure the reliability and 

relevance of the study's outcomes. 

In addition, while this research employed the PLUS model to simulate future land 

use types, it primarily focused on the driving mechanisms behind the expansion of land 

use types. For future work, it is essential to integrate scenarios based on comprehensive 

urban planning knowledge and social demands. This integration would provide a more 

holistic understanding of land use dynamics, factoring in not only the statistical and 

probabilistic aspects of land use change but also the practical implications of urban 

planning policies and societal trends. Such an approach would allow for a more nuanced 

interpretation of how future land use changes align with, or diverge from, planned urban 
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development trajectories and social needs. This is particularly relevant in the context of 

a country like Japan, where demographic shifts are reshaping urban landscapes. 

Incorporating these aspects into land use simulations would enhance the practical 

relevance of forecasts, providing valuable insights for sustainable urban development. 

At last, the impact of several uncertain factors such as the COVID-19 pandemic, 

the rise of shared services, and the development of autonomous driving technologies 

were not considered in this research. For instance, the COVID-19 pandemic has caused 

significant changes in travel patterns. The rise of telework and virtual meetings might 

permanently reshape business travel and private vehicle usage, with the degree of these 

changes influencing long-term transportation and road demand. This issue is closely 

linked to another limitation: the precision of projections is heavily reliant on the quality 

and accessibility of input data. To address this, it’s crucial to conduct future research 

that utilizes additional data sources and encourages collaboration with experts across 

various fields, including economy, transportation, and environment. Incorporating a 

broader range of factors, such as technological progress and more dynamic 

socioeconomic data, could enhance the accuracy of forecasts. 
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Appendices 

Appendix 1. RF-based MI for a) steel; b) brick; c) wood; d) sand; e) gravel (Unit: 

ton/100 m2) 

 

a)

Steel
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Brick
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BC: brick-concrete; BW: brick-wood; S: steel; RC: reinforced concrete; 70s: 1970s and 

before; 80s: 1980s; 90s: 1990s; 00s: 2000s and after; I: industrial; P: public; R: 

residential; S: southern; N: northern. 

  

e)

Gravel
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Appendix 2. RF-based MI dataset for all materials (Unit: ton/100 m2) 

Structure Construction 
year 

Use type    Region 
RF-based MI 

Steel Cement Brick Wood Sand Gravel 
Brick-wood 
Brick-wood 
Brick-wood 
Brick-wood 

Brick-concrete 
Brick-concrete 
Brick-concrete 
Brick-concrete 
Steel-concrete 
Steel-concrete 
Steel-concrete 
Steel-concrete 

Steel 
Steel 
Steel 
Steel 

Brick-wood 
Brick-wood 
Brick-wood 
Brick-wood 

Brick-concrete 
Brick-concrete 
Brick-concrete 
Brick-concrete 
Steel-concrete 

00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
R 
R 
R 
R 
R 
R 
R 
R 
R 

Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 

1.76 
0.11 
0.64 
1.62 
1.67 
0.48 
1.34 
1.62 
5.87 
12.01 
4.77 
6.45 
8.41 
10.75 
7.27 
10.73 
2.02 
0.22 
0.78 
1.73 
2.22 
0.71 
2.22 
1.93 
5.93 

10.36 
8.85 
5.04 
7.71 
11.08 
14.37 
10.60 
6.57 
15.94 
15.32 
19.24 
2.85 
8.87 
12.83 
8.08 
2.04 
10.74 
9.26 
4.80 
9.94 
14.81 
14.64 
14.40 
15.16 
21.69 

52.50 
84.10 
101.89 
93.17 
53.95 
75.02 
76.31 
76.16 
27.30 
79.23 
52.43 
49.11 
28.21 
78.41 
49.93 
42.78 
46.92 
73.95 
102.20 
90.82 
54.48 
72.13 
85.61 
84.75 
14.68 

4.33 
8.59 
4.43 
4.29 
2.27 
7.46 
1.49 
1.73 
2.64 
5.14 
3.45 
2.39 
2.36 
5.78 
2.43 
1.93 
4.45 
9.57 
4.53 
4.40 
1.55 
5.75 
1.60 
1.78 
1.77 

73.01 
62.69 
42.29 
46.27 
56.10 
51.48 
44.31 
50.59 
60.45 
51.51 
71.12 
65.55 
61.03 
53.86 
62.52 
66.61 
77.34 
36.16 
39.03 
40.57 
54.05 
40.56 
65.60 
66.76 
35.46 

28.44 
36.78 
29.55 
30.70 
28.82 
26.59 
37.75 
35.47 
31.94 
37.91 
62.77 
55.78 
71.87 
72.50 
96.16 
100.91 
21.06 
36.62 
29.71 
28.01 
36.50 
27.31 
45.44 
37.77 
46.55 
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Steel-concrete 
Steel-concrete 
Steel-concrete 

Steel 
Steel 
Steel 
Steel 

Brick-wood 
Brick-wood 
Brick-wood 
Brick-wood 

Brick-concrete 
Brick-concrete 
Brick-concrete 
Brick-concrete 
Steel-concrete 
Steel-concrete 
Steel-concrete 
Steel-concrete 

Steel 
Steel 
Steel 
Steel 

Brick-wood 
Brick-wood 
Brick-wood 
Brick-wood 

Brick-concrete 
Brick-concrete 
Brick-concrete 

70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 
90s 
00s 
70s 
80s 

R 
R 
R 
R 
R 
R 
R 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
P 
I 
I 
I 
I 
I 
I 
I 

Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Northern 
Southern 
Southern 
Southern 
Southern 
Southern 
Southern 
Southern 

13.30 
3.30 
2.44 
7.67 
10.84 
6.14 
8.35 
1.72 
0.15 
0.38 
1.54 
2.65 
0.69 
2.28 
2.30 
8.61 
12.19 
4.38 
14.83 
12.57 
15.87 
9.90 
22.81 
1.98 
0.22 
1.13 
1.62 
3.30 
1.82 
3.04 

30.78 
18.55 
15.81 
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2.51 
2.23 
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4.04 
8.42 
6.80 
7.38 
10.69 

 

5.35 
16.03 
15.19 
20.96 
15.61 
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20.20 
21.24 
12.34 
19.97 
26.17 
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66.97 
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45.51 
39.80 
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42.94 
33.75 

 

3.63 
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2.40 
2.82 
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63.68 
43.43 
37.82 
61.98 
59.28 
54.43 
37.81 
70.64 
73.22 

 

29.50 
47.67 
40.41 
35.95 
46.76 
61.35 
67.27 
77.30 
80.09 
101.23 
111.64 

 

Note: 70s: 1970s and before; 80s: 1980s; 90s: 1990s; 00s: 2000s and after; I: industrial; P: public; R: residential; S: southern; N: northern 
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Appendix 3. Results of expected demand for road MS with each SSP scenario for the 

remaining prefectures 

Pattern 1: Starting to shrink 

 

Pattern 2: Staying stable or varying with scenarios 

 

Pattern 3: Continuing to grow 
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