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Abstract

The safety performance of autonomous vehicles is closely related to their behavior under

different weather conditions. In clear weather, sensors like cameras and radars can usually

provide more accurate data. This enables the vehicle to better recognize traffic signs, ob-

stacles, and other vehicles, thereby reducing the risk of accidents. Camera sensors are one

of the dominant modalities in autonomous vehicles due to their high resolution, fast data

rates, and direct correlation with human perception, which is crucial for understanding and

navigating the environment. In contrast, rain, snow, and other adverse weather conditions

will have a negative impact on data quality, such as low image contrast, color distortion, and

reduced visibility.

This kind of data quality change due to weather variations can be considered a domain-

shift problem, which refers to a situation where the distribution of target data is inconsistent

with the distribution of source data. Domain adaptation techniques aim to reduce the do-

main gaps by applying knowledge from the target domain, thus improving the generalization

ability of the pre-trained model.

However, there are several key issues that still need to be addressed in the context of

autonomous driving. First, there is a lack of paired clear-weather data due to the difficulty

of collecting data under different weather conditions while maintaining the same content.

Secondly, the challenge of generating high-quality, realistic adverse weather data suitable

for autonomous driving algorithms remains. Lastly, there is the problem of improving the
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diversity and controllability of model outputs based on single data input to ensure model

efficiency.

This thesis focuses on RGB images and defines the domain adaptation problem for au-

tonomous driving in adverse weather conditions as an image conversion problem within the

context of driving scenes. Furthermore, this thesis proposes corresponding solutions to ad-

dress the aforementioned three challenges.

Firstly, to address the problem of unpaired image conversion, Chapter 3 proposes a frame-

work based on Generative Adversarial Networks (GANs) and introduces the principle of

cycle consistency principle. The idea is inspired by the concept of dual learning, which re-

quires that an image converted into the target domain can be converted back to the input

image, thereby preserving the texture of objects, roads, and buildings in the scene while

changing the weather conditions. To ensure consistent weather effects in the conversion pro-

cess, the chapter further introduces a weather layer to extract information during the forward

conversion and input it into the reconstruction network through feature fusion. Additionally,

apart from image conversion under two weather conditions, this chapter extends the original

model to enable unpaired image conversion under multiple weather conditions.

Secondly, to generate more realistic driving scene images, Chapter 4 proposes an image

conversion method that leverages semantic information as an additional input. The first step

is to obtain the semantic segmentation map of the input image. Then, the second step is to

crop image patches at the corresponding locations. The RGB image patches are input into the

image conversion network, while the semantic segmentation image patches are input into the

conversion network through a feature fusion layer. Using this approach, the proposed method

achieves the generation of realistic snowy weather conditions.

Thirdly, to break the limitation of single projections in current image conversion meth-

ods, Chapter 5 proposes a framework that can provide multiple solutions and control the
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direction of generation. The framework is based on a GAN which incorporates both a style

encoder and a content encoder, specifically designed to extract relevant information from an

image. The framework further employs a decoder to reconstruct an image using these en-

coded features, while ensuring that the generated output remains within a permissible range

by applying a self-regression module to constrain the style latent space. By modifying the

hyperparameters, the generator can generate controllable outputs with specific style codes.

The proposed methods are tested on public driving datasets and a self-captured dataset

called Realistic Driving Scene under Bad Weather (RDSBW) dataset. The tests employ

both traditional and novel image quality metrics, as well as metrics in autonomous driving

perception tasks, to validate the effectiveness of the proposed methods. The results show that

the proposed methods can achieve high-quality image conversion without pairing training

data, and also that the degree of converted weather image can be controlled.
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1 Introduction

1.1 Domain Shift and Domain Varieties in Autonomous Ve-

hicles

Autonomous Vehicles (AVs), also known as self-driving cars or driverless vehicles, are

equipped with advanced sensors, cameras, and computing capabilities that enable them to

navigate and operate without human intervention. Domain shift refers to the changes in

environmental and operational conditions under which the AVs must function effectively.

These changes can significantly impact the performance of an AV’s perception, decision-

making, and control systems. Domain varieties on the other hand represent the different

types of environments or scenarios an AV might encounter.

1.1.1 Weather Domain

As the driving environment transitions, the distribution of the data collected by the sensors

of AVs also changes, which is known as domain shift. This shift is greatly influenced by

changes in weather conditions. Figure 1.1 lists common weather conditions a driving car

may encounter.

During rain, the roads take on a visibly wet appearance, with a glossy sheen indicating

surface wetness [5]. Individual raindrops create small, visible splashes, especially notable

in puddles. This precipitation can lead to the accumulation of standing water, potentially
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Figure 1.1: Driving scene images in different weather conditions.

causing puddles or flooding in lower areas. Rain also reduces visibility, creating a veil-like

effect that obscures distant objects and landscapes. As vehicles move through wet roads, they

displace water, generating splashes and spray that can further diminish visibility for nearby

drivers.

In snowing conditions, the landscape is transformed into a white blanket, with snowflakes

steadily falling and accumulating on the road surface, covering road markings and altering

the road’s texture. The snow creates slick surfaces, particularly when compacted by the

passage of vehicles [6]. Heavy snowfall significantly reduces visibility, leading to a whiteout

effect. Additionally, wind-driven snow can form drifts that alter the landscape and sometimes

obstruct parts of the road.

Fog presents a unique driving environment, where a dense, misty veil blankets the sur-

roundings, drastically reducing visibility [7]. Objects appear as hazy blocks or shapes, with

their details obscured by the fog. Roads often become damp under these conditions, reflect-
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ing light and adding to the visual complexity. Headlights and streetlights in foggy conditions

become diffused, spreading light in a less focused manner, and vehicles or objects often

emerge silently and suddenly from the fog at close range.

Overcast weather casts a uniform, diffused light over the driving scene, resulting in mini-

mal shadows and a flattening of visual depth [8]. Colors appear more muted under the soft,

even light, and any present shadow is softer and less defined. The low contrast environ-

ment under an overcast sky makes details appear less sharp, and there can be a mild glare,

particularly when the cloud cover is not dense.

Under sunny conditions, the driving scene is characterized by intense reflections, partic-

ularly off wet or shiny surfaces, and sharply defined shadows that create a high-contrast

environment [8]. The direct sunlight can cause significant glare, especially when reflecting

off other vehicles, glass buildings, or wet roads. This intensity of light may lead to a squint-

ing effect, temporarily impacting visibility. Sunlight also enhances the vividness of colors,

making the environment appear more vibrant and dynamic.

1.1.2 Other Domain

Other domains with respect to geographical locations are shown in Fig. 1.2. Each of these

environments can be considered as a distinct domain.

In urban areas, the driving scenes are characterized by complex road layouts, traffic sig-

nals, and a high density of road users, including pedestrians and cyclists [1, 9, 10]. The road

networks in urban areas feature frequent intersections, one-way streets, and roundabouts.

In districts of downtown and business centers, the main streets are packed with a variety

of traffic signals, stop signs, and pedestrian crossings. Additionally, urban areas often in-

volve scenarios such as parallel parking, navigating through tight spaces, and stopping for

deliveries. Furthermore, regular construction activities and road maintenance can lead to
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Figure 1.2: Driving scene images in different areas.

unexpected detours and obstacles.

The scene on highways is characterized by high-speed travel and streamlined traffic flow,

primarily in straight lines with occasional gentle curves [11]. These roads typically have

multiple lanes, promoting disciplined lane usage and minimal direct interaction between

vehicles. Unlike urban areas, they do not have traffic signals but instead rely on signs for

exits, distances, and services. Since they are designed for efficient long-distance travel, they

have fewer stops and minimal presence of pedestrians or cyclists. Other features of highways

include rest areas, toll booths, and emergency lanes. The surrounding environment often

transitions from open rural landscapes to more urban settings as highways approach major

cities, leading to changes in scenery and traffic patterns.

Rural driving scenes exhibit a combination of open landscapes, agricultural fields, and

residential areas [12]. The roads in these areas vary greatly, ranging from well-paved main

roads to unmarked or gravel paths. The presence of street lighting is often minimal, par-
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ticularly in remote rural areas, resulting in darker roads at night. Rural roads may meander

through hills, forests, and alongside rivers, offering diverse terrains and picturesque views.

Additionally, the presence of wildlife or livestock crossing the road is a common occurrence

in rural areas, introducing an element of unpredictability to driving.

Suburban areas blend the tranquility of residential neighborhoods with some character-

istics of urban traffic, albeit on a smaller scale. In these areas, one may encounter school

zones, local traffic intersections, and community centers. The overall pace is slower, with

lower traffic density compared to urban settings, providing a more relaxed driving experi-

ence.

1.1.3 Differences between Weather Domains and Other Domains

Weather domains, including conditions like rain, snow, fog, overcast, and strong sunlight,

create unique visual challenges that are inherently dynamic and often unpredictable. Unlike

static urban or rural environments with consistent features like buildings or roads, weather

conditions can drastically alter the appearance of these same features [13]. For instance, rain

can add a reflective sheen to surfaces and obscure details, while fog significantly reduces

visibility and contrast. These transient and variable conditions require adaptive and robust

computer vision algorithms capable of interpreting a wide range of visual cues.

The focus on weather domains in this thesis is motivated by several compelling factors.

Firstly, the dynamic complexity inherent in weather conditions is introduced. These condi-

tions display a level of dynamic complexity not typically encountered in other domains. The

rapid and unpredictable nature of weather changes presents a significant challenge for com-

puter vision systems, necessitating quick adaptation to new visual environments. Secondly,

the aspect of safety and reliability is considered paramount, particularly in applications such

as autonomous driving and outdoor surveillance. The capability to accurately interpret visual
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information under various weather conditions is critical for ensuring safety and reliability,

making the mastery of weather-related visual challenges a pressing necessity. Thirdly, the ex-

isting technological gap in current computer vision systems is acknowledged, particularly in

terms of performance under adverse weather conditions. This thesis is aimed at bridging this

gap by developing algorithms specifically designed to manage the complexities presented by

weather domains. Finally, the real-world applicability of these developments is underscored.

Weather conditions, being a fundamental aspect of daily life and impacting sectors ranging

from transportation to agriculture, present a field where enhancements in computer vision

capabilities can have widespread and practical implications. This highlights the importance

of advancements in this area.

In contrast, other domains, such as urban or rural landscapes, present more stable and

predictable visual environments [1, 10, 12]. These domains are characterized by relatively

fixed elements such as buildings, roads, trees, and consistent lighting conditions, except for

natural changes between day and night. The challenge in these domains lies in handling the

complexity of scenes, such as diverse architectural styles or natural landscapes. However,

the lack of rapid, unpredictable change as seen in weather domains means that the algorithms

developed for urban or rural areas can rely on more stable and consistent visual features.

The interplay between weather and other domains further highlights the complexity of vi-

sual interpretation in varying conditions [2, 3, 8]. For example, the transition from a clear,

sunny day to a foggy evening involves a significant shift in visual perception. The algorithms

must be able to recognize and adjust to these changes swiftly, understanding the same scene

under different visual conditions. This requires not just advanced image processing tech-

niques but also sophisticated machine learning models that can learn from diverse datasets

encompassing various weather and environmental conditions. Therefore, the study of differ-

ences between weather domains and other domains in computer vision is crucial for devel-
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Figure 1.3: Relationship between weather conditions, sensors, and perception systems in autonomous

vehicles. Perception systems play a critical role in identifying and interpreting the surrounding envi-

ronment.

oping systems that can accurately interpret and interact with the world in a wide range of

conditions.

1.2 Perception Systems under Adverse Weather Domains

Perception systems in modern technology, particularly in areas like robotics and computer

vision, rely heavily on a variety of sensors to interpret and interact with their environment.

These systems generally utilize RGB cameras, LiDAR, radar, and InfraRed (IR) sensors,

each serving a distinct purpose. Figure 1.3 illustrates the relationship between weather con-

ditions, sensors, and perception systems in AVs.

Camera sensors, with their high resolution and rapid data rates, are a key technology in

AVs, closely mirroring human perception and playing a vital role in environmental inter-

pretation. They capture visual information, providing detailed images of the surroundings.

They are crucial for recognizing visual elements such as objects, signs, and signals. Com-

puter vision techniques process these images to identify and classify various elements within

the environment [9, 14].
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LiDAR sensors emit light pulses and measure the time it takes for the light to reflect back.

These data help create a three-dimensional map of the environment, useful for determining

the shape and distance of nearby objects [15].

Radar sensors emit radio waves and measure their reflection off objects. This technology is

especially effective in determining the distance and speed of objects, often used in scenarios

where robust performance is needed in various weather conditions [16].

Thermal cameras are IR sensors that detect heat and are used to identify and measure the

thermal signature of different objects. This is particularly useful in conditions where visual

clarity is low, such as in fog or darkness [17].

Each sensor type contributes unique data, helping to build a comprehensive understanding

of the surroundings. The integration and interpretation of data from these diverse sensors are

crucial for accurate environmental perception, especially in applications that require high

levels of autonomy and decision-making capabilities.

However, adverse weather conditions introduce significant challenges to the perception

systems, particularly affecting the data captured by various sensors. Each sensor type en-

counters unique distortions and challenges under these conditions.

Cameras are essential in autonomous vehicles for object detection and tracking, offering

advantages over other sensors like LiDAR, radar, and IR [18]. They provide high-resolution

images and can capture color information, which is crucial for identifying and tracking var-

ious objects. While LiDAR is good for measuring distances and radar can penetrate fog or

rain, neither can match the detailed visual data cameras offer. IR sensors help in low light

conditions but do not provide the color or clarity of cameras during the day. This makes

cameras a key tool for accurately detecting and tracking objects in many driving scenarios.
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1.2.1 Characteristic of Data Captured under Adverse Weather Condi-

tions

Cameras are highly susceptible to various weather-induced distortions [18]. Heavy rain

and fog reduce visibility and contrast in images. This makes it difficult to distinguish objects

from the background, as edges and contours become blurred. Varying lighting conditions can

cause colors to appear washed out or overly saturated. For instance, low lighting in overcast

conditions may lead to underexposed images, while intense sunlight can cause overexposure.

Wet surfaces and direct sunlight create glare and reflections, which can lead to overexposed

areas in the image where details are lost. High-speed rain or snow can cause motion blur in

images, making it challenging to identify static and moving objects accurately.

LiDAR systems, although less affected by lighting conditions, face their own set of chal-

lenges [19]. Raindrops or snowflakes can scatter the LiDAR beams, resulting in noise within

the point cloud. This manifests as false positives or ghost objects that are not actually present.

In foggy conditions, the water droplets absorb and scatter the LiDAR signals, leading to at-

tenuation and a reduction in the effective range of the sensor. This results in sparser point

clouds and decreased accuracy in object detection. Wet and icy surfaces reflect LiDAR sig-

nals differently compared to dry conditions, which can lead to inaccuracies in interpreting

the environment.

Radar, while robust, also faces weather-related issues. Similar to LiDAR, heavy rain or

snow can attenuate its signals, reducing the clarity and range of detection [20]. Wet surfaces

can cause unusual reflections of radar waves, while airborne particles like rain and snow can

scatter the signals, leading to less precise readings. Different weather conditions can lead

to varying levels of signal absorption by atmospheric particles, affecting the accuracy of the

radar data.

IR sensors, commonly used for enhanced perception, particularly in low-light conditions,
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face unique challenges when operating in adverse weather [21]. In conditions like rain or

snow, IR light can be absorbed or scattered by water droplets or snowflakes in the air. This

scattering reduces the effective range of the IR sensor and introduces noise into the captured

data, making it difficult to accurately detect and identify objects. Fog presents a significant

challenge due to the high water content in the air. The tiny water droplets in fog can absorb

and scatter IR light, leading to a substantial reduction in visibility. This results in a loss of

detail and contrast in the IR imagery, making it challenging to discern objects at a distance.

Furthermore, since IR sensors rely on detecting thermal radiation, the thermal contrast be-

tween objects and their surroundings can be reduced in overcast or rainy conditions.

1.2.2 Challenges Faced by Perception Systems

Adverse weather can degrade the quality of features extracted by detectors [22]. For exam-

ple, rain or fog can blur the edges and textures of objects, making it difficult for algorithms

to identify and extract distinct features necessary for object detection. The appearance of

features can vary significantly under different weather conditions. Snow may cover parts of

objects, changing their shape and size in the sensor’s view. This variability can confuse algo-

rithms trained on data from clear weather conditions, leading to misclassification or missed

detections. Figure 1.4 shows cases that the performance of pre-trained object detectors de-

grades in adverse weather conditions.

Classifiers rely on clear, distinct features to identify objects [23, 24]. In adverse weather,

the altered appearance of objects can lead to classifier confusion, reducing accuracy in dis-

tinguishing between different types of objects like cars, pedestrians, and bicycles. Rapidly

changing weather conditions can lead to sudden changes in object appearance. This requires

classifiers to be highly adaptable and robust, a challenging task given the diversity and un-

predictability of weather-induced changes.
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Figure 1.4: Performance degradation of pre-trained object detectors in adverse weather conditions.

The features used for environmental mapping, such as road edges, lane markings, and

landmarks, can become obscured or distorted. This inconsistency leads to challenges in

localization, as the vehicle’s perception system struggles to match the observed data with its

stored maps [25]. The dynamic nature of adverse weather can cause environmental features

to change quickly over time, requiring continuous updates and recalibrations of the mapping

system.

Lane detection algorithms often rely on edge detection to identify lane boundaries. How-

ever, in conditions like snow or heavy rain, these edges can become obscured or less pro-

nounced, leading to inaccuracies [26]. The reduced contrast caused by adverse weather

affects the perception system’s ability to discern road boundaries and other critical road fea-

tures, essential for maintaining lane discipline.

Adverse weather conditions like rain, snow, and fog blur the boundaries between different
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segments in the vehicle’s view, such as roads, sidewalks, and obstacles [27]. This blurring

makes it challenging for algorithms to accurately segment the environment, a key step in

understanding the scene. Weather conditions can alter the appearance and texture of sur-

faces. For example, a wet road looks different from a dry one, and a snow-covered car has

a different texture than the same car in clear weather. These changes can lead to incorrect

segmentation as the algorithms might fail to recognize familiar objects or surfaces under

different conditions. In poor weather, the reduced visibility and altered lighting conditions

can diminish the perception system’s ability to discriminate colors. This affects semantic

segmentation, which often relies on color cues to differentiate between various elements of

the scene.

