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Chapter 1

Dissertation Introduction

Recently, autonomous aerial vehicles (so-called drones) are widely used. The Interna-

tional Civil Aviation Organization (ICAO) formulated the guidelines for safe drone

operation [1], whereas there have been incidents such that a drone, which may be

hobby-use, intrudes into an off-limits area such as an airport and a power plant, and

causes serious accidents [2, 3].

To address the problem, we propose a new surveillance system against the drone in

this dissertation. We call such a surveillance system an “anti-drone system”. Figure

1.1 illustrates an example of the anti-drone system. In the figure, the system has

sensors such as radar or cameras on the base station for detecting illegal drones in

the detectable area. If the drone shape in the image data acquired by the camera is

large, the drone may be detected with high probability. Such ease of drone detection

is called detection probability. Since the drone is small and movable, and difficult to

be detected by the fixed sensors, it is important to increase detection probability by

the anti-drone system. However, the sensors are often stationary on the ground or in

the building as in Figure. 1.1. Therefore, the anti-drone system can not detect the

drone when the drone escapes into the area that the sensor does not cover.

This dissertation thus proposes a new radar surveillance system to expand the

area of detection and improve the detection probability of intruders.
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Illegal drone

Illegal drone

Base stationOff-limits area

Sensors for drone detection

Detectable area
by sensors

Figure 1.1: Anti-drone system.

1.1 Illegal Drone Incidents

Figure 1.2 in [3] depicts the number of drone incidents occurred around the airport

and we see that the number is increasing. Note that the decrease in 2020 is due to

COVID-19.

About each incident in the world, the website [2] shows with updating. The

sample is illustrated in Figure 1.1. One of the famous and serious incidents is the

case that occurred at Gatwick Airport, which affected more than 1,000 flights and

about 140,000 passengers [4].

Thus, various types of anti-drone systems are proposed and the part of them are

in practice.

1.2 Conventional Anti-drone Systems

Anti-drone systems to detect unexpected drones (which are called here the intruders)

are becoming more and more important. Thus, various studies have been conducted

2



Table 1.1: Drone incidents examples [2].

Incident Target Location Date

Tourist flying

drone near

Dalada Maligawa

arrested

Law Enforcement

/ First

Responders

Kandy, Sri-Lanka July 11, 2023

Drone used to fly

items into

Stockton’s Holme

House prison

Prisons

Stockton-on-Tees,

England, United

Kingdom

July 10, 2023

Drone loaded

with drugs

crashes in

Lahore’s Kahna

Government /

Military

Kahna, Lahore,

Pakistan
July 7, 2023

Drone Falls and

Crashes Into

Disney Park

Building

Entertainment /

Media
Paris, France July 4, 2023

Drone Spotted

Over Prime

Minister Modi’s

Residence

Government /

Military
New Delhi, India July 3, 2023

Ten drones caught

on unauthorized

flights above Song

Festival

Stadiums Riga, Latvia July 2, 2023

3
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Figure 1.2: Number of drone incidents around airport [3].

on anti-drone systems. For example, several anti-drone systems have been surveyed

in [5, 6]. Figure 1.3 illustrates a detection method classification presented in [6].

As illustrated in the figure, the existing systems are classified by the sensor type,

detection range, and challenges. The survey can be summarized as Table 1.2. For

example, camera-based anti-drone systems have been proposed in [7–14]. However,

the systems have the drawback that the detection accuracy is affected by sunlight,

by which it cannot be used during the hours of darkness. On the other hand, a

microphone-based system has been developed in [15–19], while the range of detection

is relatively smaller compared with the other types of sensors and the resolution will

be low around a noise source. Moreover, Radio Frequency (RF) based anti-drone

systems, which detect radio waves emitted from an intruder at communicating with

the operator and check the radio wave patterns from the pre-arranged database, have

been proposed in [20–25]; however, they need a database of the relation between the

intruders and radio waves and cannot be used for intruders that do not emit radio

waves.

Meanwhile, radar-based anti-drone systems are known to be promising for over-

coming the above drawbacks. Radars are not affected by sunlight and the range of

detection is relatively larger. In addition, they can detect intruders which do not emit

radio waves. On the other hand, there are technical issues to be solved for realizing

4



radar-based anti-drone systems. In particular, for small-size drones, the radar cross

section (RCS; received signal level of the radar echo for the transmitted angle) is

low, which makes the detection difficult. It has been experimentally shown that the

range of detection is less than 250m [26–29], though the potential range of radar-

based systems is 3000m [5]. This motivates us to develop a radar-based surveillance

system with a larger range of detection. Additionally, the anti-drone systems using

the bistatic radar for drone detection have been also proposed and field experiments

with the actual drone have been carried out [30–33]. In the previous experiments, it

has been indicated that the small drone can be detected by the bistatic radar system.

However both the transmission and receiving antennas are placed in the fixed location

in these conventional systems, which will result in intruder loss.

RF Scanner
(Commercial Drone only)

Functionality

Range

Air Surveillance Radar

Drone Detection Radar

Vision-based

Acoustic

Flying Object
Detection

Drone Object
Classification

Drone
Identification

Neutralization

Figure 1.3: Detection method classification depicted in [6].

Next, we show an example for each sensor.

Figure 1.4 illustrates a sample of the detection result by the image processing based

on the deep learning technique proposed in [13]. In the figure, the actual number of

drones is one and the other objects are birds. The figure indicates that the drone is

correctly detected by the camera-based approach even if the non-target such as bird

is also captured in the same image. However, the camera-based detection system can

not work in the evening. Additionally, we can find that the field of view of the camera

5



Table 1.2: Researches on anti-drone systems for detecting intruders.

Detection Devise Results Drawbacks

Camera [7–14]
The operation time is

limited.

Microphone [15–19]

The range of detection is

small, and the resolution

is low around a noise

source.

RF Sensor [20–25]

A database is needed

and it cannot be used for

intruders that do not

emit radio waves.

Radar [26–33]
A method to enhance

the signal level is needed.

6



is commonly narrow from the figure.

Figure 1.4: Example of camera-based detection result proposed in [13].

Figure 1.5 depicts an example of the acoustic-based detection method, which is

proposed in [17]. From the figure, we can confirm that various methods of signal

processing under the assumption of the capability of acoustic signals received with

the microphones. Thus, these signal processing methods can not work when the level

of the received signal is low due to the long-distance or drone’s silent flight.

Figure 1.6 illustrates an example of RF-based detection processing in [22]. The RF

signal is input into the deep neural network called VGG19, the features are extracted,

and the features are classified by the Support Vector Machine. Thus, we see that the

database is needed for classifying the types of drones.

Figure 1.7 depicts an example of the conventional radar anti-drone systems pro-

posed in [30]. The target has unique reflection characteristics corresponding to the

shape and the level of the reflected signal from the target is not necessarily maximum

for the angle of the transmitter. Therefore, the transmission and receiving antenna

is separated from each other in [30].
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Figure 1.5: Example of acoustic-based detection method proposed in [17].

Figure 1.6: Example of RF-based detection method proposed in [22].
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Reference Signal Receiver Channel

Clutter Rejection

2D Cross-Correlation

Constant False 
Alarm Rate

Reference
Surveillance Signal

Synchronization

Reference

Extract

Figure 1.7: Example of radar-based detection method proposed in [30].

