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Abstract 45 

Hyponatremia leads to severe central nervous system disorders and requires immediate treatment 46 

in some cases. However, a rapid increase in serum sodium (s-Na) concentration could cause 47 

osmotic demyelination syndrome. To achieve a safety hyponatremia treatment, we develop a 48 

prediction model of s-Na concentration using a machine learning. Among the 341 and 47 patients 49 

admitted to two tertiary hospitals for hyponatremia treatment (s-Na <130 mEq/L), those who were 50 

admitted to the general unit with urine sodium <20 mEq/L or treated with desmopressin were 51 

excluded. Ultimately, 74 and 15 patients (342 and 146 6-hourly datasets) were included in the 52 

learning and validation data, respectively. We trained the prediction model using three regression 53 

algorithms for shallow machine learning to predict s-Na every 6 h during treatment with the data 54 

of patients with hyponatremia (median s-Na: 112.5 mEq/L; range: 110.0–116.8 mEq/L) from one 55 

hospital. The model was validated externally using the data of patients with hyponatremia (median 56 

s-Na: 117.0 mEq/L; range: 112.9–120.0 mEq/L) from another hospital. Using 5–7 predictors 57 

(water intake, sodium intake, potassium intake, urine volume, s-Na concentration, serum 58 

potassium concentration, serum chloride concentration), the support vector regression model 59 

showed the best performance overall (root mean square error=0.05396; R2=0.92), followed by the 60 

linear regression and regression tree models. The predicted s-Na levels, using explainable machine 61 

learning algorithms and clinically accessible parameters, correlated well with the actual levels. 62 

Thus, our model could be applied to the treatment of hyponatremia in clinical practice. 63 

 64 

Key words: Hyponatremia, Predictive machine learning tool, Revised Adrogué–Madias formula, 65 

Prevention of osmotic demyelination syndrome, Monitoring for electrolyte abnormalities 66 

 67 
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1. Introduction 69 

 Hyponatremia, defined as a serum sodium (s-Na) concentration of <135 mEq/L, is the most 70 

common electrolyte disorder in clinical practice [1]. Hyponatremia occurs in 15%–30% of 71 

hospitalized patients [2-4], with higher frequencies observed in elderly individuals [3] and cancer 72 

patients [5]. Based on its extracellular fluid volumes, hyponatremia is classified into three 73 

subtypes: hypovolemic, euvolemic, and hypervolemic [6]. Hypovolemic hyponatremia is caused 74 

by vomiting, diarrhea, primary renal failure, and diuretic use, resulting in the depletion of 75 

extracellular fluid volumes. Euvolemic hyponatremia can be due to inappropriate antidiuretic 76 

hormone secretion and adrenal insufficiency secondary to hypopituitarism. Hypervolemic 77 

hyponatremia occurs with edematous diseases, including congestive heart failure, liver cirrhosis, 78 

and nephrotic syndrome. Although hyponatremia is classified into these three subtypes, the 79 

identification of the causes of hyponatremia, as well as differentiation between hypovolemic 80 

hyponatremia and euvolemic hyponatremia, remains challenging because of its complex pathology 81 

[7]. Therefore, the definitive diagnosis of etiology often remains elusive before treatment initiation, 82 

particularly during the early treatment phase [8].  83 

 Rapid s-Na correction with intravenous infusion of hypertonic saline is warranted when 84 

symptoms of hyponatremia due to cerebral edema are evident, because it could lead to cerebral 85 

herniation and even death [1]. However, rapid s-Na correction could cause osmotic demyelination 86 

syndrome (ODS), which manifests as impaired consciousness and tetraplegia. Prevention of ODS 87 

is crucial in the treatment of hyponatremia because ODS has no effective treatment and can be 88 

life-threatening [9]. To minimize the risk of ODS, a correction rate of s-Na of <8–10 mEq/L per 89 

24-h period is recommended [10]. However, ODS may occur in patients with severe hyponatremia 90 

(frequency rate: 0.3%–1.1%) due to occasional rapid s-Na changes even when treated by a 91 
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specialist [11]. 92 

In recent years, artificial intelligence technology has been increasingly applied in medical 93 

research to support diagnosis and predict treatment efficacy and prognosis in various fields. 94 

However, while studies have been conducted on hyponatremia to predict its onset in hospitalized 95 

patients and after pituitary surgery [12, 13], there has not been any research that reports the 96 

prediction of treatment-dependent s-Na concentration in patients with hyponatremia. 97 

In the current study, to address the clinical need for the safe treatment of patients with severe 98 

hyponatremia, we trained a highly explainable shallow machine learning model that can predict 99 

the s-Na concentrations of patients undergoing fluid infusion treatment. 100 

 101 

2. Materials and methods 102 

Patients 103 

Patients admitted to two tertiary care hospitals, Nagoya University Hospital and the Japanese Red 104 

