
Transformation and Augmentation for
Improving Perception of LiDAR Point Cloud

in Adverse Conditions

Yuxiao Zhang





Abstract

With the advancements in future society technologies such as intelligent vehicles,

smart cities, and the Internet of Things (IoT), the performance issues linked to en-

vironmental perception remain a substantial barrier to their widespread deployment.

This thesis aims at advancing the perception ability of LiDAR in the realm of adverse

conditions, through transformation and augmentation of LiDAR point cloud data.

Central to this research is the recognition that adverse conditions such as rain, fog,

snow, and contamination significantly affect the performance of exteroceptive sensors.

These conditions can distort signal reception, leading to critical safety challenges by

reducing the efficacy of object detection and increasing the risk of false detections.

To address these challenges, the thesis presents two main approaches: a deep-learning

architecture for transforming adverse condition LiDAR point clouds into clear con-

dition data and a novel data augmentation model to expand LiDAR datasets with

simulated adverse effects.

The transformation aspect is embodied in the development of the ‘L-DIG’ model,

a deep-learning framework that employs unpaired data and depth-image priors to

accurately remove the noise caused by adverse effects while keeping structure integrity.

Innovative structures for both the generator and discriminator within the Generative

Adversarial Network (GAN) have been specially tailored, incorporating specific loss

functions and training techniques. This customization is aimed at establishing an

understanding of the scene and optimizing the transformation performance of the

model to its fullest potential. The model effectively removes adverse effects, whether

they are in scattered or clustered forms, and additionally compensates for occluded

objects, thereby enhancing the overall quality of the point cloud. Complementing this,

a designated 3D clustering algorithm has been developed to facilitate a quantifiable

assessment of these effects, enabling the generation of precise conditional guides for

further data augmentation as well.

Furthermore, this thesis addresses the critical gap in existing datasets, which

often lack diversity in terms of adverse environmental conditions. The classification of
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adverse effects is achieved through the creation of segmentation maps, which are based

on cluster units. These maps then function as conditional guides for the generative

models. By employing advanced data fusion techniques, the thesis demonstrates the

ability to replicate and augment adverse conditions in a natural way within LiDAR

point clouds, significantly improving the training and performance of autonomous

driving detectors. This includes the deployment of unique data fusion methods to

generate paired datasets that effectively bridge significant domain gaps, such as those

found in traffic layouts and environmental contexts.

Through extensive testing and validation across varied datasets, the thesis demon-

strates that LiDAR-based perception can be significantly improved to detect and

classify objects with greater accuracy, even in the presence of adverse conditions.

This leads to the conclusion that LiDAR sensors, when equipped with the advanced

processing methods developed in this research, can achieve the levels of precision

necessary for safe perception.

This thesis contributes to the autonomous driving field by providing novel methods

that enable a clearer assessment of the potential of LiDAR sensors for environment

perception, identifying current limitations, and paving the way for future sensor and

algorithm development to overcome these challenges. The resulting advancements

from this research hold the promise of making sensor-based intelligent modalities more

reliable and safer in all conditions, thereby moving closer to the goal of widespread

adoption.
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Chapter 1

Introduction

Perception and sensing are at the core of future society, including intelligent vehicles,

smart cities, and the Internet of Things (IoT) [3], etc. Instruments employed for the

detection and interpretation of ambient conditions are perception sensors, commonly

involving LiDAR (Light Detection And Ranging), camera, radar, ultrasonic, and

so on. One example of comprehensive integration of perception sensors is Intelligent

Vehicles (IVs), or Autonomous Vehicles (AVs), as shown in Fig. 1.1, which are capable

of sensing their external environment and navigating securely with minimal or no

human intervention. These vehicles have the potential to fundamentally transform

the transportation of people and goods, offering significant societal benefits for the

future [4] [5]. However, the challenges associated with sensor perception are still of

concern under adverse conditions such as precipitation, inclement weather, seasonal

variations, and secondary adverse effects influenced by man-made structures. To

facilitate the evolution of intelligent society, it is imperative to address the pressing

issue of enhancing perception and sensing capabilities in these adverse conditions [6].
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Figure 1.1: The Toyota Prius test AV from Nagoya University. LiDAR sensors, and
cameras, alongside other sensors, are bolted on a plate mounted firmly on top of the
car.

1.1 Adverse Condition Influences on Perception

Sensors

Adverse environmental conditions manifest predominantly through weather phenom-

ena. On average, global precipitation occurs 11.0% of the time [7]. Factors like water

wetness can absorb and disperse sensor signals, while atmospheric conditions such as

fog and haze reduce visibility. Obstructions like snowflakes and sandstorms not only

impede the transmission path of signals but can also result in false detections [8]. Sec-

ondary challenges arise from intense sunlight, reflections from tall structures, extreme

temperatures, and sensor hardware contamination, each contributing to unpredictable

or deleterious effects on sensor perception abilities.

In general, the degradation of perception is the main limitation of perception

sensors in adverse conditions. A table and a radar chart are summarized to more

intuitively show the strengths and weaknesses of each sensor in adverse conditions,

as in Table 1.1 and Fig. 1.2. It is worth noticing that level 3 influences (moderate),

that cause perception error up to 30% of the time in this table, could also mean up

2



to 30% of the LiDAR point cloud is affected by noise, or up to 30% of the pixels in

the camera images are affected by distortion or obscure. The same applies to level 4

influences (serious), as well.
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Performance
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Performance

Strong light
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Contamination 
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Darkness 
Operation 

Temperature 
Endurance
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Figure 1.2: Sensor performance and characteristics radar map.

To comprehensively understand the impact of adverse conditions on sensor perfor-

mance in detail, this section will individually introduce the major types of perception

sensors currently deployed in AVs and discuss the specific challenges that adverse

conditions pose for each.

1.1.1 LiDAR

LiDAR is one of the core perception sensors in the autonomous driving field. The

use of 3D LiDAR on cars hasn’t exceeded much more than a decade and has al-

ready demonstrated its indispensability in the Advanced Driver-Assistance System

(ADAS) with high measurement accuracy and illumination independent sensing ca-

pabilities [9]. This 3D laser scanning technology has some key attributes: mea-

surement range, measurement accuracy, point density, scan speed and configuration

ability, wavelength, robustness to environmental changes, form factor, and cost [10].

LiDAR’s measurement range, measurement accuracy, and point density are among

the key factors that could be interfered with by adverse conditions. Researchers have
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done tests and validations on LiDAR under adverse weather conditions [11] in arti-

ficial environments like fog chambers [10], real-world snowfields [12], or simulation

environments [13].

Drizzling and light rain don’t affect LiDAR functions very much on small aperture

LiDAR sensors because the power attenuation due to scattering by direct interaction

between laser beam and raindrops of comparable is almost negligible [13]. However,

rains with a high and non-uniform precipitation rate would most likely form lumps

of agglomerate fog and create fake obstacles to the LiDARs. Studies proved that

the signal reflection intensity drops significantly at a rain rate of 40 mm/hr and 95

mm/hr [14]. Upon examining the LIBRE Dataset [10] [15] collected from the Japan

Automobile Research Institute’s (JARI) weather experimental facility, the LiDAR

point clouds depicted in Fig. 1.3 reveal discouraging performance under conditions

such as fog, rain, and wet surfaces. During the fog test, human presence was only

detectable by the LiDAR at a distance of 13 meters in the dense setting, with an

insufficient number of points for reliable recognition. In a less dense setting, detection

was possible from 47 meters. In rain tests, objects were discernible at a distance of

24 meters from the LiDAR, with varying levels of noise attributable to different rain

settings. Additionally, as evidenced in Fig. 1.3e, strong light sources exert a negative

effect on LiDAR data. Specifically, when the vehicle was positioned 40 meters away

from a Xenon light source with a peak illuminance of 200 klx, object detection was

largely impaired, resulting in an unclassifiable dark region.

Different from rain, snow consists of solid objects, snowflakes, and could easily

shape themselves into much larger solid objects and become obstacles that either cause

false detection of LiDAR or block the line of sight for useful detection. Fig. 1.4a shows

the point cloud of accumulating multiple 3D scans as the ego vehicle moved behind

the preceding vehicle. The turbulent snow caused by car motions creates significant

snow clusters beside the ego vehicle and voids in the front and back view in the point

cloud. Similar clusters and voids both in front of and behind the ego vehicle can

also be observed in the Canadian adverse driving conditions (CADC) dataset [16],

as shown in Fig. 1.4b. Additionally, a common LiDAR’s designed lowest operating
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Figure 1.3: Adverse condition influences on LiDAR point clouds. Top row depicts
sample conditions, middle and bottom rows show the 3D LiDAR point cloud, thermal
camera image and RGB camera image (not available for fog experiments), targets of
interest (human/mannequin, car, and reflective targets) are highlighted. (a) dense
fog with visibility of 17 m. (b) light fog with visibility 162 m. (c) rainfall setting
of 30 mm/hr and average humidity of 89.5 %. (d) rainfall setting of 80 mm/hr and
average humidity of 93 %. (e) strong light at 200 klx at 155 A.

(a) Ouster OS1-64 point cloud in snow swirl.
Snow clusters and voids are observed [12].

(b) Snow swirl effects in CADC Dataset [16].
Points color depth indicates intensities.

Figure 1.4: LiDAR point clouds with swirl effects in snow conditions.
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temperature is −10∘C, which brings further challenges in cold environments. When

the temperature change is at a large scale, such as from an extremely cold (−20∘C)

to an extremely hot (+60∘C) environment, the time delay of LiDAR measurement

would increase about 6.8 ns, which widens the LiDAR ranging by over a 1 meter and

lowers the precision at near field [17].

Sandstorms and smog, as rare as they might appear, could be more serious prob-

lems because particles from road dirt attached to the outer surface of the emitter win-

dow could worsen the LiDAR signal attenuation [18]. Tests with near-homogeneous

dust particles being distributed on the surface of a scanner show a 75% reduction

in LiDAR maximum range [19]. Such adverse conditions are not exclusive to terres-

trial settings; they also present significant challenges for airborne and space-based

LiDAR sensors. Systems like the CALIPSO high spectral resolution LiDAR and

single-photon LiDAR are commonly employed in satellite and aircraft platforms for

atmospheric monitoring of Earth and 3D terrain mapping [20]. These applications

necessitate the capability to penetrate atmospheric obstructions such as haze and

sandstorms [21]. Future aerial LiDARs and Unmanned Aerial Vehicles (UAVs) are

facing additional weather challenges including wind-affected and time-varying refrac-

tive gradients produced by atmosphere turbulence, which lead to scintillation, beam

spreading, and wander [22]. The particular effect of such adversarial conditions on

aerial LiDARs and UAVs hasn’t been studied in a methodically way as they are still

at the stage of developing in the autonomous driving area, but it’s safe to assume that

they are going to need to overcome this problem to be able to serve the intelligent

transportation system under hazy and turbulent conditions in the future.

Currently, the majority of the market uses 905 nm wavelength LiDAR deployment.

while others argue that 1550 nm LiDAR can overcome adverse conditions because

higher optical power is allowed to be emitted at this wavelength [23]. There are two

critical design considerations in LiDAR selection: eye safety and ambient suppression.

Most civilian or commercial LiDARs are used in an environment where human eyes

are exposed, so the infrared laser of LiDAR must not exceed the maximum permissible

exposure (MPE) or cause any damage to retinas, according to the international laser
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product safety standard (IEC 60825-1:2014) class 1 [24]. Therefore, the selection of

laser wavelength is pretty much narrowed down to two ranges: 800 nm - 1000 nm and

1300 nm - 1600 nm. That’s why current LiDARs made for AVs have the selection of

850 nm, 905 nm, and 1550 nm wavelengths, and they also all fall into the window

of low solar irradiance, which helps suppress the ambient light for the signal receiver

with a lower signal-to-noise ratio (SNR) [25]. A water extinction coefficient chart is

plotted as shown in Fig. 1.5 in order to show that the 1550 nm wavelength is more

likely to be absorbed by water. The extinction coefficient 𝛼𝑤𝑎𝑡𝑒𝑟 is also known as the

Lambert absorption coefficient, which is acquired from:

𝛼(𝜆) = 4𝜋𝑘(𝜆)/𝜆 (1.1)

in which 𝜆 is wavelength and 𝑘(𝜆) is the extinction coefficient of water at 25∘C. The

detail of the acquisition of 𝑘(𝜆) can be found in [26]. Therefore, a 1550 nm laser can

be largely absorbed in the crystalline lens or the vitreous body of an eye so more

energy is allowed than 905 nm, which seems to be a good thing considering the power

attenuation predicament in weather [27].

However, based on the research of Wojtanowski et al. [28] on the comparison of 905

nm and 1550 nm performance deterioration due to adverse environmental conditions,

905 nm reaches two times further than 1550 nm in a rain rate of 25 mm/hr. There

are opinions arguing that light propagation at 1550 nm might suffer less attenuation

than at shorter wavelengths, but Kim et al. [29] suggested that this rule only applies

to haze condition (visibility > 2 km), while in fog (visibility < 500 m) the attenuation

is independent of wavelength and 905 nm still measures 60% longer than 1550 nm.

What’s more, 1550 nm waves have approximately 97% worse reflectance in snow

compared to 905 nm [30]. Less interference from snow doesn’t make up for the

insufficiency in object detection. Still, 1550 nm has great potential in further solid-

state LiDAR development and better compatibility with Complementary Metal Oxide

Semiconductor (CMOS) technology.
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Figure 1.5: Water extinction coefficient spectrum. Laser energy absorption by water
of 1550 nm is over 100 times larger than that of 905 nm. [1] [2]

Figure 1.6: Camera vs LiDAR in rain condition. (a) camera perspective; (b)intensity;
(c) reflectivity; (d) noise; (e) 3D point cloud colored by intensity. Image courtesy of
Ms. Kim Xie, Ouster Inc.
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1.1.2 Camera

Camera is one of the widest-used sensors in perception tasks, while also one of the

most vulnerable in adverse conditions. Unlike LiDAR’s relative robustness against

mild wetness, a camera in precipitation, regardless of how high resolution, can be

easily incapacitated by a single water drop on the emitter or lens, as shown in the

comparison of Fig. 1.6. The blockage and distortion in the image would instantly

make the system lose the sense of input data and fail to process correctly. Water

mists induced by heavy precipitation conditions, based on their density, would create

near-homogeneous blockages which is a direct deprivation of information to cameras.

Study shows that camera-only perception suffers up to 40% rise in miss rate in night

or fog conditions [31].

Winter conditions like snow could affect the camera when the snowflakes touch

the lens or the camera’s optical window and melt into ice-slurry immediately. What’s

worse, those ice water mixtures might freeze up again quickly in low temperatures

and form an opaque blockage. Heavy snow or hail could fluctuate the image intensity

and obscure the edges of the pattern of a certain object in the image or video which

leads to detection failure [11]. Besides the dynamic influence, snow can extend itself

to a static phenomenon by accumulating on the surface of the earth and blocking

road marks or lane lines. Under such situations, the acquisition of data sources is

compromised for cameras, and the process of perception would be interrupted at

the very beginning. In another area, too high an illumination such as direct sun

glare, skyscrapers’ light pollution, bright beam light of other cars, and tunnel exits

can degrade the visibility of a camera down to almost zero and make the camera

exposure selection a difficult task [32].

1.1.3 Radar and Ultrasonic

Automotive radar typically operates at bands between 24 GHz and 77 GHz which

are known as mm-wave frequencies, while some on-chip radar also operates at 122

GHz. Radar can be used in the detection of objects and obstacles like in the parking
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assistance system, and also in detecting positions, and speed relative to the leading

vehicle as in the adaptive cruise control system [33]. Radar seems to be more resilient

in weather conditions. In order to intuitively see the difference, a chart of electro-

magnetic power attenuation in different precipitation rates is plotted [34] [35]. From

Fig. 1.7, it can be observed that the attenuation for radar at 77 GHz is at the level

of 10 dB/km in a 25 mm/hr heavy rain, while 905 nm LiDAR’s attenuation is about

35 dB/km under the same visibility below 0.5 km condition [36] [37]. In snowfall, a

higher snow rate yields larger attenuation, and wet snow shows higher attenuation

because of the higher water absorption and larger snowflakes [38]. Given that a snow-

fall with 10 mm/hr has quite low visibility (< 0.1 km) [39], the specific attenuation

for a 77 GHz radar in a 10 mm/hr snow is estimated at about 6 dB/km.

Figure 1.7: Electromagnetic power attenuation vs frequency in different precipitation
rates [34] [35].

Operating with a similar principle at ultrasound band, around 40 to 70 kHz, ul-

trasonic sensors commonly serve as parking assisting sensors and blindspot monitors

at close ranges [40]. The speed of sound traveling in air is affected by air pressure,

humidity, and temperature [41], causing concern about accuracy fluctuation. How-

ever, the return signal of an ultrasonic wave does not get decreased due to the target’s

dark color or low reflectivity, so it’s more reliable in low visibility environments than

cameras, such as high-glare or shaded areas beneath an overpass.
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No doubt that radar and ultrasonic sensors are objectively better adaptive to wet

weather, but when compared with LiDAR, they often receive criticism for their insuf-

ficient ability in pedestrian detection, object shape, and size information classification

due to low spatial resolution. Nevertheless, they still hold an important position in

potential sensor fusion configurations in terms of adverse condition solutions.

1.2 Research Goal and Approaches

Acknowledging the influences that adverse conditions impose on perception sensors,

it becomes clear that the degradation of perception performance and reliability un-

der adverse conditions is the fundamental problem that the perception sensors are

facing, and it is the goal of this research to enhance the perception capabilities of

LiDAR point clouds in such environments. Drawing from the comprehensive tests

and validations conducted by Mercedes-Benz AG on commercial autonomous driving

detectors [42] [43] [44], it has been demonstrated that involving and enriching adverse

effects in training datasets can raise the average precision of detectors by at least 2.1%

compared to those trained solely on clear baselines. Furthermore, the availability of

paired data encompassing adverse effects and classifications in the training datasets

significantly boosts the detectors’ ability to capture smaller elements in adverse driv-

ing scenarios, such as pedestrians and cyclists [45]. Consequently, the core objective

of this thesis is to advance LiDAR point cloud perception in the realm of adverse con-

ditions. This will be achieved by strategically involving and enriching such conditions

in datasets, utilizing learning-based approaches and point cloud data manipulation

techniques, and concurrently enabling the generation of paired adverse conditions

datasets. As shown in the flow diagram of Fig. 1.8, research approaches mainly

contain two aspects: transforming point cloud with adverse effects into clear con-

ditions; and expanding adverse data by LiDAR point cloud augmentation. Though

these approaches process LiDAR point clouds from divergent perspectives, both fa-

cilitate the generation of paired datasets that include adverse conditions. This, in

turn, significantly contributes to the enhancement of perception model training and
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the establishment of robustness.

Figure 1.8: The flow diagram of this thesis. Upon acknowledging the influences that
adverse conditions have on LiDAR sensors, two approaches are employed: transform-
ing adverse point clouds into clear and expanding adverse data through augmentation
to achieve the research target of perception improvement.

Among adverse conditions, rain, fog, snow, and contamination exhibit the closest

associations with perception sensor performance. As indicated in Table 1.1 and Fig.

1.2, snow represents one of the most significant challenges to sensor fidelity. Notably,

snow conditions exhibit the greatest overlap with other adverse environmental factors.

False or inaccurate detection induced by elements such as water droplets, surface

wetness, and aggregated water mist can all be found under snowfall and snow swirl

conditions. Moreover, snow presents substantial difficulties in obtaining paired data,

largely because common experimental facilities are not outfitted with artificial snow

generators appropriate for driving scenario tests. This situates snow conditions as

a suitable representation of perception challenges in adverse settings. In this thesis,

snow conditions under driving scenarios are selected in LiDAR point clouds as the

major research subject.

1.3 Thesis Structure and Contributions

The remainder of this thesis is structured into five parts. Chapter 2 introduces prior

research related to the topics of this research. Chapter 3 discusses 3D point cloud

analysis and advanced adaptive filter explorations, and also explains the methodology

of transforming LiDAR point clouds from adverse to clear conditions with experiment

results presented. Chapter 4 focuses on the details of the expansion of datasets under

adverse conditions through conditional point cloud augmentation models. Finally,

Chapter 5 provides a comprehensive conclusion of the research conducted in this
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thesis and outlines directions for future work.

The main contributions of this thesis are as follows:

• Holistic presentation of the impacts on perception sensors arising from or cir-

cumstantially influenced by adverse conditions in Sec. 1.1.

• A deep-learning architecture for the transformation of LiDAR point clouds ad-

verse effects into clear ones, built upon unpaired data and depth-image priors,

supplemented by new loss functions to preserve scene integrity is presented in

Sec. 3.3.

• Advanced feature modeling and quantifiable assessment of adverse effects in

LiDAR point clouds, facilitated by a custom 3D clustering algorithm presented

in Sec. 3.4.

• Deployment of a conditional generative model proficient in synthesizing natural

adverse effects with an in-depth understanding of driving scenarios, enabled by

novel data fusion techniques, presented in Sec. 4.2.1.

• A method of employing cluster-based segmentation maps of adverse scenes to

serve as conditional guides in the generative model, presented in Sec. 4.2.2.

• The attainment of robustness against significant domain gaps, particularly in

the context of scene layouts, presented in Sec. 4.3.

• Enabling the generation of paired datasets incorporating adverse effects, thereby

enriching the training data available for enhancing perception models, presented

in Sec. 4.3.
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Chapter 2

Related Works

The enhancement of LiDAR perception largely relies upon the manipulation of point

cloud data to elevate data quality. Initially, the focus of academic inquiry highly

centered on the task of noise removal within point clouds, giving rise to a huge

emergence of conventional outlier-removal-based filters. Evolving from 2D to 3D

spatial contexts, an array of adaptive parameter configurations have been deployed

to improve both the accuracy and recall of noise elimination. However, this trajectory

of advancement plateaued once all geometric and intensity metrics were exhaustively

explored, plus the quest for an optimal balance between noise removal efficacy and

the preservation of the original structural integrity remained elusive. Concurrently,

attempts at learning-based transformation targeting the removal of adverse effects or

the restoration of detection were made. The mechanisms and attributes of adaptive

filters and learning-based transformation models will be introduced in Section 2.1.