On the other hand, the Japanese government has also considered the concept of the

anti-drone system. Recently, the anti-drone systems which realize the concept [34–42]

become practical due to increasing drone incidents.

1.3 Control of Multi-vehicle Systems

From the previous section, we can find that the detection in the anti-drone system

is mainly realized by the stationary sensors in the ground or the building. Thus,

target loss may occur when the acquired data by the sensors is affected by the noise

or occlusion [14] and the unexpected drone detection system using the mobile sensors

is needed such as presented in [43]. This is the motivation of our research. Since

some drones will try to intrude into the restricted area simultaneously, we consider

the multiple mobile sensors (i.e., the sensors mounted in the vehicles). Therefore, the

cooperative control technique is also needed in the anti-drone system considered in

this dissertation and we show the conventional cooperative control in the following

9



section.

The research about cooperative control for multi-vehicle systems has been con-

ducted [44–49]. In most research, the vehicles are assumed to be able to acquire the

relative positions [45], distances [46,47], or angles [46–48] by wireless communication

or measurement. Additionally, the received signal levels of radio waves are utilized for

the formation control instead of the relative distance. These researches are classified

into three categories illustrated in Figure 1.8 and Table 1.3. Figure 1.8a, 1.8b, and

1.8c depict the centralized control, distributed control with the leader, and distributed

control without the leader, respectively. Each characteristic is summarized in Table

1.3.

In the centralized control (Figure 1.8a), the leader computes important informa-

tion such as the control inputs or target positions of the other vehicles, and sends

them to them. Thus, the leader communicates with the other vehicles individually,

otherwise, it must send the same information for all vehicles, whose amount increases

in proportion to the number of vehicles.

On the other hand, the vehicles of distributed control systems illustrated in Figure

1.8b and 1.8c send information only to the neighbors which means that the vehicles

are within communication distance. However, the systems need a complex wireless

communication architecture. Especially, their vehicles should communicate by full-

duplex to unspecified ones whose number changes during the communication period.

We show the examples of each system illustrated in Figure 1.8 as follows.

1.3.1 An Example of Centralized Control

Figure 1.9 illustrates an example of the centralized control system proposed in [46,

47]. In the system, the leader and the follower are called “parent” and “child”,

respectively. The parent mounts high-performance sensors and can measure relatively

correct information about the states compared with the child. Thus, the parent can

arrive at the target position independently, whereas the child will be lost in the single

navigation. Under these assumptions, [46, 47] propose a system in which the parent

10



(a) Centralized control system. (b) Distributed control system with leader.

(c) Distributed control system without leader.

Figure 1.8: Communication system of cooperative control.

Table 1.3: Comparison between centralized and distributed cooperative control.

Communication system Abstract Drawbacks

Centralized control

The leader or base

station sends information

to each vehicle.

There is no scalability in

communication

resources.

Distributed control with

the leader

The leader sends

information only to the

vehicles which can

communicate with the

leader.

The communication or

measurement system for

acquiring the states of

the neighbors becomes to

be complex.

Distributed control

without the leader

The vehicles send

information to each

other or measure states

of the neighbors.

The communication or

measurement system for

acquiring the states of

the neighbors becomes to

be complex.
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guides the children to the target area. The concept is realized as follows. First, the

parent transmits the signal including self-state to all children and each child replies

to the parent at once. Then, the parent estimates the relative distances and angles

between itself and the children. Finally, the parent broadcasts the distances and angles

to them. Therefore, the number of communications and the information amount also

increase as the number of vehicles increases.

Figure 1.9: Example of centralized control systems proposed in [46,47].

1.3.2 An Example of Distributed Control with Leader

Figure 1.10 illustrates an example of the distributed cooperative control systems com-

posed of the single leader and multi-follower [45]. [45] proposes the cooperative fol-

lowers’ algorithm for tracking the leader with the same yaw angles as it and 1.10b

depicts the simulation result. In such a system, all the followers are required to be

able to communicate with the leader directly or by relaying the other followers. The

network structure like Figure 1.10a is allowed to change, which indicates the vehicle

communicates with the unspecified ones. This seems to cause the complexity and

uncertainty of the multi-vehicle system. Additionally, the followers’ target positions

are calculated in the leader and the computational complexity increases in proportion

to the number of followers.

12



Leader

Follower (#1)

Follower (#2)
Follower (#3)

(a) Network structure example. (b) Simulation result.

Figure 1.10: Example of distributed control systems with leader illustrated in [45].

1.3.3 An Example of Distributed Control Without Leader

Figure 1.11 illustrates an example of the distributed control systems without the leader

[50]. Figure 1.11a and Figure 1.11b show a network structure and the simulation

result of obstacle avoidance. [50] proposes the distributed Model Predictive Control

(MPC). The proposed method is derived from the centralized version as follows. First,

the optimization problem for the centralized MPC is defined. Next, the problem is

separated into some small problems. Each vehicle solves such a small problem at the

control period and shares information with the neighbor vehicles corresponding to the

network structure as Figure 1.11a. In the processing, the leader is not needed and the

distributed system without the leader is realized. However, the system has the same

challenges as one explained in Section 1.3.2 about network complexity.

1.3.4 Cooperative Vehicle Control for Anti-drone Systems

The anti-drone system should work on all days and the radar device is needed as

mentioned in Section 1.2. But the drone has unique reflection characteristics for

the transmitted signal from the radar so-called RCS [51–53]. Figure 1.12 depicts an

example of the drone (left) and the RCS (right) [51]. Therefore, the radar mounted on

13



1

2

3

4

5

6

(a) Network structure example. (b) Simulation result.

Figure 1.11: Example of distributed control systems without leader presented in [50].

the ground or the building may not be able to detect the unexpected drone due to the

weak level of the received signal on the radar. Although the high-performance radar

can detect the drone even if the received signal level is weak, it becomes expensive.

copyright(c)2020 IEICE

Figure 1.12: Example of drone RCS shown in [51].

On the other hand, the signal level received by the radar is strengthened by moving

the vehicles. By introducing multi-vehicle, the anti-drone system can detect multi-

drone. However, the positions of the target drones are unknown to the system and

14



the reference formation of the vehicles can not be explicitly set. Additionally, the

communication systems illustrated in Section 1.3.1, 1.3.2, and 1.3.3 are complex and

also become expensive.

1.4 Broadcast Control

The alternative control algorithm of the multi-vehicle system called as the broadcast

control is also proposed [55, 56]. In the broadcast control, a simple communication

system is assumed as compared to the other conventional algorithms in Section 1.3.

Concretely, the common scalar signal is only transmitted from the base station to all

vehicles and the opposite communication from the vehicle to the base station is not

operated.

Figure 1.13 illustrates the communication of the broadcast control. The scalar

signal depends on the output of the objective function for evaluating the vehicles

formation and the optimization for the objective function is achieved under some

assumptions.

The broadcast control algorithm does not need information about the system of

the dynamics in operation. Thus, the algorithm may be effective for the system with

the unknown components such as the RCS and we focus on the algorithm.