The prediction of object trajectories, essential for collision avoidance and path planning,

becomes more complex in adverse weather. Reduced visibility and sensor noise can lead to

inaccurate estimation of the speed and direction of other road users, increasing the risk of

miscalculations in trajectory prediction [28]. Adverse weather adds a layer of complexity

to the driving environment, with rapidly changing conditions and unexpected obstacles (like

moving water or debris). This requires the prediction algorithms to be highly adaptive and

quick to respond to new hazards that may not be present in clear weather conditions. The

cues used for predicting the behavior of other road users or changes in the environment are

often degraded in adverse weather. For example, the body language of pedestrians or the

movement patterns of other vehicles can be obscured, making it challenging to predict their

future actions accurately.

1.3 Purpose of Research

Domain adaptation in AV’s perception systems is a methodological approach to address

the discrepancy between the training data of the source domain and the real-world operat-
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Figure 1.5: Domain adaptation tries to apply knowledge from a domain to a target domain with

insufficient information.

ing conditions of the target domain as shown in Fig. 1.5. This discrepancy can be due to

variations in lighting, weather, and other environmental factors.

The source domain typically consists of data collected under ideal conditions, such as

clear weather and good lighting. However, the real-world data of the target domain presents

more challenging conditions like rain, snow, fog, and nighttime driving.

Without domain adaptation, the performance of machine learning models degrades sig-

nificantly when they encounter data that differ from their training set. This is due to the

model’s inability to recognize and correctly interpret features that appear differently in the

target domain.

Image conversion as a technique in domain adaptation involves transforming images from

the target domain to resemble those of the source domain as shown in Fig. 1.6. One of the

primary goals of image conversion is to maintain feature consistency across domains. For

instance, lane markings obscured by shadows in low-light conditions can be enhanced to ap-
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Figure 1.6: Image conversion makes changes to an image while maintaining its original properties.

pear as they would in broad daylight, aiding in consistent feature extraction. The scarcity of

certain types of weather-related or lighting-specific data can limit a model’s exposure during

training. Image conversion helps in augmenting the dataset with transformed images, pro-

viding a more comprehensive range of conditions for the model to learn from. Implementing

image conversion typically involves techniques like style transfer, where the stylistic ele-

ments of one image domain are applied to another. This could mean applying the visual

characteristics of daylight images to nighttime images or clear weather images to those taken

in foggy conditions.

The strategic use of image conversion in domain adaptation directly contributes to the ro-

bustness of perception systems in AVs. By training on converted images, perception systems

can better generalize across various environmental conditions. This enhances their ability to

accurately detect and classify objects, regardless of the prevailing conditions. Image con-

version can mitigate the adverse effects of environmental factors such as poor visibility or

distorted object appearances. For example, converting a fog-affected image to resemble a

clear day image can help in clearer object detection. The continuous process of converting

and incorporating new images from different conditions into the training dataset allows for

ongoing model refinement. This is crucial for adapting to the ever-changing driving environ-

ments and maintaining the relevance of the perception system. In challenging conditions, raw
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Figure 1.7: Research framework of this thesis.

sensor data may not be reliable due to noise and distortions. Preprocessing images through

conversion techniques before feeding them into perception algorithms can significantly en-

hance data quality, leading to better decision-making.

In a more scientific context, domain adaptation through image conversion is a practical

approach to address the inherent limitations of machine learning models trained on limited

datasets. By enhancing data variability and ensuring feature consistency across diverse do-

mains, image conversion plays a pivotal role in enabling AV perception systems to operate

effectively in a wide range of real-world conditions. The research framework of this thesis

employs image conversion to convert driving scene images from adverse weather conditions

to clear weather conditions and vice versa, as illustrated in Fig. 1.7.
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1.4 Overview of Proposed Methods

In this thesis, the complex task of image conversion for driving scenes is dissected into

three distinct but interconnected subproblems: unpaired image conversion, realistic image

conversion, and controllable image conversion. Each of these subproblems addresses a

unique aspect of image conversion, employing advanced techniques from computer vision

and machine learning.

The first part of the thesis focuses on unpaired image conversion, utilizing the concept of

dual learning inspired by CycleGAN [29]. This approach is particularly useful for scenar-

ios where paired training data (clear and adverse weather images of the same scene) are not

available. A novel method is introduced where a weather layer is extracted by subtracting the

converted image from the input images. This layer effectively captures the specific attributes

of different weather conditions. The extracted weather layer is then fused with the features of

a second generator using spatial feature transform techniques. This fusion enhances the abil-

ity of the model to incorporate weather-specific characteristics into the conversion process.

The model is expanded to handle multiple weather conditions by introducing more genera-

tors. In this asymmetric framework, each adverse weather condition is assigned a dedicated

generator, while a single generator is used for clear weather. This design allows for more

specialized and accurate conversions for each weather condition.

The second part of the thesis enhances the realism of the converted images by using seg-

mentation maps as additional input. This approach improves the semantic understanding of

the model, allowing it to maintain the integrity of different objects and scenes during con-

version. Deep supervision is employed to add supervisory signals to the intermediate layers

of the generator. This technique helps in refining the feature extraction and transformation

processes, leading to more realistic and semantically accurate image conversions.

In the third part, the generator is split into a style encoder and a content encoder. This
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separation allows for more precise control over the style and content aspects of the converted

images. A self-regression module is applied to constrain the style latent space. This ensures

that the generated output remains within a permissible range, providing stability and con-

sistency in the style aspects of the conversion. To further enhance the content encoder, a

content feature discriminator is employed. This component helps in reinforcing the content-

related attributes of the converted images, ensuring that the essential elements of the scene

are preserved and accurately represented.

To support this in-depth research, “Realistic Driving Scenes under Bad Weather (RDSBW)”

dataset is created. This dataset focuses on different weather conditions for driving scenes.

Videos of driving scenes in different weather are recorded using a camera with a resolution

of 1,920 × 1,080 pixels. The camera is mounted behind a car’s windshield to obtain a clear

view. From these videos, clear and distinct images are picked out. Then, they are sorted into

categories based on the type of weather they showed. The dataset includes 4,171 images with

rain, 4,777 images with snow, 2,052 images with fog, and 2,831 images of clear weather. It

is ensured that the images are not sorted by location. This means each image is unique and

not linked to a specific place.

This thesis uses the above wide range of images to train the models. This helps the models

learn how to handle different weather conditions. The dataset is also good for testing the

proposed models. How well they work with real-world images and are improved by them

can be observed. In addition, this dataset can also be used by other people working on AVs

and computer vision to test their own ideas and improve their technology.

1.5 Thesis Overview

The structure of this thesis is organized as follows. Chapter 2 provides a detailed overview

of domain recognition and image conversion, classifying existing methods. Chapter 3 in-
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troduces two unpaired image conversion methods, one for one-to-one and the other for one-

to-many scenarios. Chapter 4 presents a real image conversion method based on semantic

information. Chapter 5 discusses controllable graphic conversion methods based on latent

space manipulation. Chapter 3 focuses on rainy and foggy weather images, while Chapters 4

and 5 focus on snowy images. Chapter 6 concludes this thesis and discusses future research

directions in light of the identified shortcomings.
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2.1 Domain Adaptation

With the support of vast amounts of data, machine learning, particularly deep learning, has

been widely applied in fields like computer vision and natural language processing, resulting

in immense success. The ideal scenario for machine learning is to have a substantial number

of labeled training instances, with the training and test data having the same distribution.

However, in many real-world applications, obtaining sufficient labeled training data is often

time-consuming, expensive, or even unfeasible. Additionally, the assumption of independent

and identically distributed data, commonly made in machine learning, often does not hold

in many tasks. Consequently, models trained using traditional machine learning algorithms

often fail to achieve desired results in similar but new tasks, thus limiting their generalization

and knowledge reuse capabilities.

Domain adaptation techniques can enhance the performance of machine learning models

in cross-domain tasks. When there is a lack of labeled data in the target domain to train

a well-performing machine learning model, one can consider pre-training the model in a

different but related auxiliary domain with abundant labeled data, and then finetuning the

pre-trained model to adapt and apply it to the target domain. This overcomes the challenge

of obtaining labeled data in the target domain for practical applications. However, discrep-

ancies in data distribution between domains pose a hurdle to model migration. Domain

adaptation aims to learn a model that enables the knowledge acquired in an auxiliary domain
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to be more effectively generalized in the target domain. By reducing the differences in data

distribution, domain adaptation facilitates domain-invariant knowledge transfer and reuse. It

is one of the cutting-edge research areas in machine learning and computer vision. Domain

adaptation technologies are expected to address the issue of limited annotated data in the

target domain and alleviate the high cost of training models from scratch, thereby improving

the universality and knowledge transferability of machine learning models.

In a comprehensive review paper by Pan et al. [30], the research process of transfer learn-

ing is systematically explained. The paper provides a formal definition and classification of

transfer learning and maps domain adaptation as one of its subfields.

In subsequent theoretical research, commonly used algorithms for shallow domain adap-

tation are divided into two main categories: instance-based domain adaptation and feature-

based domain adaptation. Deep domain adaptation, as described by Wang et al. [31], is fur-

ther divided into three categories: difference-based, confrontation-based, and reconstruction-

based. Tan et al. [32] propose a classification into four categories: instance-based, mapping-

based, network-based, and confrontation-based. Zhuang et al. [33] provide an overview

of various representative methods of transfer learning and domain adaptation from the per-

spective of data and models. Zhao et al. [34] focus on single-source unsupervised domain

adaptation scenarios, particularly, deep domain adaptation methods in this context. They

classify deep domain adaptation methods into four categories based on the settings of domain

offset loss and generation discrimination: difference-based methods, adversarial generation-

based methods, adversarial discrimination-based methods, and self-supervision-based meth-

ods. Gautheron et al. [35] focus on the study of domain adaptation algorithms from the

perspective of feature selection and feature space alignment. Wang et al. [36] expand and

enhance the algorithm based on the idea of adversarial learning. Su et al. [37] combine the

ideas of meta-learning, adversarial learning, and regularization to propose a weighted tem-
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poral regularized domain adversarial network based on meta-learning. Fan et al. [38] review

deep domain adaptation methods from four perspectives: domain distribution differences,

confrontation, reconstruction and sample generation, and provide an overview of complex

scenarios with different cross-domain label spaces.

Regarding the application of domain adaptation, Csurka [39] summarizes its usage in com-

puter vision fields such as image classification, target detection, semantic segmentation, pose

estimation, and video action detection, among others. Zhuang et al. [33] provide a sum-

mary of the application of domain adaptation methods in medical imaging and their use in

computer-aided diagnosis, biological sequence analysis, traffic scene recognition, recom-

mendation systems, and other domains. In addition, domain adaptation is widely employed

in natural language processing tasks such as text classification, sentiment analysis, and ma-

chine translation [40].

2.1.1 Category of Domain Adaptation

This section conducts survey and analysis on the concept classification, representative

methods, typical applications, and existing challenges of domain adaptation. The research

scenarios of domain adaptation can be divided along different dimensions. This section

classifies domain adaptation algorithms based on three dimensions: whether data labels are

obtainable, the number of participating domains, and the composition of cross-domain data

feature spaces.

2.1.1.1 Classification based on Supervision

Based on the availability and quality of data labels in the source and target domains,

domain adaptation can be categorized into three classes: Unsupervised Domain Adapta-
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tion (UDA), Semi-Supervised Domain Adaptation (SSDA), and Weakly-Supervised Domain

Adaptation (WSDA).

UDA is currently receiving extensive research attention. It primarily focuses on scenarios

where the source domain contains a large amount of labeled clean data, while the target

domain has only a small amount of data with unavailable labels.

SSDA research focuses on scenarios where the source domain contains abundant labeled

data, the target domain has data with unavailable labels, and there is also a small amount of

labeled data in the target domain [41, 42]. The main difference between SSDA and UDA is

that SSDA makes use of a small amount of labeled samples from the target domain during

cross-domain adaptation. When there are very few labeled data samples available in the

target domain, SSDA is sometimes referred to as Few-Shot Domain Adaptation (FSDA)

[43].

WSDA takes into account scenarios where the source domain data may contain noise,

relaxing the assumption that the source domain data is entirely clean. In WSDA, source do-

main data labels are obtainable, while target domain data labels are not available. However,

it acknowledges that source domain data samples may contain noise in both their features

and labels. The goal of WSDA is to train a model to mitigate the negative impact of source

domain noise on the transfer and achieve positive transfer of clean source domain samples

[44].

2.1.1.2 Classification based on the Number of Participating Domains

Based on the number of source and target domains, domain adaptation can be categorized

into three classes: single-source domain adaptation, multi-source domain adaptation, and

multi-target domain adaptation.

Single-source domain adaptation focuses solely on transferring knowledge from a single
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source domain to a single target domain. Many traditional unsupervised and semi-supervised

domain adaptation methods fall into this category.

Multi-source domain adaptation involves using labeled data from multiple different source

domains. In this scenario, not only are there differences in data distribution between the

source and target domains, but there may also be variations in data distribution among the

multiple source domains. Mansour et al. [45] propose techniques like distribution-weighted

combination, where a weighted combination of distributions from multiple source domains

is used to construct the target distribution. Methods like Deep CockTail Network (DCTN)

apply this rule in adversarial settings [46]. Additionally, techniques like Multi-Source Do-

main Adaptation (MSDA) networks are used to align the distribution differences between

multiple source domains and the target domain [47].

Multi-target domain adaptation research involves transferring knowledge from a source

domain to multiple unlabeled target domains, assuming that there are data distribution dif-

ferences not only between the source and target domains but also among different target

domains. In this context, certain approaches have been proposed. For example, Yu et

al. [48] propose a method for model parameter adaptation, while Gholami et al. [49] use

information-theoretic methods to identify shared feature subspaces across all domains to

facilitate knowledge transfer from the source domain to multiple target domains.

2.1.1.3 Classification based on Feature Space

Domain adaptation can be categorized into two types based on whether the feature spaces

of the source and target domain data are the same: homogenous domain adaptation and

heterogeneous domain adaptation.

Homogeneous domain adaptation refers to scenarios where the source domain and target

domain samples share the same feature space and label space, and have the same dimension-
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ality. Such methods primarily focus on the same task across different domains, aiming to

mitigate the performance drop caused by cross-domain data distribution shift. This enables

cross-domain transfer and reuse of models or knowledge.

Heterogeneous domain adaptation refers to scenarios where the source domain and tar-

get domain have different feature spaces, which typically do not overlap. Source and target

domains may not share feature labels, and their dimensionalities may also differ. Heteroge-

neous domain adaptation is more challenging than homogeneous domain adaptation because

it requires addressing cross-domain data distribution differences while also performing trans-

formations between feature spaces and label spaces to accommodate the need for knowledge

transfer across domains [50].

2.1.2 Adversarial Learning-based Methods

Drawing inspiration from Generative Adversarial Networks (GANs) [51], adversarial ap-

proaches can be introduced into deep methods for domain adaptation. Adversarial-based

methods can be categorized into two types: adversarial discriminative and adversarial gen-

erative.

From the perspectives of the type of loss function used, whether weight sharing is per-

formed, and whether the underlying model is a generative or discriminative model, Tzeng et

al. [52] categorizes domain adaptation methods based on adversarial learning and proposes

a general framework.

2.1.2.1 Adversarial Discriminative-based Methods

Although adversarial discriminative domain adaptation methods employ different adver-

sarial strategies, their fundamental idea is to impose an adversarial objective on a domain
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discriminator. This transforms the measurement of domain distribution differences into do-

main confusion in the latent feature space. This approach is used to train the feature extractor,

thus achieving feature-level domain adaptation.

The Domain Adversarial Neural Network (DANN) [53] is proposed based on the afore-

mentioned general framework. Its architecture consists of a feature extractor, a classifier, and

a domain discriminator. It incorporates the generative adversarial idea from GANs, and its

training can be achieved by inserting specific Gradient Reversal Layers (GRL).

Tzeng et al. [52] introduce the Adversarial Discriminative Domain Adaptation (ADDA)

method, which divides the optimization process into two separate objectives: generator and

discriminator, using a label-flipping GAN loss.

In addition to aligning marginal distributions, Long et al. [54] introduce the Condi-

tional Adversarial Domain Adaptation (CADN) method, which considers aligning condi-

tional probability distributions to promote domain adaptation between two domains. Build-

ing upon DANN, CADN introduces the classifier’s predictions as the condition upon which

feature representations depend. It adds conditions to the domain discriminator by intro-

ducing joint variables related to classification predictions. Simultaneously, it models the

cross-domain covariance between feature representations and classifier predictions, implic-

itly addressing multi-modal structure recognition issues, thereby enhancing the performance

of cross-domain distribution adaptation.

2.1.2.2 Adversarial Generative-based Methods

GAN-based generative methods belong to pixel-level domain adaptation. They generate

images from the source domain to the target domain and train them to be indistinguishable

from images sampled from the target domain distribution, thus achieving domain confusion.

Additionally, based on CycleGAN loss [29], researchers have proposed some effective do-
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main adaptation methods.

Hoffman et al. [55] introduce the CyCADA (Cycle-Consistent Adversarial Domain Adap-

tation) method, which achieves cross-domain adaptation at both pixel-level and feature-level

while ensuring semantic consistency. During adaptation, it uses cycle-consistency loss to

match structure and semantic consistency while incorporating semantic loss based on a

specific visual recognition task. The semantic loss guides the overall representation to be

discriminative and maintains cross-domain semantic consistency before and after mapping.

Similarly, Tzeng et al. [56] perform domain adaptation for target detection tasks using both

pixel-level alignment and feature-level alignment.

Li et al. [57] extend previous research based on CycleGAN by combining conditional ad-

versarial domain adaptation with cycle-consistency loss. They introduce the Cycle-Consistent

Conditional Adversarial Transfer Network (3CATN) method to align two domains. They

deploy a conditional domain discriminator using the covariance of features and their corre-

sponding class predictions to capture complex multimodal structures embedded in the data.

Additionally, considering that domain-invariant feature transformations are shared between

two domains and can be mutually represented, they train two feature transformers: one that

converts features from the source domain to the target domain and another that converts fea-

tures from the target domain to the source domain. Cycle-consistency loss is calculated based

on these two feature transformers. This approach captures complex multimodal structures in

the data while avoiding negative effects caused by incorrect conditions.