Conversely, the augmentation of data pertinent to adverse conditions addresses

the issue from an alternate vantage point. An expanded collection of adverse effect

data, particularly if paired, can significantly facilitate the specialized training of per-

ception models under challenging conditions. Methodologies for synthesizing adverse

effects through physical model construction, as well as augmenting pre-existing ad-

verse datasets, have both undergone scholarly exploration. Section 2.2 will introduce

literature concerning the expansion of adverse condition data.
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2.1 Adverse Effects Removal

2.1.1 Adaptive point cloud filters

Traditional median filters operate within a 2D plane and are not well-suited for han-

dling the dynamic nature of adverse conditions like snowfall. The data are quite

sparse in the vertical field of view above ground and the 2D filter couldn’t handle

the noise point removal and edge smoothing properties well. To address these issues,

the 3D point cloud radius outlier removal (ROR) filter is employed. This 3D ROR

filter iteratively examines each point within the point cloud and identifies neighbor-

ing points within a defined search radius. If the number of neighboring points is less

than a specified minimum threshold (𝑘𝑚𝑖𝑛), the point is labeled as noise and subse-

quently removed. This method aligns well with the characteristics of snowfall, where

snowflakes manifest as small, isolated, solid objects.

However, a straightforward application of the 3D ROR filter can lead to the un-

intended removal of distant environmental points, thus undermining the LiDAR’s

anticipatory perception capabilities. Charron et al. [46] introduced the dynamic ra-

dius outlier removal (DROR) filter, where the search radius for each point (𝑆𝑅𝑝) is

adaptively set based on its intrinsic geometric properties, as defined in Eq.2.1. The

DROR filter effectively retains critical points located at a distance (6 m - 18 m) from

the sensor while eliminating close-range noise (within 6 m). It has been shown to

improve precision by nearly 4 times compared to standard ROR filters.

𝑆𝑅𝑝 = 𝛽𝑑(𝑟𝑝𝛼) (2.1)

𝑟𝑝 is the range from the sensor to the point 𝑝, 𝛼 is the horizontal angular resolution of

the LiDAR, and the product of (𝑟𝑝𝛼) represents point spacing, which is expected to

be computed assuming that the laser beam is reflecting off a perpendicular surface.

The multiplication factor 𝛽𝑑 is meant to account for the increase in point spacing for

surfaces that are not perpendicular to the LiDAR beams [46].

In another approach, the statistical outlier removal (SOR) filter [47] removes any
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point whose mean distance to its 𝑘 nearest neighbors exceeds the threshold when

iterating each point. The threshold 𝑇 for filtering is computed as:

𝑇 = 𝜇+ 𝜎𝛽𝑠 (2.2)

where 𝜇 is the global mean of the distances from all points to their 𝑘 nearest neighbors;

𝜎 is the global standard deviation of the distances; and 𝛽𝑠 is a specified multiplier

parameter. The selection of 𝑘 is the consideration of the approximate points number

of an average actual object’s points cluster based on the signal density of the LiDAR

device used. Too big a 𝑘 value makes a certain point’s mean distance to its 𝑘 neighbors

inappropriately large, which could result in falsely accusing this point of noise, and

vice versa. The rise of 𝛽𝑠 results in the rise in threshold 𝑇 , which makes the filter’s

tolerance higher, ending up in a weaker ability to remove noise points. On the other

hand, too small a 𝛽𝑠 makes the filter remove more valid points.

Building on the strengths of both the DROR and SOR, the Dynamic Statistical

Outlier Removal (DSOR) [48] has been proposed. The filter threshold from SOR is

now dynamically changed with range, and the dynamic threshold 𝑇𝑑 is set by:

𝑇𝑑 = 𝛽𝑑𝑠(𝑇𝑟𝑝) (2.3)

where 𝑇 is from Eq. 2.2 and 𝑟𝑝 is the distance of every point from the sensor, same

as in Eq. 2.1. 𝛽𝑑𝑠 serves as a multiplicative factor for point spacing. Larger 𝛽𝑑𝑠 leads

to a milder filter.

Subsequently, a variety of optimized filters based on adaptive parameters such as

intensity-based [49], and density-based [50] were put forward. While adaptive filters

have made strides in de-noising, they are inherently constrained by predefined removal

rules. This limitation becomes particularly evident when considering the diverse and

infinite ways of noise clusters, a complexity that cannot be fully captured by such

rigid algorithms. Despite these challenges, adaptive filters have laid a solid foundation

for the early stages of LiDAR point cloud processing and transformation.

Another filtering approach was introduced by Pfennigbauer et al. [51], focusing
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on online waveform processing under fog and dense smoke conditions. Different from

the traditional mechanism of time-of-flight (TOF), they identify the targets by the

signatures of laser reflection properties (reflectivity and directivity), size, shape, and

orientation with respect to the laser beam, which means, this echo-digitizing LiDAR

system is capable of recording the waveform of the targets which makes it possible

to identify the nature of the detected target, i.e. fog and dense smoke by recognizing

their waveforms. Furthermore, since the rate of amplitude decay caused by the fog

follows a certain mathematical pattern with regard to the density of the fog, they

realized visibility range classification and thusly were able to filter out false targets

that don’t belong in this range. Even though their experiments were confined within

a critically close range (30 m), they paved the way for recovering targets hidden inside

fog and smoke, regardless of the attenuation and scattering effects as long as the signal

power stays above the designated floor level, because too low visibility could block the

detection almost entirely. Most importantly, the concept of waveform identification

brought the multi-echo technique to the commercial LiDAR markets.

Wallace et al. [52] explored the possibility of implementing Full Waveform LiDAR

in fog conditions. This system records a distribution of returned light energy, and

thus can capture more information compared to discrete return LiDAR systems. They

evaluated 3D depth image performance using FWL in a fog chamber at a 41 m

distance. This type of LiDAR can be classified as a single-photon LiDAR and 1550

nm wavelength, which Tobin et al. [53] also used to reconstruct the depth profile of

moving objects through fog-like high-level obscurant at a distance up to 150 m. The

high sensitivity and high-resolution depth profiling that single-photon LiDAR offers

make it appealing in remote, complex, and highly scattering scenes. But this brings

back the question of 1550 nm wavelength as stated in Section 1.1.1, which still leaves

room for further exploration.

2.1.2 Learning-based adverse effects removal models

Although the input data formats may differ within images and point clouds, the

underlying principles governing these models remain largely similar. Take de-raining
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as an example. The detection and removal of raindrops can be divided into falling

raindrops and adherent raindrops that accumulate on the protective covers of sensors

[54]. For rain streaks removal, several training and learning methods have been put to

use including Quasi-Sparsity-based training [55] and continual learning [56]. Quan et

al. [57] proposed a cascaded network architecture to remove rain streaks and raindrops

in a one-go while presenting their own real-world rain dataset. Their raindrop removal

and rain streak removal work in a complementary way and the results are fused via

an attention-based fusion module. They effectively achieved de-raining on various

types of rain with the help of neural architecture search and their designated de-

raining search space. Ni et al. [58] introduced a network that can realize both removal

and rendering. They constructed a Rain Intensity Controlling Network (RIC-Net)

that contains three sub-networks: background extraction, high-frequency rain streak

elimination, and main controlling. Histogram of oriented gradient (HOG) and auto-

correlation loss are used to facilitate the orientation consistency and repress repetitive

rain streaks. They trained the network all the way from drizzle to downpour rain and

validation using real data shows superiority.

Like common de-noising methods, a close loop of both generation and removal can

present better performance. Wang et al. [59] handled the single image rain removal

task by first building a full Bayesian generative model for rainy images. The physical

structure is constructed by parameters including direction, scale, and thickness. The

good part is that the generator can automatically generate diverse and non-repetitive

training pairs so that efficiency is ensured. Similar rain generation is proposed by Ye

et al. [60] using disentangled image translation to close the loop. Furthermore, Yue

et al. [61] surpassed image frames and achieved semi-supervised video de-raining with

a dynamic rain generator. The dynamical generator consists of both an emission and

transition model to simultaneously construct the rain streaks’ spatial and dynamic

parameters like the three mentioned above. They use deep neural networks (DNNs)

for semi-supervised learning to help the generalization for real cases.

Zhang et al. introduced a Deep Dense Multi-Scale Network (DDMSNet) for snow

removal from camera images [62]. The process initiates with a coarse removal network
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comprising three distinct modules: a pre-processing module, a core module, and a

post-processing module. These modules use various combinations of dense blocks

and convolutional layers to preliminarily mitigate the impact of falling snow. The

coarse result then feeds into another network to obtain semantic and geometric labels.

Leveraging semantic and geometric priors through self-attention, DDMSNet produces

clean, snow-free images. Intriguingly, the team employed Photoshop to artificially

snowify images from the Cityscapes and KITTI datasets for evaluation. While this

approach demonstrates state-of-the-art snow removal capabilities, there remains a

need for more advanced techniques to simulate photo-realistic snowy images.

The initial implementations of point cloud transformation using deep learning

were primarily focused on mitigating the effects of rain and fog, which introduce

obscurity or diffusion of LiDAR signals due to the presence of small water droplets.

Additionally, external disturbances such as wind or spray can lead to the formation of

clustered fog and water mist, thereby causing false obstacles for LiDAR [63]. Lin et

al. [64] implemented the nearest neighbor segmentation algorithm and Kalman filter

on the point cloud with an improvement rate of less than 20% within the 2 m range.

Shamsudin et al. [65] developed algorithms for removing fog from 3D point clouds

after detection using intensity and geometrical distribution to separate and target

clusters of points, which were then removed from the point cloud. The restriction is

that their environment is an indoor laboratory and the algorithms are designed for

building search and rescue robots whose working condition has too low visibility to

be adapted into outdoor driving scenarios where beam divergence and reflectance are

significantly larger in the far field than in the near field.

Given the scarcity of paired data for training, unpaired data training methods

have gained prominence, often utilizing generative models like GANs (generative ad-

versarial networks). Built upon the architecture of CycleGAN [66], DiscoGAN [67],

and DualGAN [68], which introduce a cycle-consistency constraint to establish con-

nections between the inputs, de-weather frameworks have proven effective in removing

multiple adverse conditions including haze and snow [69] [70]. Engin et al. [71] pro-

posed Cycle-Dehaze which is an improved version of CycleGAN that combines cycle
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consistency and perceptual losses in order to improve the quality of textural infor-

mation. Shao et al. [72] proposed a domain adaptation paradigm that introduces an

image translation module that translates haze images between the real and synthesis

domains. These methods’ de-hazing results often fall short of expectations due to the

presence of artifacts. However, their ability to operate without the need for paired

images holds promise for the development of more robust models.

Consequently, the utilization of GAN models for LiDAR point cloud manipulation

has emerged as a logical next step. Early efforts by Sallab et al. [73] [74] pioneered

the translation from simulated CARLA driving environments to synthetic KITTI [75]

point clouds using the CycleGAN framework. Similarly, Lee et al. [76] undertook point

cloud translations across sunny, rainy, and foggy weather states, employing the depth

and intensity channels of the 2D Polar Grid Map (PGM) for CycleGAN processing.

However, it should be noted that the challenge of inter-domain translations persists,

particularly when transitioning from fog chamber scenarios to real-world settings.

This arises because artificial precipitation produced by sprinklers in fog chambers is

detected by LiDAR sensors as vertical cylinders rather than as natural rainfall [10], a

discrepancy that may compromise the interpretability of weather reflection features

in point clouds and thereby potentially degrade the performance of translations. The

inability of chambers to simulate snowy conditions has also resulted in a lack of

advancements in the processing of LiDAR point cloud data in snow environments.

Heinzler et al. [45] proposed a CNN-based (Convolutional Neural Network) ap-

proach capable of weather segmentation and de-noising with road data augmentation

to enhance the model’s capability of comprehending real-world elements that are chal-

lenging to simulate in fog chambers. The authors first collected both clear and foggy

datasets within the CEREMA’s climatic chamber, enabling controlled precipitation

rates and visibility conditions. Leveraging the paired datasets, they facilitated an

automated labeling procedure that annotated weather data, enabling the model to

acquire knowledge regarding the distinctive attributes of rainfall and fog reflections in

point clouds. When augmented with additional road data, the trained model exhib-

ited the proficiency to distinguish between fog and rain-induced point clusters, and to
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remove noise while maintaining the integrity of original objects, such as pedestrians

and cyclists. This further ascertains that a closed-loop system encompassing both

generation and removal of adverse conditions offers enhanced perception capabilities,

thereby paving the way for the advancement of data augmentation techniques focused

on adverse conditions.

Aldibaja et al. [77] [78] described a particular issue in adverse conditions: Accu-

mulated snow on the roadside creates sharp intensity peaks with irregular distribution

for LiDARs while wet elements from snow-rain weather leave a track of line with low

reflectivity on the road. The wearing of old roads and vegetation whose branches

reach into the road space also create anomalies sometimes. These confuse the LiDAR

about the actual whereabouts of the lane lines and the boundaries of the road area

which leads to wrong lateral movements. Aldibaja’s group explained the reason for

lateral localization drifting by converting map images into edge profiles to represent

the road marks in a series of LiDAR signal reflectivity peaks and proposed to use the

Principal Component Analysis (PCA) method to extract dominant edge profile distri-

bution patterns and eliminate the “fake” lane lines via edge profile matching [79]. Also

by patching the missing LiDAR elements based on leading eigenvectors (eigenroads),

a reliable LiDAR profile was reconstructed. The error in the lateral movement was

reduced to 15 cm with a localization accuracy of 96.4% in critical environments [78].

2.1.3 Position of proposed research

Upon an extensive examination of all geometric parameters associated with LiDAR

signals, alternative adaptive variables that could potentially act as metrics for a de-

noising filter are subject to be explored. The search for a novel adaptive variable is

motivated by the desire to improve both the precision and recall of the filter, while

ensuring minimal impact on the crucial structural details within the point cloud. The

optimal metric should enable the filter to adjust effectively to different noise levels and

characteristics, especially those resulting from challenging adverse conditions such as

snowfall. This exploration leads to the consideration of non-geometric parameters,

including intensity [50] [80] and entropy [81] [82].
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Table 2.1: Comparisons between conventional transformation methods and the pro-
posed method

Point Cloud
Transformation Filters Proposed learning-based model

Mechanism k-d-tree neighbor searching
remove outliers

Process the point cloud as a whole
towards a clear condition template

Merits Adaptive threshold:
radius, intensity, neighbor numbers, etc.

Maintain strucutre integrity
while effectively removing adverse effects

Problems
Trade-off between:
Effectively removing adverse effects
and damaging structure integrity

Sensitivity to domain gaps
in lack of paired data

More importantly, to facilitate deep learning, an approach originated from GANs

that leverages depth image priors for transforming LiDAR point clouds in challeng-

ing environments is proposed in Chapter 3. This model, trained on unpaired data,

is designed to process point clouds from driving scenarios captured during actual ad-

verse events, transforming these adverse condition point clouds into clear, undisturbed

views, so as to eliminate the possibility of false detection to the greatest extent. The

proposed learning-based model is designed to develop an understanding of environ-

mental scenarios and the patterns of adverse effects as they appear in point clouds.

This understanding is cultivated through training on authentic datasets collected in

adverse conditions. The model’s transformation effectiveness stems from its specially

designed generator and discriminator structures. Importantly, this approach not only

ensures the preservation of the scene’s overall integrity but also facilitates the com-

pensation of obstructed objects to a considerable degree. A comparison between

conventional transformation methods and the proposed method is shown in Table

2.1.

2.2 Adverse Condition Data Augmentations

2.2.1 Adverse effect synthesis

Compared to adverse effect classification-removal-based methods, adverse data aug-

mentation based methods show better effectiveness and accuracy because the anno-

tations or labelings on the effects are time-consuming and unreliable [83]. However,
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samples with adverse conditions in current driving datasets take up only a small pro-

portion. Rasshofer et al. [80] reproduced the optical returns of the signals measured

under weather conditions to analyze the influences of weather on LiDAR sensors. This

is one of the primary attempts at data augmentation when weather datasets were not

common. The replication of the signal returns points out the essence of LiDAR data

augmentation: Synthesizing perception results in the same way that real weather

conditions show to the LiDAR sensor. However, the realization of the adverse effects

in point clouds still depends on the collections in weather chambers [45] because of

the requirement for paired data. The low domain similarities between chambers and

real roads aside, common experimental facilities with controllable precipitation rates

across the world can hardly simulate complicated weather conditions such as dynamic

snowfall [6] [84]. On the other hand, targeted collections of weather datasets in certain

areas such as snowy regions suffer huge domain gap issues with other datasets which

leads to poor model generality. Recent works started to collect weather datasets

utilizing a professional haze/fog generator that imitates the real conditions of haze

scenes [85], or multiple weather stacking architecture [86] which generates images

with diverse weather conditions by adding, swapping out and combining components.

Therefore, the augmentation of weather conditions in clear conditions is among the

most useful and popular ways to help deep-learning-based models address adverse

condition problems.

Initial approaches start with establishing a physical or geometrical model of ad-

verse effects as precise quantitative reflections of such effects and inserting them into

clear scenes. Von Bernuth et al. [87] simulated and evaluated snowflakes in three

steps: first, reconstruct the 3D real-world scene with depth information in OpenGL;

then snowflakes are distributed into the scene following physical and meteorological

principles, including the motion blur that comes from wind, gravitation or the speed

of vehicle displacement; finally, OpenGL renders the snowflakes in the realistic im-

ages. While this modeling successfully captures the physical characteristics of adverse

weather conditions, it often lacks the inclusion of dynamic environmental variables for

dispersing these effects across the scene. For example, Guo et al. treated rain and fog
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as uniformly distributed noise points and snow as normal distribution arrangements

in the translations of a whole scene for testing platform [88]. This method, although

systematic, reveals a limitation in capturing the variability and nuance in the distri-

bution of adverse effects in real-world environments. Piroli et al. synthesized the frost

condensed from the exhaust pipe of a car when encountering cold air with 𝛼-Shape

algorithm [89]. The frost entities were well-reconstructed and their positioning was

highly accurate due to the directional nature of the frost emission, thus avoiding the

distribution problem.

2.2.2 Existing adverse effects enrichment

Chen et al. [90] find that de-hazing models trained on synthetic images usually gen-

eralize poorly to real-world hazy images due to the domain gap between synthetic

and real data. As a result, models derived from pre-existing adverse effects within

the dataset were developed for the best preservation of effect authenticity. Hahner et

al. [43] developed a method that simulates snow particles in a 2D space corresponding

to each LiDAR line and adjusts each LiDAR beam’s measurements based on the re-

sulting geometry. In addition, they factored in ground wetness, a common occurrence

during snowfall, in their LiDAR point clouds as a supplement of the augmentation.

The notable enhancement observed in the performance of 3D object detection subse-

quent to training on semi-synthetic snowy training data substantiates the successful

simulation of snowfall. It is of particular importance to acknowledge that their snow

augmentation approach predominantly focuses on light snowfall conditions under the

rate of 2.5 mm/hr, wherein the prevalent snow effects in LiDAR point clouds manifest

as dispersed noise points rather than snow clusters.

Strong light and contamination pose unique challenges in the field of adverse

effects, particularly because of the inherent difficulty in acquiring paired data sets

of both affected and clear images under realistic driving conditions. This makes

them a prime candidate for synthetic generation and data augmentation techniques.

Yahiaoui et al. developed a sunshine glare dataset in autonomous driving called

WoodScape [91], including situations like direct sunlight in the sky or sun glares on
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dry roads, road marks being wiped off by sun glares on wet roads, sun glares on

reflective surfaces, etc. The glare is detected by an image processing algorithm with

several processing blocks including color conversion, adaptive thresholding, geometric

filters, and blob detection, and trained with CNN network.

Uřičář et al. [92] created a dataset called SoilingNet having both opaque and

transparent soiling [93], and developed a GAN-based data augmentation for camera

lens soiling detection in autonomous driving. Different from rain or snow, the general

soiling is normally considered opaque or semi-transparent, so a complementary sensing

method might not be able to perform with enough accuracy. Their network would

generate an image with a random soiling pattern, which provides a blurred mask

obtained from the semantic segmentation network applied with a Gaussian smoothing

filter on the generated soiled image, and finally, the synthetic version of the soiled

image is composed of the original image and the soiled pattern estimated via the

mask. Although strong light and contamination augmentation on LiDAR point cloud

have yet to be explored, the potential for synthetic generation and data augmentation

in addressing contamination therefore also suggests a broader applicability for these

techniques in tackling other hard-to-acquire adverse conditions in LiDAR point cloud

data.

Training networks to cope with adverse conditions leverages a variety of neural

network architectures, such as CNN [45], R-CNN (Region-based CNN) [94], DNN

[61], and BPNN (Back-propagation Neural Network) [95], each employing a range

of advanced algorithms. Despite the challenges in obtaining high-quality datasets

for these adverse conditions, artificially synthesized weather effects are increasingly

becoming the go-to approach in this research area and have shown to be effective.

2.2.3 Position of proposed research

In this thesis, a model for augmenting LiDAR point cloud data is proposed in Chap-

ter 4, focusing on expanding datasets under adverse conditions through conditional

guidance. This model generates segmentation maps with unique labels that iden-

tify the presence of adverse effects in point clouds, serving as conditional guides.
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Table 2.2: Comparisons between conventional augmentation methods and the pro-
posed method

Point Cloud
Augmentation Adverse effect synthesis Proposed augmentation model

Mechanism Synthesize adverse effects
out of physical models

Learn the pattern and
expand adverse effects

Merits Precise quantitative reflections
of adverse effects

Data expansion with understanding
of both adverse effects and distribution

Problems Lack understanding of effect distributions Relies on pre-existed dataset

The proposed approach involves developing efficient fusion techniques to integrate

these guides with raw data into the generative model. This integration facilitates

the classification and synthesis of adverse effects. The proposed method effectively

incorporates realistic adverse conditions into point clouds, taking into account scene

context and striving to preserve structural integrity, which is crucial for creating re-

liable paired datasets. Furthermore, by leveraging the conditional guide, the aim

is to bridge the domain gap related to traffic patterns and environmental layouts,

which often pose challenges in realistically augmenting adverse data. This approach

enables the creation of quasi-natural adverse effects in clear datasets, thereby enhanc-

ing the robustness and diversity of adverse data collection. A comparison between

conventional augmentation methods and the proposed method is shown in Table 2.2.
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Chapter 3

LiDAR Point Cloud Transformation

From Adverse Conditions to Clear

Conditions

3.1 Overview

As one of the core elements of autonomous vehicles and robots, perception in au-

tonomous driving systems has experienced serious impediments due to the presence

of adverse weather conditions. As established in the previous context, the chal-

lenges imposed by adverse conditions on perception sensors in autonomous vehicles

are multifaceted. They range from signal degradation and intensity attenuation to

the introduction of spurious noise, as shown in the red boxes of the left figure of

Fig. 3.1, all of which hinder the sensor’s core functionalities. These impediments not

only reduce the efficacy of object detection and classification algorithms but can also

introduce false positives—commonly referred to as ‘ghost objects’. Such inaccuracies

have immediate safety implications, increasing the likelihood of unnecessary braking

or stops, thereby compromising both the safety and comfort aspects of autonomous

driving.