Cross Aichi Medical Center Nagoya Daini Hospital, for hyponatremia treatment between April 105 

2015 and March 2020 were included in this study. Clinical data of patients treated in acute care 106 

units, where time series data can be obtained every few hours, were extracted from the electronic 107 

medical records of both hospitals for analysis. Patients with a urinary Na (u-Na) concentration of 108 

<20 mEq/L were excluded because their cause of hyponatremia was mainly dehydration and 109 

completely different from that of patients with a u-Na concentration of >20 mEq/L. Moreover, 110 

patients who were administered desmopressin (DDAVP) to prevent a rapid increase in s-Na during 111 

hyponatremia treatment [14] were excluded because their urine volumes could be affected. The 112 

machine learning model was trained and validated internally using data from Nagoya Daini 113 

Hospital as training data; it was validated externally using data from Nagoya University Hospital 114 
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as test data. 115 

 116 

Predictors used in the model 117 

 The following major laboratory values related to fluid volume and osmolality were extracted as 118 

candidates for predictors: s-Na, serum potassium (s-K), serum chloride (s-Cl), serum glucose, 119 

blood urea nitrogen, creatinine, estimated glomerular filtration rate, uric acid, total protein, 120 

albumin, hematocrit, plasma osmolality, u-Na concentration, urine osmolality, plasma renin 121 

activity, plasma arginine vasopressin, plasma aldosterone, serum cortisol, plasma 122 

adrenocorticotropic hormone, human atrial Na diuretic peptide, thyroid-stimulating hormone 123 

(TSH), free triiodothyronine (FT3), free thyroxine (FT4), urine volume, total water administered 124 

by infusion and drinking (water intake), Na administered by infusion (Na-IN), and potassium (K) 125 

administered by infusion (K-IN). Among these candidates, s-Na, s-K, s-Cl, water intake, Na-IN, 126 

K-IN, and urine volume were selected as predictors because they are frequently measured and 127 

recorded in practice when treating hyponatremia (Fig. 1A).  128 

 129 

Response 130 

 We used the s-Na concentration at 6 h (s-Na6h) as the response. When treating hyponatremia, 131 

physicians typically perform blood examinations every 2–3 h during the acute phase to determine 132 

the s-Na concentration. We selected 6 h as the time interval for simulation based on the assumption 133 

that even if there was a large discrepancy between the s-Na predicted by the model and the actual 134 

value, it would be clinically manageable in 6 h. 135 

 136 
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Data preparation and preprocessing 137 

 Datasets extracted from the electronic medical records were converted to timetable data; one time 138 

was associated with each row for each patient, and timestamps were resampled as hourly units 139 

after removing the time window from admission to discharge. Regarding laboratory values among 140 

the predictors, linear interpolation was performed to compensate for the missing values to process 141 

the data for machine learning because the measurement intervals varied depending on the case and 142 

elapsed time. 143 

The semi-structured data, such as intravenous infusion, are heterogeneous and require 144 

standardization. For example, infusion formulations have various compositions that may have 145 

multiple different names, depending on the pharmaceutical company, and some formulations may 146 

be mixed before administration. Therefore, we created master data for each infusion formulation 147 

and combination of formulations so that the dosage (mL) could be converted to the actual dosages 148 

of water (mL), Na (mEq), and K (mEq). Regarding water intake, Na-IN, and K-IN, we referred to 149 

the infusion master data to determine the amount of water, Na, and K administered each hour. 150 

Regarding urine volume, if it was not recorded hourly, then the urine volume was divided equally 151 

by the time elapsed from the previous recording time to distribute the urine volume.  152 

Regarding s-Na6h after the reference time, only the measured values of s-Na were used; the 153 

complementary values were not used. The s-Na, s-K, and s-Cl values comprised the reference time 154 

values (T = t). Urine volume was the amount of urine output during the 6 h before the reference 155 

time (t − 6 to t). Water intake, Na-IN, and K-IN were determined using the treatment information 156 

pertaining to the number of hours from the reference time (t to t + 6) (Fig. 1B). During 157 

preprocessing of the data, normalization was performed by transforming the data so that all 158 

measurements had values between 0 and 1. 159 
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 160 

Machine learning model 161 

 We trained and tested the following three regression algorithms for shallow machine learning: 162 

linear regression, decision tree, and support vector regression (SVR). All these models were 163 

implemented using MATLAB version R2022a, which is a commercially available mathematics 164 

software and programming language tool commonly used for machine learning (MathWorks, Inc., 165 

Natick, MA, USA). To predict s-Na6h, we trained the model using only the data derived from 166 