2.2 Image Conversion

RGB images are essential data sources for perceptual systems. Eliminating domain gaps

in images is a challenging problem. Image conversion, a domain adaptation method, aims to

map source domain images to target domain images. It uses GANs and other deep learning
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techniques for complex cross-domain and instance-level image conversions.

Image generation is a common task in computer vision, with the goal of creating images

that are indistinguishable from real ones. In deep learning, GANs [51] have become a popu-

lar method for generating images due to their unique structure and learning approach. They

consist of a generator and a discriminator, where the generator is responsible for producing

images from input noise, and the discriminator’s role is to distinguish between generated

and real images. The generator and discriminator optimize their model parameters through

adversarial learning. The generator attempts to confuse the discriminator, making it unable

to differentiate between generated and real images. Meanwhile, the discriminator receives

both generated and real images and classifies them as “0” or “1” to adjust the generator’s

performance. When the generated images closely resemble real ones, the discriminator can-

not distinguish between them, achieving a balance in the adversarial process between the

generator and the discriminator.

During training, the generator and discriminator are trained alternately. When updating

the generator, the discriminator is kept fixed, and vice versa. As training progresses, the gen-

erated data become increasingly similar to real data. When the generator and discriminator

reach a balance, the discriminator’s output is around 0.5, indicating it cannot distinguish be-

tween real and generated data. At this point, the generator and discriminator have achieved

their optimal models.

Unconditional GANs use noise as input and cannot control the generation of target im-

ages. Therefore, Mirza et al. [58] introduce Conditional Generative Adversarial Networks

(CGANs), where image generation is conditioned on source domain images. They include

additional conditions, where both the generator and discriminator receive conditional infor-

mation to guide the generation process.

While GANs can generate realistic images, they still face issues such as training instability
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and mode collapse. Researchers have addressed these problems by proposing improved mod-

els like Least Squares Generative Adversarial Networks (LSGAN) [59], Wasserstein Gener-

ative Adversarial Networks (WGAN) [60], and WGAN with Gradient Penalty (WGAN-GP)

[61]. These enhancements have also found widespread applications in the field of image

conversion. However, in the review literature on generative adversarial models [62, 63], the

application of these models to image conversion is often described without detailed discus-

sion. This section reviews recent image conversion methods and analyzes the latest research

developments in this field.

2.2.1 Category of Image Conversion

Image conversion models are typically implemented in an encoder-decoder fashion. Some

literatures refer to this approach as the generator. However, in feature-based conversion mod-

els, the encoding process is described as an encoder, and the decoding process is described as

a generator. To maintain consistency in description, this chapter uses the terms encoder and

generator to represent conversion models. The encoder downsamples input images, while

the generator decodes the downsampled image features to generate the target image. Addi-

tionally, in conversion models based on cycle-consistency constraints, only a small amount

of downsampling and upsampling is used, with the primary conversion accomplished by

residual blocks. This model is referred to as a residual generator in this chapter. Typi-

cally, improvements to the generation process or the addition of optimization objectives are

employed to enhance model performance. However, enhancing the generation process can

make the network structure more complex and require more computational resources and

time during training.

Image conversion can be divided into one-to-one mapping and one-to-many mapping,

where one-to-many mapping includes multimodal mapping and multi-domain mapping. Mul-
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timodal mapping refers to the generation of images where the style, such as color or texture,

changes while still remaining within the same image domain. Meanwhile, multi-domain

mapping refers to the conversion of source domain images into target images of multiple

different domains with specific changes.

The conversion models of supervised learning have strong data dependencies and fewer

forms. The conversion models of unsupervised learning, in order to break away from label

dependence and enhance model processing capabilities, are complex and diverse. This sec-

tion makes a more detailed division of such models, mainly including conversion models

based on cycle consistency constraints, instance-level image conversion models, conversion

models based on latent encoding, conversion models based on shared latent space, and con-

version models based on feature separation. Among them, the conversion models based on

cycle consistency constraints belong to one-to-one mapping, while the instance-level image

conversion and conversion models based on latent encoding include both one-to-one and

one-to-many mappings. The conversion models based on shared latent space and based on

feature separation belong to one-to-many mapping.

2.2.1.1 Supervised Learning Methods

The training of supervised learning requires paired data, with strict one-to-one correspon-

dence between source domain images and target domain images. A one-to-one mapping

model refers to a model where a source domain image corresponds to a unique conversion re-

sult, including both generic conversion models and task-specific conversion models. Isola et

al. [64] propose a general image conversion framework called pix2pix, which is compatible

with various image conversion tasks such as image colorization, edge-to-image synthesis,

and realistic image generation. It is based on Deep Convolutional Generative Adversarial

Network (DCGAN) [65] and utilizes U-Net [66] to directly pass the features of the encoder
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to the generator, bypassing the bottleneck layers of the encoder, allowing low-frequency fea-

tures to be fully preserved. Additionally, they introduce the discriminator PatchGAN, which

evaluates local regions of the generated image using receptive fields. Compared to the tra-

ditional approach of directly evaluating the entire image region, its local region evaluation

improves the robustness and performance of the discriminator. However, in pix2pix, the L1

loss used can lead to the loss of high-frequency information, resulting in blurry converted

images.

Perceptual Adversarial Network (PAN) [67] simulates the human perceptual process using

a neural network model and replaces the L1 loss with a perceptual loss. The perceptual

loss leverages a neural network model to extract image features and optimize deep-level

abstract features. Traditional perceptual loss uses pre-trained models like Visual Geometry

Group (VGG) [68] as feature extractors, and the quality of feature extraction depends on

the dataset used to pre-train the model, limiting its generalization to other data. PAN uses

a discriminator as a feature extractor to construct an adversarial perceptual loss, breaking

away from pre-trained models and allowing for the extraction of perceptual features tailored

to the specific dataset. This further enhances the effectiveness of the perceptual loss, but it

still suffers from some image blurriness as it directly computes the distance between features

at each layer.

Identical-Pair Adversarial Network (IPAN) [69] employs a perceptual similarity network

[70] to create a discriminator that distinguishes between real and fake image pairs. Real

image pairs consist of two real images, while fake image pairs consist of a generated image

and a real image. Unlike PAN, IPAN uses the perceptual similarity network to establish

a perceptual loss between the features of real and generated images. It first normalizes and

scales the features at each layer and then computes the feature distance between real and fake

image pairs, avoiding the image blurriness caused by directly calculating feature distances.
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Regardless of whether the perceptual loss is calculated directly or indirectly, the problem

of image blurriness cannot be completely resolved. Wang et al. [71] and He et al. [72]

approach this issue from different perspectives by improving the quality of generated images

through optimization of the generation process. Discriminative Region Proposal Adversarial

Network (DRPAN) [71] uses score maps generated by the PatchGAN to identify the region

with the lowest scores in the generated image and simultaneously constructs a corrector

to rectify this region. During training, the corrector continuously repairs the region with

the lowest scores while also fixing other regions affected by it, iteratively improving the

entire image. Compared to PatchGAN, its judgment and correction of local regions are more

direct and effective. He et al. [72] assume that a single transformation process cannot fully

capture the transformation target, so a review process is needed for the generated images.

To implement the review process, they add an inspector to the encoder-decoder structure.

During the training process, the source domain image is encoded by the encoder, and the

generator decodes it to generate the target image. This target image is then re-input to the

encoder and combined with the source domain image features to produce the final output by

the inspector.

Multimodal image translation enhances the diversity of generated images by obtaining var-

ious styles of generated images while keeping the source domain image unchanged. Existing

methods acquire modal information separately from the source domain image and reference

images.

Zhu et al. [73] introduce additional conditions to extend Variational AutoEncoder GAN

(VAE-GAN) [74] and Layered Recursive GAN (LR-GAN) [75], leading to the development

of BicycleGAN. This model maps source domain images and latent encodings to the tar-

get domain, allowing for the generation of different modes of target images by altering the

latent encodings. In the Conditional VAE-GAN, latent encodings of target domain images
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are extracted, and during the training phase, these latent encodings are mapped to a normal

distribution. In contrast, Conditional LR-GAN focuses on the reconstruction of latent encod-

ings to ensure they correspond to unique modes. Due to the stochastic nature of sampling

from a normal distribution, BicycleGAN cannot explicitly specify the modal information of

the generated images.

TextureGAN [76] uses the style information from reference images as a source of modes.

It transfers this information to generated images using style loss and content loss [77], allow-

ing the generated images to have different styles. This method effectively controls the modes

of the target images. To ensure the quality of the generated images, it also incorporates local

loss and global loss. With the influence of multiple losses, this model not only preserves the

structure of the generated images but also transfers more detailed style information from the

reference images. However, because content loss and style loss rely on pre-trained models, it

may struggle to extract effective style features when there is a significant difference between

the pre-trained model’s data and the reference images. Additionally, balancing multiple

losses requires manually setting hyperparameters, which increases the difficulty of training.

Albahar et al. [78] reduce the number of losses in their transformation model, optimizing

it only with adversarial loss and L1 loss. Simultaneously, they build an additional encoder

for reference images to avoid the pre-trained model from degrading the performance of the

transformation model. To transfer the features from reference images, they define a param-

eter generator and a feature transfer layer. These components facilitate bidirectional feature

transfer between the encoder of the source domain images and the encoder of the reference

images. The parameter generator maps the features from each layer’s output of the encoder

into transfer parameters, and the feature transfer layer utilizes these parameters to transfer

the features to the corresponding layers of the opposite encoder. Bidirectional feature trans-

fer improves the efficiency of feature migration. However, the encoder for reference images
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may lack optimization for feature extraction, potentially leading to uncontrollable feature

quality.

2.2.1.2 Unsupervised Learning Methods

Unsupervised image transformation models use unpaired data, which do not require strict

correspondences between source and target domains. This ease of obtaining non-paired data

has led to a diverse range of transformation models in the unsupervised image transformation

field.

Depending on the conversion purpose, unsupervised image conversion models can be di-

vided into cycle-consistency-based conversion models, latent code-based conversion models,

and shared latent space-based conversion models. These categories address various aspects

of unsupervised image conversion, providing different approaches for different conversion

objectives.

Cycle-consistency-based Conversion Models

Zhu et al. [29] address the limitations of supervised learning by proposing the unsuper-

vised image transformation model CycleGAN, which allows for the use of non-paired data.

This model utilizes any image from the target domain as a label for the corresponding image

in the source domain, reducing the difficulty in obtaining data. To make use of unpaired

data, they introduce a cycle-consistency constraint for image reconstruction. This constraint

involves reconstructing the source and target domains through two generative paths: source

domain to target domain and then back to source domain, and target domain to source domain

and then back to target domain. In addition to the adversarial loss, it indirectly optimizes in-

termediate generative results through the reconstruction loss.

DiscoGAN [79] and DualGAN [80] employ a similar concept and to some extent reduce
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the data requirements. While they achieve bidirectional transformations between two image

domains, the mapping between these domains is overly flexible, making it difficult to obtain

specific target domain images. Additionally, the use of pixel-wise L1 reconstruction loss in

these models can result in issues like blurry generated images and information loss.

Increasing constraints is to make the generated images closer to the target domain images,

thereby improving the quality of the generated images. Quality-aware GAN [81] uses image

quality measurement methods to construct a quality-aware framework, optimizing original

images and reconstructed images, reducing artifacts in generated images, and enhancing the

clarity of generated images. The quality-aware framework consists of two types of losses:

the quality-aware loss defined based on classical image quality measurement methods, which

approximates the quality scores between the original images and the reconstructed images to

optimize the reconstructed images, and the adaptive content loss defined based on deep net-

works, which optimizes the reconstructed images from deep abstract feature content. These

two losses simulate the process of human perception of images, optimizing the reconstructed

images at both the pixel level and the feature level, allowing generated images to capture

more details.

Zhang et al. [82] pointed out that CycleGAN lacks effective constraints, leading to the

loss of some information in generated images or the introduction of unnecessary changes.

For example, in medical image conversions, images with tumors may lose the tumor part

during the conversion process. To overcome these shortcomings, they introduce an additional

smoothing term to optimize the adjacent regions of the image, ensuring that adjacent content

in the source domain undergoes similar changes during the conversion process.

OT-CycleGAN [83] leverages Optimal Transport (OT) [84] to introduce additional con-

straints for achieving controllable one-to-one mappings that satisfy attribute transformations

for specific tasks. OT calculates the minimal cost of transformations between different distri-
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butions using a cost function. OT-CycleGAN computes the cost of attribute transformations

in this manner and incorporates it into the optimization objective to achieve the desired trans-

formations.

Improvements to the structure or mechanism include modifying the generation mecha-

nism, enhancing the discriminator, and improving the generator. In the CycleGAN model,

Lin et al. [85] introduce an auxiliary domain that lies between the source and target do-

mains. For example, when converting brown hair into blonde hair, the auxiliary domain can

represent black hair. With the help of the auxiliary domain, they construct multi-path consis-

tency constraints to guide the generation of images using both source domain and auxiliary

domain images, reducing the randomness in the conversion process. This enables generated

images to obtain information from the auxiliary domain, thereby improving the quality of

the generated images. However, it is important to note that introducing consistency con-

straints between the auxiliary domain and the target domain increases the complexity of the

model by adding multiple generators and a larger number of parameters, making training

more challenging.

Kim et al. [86] use an auxiliary classifier to obtain attention maps, which are represented

as vectors and adaptively select features among different feature channels. Both the source

domain image and the reference image are encoded simultaneously. The attention maps

learn to differentiate features between the source domain image and the reference image,

allowing the network to focus on learning the conversion part. Since the mapping between

the auxiliary domain and the target domain remains a stochastic mapping, this approach

is more targeted towards the conversion goal and avoids introducing additional generators.

For controlling the shape and texture during the conversion process, the authors propose an

adaptive selection mechanism for Instance Normalization (IN) [87] and Layer Normalization

(LN) [88]. This mechanism allows the network to flexibly adjust the amount of change in
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shape and texture, further enhancing control over the conversion target.

Stacked Cycle-consistent Adversarial Network (SCAN) combines multi-stage learning

with CycleGAN to decompose the image generation process into multiple stages [89]. Each

stage generates images at different resolutions, and the output of the current stage is com-

bined with the output from the previous stage and passed to the next stage, allowing for

progressive optimization. Compared to CycleGAN, it not only improves the quality of gen-

erated images in the same resolution transformation process but also enables the generation

of higher-resolution images. Since it builds upon the basic CycleGAN framework, it still

faces challenges such as random mappings and information loss. In addition to enhancing

the quality of generated images, improvements in the structure or generation mechanism are

also used to reduce the complexity of model training and the number of parameters.

CycleGAN++ removes the bidirectional consistency constraint and retains the unidirec-

tional reconstruction loss [90]. It also adds domain information and classification loss to

ensure the quality of generated images. This approach eliminates the circular structure of Cy-

cleGAN, reducing computational complexity during training and improving training speed.

Van der Ouderaa et al. [91] utilize reversible neural networks to construct a generator

that enables reversible conversions. This method relies on a single generator to achieve

bidirectional conversions between the source and target domains while maintaining model

capacity and image quality. Reversible networks compute the output corresponding to each

intermediate activation layer by reverse calculation through access to the output of the final

activation layer. Consequently, there is no need to store the output of each activation layer

during training, reducing the model’s spatial complexity.

Latent Code-based Conversion Models

Latent encoding typically comes from images encoded by an encoder or noise sampling,

representing information such as image content, attributes, and modes. Models based on
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latent encoding usually involve networks that learn the required information from the latent

encoding.

Chen et al. [92] define an interpolator to obtain interpolations between the latent encod-

ings of the source and target domains. These interpolations describe the states and trans-

formation paths occurring during the conversion process. The image transformation process

includes multiple paths that cannot be represented in a single generated image. Using inter-

polated features allows for the generation of corresponding images for intermediate states,

not only describing the transformation process but also achieving multi-domain and multi-

modal mapping. However, using interpolation to achieve multi-domain and multi-modal

mapping cannot edit specific attributes.

Xiao et al. [93] describe the latent encodings of source domain images and reference im-

ages as combinations of multiple attributes. These latent encodings are divided into multiple

parts, with each part corresponding to different attributes. Fine-grained image transforma-

tions are achieved by swapping the attributes of source domain images and reference images.

Furthermore, SingleGAN [94] and InjectionGAN [95] achieve multi-domain and multi-

modal mapping by using latent encoding to model the modes of the target domain under

the guidance of domain encoding. Both of them employ a single generator to construct

cyclic constraints, limiting the level of dissimilarity in the image domain, but they cannot

be used for specific attribute editing. In conversion models based on cycle consistency con-

straints, Li et al. [96] describe the information difference between image domains as do-

main information imbalance, with information-rich domains representing rich content and

information-poor domains representing the opposite. To balance the information difference,

they introduce auxiliary variables in CycleGAN to construct AsymGAN. These auxiliary

variables represent the latent encoding corresponding to the information-rich image domain

and are used during training to map the information-poor image domain to the target do-
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main based on this encoding. The auxiliary variables bridge the information gap between

the source domain and the target domain, improving the quality of generation and enhancing

the model’s resistance to interference.

Almahairi et al. [97] use auxiliary variables to represent missing information during the

conversion process. Unlike AsymGAN, this model considers transformations between ar-

bitrary image domains, enhancing the model’s data processing capabilities. In traditional

unsupervised image conversion, complex cross-domain mappings typically rely on multiple

generators and optimization objectives, making the model training complex and difficult to

converge. To simplify the training process, Aiharbi et al. [98] rely on fundamental generative

networks and optimization objectives. They use noise to model latent encoding and control

the degree of transformation for each feature in the network layers. The latent encoding

is embedded into the network layers using a fully connected approach, avoiding complex

transformation processes and optimization objectives. This approach achieves multi-modal

mapping but lacks control over image domains and cannot accomplish multi-domain map-

ping.

