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Abstract

The Standard Model of Elementary Particles is almost complete with great success, awaiting for the
discovery of the Higgs boson in 2012. However, there are still some unsolved problems. One of them is that
we have not been able to explain the current matter-dominated universe. For the matter-dominated universe
to exist, Sakharov’s three conditions are necessary, one of which is CP symmetry violation.

The amount of CP symmetry violation that can be explained by the Standard Model is nine orders
of magnitude less than the amount based on cosmological observations. This suggests the existence of
undiscovered CP symmetry violation. If a fundamental particle such as a neutron has an electric dipole
moment (nEDM), it violates the time-reversal symmetry and according to the CPT theorem, CP symmetry.
Despite 70 years of experiments searching for the nEDM, it has not yet been discovered, and the current
upper limit is 1.8× 10−26 e · cm obtained by using ultra-cold neutrons (UCN). The value predicted by the
Standard Model is very small at ∼ 10−32 e ·cm, and some theories beyond the Standard Model predict values
on the order of 10−26 to 10−28 e · cm. Increasing the sensitivity by another two orders of magnitude could
limit these theories. To this end, it is essential not only to increase the statistical sensitivity, but also to
develop other methods with different systematic uncertainties and to make efforts to reduce them.

We are experimentally studying the search for nEDM by crystal diffraction, which has different sys-
tematic uncertainties from those of the UCN method. Crystal diffraction is characterized by the dynamical
diffraction of neutrons in crystals and the use of the very strong electric field sensed by neutrons in the
diffraction process. The experiments were performed using the pulsed neutron source at MLF in J-PARC.
First, to verify the dynamical diffraction using pulsed neutrons, Pendellösung fringes were observed, diffrac-
tion intensity distributions on the crystal ejection surface were measured, and diffraction intensities were
evaluated. The results of these experiments using pulsed neutrons confirmed the results of previous reactor
neutron studies.

Next, the experiment to measure the intra-crystal electric field using α-quartz was performed. For the
(110)-plane, where the intra-crystal electric field is expected to exist, we obtained results that are consistent
with the conventional measurements. In addition, other crystal planes were also investigated, and non-
zero electric fields were observed at crystal planes where the intra-crystal electric field was assumed to
be zero. This is thought to be due to the interference term, which had been considered negligible due
to the Pendellösung oscillations in space. If there are macroscopic defects in the crystal that disturb the
Pendellösung interference, these interference terms do not completely cancel each other out and the effect
of that can be appear as an electric field. Such defects in a crystal introduce systematic uncertainties in the
nEDM search experiment and must be minimized. The appearance of such an electric field at a crystal plane,
which should be zero, can be used as a new indicator for this crystal imperfection. Since the experimental
results are still limited, further experimental and theoretical studies are needed to clarify the contribution
of the interference term. This will allow us to monitor the spin rotation using simultaneous polychromatic
diffraction from multiple crystal planes with a pulsed neutron source to investigate systematic uncertainties
of the experiment.

Regarding the intra-crystal electric field, which is one of the factors determining the sensitivity of nEDM
search experiments, we were able to confirm that a strong electric field was available as expected. The
remaining two factors, interaction time and statistics, are discussed, and an external magnetic field appli-
cation method and a multi-stage system are proposed, respectively. By combining these two methods, the
possibility of reaching 1.0× 10−26 e · cm in 200 days at the highest output power of the J-PARC MLF was
demonstrated.
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1 Introduction

1.1 CP-Violation
The Standard Model (SM) of elementary particles reached a point of completion with the discovery of
the Higgs boson in 2012 [1, 2]. It is the most successful theory in terms of being able to explaining and
predicting much of elementary particle physics. Symbolic is the magnetic moment anomaly of electrons ae.
Its experimental value [3] and its theoretically calculated value [4, 5] are given by Table 1.1. The discrepancy
is less than 10 orders of magnitude.

Table 1.1: The magnetic moment anomaly of electrons ae, experimental value and theoretical
value.
Two results of theoretical calculations are exemplified. Both use α−1(Cs) [6] as the fine-structure constant. Latest result is α−1(Rb) =
137.035999206(11) using Rb atoms [7], but this result is 5σ off from that. This circumstance has not yet been taken into account.

The value of ae The fine-structure constant
used in the calculation

Experiment [3] 0.00115965218059(13) —
Theoretical Calculation [4] 0.001159652181606(252) α−1(Cs) = 137.035999046(27) [6]
Theoretical Calculation [5] 0.001159652181547(247) α−1(Cs) = 137.035999046(27) [6]

A theoretical pillar that runs through the Standard Model is symmetry. It states that the laws of physics
are invariant through the symmetry operations, which include spatial reversal symmetry (P), charge reversal
symmetry (particle-antiparticle symmetry) (C), and time reversal symmetry (T). The principle that all physi-
cal interactions are symmetric led to the development of the SM as the guiding principle for its construction,
but symmetry breaking was discovered as another aspect of the evolution of the SM. The first symmetry
breaking was discovered in an experiment by Wu in 1957 [8]. The angular distribution of electrons emitted
from 60Co in the weak interaction was shown to violate the space inversion symmetry (P-violation) proposed
by Lee and Yang in 1956 [9]. This was followed by the discovery of charge symmetry breaking (C-violation)
in the weak interactions by Garwin [10] and Friedman [11] in the same year 1957. The first discovery of
symmetry breaking with simultaneous charge and space inversion (CP-violation) was made by Christenson
et al. in 1964 [12], using K mesons. CP-violation was further confirmed by KEK [13] and SLAC [14] with
the decay of B mesons. The source of the symmetry breaking in the SM is the complex phase in the weakly
interacting CKM matrix and the θ term in quantum Chromodynamics. This fully explains the symmetry
breaking discovered so far in the SM.

However, there is a serious problem here. This is the problem that the SM does not adequately explain
the current matter-dominated universe, but rather the discrepancy is as large as nine orders of magnitude.
Current cosmology holds that the universe began with light in the Big Bang. From the light, equal number
of matter and antimatter particles are created through pair production. Eventually, as the universe expands
and the temperature decreases, matter and antimatter particles annihilate each other and become light, and
then the material universe cannot exist. The conditions for the existence of the material universe, as it exists
today, are the Sakharov conditions proposed by Sakharov in 1967 [15].

1. Baryon number violation.

2. C- and CP-violation.

3. Processes outside of thermal equilibrium.

While condition 3 is satisfied, condition 1 has not yet been discovered. As mentioned, the existence of CP-
violation has been discovered, and its expression mechanism is included in the SM, which fully explains the
CP symmetry breaking phenomena discovered so far. However, the amount that can be predicted with the
SM is not at all sufficient. Figure 1.1 shows this schematically.
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If the number of baryons is nB and the number of antibaryons is nB̄, then the amount of light filling the
universe today is nγ = 2×nB̄, and the number of baryons remaining as matter is B = nB −nB̄. This ratio can
be measured from observations of the cosmic background radiation and is given by

B/nγ ≈ 10−9. (1.1)

In contrast, the quantity that can be predicted in the SM framework [16] is

B/nγ ≈ 10−18, (1.2)

which is 9 orders of magnitude smaller than the value predicted by the SM framework. This means that
the sources of the yet unknown CP-violation exist outside the SM framework, and the discovery of a new
CP-violation opens the door to new physics beyond the SM (Beyond Standard Model: BSM).

γ

Observed value

Our universe

Sakharov conditions

1. Baryon number violation 
2. C- and CP-violation 
3. Process outside of thermal equilibrium

B̄

B B

B̄

B
nγ

= (0.61 ± 0.02) × 10−9

Standard model 
prediction

B
nγ

≈ 1 × 10−18

New CP symmetry breaking 
 is needed <<

B
nγ

Figure 1.1: Generation of matter-dominated universe:
The universe began with light in the Big Bang, which initially produced an equal number of baryons. Later, under
Sakharov conditions, an asymmetry in the number of baryons is thought to have occurred, producing the current matter-
dominated universe. However, the amount of asymmetry predicted by the SM is much less than what cosmological
observations indicate.

1.2 Electric Dipole Moment of a Neutron
The fact that a fundamental particle such as a neutron has an electric dipole moment (EDM) breaks the
time-reversal symmetry. As shown in Fig. 1.2, time reversal causes the spin to flip direction, but the electric
dipole moment, the spatial distribution of the charge, does not change direction.

The interaction potential of a particle placed in an electromagnetic field is

U =−µnB · S
S
−dnE · S

S
(1.3)

where µn is the magnetic dipole moment of neutrons (nMDM), dn is the electric dipole moment of neutrons
(nEDM), B and E are the magnetic and electric fields, respectively, and S/S is the spin orientation. Time
reversal yields

B →−B, E →E, S →−S (1.4)
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spin

spin

T-violation=CP-violation

EDM EDM

（CPT theorem）

fig1_T-violation

Time Reversal

Figure 1.2: The permanent EDM and T-violation and CP-violation.
Time reversal changes the orientation of the spin, but the spatial distribution, the EDM, does not change orientation, so
the exist of the permanent EDM violates the time reversal symmetry. According to the CPT theorem, this is equivalent
to violation of the CP symmetry.

and thus the potential after time reversal is

U =−µnB · S
S
+dnE · S

S
(1.5)

and if dn is not zero, the time reversal symmetry is broken. Time-reversal symmetry is equivalent to CP sym-
metry according to the CPT theorem [17]. Thus, the search for time-reversal symmetry-breaking physics is
of great benefit because it allows us to search for CP-violation physics without using antiparticles. Therefore,
several studies have been conducted in addition to the EDM search experiments. For example, the study of
T-violation using a neutron-induced compound nucleus is being vigorously pursued.

Purcell and Ramsey [18] were the first to point out the importance of the EDM search before symmetry
breaking had yet been discovered. They stated that whether a fundamental particle has an EDM or not must
be verified experimentally rather than by a symmetry-based hypothesis, and using the experimental results
of Havens et al. [19] on neutron-electron interactions, they gave an first upper limit for the neutron electric
dipole moment (nEDM) of 3× 10−18 e · cm. Subsequently, CP-violation was discovered as described in
section 1.1.

Figure 1.3 shows the evolution of the upper limits obtained by the nEDM search experiments to date. The
most stringent upper limit is 1.8×10−26 e · cm obtained by Abel et al [20, 21], using the ultra-cold neutron
(UCN) method. In contrast, the value of the nEDM predicted by the SM is very small, ∼ 10−32 e · cm.
On the other hand, some theories beyond the SM allow much larger values of nEDM. One such theory, the
supersymmetry theory, predicts nEDM values of ∼ 10−26 to ∼ 10−28 e · cm. If the sensitivity improves by
another two orders of magnitude, it will provide a constraint for some new physical theories. If not, the
predictions of the SM are another six orders of magnitude smaller, so it is being studied as one of the most
sensitive probes with very low background in the search for new physics.

Figure 1.4 shows how the source of CP-violation manifests itself as a concrete observable at realistic
energy levels [22]. Thus, by conducting not only nEDM but also multifaceted EDM searches, such as search
for electron EDM by paramagnetic atoms and diamagnetic atoms, search for muon EDM and etc., the whole
process of EDM manifestation from the source of CP-violation. These experiments are complementary to
each other.
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Figure 1.3: The evolution of the upper limit value of the nEDM.
Over the past 70 years, the upper limit value of the nEDM has improved by about seven orders of magnitude, but
it has not yet been discovered. For the value of the nEDM predicted by the SM, indicated by the blue band, there
is still an unknown region extending over six orders of magnitude. The red band indicates the region predicted by
supersymmetry theory. Blue circles and green circles indicate the upper limit value by the free flight method and UCN
method, respectively.(see section 2) The most stringent upper limit value (by UCN method) and the upper limit value
by the crystal diffraction method is indicating by a red circle and a brown circle, respectively.

tion relies on the validity of the CPT theorem. The interaction dE Æ S for a spin 1/2
particle then has the following relativistic generalization:

HT ;P-odd ¼ "dE # S
S

! L ¼ "d
i

2
wrlmc5wF lm: ð2:2Þ

Parenthetically, it is worth remarking that the precision of EDM experiments has
now reached a level sufficient to provide competitive tests of CPT invariance, since
one can also consider a CP-even, but CPT-odd, relativistic form of dE Æ S, namely
L ¼ dwclc5wF lmnm, with a preferred frame nm = (1,0,0,0), which spontaneously
breaks Lorentz invariance and CPT.

The problem of calculating an observable EDM from the underlying CP-violation
in a given particle physics model can be conveniently separated into different stages,
depending on the characteristic energy/momentum scales. At each step the result can
be expressed as an effective Lagrangian in terms of the light degrees of freedom with
Wilson coefficients that encode information about CP-violation at higher-energy
scales. As usual in effective field theory, it is convenient to classify all possible effec-
tive CP-violating operators in terms of their dimension, with the operators of lowest
dimension usually leading to the largest contributions. This logic may need to be re-
fined if symmetry requirements imply that certain operators are effectively of higher
dimension than naive counting would suggest. This is actually the case for certain
EDM operators due to gauge invariance, as discussed in more detail below.

We will present this analysis systematically in order of increasing energy scale,
working our way upwards in the dependency tree outlined in Fig. 1, which allows
us to remain entirely model-independent until the final step where some high-scale
model of CP-violation can be imposed and then subjected to EDM constraints.

Fig. 1. A schematic plot of the hierarchy of scales between the CP-odd sources and three generic classes of
observable EDMs. The dashed lines indicate generically weaker dependencies.

124 M. Pospelov, A. Ritz / Annals of Physics 318 (2005) 119–169

M. Pospelov, A. Ritz, Annals of Physics 318 (2005)  

fig1_CPviolation

Figure 1.4: Schematic diagram of the relationship between CP-violation sources and
the observable EDMs.
Solid lines represent the main dependencies and dashed lines represent the weaker dependencies. Adapted from refer-
ence [22]

9



1.3 Overview and Organization of This Thesis
We continue to develop the technique of the diffraction method and studying the dynamical diffraction phe-
nomena in order to realize the nEDM search experiment using the crystal diffraction method. It is important
because it has different systematic uncertainties from other methods. In this paper, the fundamentals of
nEDM search experiments using the crystal diffraction method are described and experimentally demonstra-
tions are reported, and in particular, the electric field interacting with neutrons in a crystal. The possibility
of exceeding the current upper limits is then discussed.

The nEDM search experiments use the interaction of the spin magnetic moment and the electric dipole
moment with the electromagnetic field, which can be classified into three types of methods. In Chapter 2,
the outline of each method is described, citing representative experiments, and the characteristics of each
method are described.

In the nEDM search experiment by crystal diffraction method, the electromagnetic interaction between
a crystal and neutrons is used. The dynamical diffraction theory is essential to describe the behavior of
neutrons in the crystal. The behavior of neutrons in crystals is described in Chapter 3, based on the plane
wave dynamical diffraction theory.

Chapter 4 describes the theory of nEDM search experiments using crystal diffraction methods, using
the dynamical diffraction theory. The results of the experimental verification of the dynamical diffraction,
the demonstration of the pendllösung fringes, the demonstration of the intensity distribution of the reflected
dynamical diffraction and the quantitative evaluation of the diffraction intensity are reported in Chapter 5.

In the nEDM search experiments using the crystal diffraction method, the electric field interacting with
neutrons dynamically diffracted in a crystal is important. Chapter 6 provides a theoretical discussion of the
electric field in a crystal and also discusses interference terms that were previously thought to be negligible.

In Chapter 7, the demonstration of the spin rotation due to the relativistic magnetic field and the results of
the electric field in the crystal are reported. With respect to the electric field in the crystal, while a consistent
result was obtained for the specific crystal plane that have been measured so far, non-zero electric fields
were observed for some crystal planes that have not been measured but were theoretically assumed to have
no electric field in the crystal. This suggests that the interference term mentioned in Chapter 6 may not be
negligible.

The sensitivity of nEDM search experiments using crystal diffraction is three orders of magnitude lower
than that of the UCN method, due to insufficient interaction time and neutron number, in contrast to the
advantage of a strong electric field. In Chapter 8, two improvements are proposed to address these issues, a
method to extend the interaction time by applying an external magnetic field only inside the crystal, and a
multi-stage system to increase the statistics, are proposed.

Finally, in Chapter 9, we discuss plans and possibilities for nEDM search experiments using the crystal
diffraction method.
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2 nEDM Search Experiment
In this chapter, we describe the basic principles of nEDM measurements and outline three typical experi-
mental methods

2.1 Principle of nEDM Search Experiment
As shown in Fig. 2.1(a), when a neutron with spin perpendicular to the magnetic field B and the electric field
E parallel to B is placed, the neutron performs a precession in the potential field in Eq. (1.3) with Larmor
frequency of

ω+
L =

2µnB
h̄

+
2dnE

h̄
. (2.1)

Next, when the electric field is antiparallel to the magnetic field by reversing the direction of the electric field
shown in Fig. 2.1(b), then the potential and the larmor frequency become as follows;

U =−µnB · S
S
+dnE · S

S
, (2.2)

ω−
L =

2µnB
h̄

− 2dnE
h̄

. (2.3)

From the difference of these two Larmor frequencies, nEDM can be obtained as follows;

ω+
L −ω−

L =
4dnE

h̄
. (2.4)

On the other hand, it is also possible to directly measure the spin rotation due to the electric field. In this case,
the amount of spin rotation is given by Eq. (2.5), and the corresponding change in polarization is measured.

φEDM =
2dnEτ

h̄
(2.5)

where τ is an interaction time between nEDM and the electric field.
There are three main types of nEDM search experiments: the UCN method and the flight method utilize

the former measurement principle, while the crystal diffraction method uses the latter.

Spin(MDM)

EDM

Spin(MDM)

EDM

RCNP workshop "Fundamental Physics Using Neutrons and Atoms”, 2022.8.12– 8.13  
Shigeyasu Itoh（ D３）　Φ_Lab., Department of Physics, Nagoya-University 5

(a) (b)

B E B −E

ω+
L ω−

L

Figure 2.1: Principle of the experiment to search for EDM.
A neutron with spin perpendicular to the magnetic field B and the electric field E. (a) The electric field is parallel
to the magnetic field. (b) The electric field is antiparallel to the magnetic field. The nEDM can be obtained from the
difference of two Larmor frequencies.
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2.2 The UCN Method
The UCN method is a method in which spin-polarized ultra-cold neutrons (UCN) are confined in a vessel
for a period of time and an electromagnetic field is applied to measure the Larmor frequency difference
Eq. (2.4). UCN is a neutron with energy of about 250 neV or less, its velocity is less than about 7 m/s, and
its wavelength is greater than about 6000 nm. Because of this very long wavelength compared to the lattice
spacing, the nuclear potential of the material is not directly applied to UCNs, but the spatially averaged
effective Fermi potential (optical potential) is applied to UCN. Therefore, it is fully reflected at the surface
of materials such as nickel (250 neV) and stainless steel (220 neV), which have high optical potentials.
Using this advantage of UCN, the UCN method is performed by confining UCN in a vessel such as nickel.
As a typical example, the UCN method experiment conducted at I.L.L. (Institute of Laue and Langevin) in
Grenoble, France from 1996 to 2002 is briefly introduced here [23, 24, 25, 26].

Figure 2.2 is the scheme of their experimental setup taken from reference [25]. The vessel in which
neutrons are stored is the rectangular part in the center. Surrounding it is a coil that creates a constant
magnetic field (10 mG) inside the vessel, and outside the coil is a four-layer magnetic shield to block the
external magnetic field. There are electrodes at the top and bottom of the storage vessel to create an electric
field (about 10 kV/cm) inside the vessel, and a high voltage is supplied from the top. UCN generated in
another device is introduced into the vessel from the bottom. It is then polarized into upward spin by passing
through a thin magnetized iron film (about 1 µm). The Larmor frequency Eq. (2.1) and Eq. (2.3) were
measured by the Ramsey separated-oscillatory-field magnetic resonance method [27]. After the UCN is
introduced into the vessel, the spins are flipped π/2 in the direction perpendicular to the magnetic field by
the oscillating magnetic field of the horizontal RF coil, which is not shown in the figure. This can be done
by selecting the frequency and intensity of the oscillating magnetic field appropriately. The UCN then have
a free precession (about 30 Hz) in a constant magnetic and electric field for 130 seconds. A second π/2
flip is then performed. At this time, the measurement is repeated, scanning the frequency of the oscillating
magnetic field in the range before and after the frequency of the free precession motion, in a coherent state
with the first π/2 flip. When the frequency coincides with the free precession, the spin goes down, and when
the phase is shifted by π , the spin goes up. The UCN is ejected from the bottom of the vessel, and now the
magnetized iron film acts as an analyzer, transmitting only the up-spin UCN, which is counted by the 3He
detector. In addition, the π-flipper RF coil above the magnetized iron film inverts the spin of the UCNs, so
that only spin-down UCNs can be counted. The resulting resonance oscillations can be obtained, as shown in
the figure, and the frequency of the free precession can be measured from its maximum amplitude position.

By switching the polarity of the high voltage applied to the top of the vessel, the nEDM can be obtained
from Eq. (2.4) by measuring the Larmor frequency in the case of an electric field parallel and antiparallel to
a constant magnetic field. In this experiment, the time variation of the constant magnetic field is corrected
by a cooperating magnetometer using mercury atoms. The nEDM result obtained was 3.0× 10−26 e · cm.
Subsequently, a similar experiment was performed by an experimental group at PSI and the current upper
limit of nEDM was updated to 1.8×10−26 e · cm.
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Fig.1. Scheme of the spectrometer used to search for nEDM 
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An experimental search for an electric dipole moment (EDM) of the neutron has been carried out at the
Institut Laue-Langevin, Grenoble. Spurious signals from magnetic-field fluctuations were reduced to
insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties,
including geometric-phase-induced false EDMs, have been carefully studied. The results may be
interpreted as an upper limit on the neutron EDM of jdnj< 2:9! 10"26e cm (90% C.L.).
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Measurements of particle electric dipole moments
(EDMs) [1–3] provide some of the tightest constraints on
extensions to the standard model, such as supersymmetry,
that attempt to explain the mechanisms underlying CP
violation [4–11]. This neutron-EDM experiment has
been discussed in earlier publications [1,12]. The final
result presented in this Letter incorporates a comprehen-
sive analysis of systematic errors, some of which were
undiscovered at the time of the earlier measurements.

The measurement was made with ultracold neutrons
(UCNs) stored in a trap (Fig. 1) permeated by uniform E
and B fields. The neutron spin polarization precesses about
the field direction at the Larmor frequency !:

 h! # j2"nB$ 2dnEj; (1)

where the% (") sign corresponds to parallel (antiparallel)
fields. Thus, the experiment aimed to measure any shift in
! as an applied E field alternated between being parallel
and then antiparallel to B.

The UCNs were prepared in a spin-polarized state by
transmission through a thin, magnetized iron foil and
entered a cylindrical 21-liter trap within a 1 "T uniform
vertical magnetic field B0.

Approximately 20 s were needed to fill the trap with
neutrons, after which the entrance door was closed pneu-
matically. The electric field, of approximately 10 kV=cm,
was generated by applying high voltage (HV) to the elec-
trode that constituted the roof of the trap, while grounding
the floor electrode. The electrodes were made of diamond-
like-carbon coated Al, and the side wall was SiO2.

The transition frequency ! of the neutrons was measured
using the Ramsey separated-oscillatory-field magnetic
resonance method. During the storage period, the neutrons
interacted coherently with two 2 s intervals of oscillating
magnetic field having a chosen frequency close to the
Larmor frequency. The two intervals were separated by a
period T # 130 s of free precession. The last step was to
count the number of neutrons N" and N# that finished in
each of the two polarization states. This was achieved by

opening the entrance door to the trap and allowing the
neutrons to fall down onto the polarizing foil, which then
acted as a spin analyzer. Only those in the initial spin state
could pass through to the detector, which was a propor-
tional counter in which neutrons were detected via the
reaction n% 3He! 3H% p. During one-half of the count-
ing period, an rf magnetic field was applied in the region
above the polarizing foil; this flipped the spins of the
neutrons, thereby also allowing those in the opposite spin
state to be counted. Each batch cycle yielded about
14 000 UCN counts. Within a run, the data-taking opera-
tions were cycled continuously for 1–2 days. Periodically,
after a preset number (normally 16) of batches, the direc-
tion of E was reversed. All other settings were held con-
stant during a run. Every 10–20 runs, B0 was reversed so
that half of the full data set was taken with B0 upwards and
half with B0 downwards. We adopt a system as in
Ref. [13], where the k̂ vector of our z axis follows the
direction of B0. Hence, B0 is always positive, while the
gravitational displacement of the UCNs changes sign.