To mitigate these challenges, recent research on perception in adverse conditions
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has primarily centered on noise reduction and quality enhancement techniques, reach-

ing near-saturation in methods such as de-noising [96]. However, the domain has

witnessed limited exploration in the application of deep learning-based models. Un-

like traditional mathematical approaches, which offer limited insights, learning-based

models possess the capability to uncover both manifest and latent features inher-

ent to adverse driving conditions. With the rapid development of machine learning

technology in recent years, a number of deep learning models and algorithms have

been developed to ‘de-weather’ or ‘de-noise’ the sensor data [97] [98], to achieve the

transformation towards clear in the point cloud, as shown in the right figure in Fig.

3.1.

Figure 3.1: Point cloud collected while driving in adverse snow conditions (left), and
corresponding transformed clear results (right) acquired from the proposed method.
Color encoded by height. Red boxes denote areas of snow points before and after
transformation.

Point cloud de-noising initially targeted fog conditions, largely because sensors ex-

hibit a greater resilience to rain than to fog. Later, various filters and transformation

algorithms that can restore the point cloud to a state as close to the original, noise-free

condition as possible have been employed. These initial efforts laid the groundwork

for more sophisticated approaches, including machine learning algorithms that can

adapt to varying levels of fog density and other environmental variables. Over time,

the methodologies for point cloud de-noising have evolved to include deep learning

models tailored for this specific task. However, unlike other precipitation and wet
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weather, snow is rarely uniformly distributed across a given driving scene. Instead,

snowflakes show characteristics of forming clusters of crystal aggregates and irreg-

ular snow swirls [12] due to wind and vehicles swirling on accumulated road snow,

causing irregular noise and anomalies in LiDAR point clouds. The study on snow

in point cloud has been focusing on k-d-tree-based neighbor searching outlier filters

in recent years as stated in previous context and the de-noising performance has

almost reached saturation [96]. In the meantime, few attempts at the implementa-

tion of deep-learning-based models have been made in adverse conditions. Unlike

filters, learning-based models have the potential to grasp both the surface and hidden

features of noise clusters in a certain driving scene.

The development of robust models benefits from training on paired data, i.e. a

pair of corrupted data and clear data with the rest of elements identical, which are

commonly obtained via artificially synthesizing realistic weather effects in previously

clear driving scene images [99] [100] [93]. Such an approach has been proven highly

effective in rain [61] [60], fog [85] [71], and snow [101] weather conditions in camera im-

ages, plus contaminations on the camera lens [92]. However, due to the relatively low

data density, the realization of the adverse effect in point clouds still largely depends

on the collections in weather chambers before the mature realization of weather data

augmentation in point clouds. Therefore, it’s necessary to develop a way to work with

few paired data or unpaired data. In terms of disentangled data processing, Cycle-

GAN [66] demonstrates a high ability in style conversion and object generation [102]

based on datasets with different backgrounds and from different domains, and its

implementation in weather models has been proven feasible [69] [101].

In order to implement deep learning with unpaired data, the ‘L-DIG’ (LiDAR

Depth Images GAN), a GAN-based method using depth image priors for LiDAR

point cloud transformation under adverse conditions is proposed. The proposed model

trained with unpaired datasets aims to perform point cloud transformation on driving

datasets collected under real adverse conditions and to convert point clouds from

adverse conditions to clear. The main contributions of this work are as follows:

1. A 3D clustering algorithm is customized as the means of analysis of 3D point
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clouds with adverse conditions. Adaptive parameters to cluster different forms

and levels of adverse effects are set to calculate multiple indexes, and distri-

bution changes are presented as quantitative evaluation metrics to reflect the

conditions of the whole dataset in a comprehensive way.

2. A range of adaptive filters on genuine adverse data are rigorously tested and

validated, and their geometric parameters are thoroughly evaluated. Building

on this, an advanced adaptive filter centered on entropy as the key metric for

filtering is designed and implemented.

3. A deep-learning-based LiDAR point cloud transformation model with unpaired

data and depth image priors is built. A new discriminator structure to better

remove adverse noise and new loss functions including depth and SSIM (Struc-

tural Similarity Index Measure) losses to maintain the driving scene integrity

have been designed in the proposed model.

4. The proposed model is able to perform LiDAR point cloud transformation from

adverse conditions to clear conditions in driving scenes. The model demon-

strates a certain level of understanding of the adverse effect features and per-

forms effective adverse effects removal, which could help create paired datasets

for training or simulation in autonomous driving applications.

This chapter is structured as follows. The related research and background review-

ing have already been introduced in the current section and Section 2.1. Section 3.2

provides experimental validations on adaptive filters and a novel filter design based

on entropy parameters. The architecture and methodology of the proposed ‘L-DIG’

model will be presented in Section 3.3. Section 3.4 lays out the construction of the 3D

clustering algorithm. The experiments and both qualitative and quantitative results

will be given in Section 3.5 and Section 3.6 provides a discussion and limitations on

this model.
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3.2 Advanced Adaptive Filters Validations

and Exploration

3.2.1 Adaptive geometric filters

In this study, the performances of different adaptive filters for transforming LiDAR

point clouds from adverse conditions to clearer states are evaluated. A scene from

the CADC dataset is used, which includes various features like buildings, trees, and

parked cars, as the test environment. This scene is shown in Fig. 3.2a and Fig.

3.2b, where the raw point cloud is displayed with height and intensity scales. Fig.

3.2 presents results from four filters: ROR, DROR, SOR, and DSOR. The focus is

on removing noise clusters and individual noise points, marked by arrows, while also

checking if the filters preserve the integrity of structural elements like parked cars and

building facades. In each set of figures, an inset is added at the lower right corner

that enlarges the central area. This is designed to provide a clearer visualization of

the clusters and scattered noise points.

The ROR filter, when applied in 3D as seen in Fig. 3.2c, removes too many points,

leading to a loss of pretty much all the essential environmental details and reducing

the LiDAR’s effective perception of the scene. The DROR filter, however, shown in

Fig. 3.2d, manages to maintain key points at a distance and removes closer noise,

improving upon the ROR’s approach.

SOR’s performance, displayed in Fig. 3.2e, is a step up from ROR, but it com-

promises de-noising effectiveness. This is evident from the remaining snow clusters,

particularly those in green color below the center. The DSOR filter, configured with a

radius of 0.05 in accordance with Eq. 2.3, as illustrated in Fig. 3.2f, demonstrates its

effectiveness. This filter adeptly eliminates snow clusters while preserving a greater

number of structural features than the SOR filter. Additionally, it offers the advan-

tage of quicker computational processing [48].
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(a) Raw point cloud painted by height (b) Raw point cloud painted by intensity

(c) ROR (d) DROR

(e) SOR (f) DSOR

Figure 3.2: LiDAR point clouds in adverse snowfall conditions with different adaptive
filters applied, produced using CADC dataset [16]. (a) Raw point cloud painted by
height; (b) Raw point cloud painted by intensity; (c) to (f) are painted by height (Z
axis), and share the same color scale as (a).
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(a) Raw point cloud map entropy

(b) Entropy filter

(c) Intensity filter

Figure 3.3: Raw point cloud entropy and non-geometric filters. Entropy filter and
intensity filter are painted by height (Z axis), and share the same color scale as Fig.
3.2a

35



3.2.2 Non-geometric filters

Having thoroughly explored all the geometric parameters of the LiDAR signal, al-

ternative adaptive variables that could serve as the metric for a de-noising filter are

examined. The quest for a new adaptive variable is guided by the aim to enhance

the filter’s precision and recall while minimizing the compromise on important struc-

tural details in the point cloud. The ideal metric would allow the filter to adapt to

varying noise levels and types, particularly those induced by adverse conditions like

snow. The exploration of non-geometric parameters including intensity and entropy

are presented in Fig. 3.3, where an inset that enlarges the central area has also been

added to the lower right corner of each set like before.

Fig. 3.3a shows the entropy representation of the original raw point cloud scene.

The entropy ℎ of a certain point 𝑞𝑘 in the point cloud is computed by:

ℎ(𝑞𝑘) =
1

2
ln |2𝜋eΣ(𝑞𝑘)| (3.1)

in which Σ(𝑞𝑘) is the sample covariance of mapped points in a local radius 𝑟 (𝑟 =

0.25 m in this research) around 𝑞𝑘. While entropy seems like a good candidate for

classifying snow points, Fig. 3.3b shows the result after the solitary points (points

with less than 15 neighbors) with high entropy being filtered out [103]. As observed,

the trade-off between de-noising performance and structural integrity is approaching

a balanced state in this new design. However, the entropy filter still struggles to

achieve 100% satisfactory filtering under conditions of dense snowfall.

Fig. 3.3c is a direct intensity filter where all the points with intensity values

outside of the interval of [0.03, 0.15] are filtered out (intensity varies from [0,1]). This

interval is set based on several trial-and-error attempts. It can be seen that the result

is hardly acceptable due to huge element loss and the problem of how to determine

the exact interval in different scenes that can both filter out snowfall and keep objects.

Considering the intensity loss of laser signals as stated in Fig. 1.5, the practical use

of the intensity filter is limited in adverse conditions.

This outcome prompts the redirection of the attention towards learning-based
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methods for point cloud de-noising. Given the intricate and dynamic nature of en-

vironmental noise like dense snowfall, machine learning algorithms, particularly deep

learning models, offer the adaptability and complexity required to tackle such chal-

lenges effectively. The aim is to explore architectures and algorithms capable of dis-

cerning more subtle patterns in the point cloud data, patterns that simpler geometric

or entropy-based metrics might miss. This could pave the way for more robust and

adaptive filtering techniques that are better suited for real-world applications where

conditions can vary widely.

3.3 Transformation Model Architecture

and Methodology

3.3.1 LiDAR Depth Images GAN

In this research, the LiDAR Depth Images GAN (L-DIG) model is proposed, an en-

hanced learning-based model using GAN as the foundational structure. As illustrated

in Fig. 3.4, the blueprint of the proposed model is depicted. The model uses a gen-

erator to convert real snow input to synthetic clear output while referring to a real

clear input, which is completed in a discriminator. The synthetic output also goes

through a reconstruction process during training to maintain transformation stability.

Subsequently, the procedure is inverted and the model is enriched by incorporating a

cycle process, as shown in Fig. 3.5, leveraging the strengths of CycleGAN [66].

In this architecture, 𝐴 and 𝐵 symbolize two sets of data flow in the forward

and backward cycle respectively, and Snow 𝐴 and Clear 𝐵 are the inputs in the

form of depth images. 𝐶 subscripts correspond to clear weather conditions, whereas

𝑆 subscripts are used to indicate snowy conditions. The generators responsible for

transitioning between snowy to clear and clear to snowy states are represented by 𝐺𝑆𝐶

and 𝐺𝐶𝑆 respectively while the discriminators are expressed as 𝐷𝐴. The reconstruc-

tion process is a feature of maintaining transformation stability. Snow 𝐴 and Clear

𝐵 are input to the model in the depth images form and the raw snow conditions are
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Figure 3.4: Proposed LiDAR transformation model architecture. Real adverse and
real clear data are inputs in the form of depth images. The synthetic clear is the
desired output.

transformed into clear conditions, with reference to the input Clear 𝐵 data. Then the

generated Clear 𝐴 will be reconstructed back to snow with reference to Snow 𝐴 to fix

any possible overfitting during transformation. Utilizing the same Generators but in

reverse sequence, Clear 𝐵 input is converted into synthetic Snow 𝐵. This transforma-

tion is guided by the original Snow 𝐴 and assessed by an additional discriminator 𝐷𝐵

composed of 𝐷𝑛𝐵 and 𝐷𝑝𝐵. The generated synthetic Snow 𝐵 is then reconstructed

back to a clear state, using Clear 𝐵 as a reference for stabilization. The primary

motivation for completing this cycle is to multiply the training opportunities for both

Generators, particularly when dealing with limited unpaired data. The pseudo-code

of the complete L-DIG is provided in Algorithm 1.

3.3.2 Pixel-attention Discriminators

A new discriminator structure is designed to enable the model to recognize the adverse

noise points more accurately. The discriminators 𝐷𝐴 and 𝐷𝐵 are each composed of

two parts: N-layer Discriminators 𝐷𝑛𝐴 and 𝐷𝑛𝐵 with 3 convolutional layers, and pixel

Discriminators 𝐷𝑝𝐴 and 𝐷𝑝𝐵. The N-layer Discriminators concentrate on relevant ob-

jects within the scene while the Pixel Discriminators scrutinize each pixel individually

to ascertain its authenticity through a 1 × 1 patch. This approach contributes to a

minor disturbance to the binary discriminator’s threshold, elevating the criteria to
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Figure 3.5: Proposed LiDAR transformation model architecture. Datasets A and B
are in the form of depth images. 𝐺𝑆𝐶 and 𝐺𝐶𝑆 are the Generators. 𝐷𝑛𝐴 and 𝐷𝑛𝐵 are
the N-layer Discriminators, and 𝐷𝑝𝐴 and 𝐷𝑝𝐵 are the Pixel-attention Discriminators.

achieve a 1 (approved) rather than a 0 (rejected) to a more stringent level for isolated

noise points. This strategy markedly enhances the de-noising effect, particularly in

areas surrounding the ego vehicle, where dispersed snow points are densely packed.

However, pixel-attention discriminators cannot be introduced from the onset due to

their stringent criteria, which carry the risk of causing model instability or break-

down. Hence, the pixel-attention discriminators are designed to undergo training

for several epochs subsequent to the stabilization of the model training with N-layer

Discriminators, as shown in Fig. 3.5 and Algorithm 1.

3.3.3 Loss Function

Depth loss

Scale ambiguity poses a challenge for depth images, necessitating the use of loss

functions resilient to rough estimations [104]. Taking a cue from the Fine network

[105], a depth loss, ℒ𝑑𝑒𝑝𝑡ℎ, is crafted, that is integrated into the training cycles to
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Algorithm 1 LiDAR Depth Images GAN (L-DIG)
Input: Training data pairs (𝐴,𝐵) ◁ Snow A and Clear B
Output: Generator networks 𝐺𝑆𝐶 and 𝐺𝐶𝑆, N-Layer Discriminators 𝐷𝑛𝐴

, 𝐷𝑛𝐵
, and

Pixel Discriminators 𝐷𝑝𝐴 , 𝐷𝑝𝐵

1: Initialize generators 𝐺𝑆𝐶 , 𝐺𝐶𝑆 and N-Layer Discriminators 𝐷𝑛𝐴
, 𝐷𝑛𝐵

2: Define loss functions including GAN, cycle, depth, and SSIM loss
3: Define optimizers for generators and discriminators
4: while epoch ≤ (total_epochs - continued_epochs) do
5: for each data pair (𝐴,𝐵) in data_loader do
6: Generate fake images: 𝐹𝐴 = 𝐺𝐶𝑆(𝐵), 𝐹𝐵 = 𝐺𝑆𝐶(𝐴)
7: Generate reconstructed images: 𝑅𝑒𝑐𝐴 = 𝐺𝐶𝑆(𝐹𝐵), 𝑅𝑒𝑐𝐵 = 𝐺𝑆𝐶(𝐹𝐴)
8: Compute GAN, cycle, depth, and SSIM loss
9: Update discriminators 𝐷𝑛𝐴

, 𝐷𝑛𝐵
and generators 𝐺𝑆𝐶 , 𝐺𝐶𝑆

10: end for
11: end while
12: Initialize Pixel Discriminators 𝐷𝑝𝐴 , 𝐷𝑝𝐵

13: while (total_epochs - continued_epochs) < epoch ≤ total_epochs do
14: for each data pair (𝐴,𝐵) in data_loader do
15: Use the same generators to produce fake images as in previous training
16: Compute Adversarial, Cycle, Depth, and SSIM loss
17: Update discriminators 𝐷𝑝𝐴 , 𝐷𝑝𝐵 , 𝐷𝑛𝐴

, 𝐷𝑛𝐵
and generators 𝐺𝑆𝐶 , 𝐺𝐶𝑆

18: end for
19: end while

uphold consistency in the scale of depth images, as represented in (3.2),

ℒ𝑑𝑒𝑝𝑡ℎ =
1

𝑛

∑︁
𝑖

(︁
𝑑𝑖 − 𝑑𝑖

)︁2
− 𝜆𝑑𝑒𝑝𝑡ℎ

𝑛2

(︃∑︁
𝑖

(︁
𝑑𝑖 − 𝑑𝑖

)︁)︃2

(3.2)

where 𝑛 denotes the sample amount, 𝑑𝑖 and 𝑑𝑖 symbolize the reconstructed and initial

depth respectively, and the hyperparameter 𝜆𝑑𝑒𝑝𝑡ℎ governs the scale invariance. The

assignment of 𝜆𝑑𝑒𝑝𝑡ℎ = 1 is to achieve complete scale invariance. This is due to

the objective of preserving the transformed point cloud as similar to the original

as possible and safeguarding the relevant objects and environmental elements from

distortions in shape and size.

40



SSIM loss

As the point cloud transformation occurs on the scale of the entire scene, it sometimes

involves objects and structures that are partially obscured or incomplete, leading to

the model’s suboptimal comprehension of these elements. This can cause distortions

or alterations in the original forms, particularly in environmental features. To miti-

gate this, an SSIM (Structural Similarity Index Measure) loss [106], depicted in (3.3)

and (3.4), has been incorporated into the training cycle to aid in preserving structural

consistency.

SSIM(𝑁, �̂�) =
(2𝜇𝑁𝜇�̂� + 𝑐1)(2𝜎𝑁�̂� + 𝑐2)

(𝜇2
𝑁 + 𝜇2

�̂�
+ 𝑐1)(𝜎2

𝑁 + 𝜎2
�̂�
+ 𝑐2)

(3.3)

ℒssim = 1− SSIM(𝑁, �̂�) (3.4)

where 𝑁 is the normalized image tensor (color, depth, texture, etc.) of the original

real image, �̂� is the normalized image tensor of the reconstructed image, 𝜇�̂� is the

average of �̂� , 𝜇𝑁 is the average of 𝑁 , 𝜎2
�̂�

is the variance of �̂� , 𝜎2
𝑁 is the variance

of 𝑁 , 𝜎𝑁�̂� is the covariance of �̂� and 𝑁 , 𝑐1 and 𝑐2 are two variables to stabilize the

division with a weak denominator.

The SSIM loss computation is performed post a subtraction by 1, due to the

fact that SSIM loss gauges similarity while the training mechanism is geared towards

attaining minimum values. Consequently, the difference is aimed to be lowered by

training 1 minus the SSIM function. This also elucidates the necessity for prior

normalization on the image tensor between [0, 1]. Meanwhile, it’s essential to maintain

a relatively low 𝜆𝑠 weight setting on the SSIM loss to prevent the model from becoming

overly rigid, thereby obstructing any desired transformation.

Adversarial Losses

The adversarial losses between the clear and adverse data can be formulated as follows:

ℒGAN(𝐺𝑆𝐶 , 𝐷𝐴, 𝑆, 𝐶) = E𝑠∼𝑆[log(1−𝐷𝐴(𝐺𝑆𝐶(𝑠)))] + E𝑐∼𝐶 [log(𝐷𝐴(𝑐))] (3.5)

ℒGAN(𝐺𝐶𝑆, 𝐷𝐵, 𝐶, 𝑆) = E𝑐∼𝐶 [log(1−𝐷𝐵(𝐺𝐶𝑆(𝑐)))] + E𝑠∼𝑆[log(𝐷𝐵(𝑠))] (3.6)
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where E denotes the expectation. 𝐺𝑆𝐶 and 𝐺𝐶𝑆 are the generators responsible for

the transformations from adverse to clear and clear to adverse, respectively. 𝐷𝐴 and

𝐷𝐵 are the discriminators for clear and snowy images, respectively. The generator

aims to minimize the first term of each loss while the discriminator aims to minimize

the second term.

Cycle consistency loss

The cycle consistency loss (3.7) derived from CycleGAN is employed, aiming at main-

taining the created depth images closely aligned with the original domain. Provided

a minimal variation in the background during the transformation, the weight 𝜆𝑐 of

cycle consistency loss can be set as equal to that of the customized depth loss.