Shared Latent Space-based Conversion Models

Shared latent space [99] is based on the assumption that different image domains can

be mapped to the same space, using shared information to establish relationships between

domains and achieve cross-domain conversion. Conversion models based on shared latent

space need to establish multiple optimization objectives to ensure a high degree of con-

sistency in the shared portion. Similar to conversion models based on cycle consistency

constraints, those based on shared latent space aim to explore how to effectively utilize non-

paired data. While conversion models based on cycle consistency constraints optimize for

simple domain-to-domain bidirectional conversions to generate target images, those based on

shared latent space establish domain relationships through latent shared information. This
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approach not only effectively utilizes non-paired data but also allows for the generation of

target images by controlling different images, achieving diversity and determinism in the

generated images.

Liu et al. [99] point out that without any assumption, it is impossible to obtain the joint

distribution of different domains through the marginal distribution of image domains, which

means that image conversion cannot be achieved. To address this issue, the hypothesis of a

shared latent space is proposed. During the training phase, the latent encodings of source

domain images and target domain images are mapped to the distribution of a shared latent

space, ensuring that both latent encodings reflect shared information consistently, avoiding

the influence of non-shared parts. However, when there is a significant semantic difference

between two domains, this method cannot address domain semantic bias.

Taigman et al. [100], Royer et al. [101], and Murez et al. [102] also achieve image

conversion based on the assumption of information sharing. Taigman et al. [100] fix the

parameters of the encoder during the training process, making reverse conversion impossible.

Royer et al. [101] and Murez et al. [102] add constraints on the latent encodings, further

increasing the degree of information sharing and reducing the impact of domain differences.

While Liu et al. [99] achieve mapping between different domains of similar images, they

could not accommodate multi-domain mapping for different types of domains. Anoosheh

et al. [103] construct a multi-encoder-decoder model called ComboGAN, which consists of

multiple encoders and generators, with each encoder and generator corresponding to differ-

ent image domains. Encoders map images from different domains to a shared latent space,

and generators use encodings from the shared latent space to generate images in the corre-

sponding domains. This approach not only achieves cross-domain mapping between differ-

ent types but also accommodates inputs from multiple different domains.

Lin et al. [104] simplify ComboGAN by using a single-encoder-multiple-decoder struc-
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ture, reducing the need for domain determination and encoder parameters for input domains.

However, as the number of domains increases, methods by Lin et al. [104] and Anoosheh et

al. [103] require a large number of generators, which increases training difficulty and storage

space.

2.3 Datasets

This section introduces the datasets used in this thesis. Among them, CityScapes [1] and

EuroCity Persons [9] are public datasets, CityScapes Weather are synthetic datasets derived

from the CityScapes dataset. They all contain images of driving scenarios.

Cityscapes Weather Datasets Cityscapes dataset is an annotated corpus of 5,000 driving

scene images captured in urban areas. Researchers have also simulated various weather ef-

fects onto the dataset, using information such as depth maps based on atmospheric scattering

models. Foggy Cityscapes [2] dataset includes three different fog densities for each image,

representing visibilities of 150 m, 300 m, or 600 m, respectively. Rain Cityscapes [3] dataset

is based on 295 images, which are used to generate 36 different foggy concentrations and

rain types for each image. Snow Cityscapes [4] consists of 2,000 pairs of images with a

resolution of 512×256 pixels for each of the training and testing sets.

EuroCity Persons Dataset The EuroCity Persons dataset [9] is a collection of images of

pedestrians, cyclists, and other riders in urban traffic scenes, captured from a moving vehicle

in 31 cities across 12 European countries. The dataset provides a large number of highly

diverse, accurate, and detailed annotations for each image, including bounding boxes around

pedestrians and cyclists, as well as additional attributes such as orientation, visibility, and

occlusion. It is divided into daytime and nighttime sets with over 47,300 images. In the
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following experiments, to make a comparable match to the snow dataset, 5,921 images are

randomly selected from the daytime training set.

2.4 Conclusion

This chapter first provided a comprehensive overview of domain adaptation in machine

learning. It discussed the challenges of applying models trained on source domain to a

different target domain, especially when labeled data in the target domain is scarce. It cov-

ered various domain adaptation techniques, categorized based on supervision, the number

of participating domains, and feature space composition. It detailed different methods like

unsupervised, semi-supervised, and weakly-supervised domain adaptation, and delved into

specific approaches such as distance-based methods and adversarial learning. Applications

in computer vision, natural language processing, and other fields were also discussed.

Then, a detailed analysis of image conversion techniques in deep learning were provided,

focusing on GANs and their variants. It discussed the challenges and advancements in image

generation, emphasizing the roles of generators and discriminators in GANs. It covered con-

ditional GANs for controlled image generation and addressed issues like training instability.

Various categories of image conversion, including one-to-one and one-to-many mappings,

were explored, alongside supervised and unsupervised learning methods for image transfor-

mation. It also delved into specific conversion models and their applications, highlighting the

importance of features like cycle-consistency, instance-level conversion, and latent encoding

in achieving effective image transformations. The last section introduced public datasets

used in this thesis.
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3.1 Introduction

In the realm of Autonomous Vehicle (AV) technology, the robustness and accuracy of

perception algorithms play a pivotal role in ensuring safety and reliability. A significant

challenge in this domain arises from the diverse and often unpredictable weather conditions

that vehicles encounter on roads. When adverse weather occurs, retrieved images with low

contrast and poor visibility can degrade the performance of the visual algorithms used in

AV’s perception systems, such as detection, tracking, and intention estimation. [18]

Unpaired image conversion is essential for converting images from one set of conditions,

such as clear weather, into another, like rainy or foggy scenarios, without the need for cor-

responding paired images. This approach is particularly valuable because obtaining paired

data in driving scenes is inherently challenging. Paired data requires capturing the exact

same scene under different weather conditions, which is not only logistically complex but

also time-consuming and often impractical. Factors such as changing natural light, mov-

ing objects, and evolving landscapes make it nearly impossible to acquire perfectly paired

images in real-world driving scenarios.

The significance of unpaired image conversion lies in its potential to enhance the per-

ception algorithms of AVs. By exposing these algorithms to a wider range of driving scenes

recreated under various weather conditions, the vehicles can be better prepared for real-world

scenarios.
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This chapter aims to explore the methodologies in unpaired image conversion. The first

part proposes a modified version of CycleGAN [29] for single weather image conversion by

adding weather layer loss and information guidance. The model jointly learns the clear-to-

weather conversion and its backward conversion in an end-to-end framework. The second

part, to break the limitation of numbers in participant domains, extends the previous model

with four generators and four discriminators. The four Generative Adversarial Networks

(GANs) are trained to perform conversion between rain, snow, fog, and clear weather con-

ditions. Once training is completed, the clear weather generator can convert the image from

the source domain into the clear domain, no matter which of the three weather conditions is

present.

3.2 Single Type Image Conversion

The proposed single-image conversion model is based on an improved version of Cy-

cleGAN. To effectively disentangle the weather layer from the source image, The model

employs a weather layer loss inspired by the Joint Rain Generation and Removal (JRGR)

method by Ye et al. [105]. The main idea is to regard images degraded by bad weather as the

composition of a weather layer and a clean background. Therefore, the statistical distance

between the removed layer and the generated layer is calculated. Then, the gradient feeds

back to the network to ensure that generators are handled in the same weather conditions.

Besides, to enhance the supervision, the model utilizes the Spatial Feature Transform

(SFT) [106] to fuse the weather layer feature into the network, so that it can act as an in-

formation guidance. Figure 3.1 shows the overall framework of the proposed model.
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Figure 3.1: Architecture of the proposed bad weather removal model.

Figure 3.2: Spatial Feature Transform (SFT) layer in the proposed image conversion model.

3.2.1 Weather Information Guidance

In the image conversion process, the image of adverse weather is considered as a compo-

sition of weather layer and clear layer. The former contains the weather information which

can be used to guide the cycle conversion process. To effectively use this information, SFT

is used to combine weather layer and neural network features. Fig. 3.2 explains the detail of

the SFT layer.
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The main idea is to fuse the features of the middle layer into the original features in spatial

dimensions through affine transformations. SFT is proposed by Wang et al. [106], originally

applied to super-resolution reconstruction. Following the method of Shao et al. [107], a

two-layer convolution module is used to extract the condition maps ϕ from the weather

layer. Then the map is input to the other two convolution layers to predict the modulation

parameters γ and β . Finally, the shifted features are obtained by:

SFT(F | γ,β ) = γ ⊙F +β , (3.1)

where F is the feature maps of the second to last convolution layer. Note that since the

number of elements in the weather layer tensor is close to 0, if it is input to the convolution

layer directly, the model will suffer from a vanishing gradient problem. Therefore, the tensor

is normalized first when it is generated.

3.2.2 Loss Functions

The proposed model adds an overall loss to the architecture of CycleGAN, described as:

L (Gc→wl,Gwl→c,DA,DB) =LGAN (Gc→wl,DA,C,W )+LGAN (Gc→wl,DB,W,C)

+λcLcyc +λwlLwl,
(3.2)

where LGAN (Gc→w,DA,C,W ) and LGAN (Gw→c,DB,W,C) are the adversarial losses of

GAN. λc and λwl control the effects of cycle consistency loss and weather layer loss.

3.2.2.1 Weather Layer Loss

In order to prevent the removed weather from being different from the generated ones,

such as input rain to generate fog, a weather layer loss is introduced. Now, there are many

ways to measure the distance between two images. From the perspective of information
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entropy, there are Kullback–Leibler (KL) divergence and Mutual Information (MI) methods,

and from the perspective of distance, there are L1 and L2 norms. However, the amount

of calculation involved in the former increases explosively with the growth of the image

size, and the latter will make the generated weather layer lack change. Therefore, the Mean

Square Error (MSE) is a more balanced choice. Assuming that the input of the first generator

of each process is CA, CB, and the output is WA, WB, the definition of weather layer loss is

provided as:

Lwl(wlA,wlB) =
1
n

n

∑
i=1

(wlAi −wlBi)
2, (3.3)

where wlA =WA −CA, wlB =WB −CB.

3.2.2.2 Cycle Consistency Loss

The cycle consistency loss is introduced by CycleGAN [29] as:

Lcyc = ∥Gc→wl (Gwl→c (CA))−CA∥+∥Gwl→c (Gc→wl (WB))−WB∥ , (3.4)

which calculates the L1 norm between the input image and the reconstructed image. The

purpose is to prevent the second generator from generating random images of the target

domain. To ensure the priority of background restoration, a higher weight than the weather

layer loss is set. Note that, for weather removal, generators in the model handle image

conversion between clear domain c and weather domain wl.

3.2.3 Experiment

This section evaluates the performance of the proposed method on public datasets and a

self-collected dataset using image quality metrics as the measurement. Additionally, the per-

formance of the pedestrian detector on both source and transformed images is also assessed.
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3.2.3.1 Implementation Details

The model uses the Pytorch framework for training, testing, and image preprocessing.

Two NVIDIA TITAN RTX GPUs are used for training. The training process performs 200

epochs on each dataset to ensure convergence. In the training phase, the Adam optimizer

[108] and step learning rate schedule are used. In addition, the model sets λc as 10 and λwl

as 2. The proposed model is similar to the original CycleGAN, except for the weather layer

loss and information guidance layer. The image is randomly cropped into 360×360 pixels

and input into the generator of ResNet18 [109] backbone.

3.2.3.2 Datasets

In the first experiment, 1,048 training images and 132 testing images are selected from

Rain Cityscapes [3], and mixed with one-third of Foggy Cityspcapes [2] images with a visi-

bility of 150 meters. This is called mixed weather CityScapes dataset. In the second exper-

iment, the clear set and fog set of the Realistic Driving Scenes under Bad Weather Dataset

(RDSBW) are used.

RDSBW is a newly created dataset that consists images of driving scenarios in four differ-

ent weather conditions. Videos capturing different weather conditions were recorded using a

camera mounted behind a car’s windshield for clarity. High-quality images were picked out

with a resolution of 1,920×1,080 pixels. All of these images were collected in China, with

snow, fog, and clear weather scenarios collected in the northern regions, while rainy weather

scenarios collected in the southern regions.

In detail, rainy weather scenes were captured in a small town, where the scenarios included

a high number of pedestrians and vehicles, along with complex road conditions. Snow scenes

were captured in the downtown, including main roads and urban highways. In the former,

both pedestrians and vehicles were relatively densely populated, while in the case of high-
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ways, only vehicles were present, and they moved at a fast pace. Fog and clear weather

scenes were captured in the suburban areas of the city, featuring spacious roadways with a

relatively sparse population of pedestrians. Due to adverse weather conditions during data

collection, both fog and clear weather conditions resulted in great occlusion to objects around

vehicles and the forward visibility.

It is important to note that the images are not organized by location, ensuring each image

is unique and not associated with a specific place. The duration for each weather condition

is over two hours. Figure 3.3 shows examples of the RDSBW dataset images from each set.

3.2.3.3 Experiment Results

Image Conversion and Detection Results on Mixed Weather CityScapes Dataset

Figure 3.4 shows qualitative results on the mixed dataset. Although faded color and small

artifacts in the sky region can be observed, disentangled weather layers are removed from

the foreground and benefit the ACSP detector. It is because the weather layer loss forces the

model to remove and generate the same kind of weather. Meanwhile, the SFT layer transmits

the weather information to the second generator, and the latent features learned by the first

generator are kept. The quantitative results of Peak Signal-to-Noise Ratio (PNSR), Struc-

tural Similarity Index Measure (SSIM), and Feature Similarity Indexing Measure (FSIM)

are presented in Table 3.1.

PSNR serves as a reliable objective measure for images, quantifying the discrepancy be-

tween corresponding pixel values. Higher PSNR values indicate reduced distortion in the

generated images.
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Figure 3.3: Sample scenes from the Realistic Driving Scenes under Bad Weather (RDSBW) dataset.

Note that the images are uncorrelated by location.
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Figure 3.4: Results on mixed weather CityScapes Dataset.

Table 3.1: Average PSNR, SSIM, and FSIM results on 100 sample images from mixed weather

CityScapes dataset.

Method PSNR ↑ SSIM ↑ FSIM ↑

Proposed 47.28 0.97 0.71

CycleGAN [29] 46.84 0.96 0.71

Dark Channel Prior [110] 43.55 0.90 0.85

FastCUT [111] 44.07 0.94 0.84

Haze-lines [112] 37.99 0.89 0.75
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SSIM, on the other hand, assesses the similarity between two images by considering their

luminance, contrast, and structure. An SSIM value of 1 indicates that the two compared im-

ages are identical in terms of structural information and quality, while a value of 0 indicates

that the images are entirely different in these respects.

In Table 3.1, quantitative results were compared with other methods, including CycleGAN

[29]. According to PSNR and SSIM metrics, the proposed model achieved the best result

surpassing State-Of-The-Art methods [110, 111, 112]. Moreover, the model reached higher

PSNR, SSIM, and FSIM values than CycleGAN, which means weather loss and information

guidance improved the capability of the architecture on mixed weather CityScapes dataset.

An interesting finding is that previous methods that focus on physical rules showcased

higher FSIM while the proposed method utilizing convolution features performed worse.

Adapted Center and Scale Prediction (ACSP) [113] makes some adaptations on the ba-

sis of Center and Scale Prediction (CSP) [114] which is an anchor-free detector. Compared

with anchor-based methods, anchor-free methods sacrifice accuracy for speed. Therefore, it

is more suitable for real-time applications on intelligent vehicles. The experiment tests the

removal effects with vanilla ACSP, which achieved good results on Cityscapes [1]. The de-

tection numbers of the ACSP detector were calculated on randomly selected 100 test images

and shown as a boxplot in Fig. 3.5. It shows that the proposed model improves detection

efficiency obviously by removing the visual effect caused by fog.
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Figure 3.5: Box plot of ACSP detection numbers. “×” indicates the average value. After being

processed by the proposed model, detection numbers increase.

Figure 3.6: Qualitative conversion results on RDSBW dataset compared to SOTA methods.
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Image Conversion Results on RDSBW Dataset

Figure 3.6 shows the qualitative conversion results on the RDSBW dataset as there is no

ground truth. We can clearly see that dark channel prior [110] suffers from high atmospheric

light value. While CycleGAN [29] does not have a significant impact when the background

contains only a flat color. Although the proposed model cannot remove all the foggy layers,

it increases the contrast and visibility.

3.3 Multiple Type Image Conversion

This section proposes a novel model called Multiple Weather Conversion GAN (MWCG),

inspired by CycleGAN [29]. The goal of this method is to convert clear weather images

of traffic scenes into versions of these images with different types of weather degradation

and then convert them back into clean ones. The proposed method can also be used to

convert real-world, weather-degraded images into clearer ones. Overall, MWCG consists of

three GANs for weather effect generation and one GAN for weather effect removal. The

rationale for creating a multi-weather application is based on the observation that it would

be convenient to be able to use a single model to remove various types of adverse weather

effects that drivers are likely to encounter.

3.3.1 General Pipeline

To explain the theoretical basis of the proposed method in more detail, suppose rain, snow,

and fog are three sub-domains of an adverse weather set (X = x1,x2,x3) and that Y represents

a clear weather domain. As shown in Fig. 3.7, there exist three mappings from adverse to

clear weather: x1 → Y , x2 → Y , and x3 → Y . Furthermore, conversely, there also exist three

mappings from clear to adverse weather: Y → x1, Y → x2, and Y → x3. In order to sim-
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Figure 3.7: Architecture of the proposed Multiple Weather Conversion GAN (MWCG), consisted of

four generators. All the generators have a ResNet encoder-decoder with nine residual blocks. Their

associated discriminators are a three-layer CNN and a one-channel prediction map is output.

plify the mapping process, the model compresses the mapping X → Y into one network.

Therefore, the proposed model requires four generators: GA,GB, and GC for generating ad-

verse weather effects (rain, snow, and fog respectively) and GD for adverse weather removal.

Correspondingly, four discriminators (DA, DB, DC, and DD) are introduced to distinguish

real images from the generated, fake images. The pseudo-code of MWCG is provided in

Algorithm 1.

Since the goal is to translate the unpaired, real-world weather images, MWCG borrows

the cycle consistency principle from pioneering works [29, 115, 116, 117] to regulate the

structure of the output images, so they remain the same as the input images. Therefore, after

an image is translated by the weather removal/generation network, the model can translate it

back into its original domain using the same generator.