NS

Four-layer µ-metal shield High-voltage lead
Quartz insulating 
cylinder Magnetic field 

coil

Upper 
electrode

Storage cell 

Hg u.v. 
lamp

PMT for 
Hg light

Vacuum wall

Mercury
prepolarizing

cell

Hg u.v. lamp
RF coil to flip spins

Magnet

UCN polarizing foil 
 Approx scale 1 m 

FIG. 1 (color online). Experimental apparatus.

PRL 97, 131801 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
29 SEPTEMBER 2006

0031-9007=06=97(13)=131801(4) 131801-1  2006 The American Physical Society

fig2_UCNmethod

VOLUME 82, NUMBER 5 PHY S I CA L REV I EW LE T T ER S 1 FEBRUARY 1999

 N S

Four-layer mu-metal shield High voltage lead
Quartz insulating
cylinder

Coil for 10 mG
magnetic field

Upper
electrodeMain storage cell

Hg u.v. lamp

PMT to
detect Hg
u.v. lightVacuum wall

Mercury
prepolarising

cell

Hg u.v. lamp
RF coil to flip spins

Magnet

UCN polarising foil

UCN guide 
changeover

Ultracold
neutrons

(UCN)

UCN detector Approximate scale: 1 m

FIG. 1. The neutron EDM experimental apparatus.

the vacuum tank with a uniform pitch in z, the vertical di-
ameter of the cylinder. Approximately 20 s are needed to
fill the storage cell with neutrons, after which the entrance
door is closed pneumatically. The electric field is gener-
ated by applying high voltage to the upper electrode while
keeping the lower electrode grounded.
The transition frequency n of the neutrons is measured

using the Ramsey separated oscillatory field magnetic
resonance method. During the storage period, the neu-
trons interact coherently with two short (¯2 s) intervals of
oscillating magnetic field having a chosen frequency close
to the Larmor frequency. The two intervals are sepa-
rated by a long period T ¯ 120 150 s of free preces-
sion. The last step is to count the number of neutrons N"
and N# which finish in each of the two polarization states.
This is achieved by opening the entrance door to the stor-
age cell and allowing the neutrons to fall down onto the
polarizing foil, which now acts as a spin analyzer. Only
those in the initial spin state can pass through to the de-
tector, which is a proportional counter in which neutrons
are detected via the reaction n 1 3He ! 3H 1 p. Dur-
ing one-half of the counting period, an rf field is applied
in the region above the polarizing foil; this flips the spins
of the neutrons, thereby also allowing those in the oppo-
site spin state to be counted.
Figure 2 shows N" from a succession of batch cycles,

each with a slightly different offset between the preces-
sion frequency and the oscillating field frequency. The
normal data-taking procedure entails choosing a working
point at a half-height position close to the center of the
resonance pattern in Fig. 2, where the slope of the curve
is greatest. The batches are cycled continuously for 1–
2 days, while about once per hour the direction of E is
reversed. The data are fitted to a cosine curve to yield the
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FIG. 2. The Ramsey resonance curve for spin-up neutrons,
N". The corresponding pattern for N# is inverted but otherwise
identical.

resonant frequency. It can be shown that the uncertainty
sdn on the dipole moment due to neutron counting statis-
tics noise alone is then

sdn ¯
h̄

2aET
p

N
, (2)

where N is the total number of neutrons counted and a is
the visibility of the central resonance fringe:

a ≠
sN"max 2 N"mind
sN"max 1 N"mind

, (3)

with a similar value for N#. For the data involved in this
analysis, approximate average values of the variables in
Eq. (2) were a ≠ 0.5, E ≠ 4.5 kVycm, T ≠ 130 s, and
N ≠ 13 000 neutrons per batch, with each batch cycle
taking about 210 s. From one day of data, therefore (and
allowing for pauses between runs and control measure-
ments at zero voltage), sdn was about 6 3 10225e cm.
The mercury magnetometer.—Under normal running

conditions, small changes in B (at the level of a few nG)
cannot be avoided, and they invariably produce shifts in
the neutron precession frequency that far exceed those
from the dn ? E interaction. A high-precision magne-
tometer is therefore essential. The current experiment
uses atoms of 199Hg (with 3 3 1010 atomsycm3) stored
simultaneously in the same cell as the neutrons. Gravity
causes the center of mass of the (ultracold) neutrons to
be about 0.5 cm lower than that of the (hot) Hg atoms;
this may crudely be compared with the 30-cm separation
of the magnetometers in the previous ILL experiment [4]
and the 10-cm separation between the pair of cells used in
the measurement at PNPI [5].
The 199Hg is polarized by optical pumping in a one-

liter antechamber. Once the main storage cell has been
filled with neutrons and the entrance door closed, the
polarized mercury is allowed in to join the neutrons. The
spins, first of the mercury and then of the neutrons, are
rotated into the xy plane (i.e., perpendicular to B) by

905

Figure 2.2: A scheme of the UCN method and the Ramsey resonance curve, which are quote from
the literature [23, 25].
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ELECTRIC D I POLE MOMENT OF NEUTRON

mirror" at A. The beam then passes into a region of
homogeneous magnetic field produced by the magnet 8.
The polarization of the beam is analyzed by a magneti-
cally saturated iron isthmus" in the magnet at 3'.
The neutrons traversing the apparatus are counted in a
BF3proportional counter at D.When a radio-frequency
magnetic Geld is applied to the neutron beam in two
separated coils' C and C' at the average Larmor
frequency of the neutrons in the magnetic Geld between
these coils, transitions may be induced to the opposite
spin state. The intensity of the beam passing through
the analyzer will consequently decrease. If the neutron
had an electric dipole moment oriented along its spin,
a steady electric fmld applied parallel to the homo-
geneous magnetic field in the region between the coils
C and C' would alter the torque on the neutron and
hence would change its precession frequency. This
would result in a shift in the frequency at which a
maximum number of spin transitions were induced.
Such an electric Geld was applied between the plates of
a condenser K
The magnetized iron mirror used as the polarizer was

polished Qat on a pitch lap to one or two wavelengths of
light per inch. The mirror was six inches long and one
and one-half inches high, though a beam of neutrons
only one centimeter high was used. The magnetic field
at the surface of the mirror was nearly 2500 oersteds.
The intensity of neutrons rejected from this mirror as
a function of mirror angle was compared to that theo-
retically expected from a Aux of neutrons with a 500'K
Maxwellian velocity distribution and found to agree
within experimental error. The polarization theoreti-
cally expected at the mirror angles used in the experi-
ment was approximately 85%. The analyzer was a
magnetically saturated piece of cold-rolled steel such as
other experimenters have used for both polarizer and
analyzer. " "A magnetic Geld of approximately 10 500
oersteds was maintained in the analyzer block. A second
mirror would have been preferable, but limited space
prevented its use. With the mirror polarizer and steel
block analyzer changes of 40% in intensity were ob-
served in varying the frequency through resonance.
The homogeneous field magnet was constructed by

clamping two cold-rolled steel pole faces 71-in. long
by 5-in. high by 1-in. thick 1.75-in. apart. Sixteen small
Alnico magnets bolted between the pole faces along the
bottom supplied the magnetomotive force. This con-
struction provided a convenient trough in which the
radio-frequency coils and electric-field plates could be
suspended. The magnet provided a field of about 250
oersteds which corresponds to a neutron transition
frequency of 750 k%ec. The split rf coil technique does
not require a Geld of high homogeneity, so the homo-
genizing was done by rubber-cementing suitably cut
's D. J. Hughes aud M. Surgy, Phys. Rev. 75, 463 (1949).
'6 Bloch, Hammermesh, Staub, and Condit, Phys. Rev. 64, 4'7

(1943)i 70, 972 (1945).
&'

¹ F. Ramsey, Phys. Rev. 75, 996 (1949),

FIG. 1. Schematic diagram of the apparatus. A, the magnetized
iron mirror polarizer. A', the magnetized iron transmission
analyzer. 8, the pole faces of the homogeneous field magnet.
Note the horseshoe-like magnets bolted along the bottom. C, C',
the coils for the radio-frequency magnetic field. D, the BF3neutron
counter. The magnetic fields in the polarizing magnet and the
homogeneous. field magnet are at right angles, and two twisted
iron strips were used between them to rotate the neutron spins
adiabatically.

steel shims to the magnet pole faces. The final field was
uniform to within —', oersted of its mean value over the
relevant region traversed by the neutron beam. All
magnetic-field measurements were made with a proton-
resonance apparatus. The Geld was not exceedingly
stable. It was necessary to enclose the whole apparatus
in a box whose temperature was regulated to about
0.2'C. Large steel objects and electromagnets in neigh-
boring laboratories disturbed the field noticeably. Such
day to day disturbances are not particularly objection-
able because the comparisons involved in any one
measurement extend over a relatively short period.
Data were discarded, however, when it was discovered
that the field was drifting excessively.
The electric Geld was produced by applying a voltage

of approximately 25 000 volts between highly polished
nickel-plated copper plates 0.349-cm apart and 135-cm
long. This whole structure was enclosed in a vacuum
chamber for insulation and suspended in the magnetic
field. The nickel disturbed the magnetic field to some
extent, but unfortunately the ferromagnetic substances
seem to have the best vacuum sparking characteristics.
The radio-frequency magnetic field was produced in

two helical coils 5-cm long with their axes along the
neutron beam. The coils were spaced 159 cm apart.
The radio-frequency current was supplied by a con-
ventional resistance-stabilized electron-coupled Hartley
oscillator driving a 1625 beam power tube through two
ampliGer-buGer stages. The master oscillator was of
very rigid construction and was quite stable. During
the experimental runs the frequency was monitored on
a Bendix Radio LM-18 frequency meter. The average
frequency during a run was known to be better than
2 cps per Mc/sec.
All counts were referred to the counts recorded in a

thin BF3 proportional counter used as a monitor,
through which the beam passed as it left the pile.
Typical resonance curves are shown in Fig. 2. As the

radio-frequency magnetic Geld is changed in frequency

Figure 2.3: Scheme of the first free flight method, which is a quote from the literature [28].
A, the magnetized iron mirror polarizer. A′, the magnetized iron transmission analyzer. B, the pole faces of the homogeneous field
magnet. C, C′, the coils for the radio-frequency magnetic field. D, the BF3 neutron counter. E, the condenser plates that apply the
electric field are highly polished nickel-plated copper plates 0.349 cm apart and 135 cm long.

2.3 Free Flight Method
The free flight method was performed by J.H.Smith, E.M.Purcell and N.F.Ramsey in 1957 and gave the
first upper limit value of 5× 10−20 e · cm for the purpose of nEDM measurement [28]. The measurement
of the frequency of the spin precession in an electromagnetic field and the determination of the nEDM
value from the difference in frequency when the direction of the electric field is reversed is the same as the
UCN method, and the frequency measurement method is the same as the Ramsey separated-oscillatory-field
magnetic resonance. The difference is that thermal neutrons are used. Thermal neutrons are neutrons with
energies of about 1 ∼ 100 meV. And instead of storing them in a vessel (thermal neutrons cannot be stored
in a vessel), they are flighted freely over a long distance to investigate their precessional motion. Figure 2.3
shows a schematic diagram of the experiment [28].

Thermal neutrons polarized by A fly in the uniform magnetic field indicated by B. E is an electrode
that creates an electric field, and the direction of the field can be reversed. C and C′ are Ramsey separated-
oscillatory-field. Neutrons analyzed by A′ are counted by the proportional counter D. Compared to the UCN
storage method, a strong thermal neutron source can be used, and the number of neutrons counted can be
higher, but the interaction time is much longer than that of the UCN storage method. In the case of this
experiment, the interaction time is order of 1 msec.

Until the 1970s, this method was the mainstream of nEDM search experiments, but with the develop-
ment and progress of the UCN storage method, it has not been used until now. However, due to advances
in experimental techniques and plans to construct even more powerful thermal neutron sources, plans are
underway for experiments with much longer flight distances and beyond the current upper limits [29].
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demonstrated that a statistical sensitivity of ∼ 6 · 10−25 e cm/day
can be obtained, comparable to the most sensitive published UCN
experiments [2,3].

The results in [15] were obtained in Laue geometry that is lim-
ited by systematics [16]. Here we exploit the Bragg geometry first
proposed by Forte [7]. See [11] for a detailed comparison of the
two schemes.

2. Method

We consider spin rotation for neutrons close to the Bragg con-
dition for the crystallographic plane g in a non-centrosymmetric
crystal. These neutrons are exposed to an electric field E = E g · a
where E g is the interplanar electric field for plane g and a de-
scribes the deviation of the neutron from the exact Bragg condition
(see [11] for details). A nonzero nEDM dn results in neutron spin
rotation by the angle

ϕEDM = 2EdnL
h̄v⊥

, (1)

where L is the length of the crystal and v⊥ the component of the
neutron velocity perpendicular to the crystallographic plane (L/v⊥
is the time the neutron interacts with the field). By changing the
deviation from the exact Bragg condition, a, value and even sign of
the effective electric field and the resulting spin rotation ϕEDM can
be selected.

On the other hand, the electric field causes a Schwinger mag-
netic field in the rest frame of the neutron, H S = [E × v]/c, result-
ing in the spin rotation angle

ϕS = 2µn HSL
h̄v⊥

= 2EµnLv‖
ch̄v⊥

, (2)

where µn is the neutron magnetic moment and v‖ the neutron
velocity component parallel to the crystallographic plane.

As E and H S are perpendicular to each other, ϕEDM and ϕS can
be separated by three-dimensional (3D) polarisation analysis. Fur-
thermore, ϕS vanishes for Bragg angles of π/2 (v‖ = 0 in Eq. (2)).
This is used to suppress the effect due to Schwinger interaction:
The crystal is aligned such that the interplanar electric field is par-
allel to the central neutron velocity, defining the Z direction of a
coordinate system. The incident neutron polarisation is aligned in
X (or Y ) direction. ϕEDM is measured in the X–Y plane. A residual
Schwinger magnetic field (for neutron trajectories deviating from
the Z direction or in case of a slight misalignment of the crystal)
has its largest component in the X–Y plane, thus creating a polari-
sation component in Z direction. Thus, ϕS can be derived from the
Z component of the outgoing polarisation vector. In summary, we
measure ϕEDM from the component P X Y of the polarisation tensor

and the residual Schwinger effect from the components P X Z and
P Y Z . P Y X , P Z X and P Z Y serve for control purposes.

In first order, the difference of the polarisation tensors for pos-
itive and negative effective electric fields is:

!P = gnτ0





0 −(H z $τ
τ0

+ HEDM) (H y $τ
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+ H y
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 ,

(3)

where τ0 = (τ+ + τ−)/2, $τ = (τ+ − τ−)/2, and τ+ and τ− are
the times the neutrons stay in the crystal for the positive and the
negative electric field, respectively (the neutron velocity is slightly
different for ±a). Hi are the components of the residual magnetic
field and Hi

S the components of the Schwinger magnetic field H S.
gn = 2µn/h̄ = 1.8 · 104 G−1 s−1 is the neutron gyromagnetic ratio,
HEDM = Edn/µn the effective magnetic field corresponding to the
electric field E . For E = 1 · 108 V/cm and dn = 10−26 e cm, HEDM =
1.7 · 10−7 G.

3. Experimental setup and procedure

The experiment was carried out at the cold neutron beam fa-
cility PF1B [17] of the Institut Laue–Langevin. A scheme of the
setup is shown in Fig. 1. Neutrons were wavelength-preselected by
a pyrolytic graphite monochromator (adjusted to 4.91 Å, resolu-
tion about 1%) and spin polarised to about 98% by a super mirror
polariser. A resonance spin flipper permitted to flip the neutron
polarisation. Cryopad [18,19] was used for 3D polarisation analy-
sis. The direction of the incident beam polarisation was oriented
and the measured projection of the outgoing polarisation vector
selected by nutators (in the X–Y plane) and precession coils (in-
side the Meissner screen, for the Z component). The polarisation
of the transmitted beam was analysed by a 3He spin filter cell [20]
(measured polarisation value of the unperturbed beam between
75% and 87%, depending on the 3He cell). The currents in the pre-
cession coils were optimised experimentally for the wavelength of
the used neutrons.

We used the (110) reflection of a perfect quartz crystal of
14 cm length. The effective angular mosaic spread of the crystal
was ωm ∼ 1′′ . The neutrons with a well-defined deviation from
the Bragg condition for this crystal were selected behind the 3He
spin filter cell by back-reflection at a second quartz crystal oriented
parallel to the first one and at a slightly different temperature.
A shift of the neutrons by one Bragg width ($λB/λ ≈ 10−5 for
the (110) plane of quartz) corresponds to a temperature differ-
ence $T ≈ ±1 K (linear coefficient of thermal expansion for quartz
ξ = $L/L ≈ 10−5/K). Note that the absolute temperature of the

Fig. 1. Scheme of the experiment. The neutrons come from the right. See Section 3 for details.Figure 2.4: Schematic diagram of the crystal diffraction method for nEDM search experiment,
which is a quote from Fig.1 of ref. [38].
Neutrons with the wavelength of 0.491 nm selected by the double crystal monochromator are polarized and spin-controlled and
injected into the first crystal from the right side of the figure. Crystals are α-quartz. The first crystal is installed in the 3D polarization
analysis apparatus (CRYOPAD) and is arranged so that neutrons are injected perpendicular to the crystal plane (110). The second
crystal at the rear (left side in the figure) is similarly arranged, but the temperature of both crystals is slightly controlled so that
neutrons passing through the first crystal with slightly off the Bragg condition are reflected by the second crystal with the exact Bragg
condition. By controlling the spins perpendicular to the intra-crystal electric field and measuring and analyzing the spin polarization
due to precession while passing through the first crystal, it is possible to search for nEDM

2.4 Crystal Diffraction Method
The third method, crystal diffraction method, differs from the UCN storage and free-flight methods in the
physical quantity measured. In 1967, Shull and Nathans [30] were the first to propose a method using
spin rotation due to an electric field in a crystal and obtained an upper limit of (2.4± 3.9)× 10−22 e · cm.
Later, Forte [31] proposed an nEDM measurement experiment using spin rotation induced by an intra-crystal
electric field sensed by diffracted neutrons. The field strength measured at the (110)-plane of α-quartz was
(1.8± 0.2)× 108 V/cm [32], which is four orders of magnitude stronger than the field strength achievable
by the UCN and free flight methods. In 2006, Fedorov et al. proposed a crystal diffraction method based on
the Bragg configuration [34, 35] and obtained the value of nEDM of (2.5± 6.5stat ± 5.5syst)× 10−24 e · cm
with that method in 2010 [36, 37, 38].

Figure 2.4 shows a schematic diagram of this experiment [38]. A thermal neutron beam enters the
experimental setup from the right side of the figure. Neutrons with the wavelength of 0.491 nm selected
by the double crystal monochromator (PGM) are polarized by the super mirror polarizer. The direction of
polarization can be reversed with a resonance π-flipper. There are two crystals, the first crystal and the second
crystal, which are installed so that their crystal planes (110) are parallel (perpendicular to the surface of the
paper). The two crystals are controlled to maintain a temperature difference of ∆T = +2.0 K and ∆T =
−0.4 K. This makes it possible that neutrons transmitted by the first crystal slightly off the Bragg condition
can be reflected by the second crystal at the exact Bragg condition. The first crystal, which is 14 cm in length,
is placed in a superconducting magnetically shielded 3D polarization analysis apparatus (CRYOPAD). Spin-
controlled neutrons from the CRYOPAD pass through the first crystal with a slight deviation from the Bragg
condition, and interact with the electric field in the crystal, resulting in a slight change in polarization due
to spin precession. Neutrons coming out of CRYOPAD are analyzed with a 3He spin filter and measured by
nPSD after reflected the second crystal and PG. Thus, it is possible to search for nEDM.

This crystal diffraction method, described above, uses the Bragg configuration. Another crystal diffrac-
tion method uses the Laue configuration. The Bragg and Laue configurations are discussed in section 3.3.
The Laue configuration was proposed by the same Fedorov group [39]. The Bragg configuration method uses
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transmitted neutrons that deviate slightly from the Bragg conditions, whereas the Laue configuration uses
diffracted neutrons that exactly satisfy the Bragg conditions. The electric field in which neutrons interact
within the crystal is maximized when the Bragg condition is satisfied exactly as in the Laue configuration,
and is about one orders of magnitude weaker in the Bragg configuration method. Instead, the Bragg configu-
ration has the advantage of increasing the number of neutrons available compared to the Laue configuration.

2.5 Comparison of Three Methods
Although the UCN storage method and the free-flight method differ in that they measure the frequency
difference of the Larmor precession, and the crystal diffraction method measures the amount of rotation
of the Larmor precession, they both use the Larmor precession in the same way, and their measurement
sensitivity depends on the amount of change in the phase of the Larmor precession, which is expressed by
Eq. (2.5). Therefore, the measurement sensitivity of EDM, ∆dn, is inversely proportional to the strength of
the interacting electric field E and interaction time τ , and inversely proportional to the square root of the
number of neutrons N, which is a statistic.

∆dn ∝
1

Eτ
√

N
(2.6)

Table 2.1 shows the characteristics of the three methods. Typical values are given for the parameters that
determine the experimental sensitivity of 1×10−26 e ·cm achieved during 100 days are shown. The individual
values in Table 2.1 are a mixture of actual and target values.

Table 2.1: Comparison of required parameters of measurement sensitivity for three
different measurement methods.
These show the required parameters which realize the experimental sensitivity of 1×10−26 e ·cm achieved during 100
days. Actual and target values exist in order to emphasize the characteristic of three methods.

Parameter Unit UCN Free flight Crystal diffraction
method method method (Laue)

Interaction time τ sec ∼ 102 ∼ 10−1 ∼ 10−3

Strength of electric field E V/cm ∼ 104 ∼ 104 ∼ 108

Count number of neutrons N sec−1 ∼ 102 ∼ 108 ∼ 104

The main advantage of the UCN method is that it allows a long interaction time, but it is limited by
the low neutron intensity. It is difficult to further improve both the interaction time and the electric field
strength, and there is a need to improve the neutron intensity. Therefore, the development of more powerful
UCN sources is being vigorously pursued [42]. In addition, improvements in the magnetic field environment
and cooperating magnetometers are being vigorously pursued to minimize systematic errors due to geomet-
ric phase effects caused by magnetic field gradients. For the free flight method, the strong beam intensity is
the main advantage, but the shorter interaction time depending on the size of the experimental apparatus is a
disadvantage. Therefore, a new plan is underway to increase the flight distance in order to extend the inter-
action time [29]. According to the report, assuming an interacting flight distance of 50m, the measurement
sensitivity of 5× 10−28 e · cm can be achieved. The challenge of systematic uncertainties due to magnetic
field gradients is expected to become more difficult as the size of device increases.

The crystal diffraction method we are aiming for has fewer experiments than the UCN storage method,
and its upper limit is still two orders of magnitude behind. As shown in Table 1, the electric field strength
is overwhelmingly favorable compared to the other methods, but the interaction time and statistics are bot-
tlenecks. In the Bragg configuration method, the statistics are relatively favorable, but the interaction time is
short. Therefore, a new idea has been proposed to increase the interaction time by making neutrons go back
and forth passing through the crystal [40, 41]. On the other hand, the Laue configuration method diffracts
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the Bragg angle closer to 90 degrees, which increases the interaction time, but it is still on the order of 1
msec. Furthermore, the strength of the diffracted neutrons is currently about 1 cps, and the statistics are 4
orders of magnitude lower than the statistics in Table 1. This is the reason why the sensitivity is two orders
of magnitude lower than the UCN method.
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3 Dynamical Diffraction Theory
In this section, a theoretical description of the behavior of neutrons in a crystal is given.

In real crystals, the complete crystal structure exists only in mosaic blocks, which are small crystal
grains. A macroscopic crystal is an a collection of such mosaic blocks. While diffraction phenomena such as
a single reflection in a small mosaic block can be described by kinematic diffraction theory, a large perfect
crystal or a mosaic crystal with a well-aligned mosaic blocks has a large coherent region, and so the effect
of multiple diffraction must be considered. The dynamical theory is a theory that deals with such multiple
diffraction phenomena in perfect crystals.

X-ray diffraction was discovered by M. von Laue in 1912, and the dynamical diffraction theory was first
developed in the X-ray diffraction field by C.G. Darwin [43, 44], P.P. Ewald [45, 46], and M.v. Laue [47],
each in their each own way, Ewald developed the theory in terms of the sequential oscillation, scattering,
and propagation of an incident X-ray wave by considering a crystal as a set of dipoles in a three-dimensional
lattice, while Laue replaced the point-like dipoles with a continuous electron density distribution. The theory
was then developed into a dynamical theory of electron diffraction, and the first dynamical formulation of
the neutron theory was given by Goldberger and Seitz [48] in 1947. Review papers summarizing neutron
diffraction include Sears [49] and Rauch [50], and so on.