However, the broadcast control for the anti-drone system such as radar surveillance

was not established. Additionally, it was assumed that the vehicle dynamics was

single-integrator system. These are challenges about the broadcast control algorithm.

1.5 Contributions of Dissertation

In this dissertation, we consider the radar surveillance system composed of the base

station, the multiple vehicles, and the bistatic radars whose antennas are mounted in

each vehicle. Then, we address the problem of receiving signal level maximization at

the base station, where the signal is transmitted from the vehicle and reflected by the

15



Figure 1.13: Communication of broadcast control proposed in [55,56].

illegal drone. As mentioned in the section 1.3.4, the receiving signal level is varying

for the relative positions between the vehicle and the drone due to the drone RCS.

However, the system can not acquire information about the RCS. Thus, we propose

a new cooperative control algorithm for multi-vehicle without such information for

achieving the optimum formation in which the received signal levels at the base station

are maximized. As a solution, we give a multi-agent control algorithm [54] based on

the broadcast control technique recently proposed in [55, 56], where the broadcast

control is a two-step switching control algorithm. By the broadcast control, the

vehicles’ positions are controlled with only the received signal levels at the radar and

we do not need information about the drone RCS.

Since the conventional broadcast control is only applied to vehicles with omni-

directional dynamics and the vehicles’ velocities can not be controlled, this disser-

tation also proposes a new broadcast control by which both vehicle positions and

velocities converge [57]. In particular, we consider the case that the vehicle dynamics

is the double-integrator system and each vehicle can acquire the state of the self-

velocity. In such a case, we show that the conventional two-step broadcast control

can not be applied and the proposed four-step control is needed.

I prove the convergences of the algorithms under some assumptions and illustrate

the effectiveness of the numerical simulations.
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1.6 Outline

In Chapter 2, we explain about the conventional broadcast control for multi-vehicle

proposed in [55,56]. The broadcast control system is composed of the global controller

in the base station and the local controller in the vehicle. The former evaluates the

objective function corresponding to the vehicle formation using the vehicle position

information and broadcasts the common signal of the evaluated value to all vehicles.

On the other hand, the latter receives the signal and switches the control laws by

two-step. We begin with offering the problem formulation for the broadcast control.

Especially, we show that the base station in the system is assumed to acquire the

evaluated value of the objective function for the vehicle positions, and the assumed

system in the previous works is composed of the omni-directional vehicle dynamics.

In Chapter 3, we show a new broadcast control for the anti-drone system using

multi-vehicle with the antenna [54]. In the system, we assume that the base station

acquires not vehicle positions’ information but received signal levels of the radio waves

which are transmitted by the antennas mounted in the vehicles and reflected by the

illegal drones. The levels depend on the vehicle positions, illegal drone positions,

and the RCS of the drones. These positions and RCS are unknown to the system.

Nevertheless, we prove the convergence of the proposed broadcast control for such a

system.

In Chapter 4, we also propose a broadcast control for the vehicle with the double-

integrator dynamics [57]. In such dynamics, it is important to control not only the

vehicle positions but also the velocities. We first show non-convergence of the velocity

when using the conventional two-step local controller. We then derive the new four-

step local controller and prove the convergence. We show the effectiveness of the

proposed broadcast control by numerical simulations.
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Chapter 2

Conventional Broadcast

Control

2.1 Introduction

In the broadcast control [55, 56], the system composed of a base station and multi-

vehicle is considered. The base station has an objective function, acquires the value

of the function by measuring the state corresponding to the vehicle positions, and

transmits the common signal to the vehicles. After receiving the signal, each vehicle

moves to the direction where the value decreases by the common control law.

When considering the problem of radar signal level maximization for detecting

the illegal drones explained in 1.3.4, unknown information such as RCS is included

in the dynamics of the vehicle position transition and the signal propagation. In the

broadcast control, however, information about the vehicle dynamics is not needed.

Thus, the broadcast control may be applied to the anti-drone system and we focus

on it. In this chapter, we explain the conventional broadcast control.
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Figure 2.1: Broadcast control system.
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Figure 2.2: Block diagram of vehicle.

2.2 Problem Formulation

We consider the system composed of the N ∈ N vehicles on the two-dimensional plane

and the base station illustrated in Figure 2.1. We show their models as follows.

Figure 2.2 illustrates the block diagram of the vehicle. The vehicle is composed

of the controller Li called “local controller” in the broadcast control literature and

physical dynamics Pi. In the chapter, we assume that the physical dynamics of the

vehicle is given by the omni-directional model as

Pi : xi(k + 1) = xi(k) + ui(k), i = 1, 2, . . . , N, (2.1)

where xi(k) ∈ R2 and ui(k) ∈ R2 mean the position and the control input of the

vehicle i, respectively. The local controller Li is given by

Li : ui(k) = h(ν(k), ν(k − 1), . . . , ν(0)), i = 1, 2, . . . , N, (2.2)
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Figure 2.3: Block diagram of base station.

where ν(k) ∈ R0+ means a scalar broadcast signal from the base station. We can

confirm that the inputs of the local controller, that is, broadcast signals ν(k), ν(k −

1), . . . , ν(0) are common among all vehicles. We define the positions and the the

control inputs of the vehicles as

x(k) =



x1(k)

x2(k)

...

xN (k)


, u(k) =



u1(k)

u2(k)

...

uN (k)


. (2.3)

On the other hand, Figure 2.3 illustrates the block diagram of the base station. The

global controller G outputs the broadcast signal based on the evaluating result of the

degree of achievement as

G : ν(k) = J(x(k)) (2.4)

where the positions of all vehicles x(k) can be measured at the base station and the

function J : R2N → R0+ means the objective function for evaluating the difference

between the current vehicle positions and the reference formation.

Problem 2.1. We consider the system composed of the equations (2.1), (2.2)，and

(2.4). Suppose that an objective function J : R2N → R0+ is given. Find a local

controller h satisfying

lim
k→∞

J(x(k)) = min
x∈R2N

J(x). (2.5)
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2.3 Algorithm

A solution for the problem 2.1 has been given in [55,56] as follows:

h(ν(k), ν(k − 1)) =


c(k)∆i(k) if k is even,

uo
i (ν(k), ν(k − 1)) if k is odd,

(2.6)

uo
i (ν(k), ν(k − 1)) = −c(k − 1)∆i(k − 1)

−a(k − 1)
ν(k)− ν(k − 1)

c(k − 1)
∆

(−1)
i (k − 1) (2.7)

where a(k) ∈ R0+ and c(k) ∈ R0+ are the time-varying control gains and ∆i(k) ∈ R2

is the i.i.d. random variable in the local controller of the vehicle i. Additionally,

∆
(−1)
i (k) ∈ R2 means the element-wise inverse of ∆i(k). The equation (2.6) is a two-

step controller which means switching alternately in the case that k is even and k is

odd.

We show the mechanism of the local controller (2.6) as follows. First, from the

equations (2.1),(2.2) and (2.6), the vehicles move randomly when k is even as

x(k + 1) = x(k) + c(k)∆(k), (2.8)

where

∆(k) =



∆1(k)

∆2(k)

...