Nagoya Daini Hospital and performed 10-fold cross-validation. Then, we examined the differences 167 

in accuracy between the training models based on combinations of 5–7 predictors. Subsequently, 168 

the accuracy of the learning models was externally validated using the Nagoya University Hospital 169 

dataset. During this study, shallow machine learning was selected for modeling because the 170 

number of datasets was too small for deep learning, owing to its relatively high explanatory 171 

potential compared to deep learning, and because it could be used as a benchmark for comparisons 172 

of the accuracy of other models in the future. 173 

 174 

Ethical approval 175 

This research has been complied with all the relevant national regulations and institutional policies 176 

and according to the tenets of the Helsinki Declaration and has been approved by Nagoya 177 

University Hospital Institutional Review Board (approval number 2020-0384). 178 

 179 

After extracting data from the electronic medical records, pseudonymization and storage were 180 

performed in accordance with the guideline associated with the Japanese law regarding the 181 

protection of personal information and the protocol approved by the ethics committee. 182 
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 183 

3. Results 184 

Learning data 185 

 During the 5-year period, from April 2015 to March 2020, a total of 341 patients were admitted 186 

to the Department of Endocrinology and Diabetes of Nagoya Daini Hospital for hyponatremia 187 

treatment (Fig. 2A). Of these, 234 patients treated in the general unit were excluded. For patients 188 

treated in intensive care units (ICUs) and other acute care units using critical care progress charts, 189 

it was possible to retrospectively collect information regarding infusion therapy and fluid delivery. 190 

Ten patients with u-Na <20 mEq/L, suggesting dehydration, were excluded. The u-Na 191 

concentration of one patient was not measured. Moreover, 22 patients who received DDAVP to 192 

prevent a rapid increase in s-Na during hyponatremia treatment were excluded. Finally, 342 6-193 

hourly datasets of 74 patients were used as learning data to train the model. 194 

 195 

Validation data 196 

 To obtain validation data, target patients were selected using the same criteria as those used for 197 

patients at Nagoya Daini Hospital (Fig. 2B). During the 5-year period, from April 2015 to March 198 

2020, 47 patients were admitted to the Department of Endocrinology and Diabetes of Nagoya 199 

University Hospital for hyponatremia treatment. Of these, 31 patients treated in the general unit 200 

were excluded. For patients treated in the emergency departments and ICUs using critical care 201 

progress charts (Fortec ACSYS; Koninklijke Philips N.V., Eindhoven, the Netherlands), it was 202 

possible to retrospectively collect information regarding infusion therapy and fluid delivery. Only 203 

one patient with u-Na <20 mEq/L, suggesting dehydration, was excluded. No patients were 204 

administered DDAVP during treatment. Finally, 146 6-hourly datasets of 15 patients were used as 205 
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validation data to externally validate the model. 206 

 207 

Patient characteristics 208 

 Table 1 summarizes the characteristics of patients included in the learning and validation datasets. 209 

Data are expressed as median (interquartile range [IQR]) or number (percentage). For patients 210 

included in the learning datasets, the median age was 78.0 years (IQR: 69.3–86.0 years), and 64.9% 211 

were women. On admission, the median s-Na concentration was 112.5 mEq/L (IQR: 110.0–116.8 212 

mEq/L), median plasma osmolality was 238.5 mOsm/L (IQR: 228.3–245.0 mOsm/L), median u-213 

Na concentration was 62.0 mEq/L (IQR: 43.3–94.8 mEq/L), and median urine osmolality was 214 

362.0 mOsm/kg (IQR: 259.5–510.8 mOsm/kg). 215 

 For patients included in the validation data, the median age was 76.0 years (IQR: 73.0–78.0 years), 216 

and 66.7% were women. On admission, the median s-Na concentration was 117.0 mEq/L (IQR: 217 

112.0–120.0 mEq/L), median plasma osmolality was 245.8 mOsm/L (IQR: 236.0–249.0 mOsm/L), 218 

median u-Na concentration was 73.0 mEq/L (IQR: 46.5–95.0 mEq/L), and median urine 219 

osmolality was 476.0 (IQR: 360.0–505.5). Significant differences (p<0.05; two-sample t-test) were 220 

observed between learning data and validation data for the following items: blood urea nitrogen, 221 

uric acid, cortisol, FT4, and arginine vasopressin (AVP). None of the patients included in both 222 

datasets had hyperglycemia (blood glucose concentrations >250 mg/dL). No patients presented 223 

with symptoms suggestive of ODS during or after treatment. None of the patients died. All patients 224 

were discharged home or to a rehabilitation facility. 225 

 226 

Predictors 227 

 Figure 3A shows the candidate predictors and training datasets during the period from ICU 228 
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admission to discharge. The data window duration was set to 1 h. The frequency of each feature 229 

was calculated by dividing the total number of records by the total number of data windows for 230 

all patients, resulting in the following seven predictors with the highest frequency: s-Na, s-K, s-231 

Cl, water intake, Na-IN, K-IN, and urine volume.  232 

 233 

Data normalization 234 

 The seven selected predictors and one response were normalized as follows: water intake’ = water 235 

intake/1000; Na-IN’ = Na-IN/100; K-IN’ = K-IN/10; urine volume’ = urine volume e/1000; s-Na’ 236 