The most important difference between X-ray and neutron dynamical theory is the interaction potential
in a crystal. For X-rays, the crystal structure factor is derived from the electron distribution in the crystal
cell. For neutrons, on the other hand, it is the very localized neutron-nucleus interaction, which is given by
the Fermi pseudo potential. The crystal structure factor is determined by the scattering length of the nuclei
describing the neutron-nucleus interaction. Furthermore, due to the relatively low absorption of neutrons,
the dynamical diffraction effects occur, which can only be observed in thin crystals in X-rays.

Here we treat and discuss the dynamical diffraction theory based on the basic plane-wave theory.

3.1 The Interaction Potential of a Neutron in a Non-Magnetic Crystal
The interaction potential of a neutron in a nonmagnetic crystal can be written as the sum of the nuclear
force potential with the nucleus, the relativistic magnetic field potential and the electric field potential of the
nEDM;

V (r) =V N(r)+V S(r)+V E(r). (3.1)

The nuclear force potential can be written in terms of the Fermi pseudo-potential as

V N(r) =
2π h̄2

mn
∑
n,d

bd
c δ (r−Rn −ρd) . (3.2)

This equation will be discussed in the next section. The relativistic magnetic field potential is the interaction
potential between the neutron magnetic moment and the relativistic magnetic field sensed by a neutron
moving in an electric field. In a crystal, there is an electric potential due to the distribution of nuclei and
electrons. A neutron propagating through a crystal feels a potential averaged by its probability density. Let
it be called the effective intra-crystal electric field in this paper. The relativistic magnetic field potential can
be written as

V S(r) =−µn
σ · [E×v]

c2 . (3.3)

The interaction potential between nEDM and its effective intra-crystal electric field is given by

V E(r) =−dnσ ·E. (3.4)

As a typical example, in the (110)-plane of α-quartz with the Bragg angle of 30 degrees, if the intra-
crystal electric field is 2.0×108 V/cm and the value of nEDM is 1.8×10−26 e ·cm, the respective magnitudes
are V N = 36 neV, V S = 2.2×10−2 neV and V E = 3.6×10−9 neV. Since the nuclear force potential is by far
the largest, it can be treated as V (r)≃V N(r) in this section, which would discuss wave fields in a crystal.
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3.2 Crystal Structure Factor
As mentioned above, when discussing diffraction phenomena, we only need to consider V N, since V S and
V E are much smaller than V N. Hereafter, V N(r) =V (r). Since V (r) has the periodicity of the crystal, it can
be Fourier expanded using the reciprocal lattice vector.

V (r) = ∑
g

Vg exp(ig ·r). (3.5)

The reciprocal lattice vector g of the crystal plane with the Miller index (h k l) is represented as

g = hG1 + kG2 + lG3, (3.6)

where G1, G2 and G3 are the basic reciprocal lattice vector and defined as

G1 = 2π
[b×c]

vc
, G2 = 2π

[c×a]

vc
, G3 = 2π

[a×b]

vc
, (3.7)

where a,b,and c are the crystal lattice vectors and vc is the volume of a unit cell. Vg can be written as follows
by inverse Fourier transforming Eq. (3.5) and using Eq. (3.2).

Vg =
1

vcNc

∫
V (r)exp(−ig ·r)dr

=
1

vcNc

2π h̄2

mn
∑
n,d

∫
bd

c δ (r−Rn −ρd)exp(−ig ·r)dr

=
2π h̄2

mnvc
Fg,

(3.8)

where Nc is the number of a unit cell and bd
c is the bound coherent scattering length of a nucleus d positioned

at ρd that is the position vector in a unit cell and Rn is the position vector of a unit cell (see Fig. 3.1). The
relation with the bound coherent scattering length and free coherent scattering length ad

c is

bd
c =

md +mn

md
ad

c , (3.9)

Rn

ρd
r

Figure 3.1: The nucleus position in a unit cell
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where md is the mass of nucleus d. Fg is the crystal structure factor.

Fg = ∑
d

bccd exp(−ig ·ρd). (3.10)

Here we assume that the atoms are stationary at their respective positions in the crystal lattice, but in
fact they are thermally oscillating around their equilibrium positions, depending on the temperature of the
crystal. If the deviation of the d-th atom in the unit cell from its equilibrium position is denoted by δd(t), the
position of the atom can be written as

ρd(t) = ρd +δd(t). (3.11)

The crystal structure factor can then be written as

Fg = ∑
d

bd
c exp [−ig · (ρd +δd)]

= ∑
d

bd
c exp(−ig ·ρd)

[
1− ig ·ρd −

1
2
(g ·δd)

2 + · · ·
]
.

(3.12)

If the oscillations are spatially random, the average is considered to be the same as the time average of the
oscillations. Therefore when the time average is expressed by < · · · >, the crystal structure factor can be
approximated as follows, considering that the odd power term is zero.

Fg = ∑
d

bd
c exp(−ig ·ρd)exp

[
−1

2
< (g ·δd)

2 >

]
= ∑

d
bd

c exp(−ig ·ρd)exp(−Wd),
(3.13)

Wd =
1
2
< (g ·δd)

2

= 8π2 < δ 2
d⊥ >

sin2 θB

λ 2 ,

(3.14)

where δd⊥ is the vibration component perpendicular to the diffraction plane. The effect of thermal oscillation
can be expressed by multiplying the scattering length bd

c by exp(−Wd), and this exp(−Wd) is called the
Debye-Waller factor.

In this study, we used α-quartz, a low-temperature SiO2 crystal. Silicon dioxide (SiO2) has a variety of
crystal structures at different temperatures and pressures. α-quartz, which is trigonal at room temperature
at 1 atmosphere, undergoes a phase transition to hexagonal β -quartz at 573◦C. β -quartz is fully hexagonal
and has a six-fold rotational symmetry axis, whereas α-quartz is trigonal and has only a three-fold rotational
symmetry axis due to slight comtraction. This contraction leads to non-centrosymmetry. α-quartz (and β -
quartz) has a spiral structure, and a crystal with a left-handed spiral is called a right-handed quartz, which
shows right-handed rotatory polarization. α-quartz with a right-handed spiral is called a left-handed quartz,
and it exhibits left-handed rotatory polarization. Right-handed quartz and left-handed quartz are optical
isomers of each other. In this study, artificial α-quartz was used, which is right-handed α-quartz.

Figure 3.2 show the crystal structure and atomic configuration coordinates of α-quartz. The coordinate
values are normalized by the cell size. The magnitudes of thermal vibrations of Si and O atoms in α-quartz
at room temperature are

< δ 2
Si⊥ >∼ 0.006, < δ 2

O⊥ >∼ 0.017, (3.15)

and the magnitude of each Debye-Waller factor is ∼ 0.98 and ∼ 0.95, respectively. The crystal structure
factors for several crystal planes of α-quartz can be calculated using the atomic configuration coordinates in
Fig. 3.2.
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a

b

c

y

x

z

1

1

2

3

3

2

4

5

6

Atom a b c

O 1 0.8521 0.1465 0.4281

O 2 0.3172 0.8787 0.6648

O 3 0 0 0

O 4 0.731 0.4647 0.7627

O 5 0.4386 0.3189 0.3317

O 6 0.1722 0.5861 0.0958

Si 1 0.0551 0.7326 0.8801

Si 2 0.1149 0.2626 0.2135

Si 3 0.585 0.2021 0.5467

Atom coordinates

Quoted from AtomWork
Figure 3.2: The crystal structure and atom coordinates of α-quartz.
The crystal structure of α-quartz and the positions of its constituent atoms within the unit cell. The coordinate values are expressed in
terms of the lattice vectors a, b, and c, normalized by the unit cell size (lattice constant). One unit cell contains three SiO2 molecules.
Quated from AtomWork.

3.3 One Wave Approximation
Consider the case of a perfectly collimated parallel neutron beam with a fixed wavelength incident on a
crystal. Since the actual neutron beam has a wavelength spread and a finite divergence angle, it cannot
simply be described by a monochromatic plane wave. However, considering that neutrons are described
by a single-particle wave function because of a Fermi particle, we can consider the neutron beam to be an
ensemble of monochromatic plane waves with a spread of wave-number space. The wave function of a
neutron flying freely in vacuum and injected on a crystal with a wave number vector k is

ψin(r) = uin exp(ik ·r) , (3.16)

where uin denotes the amplitude of the wave function and |ψin(r)|2 = u2
in is a space density of neutrons. Since

diffraction experiments with neutron beams are generally stationary, the time factor is omitted. Neutrons
incident on a crystal interact with a potential V (r) in a crystal and their wave motion is described by the
Schrödinger equation [

− h̄2

2mn
∇2 +V (r)

]
Ψcry(r) = EΨcry(r), (3.17)

where E is the energy of the neutron and mn is the mass of the neutron. Due to the periodic boundary
conditions of the crystal, the wave function of the neutron can be described as a superposition of Bloch
waves with a wave number vector K( j);

Ψcry(r) = ∑
j

u( j)(r)exp
(

iK( j) ·r
)
. (3.18)

The wave number vector of the waves in a crystal is denoted by a capital letter K( j), and u( j)(r) denotes the
amplitude of the wave field. The suffix ( j) is the label of each Bloch wave field. The amplitude u( j)(r) can
be Fourier expanded in terms of the reciprocal lattice vector g as same as the potential V (r) in Eq. (3.5).

u( j)(r) = ∑
g

u( j)
g exp(ig ·r). (3.19)
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Substituting Eq. (3.18), (3.19) and (3.5) into Eq. (3.17), a homogenous system of equations for u( j)
g can be

obtained as [
− h̄2

2mn

(
K( j)+g

)2
−E

]
u( j)
g =−∑

g

Vg−g′u( j)
g′ . (3.20)

The ratio of Vg to the thermal neutron energy E = h̄2k2/2mn is of the order of ∼ 10−5. For example, the
thermal neutron energy at a wavelength of 2.5 Å is about 13 meV and Vg of (110)-crystal plane of α-quartz
is 52.5 neV, so Vg/E ∼ 4×10−6. This small ratio can be used to approximately solve for u( j)

g .
The homogenous equation Eq. (3.20) for the Fourier coefficient u( j)

g of u( j)(r) can be written as follows,(
K( j)+g

)2 −k2

k2 u( j)
g = ∑

g′

Vg−g′

E
u( j)
g′ ( j = 0,1,2, · · ·). (3.21)

The coefficient V/E appearing on the right-hand side is very small for thermal neutrons, of the order of 10−5,
so for u( j)

g to have a significant magnitude must be(
K( j)+g

)2
−k2 ∼= 0. (3.22)

This is satisfied only if g = 0 or if a particular g satisfies the following general Bragg condition;

λ = 2dg sinθB, (3.23)

where λ = 2π/K is a wavelength of a neutron and dg = 2π/g is a lattice spacing corresponding to a reciprocal
lattice vector g. If there is no g such that the Bragg condition is satisfied, then Eq. (3.21) becomes only a
linear equation for u( j)

0 ; [
h̄2

2m
K( j)2 −E

]
u( j)

0 =−V ( j)
0 u( j)

0 . (3.24)

Strictly, the wave field corresponding to u( j)
g (g ̸= 0) is also excited in a crystal, but its intensity is very

small, of the order of ∼ 10−10, and can be neglected in practice. This approximation, in which only the wave
field corresponding to g = 0 exists, is called the one-wave approximation. This is the case when there is no
crystal plane g that satisfies the Bragg condition.

By solving Eq. (3.24), K( j) is uniquely determined, which we will write as K0. Its magnitude is

K0 ≈ k
(

1− V0

2E

)
= k(1− ε), (3.25)

where
ε =

V0

2E
≪ 1. (3.26)

Writing u( j)
0 as u0, the wave field in a crystal Ψcry(r) can be written as

Ψcry(r) = u0 exp(iK0 ·r) (3.27)

In the case of the one wave approximation, when a neutron of wave number vector k enters a crystal,
only one wave field of wave number vector K0 is excited inside the crystal, which is lower in energy by the
internal potential V0. According to Eq. (3.13),

F0 = ∑
d

bd
c exp(−Wd) = bcNvc, (3.28)

where

bc =
∑d bd

c exp(−Wd)

Nvc
, (3.29)

22



k

k

K0

̂n

γ0

γ

kε
cos γ

̂nCrystal

Vacuum

fig3_snell

Figure 3.3: Schematic diagram of one wave approximation:
n̂:Unit normal vector of the incident plane. k:Wave number vector of the incident wave in vacuum. K0:Wave number
vector of the diffracted wave in a crystal. γ and γ0 is the angle between n̂ with k and K0, respectively.

and from Eq. (3.8)

V0 =
2π h̄2F0

mnvc
=

2π h̄2bcN
mn

, (3.30)

where N is a number density of nucleus and so Nvc is a number of nucleus in a unit cell. bc is called the
average bounded scattering length. V0 is also called the optical potential.

The relation between k and K0 is shown in Fig. 3.3. When n̂ is the unit normal vector of the incident
plane toward the inside of the crystal, the incident angle is γ and refraction angle is γ0,

K0 = k− kε
cosγ

n̂. (3.31)

From the conservation of momentum in the tangential direction of the incident plane,

K0 sinγ0 = k sinγ, (3.32)

ξ =
sinγ
sinγ0

=
K0

k
= 1− ε. (3.33)

ξ is the refractive index and this is the Snell’s law.

3.4 Two Wave Approximation
If there is a g other than g = 0 that satisfies Eq. (3.22), i.e., satisfies the Bragg condition, Eq. (3.21) becomes
a binary system of u( j)

0 and u( j)
g . This approximation, which assumes that only two waves, the refracted

wave at g = 0 (hereafter referred to as the transmitted wave) and the reflected wave at g, which satisfy the
Bragg condition, have significant magnitude, and that other waves can be ignored, is called the two-wave
approximation. Each of the transmitted and reflected waves actually has two more wave components, as we
will see below.

From Eq. (3.21),
[

h̄2

2mn
K( j)2 −E +V0

]
u( j)

0 + V−gu( j)
g = 0

Vgu( j)
0 +

[
h̄2

2mn

(
K( j)+g

)2
−E +V0

]
u( j)
g = 0

(3.34)
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(a) Laue configulation : b ≡ cos γ0
cos γg

> 0

k

K0

̂n

γ0

γ

Crystal

Vacuum

Kg

γg

θB θB

(b) Bragg configulation : b ≡ cos γ0
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Kg

Crystal plane

fig3_Laue and Bragg configulations

Figure 3.4: Schematic diagram of Laue and Bragg configurations:
(a) Laue configuration: no reflected waves exist on the incident side.
(b) Bragg configuration: reflected waves exist on the incident side.

For this binary system of equations to have a non-zero solution, the eigenvalue equation must be zero.∣∣∣∣∣∣
[

h̄2

2mn
K( j)2 −E +V0

]
V−g

Vg

[
h̄2

2mn

(
K( j)+g

)2 −E +V0

] ∣∣∣∣∣∣= 0 (3.35)

Introduce the following parameters;

α ≡ |k+g|2 −|k|2

|k|2
=

g2 +2k ·g
k2 = 2(θB −θ)sin2θB, (3.36)

b ≡ cosγ0

cosγg
, cosγ0 = K̂0 · n̂, cosγg = K̂g · n̂ (3.37)

Here, to clarify the meaning of the parameters α and b, the Laue and Bragg configurations are explained.
As shown in Fig. 3.4, the Laue configuration has no reflected waves on the incident side, while the Bragg
configuration has reflected waves on the incident side. γ0 and γg are the angles between the inside normal
vector n̂ of the crystal with the transmitted wave vector K0 and the reflected wave vector Kg, respectively.
From the definition of the parameter b (Eq. (3.37)), b > 0 for the Laue configuration and b < 0 for the Bragg
configuration. In particular, when b = 1, it is called the symmetric Laue configuration, and when b =−1, it
is called the symmetric Bragg configuration. This is equivalent to the symmetric Laue configuration when
the crystal plane is perpendicular to the incident plane and the symmetric Bragg configuration when it is
parallel to the incident plane.

As Eq. (3.36) indicates, α is a quantity proportional to the magnitude of the deviation of the incident
angle θ from the Bragg angle θB, and it represents the percentage change in the magnitude of the reflected
wave number vector when the incident angle is shifted by (θB −θ). Naturally, if there is no deviation from
the Bragg angle, α = 0.

Using Eq. (3.26), (3.31) and parameters of α and b, the eigenvalue equation Eq. (3.35) can be rewritten
as follows. ∣∣∣∣−2ε +V0/E V−g/E

Vg/E −2ε/b+α +V0/E

∣∣∣∣= 0 (3.38)
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Figure 3.5: Schematic diagram of two wave approximation in the symmetric Laue
configuration:
The incident wavenumber vector k splits into a transmitted wave and a reflected wave in a crystal, each of which
consists of a wave with a slightly larger wavenumber vector (called the α-wave ψ(1)

0 and ψ(1)
g ) and a slightly smaller

wavenumber vector (called the β -wave ψ(2)
0 and ψ(2)

g ). E1 corresponds to the decrease of β -wavenumber vector and
E2 corresponds to the decrease of α-wavenumber vector due to the periodic potential energy Vg .

Solving this yields two eigenvalues ε1,ε2,

ε1,2 =
1
4

αb+
V0

E
(1+b)±

√(
αb− (1−b)

V0

E

)2

+4b
VgV−g

E2

 . (3.39)

This allows for the two wavenumber vectors of the transmitted waves and reflected waves. Respectively,
from Eq. (3.31),

K
(1,2)
0 = k− kε1,2

cosγ
n̂, (3.40)

K
(1,2)
g = k+g− kε1,2

cosγ
n̂. (3.41)

There are a total of four waves in a crystal, and the wave function inside the crystal Ψcry is a superposition
of these waves.

Ψcry(r) = ψ(1)
0 (r)+ψ(2)

0 (r)+ψ(1)
g (r)+ψ(2)

g (r)

= u(1)0 exp
(

iK(1)
0 ·r

)
+u(2)0 exp

(
iK(2)

0 ·r
)

+u(1)g exp
(

iK(1)
g ·r

)
+u(2)g exp

(
iK(2)

g ·r
) (3.42)

Figure 3.5 schematically shows the wave field in the crystal in the two-wave approximation using
wavenumber vectors in the case of a symmetric Laue configuration. The incident neutron with wavenumber
vector k splits into a transmitted wave and a reflected wave in the crystal, each of which consists of a wave
with a slightly larger wavenumber vector (called the α wave) ψ(1)

0 , ψ(1)
g and a slightly smaller wavenumber

vector (called the β wave) ψ(2)
0 , ψ(2)

g . The transmitted wave is refracted by the optical potential as in the
one-wave approximation, and the reflected wave is reflected by the momentum transfer corresponding to the
reciprocal lattice vector. The fact that each wave is composed of two waves with slightly different wavenum-
ber vector magnitudes corresponds to eigenvalues of periodic nuclear potential owing to the crystal lattice.
For the case of symmetric Laue configurations, Eq. (3.39) becomes
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ε1,2 =
1
4

[
α +

2V0

E
±
√

α2 +4
VgV−g

E2

]
(3.43)

If Vg =V−g and Vg/E is approximated as small, we get further

ε1 =
V0

2E
+

1
2

α +
V 2
g

2E2 , (3.44)

ε2 =
V0

2E
+

1
2

α −
V 2
g

2E2 . (3.45)

3.5 Wave Field Inside a Plane Slab in the Laue Configuration
When a monochromatic plane wave is incident on a crystal, satisfying the Bragg condition at crystal plane
g, the wave field in the crystal is represented by Eq. (3.42). Its amplitudes, u(1,2)0 and u(1,2)g , are determined
from the boundary conditions. In the Laue configuration, there is no reflected wave at the crystal plane of
incidence (n̂ ·r) = 0, and the intensity of the incident and the transmitted waves must be equal (conservation
of neutron number).

u(1)0 +u(2)0 = uin (n̂ ·r = 0) (3.46)

u(1)g +u(2)g = 0 (n̂ ·r = 0) (3.47)

Before solving Eq. (3.34) under these boundary conditions, the following parameters are introduced to im-
prove the prospects of the discussion.

∆0 ≡
λE
√
|cosγ0 cosγg|√
|VgV−g|

=
vck
√

|cosγ0 cosγg|
2|Fg|

(3.48)

y ≡ αb− (1−b)V0/E

2
√
|b|
√
|VgV−g|/E

(3.49)

∆0 is called the Pendellösung length, and its physical meaning is the spatial period of the Pendellösung
fringes intensity distribution that will discuss later. y is a quantity related to the deviation from the Bragg
angle, as can be seen from the inclusion of α in its definition formula. Using these parameters to rewrite
Eq. (3.39), we get

ε1,2 =
π cosγ0

k∆0

(
y±
√

y2 + sgnb
)
n̂+

V0

2E
n̂. (3.50)

Substituting for Eq. (3.40) and Eq. (3.41), the wavenumber vectors are expressed as

K
(1,2)
0 = k− kV0

2E cosγ0
n̂+

π
∆0

(
−y∓

√
y2 + sgnb

)
n̂, (3.51)

K
(1,2)
g = k− kV0

2E cosγ0
n̂+

π
∆0

(
−y∓

√
y2 + sgnb

)
n̂+g. (3.52)

The first term is the wavenumber vector of the incident wave, and the second term represents the refraction
(one-wave approximation) due to the optical potential. The third term represents the separation of the α and
β waves due to the periodic potential. g at the end of K(1,2)

g represents the reflection by the reciprocal lattice
vector g. If the Bragg condition is satisfied exactly in the symmetric Laue configuration (b = 1, y = 0), then

K
(1,2)
0 = k− kV0

2E cosγ
n̂+

π
∆0

n̂, (3.53)
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K
(1,2)
g = k− kV0

2E cosγ
n̂+

π
∆0

n̂+g. (3.54)

Eq. (3.34) corresponding to ε1,2 in Eq. (3.50) is as follows
[
−2ε1,2 +

V0

E

]
u(1,2)0 +

V−g

E
u(1,2)g = 0

Vg

E
u(1,2)0 +

[
−2ε1,2

b
+α +

V0

E

]
u(1,2)g = 0

(3.55)

Solving this under the boundary condition Eq. (3.47), the amplitude of the 4-component wave fields for the
Laue configuration are

u(1,2)0 =
uin

2

(
1± y√

1+ y2

)
(3.56)

u(1,2)g =
uin

2

√
b

Vg√
|VgV−g|

∓1√
1+ y2

(3.57)

The incident intensity Ii is
Ii = |ψin|2 = u2

in. (3.58)

The intensity of the diffracted wave Id is

Id = |ψ(1)
0 +ψ(2)

0 +ψ(1)
g +ψ(2)

g |2 (3.59)

= |ψ(1)
0 +ψ(2)

0 |2 + |ψ(1)
g +ψ(2)

g |2 (3.60)

= I0 + Ig, (3.61)

where the intensity of (ψ(1)
0 +ψ(2)

0 )∗(ψ(1)
g +ψ(2)

g ) + (ψ(1)
0 +ψ(2)

0 )(ψ(1)
g +ψ(2)

g )∗ oscillates rapidly in the
space and so much small to be negligible to be smeared by averaging. (We will revisit this point later in
Section 6.) Therefore we need only consider the intensity of the transmitted wave I0 = |ψ(1)

0 +ψ(2)
0 |2 and the

intensity of the reflected wave Ig = |ψ(1)
g +ψ(2)

g |2. The intensity of transmitted and reflected waves is

I0 = u2
in

[
cos2

(
πt
∆0

√
y2 +1

)
+

y2

1+ y2 sin2
(

πt
∆0

√
y2 +1

)]
(3.62)

Ig = u2
in

(
bV 2

g

|VgV−g|
1

1+ y2

)
sin2

(
πt
∆0

√
y2 +1

)
. (3.63)

In the case of the symmetric Laue configuration and Vg = V−g, Eq. (3.62) does not change and Eq. (3.63)
becomes

Ig = u2
in

1
1+ y2 sin2

(
πt
∆0

√
y2 +1

)
. (3.64)

The average of the intensity of I0 and Ig in the symmetric Laue configuration are as follow,

Ī0 = u2
in

1+2y2

2(1+ y2)
. (3.65)

Īg = u2
in

1
2(1+ y2)

. (3.66)

Figure 3.6 illustrates Eq. (3.64) and (3.66). The average reflection intensity Īg does not change with
thickness, but the oscillation with respect to y becomes finer in proportion to thickness. y = 1 is on the order
of 1 arcsec angle width. In reality, the divergence angle of a well collimated neutron beam is on the order of
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Figure 3.6: Rocking curve.:
The vertical axis is normalized as u2

0 = 1. Thickness of a crystal is (a) t = 0.6mm and (b) t = 2.0mm, respectively.
The average reflection intensity Īg does not change with thickness, but the oscillation with respect to y becomes finer
in proportion to thickness. y = 1 corresponds to the order of 1 arcsec angle width. so what can actually be observed is
the average reflection intensity distribution.