ℒ𝑐𝑦𝑐 =‖ 𝐺𝑆𝐶(𝐺𝐶𝑆(𝑆𝐵))− 𝑆𝐵 ‖ + ‖ 𝐺𝐶𝑆(𝐺𝑆𝐶(𝐶𝐴))− 𝐶𝐴 ‖ (3.7)

Overall loss function

Upon integrating the conventional GAN adversarial losses between the clear and

snowy data, denoted by ℒ𝐺𝐴𝑁(𝐺𝑆𝐶 , 𝐷𝐴, 𝑆, 𝐶) and ℒ𝐺𝐴𝑁(𝐺𝐶𝑆, 𝐷𝐵, 𝐶, 𝑆), the com-

prehensive objective loss arrives at:

ℒ(𝐺𝑆𝐶 , 𝐺𝐶𝑆, 𝐷𝐴, 𝐷𝐵) = 𝜆𝑔ℒ𝐺𝐴𝑁(𝐺𝑆𝐶 , 𝐷𝐴, 𝑆, 𝐶) + 𝜆𝑔ℒ𝐺𝐴𝑁(𝐺𝐶𝑆, 𝐷𝐵, 𝐶, 𝑆)

+ 𝜆𝑐ℒ𝑐𝑦𝑐 + 𝜆𝑑ℒ𝑑𝑒𝑝𝑡ℎ + 𝜆𝑠ℒ𝑠𝑠𝑖𝑚

(3.8)

where 𝜆𝑔, 𝜆𝑐, 𝜆𝑑, and 𝜆𝑠 denote the weight coefficients of adversarial losses, cycle

consistency loss, depth loss, and SSIM loss respectively. The higher the weight, the

larger the influence the corresponding loss function has on the model.
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3.4 3D Point Cloud Analysis and Evaluation Metrics

3.4.1 3D clustering algorithm

In meteorology, precipitation rate, such as 10mm/hr, serves as a linear indicator

for rain or snow levels. However, the performance degradation of sensors and the

associated driving risks in adverse conditions may not strictly correlate with this

objective metric. ADS rely on sensor perception, and even moderate precipitation

rates can sometimes severely impair sensor functionality. For instance, water spray

or snow swirls generated by the interaction between vehicles can significantly degrade

perception capabilities. In traditional approaches, snow conditions have often been

oversimplified as uniformly distributed noise with linear variations in both LiDAR

and image-based perception systems. This model, although convenient, is funda-

mentally flawed; it fails to capture the intricate and highly variable nature of snow’s

presence within point clouds. The assumptions of linearity and uniformity break

down when faced with real-world complexities. Specifically, the dynamics introduced

by the movement of the ego vehicle, as well as interactions among multiple vehi-

cles in proximity, contribute to air turbulence that can both redistribute atmospheric

snow and agitate snow that has already accumulated on the ground, as demonstrated

in Fig. 1.4. This results in snow manifesting as points within the LiDAR point

cloud that defy simplistic models. The snow points display unpredictable density and

non-uniform distribution patterns within the three-dimensional space defined by the

LiDAR point cloud.

To better capture the complexities of snow conditions affecting driving scenarios,

a divided classification for snow impact is proposed.

1. Mild: This is the initial phase of a snowfall event. The road has not yet accumu-

lated a full layer of snow, and both precipitation rate and wind speed are moderate.

In the point cloud, snow points manifest as isolated noise points, resembling ‘salt and

pepper’ noise, distributed sporadically across the scene.

2. Severe: At this level, either the precipitation rate or the wind speed is consider-

ably high. There is substantial snow accumulation on the ground. The ego vehicle’s
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movement, as well as that of nearby vehicles, generates significant snow dust and

swirls. In the point cloud, snow points form a large, chaotic cluster near the center,

accompanied by more densely packed noise clusters in the surrounding areas.

While this division may not capture all the manifestations of snow conditions in

point clouds due to the inherently volatile nature of weather, it offers a relatively

quantitative and adaptable framework. This tiered approach is particularly effective

for addressing the challenges posed by snow swirls and provides a generalized basis to

aid deep learning models in identifying snow-related features in LiDAR point clouds.

Given that a LiDAR point cloud is essentially a complex distribution of points

within a 3D space, the nature of snow’s representation within this 3D space is equally

intricate. As such, the use of advanced 3D point clustering algorithms could offer an

understanding of the physical characteristics of snow in various driving conditions.

These algorithms could also serve as evaluative benchmarks for assessing the efficacy

of point cloud processing methods in filtering or handling snow-induced noise and

distortions.

The OPTICS (Ordering Points To Identify the Clustering Structure) algorithm

[107] is chosen for its proficiency in handling clusters of varying densities. Originating

from the DBSCAN algorithm [108], this clustering approach identifies distinct clus-

ters by grouping together data points that are densely connected within a predefined

radius. OPTICS operates with two essential parameters: 𝜀, which denotes the maxi-

mum radius to be considered for neighborhood search, and 𝑀𝑖𝑛𝑃𝑡𝑠, which indicates

the minimal quantity of points necessary to constitute a cluster. Unlike DBSCAN,

which requires a single threshold for density across the whole dataset, OPTICS deals

with varying densities by computing two main values for each point, core distance

(c-dist):

c-dist𝜀,MinPts(𝑝) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
UNDEFINED if |𝑁𝜀(𝑝)| < MinPts

distance to the MinPtsth

nearest point within 𝑁𝜀(𝑝) otherwise

(3.9)

where 𝑀𝑖𝑛𝑃𝑡𝑠 describing the number of points required to form a cluster, 𝑁𝜀(𝑝)
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being the set of points that are within a radius 𝜀 of the point 𝑝, and reachability

distance (r-dist):

r-dist𝜀,MinPts(𝑜, 𝑝) =

⎧⎪⎨⎪⎩UNDEFINED if |𝑁𝜀(𝑝)| < MinPts

max(core-dist𝜀,MinPts(𝑝), dist(𝑝, 𝑜)) otherwise
(3.10)

which means the reachability distance of another point 𝑜 from a point 𝑝 is either the

distance between 𝑜 and 𝑝, or the core distance of 𝑝, whichever is bigger.

Using these calculated distances, OPTICS sorts the data points in a manner that

reflects their density-based spatial relationships. Through this ordered sequence,

dense groups of points, indicative of clusters, are revealed as contiguous segments

where points have low mutual reachability distances. The undefined eventually re-

mains as individual points whose cluster size equals to 1.

In the scope of this study, the algorithm has been adapted to autonomously iden-

tify the optimal 𝑀𝑖𝑛𝑃𝑡𝑠 value for each cluster by leveraging the DBSCAN method-

ology. Moreover, the parameter 𝜀 is assigned based on the dimensions of the object

with the smallest reflective surface within the analyzed context. For instance, in the

case of a road intersection, the minimal reflective surface is typically presented by a

speed limit sign. Consequently, 𝜀 is determined to be 0.6 meters, correlating to the

width of this sign.

The algorithm offers several advantages: it is more adaptable to variable densities,

exhibits reduced sensitivity to parameter choices, elucidates hierarchical relationships

between clusters, and excels in outlier detection. The output from OPTICS facili-

tates easier interpretation and extraction of clusters without necessitating extensive

manual parameter tuning. These attributes render OPTICS particularly well-suited

for managing the variable behaviors exhibited by snow points in point clouds.

An example of the OPTICS clustering result is shown in Fig. 3.6. It can be seen

that despite the density variation, everything has been classified into separated groups

of clusters, each distinguished by unique colors, while the environmental structures

are also well segmented. The conglomeration of snow swirl points, positioned at the
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lower left of the center, are collectively assigned to large blue and purple clusters.

Minor snow clusters, such as those in the immediate right vicinity of the center,

along with individual scattered snow points spread across the scene, are categorized

into smaller, uniquely colored clusters.

Figure 3.6: A frame of the point cloud featuring both dispersed noise points and snow
clusters. (a) The original point cloud from the Canadian Adverse Driving Conditions
(CADC) dataset [16], with colors representing height. Red boxes annotate scattered
snow and snow swirl points. (b) The clustering result of the same point cloud based
on the OPTICS algorithm, where varying colors signify different cluster groups. The
prominent purple cluster at the center represents the snow swirl.

3.4.2 Quantitative evaluation metrics establishment

The quantitative evaluation of LiDAR point cloud processing with adverse effects has

always been a tricky task. Researchers used to select a small number of samples and

manually determine if a point is a snow point, in order to calculate the precision

and recall of the removal of snow noise points [46, 48]. Even though straightforward,

it has two downsides: For one, it consumes large amount of time and manpower to

manually annotate a whole dataset while a small portion of samples suffers the risk of

bias. Secondly, the accuracy of human annotation on point clouds with over 20,000

points in each frame can be as low as 85% and not satisfied enough to support the

subsequent calculations on precision and recall [83]. Therefore, the OPTICS algorithm
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is selected to reflect the quantitative characteristics of snow conditions and provide

evaluation metrics in the research of snow problems in point clouds. Statistically,

seven metrics based on the adaptive clustering algorithm are produced:

• Noise Number: Points without any neighbor points within a designated range

(solitary points) are considered noise points, mostly snowflakes. A decrease in

noise number is one of the most direct indicators of an effective snow removal

performance.

The count 𝑁 of the points that have fewer than 𝑃𝑚𝑖𝑛 neighbors within a given

radius 𝜖 is shown as:

𝑁 = |{𝑥 ∈ 𝑋 | P(𝑥, 𝜖) < 𝑃𝑚𝑖𝑛}| (3.11)

Where X is the set of all points, and P(x,𝜖) returns the count of points within

𝜖-radius of x.

• Cluster Number: A main output of the algorithm, representing groups of data

points that are closely related based on their reachability. The cluster number

can be simply denoted as 𝐶.

• Reachability Distance: The smallest distance required to connect point A to

point B via a path of points that satisfy the density criteria. Normally, the

average reachability distance would rise along with larger cluster numbers.

For points 𝐴 and 𝐵, the reachability distance 𝑅(𝐴,𝐵) could be defined as:

𝑅(𝐴,𝐵) = max (CD(𝐴), 𝑑(𝐴,𝐵)) (3.12)

where CD(𝐴) (core distance) is the minimum distance required to separate 𝐴

from its neighbors, and 𝑑(𝐴,𝐵) is the Euclidean distance between 𝐴 and 𝐵.

• Inter-Cluster Distances (ICD): The concept here involves identifying the cen-

troid, or the average point, of each cluster, and subsequently computing the
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distance between every possible pair of centroids. Should there be an increase

in the average of these distances, it would suggest a reduction in the number of

clusters and a more dispersed cluster distribution. In the context of this study,

such a pattern could be interpreted as an effect of de-snowing.

For clusters 𝑖 and 𝑗 with centroids 𝐶𝑖 and 𝐶𝑗:

ICD =
1(︀
𝐶
2

)︀∑︁
𝑖 ̸=𝑗

𝑑(𝐶𝑖, 𝐶𝑗) (3.13)

where
(︀
𝐶
2

)︀
denotes the number of unique pairs of clusters.

• Size of Clusters: This is essentially determined by the number of points each

cluster holds. Under conditions dominated by scattered snow, the snow noise

points tend to form numerous small-scale clusters. Their elimination, conse-

quently, leads to an increase in the size of the clusters.

For cluster 𝑖 with 𝑛𝑖 points, the size 𝑆 could be:

𝑆 =
1

𝐶

𝐶∑︁
𝑖=1

𝑛𝑖 (3.14)

• Silhouette Score: Measures the cohesion within clusters and the separation be-

tween clusters. A silhouette score close to 1 indicates a good clustering quality,

while a score close to −1 indicates poor clustering. A lower silhouette score

is commonly observed in snowy conditions due to the more overlap between

clusters.

For a point 𝑥, in cluster 𝐴, the silhouette score 𝑠(𝑥) is calculated as:

𝑠(𝑥) =
𝑏(𝑥)− 𝑎(𝑥)

max{𝑎(𝑥), 𝑏(𝑥)}
(3.15)

where 𝑎(𝑥) is the average distance from 𝑥 to the other points in the same

cluster 𝐴, and 𝑏(𝑥) is the smallest average distance from 𝑥 to points in a different
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cluster, minimized over clusters. The overall silhouette score is then the average

𝑠(𝑥) over all points.

• Davies-Bouldin Index (DBI): Measures the ratio of within-cluster scatter to

between-cluster separation and assesses the quality of the overall cluster sep-

aration. A lower Davies-Bouldin index indicates better clustering, with zero

being the ideal value. Snow conditions with many noise points or swirl clusters

exhibit higher values of DBI.

The Davies-Bouldin index DBI is calculated as:

DBI =
1

𝐶

𝐶∑︁
𝑖=1

max
𝑖 ̸=𝑗

(︂
𝑡𝑖 + 𝑡𝑗

𝑑(𝐶𝑖, 𝐶𝑗)

)︂
(3.16)

where 𝑡𝑖 is the average distance of all points in cluster 𝑖 to centroid 𝐶𝑖.

In summary, the above metrics serve as the quantitative evaluation criteria for as-

sessing the effectiveness of snow removal in point cloud data, all of which are derived

from the OPTICS clustering algorithm. These metrics include the Noise Number,

Cluster Number, Reachability Distance, Inter-Cluster Distances, Size of Clusters, Sil-

houette Score, and the Davies-Bouldin Index. Each metric provides unique insights

into the spatial characteristics of the point cloud, enabling a comprehensive under-

standing of snow conditions. For instance, metrics like Noise Number directly indicate

the presence of snowflakes, while the Davies-Bouldin Index gives an overall quality

measure of the clustering, thereby indirectly indicating snow conditions. Collectively,

these metrics offer a robust framework for evaluating and comparing snow removal

and generation performance across various datasets and conditions.

3.4.3 Analysis on snow point clouds

Some example scenes are presented in Fig. 3.7, including both a mild snowfall con-

dition and a severe snow swirl condition to illustrate how the OPTICS algorithm

evaluates snow conditions, with their metrics summarized in Table 3.1. A condi-

tion with both scattered noise points and snow swirls is provided as well for better
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understanding. To ensure the authenticity of the snow effect, the first and one of

the best datasets focusing on snow conditions in autonomous driving areas, which is

CADC [16] is used. This dataset contains over 7000 frames of LiDAR point cloud

collected during the winter in Waterloo, Ontario. The driving scenes cover both ur-

ban and suburban environments, high and low speed conditions, and different levels

of snowfall and heavy snow accumulation conditions.

From the statistics, one can tell that with the increase in snow level, the noise

number and cluster number of the driving scene are gradually rising, along with the

average reachability distances as expected. With fewer noise points and fewer snow

clusters, the average inter-cluster distances and the average sizes of clusters decrease

correspondingly. The tendencies toward deteriorated clustering and increased over-

laps, as indicated by the DBI and silhouette score, are also consistent with conditions

of heavier snow conditions. This validation proves the OPTICS algorithm’s capability

of evaluating the change of snow conditions in a LiDAR point cloud.

Figure 3.7: The clustering results of three example scenes from the OPTICS algo-
rithm, where varying colors signify different cluster groups. (a) Mild snowfall condi-
tion with bits and pieces of snow points. (b) Severe snow swirl condition with huge
snow swirl clusters surrounding the ego vehicle.

In order to more effectively illustrate the differences between mild and heavy snow
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Table 3.1: The corresponding 3D clustering metrics in Fig. 3.7 from the OPTICS
algorithm for ascending snow levels.

Items Mild snowfall Severe snowfall

Noise Number 1861 2942
Cluster Number 761 1165

Reachability Distance 0.3336 0.4166
Inter-Cluster Distances 54.0279 46.1090

Size of Cluster 17.6373 12.3494
Davies-Bouldin Index 4.0110 18.4671

Silhouette Score -0.1653 -0.2772

conditions in terms of reachability distances, inter-cluster distances, and cluster sizes,

violin plots for these three metrics are provided in Figure 3.8, positioning mild snow

on the left and heavy snow on the right in each set. These plots not only show

their quartiles but more crucially, delineate the differences in distribution. It can be

observed that as snow conditions get heavier, the distribution in all three metrics

exhibits somewhat abrupt curves with sharper edges and sudden shifts, indicating

the inherent disarray characteristic of heavy snow. Generally, scenes with less snow

presence display a relatively uniform and smooth distribution, as depicted in the

violin plots, with a lower skewness value [109], offering another angle to assess the

changes in snow conditions.

Figure 3.8: Violin plots for the comparison between mild snow and heavy snow.
Limits on the y-axes are set for a better illustration of the distributions.

Furthermore, the whole CADC dataset is processed and divided into two groups as

defined in the previous section and particularly extracted the snow points. The same
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filter built within the CADC dataset (DROR) was used to complete the snow point

extraction because manually labeling each snow point not only consumes unimagin-

able time and manpower but lacks satisfying accuracy and the amount of points is

too large (at the magnitude of several thousand) with points sometimes overlapping

in 3D space. In order to minimize potential bias, the filter’s parameters are tuned

towards high leniency in the case of extracting non-snow points. Points deemed as

snow points by the filter do not exactly reflect ground truth but it is qualified for

a snow cluster analysis when the possibility of object points being counted as snow

points has been controlled to a minimum level by a lenient filter.

The analysis of snow points is shown in Table 3.2. Considering only the snow

points are evaluated and most of them are noise points (solitary points), the statis-

tics regarding cluster groups are not presented. Based on human annotation, 2583

samples of mild snowfall, and 1223 samples of fierce snow swirl conditions are grouped.

As the severity of snow conditions escalates from mild to severe, an inverse trend in

the average reachability distance can be observed compared to complete point clouds.

This trend is consistent with the increasing density and disorder of the snow, reflecting

a more complex and cluttered points environment. The two similar DBIs of around

1.7 - 1.8 indicate that the OPTICS algorithm has provided comparable moderate clus-

tering quality and separation for mild, and fierce snow conditions, further affirming

the choice of the OPTICS algorithm. The Silhouette Score also reflects the quality

of the clustering but at a smaller scope down to each individual point. The decrease

of the Silhouette Score below 0 indicates more overlaps and poor separations at the

individual data point level while the severity of snow increases. These results match

the observation and the behavior of snow points extracted from real snow scene point

clouds.

As it turns out, the OPTICS algorithm shows high adaptability to variable densi-

ties and is less sensitive to parameter settings. It is capable of revealing hierarchical

relationships among clusters and offers enhanced outlier detection capabilities. These

attributes align well with the behaviors of all levels of snow conditions in point clouds,

making OPTICS an effective evaluation method for snow datasets. Through the use
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Table 3.2: The OPTICS clustering algorithm on the snow points extracted from the
CADC dataset

Items Mild Snowfall Severe Snow Swirl

Snow points number avg. 1340.13 7713.03
Sample amount 2583 1223

Reachability distance avg. 0.6548 0.4328
Davies-Bouldin Index avg. 1.7032 1.7756

Silhouette score avg. -0.2038 -0.3810

of adaptive clustering principles, the process of cluster interpretation and extraction

is considerably streamlined, minimizing the need for extensive manual parameter tun-

ing. In the following contents, this 3D clustering algorithm will be used to conduct

quantitative evaluations on point clouds in adverse conditions.

3.5 Experiments and Results

3.5.1 Experiments

Experiments with the trained models on two different conditions are conducted: (1)

Mild snow conditions: snowfalls only without snow swirls; (2) Fierce snow conditions:

both snowfalls and snow swirls. The experiment on snowfall-only conditions was

first conducted to examine the performance of scattered noise point capture. In the

meantime, this less occlusion condition provides a better opportunity to check how

well the original environmental structures have been maintained, so as to affirm the

modal’s ability of accurate snow capturing. Then the same experiment was conducted

on conditions with both snowfalls and snow swirls, to comprehensively present the

modal’s ability to handle highly adverse conditions. The CADC dataset is used to

conduct the experiments, spanning both urban and suburban settings.

To adapt LiDAR point cloud data to fit within the structure of the GAN-based

model, pre-processing to the point clouds was initially applied and a 2D visualization

of the point clouds was yielded, namely, depth images, which signify the orthographic

projection of the point clouds while keeping the depth information (i.e. the dis-
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Figure 3.9: An illustration of a specific frame of the depth image under heavy snow
conditions. The middle row displays the depth image, while the top and bottom rows
depict corresponding camera images derived from the CADC dataset [16]. Images
captured from multiple cameras targeting different directions around the ego vehicle.
Color-coded boxes represent matching objects in both the camera and depth images.
Green - The back side of a road sign. Yellow - The front side of another road sign.
Red - The leading vehicle. Blue - A pole. The images do not denote the original
resolutions but are adjusted for better demonstration purposes.

tances from points to the ego vehicle) within its pixel value. There is another form

of point cloud 2D representation, Bird’s Eye View (BEV) images, that represent the

horizontal projection of point clouds and store the height information (i.e. the dis-

tances from points to the ground) within the point pixel values. Given the primary

data of LiDAR signals are acquired in the front-view position, depth images are se-

lected as the representative of point clouds in order to reduce cumulative errors in

processing and reconstructing point clouds. By unrolling the exterior surface of the

LiDAR’s horizontal field of view (FOV) cylinder and mapping each point from the

point cloud onto this frontal-view plane, a rectangular image encompassing all points

within the LiDAR’s FOV is obtained. The horizontal field is partitioned evenly into

𝑤 columns and the vertical field is distributed uniformly into ℎ rows. Consequently,

post-projection, a depth image bearing a resolution of 𝑤 × ℎ can be secured, where

the horizontal resolution is proportional to the sensor’s rotation rate, and the vertical

resolution is proportional to the number of physical layers [110].
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An illustration of a specific frame of the depth images under noticeably snowy

conditions, along with the corresponding camera images featuring identical objects,

can be found in Fig. 3.9. A close observation reveals that the relevant objects are

well reflected and the snow noises, bearing resemblance to ‘salt and pepper’ speckles,

are prominently displayed in the depth image. The position of each pixel reflects the

frontal-view projection of the points within the point clouds, while the pixel value

from 0 to 255 signifies the distance between the points and the observing vehicle.

Smaller pixel values (darker) imply greater distances, whereas higher pixel values

(brighter) suggest closer distances. It’s important to note that although the depth

images appear monochromatic, they are actually in RGB format. In this format, the

pixel values in the red, green, and blue channels are identical. This setup minimizes

variable alterations during data pre-processing, mitigating the risk of information

compression or loss in the learning stage.

To obtain depth images under clear conditions, the DSOR filter [48] is applied to

snow datasets. In this context, the typical approach of creating synthetic weather

conditions in datasets for training is inverted but generates an artificial clear dataset.

Given that filters cannot guarantee absolute precision and recall in the de-snowing

process, the filtered result cannot be considered equivalent to the ground truth. How-

ever, the filter still provides a valuable sample pool for unpaired training. The main

reasons for choosing DSOR over alternative filters are its rapid processing speed and

its excellent capacity to retain as many environmental elements as possible when the

filter parameters are set to an uncompromising level [48].

Training, testing, and data processing are conducted utilizing the Pytorch frame-

work. All possible combinations of ResNet residual blocks (ranging from 4 to 9) in

𝐺𝑆𝐶 and 𝐺𝐶𝑆, and convolutional layers (ranging from 1 to 4) in 𝐷𝑛𝐴 and 𝐷𝑛𝐵 are ini-

tially examined, and the most optimal combination is identified. When variables are

kept constant, a combination of 4 ResNet residual blocks in 𝐺𝐶𝑆, 𝐺𝑆𝐶 and 2 downsam-

pling convolutional layers in 𝐷𝑛𝐴 and 𝐷𝑛𝐵 produce the most superior transformation

result. In the model used to present the optimal results, the weights of adversarial

losses, cycle consistency loss, and depth loss were set to 10, and the weight of SSIM
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loss was set to 0.5.