Here A, B, C, and, D are used to represent sets of rain, snow, fog, and clear weather images,

respectively. As part of a single processing step, the image data are simultaneously sorted



56 3 Unpaired Image Conversion

Algorithm 1 Multiple Weather Conversion GAN (MWCG)
Input: Training data pairs (A,B,C,D) ▷ In order of foggy, rain, snow, and clear

Output: Generator networks GA,GB,GC,GD

1: Initialize generators and discriminators

2: Define loss functions

3: Define optimizers for generator and discriminator

4: while epoch ≤ total_epoches do

5: for data pair (A, B, C, D) in data_loader do

6: Generate fake images: FDA = GD(A), FDB = GD(B), FDC = GD(C) and FA =

GA(D), FB = GB(D), FC = GC(D)

7: Generate reconstruct images: RA = GA(FDA), RB = GB(FDB), RC = GC(FDC) and

RDA = GD(FA), RDB = GD(FB), RDC = GD(FC)

8: Update Discriminator DA, DB, DC, DD

9: Update Generator GA, GB, GC, GD

10: end for

11: end while

into two different places. On the one hand, real A, real B, and real C are input to GD and

the fake clear images are output. These fake images will then be input to GA, GB, and GC

to obtain the reconstructed adverse weather images. On the other hand, real D images will

be simultaneously input to GA, GB, and GC to obtain fake, adverse weather images. These

results then go through GD to obtain the reconstructed clear images.
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3.3.2 Weather Generators and Discriminators

As the backbones of MWCG’s four generators, ResNet [109] (with a Residual block) is

used to maintain the previous output through a skip connection, a method which has been

proven to be effective when training deeper neural networks. The input image will first be

scaled down twice, using large convolutional filters. After obtaining the desired resolution,

the first layer of feature maps of the image will go through nine ResNet blocks, generating

denser representations with more channels. In a similar manner to the encoder-decoder ar-

chitecture used in [118], two transpose convolutional layers then follow, to reverse the dense

representations back into normal-size RGB images.

For the discriminators, the model uses simple, three-layer Convolutional Neural Networks

(CNN) that gradually increase the number of filters. The last layer outputs a one-channel

prediction map, which is the encoding input for the criterion function. Because the RDSBW

dataset consists of high-resolution images, it would be time and memory-consuming to infer

the entire images. Therefore, in the training stage, images are cropped into 480×480 pixel

patches to reduce the calculation burden, which is then learned using PatchGANs [29, 64,

119].

3.3.3 Weather Information Guidance

To obtain better results, a disentangled training strategy [105, 120] is introduced that re-

gards images degraded by adverse weather as composites of a weather layer and a clean

background. the strategy can then calculate the numerical distance between the input and

output of each generator and store those distance values in a tensor that has the same dimen-

sions as the input image. This tensor is referred to as the weather layer. To provide additional

input to the generator, SFT [106] is incorporated to combine the weather layer feature with
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the extracted feature maps, allowing the weather layer to serve as guidance. The details of

the SFT layer was described in 3.2.2.

The model then uses the feature maps of the penultimate convolutional layer of the GAN

generator as input F to the SFT module. While the fake image output from the SFT module

is similar to the input image, the values of the elements in the weather layer are close to

0, which is the consequence of the vanishing gradients. That is why the weather layer is

normalized before it reaches the SFT module.

3.3.4 Loss Functions

Three kinds of loss functions are used when formulating an MWCG model: adversarial

loss, cycle consistency loss, and identity loss. The overall objective function is formulated

as:

Lobj = LGAN +λcLcyc +λiLidentity, (3.5)

where λc and λi are weights that control the cycle consistency loss and identity loss, respec-

tively.

3.3.4.1 Adversarial Loss

Adversarial losses are used to obtain four mappings, three for from clear to adverse

weather (Y → x1, Y → x2, and Y → x3) and one for from adverse to clear weather (X → Y ).

The first three mappings can be expressed as:

C,3

∑
i=A, j=1

LGAN
(
Gi,Di,Y,x j

)
= Ei∼pdata(i) [logDi(i)]+ED∼pdata(D) [1− logDi(Gi(D))] ,

(3.6)
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Figure 3.8: MWCG translates clear images into rainy, snowy, or foggy images using three different

generators, creating a set of images representing different weather conditions (top row). In contrast,

only one generator is needed to translate all three types of adverse weather images into clear ones

(bottom row).

where GA, GB, and GC try to generate images GA(D), GB(D), and GC(D) that look similar

to images from domains x1, x2, and x3 while DA, DB, and DC aim to distinguish between the

translated samples GA(D), GB(D), and GC(D) and real samples D, respectively. The base of

the logarithm in the equation is usually set to 2 or e.

The transformation from adverse to clear weather involves three components, correspond-

ing to each weather sub-domain. The mean values are calculated as:

LGAN (GD,DD,X ,Y ) =
1
3

n

∑
i=1

LGAN (GD,DD,xi,Y ) , (3.7)

where the LGAN over xi tries to enable GD to generate better rain, snow, and fog images,

while DD needs to identify fake images after the generator is evolved.

3.3.4.2 Cycle Consistency Loss

The concept of “cycle consistency loss” is introduced by Zhu et al. [29], the paper propos-

ing CycleGAN. It is calculated as the L1 norm between the input image and the reconstructed

image and is used to prevent the second generator from generating random images of the tar-

get domain. An example of forward cycle consistency is shown in Fig. 3.8, where images of
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each type of adverse weather is first translated into the “clear” domain before being restored

to the original adverse weather images. This process can be formulated as:

A → GD(A)→ GA (GD(A))≈ A,

B → GD(B)→ GB (GD(B))≈ B,

C → GD(C)→ GC (GD(C))≈C.

(3.8)

Likewise, for backward cycle consistency, the clear image that is first translated into vari-

ous weather domains should be restored to the same state as input:

D → GA(D)→ GD (GA(D))≈ D,

D → GB(D)→ GD (GB(D))≈ D,

D → GC(D)→ GD (GC(D))≈ D.

(3.9)

To force the weather removal generator GD to update at the same pace as the adverse

weather generators, the average of the three cycle losses are calculated as the loss of GD as:

Lcyc(G,D) =
C

∑
i=A

EA∼pdata(i) [∥Gi(GD(i)− i)∥1]+
1
3

C

∑
j=1

ED∼pdata (D)

[
∥GD(G j(D)−D)∥1

]
.

(3.10)

3.3.4.3 Identity Loss

Identity loss is used to preserve the image color composition when applying painting trans-

fer to realistic photo tasks. It is useful when dealing with large weather images that have

obvious base color tones. The goal is to train the generator to learn to map the identities of

the target domain images used as input. It can be expressed as:

Lidentity(GA,GB,GC,GD) =
D

∑
i=A

Ei∼pdata (i) [∥Gi(i)− i∥1] . (3.11)
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Figure 3.9: Sample scenes from the Cityscapes [1] and rearranged Cityscapes weather datasets.

The latter combined images selected from Foggy Cityscapes [2], Rain Cityscapes [3], and Snow

Cityscapes [4] datasets.

3.3.5 Experiment

This section evaluates the performance of the proposed extended conversion model using

both the synthetic dataset and the full RDSBW dataset. In addition to assessing the conver-

sion from adverse weather to clear conditions, conversions from clear to adverse weather

conditions are also evaluated. Quantitative evaluation includes comparing the proposed

method against single-weather removal techniques. Finally, the performance of pedestrian

and object detectors on both the source and converted images is also assessed.

3.3.5.1 Implementation Details

The model uses the Pytorch framework for training, testing, and image preprocessing. Two

NVIDIA RTX A6000 GPUs are used for training, with a batch size of 4. The MWCG model
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is trained for 200 epochs on each dataset to ensure convergence, using the Adam optimizer

[108] and a step learning rate schedule. In addition, the model set the λ c and λ i loss weights

at 10 and the extra identity loss weight λ idt at 2.

3.3.5.2 Datasets

To train the MWCG, Rain Cityscapes [3], Snow Cityscapes [4] and Foggy Cityscapes

[2] are used to create a rearranged Cityscapes weather dataset, as shown in Fig. 3.9. The

synthetic weather datasets use the same depth maps as the background more than once to

simulate different weather intensities. Since low-intensity weather does not degrade visual

applications very much and high-intensity weather occurs relatively infrequently, the ex-

periment only uses the 300 meter foggy images from the Foggy Cityscapes dataset and 12

types of rain patterns from the Rain Cityscapes. To keep all the images in the training set at

the same resolution, which is important to reduce domain difference, the Snow Cityscapes

images are resized to 2,048×1,024 pixels using normal linear interpolation.

MWCG is also trained on RDSBW [121], with 4,171 rainy, 4,777 snowy, 2,052 fog and

2,831 clear images randomly selected in this experiment.

3.3.5.3 Experiment Results

Qualitative Evaluation Using RDSBW Data

The experiment first conducts a qualitative evaluation using MWCG with the RDSBW

dataset. Samples of the weather generation results are shown in Fig. 3.10. MWCG can

translate an unseen clear image into rain, snow, and fog images without changing the original

background content. The proposed method seemed especially effective for adding rain and

fog based on the following three aspects. First, the color of the image shifted based on

the type of adverse weather effect being added. Second, the weather effects were similar
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Figure 3.10: Weather generation results for RDSBW. Even when trained without paired image sets,

MWCG still can translate clear images into images of three adverse weather conditions without cor-

rupting the background content.

to those observed in real scenes, since MWCG did not simply add an extra layer to the

input image but instead applied appropriately generated weather effects to each region of the

image, to objects such as the sky, roads, and trees. Thirdly, MWCG was able to consider

the semantic information. For example, the wires connecting the power and telephone poles

were partly hidden under fog and the lane markings were covered by ice and snow under

snowy. However, in the case of rain, the generated results were not ideal because the patterns

in the rainy weather source images were not conspicuous enough for the model to learn them

effectively. This problem could be addressed in the future by collecting more useful rainy

weather image data.
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Figure 3.11: Weather removal results for the RDSBW dataset, showing examples of MWCG’s trans-

lation of adverse weather images into clear weather images. While MWCG was unable to recover

objects and buildings hidden behind dense fog, it did not randomly insert fake objects.

Regarding the weather removal results, we can still observe accurate color transformation

and realistic scene translation results, as shown in Fig. 3.11, but MWCG occasionally fab-

ricated inputs, generating artifacts in some cases, most notably the insertion of fake grass in

the middle of the road when removing rainy weather effects. This is due to limitations in the

generation process and when weather effects are very extensive, the network was unable to
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Figure 3.12: Weather removal results for the Cityscapes Weather datasets. Even if objects are oc-

cluded by fog, rain, or snowflakes, MWCG still can recover the original Cityscape images to generate

clear images.

determine the original context without some guessing.

Qualitative and Quantitative Evaluation Using Cityscapes Weather Datasets

Next, Qualitative results are presented when using the Cityscapes Weather datasets. Since

ground-truth images without any adverse weather phenomenon are included, quantitative

results should be provided. As shown in Fig. 3.12, MWCG demonstrated high performance

when removing weather effects during the qualitative experiment. This is because, in this

setting, the only difference between the adverse and clear weather domains is the weather

effects. Therefore, even though the data were unpaired during training, MWCG could still

determine what is hidden behind the rain streaks, snowflakes, or fog and recover the original

images. The generation performance of MWTG was also evaluated. The similarity between

source images in Cityscapes Weather dataset and generated weather images is shown in

Table 3.2.
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Table 3.2: Generation Results on Cityscapes Weather dataset.

Type Weather PSNR↑ SSIM↑

Multi Task

Fog 21.09 0.92

Rain 21.38 0.85

Snow 19.02 0.68

Table 3.3: Comparison of image quality results with Rain Cityscapes dataset.

Type Method Venue PSNR ↑ SSIM ↑

Specific

Task

RCDNet [122] CVPR2020 20.39 0.65

MPRNet [123] CVPR2021 20.10 0.68

PReNet [124] CVPR2019 20.48 0.66

RESCAN [125] CVPR2018 20.44 0.67

Previous work [120] VTC2022 22.46 0.89

Multi

Task
MWCG (Proposed) — 25.16 0.91

For quantitative evaluation, MWCG is compared with the State-Of-The-Art (SOTA) single

weather removal methods, but only for their specific tasks. For de-fogging, the performance

of the proposed MTWG method is compared with DehazeNet [126], Multi-Scale Convolu-

tional Neural Network (MSCNN) [127], All-in-One Network for Dehazing (AODNet) [128],

and GridDehazeNet [129]. For de-raining, MTWG was compared with Rain Convolutional

Dictionary Network (RCDNet) [122], Multi-stage Progressive image Restoration Network

(MPRNet) [123], Progressive Recurrent Network (PReNet) [124], and Recurrent Squeeze

and Excitation Context Aggregation Net (RESCAN) [125].
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Table 3.4: Comparison of image quality results with Snow Cityscapes dataset.

Type Method Venue PSNR ↑ SSIM ↑

Specific

Task

RESCAN [125] ECCV2018 33.63 0.96

SPANet [130] CVPR2019 35.73 0.97

DesnowNet [131] TIP2018 33.58 0.94

Previous work [120] VTC2022 27.42 0.87

Multi

Task
MWCG (Proposed) — 25.23 0.86

Table 3.5: Comparison of image quality results with Foggy Cityscapes dataset.

Type Method Venue PSNR↑ SSIM↑

Task

Specific

DehazeNet [126] TIP2016 14.97 0.49

MSCNN [127] ECCV2016 18.99 0.86

AODNet [128] ICCV2017 15.45 0.63

GridDehazeNet [129] ICCV2019 23.72 0.92

Previous work [120] VTC2022 24.07 0.92

Multi

Task
MWCG (Proposed) — 23.84 0.91

For de-snowing, MTWG is compared with RESCAN, Spatial Attentive Network (SPANet) [130],

and DesnowNet [131]. Note that although MSCNN is listed in all the comparisons, it is still

categorized as a single weather removal tool since it needs to be retrained for each removal

task. In contrast, MWCG performs all these tasks using the same model.

PSNR and SSIM are used to compare the performance of each model when using the

Cityscapes images. The results are shown in Tables 3.3~3.5.
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Figure 3.13: Application of MTWG on Foggy Cityscapes using a SOTA pedestrian detector ACSP.

From these results, we can see that MWCG achieved similar or better performance than

the other de-raining or de-fogging methods, as measured using PSNR and SSIM. However,

for the de-snowing task, MWCG was impaired by pixel resolution differences and, thus,

did not achieve satisfactory performance. This is because the conventional methods were

evaluated using the original Snow Cityscapes images, with an image resolution of 512×256

pixels, while these images were resized to match the resolutions of the other two datasets

(2,048×1,024 pixels) when training MWCG. Therefore, MWCG was dealing with images

that are 16 times larger than the conventional methods.
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Table 3.6: Log-average miss rate over False Positive Per Image (FPPI) results for ACSP pedestrian

detector using Foggy Cityscapes dataset.

Data Reasonable Bare Partial Heavy

Foggy (before) 23.73% 16.32% 25.93% 58.70%

De-fogged (after) 20.65% 14.98% 21.30% 58.70%

Figure 3.14: Application of MTWG on Weather Cityscapes using SOTA object detector Cascade-

RCNN.
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3.3.5.4 Evaluation Using Perception Algorithm

To verify the suitability of MWCG for visual applications, MWCG is tested using the

SOTA pedestrian detector ACSP [113] on Foggy Cityscapes images. An example of ACSP

detection applied to MWCG’s de-fogging result is shown in Fig. 3.13. As we can see, the

detection results clearly improved after the images were de-fogged using MWCG. For further

investigation, ACSP was applied to the validation set of Foggy Cityscapes dataset. Results

are shown in Table 3.6 in log-average Miss Rate over False Positive Per Image (FPPI).

A SOTA object detector was also applied, which uses Cascade-RCNN [14] as the back-

bone, on Cityscapes Weather datasets as shown in Fig. 3.14. We can observe the performance

improvement in the detection numbers in different weather conditions.

3.3.5.5 Discussion

Based on the results of the evaluations, MWCG was confirmed to be able to translate

images of multiple types of adverse weather into clear images since a constraint on cycle-

consistency loss allowed the background context to remain unchanged. In this section, the

capabilities and drawbacks of weather generation and removal using MWCG will be dis-

cussed in more detail.

In the experiment with the RDSBW dataset, the number of samples for each weather

condition was unbalanced. In general, models would learn better conversion rules with more

training samples. However, in the case of foggy weather, with only 2,000 training samples,

the model was able to achieve satisfactory results. In contrast, in the case of images of

rainy weather, even though the model was trained with 4,000 image samples, the translation

results were less accurate. This is because rain creates more complex patterns in images.

For example, streaks of rain in the air are spindly, so they are difficult for the camera to

capture. Furthermore, rain is often accompanied by high humidity, thus there is often fog
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in the background. When encountering finer and more varied distinctions, the proposed

model tends to learn simpler representations, which is why the rainy images generated using

MWCG were more similar to an intermediate output between fog and snow. We can also

observe that MWCG’s weather generation performance was superior to its weather removal

performance. Since the CycleGAN model [29] is good at translation tasks involving color

and texture changes, the proposed model MWCG based on it should inherit this ability.

However, even though the proposed method intuitively considers the generation and removal

of weather to be two separate tasks, the proposed model treats both as translation tasks. This

means erasing noise, such as blocks of fog or flakes of snow from occluded objects, is not

the primary target of the model but it is adding a layer of snow on the road or inserting a

layer of fog in the distance, for example. Note that this difference in conversion performance

is less obvious when using the Cityscapes dataset, where domain variance is minimal since

the images are all synthesized using the same dataset.

3.4 Conclusions

The first work of this chapter proposed a disentangled adverse weather removal network

for pedestrian detection. The model generated clear weather images from degraded images

without extra physical parameters. Besides, the training process jointly learned the weather

generation and removal in a disentangled manner. To keep weather information the same

in the two generators, a weather layer loss was added to the CycleGAN [29] architecture.

Further, an SFT layer was introduced to take the weather layer as information guidance and

input to the reconstruct generator in each pipeline. Experimental results showed that the

proposed model makes a SOTA detector such as ACSP [113] more effective on mixed Foggy

CityScapes and RainCityScapes datasets.