= (136 – s-Na)/30; s-K’ = (5.0 – s-K)/3; s-Cl’ = (98- s-Cl)/30; and s-Na6h’ = (136 - s-Na6h)/30. A 237 

distribution plot of the normalized data is shown in Figure 3B. The normalized results were as 238 

follows: water intake, 98.54%; Na-IN, 97.95%; K-IN, 97.08%; urine volume, 98.83%; s-Na, 239 

97.37%; s-K, 97.66%; s-Cl, 77.19%; and s-Na6h, 97.08%. 240 

 241 

Internal verification 242 

 The results of performing 10-fold cross-validation with various combinations of 5–7 predictors 243 

are presented in Table 2. The learning model using linear regression resulted in a root mean square 244 

error (RMSE) of 0.036768 and coefficient of determination (R2) of 0.97 (Fig. 4A). The training 245 

model using SVR resulted in an RMSE of 0.037026 and R2 of 0.97 (Fig. 4B). The training model 246 

using regression trees showed an RMSE of 0.056895 and R2 of 0.93 (Fig. 4C). Among these three 247 

models, the linear regression model showed the highest accuracy, which corresponded to the root 248 

mean square deviation (RMSD) between the predicted and measured s-Na values was 1.11 mEq/L. 249 

The SVR model trained with five predictors (excluding s-K and s-Cl) showed the best accuracy 250 

among all combinations of predictors (RMSE of 0.036466 and R2 of 0.97) (Table 2). 251 
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 252 

External validation 253 

All training models were validated using the validation data from Nagoya University Hospital. 254 

Table 3 shows the external validation results with various combinations of 5–7 predictors. The 255 

linear regression model resulted in an RMSE of 0.0544170 and R2 of 0.92 (Fig. 5A). The SVR 256 

model resulted in an RMSE of 0.0539600 and R2 of 0.92 (Fig. 5B). The regression tree model 257 

resulted in an RMSE of 0.0593740 and R2 of 0.91 (Fig. 5C). Among these three models, the SVR 258 

model showed the highest accuracy, which corresponded to the RMSD between the predicted and 259 

measured s-Na values was 1.62 mEq/L. The SVR model with all seven predictors had the best 260 

accuracy among all combinations of predictors. 261 

 262 

4. Discussion 263 

In this study, we developed a machine learning model to predict s-Na at 6 h using clinically 264 

accessible parameters, such as s-Na, s-K, s-Cl, Na-IN, K-IN, water intake, and urine volume. 265 

According to the internal validation of accuracy with 10-fold cross-validation, the linear and SVR 266 

models showed high accuracy with RMSE of 0.037, and the RMSD between the predicted and 267 

measured s-Na values was 1.11 mEq/L. The external validation on these models further showed 268 

high accuracy with RMSE of 0.054 for the linear and SVR models, and the RMSD between the 269 

predicted and measured s-Na values was 1.62 mEq/L. Furthermore, the prediction accuracy did 270 

not significantly decrease even if one or two fewer predictors were missing, suggesting it would 271 

be applicable to cases in which some information are not available. 272 

 We selected several parameters as predictors in this study (Fig. 1A). Although other candidates 273 

as predictors, such as body weight and u-Na, may exist, these were not employed because they are 274 
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not usually measured in the acute phases of treatment in clinical settings. Instead, we included not 275 

only s-Na, Na-IN, water intake, and urine volume but also s-K, s-Cl, and K-IN as predictors in this 276 

study, leading to the establishment of a predicting model for s-Na with high accuracy. K-IN is 277 

involved in the Adrogué–Madias formula [15], and a previous study showed that s-Cl is a good 278 

predictor for delayed hyponatremia after transsphenoidal surgery [16]. However, these results and 279 

ours do not necessarily imply that s-K, s-Cl, and K-IN have direct effects on s-Na, and explaining 280 

the results derived from artificial intelligence and machine learning models is sometimes difficult. 281 

 Hyponatremia is the most common electrolyte abnormality in general hospitalized patients. Even 282 

mild hyponatremia without apparent symptoms is associated with cognitive deficits [17], gait 283 

disturbance [18], and increased rates of falls and fractures [19-21]. Furthermore, hyponatremia is 284 

correlated with the increased mortality of patients with various diseases, such as lung cancer [22] 285 

and sepsis [23]; elderly patients [24]; and patients undergoing surgical intensive care [25]. Recent 286 

meta-analysis studies have confirmed that hyponatremia is a frequent presentation in up to 20% of 287 

hospitalized patients and is associated with longer hospital stays and readmissions [26]. However, 288 

selecting an appropriate treatment for hyponatremia and predicting s-Na response to that treatment 289 

is challenging, and patient-specific s-Na prediction algorithms are required. Our current s-Na 290 

prediction models could address this need and will help physicians, including those not 291 

specializing in endocrinology or nephrology, select an appropriate treatment. 292 