10 arcsec, so what can actually be observed is the average reflected intensity distribution. This is called the
rocking curve in the symmetric Laue configuration. This full width of half maximum (FWHM) corresponds
to y =±1. From Eq. (3.49) in the symmetric Laue configuration the relation of y and δθ = (θB −θ) is

y =
∆0

dg
δθ , (3.67)

so FWHM = 2dg/∆0. As a typical example, in the case of a (110)-plane of SiO with a Bragg angle of 30
degrees, FWHM ≃ 6.1 µradian.
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length band width b & was kept at 0.0072 A by
suitable collimation of the entrance beam. With
the finite resolution imposed by the entrance and
scanning slits, fringe effects are observed out to
y=0.6. The dotted curves in Fig. 2 represent
the limiting Kato form for the intensity distribu-
tion without finite resolution and these have been
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FIG. 3. Fringe development at the center of the Bragg reflection as the wavelength is increased. The three
fringe patterns correspond to different values of crystal thickness: (a) 1.0000 cm, (b) 0.5939 cm, and (c) 0.3315
cm. Fringe order numbers are shown at the minima positions.

Figure 3.7: The spatial intensity distribution of the crystal injection surface.
In the case of symmetric Laue configuration with silicon (111) crystallographic plane. The left is wave length of
λ = 1.020 Å and the right is wavelength of λ = 1.024 Å. It can be seen that the intensity of the central area differs
from left to right. This is an appearance of the Pendellösung fringes. Quoted from C. G. Shull [51].

3.6 Intensity Distribution of a Plane Slab
In this section, we would discuss how a neutron beam incident on a plane slab crystal generates an intensity
distribution on the crystal ejection surface. The interference effects of dynamical diffraction also appear in
the spatial intensity distribution of the crystal ejection surface. Figure 3.7 is the result measured by Shull [51].

Considering the case of a plane wave incident on an infinitely wide plane slab crystal, transmitted and
reflected waves with a uniform intensity are emitted from the ejection surface. The average intensities depend
on only the parameter y as shown in Eq. (3.65) and (3.66), so the intensity profile as like as Fig. 3.7 can not be
observed. In reality, the neutron beam has a fairly wide divergence angle relative to the FWHM of the rocking
curve, so it is necessary to integrate by the divergence angle. Furthermore, when the incident neutrons are
limited by a narrow slit, the Poynting vector of the diffracted neutron wave field, which depends on y, must
be considered. Even though it is a narrow slit, its width is on the order of 0.1–1 mm, which is sufficiently
wide compared to the neutron wavelength of ∼ 1 Å, and the neutron beam can be well approximated by a
plane wave.

The solution of the two-wave approximation Eq. (3.42) is divided into α- and β -waves, and the Poynting
vector (here called the neutron current) of each would be considered. The neutron current is defined as

J ≡ h̄
2im

(ψ∗∇ψ −ψ∇ψ ∗) (3.68)

Based on this, the neutron currents J1,2 for the α and β waves, respectively, are calculated as follows;

J1,2 =
h̄k
m

[∣∣u(1,2)0

∣∣2k̂B +
∣∣u(1,2)g

∣∣2k̂g

]
. (3.69)

Here, since the wavenumber vector of diffracted neutrons in the crystal K(1,2)
0 and the wavenumber

vector of incident neutrons k are almost the same (difference of the order of 10−5), we use the approximation
that K(1,2)

0 = kB and K
(1,2)
g = kB + g = kg. Figure 3.8 (a) illustrates schematically the neutron current
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Figure 3.8: Neutron current and the definition of Γ.:
(a) Schematic diagram of the neutron current. Neutrons incident through a narrow slit (shownnby the bold brown line) can be
described as neutron current J . (b) The definition of Γ is described in the symmetrical Laue configuration.

according to Eq. (3.69). Eq. (3.69) is expressed in diagonal coordinates (k̂B, k̂g), so rewriting it in Cartesian
coordinates (x̂, ẑ) with the Borrmann fan centerline as the z-axis yields

J1,2 =
h̄k
m

[
−sinθB

(∣∣u(1,2)0

∣∣2 − ∣∣u(1,2)g
∣∣2) x̂+ cosθB

(∣∣u(1,2)0

∣∣2 + ∣∣u(1,2)g
∣∣2) ẑ] . (3.70)

Let Ω be the angle that the neutron current makes with the center of the Borrmann fan. From Eq. (3.70),
Ω and θB have the following relationship;

tanΩ1,2 = tanθB

∣∣u(1,2)0

∣∣2 − ∣∣u(1,2)g
∣∣2∣∣u(1,2)0

∣∣2 + ∣∣u(1,2)g
∣∣2 . (3.71)

Figure 3.9 shows the neutron current for (a) the case where it deviates from the Bragg condition in a
smaller direction, (b) the case where the Bragg condition is completely satisfied, and (c) the case where it
deviates from the Bragg condition in a larger direction. As shown, when the Bragg condition is fully satisfied
(δθ = 0), the neutron currents have the same magnitude and travel through the center of the Borrmann fan.
When the incident angle is slightly smaller than the Bragg angle (δθ > 0), J1 travels in the transmission
direction and J2 travels in the reflection direction with a large separation. When the incident angle is slightly
larger than the Bragg angle (δθ < 0), J2 travels in the transmission direction and J1 travels in the reflection
direction with a large separation.

Here the normalized coordinate Γ would be introduced instead of x, as shown in Fig. 3.8 (b).

Γ ≡ tanΩ
tanθB

, (3.72)

By the definition, Γ1,2 are represent the ejection points of J1,2 as follows,

Γ1,2 =
tanΩ1,2

tanθB
. (3.73)

And, from Eq. (3.70)

Γ1,2 =−
1−
∣∣u(1,2)g

∣∣2/∣∣u(1,2)0

∣∣2
1+
∣∣u(1,2g

∣∣2/∣∣u(1,2)0

∣∣2 . (3.74)
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Figure 3.9: Schematic diagrams of the neutron currents in the 3 cases of the 3 different
δθ in the symmetric Laue configuration of α-quartz:
(a) When the incident angle is slightly smaller than the Bragg angle, J1 travels in the transmission direction and J2
travels in the reflection direction with a large separation. (b) When the Bragg condition is fully satisfied, the neutron
currents of J1 and J2 have the same magnitude and travel through the center of the Borrmann fan. (c) When the
incident angle is slightly larger than the Bragg angle, J2 travels in the transmission direction and J1 travels in the
reflection direction with a large separation.

Furthermore, from Eq. (3.56), (3.57) and Eq. (3.49), Γ1,2 are represented as the function of y as follows.

Γ1,2 =−1−|b|y∓
√

y2 + sgnb

1+ |b|y∓
√

y2 + sgnb
. (3.75)

In the case of symmetrical Laue configuration,

Γ1,2 =∓ y√
y2 +1

. (3.76)

Since the factor, ∆0/dg connecting y and the deviation δθ as shown in Eq. (3.67) is on the order of 105, even
a small deviation will result in a large value of y and nearly Γ = 1. For example, in the case of (110)-plane
of a α-quartz, ∆0/dg is ≃ 3× 105 and when δθ = 10 µradian, y ≃ 3.25 and Γ ≃ 0.956. So the direction
of neutron current will rapidly converge in the transmission and reflection directions (Γ →∓1). This is the
reason for the sharp peaks on both sides of Γ =∓1 in Fig. 3.7.

As mentioned above, a monochromatic plane wave cannot explain the intensity distribution as shown
in Fig. 3.7. Since the actual neutron beam has a finite divergence angle and a finite wavelength dispersion,
wave fields with different values of y would be excited in the crystal, and the actual intensity distribution is
obtained by adding them together [50].

Ψ(r) =
∫ +∞

−∞
dyψ(r,y). (3.77)

The intensity amplitude I(Γ )dy of the crystal’s injection plane is given by considering that the wave fields α
and β are in the same neutron-current direction. That is, J1(−y) and J2(y) are superimposed at the position
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Γ of the injection plane, as can be seen from Eq. (3.76). The following equation is obtained by variable
transformation from y to Γ .

I0,g(Γ )dΓ =
∫ +∞

−∞

∣∣∣ψ(1)
0,g (−y)+ψ(2)

0,g (+y)
∣∣∣2 |dy/dΓ |dΓ . (3.78)

The stationary phase method can be used to find the the intensity amplitude can be written as

I0(Γ ) = 2u2
in∆0 tanθB

[
1−Γ

(1+Γ )
√

1−Γ 2

]
cos2

(
πt
∆0

√
1−Γ 2 +

π
4

)
dΓ , (3.79)

Ig(Γ ) = 2u2
in∆0 tanθB

[
1√

1−Γ 2

]
sin2

(
πt
∆0

√
1−Γ 2 +

π
4

)
dΓ . (3.80)

And the relative intensity distribution can be written as

P0(Γ ) =

[
1−Γ

(1+Γ )
√

1−Γ 2

]
cos2

(
πt
∆0

√
1−Γ 2 +

π
4

)
dΓ , (3.81)

Pg(Γ ) =

[
1√

1−Γ 2

]
sin2

(
πt
∆0

√
1−Γ 2 +

π
4

)
dΓ . (3.82)

The averaged relative intensity distributions become

P̄0(Γ ) =
1−Γ

2(1+Γ )
√

1−Γ 2
dΓ . (3.83)

P̄g(Γ ) =
1

2
√

1−Γ 2
dΓ . (3.84)

Figure 3.10 shows the calculation results of P0,g(Γ ) and P̄0,g(Γ ) with the (110)-plane of α-quartz, the
value of Γ is set from -0.999 to 0.999, because the intensity is infinite at Γ = ±1. In reality, as Fig. 3.7
shows, it does not go to infinity, and the range of Γ also slightly exceeds ±1. The reason why the range
exceeds ±1 is because the slit width and divergence angle are finite. When the entrance slit is 0.6 mm, with
the thickness of 10 mm, and the divergence angle is 1 mradian, the calculation result of Pg(Γ) of (110)-plane
of α-quartz becomes Fig. 3.11. However, again, the integral range of gamma is restricted to the range of
-0.999 to +0.999.

Theories that avoid infinity magnitude at Γ = ±1 and treat diffraction intensity distributions in realis-
tic crystals including mosicity and defects include the spherical wave theory and the statistical dynamical
diffraction theory. In this paper, however, we attempt to explain realistic intensity distributions with plane
wave theory. The reason why the intensity goes to infinity at Γ = ±1 can be attributed to the fact that the
integral with respect to y is integrated with the same weight from −∞ to +∞ in Eq. (3.77). In real, as shown
in Fig. 3.6, the reflective intensity is decrease as |y| increase. Appropriate weighting is considered necessary.
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Figure 3.10: Diffraction intensity distribution of the (110)-plane of α-quartz:
Calculation was performed within Γ = −0.999 and Γ = 0.999 in the ideal case with the width of slits of 0 and beam
divergence angle of 0
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Figure 3.11: Diffraction intensity distribution of the (110)-plane of α-quartz in more
realistic case:
Calculation was performed within Γ = −0.999 and Γ = 0.999 in the realistic case when the entrance slit is 0.6 mm
with the thickness of 10 mm, and the divergence angle is 1 mradian.

33



4 Principles of nEDM Measurement by the Crystal Diffraction
Method

In this section, the measurement principle of the nEDM search experiment using crystal diffraction, quanti-
tative calculations of its effects and false signal is described. It also touches on non-centrosymmetric crystal
candidates that are expected to have strong intra-crystal electric fields.

4.1 Principles of nEDM Measurement by the Crystal Diffraction Method
As described in Section 2, the measurement principle of the nEDM search experiment uses the precession of
the spin magnetic moment and the nEDM in an electromagnetic field. In this section, we give a quantitative
explanation of the measurement principle of the crystal diffraction method in the case of the symmetric Laue
configuration.

When neutrons satisfying the Bragg condition are incident on a crystal in the symmetric Laue configura-
tion, the wave field in the crystal can be expressed as a superposition of four waves as shown in Eq. (3.42. In
the symmetric Laue configuration, the amplitudes of 4 waves are as follows from Eq. (3.56 )and Eq. (3.57);

u(1)0 = u(2)0 = u(2)g =
1
2
, u(1)g =−1

2
. (4.1)

ψcry(r) =
1
2

exp
(

iK(1)
0 ·r

)
− 1

2
exp
(

iK(1)
g ·r

)
+

1
2

exp
(

iK(2)
0 ·r

)
+

1
2

exp
(

iK(2)
g ·r

) (4.2)

The intensity distribution of transmitted and reflected waves was explained in Section 3. Here we will take a
different view and divide the wave field into two waves, α- and β -waves.

ψα = ψ(1)
0 +ψ(1)

g , (4.3)

ψβ = ψ(2)
0 +ψ(2)

g . (4.4)

The intensity distribution of α- and β -waves is calculated as follows.

|ψα |2 = sin2
(g

2
·r
)
, (4.5)

|ψβ |2 = cos2
(g

2
·r
)
. (4.6)

This is shown schematically in Fig. 4.1. It can be seen that α-wave has a sin-wave intensity distribution
with respect to the crystal lattice period, while β -wave has a cos-wave intensity distribution. In other words,
α-wave propagates in the crystal as a standing wave with its maximum on the middle of the crystal lattice
plane, and β -wave propagates as a standing wave with its maximum on the crystal lattice plane. Since the
neutron, a Fermi particle, is a single-particle wave function, a single neutron is a superposition of these α-
and β -waves. The electromagnetic interaction of a neutron such a different intensity distribution in the crystal
is important of the nEDM search by crystal diffraction method in the Laue configuration. It is important to
note that it is the nuclear potential, which has an overwhelming magnitude as mentioned in section 3.1, that
determines the intensity distribution of such neutrons. Therefore, the intensity distribution of neutrons has
the same period and phase as the crystal lattice.

All materials contain nuclei and electrons of the same charge. The electric field in a material is deter-
mined by the distribution of these nuclei and electrons exists in the material. The positive charge of nuclei
and the negative charge of electrons cancel each other as a whole, but it is considered to be very strong when
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Figure 4.1: α-and β -waves in a crystal in the symmetric Laue configuration:
The waves ψ(1)

0 and ψ(1)
g form an α-wave, which is a standing wave with a maximum (shown in dark blue) in the center of the lattice

plane; The waves ψ(2)
0 and ψ(2)

g form a β -wave, which is a standing wave with a maximum (shown in dark red) on the lattice plane.
While the neutron intensity distribution is in phase with the lattice plane, the phase of the electric potential is shifted from the lattice
plane at a certain g-plane of the non-centrosymmetric crystal, as shown on the right side of the figure. In this case, because the neutron
intensity distribution and the phase of the electric potential are out of phase, the α-and β -waves experience electric fields in opposite
directions, as indicated by the arrows in the figure

viewed at the atomic level. The electric potential UE(r) due to the charge distribution in a crystal can be
Fourier-expanded in terms of g,

UE(r) = ∑
g

UE
g exp(ig ·r) (4.7)

In the two-wave approximation, only UE
0 and UE

g with g satisfying the Bragg condition are meaningful.
Because neutron wave has meaningful strength only ψ0 and ψg against to 0 and g, respectively, as shown
Eq. (3.42). Since UE

0 = 0 as averaged electric potential, we need only consider UE
g . In many crystals, UE

g
has the same period and phase as the crystal lattice, i.e. as same as the α- and β -waves, so the electric
field integrated over the intensity distribution of α- and β -waves is zero. However, in some types of non-
centrosymmetric crystals, the phase of UE

g is out of phase with the crystal lattice for a particular crystal plane
g. In this case, the intensity distribution of neutrons and the phase of the electric potential UE

g are out of
phase, and so the neutrons feel the effective electric field Eeff

g as a result of integration over the unit cell.
As shown schematically in Fig. 4.1, the intra-crystal electric field felt by the α- and β -wave components is
in opposite directions because the α- and β -wave has intensity distribution of sine-wave and cosine-wave,
respectively. If neutrons have the nEDM, an interaction potential with the effective intra-crystal electric field
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is generated;
V E =−dnσ ·Eeff

g . (4.8)

A neutron moving in an electric field senses the following relativistic magnetic field.

BS =
[Eeff

g ×v]

c2 , (4.9)

where v is the velocity of the neutron relative to the electric field and c is the speed of light. Hereafter in
this paper, this relativistic magnetic field will be referred to as the Schwinger magnetic field. Since neutrons
have a spin magnetic moment, an interaction potential with the Schwinger magnetic field is generated;

V S =−µnσ ·BS. (4.10)

Therefore, neutrons diffracted dynamically in a crystal will interact with the effective intra-crystal electric
field and the Schwinger magnetic field. The principle of the crystal diffraction method for nEDM search is
to study neutron spin by using these electromagnetic field.

4.2 Calculation of the nEDM Effect
The nEDM effect of crystal diffraction in the Laue configuration, which is the amount of spin rotation due
to the precession of a finite nEDM, is given by

φEDM =
4dnEeff

g τ
π h̄

(4.11)

In this section, we would derive it. Figure 4.2 schematically illustrates the precession of neutron spins due
to the interaction of nMDM and nEDM with the Schwinger magnetic field and the effective intra-crystal
electric field, respectively. Note here that the interaction potential V S of the Schwinger magnetic field is
much larger than the interaction potential V E of the effective intra-crystal electric field. For example, for
(110)-plane of α-quartz at the Bragg angle of 87 degrees, V S is 105 orders of magnitude larger than V E of
the current nEDM upper limit, so the precession of nEDM is 10−5 orders of magnitude smaller than that of
nMDM.

A neutron incident on the crystal is composed of two components, α- and β -waves, due to the dynamical
diffraction. When the effective intra-crystal electric field exists at the crystal plane g, the neutron senses it
and the resulting Schwinger magnetic field. In the Fig. 4.2, it is assumed that there is the effective intra-
crystal electric field in the x direction for the α-wave, which generates the Schwinger magnetic field in the
z direction. In contrast, the β -wave is subjected to the effective intra-crystal electric field in the opposite −x
direction, which also generates the Schwinger magnetic field in the −z direction. As a result, the α- and β -
waves have opposite spin precessions. α-wave is rotating clockwise and β -wave is rotating counterclockwise
around the z-axis due to the Schwinger magnetic field. The presence of the nEDM causes a slight precession
around the effective intra-crystal electric field as well, with the α-wave rotating clockwise and the β -wave
rotating counterclockwise around the x-axis. This results in spin polarization in the y-axis direction, which
can be measured to search for nEDM. The amount of spin rotation by the nEDM when the spin polarization
in the x-axis is zero as a result of π/2 rotation by the Schwinger magnetic field is given by Eq. (4.11). The
measurement need be made when the spin polarization in the x-axis is zero as discussed in the next section.

The precession angular frequency ωS according to the Schwinger magnetic field is

ωS =
2µnBS

h̄
, (4.12)

and the precession angular frequency ωE by the effective intra-crystal electric field is

ωE =
2dnEeff

g

h̄
. (4.13)
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Figure 4.2: Precession of nMDM and nEDM:
Neutrons enter the crystal from left side with the spin parallel to the velocity of the neutron. Neutrons in the crystal consist of α-
and β -waves. When α-wave senses the effective intra-crystal electric field in the x direction, the Schwinger magnetic field BS is
generated in the z direction and causes precession in the clockwise direction of z. On the other hand, β wave senses the effective
intra-crystal electric field in the −x direction, the Schwinger magnetic field is generated in the −z direction and causes precession in
the counterclockwise direction of z. At the same time, since the precession of nEDM due to the effective intra-crystal electric field
occurs clockwise and counterclockwise around the x axis, respectively, the polarization of z is observed as the effect of nEDM when
the polarization of x is zero.
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Figure 4.3: Rotation vector and Spin rotation:
GS and GE is the rotation vector due to the Schwinger magnetic field and the intra-crystal electric field, respectively, and G is the
composite rotation vector of those. S is the initial spin state and Sα and Sβ is the spin state of α- and β -wave, respectively after the
precession of π/2 due to the Schwinger magnetic field. The spin precess on the plane colored by blue.
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Since both precessions occur simultaneously, the actual precession is the composite of the rotation vec-
tors due to the Schwinger magnetic field and the effective intra-crystal electric field. This rotation vector G
becomes as follows and is shown in Fig. 4.3.

G=
2µnBS

h̄
ẑ+

2dnEeff
g

h̄
x̂ (4.14)

The components of the unit vector of G are denote (nx,ny,nz) and the rotation operator around this axis is as
follows.

nx =
ωE√

ω2
E +ω2

S

,ny = 0,nz =
ωS√

ω2
E +ω2

S

(4.15)

R(Θ : Ĝ) =

(
cos Θ

2 − inz sin Θ
2 inx sin Θ

2
−inx sin Θ

2 cos Θ
2 + inz sin Θ

2

)
(4.16)

Since the rotation due to the effective intra-crystal electric field is very small compared to the rotation
due to the Schwinger magnetic field, the amount of rotation angle Θ can be considered as the rotation angle
due to only the Schwinger magnetic field. The wave function of the incident neutron is

ψin =
1
2
[|z;+⟩+ |z;−⟩]ψα +

1
2
[|z;+⟩+ |z;−⟩]ψβ (4.17)

The wave function after rotation is

ψrot = R(Θ : Ĝ)

{
1
2
[|z;+⟩+ |z;−⟩]ψα

}
+R(−Θ : Ĝ)

{
1
2
[|z;+⟩+ |z;−⟩]ψβ

}

=
1
2
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2

)
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2

)]
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2
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2
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+
1
2

ψβ
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cos
(

Θ
2
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+ i(nz +nx)sin

(
Θ
2
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|z;+⟩+

[
cos
(

Θ
2

)
− i(nz −nx)sin

(
Θ
2

)]
|z;−⟩

}
(4.18)

Note that the rotation angles of the α- and β -waves are reversed in the ± direction. Spin analysis in the
z-axis gives the polarization P in the z-axis direction as

P = 2nxnz sin2
(

Θ
2

)
. (4.19)

The relation between the polarization and the spin rotation is

P = sinφEDM ≃ φEDM, (4.20)

where φEDM is so small. Therefore the spin rotation is

φEDM = 2nxnz sin2
(

Θ
2

)
=

2dnEg

µnBS
sin2

(
Θ
2

)
.

(4.21)

When the rotation angle of Θ due to the Schwinger magnetic field is π/2,

2µnBS

h̄
τ =

π
2
. (4.22)

Substituting this relation into Eq. (4.21), we obtain Eq. (4.11).
The nEDM signal varies periodically with the sin2-function for the rotation around the Schwinger field,

and reaches its maximum of 2 times of Eq. (4.11) at (2n+ 1)π rotation. However, as described in next
section, the measurement is performed at (2n+ 1)/2π rotation, when the spin polarization is P = 0 in the
x-axis direction, to minimize the false signal due to the tilt of the spin analysis axis.
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Figure 4.4: Tilt of spin analysis axis and false signal of EDM effect:
The case where the spin analysis axis A is tilted by an angle (η ,ζ ) with respect to the spin rotation axis z is shown.

4.3 False Signal of EDM Effect
In the nEDM search experiment using crystal diffraction in the Laue configuration, small polarization effects
perpendicular to the spin quantization axis of the incident neutrons are measured. In the following discussion,
the z-axis is regarded as the axis of spin rotation because the actual spin rotation axis G and the z-axis in
Fig. 4.3 are considered almost identical.

As shown in Fig. 4.4, when the initial spin quantization axis is the x-axis and the precession axis is the
z-axis, the precession due to the Schwinger magnetic field takes place in the xy-plane and the polarization,
which is the EDM effect, occurs in the z-axis direction. If the spin analysis axis is aligned exactly with the
z-axis, no false signal appears, but if it is tilted from the z-axis, a false signal appears. If the spin analysis
axis A is tilted by an angle (η ,ζ ) with respect to the z-axis, the polarization in the z-axis direction can be
calculated as follows by performing the same calculation as in Section 4.2.

P = 2nznx cosη sin2
(

Θ
2

)
+ sinη cosζ

[
1−2n2

z sin2
(

Θ
2

)]
. (4.23)

The first term is the EDM effect, and the second term is the false signal caused by the tilt of the spin analysis
axis.