In the second work of this chapter, a solution was explored to the visibility degradation
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problem that AVs encounter when operating under adverse weather conditions, which can

lead to malfunctioning of the perception module. The proposed, dual-purpose framework

called MWCG was able to perform adverse weather generation and removal tasks simulta-

neously. In particular, the image translation model was trained using unpaired data. Three

weather generators were used to create adverse weather effects on images of normal driv-

ing scenes obtained from video datasets, while a fourth clear weather generator was used to

recover clear images by removing rainy, snowy, and foggy noise. To avoid translation devi-

ation, a spatial feature transform layer was added to fuse the feature maps of the front-end

network, as an information guide to the subsequent network.

A qualitative evaluation of MWCG using the RDSBW dataset and qualitative and quan-

titative evaluations using reorganized images from the Cityscapes and Cityscapes weather

datasets showed that MWCG can achieve promising de-noising performance. Moreover, the

results of a practical experiment showed that the proposed model boosted the performance

of SOTA pedestrian detector ACSP when tested using the Foggy Cityscapes images.



4 Realistic Image Conversion

4.1 Introduction

This chapter focuses on enhancing the realism of image conversions for autonomous driv-

ing scenes, with an emphasis on achieving photo-realistic results. Using segmentation maps

as additional input, the model gains a deeper understanding of different elements in the im-

ages, such as roads, vehicles, and buildings. This allows for more accurate maintenance of

object integrity during the conversion process, ensuring each element is correctly represented

under different weather conditions.

The importance of achieving photo-realistic image conversions cannot be overstated. For

Autonomous Vehicles (AVs), the ability to interpret and react to their surroundings is cru-

cial for safe navigation. Photo-realistic images provide a level of detail and accuracy that is

essential for training AVs’ perception systems. By experiencing a wide range of realistic sce-

narios, the vehicles can learn to recognize and respond to various environmental conditions

more effectively.

Deep supervision is another technique employed in this chapter. It involves adding guid-

ance to the intermediate layers of the generator within the image conversion model. This

method improves the extraction and transformation of features in the images, leading to con-

versions that are not only realistic but also semantically accurate. The end result is that the

model produces images that are not just visually convincing but also represent the scene’s

elements in a way that closely mimics real life.
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By combining the use of semantic images and deep supervision, the model enhances its

capability to create images that are indistinguishable from real photographs. This is vital for

AVs, as their safety and reliability depend on accurate and realistic visual information from

their surroundings.

4.2 Proposed Methods

This chapter shows that instead of removing noise from weather images, models based

on CycleGAN [29] have more potential in synthesizing weather effects, even though they

both are a subset of style transfer. When it comes to the task of removal, the generator will

inevitably introduce artifacts to the original images, which are not suitable for subsequent

perception algorithms. On the other hand, for synthesis, this tendency will help generate

more natural scenes, such as the haze in the distance caused by snowflake accumulation. Ad-

ditionally, this research suggests that by synthesizing weather effects with CycleGAN-based

models, the proposed model can improve the diversity and realism of the images used for

training perception models, particularly those designated to operate under adverse weather

conditions. In addition, CycleGAN designs to handle larger images, e.g. 2,048×1,024 pix-

els resolution in the Cityscapes [1] dataset. Therefore, the proposed snow synthesis model

takes CycleGAN as the backbone.

Two novel modules are further introduced: multi-modality module and deep supervision

module. In the multi-modality module, an additional segmentation map is fed to the gen-

erator. The reason is to enable the generator to learn different translations across different

regions. In detail, crop patches in the same position as input RGB images of the segmenta-

tion map are first taken. Then, a feature fusion technique called Spatial Feature Transform

(SFT) [106] is employed to carry out deep fusion with the extracted RGB features. The

reason is twofold: to achieve better optimization and to increase robustness to changes in
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Figure 4.1: Algorithm of the proposed snow synthesis method.

scale. Meanwhile, in the deep supervision module, two extra side outputs are added to the

discriminator. Together with the final output, these three feature maps are scaled down at the

same proportion and represent different perception fields. The architecture of the proposed

snow synthesis method is shown in Fig. 4.1.

4.2.1 Multi-modality Input with Segmentation Map

Physical snow simulation methods take into account the fact that snowflakes will be af-

fected by wind and snow particles will accumulate and cause light scattering at a distance.

While the deep learning model can mimic the dynamic behavior of snow, it is difficult to

generate distance-dependent fog in various regions.

A segmentation map is used to represent multiple semantic segments in an image, which

can simplify the process of identifying and analyzing the different regions. Incorporating
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this semantic information into the generator can help the simulation to generate snow more

accurately according to different regions, such as the sky, trees, and roads.

Training a high-quality semantic segmentation model from scratch can be a time-consuming

and resource-intensive task. Instead, off-the-shelf models are usually more robust because

they are trained on a large amount of data and have been fine-tuned to a variety of differ-

ent tasks. Therefore, a State-Of-The-Art (SOTA) segmentation method Vision Transformer

(ViT)-Adapter [132] is employed to calculate the segmentation maps used in this work.

By utilizing SFT, the proposed model can effectively fuse the segmentation map in a

spatially-aware manner. The SFT layer learns a mapping function M, which outputs a mod-

ulation parameter pair (γ,β ) based on a set of prior conditions Ψ . These learned parameters

adaptively influence the outputs by applying an affine transformation to the intermediate

feature maps in a spatial manner.

Once the (γ,β ) parameters are obtained from the conditions, the transformation is exe-

cuted by scaling and shifting the feature maps of a specific layer as:

SFT(F | γ,β ) = γ ⊙F ⊕β , (4.1)

where ⊙ and ⊕ indicate element-wise product and summation, respectively.

4.2.2 Deep Supervision

Deep supervision is a concept that involves adding supervision to the intermediate layers

of a neural network. The added supervision allows the network to learn more discriminative

features and improve its performance by mitigating the gradient vanishing problem. This en-

ables the creation of deeper networks and more efficient learning. During the forward prop-

agation phase, deep supervision does not alter the flow of information through the network.

The overall loss is a combination of the loss at the final output layer and the intermediate
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supervision loss defined as:

L = LL +αLK, (4.2)

where LL is the final layer, LK is the Kth layer, and α is the weight.

In this case, the last three convolutional layer outputs of the generator are input to the

discriminator. It is the upsampling stage that restores the spatial size of extracted features to

its original size.

4.2.3 Loss Functions

Three kinds of loss functions are used when formulating the proposed snow synthesis

model: adversarial loss LGAN, cycle consistency loss Lcyc, and identity loss Lidentity.

The overall objective function is formulated as:

Lobj = λaLGAN +λcLcyc +λiLidentity, (4.3)

where λa, λc, and λi are weights that control each loss.

4.2.3.1 Adversarial Loss

Adversarial loss LGAN is used to obtain two mappings, clear to snow and recover. The

mappings can be expressed as:

LGAN (GC,DS,C,S) = Es∼pdata(s) [logDS(s)]+Ec∼pdata(c) [1− logDS(GC(c))] , (4.4)

LGAN (GS,DC,S,C) = Ec∼pdata(c) [logDC(c)]+Es∼pdata(s) [1− logDC(GS(s))] , (4.5)

where C indicates the clear domain, S indicates the snow domain and related low case indi-

cates specific sample. GC tries to generate images that look similar to snow scenes while DS

aims to distinguish between translated samples GC(c) and real samples S. In the opposite
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direction, the target is changed from snow to clear. The base of the logarithm in the equation

is usually set to 2 or e.

4.2.3.2 Cycle Consistency Loss

The cycle consistency loss function compares the output of a forward translation (e.g.,

clear to snow) with the output of a backward translation (e.g., snow to clear). The goal is

for the output of the backward translation to be similar to the original input, ensuring that

the network has learned a meaningful translation rather than simply memorizing the training

data. The loss Lcyc is calculated as the L1 or L2 distance between the original input and the

output of the backward translation as:

Lcyc = Es∼pdata(s)[∥GC (GS (s))− s∥1]+Ec∼pdata(c)[∥GS (GC (c))− c∥1]. (4.6)

The lower this distance is, the better the network is at maintaining the original content of the

image.

4.2.3.3 Identity Loss

Identity loss Lidentity is used to preserve image color composition when applying painting

transfer to realistic photo tasks. It is also useful when dealing with large weather images that

have obvious base color tones. The goal is to train the generator to learn to map the identities

of the target domain images used as input. It is expressed as:

Lidentity(GC,GS) = Es∼pdata(s)[∥(GS (c))− c∥1]+Ec∼pdata(c)[∥(GC (s))− s∥1]. (4.7)
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Figure 4.2: Examples of real snow dataset from the RDSBW dataset.

4.3 Experiment

This section conducts qualitative and quantitative evaluation of the proposed conversion

method with respect to snow synthesis. SOTA conversion methods are used to make com-

parisons and common image quality metrics are calculated. Further, pedestrian detection is

applied to images before and after conversion.

4.3.1 Implementation Details

The model uses ResNet [109] as the generation network, including two layers of down-

sampling, three layers of identity mapping, and two layers of upsampling. Each image before

input to the generator is randomly cropped into 256×256 patches. The corresponding seg-

mentation map is cropped at the same position. For the discriminator, the model uses a

three-layer convolutional network to extract a 128-dimension embedding.

The model is trained using the AdamW [133] optimizer with an initial learning rate of

0.0002. The batch size is set to 16 for training 200 epochs without segmentation maps and

full training of 100 epochs. The parameters λa, λc, and λi are set to 1, 10, and 1 respectively.
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4.3.2 Datasets

To provide a realistic learning target, the snow set of Realistic Driving Scenes under Bad

Weather (RDSBW) dataset introduced in 3.2.3.2 is used. High-quality images are picked out

and resized to a resolution of 960×540 pixels. The final snow dataset contains 6,814 images

and a few examples in various scenes are presented in Fig. 4.2.

The Cityscapes [1] and EuroCity Persons [9] datasets are used as the source of the clear

set. The latter is divided into daytime and nighttime sets with over 47,300 images. To make

a comparable match to the snow dataset, the experiment randomly selected 5,921 images in

the daytime training set.

4.3.3 Results

Fig. 4.3 presents results of snow synthesis on the Cityscapes and EuroCity Persons

datasets. Compared to CycleGAN-based methods, one-way methods including Fast Con-

trastive Unpaired Translation (FastCUT) [134] and Multimodal Unsupervised Image-to-

Image Translation (MUNIT) [135] lack a bijection relationship between the two domains.

The lightweight FastCUT only preserves the structure as we can not observe snow effects

but more of a whitening process because maximizing mutual information alone is not enough

for changing the appearance of the snow synthesize task. In contrast, CycleGAN completely

changes the appearance of snow scenes while maintaining structure and texture, but the far-

end snow representation is vague and resembles dense fog, particularly in the sky region.

The proposed method, using the information from segmentation maps, learns to generate

snow by region and can preserve building outlines in distance.

Given the fact that the subjects of evaluation were synthesized snow images without

ground truth, the experiment selected Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
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Table 4.1: Image quality metrics between synthesized and real images on Cityscapes dataset.

Method PSNR↑ SSIM↑ FID↓

CUT [134] 7.04 0.37 247.22

CycleGAN [29] 7.10 0.40 217.24

MUNIT [135] 6.07 0.26 258 .57

Proposed 7.32 0.43 196.18

larity Index (SSIM), and Fréchet Inception Distance (FID) [136] as quantitative evaluation

metrics to measure the similarity between the snow and original images. In particular, higher

PSNR indicates the robustness of the representation against corrupting noise, while higher

SSIM signifies a close similarity in structural information between the snow and original

images, and lower FID shows proximity in data distribution. 100 generated fake images are

randomly selected for testing.

FID calculates the Fréchet distance between two sets of images based on the features

extracted by the inception network [137]. It provides a measure of similarity between the

generated images and their respective benchmarks. A lower FID value suggests that the

generated images closely resemble the benchmark images.

The other metrics were introduced in 3.2.3.3.

Tables 4.1 and 4.2 show the results of similarity between the synthesized and real images.

The high values of PSNR and SSIM not only suggest good verisimilitudes of the proposed

synthesized snow images but also lower noises. What is more, the obvious lower FIDs of

the proposed model state that the data distribution between the target and source is rela-

tively close. The overall statistics demonstrate strong capability on the snow synthesis of the

proposed model and superior performance over other SOTA methods.
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Table 4.2: Image quality metric between synthesized and real images on EuroCity Persons dataset.

Method PSNR↑ SSIM↑ FID↓

CUT [134] 8.78 0.45 206.37

CycleGAN [29] 8.38 0.50 175.74

MUNIT [135] 7.66 0.33 235.40

Proposed 9.35 0.54 138.43

An interesting discovery is that the EuroCity Persons dataset captures scenes under cloudy

weather with wet roads, providing a better match to the snow dataset compared to the

Cityscapes dataset. This highlights the importance of controlling environmental variables

when dealing with large-sized images for improved translation results.

4.3.4 Impact on Object Detection Performance

In addition to the qualitative and quantitative analyses previously conducted, a new set of

experiments is carried out to evaluate the impact of the proposed realistic image conversion

method on object detection algorithms. These experiments are specifically designed to assess

how the addition of synthetic snow to the original Cityscapes dataset and EuroCity Persons

images affects the performance of standard object detection models as shown in Figs. 4.4

and 4.5.
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Figure 4.4: Results of applying SOTA object detector Cascade RCNN on the source and converted

images of EuroCity Persons dataset.

To conduct this experiment, a SOTA object detection algorithm is applied to two sets of

images: the original Cityscapes images and their counterparts with realistically converted

snow scenes, same for the EuroCity Persons dataset. The primary objective is to evaluate

change in the detection accuracy due to the altered environmental conditions, specifically

the presence of snow.
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Figure 4.5: Results of applying SOTA object detector Cascade RCNN on the source and converted

images of CityScapes dataset.

The results revealed a noticeable decline in the object detection performance on the snow-

converted images compared to the original Cityscapes dataset. The decline can be attributed

to the added complexity and visual changes introduced by the snow, which create new chal-

lenges for the detection models. These challenges include reduced visibility of objects, al-

terations in their appearance due to snow coverage, and changes in lighting and contrast.

This experiment highlights the realistic nature of the snow conversion in the proposed

method, as it accurately mimics the real-world difficulties that autonomous driving systems
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Table 4.3: Comparison of log average miss rate (↓) of Adapted Center and Scale Prediction (ACSP)

with converted snow images as additional training data.

Training data Reasonable Bare Partial Heavy

Cityscapes 14.80% 10.32% 14.69% 51.38%

Cityscapes + synthetic snow images 13.08% 8.13% 14.50% 50.39%

face in snowy conditions. The results underscore the need for further refinement of object

detection algorithms to adapt to diverse weather conditions, emphasizing the importance

of training these models on a wide range of environmental scenarios, including those with

adverse weather elements like snow.

4.3.5 Enhanced Pedestrian Detection with Synthetically Augmented Data

As a further extension of this research, another set of experiments is conducted to as-

sess the effectiveness of using synthetically generated snow images as additional training

data for pedestrian detection algorithms. Specifically, the experiment compares the perfor-

mance of the Adapted Center and Scale Prediction (ACSP) algorithm [113] trained solely

on the Cityscapes dataset against the same algorithm trained with an augmented dataset that

includes the realistically converted snow images.

This experiment focuses on evaluating pedestrian detection accuracy under various levels

of occlusion, categorized as Reasonable, Bare, Partial, and Heavy. The key metric used

to measure performance is the log-average miss rate, a standard benchmark in pedestrian

detection studies.

The results as shown in Table 4.3 were significant: ACSP trained with the augmented

dataset (Cityscapes plus synthetic snow images) showed a marked improvement in detection



4.4. Conclusion 87

accuracy across all occlusion categories compared to ACSP trained only on the original

Cityscapes dataset. The log-average miss rate was notably lower for the algorithm trained

with the additional synthetic snow data. This improvement indicates that the inclusion of

diverse weather conditions, like snow, in the training dataset can enhance the algorithm’s

ability to detect pedestrians in challenging visibility conditions.

These findings demonstrate the value of synthetic data augmentation in training more ro-

bust pedestrian detection algorithms. By exposing the ACSP algorithm to a wider range of

scenarios, including adverse weather conditions simulated by the proposed realistic snow

conversion, the model should become better equipped to handle real-world challenges. This

is particularly relevant for autonomous driving systems, where reliable pedestrian detection

under various environmental conditions is crucial for ensuring safety.

4.4 Conclusion

This chapter proposed a novel snow synthesis model for generating realistic snow scenes

on existing driving datasets. The proposed model was based on cycle-consistent adversarial

networks, which learn the mapping between two domains. To address the problem of artifacts

and inadequate scene understanding, a multi-modality input was introduced by incorporat-

ing segmentation maps. The additional information was deeply fused with the previously

extracted feature maps to improve the performance of the model. Additionally, deep super-

vision was used to govern the generation of features at different scales, further enhancing

the realism of the generated snow images. The proposed model was evaluated with typical

image quality metrics on the Cityscapes and EuroCity Persons datasets and its strong ability

to generate realistic snow images with respect to the image quality metric and the impact

on object detection algorithms were demonstrated. The experiment also validated that with

an augmented dataset that includes the realistically converted snow images, the pedestrian
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detector can achieve better performance on log-average miss rate.



5 Controllable Image Conversion

5.1 Introduction

Controllability in image conversion is a critical aspect, especially in applications like au-

tonomous driving where precision and customization are key. This chapter introduces an

innovative approach in image conversion, focusing on enhancing this controllability. By

gaining precise control over the stylistic and content aspects of image conversions, the pro-

posed method can tailor the outputs to fit specific environmental and operational require-

ments, which is crucial for the effective training and performance of Autonomous Vehicles

(AVs).

In this advanced approach, the generator within the image conversion model is divided into

a style encoder and a content encoder. This separation enables more nuanced control over

both the aesthetic and structural elements of the images. The style encoder is responsible

for capturing and manipulating the visual style of the image, such as its color scheme and

texture. To maintain consistency in style, a self-regression module is applied to the style

latent space, ensuring that the style variations remain within acceptable limits and do not

detract from the image’s realism.

Conversely, the content encoder focuses on the scene’s semantic and structural aspects,

such as the layout and objects within the image. Enhancing the content encoder is a content

feature discriminator, a tool that strengthens the content-related attributes of the converted

images. This ensures that key elements of the original scene are preserved and accurately
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depicted after conversion, a necessity for autonomous driving systems that rely on precise

visual information for navigation and decision-making.