Several studies have used machine learning methods to predict the onset of hyponatremia and for 293 

cluster classification of hyponatremia patients. Theerthagiri et al. used a multilayer perception and 294 

multivariate linear regression algorithm and have shown that the s-Na of patients with 295 

normonatremia could be predicted based on their history of health issues [13]. Voglis et al. have 296 

revealed that the machine learning model could predict the occurrence of hyponatremia after 297 
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pituitary surgery, thus potentially reducing morbidity and improving patient safety [12]. 298 

Thongprayoon et al. have identified three clinically distinct phenotypes with differing mortality 299 

risks among a heterogeneous cohort of hospitalized patients with hyponatremia using an 300 

unsupervised machine learning approach [27]. However, no studies have provided predictions of 301 

the s-Na concentration of patients with hyponatremia based on the treatment choice. By using our 302 

s-Na predicting model developed in the current study, we can select an appropriate treatment for 303 

the safely correction of s-Na to prevent from a rapid increase in s-Na, which is the risk for ODS. 304 

The Adrogué–Madias formula is a widely recognized clinical tool for calculating ΔNa after 305 

infusing 1 L based on three parameters: the amount of Na and K in a 1 L infusion and total body 306 

water [15]. However, its accuracy in predicting s-Na is limited to only when 1 L of fluid is 307 

administered, and the relationship between infusion volume and s-Na variability is not always 308 

linear [28]. In addition, measuring accurate total body water volume, which is included in input 309 

variables, is challenging in patients with severe hyponatremia in the acute phase when plasma AVP 310 

secretion and urine output are constantly changing, which could prevent physicians from using the 311 

Adrogué–Madias formula. In contrast, our current prediction model requires only clinically 312 

accessible and available parameters and thus could be more widely used to predict s-Na in clinical 313 

practice. 314 

There are several limitations to this study. First, only severe cases were employed in this study 315 

so that accurate hourly data in intensive care electronic medical record systems were analyzed. 316 

Thus, the study data were obtained from a limited number of hospitals and did not include a large 317 

number of patients. Second, we excluded cases with u-Na <20 mEq/L and those with therapeutic 318 

interventions with DDAVP from the analysis because they have different pathology and may 319 

respond differently to the treatment. In cases of hyponatremia with dehydration, sufficient fluid 320 
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supplementation with appropriate Na concentrations is needed. Strict s-Na monitoring is required 321 

for water intoxication since s-Na is likely to rise quite quickly. We could further address these 322 

cases by accumulating more data in future. Third, the predictors did not include information about 323 

the elapsed time since the onset of hyponatremia. While our model showed high accuracy in the 324 

prediction of s-Na, it is possible that responses of s-Na to treatment are different between the early 325 

and late stages of treatment. Fourth, this study focuses on the acute phase (6 h) of severe 326 

hyponatremia treatment and the prevention of rapid increase in s-Na. Therefore, predicting s-Na 327 

at 12 and 24 h from the initiation of the treatment would be possible if we use this model every 6 328 

h with measured parameters. However, in a situation where measuring parameters every 6 h is 329 

difficult, as in this case, predictive models for s-Na at 12 or 24 h need to be established. 330 

In conclusion, the predicted s-Na levels, using explainable machine learning algorithms and 331 

clinically accessible parameters, correlated well with the actual levels in the current study. Thus, 332 

our model could be applied to the treatment of hyponatremia in clinical practice. 333 
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 423 

Figure legends 424 

Figure 1. Seven predictors and data processing methods. 425 

(A) Seven predictors of the serum sodium (s-Na) concentration at 6 h (s-Na6h).  426 

The s-Na6h was used as the response (T = t + 6). The predictors were s-Na, serum potassium (s-427 

K), serum chloride (s-Cl), urine volume (water-OUT), water intake (water-IN), sodium infusion 428 

(Na-IN), and potassium infusion (K-IN). For the s-Na6h, only the measured values of s-Na were 429 

used; the complementary values were not used. The s-Na, s-K, and s-Cl values were those at the 430 

reference time (T = t). Water-OUT was the amount of urine output during the 6 h before the 431 

reference time (t − 6 to t). Water-IN, Na-IN, and K-IN were determined using the treatment 432 

information pertaining to the number of hours from the reference time (t to t + 6).  433 