Figure 4.5 (a) and (b) show the relationship between the rotation angle Θ (around π/2 radians) due to
the Schwinger magnetic field and the tilt angle (η ,ζ = 0) of the spin analysis axis for the ratio of the EDM
effect to the false signal (S/N ratio) of 10 and 1, respectively. When Θ = π/2 radians, the false signal is
theoretically zero regardless of the magnitude of η . However, η = 0 is preferred because the EDM effect
is proportional to cosη . As Θ deviates from π/2 radians, η drops sharply. To make η loose, Θ must be
exact, and to make Θ loose, η must be close to zero. For example, for S/N > 10, if Θ is π/2±0.01 radians,
η must be within ±0.000035 radians; even for S/N = 1, η must be within ±0.00035 radians. In actual
experiments, it is difficult to achieve such precision. Possible solutions include scanning the tilt angle η or
the polarization Px in the appropriate range with the center of Px = 0 and estimating the minimum value by
fitting, or performing a symmetric experiment in which the crystal is inverted exactly 180 degrees without
changing the experimental system to cancel out the false signal.
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Figure 4.5: Tilt of spin analysis axis and false signal of EDM effect:
When the spin analysis axis is tilted by angle (η ,ζ = 0), the relationship between the spin rotation angle Θ due to the
Schwinger magnetic field and η is shown in the vicinity of Θ = π/2 radians. (a) is when the ratio of the EDM effect to
the false signal (S/N) is 10 and (b) is when it is 1. For S/N = 10, considering the control of the spin rotation angle to
be about 0.01 radians, the tilt of the spin analysis axis must be less than ±0.000035 radians; even for S/N = 1, it must
be less than ±0.00035 radians.

4.4 Candidates of Non-Centrosymmetric Crystal
The crystal diffraction method uses non-centrosymmetric crystals in which an effective intra-crystal electric
field exists. A list of typical non-centrosymmetric crystal candidates is given in Table 4.1. The requirements
for use in crystal diffraction method are as follows.

(1) The crystal must be a non-centrosymmetric crystal.
(2) Stable, high-quality crystals of sufficient size can be obtained.
(3) Strong effective intra-crystal electric field.
(4) Low neutron absorption coefficient.

In the case of the symmetric Laue configuration, the spin rotation angle due to the Schwinger field should
be π/2 to suppress the false signal described in Section 4.3. Therefore, from Eq. (4.22), the required crystal
thickness is

L =
π h̄c2

4µnEeff
g

(4.24)
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Table 4.1: Candidates of non-symmetric crystal for the diffraction method:
dhkl :Distance between lattice planes. Eeff

g :The effective intra-crystal electric field. L:Thickness of crystal required to
π/2 spin rotation due to the Schwinger magnetic field. τ: Passing time through the crystal when the Bragg angle is 87
degrees.
Eeff

g τ is proportional to the magnitude of the EDM effect.

Crystal Symmetry Crystal-plane dhkl Eeff
g L τ Eeff

g τ
Groupe

(unit) Å 108 V/cm mm msec kVs/cm
SiO2 32(D63) 111 2.24 2.30 33.6 1.45 333

(α-quartz) 110 2.46 2.00 38.6 1.83 366
Bi12GeO20 123 433 1.74 5.20 14.8 0.50 259

312 2.71 2.40 32.2 1.68 403
Bi4Si3O12 -43m 242 2.10 4.60 16.8 0.68 312

132 2.75 3.20 24.1 1.28 409
PbTiO3 4mm 411 0.92 17.8 4.3 0.08 137

002 2.08 14.20 5.4 0.22 309
BeO 6mm 011 2.06 5.40 14.3 0.57 307

201 1.13 6.50 11.9 0.26 168

and τ = L/υq, the EDM effect is expressed as

φEDM =
dnc2

µnh̄υq
(4.25)

Thus, it can be seen that the EDM effect is not related to the strength of the effective intra-crystal electric field
Eeff

g , but related anti-proportional to υq. Of course, the stronger the effective intra-crystal electric field, the
smaller the crystal thickness required for π/2 rotation, which is advantageous in terms of crystal availability.
As seen in Table 4.1, the required thickness for the (110)-plane of α-quartz is 38.6 mm, while for the (433)-
plane of B112GeO20 it is only 14.8 mm. Since the EDM signal becomes larger as υq becomes smaller, a
crystal plane with a large lattice spacing dg is advantageous, and vq can be made smaller by setting the Bragg
angle θB to an angle close to 90 degrees. For example, for the (110)-plane of α-quartz with Bragg angle of
30 degrees, υq = 1394 m/s for the Bragg wavelength λB = 2.56 Å. With Bragg angle of 87 degrees, υq = 42
m/s for the Bragg wavelength λB = 4.91 Å, and the EDM effect becomes about 33 times larger. As can be
seen from Eq. (4.11), the magnitude of the EDM effect is proportional to Eeff

g τ . In view of the above, the
(110)-plane of α-quartz is the most promising candidate, especially considering the conditions (2) and (4),
and B112GeO20 or B112SiO20 crystals are the next possibilities.
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5 Overview of the Dynamical Diffraction from Experimental
View Points

In the search for nEDM by crystal diffraction method, the dynamical diffraction theory, which deals with
neutron diffraction in a crystal, is important. As discussed in Section 4.1, the existence of α- and β -waves
due to multiple diffraction and interference is important in the nEDM search experiment. In this section,
we describe our experimental investigations of the Pendellösung interference fringes and the spatial distribu-
tion of diffraction intensity, which are basic interference phenomena derived from the dynamical diffraction
theory. To confirm these phenomena, we focused our experiments on the best crystal, Si crystal, and the
most promising candidate, α-quartz. All experiments were performed at Materials and Life Science Ex-
periment Facility (MLF) in Japan Proton Accelerator Research Complex (J-PARC), which is currently the
world’s most intense accelerator spallation pulsed neutron source, and these experiments were the first to be
performed at a pulsed neutron source.

5.1 Pendellösung Fringes
fig5_PendellEx
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Figure 5.1: The schematic diagram of the experiment to observe the Pendellösung fringes:
Neutron beams collimated by slits 1 and 2 from the left are injected into a Si crystal set on the gonio-stage through the Cadmium
entrance slit. Neutrons diffracted dynamically in the crystal are ejected from the ejection surface as transmitted and reflected beams.
In the experiment, the transmitted beam ejected from the Cadmium exit slit was measured with the 3He detector. Pendellösung fringes
are observed by scanning and measuring the angle of incidence (Bragg angle) with the gonio-stage. Slits 3 and 4 were used to reduce
the background.

In the two-wave approximation of the dynamical diffraction theory, we saw in Section 3.1.2 that the wave
field of diffracted neutrons in a crystal can be expressed by Eq. (3.42). By dividing it into transmitted and
reflected waves, the respective intensity distributions can be written as in Eq. (3.62) and Eq. (3.63) in section
3.1.3. Consider the case of the symmetric Laue configuration that exactly satisfies the Bragg condition,
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Figure 5.2: Pendellösung fringes of (11̄1)-plane of Si crystal:
The contrast of this Pendellösung fringes is (16±2) %.

y = 0 and b = 1, and Vg =V−g. Equation (3.62) and Eq. (3.63) become

I0 = u2
0 cos2

(
πt
∆0

√
y2 +1

)
, (5.1)

Ig = u2
0 sin2

(
πt
∆0

√
y2 +1

)
, (5.2)

where ∆0 is the Pendellösung length defined by Eq. (3.48) and t is the thickness of the crystal. As is clear
from this, the diffraction intensity varies periodically with the thickness of the crystal. This periodic intensity
distribution is called Pendellösung fringes or equal-thickness interference fringes. Since the phases of the
transmitted and reflected waves are exactly π/2 out of phase, the intensity of the sum of these is constant
(absorption is ignored). Equation (3.48) shows that the wavelength is a variable in ∆0 and so in the phase
term in Eq. (5.1) and (5.2), and therefore, interference fringes can be seen by scanning the Bragg angle θB.

We performed the Pendellösung fringes measurement using a pulsed neutron source [52]. The exper-
iment was conducted at the beam line BL17 at MLF. The schematic diagram of the experimental setup is
shown in Fig. 5.1. We used the Si crystal with a width of 50 mm, height of 50 mm, and thickness of 2.8
mm, which was cut out from a float-zone ingot. (11̄1)-plane was used for the experiment. The surfaces of
the crystal were mechanically polished and finally finished by chemical wet etching in order to remove the
abraded layers. The width of both the entrance and exit slits was 0.2 mm. The neutron beam divergence
was 0.039 degrees. The transmitted neutrons were measured by the 3He-gas detector with a gas pressure of
7 atmospheres. The incident angle to the crystal was scanned by the goniometer from θ = 25.0 degrees to
θ = 26.5 degrees with step of 0.1 degrees, where θ was the set angle of the goniometer. The real Bragg
angle θB was obtained from the value of the TOF-position of the diffraction peak. The measuring time of
each step was two hours.

The measured Pendellösung fringes are shown in Fig. 5.2. The contrast of the obtained interference
fringes is 16 ± 2%. The scattering length of Si obtained from the period of the interference fringes is
bSi = (4.125± 0.003stat ± 0.028syst) fm and is consistent with the NIST standard value. By observing the
Pendellösung fringes, the interference effects in dynamical diffraction were successfully verified experimen-
tally, using the pulsed neutron source.
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Figure 5.3: Evaluation of crystallinity by X-ray and the region used in the experiment:
(1) α-quartz used in the experiment. (2),(3) Infrared absorption spectra measured at the regions indicated by the yellow circles,
respectively. (3) shows a difference against to (2) in the OH group absorption peak at 3585 cm−1, indicating that there are fewer OH
groups in (3) than in (2). (4) X-ray transmission traverse topography. The oblique emission lines are thought to be veins in the crystal.
The red boxes indicate the region used in this experiment.

However, the contrast of the interference fringes is quite low, even taking into account the decrease due to
the width of the incident and exit slits and the decrease due to the beam divergence angle. One possible cause
is poor crystallinity. Si is a centrosymmetric crystal and will not be used in the nEDM search experiment. As
the next step, we performed the same Pendellösung fringes measurement using α-quartz, which is the most
promising candidate for the nEDM search experiment. (110)-plane was used for the experiment. The crystal
used was an artificial quartz crystal with a width of 10 mm, a height of 50 mm, and a thickness of 2.8 mm.
Since crystallinity is very important in the Pendellösung fringes measurement, we evaluated the crystallinity
using X-rays to identify areas with good crystallinity and conducted the experiment. Figure 5.3 summa-
rizes the results of the crystallinity evaluation using X-rays. The area used for the experiment (5mmx5mm
surrounded by the red box in Fig. 5.3) was determined based on the results of X-ray topography and the
measurement of infrared absorption spectra. . The experimental setup is almost the same as in the Si case.
Since the Bragg angle to be scanned is slightly larger at 31 degrees, the entrance and exit slit widths are set
to 0.3 mm, corresponding to the Borrmann fan spread. The results of the Pendellösung fringes measurement
of α-quartz are shown in Fig. 5.4. It can be seen that the contrast is greatly improved to 55%.
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Figure 5.4: Pendellösung fringes of (110)-plane of α-quartz:
This Pendellösung fringes were demonstrated using non-polarized neutrons. The contrast of this is (55±12) %.
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fig5_SetupIntensity
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Figure 5.5: Setup of the experiment measuring the intensity distribution.
Neutrons incident on the crystal spread in the Bormann fan, indicated by the triangle in the figure, and produce an intensity distribution
on the ejection plane. In the experiment, the intensity distribution was measured by scanning the exit slit along AB indicated in the
figure.

5.2 Intensity Distribution on the Exit Surface
In the nEDM search experiment using crystal diffraction in the Laue configuration, only a small fraction of
the diffracted neutrons that are widely spread in the Borrmann fan by dynamical diffraction are available.
Therefore, it is important to know the intensity distribution as shown in Fig. 3.7 to estimate the fraction of
neutrons that can be used to the experiment.

We measured the spatial intensity distribution of reflected waves by focusing on the average intensity
distribution, because the detailed stripe pattern is not need to estimate the intensity of neutrons.

5.2.1 Measurement of the Intensity Distribution on the Exit Surface

The experiment was conducted at BL10 at MLF. The experimental setup is shown in Fig. 5.5. The crystal
was the same α-quartz used in the Pendellösung fringes demonstration, and the same region with good
crystallinity was used. The entrance slit of 0.5mm wide was fixed, and the exit slit of 0.2 mm wide was
scanned along the exit surface. The Bragg angle was set to 40 degrees, and so the Borrmann fan spread
was 4.7mm, since the thickness was 2.8 mm. In actually, the intensity distribution is wider than that due
to the entrance and exit slits and the divergence angle. The scanning was performed at a pitch of 0.2 mm
(partly at a pitch of 0.15 mm) over a range of 5.55 mm to cover the width of the Bormann fan. By making
the entrance slit wider and taking a larger divergence angle of 0.43 degrees, the detailed stripe pattern was
averaged out, making it easier to measure the average intensity distribution. The detector was 3He gas
detector and iIts detection window was reduced to the minimum size that could cover the measurement
range. A shielding consisting of a pipe-shaped cadmium plate and boron rubber was installed between the
crystal and the detector to reduce background. The beam size and divergence angle are adjusted at the
quadrant slits, S1 and S2, and three iron collimators are placed before and after S2 to attenuate the fast
neutrons.

5.2.2 Measurement Results of the Intensity Distribution

The–measurement results are shown in Fig. 5.6. There appears to be a constant shift in the data between
the left side (Γ < 0) and the right side (Γ > 0). It is possible that the slit moved during the course of
the experiment, but this is unknown. We will ignore this and examine whether the overall profile can be
reproduced by plane wave theory.
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Figure 5.6: The results of experiment and the plane-wave theory:
(a): Plot of experimental results and results of the fit by the plane-wave theory mean intensity distribution equation. The fit range is
from Γ =−0.9 to Γ =+0.9 because the equation diverges to infinity for Γ =±1. The effects of slit width and divergence angle are
not considered. (b): Plot of the experimental results overlaid with the calculated intensity distribution (blue line) with adjusted scale.
Calculations were performed in the range of Γ = ±0.999. The entrance and exit slits are 0.5 mm and 0.2 mm, respectively, and the
divergence angle is 0.34 degrees.

Figure 5.6 (a) shows the results of fitting the measured data in the range Γ = −0.9 – Γ = +0.9, using
the mean reflection intensity distribution Eq. (3.84) in plane-wave theory. In this range, Eq. (3.84) is a
good representation of the actual intensity distribution. However, the effects of entrance and exit slits and
divergence angles are not considered. Figure 5.6 (b) shows the result of numerically calculated results (blue
line) using Eq. (3.82) in the range of Γ =−0.999 – Γ =+0.999, considering the experimental conditions of
0.5mm entrance slit of 0.5mm, exit slit of 0.2mm, and 0.34degree divergence angle. The results reproduce a
fairly averaged curve due to the effects of slit width and divergence angle. Thus, this experiment allows us to
measure the average intensity distribution on the injection plane, which is in agreement with that predicted
by plane wave theory, except around Γ =±1.

A more realistic theory that describes diffraction phenomena is the spherical-wave theory. Here, the
results of that theory will be shown only as follows,

P0(Γ ) =
π2t
2∆0

1−Γ
1+Γ

J 2
1

(
πt
∆0

√
1−Γ 2

)
, (5.3)

Pg(Γ ) =
π2t
2∆0

J 2
0

(
πt
∆0

√
1−Γ 2

)
, (5.4)
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where J0,1(x) is a Bessel function of first and second order, respectively. When the thickness t of the crystal
is sufficiently large compared to the Pendellösung length ∆0, Eq. (5.3) and (5.4) approximately agree with
Eq. (3.81) and (3.82) in plane-wave theory.

There is also a statistical dynamical diffraction theory that deals with imperfect crystals, but this is not
discussed here.

5.3 Calculation of the Intensity of Diffraction
The diffraction averaged intensity distribution is given by Eq. (3.83) and (3.84). As seen in the previous
section, the actual diffraction intensity distribution was confirmed qualitatively for the reflected beam. Here,
we attempt to predict the diffraction intensities quantitatively. Specifically, we calculate the diffraction in-
tensities obtained from the Pendellösung fringes experiment conducted in April 2019; Fig. 5.7 shows the
Pendellösung fringes at that time, whose diffraction intensities averaged 0.46 cps. The diffraction intensity
can be calculated by the following equation,

Diffraction intensity = Incident neutron intensity×Diffraction factor×Transmittance×Other factors.
(5.5)

(1) Incident neutron intensity Iin:
This is the neutron intensity incident on the slit on the incident plane of the crystal, and is determined

by the source intensity and the geometrical conditions of the experimental setup. If the source intensity is
IS [n/cm2/sec/sr/meV], the entrance slit area is S [cm2], the beam solid angle viewed from the entrance slit
is Ω [stradian], and the beam divergence angle is δθ [radian], the formula of the incident neutron intensity
is given by

Iin = IS ×S×Ω ×δE, (5.6)

where δE is the neutron energy width corresponding to the divergence angle δθ . Since the pulsed
neutron source handles so-called white beams with continuous wavelength spectrum, neutrons with a certain
energy width corresponding to the divergence angle are selected and diffracted by the Bragg condition. The
energy width is given by

δE =
2π h̄2

mn

4πdg cosθB

λ 3
B

δθ . (5.7)

(2) Diffraction factor DF :
A schematic diagram of the intensity of neutrons incident on the crystal in the symmetric Laue configu-

ration and dynamically diffracted is shown in Fig. 5.8. The Lorenz curve in the center is that described by
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Figure 5.7: The results of Pendellösung fringes experiment in April 2019:
(The left and right sides are the results of Pendellösung fringes measurements when the spin direction of the incident neutron is
parallel and antiparallel to the beam direction, respectively. Crystal is α-quartz, entrance and exit slits are 0.3 mm (actually 0.24 mm),
beam height is 22.7 mm, divergence angle is 0.0012 radians, Bragg angle is 31 degrees, solid angle is 2.52×10−5 sr, with polarizer,
without analyzer, detector efficiency is 0.95.
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fig5_IntEst2
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Figure 5.8: Schematic diagram of the calculation of the intensity of diffracted neutrons:
The upper square box represents the intensity distribution of isotropically incident neutrons at a given divergence angle, which is
normalized to 1. The blue rocking curve represents the angular dependence of reflected diffracted neutrons in a symmetric Laue
configuration, where the lower part of the curve is the reflected diffraction intensity and the upper part is the transmitted diffraction
intensity. The value of y is proportional to the deviation from the Bragg angle, for example, if the divergence angle is 0.0012 radians,
the value of y is equal to ±188. The lower horizontal axis represents Γ , and the arrow represents the neutron current of the incident
neutron from at a deviation y toward the ejection position Γ indicated by the arrow. As can be seen, the neutron current rapidly
converges to Γ =±1 for small values of y. In other words, only the region with a very small y, shown in red, is ejected from the Cd
slits shown at the bottom.

the Eq. (3.66) in Section 3.4. It plots the reflected diffraction intensity in the symmetric Laue configuration
with a parameter y, which is the deviation from the Bragg angle. The square height 1 box shows the neutron
intensity at a given wavelength incident isotropically over the range of divergence angles. The lower part of
the rocking curve represents the reflected diffraction intensity, and the upper part represents the transmitted
diffraction intensity distribution. For neutrons incident at the center of the figure, i.e., exactly at the Bragg
condition, 1/2 of them are reflected and 1/2 are transmitted; for deviations from the Bragg angle, e.g., y = 3,
only 1/20 are reflected and the remaining 19/20 are transmitted. On the other hand, there is the following
relationship between y and the normalized coordinateΓ of the projection plane;

y =− Γ√
1−Γ 2

, Γ =− y√
1+ y2

. (5.8)

This means that, in the neutron current concept, if y = 0, i.e., the Bragg condition is exactly satisfied, then
neutrons are ejected from Γ = 0, and if y = 3, then ejected from Γ = 0.949. In the experiment, Cd slits are
also installed on the ejection side, so that only neutrons within the range of y corresponding to Γ constrained
by the Cd slits are ejected from the Cd slits. Considering neutrons of a given wavelength, of the neutrons
isotropically incident within the range of divergence angles (corresponding to the square box), only the part
shown in red in the figure will be ejected from the Cd slits. The Γ and y value corresponding to the width of
the ejected Cd slits is noted ±Γs and ys, respectively, and then the diffraction factor DF for transmitted beam
is given by

ys =− Γs√
1−Γ 2

s
,
∫ +ys

−ys

(
1+2y2

2(1+ y2)

)
dy = 2ys − tan−1 ys, (5.9)

DF =−2ys − tan−1 ys

∆0δθ/dg
. (5.10)

(3) Transmittance T :
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Assuming that the absorption cross section of the crystalline material is σ , the Avogadro number is NA,
the density is ρ , the molar mass is Mmol, and the thickness of the crystal is t, the transmittance T is given by
the following equation;

T = 1− exp
(

NAρσ t
Mmol

)
. (5.11)

(4) Other factors:
These will vary depending on the experimental apparatus and method, including the presence or absence

of polarization and analyzer, and the efficiency of the detector.
Based on the above results, the diffraction intensity for the April 2019 experiment is calculated to be

0.1 counts per second (cps) against the experimental value of 0.46 cps. In another case, if we look at the
Pendellösung fringes measurement experiment in Fig. 5.4 in Section 5.1, the diffraction intensity of the
experimental result is 0.2 cps, while the calculated result is 0.44 cps. The difference between the two exper-
imental results is due to the experimental conditions. Both results have a discrepancy of about a factor of 2
from the experimental results, but this has not been clarified at this time. When we discuss the experimen-
tal possibilities of the nEDM search experiment later, we will have to multiply the efficiency by 0.5 when
estimating the diffraction intensities there.
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6 Theory of the Intra-Crystal Electric Field
In Section 4.1 (see Fig. 4.1), we noted that neutrons dynamically diffracting in a crystal consist of two com-
ponents, α- and β -waves, and that in certain non-centrosymmetric crystals, each of them feels an effective
intra-crystal electric field in the opposite direction. In nEDM search experiments by the crystal diffraction
method, this effective intra-crystal electric field plays an important role. So far, it has been assumed that
components other than α- and β -waves do not contribute anything. As discussed in Section 3.4, they can
be neglected in terms of intensity because they are spatially oscillating components with the lattice period.
However, in the discussion of the effective intra-crystal electric field of α- and β -waves, lattice periodic
oscillations are important in the interaction of neutrons with the electric potential in the crystal. It needs
to be investigated whether these components, which have been ignored so far in nEDM search experiments
using crystal diffraction, may leave some residual effects.

We now re-examine the theory of the effective intra-crystal electric field interacted with neutrons dy-
namically diffracting in a crystal. From Eq. (3.42), the intensity distribution of neutrons inside a crystal is as
follows,

I = |Ψcry(r)|2

= ψ(1)
0 ψ(1)∗

0 +ψ(2)
0 ψ(2)∗

0 +ψ(1)
g ψ(1)∗

g +ψ(2)
g ψ(2)∗

g +ψ(1)
0 ψ(2)∗

0 +ψ(2)
0 ψ(1)∗

0 +ψ(1)
g ψ(2)∗

g +ψ(2)
g ψ(1)∗

g

+ψ(1)
0 ψ(1)∗

g +ψ(1)
g ψ(1)∗

0 +ψ(2)
0 ψ(2)∗

g +ψ(2)
g ψ(2)∗

0 +ψ(1)
0 ψ(2)∗

g +ψ(2)
0 ψ(1)∗

g +ψ(1)
g ψ(2)∗

0 +ψ(2)
g ψ(1)∗

0 .
(6.1)

Thus, the intensity distribution in the crystal consists of 16 components, which are combinations of four
Bloch waves.

The periodic electric potential in the crystal can be Fourier expanded in terms of the reciprocal lattice
vector g and written as in Eq. (4.7). In the two-wave approximation, the only effective Fourier component
of the periodic potential in the crystal is the g component, but in the multiple diffraction repeated reflection
and transmission also interact with the −g component, so the periodic electric potential can be written as
follows,

UE(r) =UE
g exp(ig ·r)+UE

−g exp(−ig ·r)

= vE
g eiϕ E

g exp(ig ·r)+ vE
g e−iϕ E

g exp(−ig ·r)
= 2vE

g cos
(
g ·r+ϕ E

g
)
,

(6.2)

where vE
g is the amplitude of the electric potential and ϕ E

g is the phase shift of that relative the crystal lattice
plane. UE is the electric potential that exists within the crystal and must be distinguished from the potential
V N, V S, and V E with which the neutron interacts. The main periodic potential in a crystal with which
neutrons interact is the nuclear potential based on the nuclear force, which can be written, as in Eq. (6.2),

V N(r) = 2vN
g cos

(
g ·r+ϕ N

g
)
, (6.3)

where vN
g is the amplitude of the electric potential and ϕ N

g is the phase shift of that relative the crystal lattice
plane. What is important in considering the effective intra-crystal electric field in a crystal is the difference
in phase ∆ϕg = ϕ E

g −ϕ N
g . The nuclear potential V N is much larger than the other potential, V S and V E, and so

the wave field is almost entirely determined by the nuclear force potential, which is equivalent to placing the
origin of the wave field at a lattice point. Namely, ϕ N

g = 0. Therefore, from now on ϕ E
g = ∆ϕg. The electric

field in a crystal can be calculated as

Eg(r) =−∇UE
g (r) = 2vE

gg sin(g ·r+∆ϕg). (6.4)

The expected value of the electric field interacted with neutrons dynamically diffracting inside a crystal,
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which is the effective intra-crystal electric field, can be obtained as follows,

Eeff
g (r) = ⟨Ψcry(r)|Eg(r) |Ψcry(r)⟩

=
1
dg

∫ dg

0
Eg(r)|Ψcry(r)|2dr.

(6.5)

Equation (6.5) can be resolved into 16 terms according to Eq. (6.1). For example, let us calculate the effective
intra-crystal electric field for the 9-th term of |Ψcry(r)|2 in Eq. (6.1).