∆N (k)


. (2.9)

Then, the discrete time index k is updated and k becomes odd. Next, the base station

measures the value of J(x(k)) and broadcasts ν(k) for all vehicles. In this time, from

the equations (2.4) and (2.8), the broadcast signal can be expressed as

ν(k) = J (x(k − 1) + c(k − 1)∆(k − 1)) if k is odd. (2.10)

The vehicles receive ν(k) of the equation (2.10) and calculate the control input

uo
i (ν(k), ν(k − 1)). By the control input, the vehicles move in the direction in which
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the objective function will decrease. By the result of the two-step switching control,

from the equations (2.1), (2.2), (2.6), (2.7), and (2.8), We have

x(k + 2) = x(k)− a(k)d(k, k + 1) if k is even, (2.11)

d(k, l) =
ν(l)− ν(k)

c(k)
∆(−1)(k), (2.12)

where ∆(−1)(k) ∈ R2N means the element-wise inverse of ∆(k). Additionally, from

the equations (2.10) and (2.12), d(k, k + 1) can be represented by

d(k, k + 1) =
J (x(k) + c(k)∆(k))− J (x(k))

c(k)
∆(−1)(k) if k is even. (2.13)

In this case, the equation

E [d(k, k + 1)|x(k)] = ∇J(x(k)) +O(c(k)) (2.14)

holds and d(k, k + 1) is the approximate value for the gradient of J [55, 56]. There-

fore, the equation (2.11) can be interpreted as a stochastic gradient method and the

equation (2.5) is expected to be achieved under some assumptions.

2.4 Convergence Result

In the section, we show the convergence result [55,56] of the generlized system of the

equation (2.11) by replacing k+2, x, ∆, and J with k+1, the vector ζ ∈ Rϕ, ϕ ∈ N,

the random variable ∆0 ∈ Rϕ, and the funtion J0 : Rϕ → R0+, respectively.

We consider the system

ζ(k + 1) = ζ(k)− a(k)
J0(ζ(k) + c(k)∆0(k))− J0(ζ(k))

c(k)
∆

(−1)
0 (k), (2.15)

where ∆0 is composed of the random variable ∆0,i ∈ R, i = 1, 2, . . . , ϕ, that is,

∆0(k) =

[
∆0,1(k) ∆0,2(k) · · · ∆0,ϕ(k)

]T
(2.16)

and ∆
(−1)
0 ∈ Rϕ means the elementwise inverse of ∆0.

For the system (2.15), the following result is known [55].
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Lemma 2.1. In the system (2.15), we assume that the function J0 is differentiable

and there exists ζ∗ ∈ Rϕ satisfying ∇J0(ζ
∗) = 0. Then,

lim
k→∞

ζ(k) = ζ∗ w.p.1, (2.17)

if the following seven conditions hold [55]:

(B1) J0 is twice differentiable.

(B2) ζ∗ is asymptotically stable equilibrium of the gradient system η̇(t) = −∇J0(η(t))

in the Lyapunov sense, where η ∈ Rϕ.

(B3) limk→∞ a(k) = 0,
∑∞

k=0 a(k) = ∞, limk→∞ c(k) = 0, and
∑∞

k=0(a(k)/c(k))
2 <

∞.

(B4) ∆0,i(k), i = 1, 2, . . . , N is symmetrically distributed about zero and i.i.d. for

all k and all elements. |∆0,i(k)| < ∞, |∆−1
0,i (k)| < ∞, and |∆−2

0,i (k)| < ∞ hold

w.p.1.

(B5) E[J0(ζ(k) + c(k)∆(k))2] is bounded for all k ∈ N.

(B6) For a compact set Sζ ⊆ Rϕ such that η̇(t) = −∇J0(η(t)) with ζ(0) ∈ Sζ results

in limk→∞ ζ(k) = ζ∗, ζ(k) ∈ Sζ occurs infinitely often for almost all sample

points of ∆i(k) (i = 1, 2, . . . , ϕ, k = 0, 1, . . . ).

(B7) supk∈N ∥ζ(k)∥ < ∞ w.p.1.

Since the system (2.11) is given by replacing k + 1 with k + 2 in the equation

(2.15), the equation (2.17) holds for the system (2.11), that is, x(k) converges to a

local optimum for the objective function J(x) by the function of the local controller

(2.6).

2.5 Numerical Simulation Results

We show some examples of the numerical simulations for conventional broadcast

control. The simulation conditions are as follows: N = 4, x1(0) = [−10 − 10]
T
,
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x2(0) = [−10 − 9]
T
, x3(0) = [−9 − 9]

T
, x4(0) = [−9 − 10]

T
, and ∆i(k) is drawn

from the Bernoulli distribution with equal probabilities in {−1, 1}2.

Additionally, we set the time-varying control gains of the local controller as

a(k) =
a0(

bk2 + 1 + av
)ap

, (2.18)

c(k) =
c0(

bk2 + 1
)cp , (2.19)

for the positive constants a0, ap, av, b, c0, and cp.

2.5.1 Formation Control

We define the objective function J in the equation (2.4) as

J(x) =
1

N
(x− xref)

T
(x− xref) , (2.20)

xref =

[
xT
1,ref xT

2,ref xT
3,ref xT

4,ref

]T
, (2.21)

where xi,ref ∈ R2 is the reference position of the vehicle i. The objective function J(x)

is twice differentiable with x and satisfies the condition in Lemma 2.1. We illustrate

that x approaches to the reference formation xref by the conventional local controller

(2.2) and (2.6).

We set the parameters in the equations (2.18) and (2.19) as a0 = 3 × 10−3, c0 =

10−4, ap = 7.0× 10−1, cp = 1.6× 10−1, av = 10−6, b = 10−5, so that the parameters

a(k) and c(k) satisfy the condition in Lemma 2.1. The reference positions are as

follows: x1,ref = [−6 − 6]
T
, x2,ref = [−6 − 6]

T
, x3,ref = [6 6]

T
, and x4,ref = [6 − 6]

T
.

Figure 2.4 and 2.5 illustrate the simulation result. Figure 2.4 depicts the vehi-

cles positions xi(k), i = 1, 2, . . . , N in the two-dimensional plane. In the figure, the

symbols ⃝, △, □, × with line show each vehicle position at time k and the previous

trajectory to the past 5000 samples, respectively. On the other hand, the other four

symbols + mean the positions corresponding to the reference formation xref in the

equation (2.21).

From Figure 2.4, we can find that vehicle positions approach the reference forma-

tion at k = 4000 and equilibrate at the same place after that. Then, from Figure 2.5,

24



which shows the time series of the objective function and vehicle positions, we see

that the objective function approaches to 0 and positions are almost equal to 6 or −6

at k = 5000, which matches Figure 2.4. Thus, these results show that Problem 2.1 is

solved by the local controller (2.2) and (2.6).