Square-shaped samples randomly cropped from the depth images are input to

two NVIDIA RTX 3090Ti graphics cards with a batch size of 8 for training. In the

second half of the N-Layer Discriminator stage training, a linearly declining learning

rate schedule starting from 0.02 until convergence is adhered to until the process

converges.

The entire dataset which consists of 7000 samples was split in a 7.5:1:1.5 ratio

for training, validation, and testing purposes. The quantitative analysis is conducted

based on 500 samples under mild snowfall conditions and the other 500 samples under

severe snow swirl conditions out of the testing dataset. The reported metrics in the

following results all mean the average values.

3.5.2 Results

Qualitative results

Fig. 3.10 and Fig. 3.11 show the transformation results of proposed model under

mild snow conditions, which means the majority of the snow is scattered noise points

without the snow swirl phenomenon. (a) and (b) sets show 2 scenarios with the left

column being the original snow scene from CADC, and the right column being the L-

DIG clear results. Each scenario features an overall BEV in the top row, the clustered

results showing the changes of snow clusters in the middle row; and the bottom rows

showing magnified third-person views of the point cloud’s central region, where the

ego vehicle is situated. The same arrangement applies to the following qualitative

results.

As indicated by the red arrows and encircled by red boxes, it’s clear that the ‘salt-

and-pepper’ noise points have been largely erased, with key environmental features

left unaltered. Essential components like vehicles (outlined in green) are not only well

preserved but also exhibit a level of point enhancement, as demonstrated in the Clear

(a) set. Moreover, the road sign enclosed in the red box of (a) which was partially

obscured by snow points in the earlier image, seems to be better defined, a testament
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to the deep scene comprehension facilitated by the proposed model.

Figure 3.10: 1st set of point cloud transformation results from mild snow conditions
to L-DIG clear, with colors encoded by height. First row - BEV scenes; middle row -
clustered results; bottom row - enlarged third-person view center part around the ego
vehicle. Red boxes and arrows - locations where snow’s effects are alleviated; green
boxes - vehicles

Fig. 3.12 and Fig. 3.13 demonstrate the transformation outcomes of proposed

model under fierce snow conditions, characterized by the presence of snow swirls

around the ego vehicle. Two distinctive scenarios (c) and (d) have been chosen for

illustration, and are presented in the same format as in the previous. In these harsh

snowy conditions where the snowfall has dramatically increased, it becomes easier to

observe that the light-colored airborne snowdrifts (highlighted in shades of red, green,

yellow, and cyan) have been substantially mitigated, as indicated by the red arrows.

Also, the snow swirl clusters are largely mitigated as shown in the reduced purple
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Figure 3.11: 2nd set of point cloud transformation results from mild snow conditions
to L-DIG clear, with colors encoded by height. First row - BEV scenes; middle row -
clustered results; bottom row - enlarged third-person view center part around the ego
vehicle. Red boxes and arrows - locations where snow’s effects are alleviated; green
boxes - vehicles
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snow clusters around the center.

Under these severe snow circumstances featuring dense snow swirl clusters, the

attention is more on the noise reduction near the ego vehicle, as indicated by the

red boxes, instead of entirely eradicating the snow swirls, as this could lead to a loss

of important environmental elements. A balance between significant snow removal

and effective preservation of objects is strove for, like the vehicles shown in the green

boxes. Simultaneously, a certain degree of point cloud restoration can also be observed

near the central ground rings, as shown in the enlarged part of set (c). This can be

credited to the profound comprehension of the scene by the transformation model.

Figure 3.12: 1st set of point cloud transformation results from fierce snow conditions
to L-DIG clear, with colors encoded by height. First row - BEV scenes; middle row -
clustered results; bottom row - enlarged third-person view center part around the ego
vehicle. Red boxes and arrows - locations where snow’s effects are alleviated; green
boxes - vehicles.
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Figure 3.13: 2nd set of point cloud transformation results from fierce snow conditions
to L-DIG clear, with colors encoded by height. First row - BEV scenes; middle row -
clustered results; bottom row - enlarged third-person view center part around the ego
vehicle. Red boxes and arrows - locations where snow’s effects are alleviated; green
boxes - vehicles.
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Table 3.3: The 3D clustering metrics (avg.) comparison between transformed L-DIG
clear conditions and different snow conditions.

Snow conditions Mild Snow Fierce Snow
Items CADC L-DIG CADC L-DIG

Noise Number 2865.07 2689.46 2598.17 1606.23
Cluster Number 964.23 792.23 954.24 639.99

Reachability Distances 0.4076 0.3766 0.3805 0.3293
Inter-Cluster Distances 51.4262 53.9163 45.9245 47.4392

Size of Clusters 14.1603 15.8366 14.9750 24.2110
Davies-Bouldin Index 4.0279 3.7427 5.4138 3.9073

Silhouette Score -0.3011 -0.2111 -0.3699 -0.3109

Figure 3.14: Violin plots for L-DIG transformation results under mild snow condi-
tions. Limits on the y-axes are set for a better illustration of the distributions.

3D clustering results

The 3D clustering results are presented in Table 3.3. For mild snow conditions, the no-

ticeable reduction in the average noise number, cluster count, and overall reachability

distances in the clear results strongly suggests the effectiveness of the transformation

process. As the majority of clusters now comprise object points and environmen-

tal features that are more densely and uniformly packed, the average inter-cluster

distances, and average cluster sizes naturally increase. This shift in cluster character-

istics is a byproduct of fewer, but more meaningful, clusters primarily representing

substantive elements of the environment rather than scattered snow points. Similarly,

the declines in the DBI and Silhouette Score are in line with the expectations for the

de-snowing process.

In the violin plots of Fig. 3.14, the colored data on the left represents de-snowed

clear data, while the gray data on the right serves as a comparison from the CADC
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Figure 3.15: Violin plots for L-DIG transformation results under fierce snow condi-
tions. Limits on the y-axes are set for a better illustration of the distributions.

dataset. This arrangement is consistent across all subsequent violin plots. A glance at

the better evenness within the cluster distribution on the left half of each violin plot

reveals the improvement of the de-snowing process compared to the slightly skewed

distribution on the right. This observation is further substantiated by the lower

skewness of the de-snowed distributions. Calculations show that for the reachability

distances, inter-cluster distances, and sizes of clusters, the skewness values for the

de-snow data are 8.11, 0.23, and 16.10, respectively, while for the CADC data, these

values are 9.64, 0.30, and 21.49. Note that the median reachability distance of the

de-snow is a little bit higher than with snow. This small anomaly originates from a

few detached clusters at a remote distance after de-snowing, which can be seen from

very few sample points exceeding the upper limit of the y-axis.

For the fierce snow condition with snow swirls, the transformation effects are

applied to more clusters spanning the entire scene during heavy snowfall, all metrics

largely veer towards less noise and tidier clustering results in the process. From Fig.

3.15, one can tell that the shifts in quartile lines are less prominent, which can be

attributed to the fact that snow swirls typically have capacities similar to those of

object clusters. Nevertheless, the efficacy of the de-snowing process is evidenced by

the smoother and more consolidated distributions in the violin plots. This assertion is

additionally validated by the slightly improved skewness of the de-snowed data which

stand at 8.87, 0.38, and 28.04 respectively. Conversely, for the CADC data, these

values are 10.45, 0.42, and 32.76.
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Table 3.4: Ablation study on the transformation model from adverse to clear condi-
tions.

Ablation conditions Proposed
model

Without
𝐷𝑝

Without
SSIM
loss

Without
depth
loss

Basic
CycleGAN

Domain
gap

Noise Number 2689.46 2882.94 2935.19 3879.13 2891.98 5031.85
Cluster Number 792.23 761.25 772.25 1097.3 833.47 1132.72

Reachability Distances 0.3766 0.4373 0.4511 0.5597 0.4863 0.7663
Inter-cluster Distances 53.9163 52.4850 53.1700 46.1819 49.9774 47.2124

Size of Clusters 15.8366 16.3089 15.7794 9.9985 14.0490 10.1896
Davies-Bouldin Index 3.7427 4.0880 4.1745 5.4330 5.1194 7.1288

Silhouette Score -0.2111 -0.3532 -0.3394 -0.2990 -0.3638 -0.2825

Ablation study

To affirm the significance of the model’s key components, an ablation study is con-

ducted using the transformation model under mild snow conditions. This study in-

vestigates the impact of the absence of the pixel-attention Discriminator, SSIM loss,

depth loss, and the basic CycleGAN. Additionally, a training pair with a considerable

domain gap is examined. For this purpose, 6000 frames from the LIBRE dataset [10]

were selected, which was collected under clear conditions in Nagoya, Japan’s urban

area. This choice serves as a representative due to the substantial domain disparity

between Canada and Japan in terms of scenario layouts and traffic patterns. The

CADC dataset contains a large portion of suburban scenarios with fewer buildings

and more vegetation, which hardly appears in the LIBRE dataset. Table 3.4 presents

the results, using the proposed model as a reference.

The absence of the pixel-attention Discriminator results in an immediate degrada-

tion in the performance, as evidenced by the increased noise number and reachability

distance. Failing to remove a certain amount of solitary noise points substantiates

the importance of the pixel-attention Discriminator in de-snowing.

More noise points are observed in the scenario without SSIM loss. Apart from

the slightly reduced cluster number, other metrics especially the elevated reachability

distance indicate a breakdown in structural integrity during the transformation pro-

cess. A primary objective of the proposed model is to maintain the crucial objects
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and environmental elements as effectively as possible, thus affirming the critical role

of SSIM loss.

The scenario without depth loss indicates a complete failure in de-snowing, as

evidenced by the significant plummeting in all metrics toward noisy and poor clus-

tering. The cause of this failure lies in the unique properties of depth images, which

are highly sensitive to non-linear scale changes during the conversion back to point

clouds. Consequently, the depth loss forms the cornerstone of the transformation

model based on depth images.

In the basic CycleGAN model, the mediocre statistics could be interpreted as an

utter ineffectiveness in point cloud transformation, without managing to preserve the

original states either. This result underscores the necessity of all the components in

the proposed model for achieving successful transformation outcomes.

Finally, when trained on datasets with a substantial domain gap, the model does

not yield satisfactory transformation performance. This is suggested by the exceed-

ingly high noise number, reachability distances, and low cluster sizes, at least under

the same parameter settings as before. The unjustifiably high noise and cluster num-

bers are the result of poor clustering, which is corroborated by the exceedingly high

DBI. This result, derived under extreme conditions, serves to confirm the judicious

decision to generate unpaired clear point cloud data with filters. However, it does

not necessarily suggest that the proposed model lacks generality. Despite this, the

model’s robustness against domain gaps does stand as a major limitation of the cur-

rent transformation model.

3.5.3 Comparisons

Adverse effects removal efficiency

To evaluate the overall capability of the L-DIG model in removing adverse effects

compared to other adaptive methods, a precision-recall analysis was carried out, as

detailed in (3.17) and (3.18). Diverging from the conventional approach of manually

inspecting each point in the point clouds used in prior studies, the point cloud is
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Figure 3.16: Precision and recall rates comparisons of adverse effects removal based
on snow clusters.

examined based on clusters. This approach significantly reduces the need for man-

power and time, while ensuring accuracy beating the 85% reliability rate typically

associated with human annotation.

Removal Precision =
removed clusters ∩ labeled as snow

total removed clusters
(3.17)

Removal Recall =
removed clusters ∩ labeled as snow

total labeled snow clusters
(3.18)

A subset of samples from the test dataset was selected impartially, and each cluster

within these samples was manually labeled to distinguish whether it consisted of snow

clusters or not. It is important to note, however, that achieving a recall rate of 1 is

always theoretically possible, but comes at the cost of losing vital environmental

features, leading to considerably reduced precision. Consequently, the parameters of

all methods involved in this study have been calibrated to prioritize maintaining scene

integrity as much as possible. As illustrated in Fig. 3.16, both the DROR and DSOR

methods significantly outperform their foundational methods. However, they plateau

at a precision of 70% and a recall of 90% level, constrained by the challenging balance

between effective removal and preservation of scene integrity. Similarly, the Entropy-
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based adaptive filter struggled to find a more optimal balance. In contrast, the

L-DIG transformation model stands out as the only method capable of transcending

this trade-off, achieving notably high precision and recall rates with minimal error

tolerance.

Perceptual improvement

For sensor perception result quality, the ultimate benchmark often lies in its plausibil-

ity to human observers. Thus, a Human Perceptual Examination (HPE) is conducted

to compare the raw point cloud with outputs from the proposed model and other

transformation models. This exercise aims to validate the effectiveness of proposed

model in improving LiDAR perception.

In alignment with established protocols in image translation quality evaluation

[111] [112], 20 human annotators with adequate practice in point cloud were divided

into 5 groups and were provided with a sequence of trials featuring original and

transformed point clouds from the CADC dataset. In each trial, annotators first

engaged in object detection labeling on 10 frames of the original point cloud with

adverse conditions from the CADC dataset. The labeling action is simplified into

the confirmations of whether an object including vehicles and pedestrians has been

detected to ensure reliability. The detection results of the annotators will undergo the

process of looking for matches with the ground truth provided by CADC and then

be used for precision and recall calculations. The precision and recall of the HPE are

calculated as follows:

Detection Precision =
TP

TP + FP
=

TP
all detections

(3.19)

Detection Recall =
TP

TP + FN
=

TP
all ground truth

(3.20)

where True Positive (TP): a correct detection, False Positive (FP): a wrong detection,

and False Negative (FN): a ground truth not detected. The results were presented as

percentages, which can be found detailed in Table 3.5.
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Table 3.5: Human Perceptual Examination on transformation models

Model Precision (%) Recall (%)

CADC (untransformed) 92.3% ± 6.5% 72.2% ± 8.5%
DROR 92.6% ± 2.8% 71.3% ± 3.6%
DSOR 93.1% ± 2.1% 67.5% ± 6.3%
Basic CycleGAN 97.5% ± 3.9% 77.5% ± 2.3%
CUT 66.4% ± 11.9% 67.2% ± 9.1%
Proposed model 94.4% ± 1.9% 98.1% ± 1.8%

Subsequently, they worked on another 10 frames from different scenarios where

the adverse conditions had been converted to clear conditions using various models.

To ensure unbiased results, each session focused on evaluating a single model, and no

annotator was exposed to more than one model, thereby maintaining a 100% bias-

free environment in the assessment process. All point clouds were displayed in the

Open3D environment and each model was tested by more than one annotator so that

average statistics with tolerance was obtained.

In the analysis of the CADC dataset, a precision rate of 92.3%, tempered by

a few false detections attributed to snow clusters can be observed. However, the

recall rate was considerably lower at 72.2%, primarily due to the challenging adverse

conditions which also contributed to a high degree of tolerance in the measurements.

Despite state-of-the-art (SOTA) filters enhancing the point cloud quality by removing

most snow clusters—often misinterpreted as ’ghost objects’—they were not effective

in improving the recall rate. In fact, the wrongful elimination of pertinent points by

these filters often led to a decrease in recall, as it made the recognition of missed

objects even more challenging. This limitation largely stems from the filters’ sole

emphasis on removing snow points, without adequately addressing the loss of points

due to snow cluster occlusion, nor effectively preserving the integrity of the original

point cloud.

On the other hand, the CUT (Contrastive Unpaired Translation) [113] model

failed on both ends compared to the original data, as it overly disrupted the scene’s

structure. In contrast, the basic CycleGAN model showed a better recall rate and the

highest original precision, but at a limited level and a larger margin of error. It is the
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proposed model that outperformed all, achieving not only the highest precision (tol-

erance included) but also a huge leap in recall rate with the lowest tolerances. This

superior performance can be attributed to its effective transformation capabilities,

exceptional maintenance of structural integrity, and ability to reconstruct occluded

objects. The achieved precision rate of 94.4% seems to be a trivial improvement, but

it can be attributed to the overall increase of ‘all detections’ and instances where

certain objects were excessively occluded, leading to mislabeling. Even though these

objects were captured by the annotators because of the regular edges forming by the

compensating effects of the proposed model, it sometimes still couldn’t help confirm

their original categories. Therefore, although the substantial improvement in recall

greatly reduces the likelihood of missing ground truth elements, it increases the dif-

ficulty of achieving high TP as well. The current results represent the upper limit of

precision achievable in adverse conditions with transformation models.

The HPE further validates the findings of this research, indicating that the pro-

posed transformation model significantly enhances LiDAR point cloud perception

under adverse conditions. This improvement is critical for developing more reliable

and accurate autonomous driving systems capable of navigating through challenging

environmental scenarios.

3.6 Conclusion

In this chapter, an innovative 3D clustering algorithm has been introduced, cus-

tomized specifically for analyzing the complexities that adverse conditions introduce

into 3D point clouds. This algorithm not only adapts to different forms of adverse

effects but also offers a suite of quantitative metrics for a holistic evaluation of data

conditions. Furthermore, various adaptive filters on authentic adverse datasets have

been rigorously assessed and an advanced filter utilizing entropy as the primary metric

has been subsequently designed.

Building upon these foundational techniques, the L-DIG model has been devel-

oped, a GAN-based approach that uses depth image priors for point cloud transforma-
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tion. The proposed model exhibits an in-depth understanding of adverse condition

characteristics and shows proficiency in the effective removal of noise, maintaining

the integrity of the driving scene. The unique discriminator structure and loss func-

tions incorporated into the model further underscore its robustness and adaptability.

Extensive quantitative analysis and comparisons have been conducted among the pro-

posed model and others. The statistics indicate that the proposed approach not only

excels in efficiently removing adverse effects but also significantly enhances percep-

tion, achieving superior levels of both precision and recall.

The methodologies and findings documented in this chapter lay the groundwork

for further in-depth studies, potentially setting new benchmarks in point cloud pro-

cessing and autonomous vehicle operation under adverse conditions. This research

opens the door to potential advancements in both machine learning and sensor-based

technologies for autonomous vehicles operating in adverse weather conditions. While

strides in this area have been made, there are still several aspects that warrant fur-

ther investigation and development. Consequently, enhancing LiDAR perception in

adverse conditions may require a different approach, specifically focusing on the ex-

pansion of datasets that include adverse conditions. This alternative strategy could

provide a more effective means of improving accuracy under challenging environmen-

tal scenarios.

LiDAR point cloud transformation under adverse conditions has consistently faced

the challenge of lacking reliable adverse data. Given the difficulty in acquiring paired

or quasi-paired data under both adverse and clear conditions, the current model

must strike a balance between the strength of translation and model stability, which

subsequently leads to domain sensitivity. Moreover, the limited resources of the

CADC dataset intensify the adversity for training and testing. To address these

limitations, the future goal of this study is to develop the capability to generate high-

quality paired data under adverse conditions. This aim is to augment the LiDAR

point cloud with adverse effects based on a deep understanding of the driving scene,

with the ultimate intention of preserving the original state of the scene to the greatest

extent possible.
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Chapter 4

Expanding Adverse Condition Data

by LiDAR Point Cloud Augmentation

4.1 Overview

4.1.1 Adverse dataset status

Adverse conditions perception and classification research can’t be done without ad-

verse datasets. Many features used in object detection tasks need to be extracted from

datasets and almost every algorithm needs to be tested and validated on datasets. In

order to better solve the adverse weather problems in autonomous driving, it’s essen-

tial to have enough data covering each kind of weather. Unfortunately, the majority

of the datasets commonly used for training do not contain too many conditions dif-

ferent from clear weather. Some famous datasets that were collected in tropical areas

like nuScenes [114] contain some rain conditions in Singapore, A*3D [115] has rain

conditions at night, and ApolloScape [116] includes some strong light and shadow

conditions.

A summary of the weather conditions coverage and the sensors used for collec-

tion in each dataset is shown in Table 4.1. The first half of the table shows datasets

featuring LiDAR point cloud data. It becomes apparent that when contrasted with

camera-based datasets, those involving LiDAR data under adverse conditions are no-
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tably less. Based on the weather support status collected in Table 4.1, rain conditions

can be considered adequate in current autonomous driving datasets, while fog and

snow are not so much. Fog or haze is not time-sustained weather that is easy to

encounter during data collection, so normally fog datasets are acquired from test fa-

cilities or simulators. As for snow, due to the difference between falling snow and

accumulated snow, the qualities of the snow conditions contained in current datasets

vary largely. And since the obvious difficulty of constructing an artificial snow envi-

ronment compared to rain, experimental facilities’ snow condition supports are very

much limited. Furthermore, the strong light and contamination supports are seriously

lacking in datasets, even rarer in simulators and facilities, which makes the research in

this area relatively short. Therefore, as rich as the dataset resources are getting, the

limitations on weather support are still realistic problems for perception and sensing

research in adverse weather.

4.1.2 Adverse conditions classification

Perception enhancement fundamentally enables ADS to navigate through various

inclement conditions, but it mainly focuses on how to ignore the interference or com-

pensate for the negative effects. At some point, it’s also important to do adverse

conditions classification as a way to sense the surrounding conditions. Karlsson et

al. [144] did an estimation on the real-time rainfall rate out of automotive LiDAR

point cloud under both static and dynamic conditions in a weather chamber using

probabilistic methods. At first, adverse conditions classification was limited to bi-

nary classification like distinguishing clear or not [145] on single images. Further

machine learning techniques like kernel learning achieved multi-class condition clas-

sifications including sunny, rain, fog, and static snow. At this stage, the classification

task is realized by setting classifiers with the unique features of each kind of condi-

tion. Sunny features come from the clear sky region of a picture and form a highly

multi-dimensional feature vector; when sky elements are not included in the picture,

a strong shadow region with confident boundaries becomes the indicator of sunny

conditions. Rain streak is hard to capture in images so HOG features are extracted
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from the image to be the rain feature vector. Falling snow is considered noise, while

pixels with certain gray levels are defined as snowflakes. Haze is determined by dark

channels, where some pixels have very low intensities in at least one color channel

which is the dark channel [146]. With the development in AI technologies, machine

learning neural networks such as deep CNN are used by Elhoseiny et al. [147] in this

task to enhance feature extraction and learning performance.