The combination of a style encoder and a content encoder in the image conversion process

allows for an unprecedented level of control. This controllability is essential for producing

conversions that are not only realistic and accurate but also tailored to specific requirements

of style and content. This chapter will detail these technical components and their integra-

tion, highlighting how they collectively enhance the controllability of the image conversion

process.

To synthesize realistic snow on the driving datasets, the proposed method focuses on the

Generative Adversarial Networks (GANs) with cycle consistency. The goal is to learn the

mapping between the snow domain and the clear weather domain. In previous unpaired

image conversion methods [120, 138], two generators were employed to transfer images

into the expected domain. Two corresponding discriminators were employed to differentiate

real images and fake images. The cycle consistency ensured that translated images can be

reconstructed into original input images.

Recently, when researchers use similar methods for weather removal or synthesis, they

follow an assumption that weather images can be decomposed into content partition and

weather partition [139, 140, 141]. The partition could be any mathematical format, such

as vectors or tensors. In general image translation tasks, the weather partition refers to the

style representation. This technique will disentangle the translation process and preserve the

structural feature of the background. Therefore, the model follows the assumption and splits

the generator into three networks: style encoder, content encoder, and decoder.

In the field of representation learning, incomplete disentanglement is often more prevalent.

This concept suggests that images from varying domains have a shared content representa-

tion space, but the style representation space remains unique to each domain. This idea is
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also known as the shared latent space assumption. In this task, the style is related to snow,

and different classifications detail the attributes of weather events.

Intuitively, the content codes and style codes should be disjoint in the representation space.

To better achieve representation disentanglement, a content discriminator is applied to distin-

guish the domain membership of the encoded content features. The goal is to force content

encoders to generate features that cannot be identified, which means the content code does

not contain style details.

Further, to make the degree of synthesized snow controllable, it is needed to explore the

space S of style partition. Inspired by the work of Zhang et al. [139], the proposed model

converts the snow domain into a continuous space by associating the style code vectors with

a linear manipulation. With the help of the content discriminator, the style code will not

contain information on image attributes. Ideally, the interpolated style code should represent

an intermediate snow density.

5.2 Controllable Unsupervised Snow Synthesis

5.2.1 Fundamental Basis

To illustrate the framework of the proposed Controllable Unsupervised Snow Synthesis

(CUSS) method in an intuitive way, suppose that x1 ∈ X1 and x2 ∈ X2 are images from the

clear domain and the snow domain, respectively. In statistics, the images belong to two

marginal distributions, p(x1) and p(x2). The joint distribution p(x1,x2) is inaccessible due

to lack of paired data. The goal is to learn an image conversion model that can estimate two

conditionals probabilities, p(x1→2|x1) and p(x2→1|x2), where x1→2 is a sample of synthe-

sized snow images and x2→1 is a sample of synthesized clear images (recovered from real

snow samples). In general, the synthesized outputs do not fall into a single mode.
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Figure 5.1: Architectural design of the proposed Controllable Unsupervised Snow Synthesis (CUSS)

network. Solid arrows show the forward process of the generators and dashed arrows show the input

to the discriminators.

To obtain other possible solutions, the partially shared latent space assumption from Mul-

timodal Unsupervised Image-to-Image Translation (MUNIT) [135] is adopted to produce

diverse snow effects. This theory posits that each image xi ∈ Xi originates from a content

latent code ci, shared across both domains, and a unique style latent code si tied to its re-

spective domain. For snow synthesis, a matching pair of clear and snow images (x1,x2) from

the combined distribution is created by x1 = F1(c1,s1) and x2 = F2(c2,s2), with F1 and F2

as the foundational generators with the inverse encoders E1 and E2, with E1 = (F1)
−1 and

E2 = (F2)
−1.
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Algorithm 2 Controllable Unsupervised Snow Synthesis (CUSS)
Input: Training data pairs (X1,X2) ▷ In order of clear and snow

Output: Encoders E1,E2, Decoders F1,F2 ▷ F1 generate clear images, F2 generate

snow images

1: Initialize encoders, decoders, and discriminators

2: Define loss functions

3: Define optimizers for generator and discriminator

4: while epoch ≤ total_epoches do

5: for data pair (X1, X2) in data_loader do

6: Get content codes and style codes of input images: (c1,s1) = E1(x1), (c2,s2) =

E2(x2), (sn1,sn2)∼ N (0,1) ▷ sni means style code sampled from normal distribution

7: Generate fake images: x1→2 = F2(c1,sn1), x2→1 = F1(c2,sn2)

8: Generate reconstruct images: x1→1 = F1(c1,s1), x2→2 = F1(c2,s2)

9: Get content codes and style codes of fake images: (c21,s21) = E1(x2→1),

(c12,s12) = E2(x1→2)

10: Generate cycle translation images: x1→2→1 = F1(c12,s1), x2→1→2 = F2(c21,s2)

11: Update Discriminator D1, D2, Dc

12: Update Generator E1, E2, F1, F2

13: end for

14: end while

The structure of the CUSS model is depicted in Fig. 5.1. As displayed in Fig. 5.1 (a),

the proposed conversion model has an encoder E1 and a decoder F1 for the clear domain X1,

and an encoder E2 and a decoder F2 for the snow domain X2. Each image fed into the encoder

becomes converted into a content code c and a style code s, represented as E(x) = (c,s). The

translation between images occurs by interchanging encoder-decoder pairs, as depicted in
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Fig. 5.1 (b). For instance, to transform a clear image x1 ∈X1 to X2, the CUSS first captures its

content latent code c1 = Ec
1(x1) and draws a style latent code s2 from the normal distribution

q(s2)∼N (0, I). Then, if employs F2 to generate the ultimate snow image x1→2 = F2(c1,s2).

Earlier research [142] harnesses the cycle consistency loss [29], measured by the L1 norm

of the input image. This aims to deter the secondary generator from producing arbitrary

target domain images. However, Huang et al. [135] demonstrates that if cycle consistency is

imposed, the translation model becomes deterministic. As a result, a style-enhanced cycle

consistency is integrated into the image-style joint spaces, which aligns better with multi-

modal image conversion. As illustrated in Fig. 5.1 (c), the CUSS derives the content code

c1→2 and style code s1→2 from the synthetic snow image x1→2. Then the content code c1→2

and the identical style latent code s2 are fed to the clear decoder F1. The result image is

named cycle clear image x1→2→1. The idea behind style-enhanced cycle consistency is that

by translating an image to a target domain and then back to the original style, the model

should retrieve the initial image. The CUSS does not apply explicit loss measures to ensure

this style-enhanced cycle consistency, but it is suggested by the bidirectional reconstruction

loss. The pseudo-code of CUSS is shown in Algorithm 2.

5.2.2 Disentanglement of Content and Style

A disentangled representation captures the underlying structure of the data so that in-

dividual factors can be modified independently without affecting others. The goal is to

achieve complete disentanglement, where both content and style features are extracted in-

dependently. To achieve this, a content discriminator Dc is used to remove style information

from the content feature. At the same time, self-supervised style coding is used to reduce

content information from the style feature.

To enhance the content encoder, the content feature discriminator proposed by Lee et al. [143]
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Figure 5.2: Snow sizing through self-regression style coding.

is employed. Initially, the content encoder extracts content codes, denoted as c1 and c2,

from the respective inputs x1 and x2. The content discriminator Dc takes input images and

classifies their source domain. Then one objective of the content encoder is to deceive Dc

with distinct features. As a result, the content encoder, and discriminator refine each other

through adversarial training. Once equilibrium is reached, the extracted content features no

longer retain any stylistic information about the image.

When this game of generators and discriminators stabilizes at the Nash equilibrium [144],

it becomes impossible for Dc to ascertain the image domain of the content feature, imply-

ing an absence of snow details in the content feature. A successful separation of style from

content is achieved when the content encoder exclusively captures the image’s content char-

acteristics.

It is proved that utilizing the content discriminator can prevent content codes from con-

taining style details [143]. Naturally, the next step is to remove content details from style

codes. The purpose is to make the generation more stable without being affected by other

factors. Consequently, the self-supervised style coding is implemented to remove any excess

content detail from the style codes as illustrated in Fig. 5.2.

Using a nonlinear function f to denote the style encoder, interpolation on two style codes

is initially performed; one from the clear domain and the other from the snow domain to
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acquire sk as:

sk = f (kx1 +(1− k)x2) . (5.1)

The proposed methodology involves extracting style codes from two distinct domains.

By using linear interpolation between these domains, guided by the parameter k, CUSS can

generate a range of snow sizes. Throughout the training process, a randomly selected k value

from the interval [0, 1] is used to derive a novel style code. This newly generated style code

serves as a self-supervised pseudo-label. In the scope of this problem, the need to disentangle

the style feature from the content feature makes sure that the operation on the style code is

consistent with those on the input image.

According to the derivation of Zhang et al.’s work [139], because sk is calculated by the

linear projection of s1 and s2, it should contain snow detail that is also a linear relation of

x1 and x2. By using sk and a content code of a clear input c1, a new snow image xk can be

generated. The style encoder then encodes sk again to obtain its style code, which will be

supervised by sk itself. The loss function is defined as:

Ls (Ec
1,E

s
2,F2) = Ex1,x2 [∥Es

2 (F2 (Ec
1 (x1) ,sk))− sk∥1] . (5.2)

Even though the function f is nonlinear, the decoder continually generates xk and the

model optimizes the encoder with sk in the training phase to maintain a consistent relation-

ship between input images and corresponding style codes linearly. In the early stages, the

style code will contain an extra content detail because of latent space entanglement. At ev-

ery forward iteration, the extra details become separated from the style codes. Instinctively,

the style encoder will identify content details and ignore them. In the absence of manually

assigned labels, the process relies on sk as a self-generated label to guide the updates of

networks. The desired situation is that the style code will generate snow according to each

object distribution at every distance and not decrease the information density of traffic sign

areas.
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Due to the stochastic choice of k at each forward iteration, the encoder is compelled to

project the snow-related detail into a linear space. As a result, linear adjustments to style

codes are used to generate images with varying snow densities. For example, the k value

presenting the k× 100% snow density of the input snow image can be specified. Then the

encoders extract the style code and content code of the input clear image. After that, the

content code and interpolated style code are fed to the decoder to obtain the output. The

factor k governs the snow density; Since s2 originates from the baseline snow, it can be

scaled up or down using k to yield a background invariant image featuring different levels of

snow density as:

xk = F2 (Ec
1 (x1) ,kEs

1 (x1)+(1− k)Es
2 (x2)) . (5.3)

5.2.3 Loss Functions

The comprehensive loss function discussed in this chapter comprises several components:

adversarial loss Ladv, image reconstruction identity loss Lid, content reconstruction loss

L c
recon, style regression loss Lregre, cycle consistency loss Lcc, and content loss Lcont. The

overall objective function is formulated as the weighted sum of these individual loss compo-

nents:

L = λadvLadv +λidLid +λ c
recon L c

recon +λ s
regreL

s
regre +λccLcc +λcontLcont, (5.4)

where variables λ act as the model’s hyperparameters, modulating the significance of each

loss component.

5.2.3.1 Adversarial Loss

Adversarial loss Ladv is employed in both the clear and snow domains to enhance the

realism of the generated images. In the domain of clear images, the adversarial loss LD1 is
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specified as:

LD1 = Ex1∼PX1
[logD1 (x1)]+Ex2∼PX2

[log(1−D1 (F1 (Ec (x2) ,s1)))] . (5.5)

Here, D1 serves the purpose of differentiating real clear images from their synthesized coun-

terparts, striving to maximize the aforementioned loss function. On the other hand, F2 aims

to reduce the loss in order to make the generated clear images appear more authentic. Like-

wise, LD2 for the snow domain is defined as:

LD2 = Ex2∼PX2
[logD2 (x2)]+Ex1∼PX1

[log(1−D2 (F2 (Ec (x1) ,s2)))] . (5.6)

Both of these adversarial losses are considered to have equal impact, and they are straight-

forwardly summed up to compose the final adversarial loss as:

Ladv = LD1 +LD2 . (5.7)

5.2.3.2 Identity Loss and Latent Space Reconstruction Loss

When provided with a snow image and a clear image, the encoders are required to recreate

the input image based on the same content code and style code. As such, the disparity

between the reassembled image and the initial image serves as the identity loss Lid, adding

additional constraints to the encoder as:

Lid = Ex1∼PX1
[∥F1 (Ec

1 (x1) ,Es
1 (x1))− x1∥1]+Ex2∼PX2

[∥F2 (Ec
2 (x2) ,Es

2 (x2))− x2∥1] . (5.8)

Additionally, the aim is for the decoded images to have content and style features closely

resembling those in the original images. As a result, the following losses for the reconstruc-

tion of content code and style code are defined as:

L c
recon = Ex1∼PX1

[∥Ec
1 (x2→1)−Ec

1 (x1)∥1]+Ex2∼PX2
[∥Ec

2 (x1→2)−Ec
2 (x2)∥1] , (5.9)



5.2. Controllable Unsupervised Snow Synthesis 99

L s
recon = Ex1∼PX1

[∥Es
1 (x2→1)−Es

1 (x1)∥1]+Ex2∼PX2
[∥Es

2 (x1→2)−Es
2 (x2)∥1] . (5.10)

It is important to note that the reconstruction loss of a style code is treated as falling under

the umbrella of the self-supervised style coding loss. These two are summed up, with the

same weight applied to both, to arrive at the final style coding loss as:

L s
regre = L s

recon +Ls, (5.11)

where Ls indicates the loss between the interpolated style codes and the style codes extracted

from the newly generated snow images as defined in Eq. 5.2.

5.2.3.3 Cross-Cycle Consistency Loss

The proposed model incorporates the cross-cycle consistency loss Lcc, as in [143], to fa-

cilitate the learning of domain mappings. For the generated snow image x1→2, its corre-

sponding clear image x2 can be recovered through a desnowing transformation. The cross-

cycle consistency loss constrains the scope of the generated image while maintaining the

background information of the input images. The L1 distance between the cyclically recon-

structed image and the original image serves as the measure for this cross-cycle consistency

loss. The image conversion process, which involves converting the clear image to the snow

image and the other way around, proceeds as:

x1→2 = F2 (Ec
1 (x1) ,Es

2 (x2)) ,

x2→1 = F1 (Ec
2 (x2) ,Es

1 (x1)) .
(5.12)

The reverse translation operation, which entails reconstructing the original input from the

generated image as:

x1→2→1 = F1 (Ec
2 (x1→2) ,Es

1 (x2→1)) ,

x2→1→2 = F2 (Ec
1 (x2→1) ,Es

2 (x1→2)) .
(5.13)
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The formulation of the cross-cycle consistency loss for both the snow and clear image

domains is:

Lcc = Ex1∼PX1
[∥x1 − x1→2→1∥1]+Ex2∼PX2

[∥x2 − x2→1→2∥1] . (5.14)

5.2.3.4 Content Loss

The goal of content loss Lcont is to make content discriminator Dc not able to determine

whether an image is from the snow weather domain or the clear weather domain. It is

adversarial training between the content encoder Ec and content discriminator Dc. Once the

final balance is reached, the extracted content features do not contain any style information

of the image. The equation is formulated as:

Lcont (Ec,Dc) = Ex1 [log(Dc (Ec (x1)))]+Ex2 [log(1−Dc (Ec (x2)))] . (5.15)

5.3 Experiments

To validate the proposed CUSS method, this section delves into the influence of vari-

ous modules and loss functions on the generated outcomes. It also benchmarks these out-

comes against existing methods through both quantitative and qualitative metrics. Initially,

an overview of the implementation details and the datasets used are provided. Subsequently,

the proposed model is examined in-depth, and comparisons are made with current method-

ologies in the field. The model’s effectiveness is further supported by showcasing visualiza-

tions of intermediate outcomes and conducting a generalization analysis. The final portion

of this section focuses on ablation studies to scrutinize the model’s components.
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5.3.1 Implementation Details

The proposed model’s network comprises two encoders, two decoders, two discriminators,

and a content encoder. Among the encoders, one is designed for style, and the other for

content. Their structure aligns with what is described in [143]. Breaking it down:

• The content encoder has five convolutional layers.

• The style encoder includes an initial residual layer, two downsampling layers, and one

adaptive average pooling layer.

• The content encoder features an initial residual layer, two downsampling layers, and

four residual blocks.

• Each decoder is made up of four residual blocks and two upsampling layers. It employs

adaptive instance normalization, while the encoders use standard instance normaliza-

tion.

• All the discriminators take specific image patches with the same resolution as in-

put, which is inspired by Demir’s work [145]. This structure includes five convolu-

tional layers.

For training, minibatch stochastic gradient descent is implemented with a batch size of 12,

using the Adam optimization technique [108] with parameters β1 = 0.5 and β2 = 0.999. The

learning rate is initially set at 0.0001 and is linearly reduced from the 100th epoch onwards.

In the training phase, the input is cropped to a resolution of 256×256 pixels. The weight of

each loss function is set as: λadv = 1,λid = 10,λ c
recon = 1,λ s

regre = 1,λcc = 1, and λcont = 1.

All testing and experimentation are performed on an NVIDIA RTX A6000 GPU equipped

with 24 GB of memory.
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Figure 5.3: Collection of self-captured videos depicting urban driving amidst intense snowfall.

The footage includes various road users, including cyclists, automobiles, buses, and pedestrians.

5.3.2 Datasets

All images in the Cityscapes [1] dataset are used as a clear source to train the model, given

that the number of images is close to the snow set. To maintain consistency with the snow

dataset, 5,921 EuroCity Persons [9] snapshots are handpicked from the daytime training

segment.

The curated RDSBW [121] snow dataset comprises a total of 6,814 meticulously curated

photographs. The number of intercepted images is the same as for Cityscapes dataset because

GAN training is prone to problems such as mode collapse, which leads to training failure.

Some of the examples are shown in Fig. 5.3. Training and testing both use the same dataset.

The difference is that patches of input images are used during training, while the complete

images are used during testing.

In the experimental setting, the Cityscapes and the EuroCity Persons datasets are taken as

the target set. These two datasets contain over 5,000 road scenarios under different urban

and weather conditions. There are also variations of road users, such as pedestrians, cyclists,

and moving vehicles.
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5.3.3 Performance Assessment

This section presents a comprehensive analysis comparing the outputs of CUSS with the

current State-Of-The-Art (SOTA) image conversion methods. Deep analysis of the impact

of disentanglement is carried out, and a meticulous examination of the uniqueness and sig-

nificance of each module is concluded based on ablation studies.