ψ(1)
0 ψ(1)∗

g = u(1)0 exp
(

iK(1)
0 ·r

)
u(1)g exp

(
−iK(1)

g ·r
)
. (6.6)

The effective intra-crystal electric field is

Eeff−9
g (r) =

1
dg

∫ dg
0 Eg(r)ψ

(1)
0 ψ(1)∗

g dr

|ψ(1)
0 ψ(1)∗

g |
. (6.7)

Taking the x-coordinate in the g direction, the equation becomes the following integral, which yields the
effective intra-crystal electric field

Eeff−9
g (r) =

1
dg

∫ dg
0 2vE

gg sin(gx+∆ϕg)u
(1)
0 u(1)g cos(gx)dr

|u(1)0 u(1)g |
= vE

gg sin(∆ϕg).

(6.8)

Table 6.1 lists the intensity distributions for the 16 terms and the effective intra-crystal electric field with
which each component interacts. In this table, ∆K = K

(1)
0 −K

(2)
0 . Terms 1 – 4 represent the intensities

of the four Bloch waves, respectively, which are spatially constant and do not contribute to the generation
of the effective intra-crystal electric field. Terms 5, 6, and 7, 8 represent the Pendellösung interference of
transmitted and reflected waves, respectively, which produces a spatial distribution in the direction of the
crystal thickness, but it is constant in the direction perpendicular to the crystal plane, and thus does not
contribute to the generation of the effective intra-crystal electric field. Terms 9, 10, and 11, 12 represent the
inter-lattice interference of α- and β -waves, respectively. In the symmetric Laue configuration, u(1)0 = u(2)0 =

−u(1)g = u(2)g = 1/2, so the electric field interacting with the α-wave is (−vE
gg sin∆ϕg) and the electric field

interacting with the β -wave is (+vE
gg sin∆ϕg). If ∆ϕg = 0, there is no effective intra-crystal electric field. So

far, this is what is generally understood as the effective intra-crystal electric field interacting with neutrons
under the dynamical diffraction in a crystal.

We now turn our attention to the remaining terms 13–16. The effective intra-crystal electric field in these
terms includes the cos∆ϕg term, which contributes to the generation of the effective intra-crystal electric
field even when ∆ϕg = 0. However, as can be easily seen, these terms have sin(∆K ·r) or cos(∆K ·r)
factors that follow the Pendellösung oscillation and thus cancel out when integrated in the crystal thickness
direction. A thickness contribution on the order of the Pendellösung length may remain, but it is negligible:
for the (110)-plane of α-quartz with a Bragg angle of 30 degrees, the Pendellösung length is ∆0 = 0.08 mm,
which is less than 1% for a 10 mm thick crystal. Therefore, we have concluded that for ∆ϕg = 0, there is no
effective intra-crystal electric field in a crystal.

In general, Pendellösung interference fringes can never be observed with contrast of 100%. This is
partly due to the divergence angle of the neutron beam and other geometrical factors, and it is also largely
due to imperfections in the crystal, i.e. defects of crystal. Thus, if the Pendellösung interference is partially
broken, oscillating components that should cancel each other may remain uncanceled. In such a case, the
interference terms 13–16 cannot be neglected and an effective intra-crystal electric field may be generated
even at ∆ϕg = 0.

We have measured and studied the effective intra-crystal electric field due to spin rotations of dynamically
diffracted neutrons from both crystal planes with ∆ϕg ̸= 0 and ∆ϕg = 0.
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Table 6.1: Summary of 16 components.
Summary of the intensity distribution and the effective intra-crystal electric field for 16 components in Eq. (6.1). ∆K =K

(1)
0 −K

(2)
0 .

Term Component Intensity distribution Effective intra-crystal electric field

1 ψ(1)
0 ψ(1)∗

0

(
u(1)0

)2
0

2 ψ(2)
0 ψ(2)∗

0

(
u(2)0

)2
0

3 ψ(1)
g ψ(1)∗

g

(
u(1)g

)2
0

4 ψ(2)
g ψ(2)∗

g

(
u(2)g

)2
0

5 ψ(1)
0 ψ(2)∗

0 u(1)0 u(2)0 cos(∆K ·r) 0

6 ψ(2)
0 ψ(1)∗

0 u(1)0 u(2)0 cos(∆K ·r) 0

7 ψ(1)
g ψ(2)∗

g u(1)g u(2)g cos(∆K ·r) 0

8 ψ(2)
g ψ(1)∗

g u(1)g u(2)g cos(∆K ·r) 0

9 ψ(1)
0 ψ(1)∗

g u(1)0 u(1)g cos(g ·r) −vE
gg sin∆ϕg

10 ψ(1)
g ψ(1)∗

0 u(1)g u(1)0 cos(g ·r) −vE
gg sin∆ϕg

11 ψ(2)
0 ψ(2)∗

g u(2)0 u(2)g cos(g ·r) vE
gg sin∆ϕg

12 ψ(2)
g ψ(2)∗

0 u(2)g u(2)0 cos(g ·r) vE
gg sin∆ϕg

13 ψ(1)
0 ψ(2)∗

g u(1)0 u(2)g
[

cos(∆K ·r)cos(g ·r)+ sin(∆K ·r)sin(g ·r)
]

vE
gg
[

cos(∆K ·r)sin∆ϕg + sin(∆K ·r)cos∆ϕg
]

14 ψ(2)
0 ψ(1)∗

g u(2)0 u(1)g
[

cos(∆K ·r)cos(g ·r)− sin(∆K ·r)sin(g ·r)
]

−vE
gg
[

cos(∆K ·r)sin∆ϕg − sin(∆K ·r)cos∆ϕg
]

15 ψ(1)
g ψ(2)∗

0 u(1)g u(2)0
[

cos(∆K ·r)cos(g ·r)− sin(∆K ·r)sin(g ·r)
]

−vE
gg
[

cos(∆K ·r)sin∆ϕg − sin(∆K ·r)cos∆ϕg
]

16 ψ(2)
g ψ(1)∗

0 u(2)g u(1)0
[

cos(∆K ·r)cos(g ·r)+ sin(∆K ·r)sin(g ·r)
]

vE
gg
[

cos(∆K ·r)sin∆ϕg + sin(∆K ·r)cos∆ϕg
]
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7 The Measurement of Intra-Crystal Electric Field
by Spin Rotation

In this section, experimental methods and results are described for an experiment measuring the effective
intra-crystal electric field using the spin rotation due to the Schwinger magnetic field. The measurement of
the effective intra-crystal electric field by the Schwinger magnetic field in the symmetric Laue configuration
was performed by Voronin and co-workers [53]. They used the fact that the amount of precession oscillates
with the angle between the direction of the Schwinger magnetic field and the direction of the incident spins
in order to confirm the spin precession by the Schwinger magnetic field and to measure the effective intra-
crystal electric field. We have carried out similar measurements by varying the thickness of the crystal.

7.1 Theory of the Measurement
The principle of measuring the effective intra-crystal electric field using the spin rotation due to the Schwinger
magnetic field is basically the same as the principle of nEDM measurement (see Fig. 4.2). When neutrons
with spins polarized in the x-direction are injected into the crystal, the dynamically diffracted neutrons are
split into α- and β -waves, which undergo precessional rotation around the Schwinger magnetic field and the
effective intra-crystal electric field in opposite directions, respectively. In the nEDM search experiment, the
nEDM effect appears in the z-direction. On the other hand, here we measure the spin polarization in the
x-direction. Here, the spin polarization in the z-direction due to nEDM is very small and can be neglected.

The rotation angle φS of the precession due to the Schwinger magnetic field is given by the following
equation when the thickness of the crystal is t.

φS =
2µnBS

h̄
τ =

2µnEgt
h̄c2 (7.1)

Since the direction of the effective intra-crystal electric field is opposite for α-wave and β -wave, each angle
of precession, φα

obs or φβ
obs, are opposite and of equal magnitude;

φα
obs = φs +φ0, (7.2)

φβ
obs =−φs +φ0, (7.3)

where φ0 is the initial polarization P0 = cosφ0. The polarization of α-wave and β -wave can be written as
Pα

obs = cosφα
obs and Pβ

obs = cosφβ
obs, respectively. However, since the α- and β -waves cannot be observed

separately, the sum of the two can be observed. Under the condition that the α- and β -waves have the same
intensity in a symmetric Laue configuration, the observed polarization Pobs becomes

Pobs =
1
2

(
Pα

obs +Pβ
obs

)
= cosφS cosφ0

(7.4)

Therefore, by measuring the initial polarization and the polarization after precession by the Schwinger mag-
netic field, the effective intra-crystal electric field can be obtained as follows.

Pobs

P0
= cosφS, (7.5)

Pobs

P0
= cos

2µnEgt
h̄c2 , (7.6)

In the experiment, the measurement was performed by tilting the crystal around the axis in Fig. 7.1,
changing the effective thickness of the crystal. If the tilt angle is ξ and the offset of the tilt angle is ξ0,
Eq. (7.6) is expressed as follows.

Pobs

P0
= cos

2µnEg

h̄c2
t

cos(ξ −ξ0)
, (7.7)
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Figure 7.1: Setup of the experiment of the spin rotation:
The neutron beam was shaped by S1 and S6 to be a width of 2 mm and a height of 5 mm at the crystal incidence plane. Spin
polarization was done by Polarizer in the direction of the beam axis, and then selectable between parallel (p-mode) and antiparallel
(m-mode) to the beam axis by the spin flipper-1. The detected beam width was set by the Cd slit on the neutron ejection plane. The
width of the Cd slit was adjusted to detect the same fraction of the diffraction spread (the Borrmann fan) in the center. The direction
of the detected neutron spins can be switched between p-mode and m-mode by the spin flipper-2 and the analyzer. The detector is a
3He detector.

7.2 Setup of the Experiment
The experiment was carried out at the MLF in the J-PARC. A schematic diagram of the experiment is shown
in Fig. 7.1. The spin of neutrons polarized by the upstream polarizer is maintained along the beam axis by a
guiding magnetic field. The direction of the neutron spins can be switched between parallel and antiparallel
to the beam axis by means of a spin π flipper after the polarizer. The crystal is held in an aluminum holder. A
cadmium slit is placed in front of the injection plane and its width is fixed at 0.6 mm. The incident neutrons
are collimated by slit S1 and the incident cadmium slit, and their divergence angle is 0.04 degrees. The
crystal is α-quartz, and the diffraction plane is (110). The cadmium slit was also placed on the backside of
the crystal, and its width was adjusted to detect the same fraction of the diffraction spread (the Borrmann
fan) in the center. Of the diffracted neutron beam, only the transmitted beam passing through the cadmium
slit on the injection surface is detected. The spin π flipper is placed in front of the spin analyzer to switch
between the spin parallel to the beam axis and the spin antiparallel to the beam axis for detection. In the
experiment, four different modes were measured while switching between them for different combinations
of incident and detected spin orientations. The four modes are represented by pp, pm, mm, and mp, where
the direction parallel to the beam axis is ”plus (p)” and the direction antiparallel to the beam axis is ”minus
(m)”. In the experiment, the measurements were performed by sequentially switching between pp and mm
modes for 10s and pm and mp modes for 60s. Since the counts in the pm and mp modes are lower than
in the pp and mm modes, they were set so that the statistics were approximately the same in each mode.
The detector is a 3He 0-dimensional detector. No special magnetic shields or guiding magnetic fields were
installed before and after the crystal, but the residual magnetic field plus the Earth’s magnetic field were left
in place, and the effect of these fields was corrected by measuring the magnetic fields before and after the
crystal. Outside the crystal, the magnetic field environment around the crystal and the guiding magnetic field
environment before and after the crystal are connected loosely coupled enough to keep the neutron spins
remain adiabatically oriented in the direction of the magnetic field. The initial polarization was measured
with and without the crystal, with the direct beam polarization measured in the undiffracted state at an angle
of incidence of 90 degrees to the crystal.

The α-quartz used in the experiment were 30 mm in diameter and 10 mm in thickness. The artificial
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Figure 7.2: Evaluation of crystallinity by X-ray and determination of the measurement region.
(a) Appearance of α-quartz. The diameter is 30 mm and the thickness is 10 mm. The straight part on the left side is for directional
identification. (b) Schematic diagram of the X-ray transmission topography. (c) Location of the X-ray transmission topography. (d)
Topography results. (d-1),(d-2) The measurement results of the reflection X-ray topography are shown. A few bright lines can be
seen, but many areas are good on the surface. (d-3) shows the results of transmission X-ray topography. The dark line in the center
shown in (1) indicates that the Pendellösung fringes are visible. The bright and dark lines shown in (2) are considered to be veining
during crystal growth. More veining can be seen than on the surface. The area indicated by the yellow frame is the area used in the
experiment, and the red frame shows the neutron incident area.

crystals were manufactured by Nihon Dempa Kogyo and are the highest grade in the industry standard. An
example of the standard is shown in Table 7.1. Prior to the experiment, X-ray topographic measurements
were made, and an area (10 mm x 10 mm) with good crystallinity was selected for the experiment. The
appearance of the crystals and the results of the X-ray transmission topography measurements are shown
in Fig. 7.2. Several defect structures were observed, which are thought to be veins associated with crystal
growth. The experimental area was chosen so that these striae would not enter the Borrmann fan as much as
possible. The rectangular box in the figure shows the area used in the experiment.

Table 7.1: Industry Standard for an artificial α-quartz.
This table complies with IEC60758. This shows the highest grade standards: grade 1a for foreign particles, grade Aa
for infrared absorption coefficient, and grade 1aa for etch channel density.

Foreign particles (Size and allowable number of foreign particles in 1 cm3

10–30 µm 30–70 µm 70–100 µm 100 µm ¡
≤ 2 ≤ 1 0 0

Infrared absorption coefficient (wave length 3585 cm−1 Q-value (Reference)
≤ 0.015 ≥ 3.8×105

Etch channel density (cm−3)
≤ 2
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7.3 The Preliminary Experiment
Prior to this experiment, a preliminary experiment was carried out in the same experimental setup with a
solenoid coil in place of the crystal to measure the spin rotation due to the magnetic field of the solenoid
coil. The direction of the solenoid magnetic field was set to be in the z direction of Fig. 7.1, parallel to the
Schwinger magnetic field BS in this experiment. Since the incident neutrons perform spin rotation propor-
tional to the time they pass through the solenoid, the TOF spectrum of their polarization shows oscillations
as shown in Fig. 7.3, and the solenoid magnetic field can be obtained from its period. The length of the
path for neutrons to pass through the solenoid is 120 mm, and four different solenoid magnetic fields were
measured: 1.0, 2.5, 5.0, and 7.0 Gauss (± 0.1 Gauss each).
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fig7_Solenoid

Figure 7.3: TOF spectra of neutron polarization passed through the solenoid coil using
the pulsed neutron beam.
The four spectra on the left and four spectra on the right show the cases where the direction of the incident spin is
parallel and antiparallel to the beam direction, respectively. (a), (b), (c), and (d) show the spectra at solenoid magnetic
fields of 1.0, 2.5, 5.0, and 7.0 Gauss, respectively. Since the spin rotation is proportional to the time it takes to pass
through the crystal, the spectra oscillate as shown in the figure when the TOF, which is inversely proportional to the
neutron velocity, is taken as the horizontal axis. The stronger the magnetic field of the solenoid, the faster the rotation.
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p_mode m_mode

Figure 7.4: The magnetic field of solenoid coil obtained from the spin rotation.
The horizontal axis is the set value of the solenoid magnetic field measured by the gauss meter. The spin direction of
incident neutrons is parallel to the beam direction on the left and antiparallel on the right.

The results are shown in Fig. 7.4. The vertical axis shows the magnitude of the solenoid magnetic field
obtained from the spin rotation, and the horizontal axis is the set value of the solenoid magnetic field. It was
confirmed that the solenoid magnetic field calculated from the measured spin rotation is in good agreement
with the set magnetic field. In the low-field region, the deviation from the set value is relatively large. This
is considered to be due to the effect of the external magnetic field. At 3 Gauss, which is the typical strength
of the relativistic magnetic field in the crystal in this experiment, the systematic experimental uncertainty in
this experimental system can be estimated to be within ±0.65 Gauss.
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7.4 Results of (110)-Plane with ∆ϕg ̸= 0
in the Symmetric Laue Configuration

Spin rotation was measured at five tilt angles: 0◦, 30◦, −45◦, 47.5◦, and 37.5◦. Figure 7.5 shows the TOF
(Time of Flight) spectra at each tilt angle. The left spectra in the figure show the full TOF range from 10000
to 38100 µsec, and the right spectra show the extended TOF range from 11000 to 13000 µsec. The peak
around 11700 µsec is the diffraction peak of the (110)-plane. The TOF of the (110)-plane, which is the
symmetric Laue configuration, remains almost the same even when the tilt angle is changed. In fact, there is
a slight shift due to an error in the Bragg angle setting. On the other hand, the peaks from other crystal planes
shift, disappear, or appear when the tilt angle is changed. This is because these planes are in asymmetric
Laue configuration or Bragg configuration.

The analysis was performed on the (110)-plane with ∆ϕg ̸= 0 and the (02̄1)-, (011)-, and (111̄)-planes
with ∆ϕg = 0. In this section the analysis and result of the (110)-plane will be discussed, and in the next
section the other asymmetric planes will be discussed.

7.4.1 Evaluation of the Diffraction Intensity

Figure 7.6 shows the TOF spectrum of the tilt angle of 0◦ by measurement mode, for the typical example.
Since the measurement is performed in four modes (pp, mm, pm, and mp), four TOF spectra are obtained
as shown in (a) of the figure. The TOF spectra of each mode are shown separately in (c): pp mode, (d): pm
mode, (e): mm mode, and (f): mp mode. (b) is the sum of the four modes. The exact peak position was
obtained from the TOF spectrum of the sum of the four modes of measurement to improve statistics (see
Fig. 7.5). The following fit function with Extreme function and linear function was used for decision of the
peak position [52];

f = F0 exp
[
−exp

(
−x−F1

F2

)
− x−F1

F2

]
+F3(x− x0)+F4, (7.8)

where F0 −F4 are fit parameters, and F1 is the peak position. The peak intensity was calculated by the sum
of counts in the range of −100 µs and +264 µs in TOF with respect to the fitted peak position.

As for the background, diffraction peaks from crystal planes other than (110) migrate and appear at
different positions near the (110)-peak by each tilt angle, so it is necessary to identify their positions and
evaluate them so that they are not included. Fig. 7.7 shows the TOF spectrum at the tilt angle of 37.5◦. In this
case, diffraction peaks of (03̄1),(112̄),(1̄01),(1̄30),(13̄2) appear other than (110)-peak between 11000 µs
and 13000 µs in TOF. Since the background is considered to be almost constant in this range, we evaluated
the background as the average of all the areas excluding these diffraction peaks. Then, the background was
subtracted from the intensity of the earlier peak intensity to obtain the diffraction intensity. Assuming that the
diffraction intensities for each of the four modes of measurement, pp, pm, mm and mp, are Npp,Npm,Nmm

and Nmp, respectively, the polarization of the p-mode (Pp
obs) and the polarization of m-mode (Pm

obs) are as
follows:

Pp
obs =

Npp −Npm

Npp +Npm , (7.9)

Pm
obs =

Nmm −Nmp

Nmm +Nmp , (7.10)
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Figure 7.5: TOF spectrum at each tilt angle with the bin width of 25 µsec:
The left spectra in the figure show the entire TOF range from 10000 to 38100 µsec, and the right spectra show the
expanded TOF range from 11000 to 13000 µsec. The peak around 11700 µsec is the diffraction peak of the (110)-
plane. A, B, and C show the diffraction peaks of the crystal planes, (02̄1), (011), and (111̄), respectively, in the
asymmetric Laue configuration with ∆ϕg = 0, which will be analyzed in Section 7.5. The red curve is the result of the
peak fit by Eq. (7.8)
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Figure 7.6: TOF spectrum of the tilt angle of 0 degrees for each measurement with the bin width
of 25 µsec:
As a representative example, the TOF spectra at the tilt angle of 0 degrees are shown. (a) is the TOF spectrum measured in four
measurement modes. (c),(d),(e), and (f) are shown separately for each measurement mode. These TOF spectra are used to evaluate
peak intensity and background. (b) is the sum of the four measurement modes and is used to accurately determine the peak position.

TOF Spectrum at Tilt Angle = 37.5 deg.Fig.4
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Figure 7.7: TOF spectrum at tilt angle of 37.5 degrees for evaluation of the background:
5 peaks other than (110) appear in the range of 11,000µs to 13,000µs. The background was estimated from the portion
of the spectrum that excluded all of these peak regions (They correspond to the bands of pink color).
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Figure 7.8: Initial polarization by the tilt angle and the measurement mode:
The plots shows the initial polarization for each tilt angle. The left side shows the initial polarization for the p-mode measurement, and
the right side shows the initial polarization for the m-mode measurement. In the analysis of the spin rotation, the initial polarization
for each tilt angle was used. The range of the changes over time were evaluated as the systematic uncertainty.

7.4.2 Initial Polarization

The initial polarization was measured immediately after the spin rotation measurement at each tilt angle,
with the incident angle θ = 0◦. The initial polarization value immediately after this tilt angle measurement
was used in the calculation of Eq. (7.7). The method of measuring and calculating of the polarizations is the
same as in the previous section. The results of the initial polarization at each tilt angle are shown in Fig. 7.8.
The initial polarization of the m-mode is about 0.01 higher than that of the p-mode. This is considered to be
an instrumental feature of the experimental line. Therefore, we decided to analyze the p-mode and m-mode
separately and finally take the average of both. For each tilt angle, the initial polarization values vary in the
range of 0.005 for the p-mode and 0.009 for the m-mode. Since this is above the statistical uncertainty, we
decided to treat it as a systematic uncertainty. The larger of the two ranges, 0.009, was assumed to be equal
to 2σ of the systematic uncertainty.

7.4.3 Spin Rotation

Figure 7.9 plots the relationship between Pobs/P0 and tilt angle γ obtained in the previous two sections.
Pobs/P0 at each tilt angle is the average of the p-mode and m-mode at that tilt angle. Five tilt angles were
measured, but as can be seen in Fig. 7.5, the diffraction peaks of the (110)-plane and (011)-plane overlap at
a tilt angle of 30◦, so they were excluded from the plot. The curves in the figure are the result of fitting based
on Eq. (7.7). From this result, the spin rotation of the (110)-plane in a 10 mm thick α-quartz was obtained
as follows;

φobs
(110) = 0.45±0.03.
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Figure 7.9: The relationship of Pobs/P0 and the tilt angle γ .
Pobs/P0 at each tilt angle is the average of p-mode and m-mode at the tilt angle. The data at the tilt angle of 30◦ was
excluded from the plot, because the diffraction peaks of (110)- and (011)-plane overlap. The red curve shows the result
of the fit by Eq. (7.7).

7.4.4 Compensation for External Magnetic Field

In the experiment, no magnetic shielding was used. Therefore, there is an external magnetic field inside the
crystal, and the spin performs precessional rotation around the composite field of the relativistic and external
magnetic fields. Therefore, it is necessary to compensate for this. If the unit vectors of composition of the
relativistic magnetic field and external magnetic field for α- and β -waves are expressed as nα = (nα

x ,n
α
y .n

α
z )

and nβ = (nβ
x ,n

β
y ,n

β
z ), respectively, the amount of spin rotation including the effect of the external magnetic

field is given by

P =
1
2

{
cosφα

c + cosφβ
c +2

[
(nα

x )
2 sin2

(
φα

c

2

)
+(nβ

x )
2 sin2

(
φβ

c

2

)]}
, (7.11)

where φα
c and φβ

c is the spin rotation angle by the composite magnetic field of α- and β -wave, respectively.
The external magnetic field was measured with a Gauss meter at the position of 6 mm in front and behind
the crystal, respectively. The result was linearly interpolated into the crystal and the magnetic field inside
the crystal was estimated as (0.3. 0.65, -0.1) Gauss at the center of the crystal. Incidentally, the magnitude
of the relativistic magnetic field is about 3 Gauss, assuming an intra-crystal electric field of 2.0×108 V/cm.
The spin rotation due to only the relativistic magnetic field after the compensation of the external magnetic
field is as follows,

φ(110) = 0.44±0.03.