2.5.2 Coverage Control

We also evaluate the effectiveness of conventional broadcast control for the other

objective functions and consider the coverage problem [58]. The coverage means

locating the vehicles in the bounded area W ⊂ R2 without any explicit reference

positions so that the vehicles’ occupied areas are equal [55]. Then, we divide the

bounded area into a grid. The objective function corresponding to the problem can

be represented by

J(x) =
1

L

L∑
l=1

min
i∈N

∥wl − xi∥2, (2.22)

where wl ∈ W, l = 1, 2, . . . , L is the l th corner position of the grid in the bounded

area, L is the number of corners, and N = {1, 2, . . . , N}. As illustrated in Figure 2.6,

we set the bounded area and the number of corners as W := [−12, 12]× [−12, 12] and

L = 252 = 625, respectively. Thus, the corner positions of the grid are given by

w1 =

−12

−12

 , w2 =

−12

−11

 , . . . , w625 =

12
12

 . (2.23)

The region corresponding to the set {wl : ∥wl−xi∥ ≤ ∥wl−xj∥, ∀j ∈ {1, 2, . . . , N}}

is called Voronoi region for the position xi [58]. When the vehicles’ positions are equal

to the local optimum of the objective function (2.22), the areas of the Voronoi regions

are equal.

The objective function (2.22) is known to be differentiable with x [58] but unclear

about twice differentiability. We evaluate the effectiveness of such an objective func-

tion. About the parameters in the local controller, we set the same values as the case

of the equation (2.20) except for a0. We set a0 = 10−1 in the simulation.
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Figure 2.4: Vehicle positions transition in two-dimensional plane for objective function

(2.20).
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Figure 2.5: Time series of objective function (2.20) and vehicles positions.

27



-20 -10 0 10 20
-20

-10

0

10

20

l = 1

l = 25 l = 625

Bounded Area

Position of the grid

Figure 2.6: Bounded area and corner positions of grid in objective function (2.22) on two-

dimensional plane.

Figure 2.7 and 2.8 illustrate the simulation result. Figure 2.7 depicts the vehicles

positions xi(k), i = 1, 2, . . . , N by the almost same manner of Figure 2.4. In the

figure, the bounded area and the borders of the Voronoi regions are also illustrated

by the rectangle and straight-line symbols, respectively. From the figure, we see that

the four vehicles converge to the positions for which the areas of Voronoi regions are

almost equal in the bounded area W (the bounded area is divided into almost equal

quarters by the borders of the Voronoi regions). Figure 2.8 illustrates the time series

of the objective function and the vehicle positions same as Figure 2.5. We can confirm

that the objective function and positions converge to certain values. Note that the

minimum value of the objective function (2.22) may not be not zero.

2.6 Conclusion

In this chapter, we have reviewed the conventional broadcast control proposed in

[55, 56]. Especially, we have shown the assumed system model in the control, the

28



-20 -10 0 10 20

-20

-10

0

10

20
k = 0

# 1

# 2

# 3

# 4

-20 -10 0 10 20

-20

-10

0

10

20
k = 4000

-20 -10 0 10 20

-20

-10

0

10

20
k = 8000

-20 -10 0 10 20

-20

-10

0

10

20
k = 12000

-20 -10 0 10 20

-20

-10

0

10

20
k = 16000

-20 -10 0 10 20

-20

-10

0

10

20
k = 20000

Figure 2.7: Vehicle positions transition in two-dimensional plane for objective function

(2.22).
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Figure 2.8: Time series of objective function (2.22) and vehicles positions.
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algorithms, the convergence result, and some numerical simulation results. In the

algorithm, the base station and the vehicles only need the value of the objective func-

tion and the common signal from the base station, respectively. This characteristic is

convenient for the system including the unknown dynamics. However, the case that

the vehicle dynamics is the single-integrator system has only been studied. Thus,

we propose a new radar surveillance system using the broadcast control against the

illegal drone with unknown RCS and the new broadcast control for the case that the

vehicle dynamics is the double-integrator system.

31



Chapter 3

Broadcast Control of Radar

Surveillance Systems for

Unexpected Drones

3.1 Introduction

In this chapter, we propose a new broadcast control for the radar-surveillance system.

As the conventional broadcast control [55, 56], the system for the proposed one is

also composed of the base station and multiple vehicles. In the proposed control,

however, the base station receives radio waves that are transmitted from the vehicles

and reflected by the illegal drones (called intruders in this chapter). Thus, the system

is regarded as the bistatic radar with multiple vehicles which have a role as the

transmission antenna. But the conventional radar-surveillance system such as [30]

has only the motionless transmission antenna and the RCS is unknown for the system

and may lose the intruders. In the system, therefore, we address the problem of

steering vehicles to a formation maximizing the levels of the radar echo signals at the

receiving antenna in the base station. Especially, we propose the algorithm for the
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Figure 3.1: Proposed surveillance system using antenna-equipped vehicles for detecting

intruders.

system with the unknown radio waves propagation due to the RCS. The broadcast

control algorithm can work only information about the objective function and the

broadcast signal calculated with the output of the objective function. Additionally,

the algorithm does not need information about the dynamics in operation. Thus, we

focus on the algorithm for the system with the unknown dynamics such as RCS.

3.2 Problem Forumlation

We consider the surveillance system for detecting M ∈ N intruders as shown in Fig.

3.1 [54]. This system is composed of N vehicles denoted by Tx i and the base station

denoted by Rx.

Vehicles of Transmission Antenna (Tx): Vehicles Tx i (i = 1, 2, . . . , N) move

on the ground and transmit radio waves for detecting the intruders. The vehicles

cannot localize their positions in the global coordinate flame, but they can

receive a control signal from Rx. We assume that each Tx stays on-site during

the transmission of radio waves, which guarantees that the Doppler shift caused

by Tx does not occur. Thus, the Doppler shift of the received signal at the base

station is only associated with the intruders’ movement and the base station
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can ignore the signal directly arriving from Tx. In addition, we also assume

that the base station can calculate the sum of the signals’ levels without radio

frequency interference, that is, the frequencies of Tx’s transmitted signals are

different from each other, and the base station distinguishes the transmitted

signals.

Base Station (Rx): The base station Rx is placed on the fixed location, while it

receives the signals transmitted by Tx i (i = 1, 2, . . . , N) and reflected by the

intruders j (j = 1, 2, . . . ,M). Rx detects the intruder through the received

signal level sij(k) ∈ R (i = 1, 2, . . . , N, j = 1, 2, . . . ,M), which is transmitted

from Tx i and reflected by the intruder j, and the Doppler shift. Note that Rx

can receive sij , (i = 1, 2, . . . , N, j = 1, 2, . . . ,M) at the same time because the

different frequencies and angles are used to transmit them. Furthermore, Rx

has an array antenna and can estimate the number of the intruders M by the

arrival angles differences of received signals using array signal processing such as

Capon algorithm [59]. Based on the received signals, Rx transmits the control

signal ν(k) to all of Tx in an indiscriminate manner. Thus, Rx has the role of

the central controller in the proposed surveillance system. When all the signal

levels are low and the Doppler shifts are not detected, Rx detects no intruder

and does not transmit the control signal to Tx. Without loss of generality, we

assume that Rx is placed at the origin in the global coordinate frame.

Intruder: In Fig. 3.1, we assume the intruders are hovering in the air at the same

altitude for illegal fixed-point photography.

The block diagram of Tx i is illustrated in Fig. 3.2. Tx i is composed of the

physical dynamics Pi, the local controller Li, and signal transmission Dij to Rx.