In meteorology, rain is observed and measured by weather radar and stationary

rain gauges. Considering carrying a weather station on a car like [42] is not practical

for commercial generalization, people started in an early stage to realize vehicle-based

binary (wet/dry) precipitation observations [148] [149]. Goodin et al. [150] tried to

establish the relationship between the two parameters: rain rate, as manifested by the

rain scattering coefficient, and the max range of the LiDAR sensor for a 90% reflective

target in clear conditions, and successfully generated a quantitative equation between

rain rate and sensor performance. Bartos et al. [151] raised the idea of producing high-

accuracy rainfall maps using windshield wipers measurement on connected vehicles

in 2019. It’s a very leading concept considering the network of connected vehicles has

not been constructed on a large scale. Simply the status (on/off) of windshield wipers

serves as the perfect indicator of binary rainfall state compared to traditional sensing

methods like rain gauges. This work is supposed to help city flash flood warnings and

facilitate stormwater infrastructure’s real-time operation, but the involvement of cars

provides a line of thought on vehicle-based rain sensing.

Heinzler et al. [152] achieved a pretty fine classification with a multi-echo LiDAR

sensor only. The point cloud is first transformed into a grid matrix and the presence

of rain or fog can be easily noticed by the occurrence of secondary echoes on objects.

Then, different from recording the echoes of each kind of condition, the mean distance

of each echo and their mathematical properties like variance are used for detailed

classification as the covariance matrices are influenced by different levels of rain or

fog and the change in the point cloud or to say the matrix is visible. It can be

imagined that the test result might not be as good when using a LiDAR sensor

with a smaller vertical FOV due to the insufficient number of points and dynamic
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scenarios compared to static scenes. That means this method still has its reliance on

controlled environments and the robustness might not meet level 4 or higher autonomy

requirements. Dannheim et al. [153] proposed to use the fusion data from both LiDAR

and camera to do adverse conditions classification several years before. Their main

classifier was based on the intensity difference generated by the backscattering effect

of rain and fog and no neural network was mentioned in their image processing.

4.1.3 Adverse data augmentation

Compared to methods based on classification, those employing adverse conditions

data augmentation demonstrate superior effectiveness and accuracy. This is largely

due to the inherent difficulty and unreliability of annotating or labeling adverse con-

ditions [83]. However, within current driving datasets, samples featuring adverse

conditions represent only a small fraction. Furthermore, datasets specifically tar-

geted at collecting adverse conditions in certain areas like snowy regions, often face

significant domain gap issues when compared to other datasets. This discrepancy can

lead to diminished model generality. As a result, augmenting clear condition datasets

with simulated adverse conditions has become one of the most effective and popu-

lar approaches to enhance the capability of deep-learning-based models in addressing

adverse challenges.

Precipitations are the most common weather conditions that can be encountered

in a driving situation. Raindrops/streaks, fog clusters, haze, and snowflakes are all

among the elements to be removed in a driving scene image. Generative models

synthesize repetitive rain elements based on the rain’s physical structures including

direction, scale, and thickness [59], or translate the whole scene into rainy images [60]

or videos [61] as the corrupted pairs of the existed clean data for training purpose, in

order to eventually achieve the removal of rain. Fog or haze conditions are less easy

to be treated as solid objects, hence image translations are widely applied to acquire

adverse data. The hazy effects of an image can be realized with a professional fog/haze

generator that is able to imitate real conditions of hazy scenes [85]. The quality or

the fidelity of the hazy effects are either guided by physical priors [90] or ensured
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by the parameters constraints in the translation models [71] such as Cycle-GAN [66].

With the support of data diversity, different levels and various combinations of adverse

conditions can be generated [86] [101]. More diversity in the adverse data means more

training samples, which ultimately serves the robustness of learning-based perception

models.

The augmentation for snow conditions is currently at a less mature level than rain

and fog due to the scarcity of snow presence in datasets. Attempts at the generation

of snowflakes and realistic rendering across the entire driving scene have been made

[87] in images and synthetic snow scenes have also been used for perception models

evaluation purposes [62]. But the translation of a snow scene and the embodiment of

different snow levels are still ongoing. Besides the common precipitation conditions,

contamination of the sensor emitters is also a critical corruption to perception. Mud

or water stains could obscure the camera lens and leave invalid images with large

portions blank. The difficulty of acquiring such datasets is almost beyond description.

As a result, models have been developed to generate these soiling effects on camera

and augment the contamination datasets [92]. Not only the augmentation effects are

almost as genuine as the real cases, but downstream removal models also rely on such

data greatly for training purposes.

There are two main aspects of point cloud augmentation, object augmentation,

and scene augmentation. The first mainly serves the completion of occluded objects

in indoor environments, and the latter mostly is for the transformation of an en-

tire scene, commonly involving jittering, rotation, shearing, etc. Such augmentations

aim at improving the accuracy and robustness of downstream tasks, mostly focusing

on semantic segmentation and object detection. For adverse conditions in driving

scenes, it is a complicated mix of the two aspects of augmentation mentioned above.

On one hand, the presence of weather phenomena such as water mist, agglomerated

fog, and snow swirls sometimes manifest as solid "ghost" objects in the point cloud.

On the other hand, scattered noise point distribution is the result formed from ego

vehicle motion, vehicle interactions, environmental layouts, wind, etc. instead of a

fixed pattern or predictable mathematical distribution. As a result, a designated aug-
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mentation method is needed to better adapt to the features of the adverse conditions

with a deep understanding of the driving scenario, thereby enabling the generation

of paired adverse data.

LiDAR suffers the same influences that happen to cameras in terms of adverse

conditions. Rasshofer et al. [80] reproduced the optical returns of the signals measured

under weather conditions to analyze the influences of adverse conditions on LiDAR

sensors. This is one of the primary attempts at data augmentation when adverse

datasets were not common and laid a foundation for signal waveform processing in

the matter of adverse condition problems [52]. The replication of the signal returns

points out the essence of LiDAR data augmentation: Synthesizing perception results

in the same way that real adverse conditions show to the LiDAR sensor. However,

the realization of the adverse effects in point clouds still depends on the collections in

weather chambers [45] because of the requirement for paired data. The low domain

similarities between chambers and real roads aside, common experimental facilities

with controllable precipitation rates across the world can hardly simulate complicated

adverse conditions such as dynamic snowfall [6]. Therefore, it’s necessary to develop

a way to realize the adverse data augmentation in LiDAR point clouds similar to

the methods in camera images mentioned above to provide robustness to the LiDAR

perception ability in autonomous driving.

The integration of paired datasets that include both adverse effects and corre-

sponding classifications is proven to significantly improve the detectors’ proficiency

in identifying smaller entities, like pedestrians and cyclists, in challenging driving con-

ditions [45]. Hahner et al. [43] developed a method that simulates snow particles in a

2D space corresponding to each LiDAR line and adjusts each LiDAR beam’s measure-

ments based on the resulting geometry. In addition, they factored in ground wetness,

a common occurrence during snowfall, in their LiDAR point clouds as a supplement

of the augmentation. Based on testing and validation on commercial autonomous

driving detectors conducted by the DENSE group [42], it has been established that

the inclusion and enrichment of adverse effects within training datasets can enhance

the detectors’ average precision by a minimum of 2.1%, in contrast to training with
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only clear condition data. The notable enhancement observed in the performance

of 3D object detection subsequent to training on semi-synthetic snowy training data

substantiates the successful simulation of snowfall. It is of particular importance to

acknowledge that their snow augmentation approach predominantly focuses on light

snowfall conditions under the rate of 2.5 mm/hr, wherein the prevalent snow effects

in LiDAR point clouds manifest as dispersed noise points rather than snow clusters.

Snow clusters pose a greater challenge to LiDAR perception in actual driving condi-

tions and the primary focus revolves around the study of snow clusters as one of the

main representatives of adverse conditions.

In this chapter, a LiDAR point cloud augmentation model based on conditional

guides is proposed to realize the expansion of adverse condition data. Segmentation

maps capturing adverse effect presences in the point cloud as conditional guides are

produced, and effective fusion methods are designed to input both the raw data

and conditional guide into the generative model for adverse effect classification and

generation. Natural adverse effects are managed to be added into point clouds with

understanding of the scene while maintaining structural integrity as much as possible

for paired data consideration. The main contributions of this work are as follows:

1. Segmentation maps of adverse effects are produced via a designated 3D clus-

tering algorithm. With partial human annotations and weak supervision, all

the noise clusters and scattered noise points are automatically labeled in the

segmentation maps. The adverse effects classification and conditional guides

for generative models are provided through the labeled segmentation maps,

providing the basis for learning-based conditional generative models.

2. Both an early and a late data fusion are designed for the integration of the raw

data and segmentation data. Each fusion method emphasizes different stages

of the conditional learning model and presents generation results with different

strengths.

3. Natural adverse effects can be reproduced compared to real conditions and

quasi-natural effects can be generated across huge domain gaps in terms of traffic
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layouts and environments, presenting high-level robustness in the generation of

paired adverse data.

4. Experiments conducted on 3D detection methods incorporating the proposed

data augmentation scheme have demonstrated a notable enhancement in detec-

tion performance compared to the baseline model that lacks augmentation. This

finding reinforces the importance of expanding adverse datasets as proposed,

highlighting its crucial role in advancing the goal of perception improvement.

This chapter is structured as follows. The related research and background re-

viewing have already been introduced in the current section and Section 2.2. Section

4.2 explains the construction process of the segmentation map and conditional guide,

and presents the methodology of the proposed conditional generative model archi-

tecture, including the details of early and late data fusion techniques. Section 4.3

shows the qualitative and quantitative results of generated adverse effects, including

both the reproduction of real adverse effects and the quasi-natural generation of ad-

verse conditions in Nagoya. Finally, Section 4.4 summarizes this work and provides

discussions.

4.2 Conditional Generative Model

4.2.1 Clusters classification and segmentation map

In the task of adverse effects augmentation, the CADC dataset continues to be used

for its excellent representation of snow conditions. To establish a solid baseline for

classifying snow swirl clusters, 2691 samples that prominently feature snow clusters

were meticulously chosen from the entire dataset. These samples consist of 120 dif-

ferent sequences, corresponding to 120 unique driving scenarios. These scenarios

comprehensively cover aspects such as the ego vehicle’s movement, interactions with

other traffic participants, and wind influence.

For each of these scenarios, one representative frame is selected for manual anno-

tation at the cluster level, as demonstrated in the previous Fig. 3.6. All snow clusters
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Algorithm 2 Cluster-Based Snow Condition Classification
Input: Cluster Size, Center X, Y, Z coordinates, and Average Reachability Distance

for each cluster.
Output: Labels for each cluster representing different snow conditions.
1: for each cluster in the dataset do
2: if Cluster Size ∈ [2, 500] then
3: if Center 𝑋 ∈ [𝑥1, 𝑥2] and Center 𝑌 ∈ [𝑦1, 𝑦2] and Center 𝑍 ∈ [𝑧1, 𝑧2] and

Avg. Reachability Distance ∈ [0.5, 2] then
4: Label all points within this cluster as 1 (snow swirls).
5: else
6: Label all points within this cluster as 3 (objects).
7: end if
8: else if Cluster Size ∈ [1, 1] then
9: Label all points within this cluster as 2 (scattered snow).

10: else
11: Label all points within this cluster as 3 (objects).
12: end if
13: end for

that were discernible to the human eye were manually identified and labeled. The

3D clustering algorithm was then employed to aggregate and analyze their spatial

and clustering characteristics. Based on this weakly supervised approach, an auto-

matic tool for classifying snow effects was developed. This tool operates according to

Algorithm 2.

In Algorithm 2, X means the horizontal axis in BEV and Y means the vertical

axis; while Z denotes the height axis (from ground to sky). The threshold values for

the spatial XYZ coordinates and other metrics are determined through a comprehen-

sive evaluation by the proposed algorithm. To ensure absolute accuracy in cluster

identification, the thresholds are further corroborated by a secondary layer of human

verification. Notably, the XYZ coordinates represent the central point of each cluster,

thus eliminating the risk of misidentifying clusters on the margins.

CADC dataset was collected in Canada where vehicles drive on the right side of

the road and oncoming vehicles will approach the ego vehicle from the left. This

justifies the slightly closer threshold for Center X on the left (-7.7646) compared to

the right (8.4354), relative to the ego vehicle. Additionally, as illustrated in Fig. 1.4b,

the movement of the ego vehicle tends to disturb snow on the ground, creating whirls
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Figure 4.1: Examples of segmentation maps of CADC dataset. Images are rendered
with pixel values multiplied by 64 under the OpenCV BGR environment for illustra-
tion purposes. Red points denote snow clusters; blue denotes scattered snow points;
green denotes all the objects; black means void (no signal).

of snow clusters in its wake. Consequently, the threshold for Center Y at the rear

(-10.4947) is found further from the vehicle compared to the front (7.5053). Outside

of the interval of [0.5165, 1.9999] on the height direction, no clusters fit the criteria

of snow within the given X and Y range, hence the Z thresholds. This self-adaptive

approach is designed to accurately capture all snow clusters, theoretically eliminating

the possibility of errors.

The outcomes from said classification tool are depicted in Fig. 4.1. For clarity

in illustration, these images are rendered in the OpenCV BGR format, with pixel

values amplified by a factor of 64. In these visualizations, red points indicate snow

clusters, blue points represent scattered snow particles, green points denote all ob-

jects, and black signifies void areas. This classification equates to a segmentation

map with four distinct labels, effectively illuminating the presence of various adverse

conditions. This segmentation map not only provides a fundamental insight into the

characteristics of adverse effects but also aids in the generation of such conditions in

data augmentation.

Fig. 4.2 shows the architecture of the segmentation map alongside the workflow of

the condition-guided augmentation model. This presentation offers a comprehensive

view of how adverse conditions are identified, classified, and subsequently utilized in

guiding data generation for model training purposes.

The methodology begins with raw data that includes adverse conditions, which is

then processed using the 3D clustering algorithm to create a segmentation map. In
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Figure 4.2: Architecture of the condition-guided adverse effects augmentation model
based on segmentation maps. The clear data input is obtained from filtered raw
adverse data to establish intrinsic correlation for optimal training. The cluster seg-
mentation map serves as a conditional guide, which can be input into the generative
model through both early and late data fusion. Data with adverse conditions are
generated under the guidance of the segmentation map.

this map, four distinct labels are categorized. Labels 1 and 2 are assigned to noise

clusters and individual noise points, stored in the Red and Blue channels respectively.

Label 3 encompasses all other elements, such as objects and structures, essentially

anything not classified as an adverse effect, stored in the Green channel. Label 0

represents void areas, characterized by the absence of reflective signals in the point

clouds, stored in all three channels.

This segmentation map is then utilized as a conditional guide in the proposed

generative model, alongside clear data. For optimal training outcomes, it is advanta-

geous for this clear data to have some correlation with the raw data. This correlation

facilitates a more intuitive understanding of the underlying logic in adverse effect

classification. Therefore, filtered raw data are employed in this context.

The fusion of this data can be implemented at either early or late stages of the

process, each requiring different structural techniques. Experiments with both ap-

proaches were conducted, and the results demonstrate varying strengths, which will

be elaborately discussed in the subsequent sections.

82



Figure 4.3: Diagram of the early fusion process for conditional augmentation in point
clouds. A standardized transformation, 𝒯 , is applied to both point cloud inputs 𝐼𝐴,
𝐼𝐵 and their segmentation maps 𝑆𝐴, 𝑆𝐵 to ensure alignment and compatibility for
concatenation. The process results in a 6-channel dataset for each domain, blending
the original point cloud with segmentation labels. The generator 𝐺, equipped with a
4-ResNet-block structure, processes these datasets, producing snow-augmented point
clouds 𝑂𝐴 and 𝑂𝐵. These outputs retain the structure of the original datasets, with
post-processing to revert to standard RGB format.

4.2.2 Conditional guide data fusion

Early fusion with dimension expansion

The core principle of early fusion with the segmentation map is to activate the ef-

fectiveness of the conditional guide right from the beginning. This ensures that the

entire generation process is monitored and constrained within the parameters set by

the guide. Leveraging the advantage of a shared RGB data format, the possibility of

merging the segmentation map with the raw inputs is explored, as shown in Fig. 4.3.

The fusion process is initiated by setting a random transforming seed, 𝒯 , a stan-

dardized protocol to ensure that both the point cloud inputs from domains 𝐴 and 𝐵 —

𝐼𝐴, 𝐼𝐵 — and their corresponding segmentation maps 𝑆𝐴, 𝑆𝐵 undergo identical trans-

forming process prior to being fed into the generator. This consistent transforming

process is vital for aligning and rendering the datasets compatible for concatenation.

Following this, a 6-channel dataset is constructed for each domain, with the first three

channels comprising the original image and the latter three filled with the labels from
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Algorithm 3 Early fusion process for conditional augmentation model
Input: Point cloud inputs 𝐼𝐴, 𝐼𝐵 and segmentation maps 𝑆𝐴, 𝑆𝐵 from domains 𝐴

and 𝐵.
Output: Scene-adaptive augmented snowy point cloud 𝑂𝐴 and 𝑂𝐵.
1: Define transforming 𝒯 for clear inputs and segmentation maps.
2: Define generator 𝐺 with input dimension of 6-channel (3 + 3).
3: for each input 𝑖 in dataset do
4: Apply consistent transforming 𝒯 to 𝐼 𝑖𝐴, 𝐼 𝑖𝐵, 𝑆𝑖

𝐴, 𝑆𝑖
𝐵 using a fixed random seed.

5: Concatenate transformed inputs and segmentation maps along the channel di-
mension:

6: 𝐼𝑛𝑝𝑢𝑡𝑖𝐴 ← 𝐶𝑜𝑛𝑐𝑎𝑡(𝒯 (𝐼 𝑖𝐴), 𝒯 (𝑆𝑖
𝐴))

7: 𝐼𝑛𝑝𝑢𝑡𝑖𝐵 ← 𝐶𝑜𝑛𝑐𝑎𝑡(𝒯 (𝐼 𝑖𝐵), 𝒯 (𝑆𝑖
𝐵))

8: Feed 6-channel 𝐼𝑛𝑝𝑢𝑡𝑖𝐴 and 𝐼𝑛𝑝𝑢𝑡𝑖𝐵 to the generator 𝐺.
9: Generate outputs 𝑂𝑖

𝐴 and 𝑂𝑖
𝐵 with the same dimensionality as 𝐼 𝑖𝐴 and 𝐼 𝑖𝐵.

10: Prune additional channels from 𝑂𝑖
𝐴 and 𝑂𝑖

𝐵 to retrieve 3-channel output.
11: end for

the segmentation maps. This process is uniformly applied to both the clear and snowy

datasets.

Incorporating a 4-ResNet-block structure, as detailed in Section 3.5, the input

channels of the generator 𝐺 are adjusted to accommodate the six-channel input. This

modification facilitates the integration of the concatenated data. After the encoding-

decoding phase within the generator, the output comprises snow-augmented point

clouds, 𝑂𝐴 and 𝑂𝐵, for each domain. These outputs retain the format of the original

datasets, with the exception that the latter three channels, dedicated to labels, are

subsequently pruned to revert the data back to the standard RGB format. This

results in the generation of the synthesized snow point cloud.

Throughout this entire fusion process, the segmentation map remains integrally

connected with the raw data, imparting directional guidance at every stage of the

conditional generative model. This method ensures optimal guidance with mini-

mal supervision, effectively circumventing potential issues of deviation or overfitting,

which could arise from the relatively lower data weight of the labels compared to

the pixels. The efficiency of this early fusion approach is thus underscored, as is its

depiction in Algorithm 3.
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Figure 4.4: Diagram of the late fusion process for conditional augmentation in point
clouds. Input 𝐼𝐴, 𝐼𝐵 and their segmentation maps 𝑆𝐴, 𝑆𝐵 go through the same
standardized transformation, 𝒯 . Depth-conditioned features are extracted from the
segmentation map 𝑆 and sent to the cluster-segmentation fusion layer, to be further
modulated with the feature map obtained from the original input of raw point clouds.
The modulated feature map passes through the forward layers of the generator, re-
sulting in the production of the scene-adaptive augmented snowy point cloud.

Late fusion with cluster-segmentation layer

In the realm of conditional augmentation, the late fusion approach delineated in

Fig. 4.4 and Algorithm 4, stands in contrast to the early fusion methodology. This

technique preserves the separation of input data and segmentation information un-

til a pivotal moment in the generative process, allowing for a refined and adaptive

integration of conditional guidance.

The late fusion technique for conditional augmentation begins with the distinct

processing of the clear input 𝐶 and the segmentation map 𝑆. The clear input under-

goes initial processing through the shared layers of the generator 𝐺𝑠ℎ𝑎𝑟𝑒𝑑, while the

segmentation map is uniquely transformed through the cluster-segmentation fusion

layer ℱ . This layer is critical as it allows for the discrete and specialized handling of

the segmentation map, setting the foundation for the subsequent fusion process.

The segmentation map 𝑆 is processed by ℱ to yield depth-conditioned features 𝐷.

These features are crucial in directing the augmentation process, as they encapsulate

vital information about the segmentation that will guide the augmentation. From

these features, scaling 𝑆𝑐𝑎𝑙𝑒 and shifting 𝑆ℎ𝑖𝑓𝑡 factors are derived, which become
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instrumental in modulating the initial feature map extracted from the clear input.

Here, the clear input’s feature map 𝐹 , obtained through 𝐺𝑠ℎ𝑎𝑟𝑒𝑑, is modulated

through 𝐹𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 using the scaling and shifting factors derived from ℱ . This pro-

cess effectively integrates the depth-conditioned segmentation information into the

generative pathway, ensuring that the augmentation is aligned with the segmentation

map’s guidance.

The late fusion culminates as the modulated feature map 𝐹𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 passes through

the forward layers of the generator 𝐺𝑓𝑜𝑟𝑤𝑎𝑟𝑑, resulting in the production of the scene-

adaptive augmented snowy point cloud 𝑂. This output not only reflects the original

data’s structure but also integrates the depth-conditioned segmentation features, pro-

viding a dynamic and adaptive augmentation. This late-stage fusion allows the initial

features of the clear input to develop more independently, reducing risks associated

with early overfitting or deviation. Moreover, the controlled and nuanced influence

of the segmentation map, exerted through ℱ , potentially leads to more accurate and

realistic augmentations.