(B) Data processing methods.  434 

All recorded times (in minutes and seconds) were recombined as 1-h units. To obtain laboratory 435 

values of the predictors, linear completion was performed to compensate for missing values. For 436 

water-IN, Na-IN, and K-IN, we referred to the infusion master data to determine the amounts of 437 

water, Na, and K administered each hour. For water-OUT, if the urine volume was not recorded 438 

hourly, then the urine volume was divided by the elapsed time from the previous recording time to 439 

distribute the urine volume. For the response (s-Na6h), only the measured values of s-Na were 440 

used; the complementary values were not used. 441 

 442 

Figure 2. Study flow diagram. 443 

(A) Learning data. A total of 341 patients were admitted to the Department of Endocrinology and 444 
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Diabetes of Nagoya Daini Hospital for hyponatremia treatment. We excluded 234 patients treated 445 

in the general unit. Ten patients with u-Na <20 mEq/L and one patient without u-Na measurement 446 

data were excluded. Additionally, 22 patients who received desmopressin (DDAVP) to prevent 447 

overcorrection of s-Na were excluded. Finally, 342 6-hourly datasets of 74 patients were used as 448 

learning data to train the model.  449 

(B) Validation data. A total of 47 patients were admitted to the Department of Endocrinology and 450 

Diabetes of Nagoya University Hospital for hyponatremia treatment. Thirty-one patients treated in 451 

the general unit were excluded. One patient with u-Na <20 mEq/L was excluded. No patients were 452 

administered DDAVP during treatment. Finally, 146 6-hourly datasets of 15 patients were used as 453 

validation data for external validation of the model. 454 

 455 

Figure 3. Selection of predictors and distribution of normalized data. 456 

(A) Number of records. The total number of training data windows (bar graph, right vertical axis) 457 

and the ratio of the number of training data records to the number of data windows of predictor 458 

candidates (line chart, left vertical axis) during the period from intensive care unit (ICU) admission 459 

to discharge are shown. The data window duration was set to 1 h.  460 

(B) Normalized data distribution. This is a box-and-whisker diagram of the normalized data. The 461 

x indicates the mean, the middle horizontal line indicates the median, and the boxes indicate the 462 

first through third quartile ranges. The upper and lower ends of the vertical bars indicate the 463 

maximum and minimum values, respectively, excluding the outliers. 464 

 465 

Figure 4. Ten-fold cross-validation of the training data. 466 

(A) Linear regression model. (B) Support vector regression model. (C) Regression tree model.  467 
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The results of 10-fold cross-validation of the training data are shown. The linear regression model 468 

showed the highest accuracy, which corresponded to the root mean square deviation (RMSD) 469 

between the predicted and measured s-Na values of 1.11 mEq/L. 470 

 471 

Figure 5. External validation of each model. 472 

(A) Linear regression model. (B) Support vector regression (SVR) model. (C) Regression tree 473 

model.  474 

The external validation results of the validation data are shown. The SVR model showed the 475 

highest accuracy, corresponding to the RMSD between the predicted and measured s-Na values of 476 

1.62 mEq/L. 477 



Table 1: Clinical characteristics of the study population 1 

 Learning data n = 74 Validation data n = 15 p value 

Sex, female 48 (64.9%) 74/74 10 (66.7%) 15/15 0.894 

Age (years) 78.0 (69.3–86.0) 74/74 76.0 (73.0–78.0) 15/15 0.985 

Hospitalization 

(days) 
11.5 (9.0–16.8) 74/74 13.0 (9.0–15.0) 15/15 0.793 

Na (mEq/L) 112.5 (110.0–116.8) 74/74 117.0 (112.0–120.0) 15/15 0.179 

K (mEq/L) 3.90 (3.50–4.60) 74/74 4.10 (3.90–4.75) 15/15 0.490 

Cl (mEq/L) 81.5 (77.0–85.0) 74/74 83.0 (79.0–86.5) 15/15 0.667 

BUN (mg/dL) 12.35 (9.50–18.85) 74/74 11.10 (7.95–14.30) 15/15 0.008 

CRN (mg/dL) 0.610 (0.470–0.908) 74/74 0.590 (0.480–0.700) 15/15 0.248 

eGFR 

(mL/min/1.73 

m2) 