The physical dynamics and the function of the local controller of Tx i are given

by the equation (2.1) and (2.6), respectively. The input of the local controller ν(k)

is broadcasted by Rx, and the output is ui(k), which is applied to Pi. The signal
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Figure 3.3: Block diagram of Rx.

transmission Dij is modeled as

Dij : sij(k) = r(xi(k), q̄j(k)) (3.1)

where q̄j(k) ∈ R3 is the three-dimensional position of the intruder j composed of

the position on the 2-D plane qj(k) ∈ R2 and the altitude1 qzj(k) ∈ R+, that is,

q̄j(k) =

[
qTj (k) qzj(k)

]T
and r is the function representing the signal level for the

intruder position q̄j(t) and the Tx i position

[
xT
i (k) 0

]T
, which is assumed to be

unknown but may depend on the distance between Tx i and the intruder j, i.e.,

d(xi(k), q̄j(k)) =

∥∥∥∥[xT
i (k) 0

]
− q̄j(k)

∥∥∥∥ , (3.2)

and the angle θij(k) ∈ R illustrated in Fig. 3.1. Since the intruders are assumed to

be hovering in the air, we can regard q̄j(k) (j = 1, 2, . . . ,M) as constant parameters

and we can rewrite dj(xi(k)) = d(xi(k), q̄j(k)) and Dij as

Dij : sij(k) = rj(xi(k)). (3.3)

1The altitude means the height in the 3-D space. From the assumption of the intruder’s hovering,

qzj(k) > 0.
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On the other hand, the block diagram of Rx is illustrated in Fig. 3.3, which

receives the signals sij(k) (i = 1, 2, . . . , N, j = 1, 2, . . . ,M) and broadcasts the same

signal ν(k) to Tx i (i = 1, 2, . . . , N). This is given by

G : ν(k) = f(s11(k), . . . , sNM (k)) (3.4)

where f is a function.

The objective of this surveillance system is to move Tx i (i = 1, 2, . . . , N) maxi-

mizing the collective signal level of Rx for detecting all the intruders. The collective

signal level is quantified as the objective function

J(s11, . . . , sNM ) =

M∑
j=1

1

βj(s1j , s2j , . . . , sNj)
(3.5)

where

βj(s1j , s2j , . . . , sNj) =

N∑
i=1

log sij (3.6)

which corresponds to the signal level capturing the intruder j illustrated in Figure

3.4. The inverses of βj(s1j , s2j , . . . , sNj) represent the signal weaknesses to detect

the intruders j (j = 1, 2, . . . ,M), and the objective function in (3.5) corresponds to

the average of them (more precisely, constant multiplication of the average). In this

sense, the signal level at Rx is maximized by minimizing the objective function.

Although the base station measures the βj with the signal levels sij by the equation

(3.6), the signal level J eventually depends on the positions x of the Tx vehicles. To

clarify this dependency, we introduce

J̃(x) =

M∑
j=1

1

β̃j(x)
, (3.7)

where

J̃(x) ≜ J(r1(x1), r2(x1), . . . , rM (xN )) (3.8)

and

β̃j(x) ≜ βj(r1(x1), r2(x1), . . . , rM (xN )). (3.9)
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Figure 3.4: Signal level capturing intruder j.

From (3.3), (3.5), and (3.6), it is clear that J̃ is equivalent to J . Note that the global

controller in the base station uses x for measuring J as like depicted in Fig. 3.3. Thus,

we utilize sij and x as the input of the function in the discussion about development

of the controller and convergence analysis, respectively.

Then our problem is formulated as follows.

Problem 3.1. Consider the above surveillance system. Assume that the model of

signal transmission, i.e., r, is unknown and the intruders are hovering in the air

(i.e., the third elements of q̄j(k) (j = 1, 2, . . . ,M) corresponding to the altitudes are

constant). Find f such that limk→∞ J̃(x(k)) is equal to the minimum value of J̃(x)

with respect to x1, x2, . . . , xN .

Three remarks are given for Problem 3.1. First, the movement cost, e.g., the mov-

ing distance, should be taken into account in practice. For simplicity, it is omitted in

Problem 3.1, whereas the solution is useful for wired Tx vehicles, to which power is

supplied via a long cable [60]. Second, in the previous work [55,56], a general form of

the objective function J has been addressed. On the other hand, this dissertation pro-

poses a specific J to quantify the signal level in an anti-drone surveillance system. In
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this sense, the objective function J is originally proposed in this dissertation. Finally,

the number of intruders is assumed to be known in the problem. The assumption

is reasonable when the number is estimated by using an array antenna in Rx before

applying the solution to Problem 3.1.

3.3 Proposed Objective Function

In this section, we propose a solution to Problem 3.1 based on the result of the

broadcast control established in [55,56].

The function f in the equation (3.4) is given by

f(s11(k), . . . , sNM (t)) = J(s11(k), . . . , sNM (k)). (3.10)

∆i(k) (i = 1, 2, . . . , N, k = 0, 1, . . . ) in (2.6) are drawn from the Bernoulli distri-

bution with outcome ±1 and equal probabilities. The control gains a(k) and c(k) are

given by the same function as (2.18) and (2.19).

The proposed algorithm given by (2.2), (2.6), (3.4), and (3.10) is a solution to

Problem 3.1 under some assumptions.

3.4 Convergence Analysis

We prove the convergence of the proposed algorithm in radar surveillance.

Theorem 3.1. For the radar-based surveillance system composed of (2.1), (3.3),

(2.2), (2.6), and (3.4), let the objective function J̃(x) : R2N → R0+ be given by (3.7)

and let G be given by (3.10). We assume that

(A1) β̃j(x) (j = 1, 2, . . . ,M) are twice differentiable with x and J̃(x) is differentiable

with x,

(A2) there exists a vector x∗ ∈ R2N satisfying ∇J̃(x∗) = 0 and is an asymptotically

stable equilibrium of the gradient system η̇(t) = −∇J̃(η(t)), where the stability

is in the Lyapunov sense,
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(A3) for a compact set S ⊆ R2N such that η̇(t) = −∇J̃(η(t)) with any η(0) ∈ S

results in limt→∞ η(t) = x∗, x(k) ∈ S occurs infinitely often for almost all

sample points of ∆i(k) (i = 1, 2, . . . , N and k = 0, 1, . . . ),

(A4) x(0) is set in the circle whose center is equal to 0 (the position of Rx) and whose

radius is equal to the finite communicable distance with Rx and supk∈N ∥x(k)∥ <

∞ w.p.1,

(A5) About the parameters in (2.18) and (2.19), ap ≤ 1 and ap − cp > 0.5.

Then x(k) converges to a solution to the equation ∇J̃(x) = 0 w.p.1.

Proof. Since the objective function J is equivalent to J̃ as mentioned above, we have

J(s11(k), . . . , sNM (k)) = J̃(x(k)) (3.11)

from (3.3) and (3.8). Then we can rewrite the signal ν(k) as

ν(k) = J̃(x(k)), (3.12)

which is the same form as ν(k) in the system in Problem 2.1. Therefore, the system

in Problem 3.1 is in the same class as the system in Problem 2.1. Thus, we prove that

the seven conditions (B1) to (B7) in Lemma 2.1 hold under (A1) - (A5).

(B1) The objective function (3.7) is twice differentiable with x(k) because β̃j(x) is

assumed to be twice differentiable with respect to x in (A1).