Here, the external magnetic field inside the crystal was estimated by linear interpolation at the center
of the crystal and it is assumed to be constant. So the range of the external magnetic field of the two-point
measurements should be accounted for as the systematic uncertainty.
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7.4.5 Summary of the Statistical and Systematic Uncertainties

Statistical and systematic uncertainties of the spin rotation of (110)-plane are summarized in Table 7.2.

Table 7.2: Summary of the statistical and systematic uncertainties of the spin rotation of (110)-plane.
*This uncertainty is based on the initial polarization with crystal and without crystal at another experiment.

Items Details Uncertainties of spin rotation
Statistic Uncertainty ±0.03
Systematic Uncertainties

Initial Polarization ±0.003
External Magnetic Field ±0.001
Crystal* +0.001,−0
Thickness of Crystal ±0.0002(neglegible)
Experimental system ±0.078
Total +0.083,−0.082

The spin rotation of neutrons in dynamical diffraction on the (110)-plane of α-quartz with the thickness
of 10 mm, was obtained as

φ(110) = 0.44±0.03stat ±0.08syst. (7.12)

The effective intra-crystal electric field obtained from this spin rotation by Eq. (7.1) is as follows,

E(110) = (2.2±0.2stat ±0.5syst)×108 V/cm. (7.13)

This value is consistent with the values obtained by phase contrast measurements and similar spin rotation
measurements [32, 33, 53], and is also in good agreement with the early calculations by V. V. Voronin and et
al. [32, 54].
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7.5 Results of Other Crystal Planes with ∆ϕg = 0
in the Asymmetric Laue Configuration

In our experiment, we used a white beam by the pulsed neutron source to examine the transmission diffrac-
tion peaks, which allows us to simultaneously detect diffraction peaks from several crystal planes in the
asymmetric Laue configuration other than (110)-plane. Therefore, crystal planes in the asymmetric Laue
configuration with ∆ϕg = 0, other than the (110)-plane, can be analyzed simultaneously. However, the actual
planes and tilt angles that can be analyzed are limited because the diffraction peaks of these crystal planes
shift, disappear, or appear when the tilt angle is changed, as can be seen in Fig. 7.5. Among the many
diffraction peaks detected at each tilt angle, the (02̄1)-plane at the tilt angle of 0◦ (diffraction peak A in
Fig. 7.5), the (011)-plane at the tilt angle of 0◦ (diffraction peak B in Fig. 7.5) and the (111̄)-plane at the tilt
angle of 30◦ (diffraction peak C in Fig. 7.5) could be analyzed. Since the spin rotation of them was obtained
only at a specific tilt angle, the spin rotation of these crystal planes could not be obtained from the thickness
dependence as (110)-plane.

Figure 7.10 shows the TOF spectra of the diffraction peaks from the (02̄1)-, (011)- and (111̄)- planes.
In (a), the diffraction peak of the (02̄1)-plane almost overlap with that of the (021)-plane. Since the crystal
structure factors Fg of the (02̄1)- and (021)-planes are 20.818 and 7.3138, respectively, and so the diffraction
intensity of (02̄1)-plane is about three times that of the (021)-plane, we decided to consider the spin rotation
in diffraction peak collectively, considering that the (02̄1)-plane is the dominant influence. Of course, strictly
speaking, the following result for the (02̄1) plane is a combined effect of the (02̄1) and (021) planes.

The diffraction peak of the (011)-plane in (b) is slightly shifted and overlapped by the peak of the (011)-
plane. This is because the coordinate system of the incident crystal plane and the beam axis is slightly tilted,
although they should overlap perfectly in a perfectly symmetric Laue configuration. This is because the
(011)-plane is on the long wavelength (high TOF) side, and the shift is magnified. The influence of the
(011̄) plane can be removed by shortening the integration range of the diffraction peak of the (011) plane on
the tail side.

The diffraction peak of the (111̄)-plane in (c) could be treated as a single peak because it is completely
separated from the adjacent peak of the (13̄1)-plane. The respective diffraction peak integration ranges are
shown in Fig. 7.10.

The analysis method is the same as for (110)-plane in Section 7.4. The results of the analysis are
summarized in TableTable 7.3.

Table 7.3: Summary of results for other planes with asymmetric Laue configuration:

Item (02̄1) (011) (111̄)
Pobs/P0 0.95±0.02 0.99±0.01 0.88±0.04

φ 0.30±0.07 0.14±0.07 0.49±0.08
φ after compensation 0.29±0.07 0.11±0.05 0.48±0.08

The results of the spin rotation of these asymmetric planes containing the systematic uncertainty were as
follows:

φ(02̄1) = 0.29±0.07stat ±0.12syst, (7.14)

φ(011) = 0.11±0.05stat ±0.21syst, (7.15)

φ(111̄) = 0.48±0.08stat ±0.11syst. (7.16)
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Figure 7.10: TOF spectra of diffraction peak of (02̄1)-, (011)- and (111̄)-planes;
(a), (b) and (c) show the TOF spectra of the diffraction peaks from the (02̄1)-, (011)- and (111̄)-planes, respectively.
The (02̄1) peak is almost completely overlapped by the (021) peak. A small peak of (01̄1)-plane overlaps the tail of
the (011) peak. This can be excluded by narrowing the integration range of the peak. The peak of (111̄) is a single
peak. The red areas in the figure indicate the respective integration ranges.

66



The effective intra-crystal electric field obtained from these spin rotations by Eq. (7.1) is as follows;

Eeff
(02̄1) = (1.4±0.3stat ±0.6syst)×108V/cm, (7.17)

Eeff
(011) = (0.5±0.3stat ±1.0syst)×108V/cm, (7.18)

Eeff
(111̄) = (2.4±0.4stat ±0.5syst)×108V/cm. (7.19)

The spin rotations and the effective intra-crystal electric fields of these crystal planes, (02̄1), (021),
(011) and (111̄), are expected to be zero in the previous calculations because of ∆ϕg = 0 [54]. In this
experiment, the spin rotation of (011)-plane is consistent to zero and consistent with the calculation assuming
∆ϕg = 0. However, there is a significant deviation from zero on (02̄1)- and (111̄)-planes, nevertheless
∆ϕg = 0. The statistic and systematic uncertainties in the result (011) are larger than the others. This is
because the experiment was carried out at an initial polarization close to 1. The propagation of the uncertainty
is proportional to sin−1(φS) when converting from the polarization to the spin rotation angle. For decreasing
this uncertainty, it needs to carry out the experiment near an initial polarization of 0.

We know no experimental measurements to date that have measured the effective intra-crystal electric
fields or the spin rotations for these crystal planes in the symmetric as well as asymmetric Laue configu-
rations. In this experiment, the significant spin rotations were measured for these (02̄1)- and (111̄)-planes
with ∆ϕg = 0. Although this is still one experimental result and further follow-up tests are needed, this result
indicates that an effective intra-crystal electric field may exist even on a crystal plane with ∆ϕg = 0. This
could be the effect of the interference terms 13–16 in Table 6.1, which have been ignored so far.

67



7.6 Discussion of the Intra-crystal Electric Field
In this experiment, we obtained two experimental results on the effective intra-crystal electric field. One
is that for the (110)-plane, for which an effective intra-crystal electric field has been considered to exist at
∆ϕg ̸= 0 and has actually been measured, we obtained results that are consistent with previous measurement
and calculation results. On the other hand, non-zero spin rotation was measured in the (02̄1), (011) and
(111̄)-planes, which have not been measured so far but are theoretically considered to have no effective
intra-crystal electric field because ∆ϕg = 0, and results were obtained as if an effective intra-crystal electric
field existed. The following possibilities as possible causes.

(1) Influence of magnetic scattering due to magnetic impurities in a crystal.
Since no difference was observed in the direct beam polarization measurements with and without the crystal,
the effect is considered to be small.

(2) Influence of depolarization due to thermal diffuse scattering.
The Debye-Waller factor exp(−Wd) is about 0.95–0.98, and the solid angle of the detector is small, less than
0.2 mradian, so the effect is negligible.

(3) The effect of the interference terms 13–16.
If the pendellösung interference is partially broken, oscillating components that should be cancel each other
may remain uncanceled. In such a case, the interference terms 13–16 cannot be neglected and an effective
intra-crystal electric field may be generated even at ∆ϕg = 0.

We believe that these spin rotations observed at the crystal planes with ∆ϕg = 0 are most likely the effect
of the interference terms 13–16, which was considered negligible so far.

If this is the case, then there should also be an effect of this in the (110)-plane, which raises the question
of whether there is a contradiction. Theoretical calculations of the effective intra-crystal electric field for the
(110)-plane are specifically discussed in the Ref. [32] and [54]. [32] and [54], but the values are slightly
different. Here, vE

g = 1.92 V and ∆ϕg = −0.42 are assumed from Ref. [54]. The space of lattice planes is
dg = 2.4569 Å. We have already mentioned that the 9 and 10 terms in Table 6.1 represent α-wave and the
11 and 12 terms represent β -wave. Similarly, the wave represented by the 13 and 16 terms is called λ -wave
and that by the 14 and 15 terms is called η-wave. In the symmetric Laue configuration, the intensity ratio
of the λ -and η-waves is 1/2 : 1/2, as is the ratio of the α-and β -waves. As mentioned earlier, the λ -and
η-waves have a Pendellösung oscilation component in their factor, so they cancel each other when integrated
in the crystal thickness direction. However, in real crystals, it may assumed that they can not cancel each
other completely due to some crystal defects at the order of the Pendellösung length and a certain component
remains. If the ratio is R, the effective intra-crystal electric fields of α-wave, β -wave, λ -wave and η-wave
are calculated as follows;

Eeff−α
(110) =−vE

gg sin∆ϕg, (7.20)

Eeff−β
(110) = vE

gg sin∆ϕg, (7.21)

Eeff−λ
(110) = vE

ggR(sin∆ϕg + cos∆ϕg) , (7.22)

Eeff−η
(110) =−vE

ggR(sin∆ϕg − cos∆ϕg) . (7.23)

A schematic diagram of the spin rotation is shown in Fig. 7.11 (a), where P0 indicates the initial polar-
ization state, P0 = 1. The spin rotation angles due to the effective intra-crystal electric field sensed by the
α , β , λ and η-waves are noted as ϕα , ϕβ , ϕλ and ϕη , respectively. First, half of the wave rotates ϕα , then
the half of it rotates ϕλ and the other half rotates ϕη , then the polarization states are P1 and P2, respectively.
On the other hand, the half that rotates ϕβ in the opposite direction of ϕα also rotates ϕλ and ϕη to become
P3 and P4, respectively. The rotation angles are given by Eq. (7.1). The intensities of P1, P2, P3 and P4 are
equal to 1/4 each. The observed total polarization is given by (P1 +P2 +P3 +P4)/4 and can be obtained as
follows using Eqs. (7.20)–(7.23),

Pobs =
1
2

cos(ϕα) [cos(ϕλ )+ cos(ϕη)] , (7.24)
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Figure 7.11: Spin rotation of four waves, α, β , λ and η ;
Schematic representation of the spin rotation due to the effective intra-crystal electric field sensed by the four interfer-
ence waves, α, β , λ and η .
(a) The case of ∆ϕg ̸= 0, the (110) plane, and R ̸= 0 is shown. From the initial polarization ratio P0 = 1, first, one half
of the wave rotates by ϕα and the other half of the wave rotates by ϕβ in the opposite direction. They also rotate by
half, by ϕλ and ϕη , and become to four polarization states, P1, P2, P3 and P4. These four states have the same intensity,
and the total polarization is obtained by averaging them.
(b) The case of ∆ϕ = 0 and R ̸= 0 is shown. In this case, the effective intra-crystal electric field sensed by the α- and
β -waves is zero, and the spin rotation of the λ - and η-waves is observed as it is.

where ϕα can be replaced by ϕβ .
Figure 7.12 shows the relationship between the uncanceled fraction R and the intra-crystal electric field

obtained from the resulting spin rotation for the crystal thickness of 10 mm. The value at R = 0 is the intra-
crystal electric field when only α- and β -waves are considered, which in this case is 2.0× 108 V/cm. The
blue line and band in the figure show the result of this experiment. When R < 0.3 or so, the influence of the
λ -wave and η-wave is within the uncertainty of this experiment and does not cause any contradiction. This
is because the rotation of the λ - and η-waves is in the direction that they cancel each other out around the
spin rotation of the α- and β -waves, respectively. However, they do not completely cancel each other out.
For reference, the red line shows the case where the spin rotation of the α- and β -waves is π/2. In this case,
the effect of R cancels out completely and the observed effective intra-crystal electric field is 2.0×108 V/cm
for the α- and β -waves, which is independent of R.

On the other hand, when ∆ϕg = 0, as shown in Fig. 7.12 (b), the sin∆ϕg term in Eqs. (7.20)–(7.23)
becomes zero, so there is no spin rotation of the α- and β -waves, but only of the λ - and η-waves, which
appear as spin rotation as they are, and this can be observed. Thus, by observing the spin rotation in the
crystal plane with ∆ϕg = 0, it may be possible to evaluate the value of R, i.e., the imperfection of the crystal.

In Fig. 7.12, the closer the value of R approaches 1, i.e., the larger the crystal imperfection, the stronger
the effective intra-crystal electric field, which would appear to be advantageous for nEDM search experi-
ments, but this is not the case. The spin rotation discussed here deals only with the amount of rotation on the
xy-plane, but in reality, there are likely to be fluctuations in the z-direction. In the case of spin rotation on
the xy-plane, these are expected to cancel out or be negligible. In the nEDM search experiments, however,
such fluctuations cannot be neglected because the problem is the spin polarization in the z direction. There-
fore, it is necessary to keep the value of R as close to zero as possible and to quantitatively estimate the effect
on the z-directional polarization for the nEDM search experiment using the crystal diffraction.

This argument is currently hypothetical and experimental results are not yet satisfactory, so further ex-
perimental verification and theoretical considerations are needed. However, it has the possibility to provide
a new indicator for the investigation of crystal imperfections, and a clue for the investigation of systematic
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Figure 7.12: The effect of the effective intra-crystal electric field due to λ - and η-
waves;
The relationship between the index R, which is considered to represent crystal imperfections, and the effective intra-
crystal electric field observed at that time is shown in the black line for the (110)-plane of α-quartz, uE

g = 1.92 V,
∆ϕg =−0.42, and the crystal thickness is 10 mm. R= 0 indicates the effective intra-crystal electric field of conventional
α- and β -waves only, 2.0× 108 V/cm. At this time, the effects of the λ - and η-waves are completely canceled out.
The blue line and band show the results of this experiment, which are consistent in the range R < 0.3. The red line is
for a crystal thickness of 38.5 mm. In this case, the amount of rotation of the α- and β -waves is π/2, and the observed
effective intra-crystal electric field ibecomes independent of R, with a constant value of 2.0× 108 V/cm. The spin
rotation of the λ - and η-waves is not completely canceled, but rather does not appear in the observation.

uncertainties in nEDM search experiments using crystal diffraction.
We plan to verify the reproducibility as the first step to validate this hypothesis. By reworking the crystal

used in this study, we will increase the crystal thickness by a factor of about 2.5 and increase the amount of
spin rotation to improve the accuracy of the verification. In addition, we will measure the spin rotation of
other crystal planes with ∆ϕg = 0. Theoretical calculations for crystal planes other than (110) are currently in
progress. In the future, we will test this hypothesis using crystals of various crystalline qualities (including
Si, Ge, and other centrosymmetric crystals).
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8 Improvement of the Crystal Diffraction Method
In this section we would discuss the experimental methods and possibilities for nEDM search experiments
using crystal diffraction. In Table 2.1 of Section 2.5, the three factors that determine the sensitivity of nEDM
search experiments were characterized numerically. There, the crystal diffraction method requires an intra-
crystal electric field of ∼ 108 V/cm, an interaction time of ∼ 1 msec, and statistics of ∼ 104 counts per
sec to achieve a sensitivity of 1× 10−26 e · cm while 100 days. We will discuss whether these numbers are
achievable and how to achieve them. As shown in Section 6, for the intra-crystal electric field, it was already
known that the target of 1×108 V/cm is achievable, and there may be the possibility of 1×109 V/cm for a
specific crystal. In the following discussion, we assume 2×108 V/cm in the (110)-plane for SiO2 crystal and
1×109 V/cm in the (532)-plane for Bi12GeO20 crystal. The latter has not yet been confirmed experimentally.
The basic unit of the experiment to search for nEDM using crystal diffraction is shown in Fig. 8.1.
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Figure 8.1: Basic unit for the experiment to search for nEDM by crystal diffraction:
A13.3 mm wide neutron beam Bi is injected onto a 191mm wide crystal, and the reflected and transmitted diffraction beams, Dr and
Dt, respectively, are ejected from the ejection plane. The reflected beam is analyzed to the spin up and down state in z-direction and
counted, respectively, to search for nEDM. The transmitted beam is analyzed to the spin up and down state in x-direction and are
counted alternately to monitor the polarization of the spin in x-direction. Bd is the direct beam transmitted through the crystal and it
is also monitored. The black line represents the center of the beam, the blue line represents the right end (looking downstream), and
the red line represents the left end, respectively. In this case, the beam is propagated from each incident point into the Bormann fan
with an apex angle of 172 degrees, and a portion of the beam is ejected from the ejection plane. The value ofΓ of each ejected beam
is noted in the figure.

In Fig. 8.1, the basic geometry is illustrated using the (110)-plane of α-quartz as an example. The crystal
is positioned with a glancing angle η of 4 degrees with respect to the neutron beam. The relationship with
the Bragg angle θB is θB = 90−η (degrees). The reason for taking this small glancing angle is to increase
the interaction time. In the case of the (110)-plane of α-quartz with the effective intra-crystal electric field
of 2.0× 108 V/cm, the thickness of the crystal, where the incident spin state becomes to P = 0 in the x-
direction is fixed to 38.5 mm regardless of the neutron wavelength (see Eq. (4.22) ). Since the thickness of
the crystal is fixed, a small glancing angle is advantageous to increase the interaction time by decreasing the
velocity of neutrons along the crystal plane. The optimum value of η is not determined only by it. It is also
determined by taking into account the experimental apparatus conditions, etc., but this is not discussed here.
In actual experiments, magnetic shields are placed around the crystal to shield it from external magnetic
fields and other devices that will be described later, but these are also omitted. As one example, the size of
the crystal that can accept all 13.3 mm beam width requires, in this case, a width of 191 mm as one example.
The height is determined by the beam height, so if the beam height is 50 mm, the required α-quartz size
is 191 mm wide, 50 mm high, and 38.5 mm thick. Neutrons incident on the crystal diffract and spread in
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a wide Bormann fan with a vertex angle of 172 ° , as indicated by the line in the figure, and the reflected
and transmitted diffraction beam are ejected from the ejection surface. Of the diffracted beam, the neutrons
ejected from the ejection plane range from Γ =−0.173 to +0.173 at the beam center. This ratio is important
for estimating the statistics of neutrons available for experiments In this case, the reflected diffraction beam
is used to search for nEDM. It is analyzed to the spin up state and down state in z-direction and counted
respectively. The transmitted diffraction beam is used to monitor the depolarizing condition in x-direction.
It is analyzed to the spin up state and down state in x-direction and counted alternately. The direct beam
through the crystal is also monitored to watch the beam condition.

8.1 The Possibility of Extending the Statistics by Multi-unit
One of the reasons for the low sensitivity of the crystal diffraction method is the statistics. Table 2.1 shows
that the statistics of 104cps is required, but in fact this it is not achieved. The intensities obtained in dynamical
diffraction of α-quartz in the Laue configuration are on the order of 0.1cps in the Pendellösung fringes
experiment. Even under the geometric conditions of the basic unit shown in Fig.8.1, the neutron counts are
estimated to be at most ∼ 100 cps, which is as low as 2 orders of magnitude.

The simple way to increase the statistics is to multiplex the basic unit. Figure 8.2 shows an example.
Specifically, how the basic units are arranged and multiplexed should be decided by taking into account
the beam and equipment environment. In the figure, four basic units are arranged in a mirror inversion. In
the downstream unit, the intensity of the incident beam is reduced due to diffraction and absorption in the
previous units. The reduction in beam intensity due to absorption is only about 70 % for α-quartz and 50 %
for Bi12GeO20 in the last unit when the number of multiplexing units is set to 10, so it is sufficiently effective
to use a multi-unit system. Furthermore, by using multi units, the wavelength of neutrons used by each stage
can be changed. Since the conditions under which the incident spin state becomes the polarization of P = 0,
do not change, only the nEDM effect increases in proportion to the neutron wavelength. This can be used to
check the systematic uncertainties of the experiment.

Fig8_MultiUnit

Figure 8.2: Schematic diagram of Multi-stage system:
Four basic units are arranged; the beam passing through the first stage passes directly through the second and third stages and enters
the last stage; the second and fourth stages are mirrored with respect to the beam axis of the first and third stages.

8.2 The Possibility of Increasing of Interaction Time by Applying an Exter-
nal Magnetic Field inside a Crystal only

Second reason for the low sensitivity of the crystal diffraction method lies in the interaction time. As men-
tioned above, it was necessary that the spin polarization becomes to be P = 0 in the x-direction, when the
nEDM measurement is performed. This condition give a limitation that determined the required crystal
thickness and the interaction time.
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Figure 8.3: The external magnetic field application method:
An external magnetic field Bex is applied downwards (in this case in the same direction as the Schwinger field BS
sensed by the β -wave) only inside the crystal (blue part). The solenoid generating Bex is omitted. The α-wave sense
the combined magnetic field (BS −Bex) and precess, while the β -wave sense the combined magnetic field (BS +Bex)
and precess in the opposite direction. The blue arrows represent the initial spin and the green arrows the state of the
precessional rotation. The figure shows the case where n = 1 (κ = 1/3) and the strength of the external magnetic field
is 1/3 of the Schwinger magnetic field. α-wave precesses slowly due to the weakening of the magnetic field, while β -
wave precesses twice as fast as α-wave. As it ejects from the crystal, the α-wave rotates π and the β -wave rotates 2π .
The α-wave shows a maximum (4dnEg)/(µnBS) nEDM effect, while the β -wave shows zero nEDM effect. Overall,
the nEDM signal appearing in the y-direction is the average of the α- and β -waves in (2dnEg)/(µnBS), as indicated
by the brown arrow. This is twice the nEDM signal of the conventional method. The conventional case is shown in the
upper right panel.

Here we would discuss that the interaction time can be extended under the condition of combined α-
and β -wave polarization by adding an external magnetic field and treating the α- and β -wave precessions
separately,

Figure 8.3 shows the principle of increasing the interaction time between the nEDM and the intra-crystal
electric field by applying an external magnetic field only inside the crystal. This method is named as the
external magnetic field application method. A thin solenoid coil (omitted in the figure) is installed in the
z-axis direction so that it wraps around the neutron injection and ejection surfaces of the crystal. This allows
an external magnetic field Bex to be applied only inside the crystal. Neutrons that enter the crystal and
undergo dynamical diffraction are split into α- and β -waves, which are subjected to the opposite Schwinger
magnetic fields BS and −BS, respectively. Because of the externally applied magnetic field, the α-wave
interacts with the magnetic field (BS+Bex) and the β -wave interacts with the magnetic field (−BS+Bex),
resulting in precessional rotation at different Lamor frequencies. By choosing the external magnetic field
appropriately, we can find a condition where the α- and β -waves are individually not P = 0, but they are
P = 0 when they are combined.

For example, by choosing an external magnetic field such that the α-wave has a rotation of π and the
β -wave has a rotation of 2nπ (n = 1,2, · · ·), the α-wave is polarized to P =−1 and the β -wave is polarized
to P =+1, so the overall polarization is zero. The nEDM signal reaches its maximum value for the α-wave
and zero for the β -wave, but the overall value will remain half of the maximum value. If the α-wave rotates
at a small Larmor frequency and the β -wave rotates at a large Larmor frequency, the interaction time can be
expanded and the maximum value of the α-wave nEDM signal is increased.

Assuming that Bex is κ times larger than BS and is applied in the opposite direction of BS, the ratio of
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the amount of spin rotation of α-wave to that of the and β -wave is as follows.

φβ
S

φα
S
=

1+κ
1−κ

. (8.1)

The spin rotation of the α-wave becomes slower and that of the β -wave becomes faster. In order to become
P = 0 as a whole, the rotation of the β -wave should be 2nπ when the rotation of the α-wave is π . Therefore,
κ can be determined from the following equation.