71.70 (49.13–99.80) 74/74 84.50 (66.60–108.95) 15/15 0.435 

UA (mg/dL) 3.145 (2.190–5.393) 68/74 2.50 (1.70–3.60) 15/15 0.016 

TP (g/dL) 7.13 (6.60–7.62) 74/74 7.00 (6.50–7.25) 15/15 0.447 

ALB (g/dL) 3.99 (3.49–4.42) 72/74 3.90 (3.50–4.20) 15/15 0.829 

HCT (%) 33.55 (30.33–35.65) 74/74 32.40 (30.75–35.65) 15/15 0.943 

GLU (mg/dL) 125.0 (103.3–146.0) 74/74 105.0 (98.0–181.5) 15/15 0.757 

p-Osm 

(mOsm/L) 
238.5 (228.3–245.0) 74/74 245.8 (236.0–249.0) 15/15 0.197 

F (µg/dL) 23.90 (17.00–35.00) 73/74 12.00 (8.00–20.85) 15/15 <0.001 



ACTH 

(pg/mL) 
26.70 (13.45–45.50) 71/74 22.30 (13.10–33.30) 15/15 0.007 

PAC (pg/mL) 126.50 (77.70–199.45) 71/74 116.50(75.40–136.75) 12/15 0.351 

PRA 

(ng/mL/h) 
1.20 (0.40–2.05) 71/74 1.50 (0.80–2.78) 12/15 0.337 

TSH (µIU/mL) 1.560 (0.840–2.690) 73/74 1.361 (0.782–2.342) 15/15 0.780 

FT3 (pg/mL) 2.160 (1.730–2.640) 73/74 2.000 (1.800–2.270) 14/15 0.253 

FT4 (ng/dL) 1.570 (1.400–1.700) 73/74 1.220 (0.965–1.325) 15/15 <0.001 

AVP (pg/mL) 1.60 (0.90–4.20) 69/74 0.70 (0.60–2.03) 14/15 0.001 

u-Na (mEq/L) 62.0 (43.3–94.8) 74/74 73.0 (46.5–95.0) 15/15 0.956 

u-Osm 

(mOsm/kg) 
362 .0 (259.5–510.8) 72/74 476.0 (360.0–505.5) 11/15 0.557 

 2 

Data are expressed as median (interquartile range) or n (%). All statistical tests were two-sided, 3 

and significance was defined as a p-value of <0.05. 4 

ACTH, adrenocorticotropic hormone; ALB, albumin; AVP, arginine vasopressin; BMI, body mass 5 

index; BNP, brain natriuretic peptide; BUN, blood urea nitrogen; Cl, chloride; CRN, creatinine; 6 

eGFR, estimated glomerular rate; F, cortisol; FT3, free triiodothyronine; FT4, free thyroxine; GLU, 7 

glucose; hANP, human atrial sodium diuretic peptide; HCT, hematocrit; K, potassium; Na, sodium; 8 

PAC, aldosterone; PRA, renin activity; p-Osm, plasma osmolality; TP, total protein; TSH, thyroid-9 

stimulating hormone; UA, uric acid; u-Na, urinary sodium; u-Osm, urine osmolality. 10 

 11 



Table 2: Differences in the prediction accuracy of 10-fold cross-validation based on combinations of predictors 1 
 2 

 Water- 
IN ●  ● ● ● ● ● ● ● ● ● 

Predictors Na-IN ● ●  ● ● ● ● ● ●  ● 

 K-IN ● ● ●  ● ● ● ●   ● 

 Water- 
OUT ● ● ● ●  ● ● ● ● ● ● 

 s-Na ● ● ● ● ●  ● ● ● ● ● 

Modeling s-K ● ● ● ● ● ●  ●  ●  

 s-Cl ● ● ● ● ● ● ●  ● ●  

Linear 
regression 

RMSE 0.036768 0.037210 0.037191 0.036674 0.037295 0.11897 0.036604 0.036708 0.036519 0.036977 0.036500 

R2 0.97 0.97 0.97 0.97 0.97 0.69 0.97 0.97 0.97 0.97 0.97 

Support vector 
regression 

linear kernel 
c=0.2337, 
γ=0.0234 

RMSE 0.037026 0.037328 0.037171 0.036934 0.037388 0.11923 0.036789 0.036856 0.036624 0.037044 0.036466 

R2 0.97 0.97 0.97 0.97 0.97 0.69 0.97 0.97 0.97 0.91 0.97 

Regression tree 
model 

3 nodes, 8 
branches 

RMSE 0.056895 0.066843 0.067919 0.067541 0.066918 0.132440 0.065747 0.083242 0.059638 0.060565 0.072663 

R2 0.93 0.90 0.90 0.90 0.90 0.62 0.91 0.85 0.92 0.92 0.88 

 3 

Cl, chloride; K, potassium; K-IN, potassium infusion; Na, sodium; Na-IN, sodium infusion; R2, coefficient of determination; RMSE, root mean 4 
square error; water-IN, water intake; water-OUT, urine volume. 5 



Table 3: Differences in the prediction accuracy of external validation based on combinations of predictors 1 
 2 

 Water- 
IN ●  ● ● ● ● ● ● ● ● ● 

Predictors Na-IN ● ●  ● ● ● ● ● ●  ● 

 K-IN ● ● ●  ● ● ● ●   ● 

 Water- 
OUT ● ● ● ●  ● ● ● ● ● ● 

 s-Na ● ● ● ● ●  ● ● ● ● ● 

Modeling s-K ● ● ● ● ● ●  ●  ●  

 s-Cl ● ● ● ● ● ● ●  ● ●  

Linear regression 
RMSE 0.054417 0.055691 0.056090 0.054547 0.053714 0.111310 0.054492 0.054821 0.054608 0.055971 0.054813 