In this approach, where the data weights of both layers are more closely matched,

the model may encounter a level of effectiveness that challenges its stability. Given

this heightened intensity, the possibility of the model becoming overwhelmed or even

collapsing is not insignificant. To address this potential issue, an additional phase of

conditional training, implemented after the initial training process, presents itself as

a viable solution. This subsequent training stage can provide a safety net, offering

the model a chance to stabilize and adapt to the high degree of effectiveness without

compromising its overall performance.

4.2.3 Identity controlled generator

In the endeavor to augment snow effects onto clear point clouds, a key focus is placed

on preserving the intrinsic structural integrity of the input data. To achieve this,

besides the Depth loss and SSIM loss adopted from the previous research in Section

3.3.3, an approach similar to identity loss is incorporated , a mechanism that ensures

the augmented output retains the fundamental characteristics of the original point
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Algorithm 4 Late fusion process for conditional augmentation model
Input: Clear input 𝐶, segmentation map 𝑆.
Output: Scene-adaptive augmented snowy point cloud 𝑂.
1: Define cluster-segmentation fusion layer ℱ .
2: Define shared initial layers of generator 𝐺𝑠ℎ𝑎𝑟𝑒𝑑.
3: Define forward layers of generator 𝐺𝑓𝑜𝑟𝑤𝑎𝑟𝑑.
4: Process segmentation map 𝑆 through ℱ to obtain depth-conditioned features 𝐷.

5: 𝐷 ← ℱ𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛(𝑆)
6: Generate scaling factors 𝑆𝑐𝑎𝑙𝑒 and shifting factors 𝑆ℎ𝑖𝑓𝑡 from 𝐷.
7: 𝑆𝑐𝑎𝑙𝑒← ℱ𝑠𝑐𝑎𝑙𝑒(𝐷)
8: 𝑆ℎ𝑖𝑓𝑡← ℱ𝑠ℎ𝑖𝑓𝑡(𝐷)
9: Process input 𝐼 through shared layers to get initial feature map 𝐹 .

10: 𝐹 ← 𝐺𝑠ℎ𝑎𝑟𝑒𝑑(𝐼)
11: Modulate initial feature map 𝐹 with scaling and shifting factors.
12: 𝐹𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 ← (𝑆𝑐𝑎𝑙𝑒 · 𝐹 ) + 𝑆ℎ𝑖𝑓𝑡
13: Process modulated feature map 𝐹𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑 through forward layers to get final

output 𝑂.
14: 𝑂 ← 𝐺𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝐹𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑒𝑑)
15: return Output 𝑂 with cluster-segmentation features.

cloud. This aspect is crucial for maintaining realism and accuracy in the synthesized

snowy scenes. The identity loss function is shown below:

ℒ𝑖𝑑 =‖ 𝐺(𝐼𝐴)− 𝐼𝐵 ‖ + ‖ 𝐺(𝐼𝐴)− 𝐼𝐵 ‖ (4.1)

where 𝐺 is the generator, 𝐼𝐴 and 𝐼𝐵 represent the clear and snow input point clouds,

respectively.

Central to this methodology is the strategic input of the target dataset into the

model. By feeding the clear point clouds as inputs in their original form, the model

learns a mapping that minimizes alterations to the inherent structure of these point

clouds. The identity loss function acts as a regulatory mechanism, guiding the model

to respect and preserve the original data’s topology and spatial configuration.

During the training phase, the model processes the unaltered clear point clouds

alongside the primary task of generating snow-augmented point clouds. This dual

processing enables the model to compare the output against the original input, en-

suring that the augmentation process does not compromise the essential structural
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elements. The identity loss quantifies the deviation of the augmented output from

the original structure, pushing the model to generate outputs where the addition of

snow effects is seamless and natural, without distorting the underlying point cloud

architecture.

The integration of identity loss in the proposed model serves to ensure structural

fidelity, as it maintains the geometric and spatial characteristics of the original point

cloud. It enhances the realism of the augmentation by constraining the model to

respect the original data’s structure, aligning the snow effects with real-world dy-

namics. Furthermore, this approach enhances the model’s robustness, reducing the

risk of overfitting to specific snow patterns or anomalies in the training data and

thereby improving its generalizability.

4.2.4 Violations and solutions in LiDAR data augmentation

There are two primary types of discrepancies in augmented data: the physical realism

of the data compared to actual real-world scenarios and the consistency of the data

with the output formats of LiDAR sensors. Let’s explore these two aspects:

First, real-world reflection. In data augmentation, synthetic data aim to repli-

cate a specific target form. In LiDAR point cloud augmentation, this target is not

the physical presence of adverse conditions but rather their representation within

point clouds. For instance, a large cluster of snowflakes in mid-air might create a

‘ghost object’ and leave voids in the point cloud due to significant signal absorption.

Therefore, the augmented representation of such a snowflake cluster should focus on

replicating this ’ghost object’ and the accompanying voids, rather than the actual

physical structure of the snowflakes. While there is an inherent discrepancy between

the augmented and actual physical forms, the primary objective of augmentation is

not physical accuracy but replicating the perceptual effects as they would be captured

by LiDAR sensors. As long as the augmentation accurately reflects these effects, it is

deemed successful, irrespective of its fidelity to the physical reality.

Secondly, the violation against LiDAR sensor properties. Violations concerning

LiDAR sensor properties are a frequent occurrence in data augmentation, and various
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solutions have been proposed to address them. LiDAR sensors perceive the world in

a polar coordinate system, with the sensor at the center, as opposed to a Cartesian

coordinate system. Initially, this difference wasn’t adequately considered in scene

transformations, because added noise was uniformly distributed throughout the scene

[88]. However, as demands for accuracy increased, the physical characteristics of noise

points began to be incorporated. For instance, a normal distribution was used for

arranging synthetic snow points to more accurately reflect their physical properties

[88], but the violation remains. A more refined approach involves resampling the

entire dataset in a resolution that corresponds to the sensor’s horizontal turning

rate and the number of vertical channels. This method has been validated for its

effectiveness in multiple studies [89] [154] [155]. Such resampling ensures that the

augmented data more accurately mirror the way LiDAR sensors capture and interpret

the world, leading to more realistic and useful augmentation outcomes.

Lastly, occlusion poses a potential risk in point cloud data augmentation, where

the addition of extra points could obscure the trace of an original signal, rendering

the original point’s presence illogical. While this topic is not extensively covered in

current academic literature, two perspectives can be offered:

1. Spherical coordinates filtering:

Most points introduced into the point clouds are intended to be synthetic noise,

and their existence typically remains minimal, often as low as 1%. Consequently, the

impact of occlusion by these points is generally not seen as a significant threat to the

point cloud’s integrity. However, in certain conditions, like severe snow swirls observed

in adverse datasets, the proportion of noise points can escalate to as much as 35%.

This substantial increase occurs approximately 10% of the time and is too significant

to overlook. To address this, a filtering method based on spherical coordinates is

suggested.

By converting the LiDAR point cloud’s Cartesian coordinates (x, y, z) into spher-

ical coordinates (𝜃, 𝜑, 𝑟), it becomes feasible to identify points sharing the same

angular coordinates (𝜃, 𝜑) but differing in the radial distance (𝑟). Points with iden-

tical angular coordinates but larger radial distances would be recognized as occluded

89



by the artificially added points. This conversion and subsequent filtering ensure an

accurate representation of the occlusion effects caused by augmented data.

2. Unsupervised deep-learning insights:

Deep-learning models, as demonstrated in previous works, have shown an intrinsic,

unsupervised ability to understand adverse effect features and driving scene dynamics.

This is exemplified in Fig. 3.7, where the color coding within the adverse effects indi-

cates varying heights: clusters near the ego vehicle are slightly elevated due to swirl

effects, and those more sparse clusters on the sidewalks are even higher, influenced

by wind.

In the transformation results showcased in Fig. 3.10 and Fig. 3.11, it can be

observed that objects originally obscured by adverse clusters are reconstructed into

complete forms by the model. This indicates that these deep-learning models are not

only recognizing effect features but also comprehending the broader scene, includ-

ing the occlusion aspects of objects. Such insights are crucial as they suggest that

these models can inherently account for and adapt to the complexities of occlusion in

augmented point cloud data.

4.3 Experiments and Results

4.3.1 Reproduction of adverse conditions

Experiment settings

Experiments using the trained model were carried out on the CADC dataset which

was split in a 6:1:3 ratio for training, validation, and testing purposes. With available

ground truth for CADC, the goal is to replicate the adverse effects within this dataset

and assess the model’s generation capabilities through a comparison between the

synthesized and original data. Additionally, experiments using both early and late

fusion models were conducted on the CADC dataset. This shows the strengths and

limitations of each model respectively. The model used for presenting the optimal

results in this thesis adheres to the same loss function configurations as in Sec. 3.3.3
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with the weight of the identity loss set to 1.

Training, testing, and data processing were executed using the Pytorch framework.

The proposed model incorporates four ResNet residual blocks within the generator,

optimized for training on two NVIDIA RTX 3090Ti graphics cards. A batch size

of 4 was set, a decision influenced by the complexity inherent in the conditional

generative models. For the continued training phase in the late fusion approach, a

linearly declining learning rate schedule starting from 0.02 was employed, until the

model reached convergence.

Qualitative results

Fig. 4.5, Fig. 4.6, and Fig. 4.7 present the adverse effect reproduction of the CADC

dataset based on the early fusion model. For sets (a) (b) and (c) in each figure, the

clear data, fake snow generation, and the real snow from CADC are placed at the

left, middle, and right columns respectively. Each of the scenarios features an overall

BEV in the top row, the clustered results showing the changes of snow clusters in

the middle row; and the bottom rows showing magnified third-person views of the

point cloud’s central region, where the ego vehicle is situated. The same arrangement

applies to the following qualitative results.

Observations from the areas highlighted by red arrows and enclosed within red

boxes indicate a notable reproduction of scattered snow features. Snow clusters, par-

ticularly those in purple and dark blue around the ego vehicle appear enhanced. A

detailed examination of the clustering in set (a) from Fig. 4.5, and set (c) in Fig.

4.7, reveals that the synthesized snow clusters are denser and more extensive than

in the actual scenarios. However, in set (b) from Fig. 4.6, the synthetic clusters do

not extend across the central region as broadly as in the real case. This outcome is

attributed to the early fusion method’s characteristic of capturing both snow clusters

and objects via segmentation maps. As a result, while the model efficiently replicates

snow clusters, it simultaneously accentuates relevant objects with minimal interfer-

ence from surrounding minor snow clusters. This effect is evident in the bottom row

of Fig. 4.6, where an area with multiple pedestrians is shown to be enlarged. Here,
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Figure 4.5: 1st set of point cloud augmentation results with early fusion model.
First row - BEV scenes, colored by height; middle row - clustered results, colored by
cluster groups; bottom row - enlarged third-person view center part around the ego
vehicle, colored by height. Red boxes and arrows - locations where snow’s effects are
reproduced.
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snow clusters are generated without significantly dispersing the signal on pedestrians,

but rather enhancing it. Similar patterns are observable in Fig. 4.7.

In summary, the early fusion model effectively replicates adverse weather effects in

the CADC dataset while ensuring that pertinent objects remain clearly identifiable,

maintaining the integrity of their structure.

Fig. 4.8 and Fig. 4.9 show the reproduction of adverse effects in the CADC

dataset using the late fusion model, arranged similarly to the earlier figures. From

the BEV and clustering results, indicated by red arrows, it can be discerned that

the generation of adverse effects, particularly snow clusters, does not overflow the

level observed in actual snow conditions. Consequently, the enhancement of cars and

pedestrians is less pronounced, as highlighted in the orange and green boxes in the

bottom rows.

Focusing on the red boxes, which zoom into the central areas, the replication of

scattered snow points is observed. However, their presence is noticeably less extensive

compared to the actual scenarios. This could suggest a different kind of resemblance

to the CADC dataset, but the shortfall in generating snow clusters and scattered

snow points highlights a limitation of the late fusion model. It appears to struggle

with fully leveraging the conditional guide function of the segmentation maps. This

finding aligns with the expectations for the late fusion model, particularly considering

the continued training techniques employed. It suggests that the late fusion approach

may not match the generative capabilities of the early fusion model.

3D clustering results

The 3D clustering performance of synthesized snow data, augmented using the early

fusion technique, is compared with the CADC dataset, as detailed in Table 4.2 and

visualized in Fig. 4.10. This alignment demonstrates the effectiveness of the synthesis

approach in replicating real-world snowy conditions, while also introducing certain

enhancements.

The synthesized snow dataset exhibits a modest increase in the number of noise

points (3025.06) compared to the CADC dataset (2865.07). This higher noise level
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Figure 4.6: 2nd set of point cloud augmentation results with early fusion model.
First row - BEV scenes, colored by height; middle row - clustered results, colored by
cluster groups; bottom row - enlarged third-person view center part around the ego
vehicle, colored by height. Red boxes and arrows - locations where snow’s effects are
reproduced.
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Figure 4.7: 3rd set of point cloud augmentation results with early fusion model.
First row - BEV scenes, colored by height; middle row - clustered results, colored by
cluster groups; bottom row - enlarged third-person view center part around the ego
vehicle, colored by height. Red boxes and arrows - locations where snow’s effects are
reproduced.
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Figure 4.8: 1st set of point cloud augmentation results with late fusion model, with
colors encoded by height. First row - BEV scenes; middle row - clustered results; bot-
tom row - enlarged third-person view center part around the ego vehicle. Red boxes
and arrows - locations where snow’s effects are reproduced; green boxes - vehicles;
orange boxes - pedestrians.
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Figure 4.9: 2nd set of point cloud augmentation results with late fusion model, with
colors encoded by height. First row - BEV scenes; middle row - clustered results; bot-
tom row - enlarged third-person view center part around the ego vehicle. Red boxes
and arrows - locations where snow’s effects are reproduced; green boxes - vehicles.
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in the synthesized dataset can be seen as an improvement, potentially offering a

more robust training environment for machine learning models by simulating more

challenging real-world conditions.

Similarly, the number of clusters is slightly higher in the synthesized dataset

(1011.04) than in the CADC dataset (964.23). This increase suggests that the synthe-

sis process adds complexity to the point cloud data, thus providing a more detailed

representation of snowy environments.

In terms of reachability distance, inter-cluster distance and Davies-Bouldin In-

dex (DBI), the synthesized snow dataset is quite comparable to the CADC dataset,

with only minor deviations. These similarities indicate that the augmentation pro-

cess maintains the essential spatial relationships between points, a crucial aspect for

realistic scene representation.

The slight decrease in the average size of clusters in the synthesized data (12.9028)

compared to CADC (14.1603) further emphasizes the finer granularity achieved through

the proposed augmentation technique. This characteristic might prove advantageous

in scenarios where detailed differentiation of features is required.

Finally, the Silhouette Score shows a marginal improvement in the synthesized

snow dataset (-0.2730) compared to the CADC dataset (-0.3011). This enhancement

suggests that the synthesized data maintains clear cluster differentiation, which is

benificial for effective machine learning model training.

Overall, the artificially generated snow demonstrates a remarkable replication ca-

pacity, as evidenced by the highly alike violin plots (left and right) in Fig. 4.10,

including the quartile lines. The degree of skewness (8.87, 0.33, and 22.43) is remark-

ably close to the previously mentioned CADC snow skewness (9.64, 0.30, and 21.49),

further attesting to the model’s ability to accurately reproduce snow effects.

The 3D clustering metrics for the synthesized snow dataset, generated using the

late fusion technique, are presented in Table 4.3, offering a comparative perspective

against the CADC dataset. This comparison not only sheds light on the late fusion

model’s capabilities but also allows for an understanding of its differences from the

early fusion approach.
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Table 4.2: The 3D clustering metrics (avg.) comparisons between CADC and syn-
thesized snow with early fusion technique.

Items CADC Synthesized snow

Noise Number 2865.07 3025.06
Cluster Number 964.23 1011.04

Reachability Distance 0.4076 0.4339
Inter-Cluster Distance 51.4262 51.1447

Size of Clusters 14.1603 12.9028
Davies-Bouldin Index 4.0279 4.7175

Silhouette Score -0.3011 -0.2730

Figure 4.10: Violin plots for fake snow results with early fusion model. Limits on
the y-axes are set for a better illustration of the distributions.

The synthesized snow dataset with late fusion shows a notable increase in the

number of noise points (3124) compared to the CADC dataset (2598.17). This in-

crease is more pronounced than that observed in the early fusion model, indicating a

tendency of the late fusion approach to generate more noise. While this could be ben-

eficial in creating challenging scenarios for model training, it also suggests a potential

over-emphasis on noise generation instead of cluster, as evidenced in the the number

of clusters in the late fusion synthesized dataset (998.77) being closer to the CADC

dataset (954.24) than what was observed with the early fusion technique. This closer

alignment might imply a more conservative generation of clusters, aligning with your

previous observation of the late fusion model’s less pronounced enhancement of cars

and pedestrians.

In examining the reachability distances and cluster sizes in the late fusion synthe-

sized dataset, metrics that closely mirror those of the CADC dataset were observed.

The reachability distances (0.4358) and inter-cluster distances (44.3044) in the syn-

thesized data exhibit a similarity to the CADC dataset’s figures (0.3805 and 45.9245,
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respectively). Additionally, the size of clusters in the late fusion data (13.7164) also

approximates the CADC dataset (14.9750). While these measures suggest a level of

similarity to the real-world dataset, it’s important to note that this resemblance is

not as pronounced as that achieved by the early fusion technique. The late fusion

approach, in this aspect, shows a slightly less effective replication of the CADC’s

intricate clustering characteristics.

The Davies-Bouldin Index and Silhouette Score show a slight increase in the late

fusion synthesized dataset compared to CADC, indicating a minor reduction in clus-

tering quality. This could be reflective of the model’s struggle to fully leverage the

conditional guide function of the segmentation maps, as noted in the previous discus-

sion.

Comparing these results with the early fusion technique, it becomes evident that

the late fusion model exhibits a different kind of resemblance to the CADC dataset.

While it manages to generate a closer number of clusters and maintains a reasonable

level of noise, it falls short in replicating the exact nature and extent of snow clusters

and scattered snow points. The violin plots in Fig. 4.11 demonstrate smoother edges

of reachability distances and the more concentrated distribution in cluster sizes of

the imitation snow, hinting at a feature of reduced noise at the center. However, the

skewness values associated with the artificially generated heavy snow are 9.95, 0.42,

and 31.75, respectively. These values start to leave a distance from the actual data,

which are 10.45, 0.42, and 32.76, respectively, compared to early fusion.

The disparity is likely due to the late fusion model’s approach to integrating the

segmentation map information, which occurs later in the generative process and may

not be as effective in guiding the generation of realistic snow effects. In summary, the

late fusion synthesized snow dataset demonstrates a unique approach to augmenting

point cloud data with snow effects. While it shows certain improvements in noise

generation and cluster numbers, it also reveals limitations in accurately replicating

the detailed structure of snowy environments. This analysis suggests that while the

late fusion technique offers a viable alternative, it may not quite match the early

fusion model in terms of generative capabilities for reproducing complex snow effects.
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Table 4.3: The 3D clustering metrics (avg.) comparisons between CADC and syn-
thesized snow with late fusion technique.

Items CADC Synthesized snow

Noise Number 2598.17 3124
Cluster Number 954.24 998.77

Reachability Distances 0.3805 0.4358
Inter-Cluster Distances 45.9245 44.3044

Size of Clusters 14.9750 13.7164
Davies-Bouldin Index 5.4138 6.0746

Silhouette Score -0.3699 -0.3661

Figure 4.11: Violin plots for fake snow results with late fusion model. Limits on the
y-axes are set for a better illustration of the distributions.

Precision and recall

To assess the effectiveness of the proposed conditional generative model in synthesiz-

ing adverse effects, particularly in comparison with other methods, a precision-recall

analysis was conducted along with an ablation study on the model without the con-

ditional guide, as outlined in (4.2) and (4.3). Similar to the previous approach, the

point clouds were analyzed on a cluster basis. This analysis, focusing on replicating

snow effects within the CADC dataset, bases its calculations on the CADC ground

truth to ensure reliability.

For this evaluation, a subset of samples from the test dataset, which had not

been included in training, was selected without bias. Each cluster in these samples

underwent manual labeling to identify the presence of snow clusters. Unlike the pre-

vious task, where a trade-off was a key consideration, here the primary focus was

on maintaining scene integrity only. Consequently, the parameters for all compara-

tive methods were uniformly set, ensuring equal treatment in parameter application
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Figure 4.12: Precision and recall rates comparisons of adverse effects generation based
on snow clusters.

across all methods under evaluation. This consistent parameter setting allows for a

fair comparison of each method’s ability to generate realistic adverse effects while

preserving the integrity of the driving scene.

Precision =
generated clusters ∩ labeled as snow

total generated clusters
(4.2)

Recall =
generated clusters ∩ labeled as snow
total labeled snow clusters in CADC

(4.3)

Looking at Fig. 4.12, it’s evident that both the model without conditional guide

and CUT struggle to accurately reproduce snow clusters found in the original dataset.

This challenge stems from their limited understanding of adverse effects. Intriguingly,

the precision of the model without conditional guide slightly exceeds the proposed

model by less than 1%. This minor advantage primarily arises from its handling of

occluded objects, a residual aspect in this model. As the proposed model endeavors

to regenerate snow clusters, it inadvertently reconstructs or augments some partially

composed non-snow objects, leading to a precision just shy of 90%, but an apparent

improvement in recall rate.

Conversely, the CVAE model, despite conditional guidance, fails to effectively
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address driving scenarios. Its focus is predominantly on generating snow clusters

around the vehicle’s immediate vicinity, neglecting the broader scene. This results in

a significant loss of the original point structure and tiny snow clusters in other areas,

contributing to its notably low recall rate. As for randomly generated points with

normal distribution, the 3D clustering algorithm has a hard time identifying distinct

clusters, leading to a substantial increase in noise with a corresponding decrease in

cluster identification, as reflected in the 14.75% precision rate.