(B3) The condition holds from (2.18), (2.19) and (A5).

(B4) The condition holds because ∆i(k) (i = 1, 2, . . . , N, k = 0, 1, . . . ) in (2.6) are

random variable drawn from the Bernoulli distribution with equal probabilities

in {−1, 1}2.

(B5) Since (B4) holds and (A4) is assumed, the condition also holds.

Finally, (B2), (B6), and (B7) are straightly obtained from (A2), (A3), and (A4),

respectively. Thus, Theorem follows from Lemma 2.1.
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From the theorem, we can confirm that the vehicles can arrive at the locally

optimal positions for the objective function (3.7) by the proposed surveillance system

only with the received signal level sij . This means that even if a nonlinear operator for

the positions such as the function (3.3) is included in the system, the vehicles’ positions

are converged to the locally optimal values by the broadcast control technique under

some assumptions shown in the theorem, which is the difference from the previous

work [55,56].

In our problem setting, Assumptions (A1) and (A2) are not so restrictive. This

can be explained by using a typical model of the signal transmission rj . From the

radar equation [61], we have

rj(xi) = Rj
σj(xi)

d2j (xi)
(3.13)

for the RCS σj(xi) ∈ R+ of the intruder j, which is the coefficient for the reflection

intensity of radio waves on the intruder’s surface, and

Rj =
Γλ2

(4π)3∥q̄j∥2
(3.14)

where Γ ∈ R+ and λ ∈ R+ are transmission power and the wavelength of the received

signal, respectively. Note that some types of σj(xi) are known to be a concave function

[62]. Then the following result is obtained.

Corollary 3.1. For the system in Theorem 3.1, assume that the signal transmission

model rj(xi) is given by (3.13) and (3.14). If the following conditions are satisfied,

(A1) and (A2) hold.

(a) (A4) holds.

(b) qzj > ∥xi(k)− qj∥ and Rj ≥ ∥pi(k)− qj∥2 + q2zj for all k ∈ {0, 1, . . . } (note that

∥xi(k)− qj∥ is bounded w.p.1 under (A4)).

(c) σj(xi) is concave and twice differentiable.

Proof. In the following, we prove that the assumptions (A1) and (A2) in Theorem

3.1 hold.
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(A1) The denominator in (3.13) d2j (xi) is clearly twice differentiable with xi. Thus,

rj(xi) is twice differentiable with xi because both the numerator and the de-

nominator in (3.13) are twice differentiable. Therefore, β̃j(x) is also twice dif-

ferentiable with x from the equations (3.3), (3.6), and (3.9) and J̃(x) is similarly

differentiable with x from the equation (3.7).

(A2) From Lyapunov’s indirect method, when the twice differentiation of J̃ with x

is positive definite, the gradient system η̇(t) = −∇J̃(η(t)) is stable. Thus, we

prove that (∂2J̃(x))/(∂x2) > 0. From the equation (3.7), we have

∂2J̃(x)

∂x2
=

M∑
j=1

1

β̃3
j (x)

2

(
∂β̃j(x)

∂x

)(
∂β̃j(x)

∂x

)T

− β̃j(x)
∂2β̃j(x)

∂x2

 (3.15)

and the first term is positive semi-definite. Hence, (∂2J̃(x))/(∂x2) > 0 and

the gradient system is stable if (∂2β̃j(x))/(∂x
2) < 0. From the equations (3.3),

(3.6), (3.9), and (3.13), we have

β̃j(x) =

N∑
i=1

logRj
σj(xi)

d2j (xi)
=

N∑
i=1

(
logRj + log σj(xi)− log d2j (xi)

)
. (3.16)

The first term logRj is a constant value. The second term log σj(xi) is concave

from the concavity assumption of σj(xi) and (C2) in Lemma A.1 (Appendix).

Hence, (∂2β̃j(x))/(∂x
2) < 0 from (C1) in Lemma A.1 if the twice differentiation

of log d2j (xi) with x is positive definite. The twice differentiation can be written

as

∂2 log d2j (xi)

∂x2
=

1

d4j (xi)
Aj(xi) (3.17)

where

Aj(xi) =
∂2d2j (xi)

∂x2
d2j (xi)−

(
∂d2j (xi)

∂x

)(
∂d2j (xi)

∂x

)T

= 4Bj(xi) + 2
(
q2zj − ∥e(xi, qj)∥2

)
ĪTi Īi, (3.18)

Bj(xi) = ĪTi
(
eT(xi, qj)e(xi, qj)I2 − e(xi, qj)e

T(xi, qj)
)
Īi, (3.19)

e(xi, qj) = xi − qj , (3.20)

Īi =

[
02×(2i−2) I2 02×(2M−2i)

]
. (3.21)
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The quadratic form of the matrix Bj(xi) can be written as

vTBj(xi)v = vTĪTi
(
eT(xi, qj)e(xi, qj)I2×2 − e(xi, qj)e

T(xi, qj)
)
Īiv

=
(
eT(xi, qj)e(xi, qj)

) (
vTĪTi Īiv

)
−
(
vTĪTi e(xi, qj)

) (
eT(xi, qj)Īiv

)
= ∥e(xi, qj)∥2∥Īiv∥2 −

(
eT(xi, qj)Īiv

)2
=

(
∥e(xi, qj)∥∥Īiv∥+ eT(xi, qj)Īiv

)
×
(
∥e(xi, qj)∥∥Īiv∥ − eT(xi, qj)Īiv

)
≥ 0, (3.22)

where v ∈ R2N . On the other hand, 2
(
q2zj − ∥e(xi, qj)∥2

)
ĪTi Īi in (3.18) is posi-

tive definite from the assumption that qzj > ∥xi(k)− qj∥ for all k ∈ {0, 1, . . . }.

Thus, the matrix Aj(xi) and the twice differentiation of log d2j (xi) are also pos-

itive definite from (3.17). Therefore, we can confirm that (∂2β̃j(x))/(∂x
2) < 0,

(∂2J̃(x))/(∂x2) > 0, and the gradient system η̇(t) = −∇J̃(η(t)) is stable.

3.5 Numerical Simulation

This section evaluates the proposed method by numerical simulation.

Consider the surveillance system with the proposed controller, where N = 3,

M = 3, and the control gains are given by (2.18) and (2.19) for a0 = 101, c0 =

10−1, av = 10−6, ap = 0.70, cp = 0.16, and b = 10−5. These parameters are

given to satisfy the condition (B3) in Theorem 3.1. The signal transmission models

Dij (i = 1, 2, . . . , N, j = 1, 2, . . . ,M) are given by the radar equation (3.13), where

Γ = 2.0× 1015 and λ = 0.03.

Here, we consider the following two cases of the RCS such that the assumptions

about differentiability and concavity in the corollary 3.1 are satisfied:

1.

σ(xi(k), qj(k)) = 1. (3.23)
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2.

σ(xi(k), qj(k)) =
π

(1 + cos θij(k) + ϵ)2
, (3.24)

where ϵ = 10−5 is given for prevention of division by zero.