5.3.3.1 Assessment Criteria

Initially, the quality of image synthesis is evaluated using traditional computer vision mea-

sures, namely, the Peak Signal-to-Noise Ratio (PSNR) and the Structural SIMilarity index

(SSIM). Additionally, Metrics that specifically focus on the depth and perception features of

the images are employed, including the Fréchet Inception Distance (FID) [144], the Learned

Perceptual Image Patch Similarity (LPIPS) distance [70], and the Visual Geometry Group

(VGG) distance [68].

LPIPS is a metric used to evaluate perceptual differences between images [73]. Unlike

traditional metrics, such as Mean Squared Error (MSE), which measure pixel-level differ-

ences or structural similarities, it employs deep learning to better align with human visual

perception. In essence, it offers a more perceptually meaningful measure of image similar-

ity, especially useful in tasks like image synthesis, where the objective is not just to repro-

duce pixel-accurate outputs but to generate outputs that are perceptually indistinguishable or

pleasing to humans.

VGG distance refers to a perceptual loss metric based on the VGG network that was orig-

inally designed for image classification tasks [68]. Similar to LPIPS, it is used to measure

the difference between two images in a feature space. The activities from one or more layers

of the VGG network capture higher-level content and texture information about the images.

The other metrics were introduced in 4.3.3.
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Figure 5.4: Synthesis of multi-density results on EuroCity Persons dataset by adjusting the parameter

k. From the left to the right column, objects such as vehicles, people, and trees are covered with

snowflakes and haze that gradually increase in size.

5.3.3.2 Qualitative Results

Snow images in varying sizes are generated by adjusting the previously discussed param-

eters, and the proposed model is contrasted against the leading SOTA methods.

Figure 5.4 displays images with varying amounts of snow. It is important to note that the

k value of the input clear image is 0, while the value of the input snow image is 1. The snow

feature is then adjusted within the range of 0 to 1. The differences in snow density across

images with distinct parameter values demonstrate success in differentiating the generated

snow through manipulation. As an illustration, as the value increases, objects at the far end
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Figure 5.5: Comparisons between the synthesized snow images produced by the proposed method

and SOTA unsupervised image translation methods. In particular, CUT deviates from the utilization

of cycle consistency and the associated loss, as observed in CycleGAN. Conversely, the remaining

models including the proposed CUSS, incorporate a form of partial style cycle consistency.

of the image become less distinguishable. Due to the impact of the style feature coding, the

style encoders can identify between large and small snowflakes.

The results of the qualitative comparison are shown in Fig. 5.5. This experiment compares

the generated snow images with mainstream image conversion methods (CycleGAN [29],

Contrastive Unpaired Translation (CUT) [134], MUNIT [135], and DiveRse Image-to-image

Translation (DRIT) [143]). The first two models use single projections, while the last two

can produce diverse outcomes. For a more accurate comparison, ResNet [109] is consistently

used as the backbone for the generator in all methods. The training uses the Cityscapes and

EuroCity Persons datasets as clear source and the curated RDSBW snow set as target sources.

The methods used for comparison all require no paired data.
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The qualitative comparison shows that models such as CUT, MUNIT, and DRIT mainly

exhibited three primary defects. First, after transforming images to represent snowy scenes,

the original colors were often distorted, diminishing the natural appearance of the scene.

Second, these models sometimes introduced artifacts that were not present in the original

image, leading to inconsistencies and jarring visual outcomes. Lastly, they inadequately

handled the far end and sky regions, resulting in uneven or unrealistic snow representation

in these areas.

In contrast, the proposed method offered several advantages. The proposed method natu-

rally integrated snow, ensuring that its boundaries fade out seamlessly across the image, pro-

viding an authentic representation in both the foreground and background. By distinguishing

between snow style and actual image content, the proposed method was able to capture and

reproduce the intrinsic properties of snow, resulting in a synthesis that feels genuine and con-

sistent throughout the image. Moreover, while other models rendered trees or other objects

as if they were buried under unnatural snow formations, the proposed technique retained the

original structure and detail, providing a more balanced and realistic representation.

5.3.3.3 Quantitative Results

As reported in other image conversion works, the constraint of cycle consistency is strong

so that the ability to generate diverse outputs is suppressed. However, the output image will

retain a high similarity to the original image, which explains why CycleGAN achieved the

best SSIM value as shown in Tables 5.1 and 5.2. Compared with other methods, CUSS com-

bines the content discriminator and style code manipulation, and both turned out effective

for high-quality synthesizing. Therefore, CUSS achieved better results on those metrics.
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Table 5.1: Comparison on Cityscapes dataset between SOTA image translation techniques through

numerical evaluation. Images with k = 1 are generated.

Methods SSIM↑ PSNR ↑ dVGG ↓ FID↓ dLPIPS ↑

CUT [134] 0.32 15.85 6.06 26.16 0.05

CycleGAN [29] 0.47 16.07 5.89 26.34 0.05

MUNIT [135] 0.45 16.12 5.92 25.45 0.05

DRIT [143] 0.47 16.43 5.43 25.87 0.05

CUSS (Proposed) 0.47 16.91 5.12 25.10 0.05

Table 5.2: Comparison on EuroCity Persons dataset is made between SOTA image translation tech-

niques through numerical evaluation. Images with k = 1 are generated.

Methods SSIM↑ PSNR ↑ dVGG ↓ FID↓ dLPIPS ↑

CUT [134] 0.40 15.91 6.12 26.25 0.05

CycleGAN [29] 0.50 16.23 5.93 26.58 0.05

MUNIT [135] 0.48 16.48 6.01 25.85 0.05

DRIT [143] 0.47 16.74 5.76 26.01 0.05

CUSS (Proposed) 0.49 16.98 5.39 25.40 0.05

CUT is the only method that does not employ any format of cycle generation pipeline,

but instead uses contrastive learning. The data used in the experiment cannot satisfy the re-

quirement of a large batch size, which cannot make full use of contrastive loss. The results of

CUSS proved that the proposed method was available even when the data were not sufficient.

To understand the individual contribution of different components of CUSS, an ablation

study with respect to the loss functions is conducted. Since loss functions reflect the direc-
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Table 5.3: Results from quantitative model comparisons after eliminating various loss factors are pre-

sented. Images are generated with three sets of k values, and the impact of the content discriminator,

cross-cycle consistency loss, reconstruction losses, and style regression loss is examined.

Module SSIM↑ PSNR ↑ dVGG ↓ FID↓ dLPIPS ↑

w/o L x
id 0.46 16.87 6.04 26.16 0.05

w/o L c
recon 0.46 16.83 6.05 26.13 0.05

w/o L s
recon 0.47 16.84 6.03 26.09 0.05

w/o Lcc 0.46 16.86 6.06 26.11 0.05

w/o Lcont 0.47 16.80 6.02 26.13 0.05

CUSS (k = 1.0) 0.47 16.91 6.00 26.09 0.05

CUSS (k = 0.6) 0.47 16.93 5.96 26.04 0.05

CUSS (k = 0.3) 0.47 16.97 5.93 25.98 0.05

tion of model optimization, the validation of the new module of the content discriminator

and self-supervised style coding is performed, along with testing the improvement from re-

constructing the image, style code, and content code. Table 5.3 shows that each component

is crucial to the CUSS model presented in the decrease of the metrics. Images are generated

with three sets of k values (0.3, 0.6, 1.0). Smaller k values indicate the small size of the syn-

thesized snow, i.e., closer to the input clear image. The results show that the model produced

the best quality output at the smallest k values.

5.3.3.4 Object Detection with Controlled Snow Size in Images

An important set of experiments is conducted to evaluate the impact of controlled snow

size on object detection performance as shown in Fig. 5.6. This experiment involves a

comparison using SOTA object detection algorithms Cascade R-CNN [14] on both original
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images from the Cityscapes and EuroCity Persons datasets, and on images with varying sizes

of synthetic snow added. The synthetic snow is controlled by adjusting a parameter known

as the “k value”, which directly influences the extent of snow coverage in the images.

The primary objective of this experiment is to assess how changes in snow size, controlled

via the k value, affect the number of objects detected by the algorithms. This serves as a cru-

cial test of the realism and quality of the snow-enhanced images generated by the proposed

method, as well as the impact of varying weather conditions on object detection systems.

The results of this experiment indicated a clear trend; as the size of the snow in the im-

ages increased, the overall number of objects detected by the SOTA detectors decreased.

This reduction in detected objects can be attributed to the increased occlusion and reduced

visibility caused by larger snowflakes or more intense snowfall in the images. It mirrors

real-world conditions where heavy snow can obscure vision and make object detection more

challenging.

These findings are significant as they demonstrate two key points. Firstly, the proposed

method successfully allowed for controlled manipulation of snow size in images, showcasing

the flexibility and precision of the proposed image conversion approach. Secondly, the fact

that object detection performance varied with snow size is indicative of the realistic quality of

the generated images. The ability to produce such realistic variations in weather conditions

within images is vital for training and testing autonomous driving systems, ensuring they can

adapt and perform accurately under different environmental scenarios.

5.3.3.5 Discussion

Image conversion methods such as CycleGAN, which uses the principle of cycle con-

sistency, produce deterministic outputs. For a given clear image, it will produce the same

translated snow image every time. To produce diverse outputs, researchers manipulate the
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latent space of extracted image features by dividing them into style codes and content codes.

In the experiments, it was found that latent space manipulations inevitably split the transla-

tion network into two or more parts, which lead to performance degradation. In this work,

the solution was to use a content discriminator to distinguish the content code from different

domains. With the requirement of generating an indistinguishable content code, the encoder

could achieve better disentangled representations.

When obtaining the disentangled style code, the operation on it will reflect on the output

snow images [146]. Therefore, the style codes of the input clear image and the snow image

were interpolated. Since the input snow image represents the maximum snow size, the degree

of snow effects can be controlled. It is important to note that snow effects larger than the

input image cannot be obtained.

The controllable output was high quality and reasonable; the scenes were gradually cov-

ered with stronger snow effects. However, the generated snow was not invariant to objects.

The snow covering the trees and the snow covering the building should be different; the snow

effects should change appearance according to scenario changes. However, it looked similar

in Fig. 5.4. To improve CUSS, the consideration of semantic information in the latent space

is necessary.

The proposed method basically belongs to domain translation, which learns knowledge

from the source domain and transfers it to the target domain. In the case of snow generation,

the output will only contain a similar snow effect with input snowy images. To obtain more

variety of snow like in real snow scenes, more snow data with different snow shapes and

sizes should be added. However, if there are too many modes in the GAN training process,

it can lead to mode collapse. In addition, the data should be collected in the same region to

avoid large domain gaps, such as Asian driving scenes and European driving scenes.
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5.4 Conclusion

This chapter presented a method for unsupervised snow synthesis, wherein a controllable

method was introduced that incorporated latent space manipulation. To effectively separate

the features of snow style and content, an additional content discriminator was incorpo-

rated along with a self-regression style coding module. To transition smoothly from clear to

snow-affected images, a partial style cycle consistency loss was employed to refine the latent

representation space. Furthermore, comparative analyses were conducted to comprehend the

impact of each loss component or module within the model on the outcomes. When subjected

to quantitative and qualitative evaluation against various techniques using the Cityscapes and

EuroCity Persons datasets, the proposed approach consistently produced diverse and high-

quality traffic scenes under snowy conditions. The assessment also included an examination

of how changes in snow size, controlled via the k value, affect the number of objects detected

by the SOTA detector. Moving forward, future research endeavors can be classified into two

distinct paths:

• Expanding the proposed technique to tackle generation tasks in more demanding driv-

ing conditions, such as heavy rain, dense fog, nighttime, and strong light.

• Delving deeper into the relationship between generative methods and latent space

manipulation for image conversion tasks by integrating existing insights from self-

supervised and contrast learning methodologies.
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6.1 Summary of the Thesis

Autonomous driving needs to operate in various scenarios, and some scenarios, such as

severe weather conditions, can lead to a decline in the performance of the onboard perception

system. This is because the data collected in different scenarios have domain shift problems.

The solution is to use domain adaptation. This thesis built a framework to convert driving

images taken in different severe weather conditions, using RGB images as data and image

conversion as the domain adaptation method,

This thesis has divided the image conversion for driving scenes under adverse weather

conditions into three sub-problems. Firstly, when obtaining paired data is difficult, how to

train a conversion model with unpaired data. Secondly, how to obtain realistic and high-

quality results after conversion. Thirdly, how to control the conversion process to ensure that

each conversion consistently produces high-quality results.

Chapter 1 introduced the research background of this thesis. Firstly, it began with the

data collected from Autonomous Vehicles (AVs) and analyzed the differences between var-

ious data domains, highlighting the distinctions in the weather domain compared to others.

Secondly, it outlined the characteristics of data collected under different adverse weather

conditions and the challenges these adverse weather conditions pose to perception systems.

Thirdly, it presented the objective of this research, which was to apply knowledge from one

domain to another through domain adaptation and solve the domain gaps between different
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weather data. Fourthly, it introduced image conversion as one method of domain adapta-

tion, and briefly discussed the issues present in driving scenarios and the proposed image

transformation approach. Finally, it described the structure of this thesis.

Chapter 2 provided a comprehensive overview of domain adaptation in machine learning.

It discussed the challenges of applying models trained on the data of the source domain to

the data of the target domain, especially when labeled data in the target domain is scarce. It

covered various domain adaptation techniques, categorized based on supervision, the number

of participating domains, and feature space composition. Then, a detailed analysis of image

conversion techniques in deep learning was provided, focusing on Generative Adversarial

Networks (GANs) and their variants. It discussed the challenges and advancements in image

generation, emphasizing the roles of generators and discriminators in GANs.

Chapter 3 first introduced an unpaired image conversion network based on GANs. This

network incorporated the principle of cycle consistency and achieved the conversion of driv-

ing scene images from clear weather to foggy weather without paired data. To enhance the

capability of the conversion network, a weather layer was introduced and merged into the re-

construction network through feature fusion. The effectiveness of this method was validated

on public datasets. Then, this method was extended to handle multiple weather conditions.

Specifically, the number of networks for converting from clear to adverse weather conditions

was increased, while one network for converting from adverse weather to clear conditions

was kept. This multi-weather joint learning approach benefits feature extraction in the con-

version network and performs well on both public datasets and the self-collected Realistic

Driving Scenes under Bad Weather (RDSBW) datasets.

Chapter 4 aimed to generate snow in driving scene images and proposed a method for

realistic image conversion. This method was built upon the conversion network from the

previous chapter and utilized additional semantic information to create snow effects. Fur-
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thermore, deep supervision was implemented by incorporating intermediate outputs from

the last two convolutional layers in the generator as multi-scale supervision signals during

training. The generated images were compared with those produced by various network ar-

chitectures, and the results were assessed both qualitatively and quantitatively using public

datasets. The experimental results demonstrated that the proposed model was capable of syn-

thesizing realistic snow effects in driving images. Meanwhile, the performance decline of

State-Of-The-Art (SOTA) object detectors on converted snow images and the improved per-

formance of pedestrian detectors trained with additional converted snow images indirectly

confirmed that the proposed model was capable of generating realistic images.

Chapter 5 continued to focus on snow as the proposed research subject and introduced a

controllable image conversion method. This method leveraged latent space manipulation.

To effectively separate the features of snow style and content, an additional content dis-

criminator was incorporated along with a self-regression style coding module. To transition

smoothly from clear to snow-affected images, a partial style cycle consistency loss was em-

ployed to refine the latent representation space. Furthermore, comparative analyses were

conducted to comprehend the impact of each loss component or module within the model

on the outcomes. When subjected to quantitative and qualitative evaluation against vari-

ous methods using public datasets, the proposed method consistently produced diverse and

high-quality traffic scenes under snowy conditions. Additionally, the observed decrease in

performance of SOTA object detectors on converted snow images generated by the proposed

model suggested that, even with the enhanced capability to control the size of the snow in

the images, the proposed model retained its proficiency in creating highly realistic visuals.
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6.2 Future Work

Although the proposed model achieved image conversion of driving scene images under

different weather conditions, a number of challenges still remain. The future research en-

deavors can be classified into four distinct paths

Enhanced Framework for Diverse Conditions

This framework would go beyond merely adding more converters. It would incorporate

advanced algorithms capable of understanding and adapting to a wide range of environmen-

tal, lighting, and atmospheric conditions. The framework might also integrate context-aware

processing, where the converters understand the scene’s context (e.g. urban, rural, indoor,

and outdoor) and adjust the conversion process accordingly.

Advanced Weather Effect Creation Technique

This technique would not be constrained by the weather conditions present in the input im-

age. It could involve a sophisticated model that can artificially generate a variety of weather

effects, like rain, snow, fog, or sunny, in a realistic manner. This could be done by analyz-

ing the existing elements in the image and then rendering weather effects that are coherent

with the scene’s geometry, lighting, and perspective. The technique might also allow for

user-defined weather conditions, enabling the creation of scenes with customized weather.

Perceptual Model for Guided Image Conversion

This model would involve developing a perceptual understanding of images to guide the

conversion process. The model would use performance metrics such as detection accuracy

and prediction reliability to guide the image conversion process. This approach ensures that

the converted images are optimized for the specific needs of autonomous driving systems,

enhancing their ability to accurately perceive and interpret real-world scenarios.
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Holistic Environmental Simulation and Response System (HESRS)

HESRS would not only convert images but simulate entire environments with highly re-

alistic weather and lighting conditions. It would replicate real-world physics and environ-

mental interactions in a comprehensive virtual setting. This system would be capable of gen-

erating any imaginable weather scenario, from common situations like rain or snow to rare

phenomena like solar eclipses or extreme meteorological events, in a highly realistic manner.

The core of HESRS would be a predictive Artificial Intelligence (AI) that can forecast poten-

tial weather-related challenges and adapt the vehicle’s driving strategy accordingly. This AI

would learn from past scenarios and continuously evolve, becoming more adept at handling

unforeseen weather conditions. This ambitious vision of HESRS represents a confluence of

advanced AI, environmental science, and simulation technology. While it is a dream with

current technology limitations, its realization could revolutionize not just autonomous driv-

ing but several other fields, aligning closely with the evolving needs of a climate-impacted

world.
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