R2 0.92 0.92 0.92 0.92 0.93 0.68 0.92 0.92 0.92 0.92 0.92 

Support vector 
regression 

linear kernel 
c=0.2337, γ=0.0234 

RMSE 0.053960 0.055766 0.055585 0.053992 0.054335 0.128150 0.054364 0.054647 0.054215 0.055235 0.054584 

R2 0.92 0.92 0.92 0.92 0.92 0.57 0.92 0.92 0.92 0.92 0.92 

Regression tree 
model 

3 nodes, 8 branches 

RMSE 0.059374 0.068756 0.060310 0.060269 0.067869 0.095449 0.063258 0.080811 0.058820 0.057892 0.087652 

R2 0.91 0.88 0.91 0.91 0.88 0.76 0.90 0.83 0.91 0.91 0.80 

 3 
Cl, chloride; K, potassium; K-IN, potassium infusion; Na, sodium; Na-IN, sodium infusion; R2, coefficient of determination; RMSE, root mean 4 
square error; water-IN, water intake; water-OUT, urine volume. 5 
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Figure 1. Seven predictors and data processing 
methods.

(A) Seven predictors of the serum sodium (s-Na) 
concentration at 6 h (s-Na6h).

(B) Data processing methods.
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341 patients with hyponatremia were assessed for eligibility

Learning data: 74 patients (342 6-hourly datasets)

267 patients did not meet the inclusion criteria:
- 234 were treated in the general unit
- 10 had u-Na < 20 mEq/L
- 1 did not have u-Na measurements
- 22 used DDAVP to prevent a rapid s-Na 

increase

47 patients with hyponatremia were assessed for eligibility

Validation data: 15 patients (146 6-hourly datasets)

32 patients did not meet the inclusion criteria:
- 31 were treated in the general unit
- 1 had u-Na < 20 mEq/L
- No patient used DDAVP

Figure 2. Study flow diagram.

(A) Learning data.

(B) Validation data.
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Figure 3. Selection of predictors and distribution of normalized data.

(A) Number of records.

(B) Normalized data distribution.



Figure 4. Ten-fold cross-validation of the training data.

(A) Liner Regression Model

100

105

110

115

120

125

130

135

140

145

100 105 110 115 120 125 130 135 140 145

Measured Value (mEq/L)

P
re

d
ic

te
d

 V
a

lu
e

 (
m

E
q

/L
)

100

105

110

115

120

125

130

135

140

145

100 105 110 115 120 125 130 135 140 145

(B) Support Vector Regression Model
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(C) Regression Tree Model
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Figure 5. External validation of each model.

(A) Liner Regression Model
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(B) Support Vector Regression Model
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(C) Regression Tree Model


	2023-12-24_manuscript_rev_最終原稿修正版_マーカー削除
	A machine learning approach for predicting treatment response of hyponatremia
	Tamaki Kinoshita1, Shintaro Oyama2, Daisuke Hagiwara3, Yoshinori Azuma4, Hiroshi Arima5
	1 Tamaki Kinoshita, M.D., Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
	2 Innovative Research Center for Preventive Medical Engineering (PME), Institutes of Innovation for Future Society, Nagoya University, Nagoya, 464-8601, Japan
	3 Department of Endocrinology and Diabetes, Nagoya University Hospital, Nagoya, 4668550, Japan
	4 Department of Endocrinology and Diabetes, the Japanese Red Cross Aichi Medical Center Nagoya Daini Hospital, Nagoya, 4668650, Japan
	5 Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya, 4668550, Japan
	Correspondence to:
	Shintaro Oyama, M.D., Ph.D.
	Daisuke Hagiwara, M.D., Ph.D.
	Hiroshi Arima, M.D., Ph.D.

	Running head: Predicting treatment response of hypoNa
	Abstract
	Key words: Hyponatremia, Predictive machine learning tool, Revised Adrogué–Madias formula, Prevention of osmotic demyelination syndrome, Monitoring for electrolyte abnormalities
	1. Introduction
	2. Materials and methods
	Patients
	Predictors used in the model
	Response
	Data preparation and preprocessing
	Machine learning model
	Ethical approval

	3. Results
	Learning data
	Validation data
	Patient characteristics
	Predictors
	Data normalization
	Internal verification
	External validation

	4. Discussion
	5. Acknowledgments
	6. Disclosure
	7. Roles/Contributions
	Figure legends
	Figure 1. Seven predictors and data processing methods.
	Figure 2. Study flow diagram.
	Figure 3. Selection of predictors and distribution of normalized data.
	Figure 4. Ten-fold cross-validation of the training data.
	Figure 5. External validation of each model.


	2023-12-16_Table_1_rev_最終原稿用
	Table 1: Clinical characteristics of the study population

	2023-12-16_Table_2_rev_最終原稿用
	Table 2: Differences in the prediction accuracy of 10-fold cross-validation based on combinations of predictors

	2023-12-16_Table_3_rev_最終原稿用
	Table 3: Differences in the prediction accuracy of external validation based on combinations of predictors

	2023-10-23 Figure 1
	2023-10-23 Figure 2
	2023-10-23 Figure 3_rev
	2023-10-23 Figure 4
	2023-10-23 Figure 5