In summary, the proposed conditional guided generative model stands out with

the highest recall in reproducing snow effects from the CADC dataset, achieving this

with satisfactory precision. This underscores the efficacy of the proposed model in

generating realistic adverse weather conditions for LiDAR point clouds.

Detection rate improvement

For evaluating improvements in detection, the 3D object detection metrics from the

KITTI evaluation framework [75] were utilized. In line with [156], the average pre-

cision (AP) across 40 recall positions is reported to ensure a balanced comparison.

The investigation focuses on the impact of the proposed augmentation scheme for

adverse conditions on two widely used 3D object detection methods [157] [158]. The

proposed approach against a baseline model without any augmentation is assessed,

and then the results of using augmentation data generated by the proposed model

are considered. In addition, the results with those obtained from de-noising point

clouds using the DROR method [46] are compared. The DROR filter is selected as

the representative of noise removal algorithms to better show the difference between

clear-data-based and adverse-data-based augmentations, given its balanced perfor-

mance and wild references in literature [43].

For training the detection models, the mmdetection [159] was employed and the

default training configurations specified for each method were adhered to, ensuring

that the only variable in this comparison was our augmented data. And all methods

are trained from scratch. Augmentation data consists of 2691 frames of point cloud

with adverse effects. The training and testing datasets follow the distribution of 7:
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Table 4.4: Comparison of augmentation methods for 3D object detection in snowfall
on CADC.

Detection method PV-RCNN [157] SECOND [158]

Augmentation method None DROR Ours None DROR Ours

3D average precision (AP) 43.11 38.69 45.57 37.08 35.31 38.23

3, in which the testing dataset remains the same as in previous sections.

Detection rates are detailed in Table 4.4. 3D average precision (AP) is reported on

baseline (no augmentation) and the proposed augmentation model with 2691 samples.

Augmentation with DROR filters is also provided for reference. A key observation

from this data is that the comprehensive augmentation, featuring both scattered and

clustered adverse effects, markedly enhances performance in the most challenging test

scenario, specifically during fierce snowfall. This enhancement is significant when

compared to both the baseline approach and the de-noising filter. Here, the complete

augmentation outperforms the baseline by a noteworthy 2.46% increase in AP.

An example of visual results from PV-RCNN showing the data augmentation

scheme is presented in Fig. 4.13. The top row displays a composite of RGB images

from three cameras, oriented left-front, directly ahead, and right-front, collectively

representing a 180∘ frontal view of the ego vehicle. The subsequent BEV point clouds

compare detection outcomes using the proposed augmentation method and the DROR

filter against a baseline with no augmentation, alongside the ground truth. Pedestri-

ans are denoted in red dots while cars (and trucks) are denoted in black bounding

boxes with red dots in the center.

From the RGB images and ground truth, a scenario with many moving pedes-

trians and parked cars under heavy snow is observed. The baseline model, lacking

augmentation data, struggles to detect pedestrians and cars beyond a certain distance

or those partially obscured, and often fails to accurately gauge the gesture and dimen-

sions of detected objects. In contrast, the proposed augmented data method enables

more precise detection of cars and pedestrians, particularly those nearer to the ego

vehicle, with accurate parameters. As for the augmentation scheme with DROR fil-
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Figure 4.13: Qualitative comparison of detection results on samples from CADC
containing fierce adverse conditions. The top row shows the corresponding forward
180∘ RGB images. The rest show the LiDAR point clouds with ground-truth boxes
and predictions using the baseline (“no augmentation”), the proposed augmentation,
and DROR. Red dots denote pedestrians, and black boxes with red dots in the center
denote cars (or trucks). Point cloud colors encoded by height.
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ters, the performance turns out to be worse than the baseline. This is attributed to

the removal of critical points necessary for object detection.

However, it’s important to note that two undetected parked cars at the bottom

left and two undetected pedestrians far ahead, as shown in the ground truth, are

identified through camera assistance due to their minimal LiDAR signal presence.

This is a common issue in adverse condition datasets and partly explains the generally

low average detection rate observed in Table 4.4.

There is a car near the rear of the ego vehicle in the ground truth, barely no-

ticeable due to snow swirl occlusion, which none of the methods detect due to severe

occlusion. This might hint at the limitation of current learning-based perception im-

provement methods and suggest the need for advancements in sensor hardware to

further overcome such challenges.

4.3.2 Synthetic adverse conditions

Experiment settings

For the LIBRE Nagoya dataset [10], the objective is to evaluate the model’s per-

formance in overcoming domain gaps. The pretrained model based on CADC was

directly tested on the 6000 frames of the Nagoya dataset which was collected un-

der clear conditions in the urban area of Nagoya, Japan. This selection is partic-

ularly representative due to the significant domain differences between Canada and

Japan, especially regarding scenario layouts and traffic behaviors. The CADC dataset

predominantly features suburban environments with sparse buildings and abundant

vegetation, a contrast to the urban settings commonly found in the Nagoya dataset.

Since the Nagoya Dataset lacks ground truth, the assessment will provide 3D

clustering results without precision and recall in this task. These evaluations were

essential for a quantitative assessment of the model’s effectiveness in generating syn-

thetic snow on a clean dataset. The metrics reported in the subsequent results sections

represent average values derived from these samples.
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Qualitative results

Fig. 4.14, Fig. 4.15, and Fig. 4.16 present the adverse effect synthesis on the Nagoya

dataset where domain gap exists. The early fusion model is implemented given its

overall advantages. For sets (a) (b) and (c) in each figure, the clear data and the

synthetic snow generation from the proposed model are placed in the left and right

columns respectively. Each of the scenarios features an overall BEV in the top row,

the clustered results showing the changes of snow clusters in the middle row; and the

bottom rows showing magnified third-person views of the point cloud’s central region,

where the ego vehicle is situated. The same arrangement applies to the following

qualitative results.

The red arrows in the figures highlight the areas where snow clusters have been

generated. Upon examining these indicated locations, it’s evident that a number of

snow clusters have formed near the central area, resembling typical patterns observed

in snow-affected driving scenarios. However, it’s important to note that the level of

generated snow is not an exact match for the snow conditions found in the CADC

dataset, particularly in terms of the density of the purple and dark blue clusters

depicted in the middle rows. This discrepancy partly arises from a deliberate decision

to reduce the extent of snow generation by tuning down the weights in loss functions.

Additionally, the model is operating across a significant domain gap, characterized

by different environmental layouts and traffic patterns, which necessitates a more

cautious approach.

As a result, and as illustrated by the red boxes, the snow generation in the vicinity

of the ego vehicle and around the sidewalks predominantly features scattered snow

points, rather than extensive clusters. This cautious approach is particularly ap-

propriate given the Nagoya dataset’s inherent composition, which includes numerous

small-sized clusters, often resulting from vegetation cover and occlusions. Therefore,

generating snow in a more restrained manner is the most effective strategy to main-

tain the original structural integrity of the dataset while successfully synthesizing

quasi-natural adverse effects.
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Figure 4.14: 1st set of adverse condition synthesis on Nagoya dataset. First row - BEV
scenes, colored by height; middle row - clustered results, colored by cluster groups;
bottom row - enlarged third-person view center part around the ego vehicle, colored
by height. Red boxes and arrows - locations where adverse effects are synthesized.
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Figure 4.15: 2nd set of adverse condition synthesis on Nagoya dataset. First row
- BEV scenes, colored by height; middle row - clustered results, colored by cluster
groups; bottom row - enlarged third-person view center part around the ego vehicle,
colored by height. Red boxes and arrows - locations where adverse effects are syn-
thesized.
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Figure 4.16: 3rd set of adverse condition synthesis on Nagoya dataset. First row - BEV
scenes, colored by height; middle row - clustered results, colored by cluster groups;
bottom row - enlarged third-person view center part around the ego vehicle, colored
by height. Red boxes and arrows - locations where adverse effects are synthesized.
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Table 4.5: The 3D clustering metrics (avg.) comparisons between the original Nagoya
dataset and synthesized snow in Nagoya.

Items Nagoya Synthesized snow

Noise Number 1204.67 2631.46
Cluster Number 480.25 1073.52

Reachability Distance 0.2470 0.3952
Inter-Cluster Distance 59.30 49.45

Size of Clusters 28.2638 13.3046
Davies-Bouldin Index 2.3653 4.4149

Silhouette Score -0.2170 -0.2927

3D clustering results

Table 4.5 offers a quantitative comparison between the original Nagoya dataset and

its augmented version with synthesized snow, demonstrating the effects of the snow

synthesis process. Given the absence of ground truth data for snow conditions in the

Nagoya dataset, the violin plots were not included.

The synthesized snow dataset shows a notable increase in the number of noise

points, rising from 1204.67 in the original Nagoya dataset to 2631.46. This increase is

indicative of the additional complexity introduced by the synthetic snow, representing

a more challenging scenario for processing and analysis. This statistic is one of the

most direct indicators of a successful adverse effect synthesis.

The cluster number more than doubles in the synthesized dataset (1073.52) com-

pared to the original dataset (480.25), a direct consequence of the snow synthesis

process. The additional clusters likely represent the snowflakes or snow clusters,

providing a more realistic representation of a snowy environment.

Reachability distances in the synthesized dataset show an increase to 0.3952 from

0.2470 in the original dataset. This change suggests that the introduction of snow

creates a more scattered distribution of data points, emulating the disperse nature of

snowfall and its impact on the visibility and distinguishability of objects within the

dataset.

The average inter-cluster distance decreases in the synthesized dataset (49.45)

compared to the original dataset (59.30). This reduction might reflect the additional
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clusters formed due to snow, which are closer together, simulating the dense and

overlapping nature of snow in the environment.

There is a notable decrease in the average size of clusters in the synthesized data

(13.3046) compared to the original dataset (28.2638). This decrease can be attributed

to the synthesized snow creating smaller, more numerous clusters, which is consistent

with the physical characteristics of snow affecting spatial data.

The Davies-Bouldin Index increases in the synthesized dataset (4.4149) compared

to the original (2.3653), indicating less compact but more separated clusters, a likely

result of snow altering the spatial relationships within the data. Similarly, the Silhou-

ette Score drops slightly in the synthesized dataset (-0.2927) compared to the original

(-0.2170), suggesting a decrease in the separation distance between neighboring clus-

ters due to the added snow.

Overall, these metrics demonstrate the significant impact of synthesized snow on

the Nagoya dataset, successfully adding quasi-natural adverse effects to the scenario,

which is crucial for testing and improving algorithms in snowy conditions.

4.4 Conclusion

In this chapter, an innovative approach has been presented to augment adverse

weather condition data in autonomous driving applications. The proposed model,

leveraging conditional guides, has shown proficiency in generating natural adverse

effects in LiDAR point cloud data. This augmentation is critical given the scarcity

of diverse weather conditions in existing datasets, which hinders the development of

robust perception systems for autonomous vehicles.

The proposed methodology involved the development of a segmentation and clas-

sification system for adverse weather effects using a designated 3D clustering algo-

rithm. This system effectively guides the generative model in creating precise and

realistic augmentations. Both the early and late data fusion methods have been ex-

plored, each providing unique benefits in integrating raw and segmented data. These

methods were validated across two datasets with significant differences, the CADC
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and LIBRE Nagoya datasets, demonstrating the model’s effectiveness in replicating

adverse weather conditions and its capability to bridge domain gaps.

A noteworthy outcome of this research is the observed improvement in detection

rates when perception models are trained with augmented data. This enhancement

in performance under adverse conditions is a significant stride towards ensuring safer

and more reliable autonomous driving technologies.

However, it’s important to acknowledge that the current work primarily derives

its adverse condition data from a single dataset, the CADC. While this dataset has

provided a robust foundation for initial investigations, particularly with snow as a test

subject, the diversity of adverse weather conditions experienced globally suggests a

need for a broader data source. Moving forward, a key area of development will

be to extend the data sources beyond the singular dataset. This expansion will

enable the capture of a more comprehensive range of adverse conditions, reflecting

the varied and unpredictable nature of weather around the world. By integrating

data from multiple datasets, each representing different environmental and weather

conditions, the proposed model can be further refined and its applicability broadened.

This approach will enhance the model’s ability to simulate a wider array of adverse

scenarios, thereby improving the robustness and reliability of perception systems in

autonomous vehicles under diverse environmental conditions.

In conclusion, this work addresses a vital need in the field of autonomous driving

by enriching the diversity and realism of adverse weather data available for training

perception systems. The progress made in this research not only contributes signifi-

cantly to the field but also lays the groundwork for further advancements in enhancing

autonomous vehicle safety and reliability in challenging environmental conditions.
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Chapter 5

Summary and Future Works

5.1 Thesis Summary

This thesis has embarked on an ambitious journey to address the critical challenges

that adverse weather conditions pose to LiDAR-based perception systems in au-

tonomous driving. Recognizing the limitations in current datasets and perception

models under such conditions, this research has focused on enhancing LiDAR point

cloud data’s robustness and reliability in adverse environments. By combining in-

depth analysis with innovative computational techniques, significant strides have been

made in advancing the field of autonomous vehicle perception.

This research commenced with a detailed exploration of the impacts that various

adverse conditions have on perception sensors, informing the understanding of how

these conditions compromise sensor performance. This understanding was crucial to

developing strategies for counteracting these challenges. The specifics of how each

type of adverse weather have been dug into — rain, fog, snow, and contamination —

uniquely affects sensors like LiDAR, cameras, radar, and ultrasonic systems.

The focus on LiDAR sensors revealed the complexities of how point clouds are

distorted in adverse weather where both false and missing detections occur. For cam-

era systems, the challenge lay in the lens blur caused by these conditions, drastically

reducing visibility and the effectiveness of image processing. In the case of radar

sensors, their diminished reliability due to factors like wetness and heavy precipita-
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tion was analyzed, while ultrasonic sensors showed compromised performance due to

acoustic signal attenuation in conditions such as heavy rain or snow. This compre-

hensive sensor analysis was instrumental in directing the research towards enhancing

perception under these challenging conditions. It highlighted the necessity of a holis-

tic approach that addresses the collective impacts of adverse conditions on multiple

sensor systems, guiding the focus on improving LiDAR point cloud data for more

reliable autonomous vehicle perception.

Addressing these challenges, this research focuses on the potential of deep learning-

based models, a path less traveled in the domain of perception under adverse con-

ditions, after a range of adaptive filters on authentic adverse data were rigorously

evaluated, an advanced adaptive filter centered on non-geometric variables was even-

tually designed. Unlike traditional mathematical approaches that offer limited scope,

learning-based models unveil a broader spectrum of both apparent and latent features

inherent to adverse driving scenarios. In light of the rapid development of machine

learning technology, the L-DIG model was developed, a GAN-based method utiliz-

ing depth image priors for the transformation of LiDAR point clouds under various

adverse conditions. This innovative model, trained with unpaired datasets, is profi-

cient at transforming point clouds from adverse to clear conditions, demonstrating a

profound understanding of the unique characteristics of adverse effects. This transfor-

mation is crucial, considering adverse conditions’ tendency to form clusters of crystal

aggregates and irregular swirls, which introduce irregular noise and anomalies in Li-

DAR point clouds. The proposed unique discriminator structure and loss functions,

including depth and SSIM losses, play a pivotal role in maintaining the integrity of

the driving scene while effectively removing noise.

Complementing the L-DIG model is the customized 3D clustering algorithm,

specifically tailored for analyzing and quantifying the adverse effects in LiDAR point

clouds. This algorithm enables adaptive clustering of various forms of adverse ef-

fects, presenting a comprehensive quantitative evaluation of the conditions within the

dataset. This strategic combination of a deep-learning model and advanced filtering

techniques signifies a major leap forward in the ability to transform and refine LiDAR
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point cloud data, thereby enhancing the perception capabilities of autonomous driving

systems under adverse weather conditions. The proposed approach marks a signifi-

cant departure from the traditional de-noising methods, offering a more dynamic and

insightful solution to the challenges posed by adverse weather. The outcomes of this

research not only contribute to the field of autonomous vehicle technology but also

set the stage for future advancements in machine learning and sensor-based technolo-

gies, geared towards overcoming the hurdles of operating in challenging environmental

conditions.

Another cornerstone of this research was the development of a conditional gener-

ative model proficient in synthesizing natural adverse effects in LiDAR point cloud

data. This model plays a crucial role in addressing the scarcity of varied weather con-

ditions in existing datasets, a significant hurdle in the advancement of autonomous

driving technologies. Utilizing advanced data fusion techniques and cluster-based

segmentation maps as conditional guides, the proposed model has demonstrated an

exceptional ability to generate realistic and precise adverse weather effects. This

achievement is particularly noteworthy considering the challenges posed by the lim-

ited representation of adverse conditions in current driving datasets.

The effectiveness of the proposed model is underscored by the superior perfor-

mance of methods employing adverse conditions data augmentation compared to tra-

ditional classification-based methods. The inherent difficulty in annotating or label-

ing adverse conditions, coupled with the sparsity of samples featuring such conditions

in existing datasets, necessitates a more innovative approach. The proposed model

addresses these challenges by augmenting clear condition datasets with simulated ad-

verse conditions, thereby enhancing the deep learning models’ capability to navigate

and interpret complex driving scenarios under diverse weather conditions.

Key contributions of this work include the development of segmentation maps of

adverse effects using the specially designed 3D clustering algorithm, the provision

of classification and conditional guides for generative models, and the design of both

early and late data fusion methods. Each of these elements contributes to the model’s

capability to not only reproduce natural adverse effects but also to bridge the gap
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between different traffic layouts and environmental conditions, thus offering high-level

robustness in the generation of paired adverse data.

The research in this area opens up new avenues for enhancing the perception

models used in autonomous driving. By successfully integrating paired datasets that

include both adverse effects and corresponding classifications, it becomes possible

to significantly improve detection rates, especially in identifying smaller entities like

pedestrians and cyclists, under challenging driving conditions. This enhancement is

a testament to the potential of the proposed approaches in elevating the safety and

reliability of autonomous driving technologies.

In summary, this thesis has contributed significantly to the advancement of au-

tonomous vehicle technologies under challenging environmental conditions. The pro-

posed innovative approaches in transforming point clouds and expanding adverse

condition data have laid a solid groundwork for future research. Moving forward,

the insights and methodologies developed in this thesis will pave the way for further

advancements, aiming to fortify the resilience and adaptability of autonomous driving

technologies in the face of dynamic and diverse adverse environmental challenges.

5.2 Future Works

The journey of advancing LiDAR sensor perception in adverse conditions is ongoing,

and the future work within this domain holds immense potential for innovation and

enhancement of autonomous driving systems. The research avenues that lie ahead

are both challenging and exciting, promising significant contributions to the field of

IoT society.

5.2.1 Addressing special adverse conditions

One of the specialized adverse effects that demand attention is the influence of strong

light on sensor performance. The issue of strong light and its impact on sensor

performance in autonomous vehicles is a tricky area that requires dedicated atten-

tion in future research endeavors. Strong light presents a unique challenge in the
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realm of sensor perception, primarily due to its non-physical nature. Unlike other ad-

verse conditions that have tangible attributes, strong light is a phenomenon that can

significantly distort sensor readings without a corresponding physical object. This

distortion manifests as an overwhelming signal that can saturate sensors, particularly

LiDAR, leading to loss of data fidelity and potentially causing safety-critical errors.

To address this challenge, future research must move towards innovative filtering

techniques that not only reduce the noise induced by strong light but also retain the

structural integrity of the sensor data. Signal-pattern-attention filtering emerges as a

promising direction in this regard. Such filtering methods would involve sophisticated

algorithms capable of identifying the specific signatures of noise created by intense

light sources and attenuating their effects on the sensor’s signal. The goal would

be to enable the system to maintain high signal quality even when confronted with

conditions that would traditionally result in signal loss or corruption.

Beyond filtering techniques, enhancing the robustness of perception models against

the effects of strong light is crucial. This enhancement can be achieved through des-

ignated data augmentation strategies that introduce simulated strong light scenarios

into training datasets [91]. By creating and training on these augmented datasets,

perception models can learn to recognize and compensate for the aberrations caused

by such lighting conditions. The data augmentation process would involve generat-

ing a diverse range of scenarios that a perception sensor might encounter, from the

low-angle glare of sunrise and sunset to the artificial brightness of urban illumination.

In essence, the future work aimed at mitigating the effects of strong light on

sensor performance will involve two aspects. On one hand, it will leverage advanced

signal processing and filtering methods to improve immediate sensor data quality.

On the other hand, it will employ strategic data augmentation to build foundational

resilience in perception models, allowing sensors to operate safely and effectively in a

world where lighting conditions are ever-changing and often less than ideal.
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5.2.2 Exploring other modalities and sensor fusion

Another promising direction for future research is the exploration of new modalities

of LiDAR technology, such as Frequency Modulated Continuous Wave (FMCW) and

aerial LiDARs, along with the integration of radar and various cameras. With the

rapid development of RSU (Roadside Units) and UAVs like drones, it’s becoming

realistic to do weather transportation perception from the top view, which sees what

couldn’t be seen from the ground [160]. These technologies present a rich opportunity

to capture a broader spectrum of environmental data, but they also introduce the

challenge of fusing different data formats. Overcoming this challenge will involve

creating new conditional guides that can leverage additional information provided by

these diverse sensors [42]. By synthesizing this information, a learning-based model

with multiple input channels that can process and integrate a variety of sensor data

can be developed, enhancing the perception system’s ability to operate cohesively in

complex environments.

This holistic approach to sensor fusion will enable a more comprehensive under-

standing of the vehicle’s surroundings, taking advantage of the strengths of each

sensing modality. For instance, while LiDAR provides high-resolution distance mea-

surements, cameras offer rich color and texture information, and radar adds robust-

ness under adverse weather conditions. The fusion of these modalities will lead to

a synergistic model that is greater than the sum of its parts, ensuring more reliable

navigation and decision-making by the autonomous driving system.

In conclusion, the path ahead for improving LiDAR sensor perception in adverse

conditions is marked by innovative research strategies aimed at overcoming current

limitations. By tackling the unique challenges presented by special adverse effects and

harnessing the power of sensor fusion, more sophisticated and resilient autonomous

driving technologies can be looked forward to being developed. These advancements

will not only improve the safety and reliability of autonomous vehicles but also pave

the way for their widespread adoption in various driving scenarios.
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