2n =
1+κ
1−κ

. (8.2)

In this case, the EDM signals (polarization in the y-axis direction) of the α- and β -waves can be expressed
by the following equations, respectively,

Pα
EDM =

dnEg

µn(1−κ)BS

[
1− cos

2µn(1−κ)BS

h̄
τ
]

(8.3)

Pβ
EDM =

dnEg

µn(1+κ)BS

[
1− cos

2µn(1+κ)BS

h̄
τ
]

(8.4)

The synthesized EDM signal is as follows.

PEDM =
1
2

(
Pα

EDM +Pβ
EDM

)
(8.5)

Figure 8.4 shows the time evolution of the nEDM signal and the precession of the α- and β -waves due to
the Schwinger magnetic field in the conventional method and the external magnetic field application method
with n = 1 (κ = 1/3). In the conventional measurement, the nEDM signal reaches a maximum value every
(2n−1)π , but due to Px = 0 condition, the measurement had to be performed at π/2 rotation. On the other
hand, when using the external magnetic field application method with n = 1, the period of x-polarization is
different for α- and β -waves, and the period and amplitude of the nEDM signal are different. The first Px = 0
from the point of incidence is about 0.1 msec, but the maximum of the nEDM signal can be measured about
0.4 msec, when the second Px = 0 occurs (when the precession of the α-wave is π). Here, the horizontal axis
represents the time course, but at the same time it is proportional to the thickness of the crystal, so it needs
to be 3 times thicker than in the conventional method.

Figure 8.5 shows the time evolution of the nEDM signal and the precession of the α- and β -waves with
the Schwinger magnetic field for n = 6 (κ = 11/13). In this case, the α-wave rotates by only π , while
the β -wave rotates by 12π , and the nEDM signal at the Px = 0 position increases sevenfold compared to
the conventional method. The thickness of the crystal is then 13 times that of the conventional method.
If the intra-crystal electric field is strong and π/2 rotation can be achieved with thin crystal, it may be
possible to prepare thick crystals compatible with the external magnetic field application method. But if
not, the availability of thick crystals with good crystallinity is the limitation of this external magnetic field
application method.

The external magnetic field application method has the following advantages. First, as can be seen from
the Px = 0 points in Fig. 8.4 and 8.5, the rate of change of Px is the largest in the conventional method,
whereas the rate of change is the slowest in the external magnetic field application method, making it easier
to control the Px = 0 state. Furthermore, in the external magnetic field application method, the position of
Px = 0 can be easily changed by varying the external magnetic field. Therefore, even if the spin analysis axis
is slightly tilted, the false signal can be minimized (≃ 0) by scanning the external magnetic field.

74



-waveα
-waveβ

Total

x-
po
lar
iza
tio
n

x-
po
lar
iza
tio
n

ED
M
 e
ffe
ct
 

(z
-p
ol
ar
iza
tio
n)

ED
M
 e
ffe
ct
 

(z
-p
ol
ar
iza
tio
n)

-waveα
-waveβ

Total

elapsed time elapsed time

(a) (b)

D1 D2 D3

E1

E2

Fig8_ExternalBmethod2

Figure 8.4: Time evolution of the nEDM signal and the precession of the α- and β -waves due to the
Schwinger magnetic field:
(a) The conventional method: The time evolution of the polarization of α- and β -waves is the same, and the nEDM effect also has the same time
evolution. The measurement is performed at the time (D1) when both α- and β -waves are Px = 0. The maximum value of the nEDM effect is
when α- and β -waves are at Px =−1, but the false signal is so large that the measurement is practically impossible. (b) The external magnetic field
application method in the case of n = 1 (κ = 1/3): In this case, the α- and β -waves behave differently. The β -wave is twice as fast as the α-wave in
both Px and the nEDM signal. The first Px = 0 state is realized at time D2, at which point the nEDM effect is almost the same as in the conventional
method. Next, the measurement is performed at D3, where Px = 0, and the nEDM effect, red circle E2, is obtained. Compared to the conventional
method, the interaction time is 3 times longer and the nEDM effect is 1.5 times larger. However, the thickness of the crystal has to be tripled.Fig8_ExternalBmethod3

x-
po
lar
iza
tio
n

ED
M
 e
ffe
ct
 

(z
-p
ol
ar
iza
tio
n)

elapsed timeD1 D2 ・・・・ D11

-waveα
-waveβ

Total

E1

Figure 8.5: Time evolution of the nEDM signal and the precession of the α- and β -waves in the external
magnetic field application method in the case of n = 6 (κ = 11/13):
The β -wave is 12 times faster than the α-wave in both Px and the nEDM effect. The Px = 0 state is realized many times from D1, but the measurement
is performed at D11 and the red circle E1 is obtained as the nEDM effect. Compared with the conventional method, the interaction time is 13 times
longer and the nEDM effect is 6.5 times larger. However, the crystal thickness must also be increased by a factor of 13.
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9 Feasible Study of nEDM Search Experiment by the Crystal
Diffraction Method

In this section, we estimate the feasibility of nEDM search experiment by crystal diffraction method. We
have confirmed that a strong electric field of the order of 108 V/cm is available in the crystal, as expected.
There are plans for the remaining two factors that determine the experimental sensitivity, i.e., the increase
of statistics and the expansion of interaction time, respectively. Based on these, we would like to calculate
the duration of the experiment to obtain a sensitivity of 1.0×10−26 e · cm for α-quartz and Bi12GeO20. The
beam intensity is assumed to be 1×1012 cm−2s−1sr−1meV−1. This correspond to the intensity of the current
J-PARC MLF 1 MW operation.

9.1 Feasible Study of nEDM Search Experiment Using α-quartz
Table 9.1 shows the results of the feasibility study for (110)-plane of α-quartz, in the case of the conventional
nEDM search experiment, the case with the external magnetic field, the case with both the external magnetic
field and the multi-unit system. The conventional method requires about 10,000 days to reach the sensitivity
of 1×10−26e · cm, while the external magnetic field method reduces the time to 3,500 days, about 1/3 of that
by the conventional method, and the addition of the multi-unit system, further reduces the time to 1,200 days,
1/8 of that by the conventional method. If an even stronger neutron source (TOF is not daringly necessary, so
a nuclear reactor source can also be used) can be used in the future, it can be said to have sufficient potential.

Table 9.1: Feasibility study for α-quartz.
The number of days required to reach the sensitivity of 1 × 10−26 e · cm is shown.The beam intensity is assumed to be 1 ×
1012 cm−2s−1sr−1meV−1 and the beam divergence is 0.42 degrees.

Method Unit Conventional Improvement1 Improvement2
Conventional Method Base Base Base

External Magnetic Field None Add Add
Multi-Unit System None None Add

Electric field V/cm 2×108 2×108 2×108

Crystal thickness mm 38.52 115.6 115.6
Crystal width mm 191 191 191
Crystal hight mm 50 50 50

Schwinger magnetic field Gauss 0.1253 0.1253 0.1253
External magnetic field Gauss 0 0.0418 0.0418

Spin rotation(α) radian π/2 π π
Spin rotation(β ) radian π/2 2π 2π
Interaction time msec 0.6842 2.0533 2.0533

Number of multi units 1 1 4
Required time days 9,668 3,416 1,068
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9.2 Feasible Study of nEDM Search Experiment Using Bi12GeO20

Table 9.2 shows the results of the feasibility study on (532)-plane of Bi12GeO20 crystal. Although there are
no examples of actual measurements of the intra-crystal electric field in Bi12GeO20, theoretical calculations
show a value of 5.2×108 V/cm in the (433)-plane. In addition, (532)-plane is expected to have a stronger
intra-crystal electric field than that in the (433)-plane. Table 9.2 shows the results of the feasibility study on
the (532)-plane assuming an electric field of 1×109 V/cm. By using the external magnetic field application
and the multi-unit system, the number of days required becomes 220 days, and the feasibility becomes even
higher.

Table 9.2: Feasibility study for Bi12GeO20.
The number of days required to reach the sensitivity of 1 × 10−26 e · cm is shown.The beam intensity is assumed to be 1 ×
1012 cm−2s−1sr−1meV−1 and the beam divergence is 0.42 degrees.

Method Unit Conventional Improvement1 Improvement2
Conventional Method Base Base Base

External Magnetic Field None Add Add
Multi-Unit System None None Add

Electric field V/cm 1×109 1×109 1×109

Crystal thickness mm 7.70 53.93 53.93
Crystal width mm 191 191 191
Crystal hight mm 50 50 50

Schwinger magnetic field Gauss 0.9351 0.9351 0.9351
External magnetic field Gauss 0 0.6679 0.6679

Spin rotation(α) radian π/2 π π
Spin rotation(β ) radian π/2 6π 6π
Interaction time msec 0.0916 0.6417 0.6417

Number of multi units 1 1 4
Required time days 1,705 704 220

Thus, it was shown that the statistical sensitivity of the crystal diffraction nEDM search experiment in the
Laue configuration can reach 1×10−26 e ·cm by using an external magnetic field and the multi-unit system.
Of course, a great deal of phenomenological analysis and technical development still needs to be done to
actually implement the plan.
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10 Conclusion
The nEDM search experiment is one of the most sensitive probes to search for physics beyond the Standard
Model. We are conducting an experimental study of the nEDM search experiment using crystal diffraction.
The basis of the crystal diffraction method is the dynamical diffraction theory and the use of the very strong
intra-crystal electric field sensed by neutrons in the diffraction process.

Many dynamical diffraction phenomena have been verified using reactor neutron sources. The first step,
we have phenomenologically verified dynamical diffraction using a pulsed neutron source. In this study,
the experiment were carried out using the pulsed neutron source at MLF in J -PARC. Firstly, Pendellösung
fringes were observed using a Si crystal. Then, for α-quartz, Pendellösung fringes with a contrast close
to 60% were observed by screening the crystallinity by X-ray topography and infrared absorption spectra.
Second, we measured the intensity distribution on the crystal ejection surface by the dynamical diffraction
and were able to confirm the intensity distribution indicated by conventional diffraction theory. Third, the
intensity of dynamical diffraction was quantitatively estimated. Although perfect agreement could not be
obtained, the difference between the calculated and measured values was a factor of 2. Thus, we were able
to confirm the same dynamic diffraction phenomena with a pulsed neutron source as with a reactor neutron
source.

The second step, using α-quartz, the effective intra-crystal electric fields were measured for (110)-plane
in the symmetric Laue configuration and (02̄1)-, (011)-, and (111̄)-plane in the asymmetric Laue configura-
tion. For the (110) plane, where the existence of an effective intra-crystalline electric field is expected, the
results are consistent with the previous measurements. On the other hand, significant non-zero spin rota-
tions were observed in the (02̄1)- and (111̄)-planes, which were thought to have zero effective intra-crystal
electric field, indicating that an effective intra-crystal electric field may also exist in these planes. This is
thought to be due to interference terms that were thought to cancel out due to Pendellösung oscillation and
be negligible. In real crystals, the Pendellösung oscillation may be inhibited by crystal defects of the order
of Pendellösung length, and these interference terms do not completely cancel out and appear as an elec-
tric field. Such defects in the crystal should be minimized because they introduce systematic uncertainties in
nEDM search experiments. The appearance of such an electric field (spin rotation) at the crystal plane, where
the effective intra-crystal electric field should be zero, can be used not only as a new indicator to evaluate
crystal defects, but also as a clue to investigate systematic uncertainties in nEDM search experiments. Using
a pulsed neutron source, we can simultaneously observe spin rotation in multiple crystal planes, including
such a crystal plane with ∆ϕg = 0. By monitoring this spin rotation, we can investigate the systematic un-
certainty of the experiment. Since experimental results are still limited, further experimental and theoretical
studies are needed to clarify the contribution of the interference terms. Quantitative evaluations are needed
for crystals of different crystallinity and at different sites, and for multiple crystal planes with ∆ϕg = 0. We
plan to verify the reproducibility as the first step to validate this hypothesis. Theoretical calculations for
crystal planes other than (110) are currently in progress. In the future, we will test this hypothesis using
crystals of various crystalline qualities (including Si, Ge, and other centrosymmetric crystals).

Regarding the intra-crystal electric field, which is one of the factors determining the sensitivity of nEDM
search experiments using crystal diffraction, it was confirmed that a strong electric field is available as
expected. It was shown that the remaining two factors, interaction time and statistics, are improved by an
external magnetic field application method and a multi-unit system, respectively. By combining these two
methods, we showed the possibility of reaching 1×10−26 e · cm in 200 days at the highest output power of
MLF in J-PARC.

78



Acknowledgement
First and foremost, I would like to express my greatest gratitude to my supervisor, Professor Hirohiko
Shimizu. When I was about to enter the gates of physics again at the age of 60, I was very fortunate to have
met Professor Shimizu, who opened and guided me to the fresh and fascinating path of neutron physics.
After being introduced to his laboratory, I would like to express my sincere appreciation and respect for his
broad mind, high knowledge and deep insight.

In addition, Associate Professor Masaaki Kitaguchi gave me a lot of precise advice in the actual research
field. There were many times when he appeared on a whim, thought for a moment, and then gave me precise
advice that I had never thought of, which helped me overcome difficulties in my experiments. I cannot
thank him enough. I am grateful to Associate Professor Katsuya Hirota for teaching me how to prepare for
experiments and detailed techniques in my first neutron experiment at KUANS.

I would like to thank my collaborators, Mr. Masaya Nakaji, Mr. Yuya Uchida, Mr. Seiso Fukumura,
Ms. Mayu Hishida, Mr. Ryota Takemori, and Mr. Yakuhiro Fujiie. Mr. Nakaji laid the foundation for the
MLF BL17 experiment. Mr. Uchida played a very important role in the experimental setup, especially the
slit, which is the key to observing the Pendellösung fringes observation. Mr. Fukumura led us all in the
theoretical aspect. Ms. Hishida laid the foundation for the intensity distribution of Pendellösung fringes i,
including side reflections. Mr. Takemori introduced a new theoretical framework, the statistical dynamics
theory, and measured the intensity distribution of Pendellösung fringes. Mr. Fujiie helped me a lot with my
experiment. I was greatly encouraged not only by the experiments with them but also by the study sessions in
the seminar. In addition to them, many other students helped me, and I am very grateful to them for treating
me, who is older than their fathers, without dividing me.

I am very grateful to the MLF people at J-PARC for providing me with the neutron beam and experi-
mental apparatus. In particular, Dr. Kazuhiko Soyama, Dr. Noboru Miyata, Dr. Takayasu Hanashima, Dr.
Kazuhiro Akutsu, and Dr. Hiroyuki Aoki provided technical support on beam line 17 and technical advice
on data analysis, which were very important for my research.

Ms. Kazumi Hasegawa, Ms. Eri Ozaki, and Ms. Yoko Yamamoto, my secretaries, always helped me
with complicated paperwork and applications. I am especially grateful to Ms. Hasegawa for her help from
the beginning to the end of my student life, and for her warm hospitality.

In addition, I was able to receive a grant from the Foundation of Global Life Learning Center to support
my Ph.D. studies for the academic year 2019. I am grateful for the financial support, but more than that, I
am honored and greatly encouraged to have been selected as a recipient of such a support project. It took me
a long time me, but I would like to thank you from the bottom of my heart.

I would also like to thank all of my family members who have supported my selfishness at my age. In
particular, I would like to thank my wife, Yuko, who has watched over me warmly for the past 10 years and
has made my lunch boxes every day. I would like to dedicate this Ph.D. thesis to my wife, Yuko.

79



References
[1] G. Aad, T. Abajyan, B.Abbot, et al., ”Observation of a new particle in the search for the standard model

higgs boson with the atlas detector at the lhc.” Physics letters B, vol. 716, no. 1, pp. 1-29, 2012.

[2] S. Chatrchyan, V. Khachatryan, A. Sirunyan, et al., ”Observation of a new bosson at amass of 125 gev
with the cms experiment at the lhc.” Physics Letters B, vol. 716, no. 1, pp. 30-61, 2012.

[3] X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse. ”Measurement of the Electron Magnetic Mo-
ment.” arXiv, 2209. 13084v2, 7 Dec. 2022.

[4] T. Aoyama, T. Kinoshita and M. Nio. ”Theory of the Anomalous magnetic Moment of the electron.”
Atoms, vol. 7, 28, 2019.

[5] Sergey Volkov. ”Calculation the five-loop QED contribution to the electron anomalous magnetic mo-
ment: Graphs without lepton loops.” Phys. Rev. D, vol. 100, 096004, 2019.

[6] Richard H.Parker, Chenghui Yu, Weicheng Zhong, Brian Estey, Holger Müller. ”Measurement of the
fine-structure constant as a test of the Standard Model” Science, 360, 191-195 (2018).

[7] Leo Morel, Zhibin Yao, Pierre Clade and Saı̈da Guellati-Khelifa. ”Determination of the Fine-Structure
Constant with an accuracy of 81 parts per trillion” Nature, 588, 3 December (2020).

[8] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hadson. ”Experimental test of parity
conservation in beta decay.” Phys. Rev., vol. 105, pp. 1413-1415, 1957.

[9] T. D. Lee and C. N. Yang. ”Question of parity conservation in weak interaction.” Phys. Rev., vol. 104,
pp. 254-258, 1956.

[10] R. L. Garwin, L. M. Lederman. Nuovo Cim., Vol. 11, pp. 776, 1959.

[11] J. I. Friedman and V. L. Telegdi. ”Nuclear emulsion evidence for parity non-conservation in the decay
chain π+−µ−− e+.” Phys, Rev., vol. 105, pp. 1681-1682, 1957.

[12] J. H. Christenson, J. W. Crownin, V. L. Fitch and R, Turlay. ”Evidence for the 2π decay of the k0
2

meson.” Physical Review Letters, vol. 13, pp. 138-140, 1964.

[13] Belle Collaboration, K. Abe, et al. http://arxiv.org/abs/hep-ex/0202027, 2002

[14] B. Aubert and et al. http://arxiv.org/abs/hep-ex/0203007, 2002

[15] A.D.Sakharov,. ”Violation of CP invariance C asymmetry and Baryon asymmetry of universe.” JETP
Lett., vol. 5, pp. 24, 1967.

[16] G.R.Farrar and M.E.Shaoshnikov. ”Baryon asymmetry of the universe in the standard model.” Phys.
Rev. D, vol. 50, pp. 774-818, 1994.

[17] G. Luders. ”On the equivalence of invariance under time reversal and under particle-antiparticle
conjugation for relativistic field theories.” MATEMATISK-FYSISKE MEDDELELSER KONGELIGE
DNNSKE VIDENSKABERNES SELSKAB, vol. 28(5), pp. 1-17, 1954.

[18] E.M.Purcell and N.F.Ramsey. ”On the possibility of elevtric dipole moments for elementary particles
and nuclei.” Phys. Rev. , vol. 78, pp. 807, 1950.

[19] W.W.Havens, et al.. ”Interaction of neutrons with electrons in lead.” Phys. Rev. , vol. 72, pp. 634-636,
1947.

80



[20] C.Abel, et al.. ”IMeasurement of the permanent electric dipole moment of the neutron.” Phys. Rev.
Lett., vol. 124, 081803, 2020.

[21] C.Abel, et al.. ”Opticlly pumped Cs magnetometers enabling a high-sensitivity search for the neutron
electric dipole moment.” Phys. Rev. A, vol. 101, 053419, 2020.

[22] M.Pospelov and A.Ritz. ”Electricdipole moments as probes of new physics.” Annals of Physics, vol.
318, pp.119-169, 2005.

[23] P.G.Harris, et al.. ”New Experimental Limit on the Electric Dipole Moment of the Neutron” Physical
Review Lettters , vol. 82, pp.904-907, 1999.

[24] J.M.Pendlebury, et al.. ”Geometric-phase-induced false electric dipole moment signals for particles in
traps” Physical Review A. , vol. 70, 032102, 2004.

[25] C.A.Baker, et al.. ”Improved Experimental Limit on the Electric Dipole Moment of the Neutron” Phys-
ical Review Letters , vol. 97, 131801, 2006.

[26] J.M.Pendlebury, et al.. ”Revised experimental upper limit on the electric dipole moment of the neutron”
Physical Review D, vol. 92, 092003, 2015.

[27] N.F.Ramsey. ”The method of successive oscillatory fields” Physics Today, vol.33, 7, pp.25-30, 1980.

[28] J. H. Smith, E. M. Purcell and N. F. Ramsey. ”Experimental Limit to the Electric Dipole Moment of
the Neutron” Physical Review. vol. 108, pp.120-122, 1957.

[29] F.M.Piegsa. ”New concept for a neutron electric dipole moment search using a pulsed beam” Physical
Review C. vol. 88, 045502, 2013.

[30] C.G.Shull and R.Nathans. ”Search for a neutron electric dipole moment by a scattering experiment”
Physical Review Letters. vol. 19, pp. 384-386, 1967.

[31] M.Forte. ”Neutron-optical effects sensitive to P and T symmetry violation” J. of Physics G: Nuckear
Physics. vol. 9, pp. 745-754, 1983.

[32] V.L.Alekseev, V.V.Voronin, et al.. ”Measurement of the strong intracrystalline electric field in the
Schwinger interaction with diffracted neutrons” Sov. Phys.JETP. vol.69, pp. 1083-1085, 1989.

[33] V. V. Fedorov, E. G. Lapin, S. Yu. Semenikhin, V. V. Voronin. ”Set-up for searching a neutron EDM by
the crystal-diffraction method: first measurements” Physica B. vol.297, pp.293-298, 2001.

[34] V.V.Fedorov, I.A.Kuznetsov, et al.. ”Neutron spin optics in a noncentrosymmetric crystals as a new way
for nEDM search” Nuclear Instruments and Physics Research B. vol.252, pp. 131-135, 2006.

[35] V.V.Fedorov, I.A.Kuznetsov, et al.. ”Neutron spin optics in a noncentrosymmetric crystals as a way for
nEDM search. New experimental results” Physica B. vol.385-386, pp. 1216-1218, 2006.

[36] V.V.Fedorov, M.Jentschel, et al.. ”Perspective for nEDM search by crystal diffraction. Test experiment
and results” Nuclear Physics A. vol.827, pp. 538c-540c, 2009.

[37] V.V.Fedorov, M.Jentschel, et al.. ”Measurement of the neutron electric dipole moment by crystal
diffraction” Nuclear Instruments and Physics Research A. vol.611, pp. 124-128, 2009.

[38] V.V.Fedorov, M.Jentschel, et al.. ”Measurement of the neutron electric dipole moment via spin rotation
in a noncentrosymmetric crystal” Physics Letters B. vol.694, pp. 22-25, 2010.

81



[39] V.V.Fedorov and V.V.Voronin. ”Neutron diffraction and optics of a noncentrosymmetric crystal. New
feasibility of a search for neutron EDM” arXiv:hep-ex/0504042 v2. 3 May 2005.

[40] V.V.Fedorov and V.V.Voronin. ”Modern status of search for nEDM, using neutron optics and diffraction
in noncentrosymmetric crystals” JPS Conf. Proc. NOP2017. vol.22, 011007, 2018.

[41] V.V.Fedorov and V.V.Voronin. ”Study of neutron fundamental properties in the perfect crystal optics
and diffraction” EPJ Web of Conference PPNS2018. vol.219, 06004, 2019

[42] F.Kuchler, et al.. ”Searches for electric dipole moments－ Overview of status and new experimental
efforts” Universe 2019, 5, 56. universe5020056.

[43] C.G.Darwin. ”The theory of X-ray reflection” Philosophical Magazine . vol.27, pp.315-333, 1914.

[44] C.G.Darwin. ”The theory of X-ray reflection. Part II ” Philosophical Magazine. vol.27, pp.675-690,
1914.

[45] P.P.Ewald. ”Reasoning of the crystal optics ” Annalen der Physik. vol.49, pp.1-38, 1916.

[46] P.P.Ewald. ”An explanatory statement concerning crystal optics ” Annalen der Physik. vol.49, pp.117-
143, 1916.

[47] M. von Laue. Ergebnisse der Exakten Naturwissenshaften. vol.10, pp.133, 1931.

[48] M.L.Goldberger and F.Seitz. ”Theory of the Reflection and the Diffraction of Neutrons by Crystals”
Physical Review. vol.71, pp.294-310, 1947.

[49] V.F.Sears. ”Dynamical theory of neutron diffraction” Canadian Journal of Physics. vol.56, pp.1261-
1288, 1978.

[50] H.Rauch and D.Petrascheck. ”Dynamical Neutron Diffraction and its Application” Neuron Diffraction.
pp.303-351, edited by H.Dachs (Springer, Berlin), 1978.

[51] C.G.Shull. ”OBSERVATION OF PENDELLÖSUNG FRINGE STRUCTURE IN NEUTRON
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