The former is the simplest model for which sij(k) is maximized when a Tx i

goes to immediately below the intruder j. The latter corresponds to the model that

the intruder’s surface is regarded as an elliptic paraboloid including the unknown

nonlinear factor of the angles θij(k) (i = 1, 2, . . . , N, j = 1, 2, . . . ,M) [62].

Note that we cannot use the above models (3.23) and (3.24) in Dij for designing

the controller but we can use the instantaneous values sij(k) (i = 1, 2, . . . , N).

Figure 3.5 and 3.6 show the result for Case (i) where the altitudes of the intruders

are 10m. The former illustrates the snapshots of the positions of Tx i (i = 1, 2, . . . , N)

and the intruders in R2. The latter depicts the trajectories of Tx i (i = 1, 2, . . . , N)

and the time evolution of the objective function J . In the figures, the circles, crosses,

and squares indicate Tx i, Rx, and the intruders, respectively. As illustrated in Fig.

3.5,

x1(0) =

[
−20 −100

]T
, (3.25)

x2(0) =

[
−40 −100

]T
, (3.26)

x3(0) =

[
−60 −100

]T
. (3.27)

We see that all Tx are approaching nearby the intruders as time passes. At k = 33333,

Tx vehicles are separately going to each intruder without explicit target allocation.

Finally, all Tx go to almost the same positions as the intruders. Moreover, we find

that the objective function (3.5), which quantifies the total signal weakness, tends to

decrease as time goes on and converges. Note that the minimum value of the objective

function (3.5) is not zero due to the altitudes of the intruders.

Next, Figure 3.7 and 3.8 illustrate the simulation results in the case that N = 3

and M = 2, that is, N > M by the same manner as Figure 3.5 and 3.6. From Figure
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Figure 3.5: Snapshots of Tx, Rx, and intruders for case σ(t) = 1.
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Figure 3.6: Trajectories of Tx and time evolution of J(x(t)) for case σ(t) = 1.
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3.7, we can find that the two vehicles’ positions converge to the intruders’ ones and

the other vehicle (Tx2) stops at a location different from the intruders’ positions.

From Figure 3.8, we see that the positions and the objective function converge.

Then, Figure 3.9 and 3.10 depict the simulation results in the case that N = 2

and M = 3, that is, M > N . From these figures, we can confirm that the vehicles’

positions converge to the target locations for maximizing the received signal levels at

Rx.

On the other hand, Fig. 3.11 and 3.12 illustrate the simulation result for Case (ii)

in the same manner. Furthermore, Fig. 3.13 shows the time series of the angles θij .

The initial positions of Tx are the same as Case (i). All Tx are approaching nearby

the intruders as Case (i) by k = 16666 in Fig. 3.11. After that, however, they are

moving such that θij becomes 180◦, i.e., Tx, the intruder, and Rx are lined up in a

straight line as illustrated in Fig. 3.11 and Fig. 3.13 without information about the

RCS function (3.24). Also, in this case, the objective function (3.5) converges, from

which an optimal formation is achieved by the proposed method.

Finally, we give two remarks. First, the performance of the existing methods

[26,27,30–33] with transmission antennas fixed on the ground corresponds to J(0) in

Figures 3.6 and 3.12, which proves that the proposed method has higher performance

than the existing methods. Second, the simulation result is expected to be consistent

with the real-world performance because

• our method is constructed under the assumption that sij , which is difficult to

model, is almost unknown,

• the control gain a(k) decreases as k goes on, which may prevent from a kind of

instability.

3.6 Conclusion

We have proposed a new broadcast control for the radar surveillance system which is

composed of the base station and vehicles with the receiving antenna. The proposed
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47



Figure 3.8: Trajectories of Tx and time evolution of J(x(t)) for case σ(t) = 1 and N > M .
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Figure 3.9: Snapshots of Tx, Rx, and intruders for case σ(t) = 1 and M > N .
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Figure 3.10: Trajectories of Tx and time evolution of J(x(t)) for case σ(t) = 1 andM > N .
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Figure 3.12: Trajectories of Tx and time evolution of J(x(t)) for case that σ(t) is equation

(3.24).
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Figure 3.13: Time evolution of angles θij .

control algorithm guides the vehicles to a locally optimal formation which maximizes

the signal levels received by the base station. Although the locally optimal formation

differs depending on the RCS characteristic of the intruders, the vehicles can arrive at

the formation shape without using the model of signal transmission. The effectiveness

of the proposed control has been verified by the numerical experiments.
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Chapter 4

Broadcast Control for

Double-integrator Vehicles

4.1 Introduction

We showed the broadcast control for the radar surveillance system in the case that the

vehicle dynamics is omni-directional in Chapter 3. However, it was assumed that the

dynamics of the vehicle was the single-integrator system with the velocity input. On

the other hand, there also exits the vehicle dynamics which is modeled as the multi-

integrator system [63,64]. Thus, we also consider the case that the vehicle dynamics is

the double-integrator system. In the broadcast control, the equation (2.11) must hold

for the convergence. Therefore, the previous works [55,56] about the broadcast control

can not be applied to the double integrator because the overall system is different to

the equation (2.11) due to the existence of the vehicle velocity as proven in [57]. Thus,

we propose the new broadcast control algorithm for the double-integrator system

in the chapter [57]. Especially, we propose the four-step switching control law for

cancelling the effect of the velocity and satisfying the equation equivalent to (2.11).

By utilizing the result of Chapter 3, we can expand the algorithm for position control

54



.Ü 2Ü

Local Controller Dynamics

å G
QÜ G

TÜ G

T
Ü

5
G á T

Ü

6
G á å á T

Ü

á?5
G

Figure 4.1: Block diagram of vehicle.

to one for signal level maximization.

4.2 Problem Formulation

In the chapter, we consider the vehicle system illustrated in Figure 4.1. In the figure,

x
(j)
i (k) ∈ R2, j = 1, 2, . . . , n − 1 is the j th derivative of xi(k). The states corre-

sponding to the difference of the vehicle position with time such as velocity x
(1)
i (k)

and acceleration x
(2)
i (k) can be measured by the sensor mounted in the vehicle (e.g.,

Inertial Measurement Unit (IMU)). Although x
(j)
i (k), j = 1, 2, . . . , n includes the mea-

surement error in the real world, we assume that the actual value can be measured

for simplicity. On the other hand, the position of the vehicle cannot be measured in

the vehicle. In the research, we assume that the dynamics is the double-integrator,

that is, n = 2.

Let the vehicle dynamics Pi, i = 1, 2, . . . , N be modeled as

Pi : zi(k + 1) = f(zi(k), ui(k)), i = 1, 2, . . . , N (4.1)

where

zi(k) =

 xi(k)

x
(1)
i (k)

 , (4.2)

the function f means the discrete time double-integrator, and

f(zi(k), ui(k)) =

 I2 τI2

02×2 I2

 zi(k) +

 1
2τ

2I2

τI2

ui(k), i = 1, 2, . . . , N (4.3)
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and τ ∈ R+ is the sampling period. In the model, we can regard the control input

ui(k) as the acceleration of the vehicle. The equations (4.1) and (4.3) are derived by

ZOH for the continuous double-integrator system with τ .

The local controller Li, i = 1, 2, . . . , N outputs the control input ui(k) as

Li : ui(k) = h(ν(k), ν(k − 1), . . . , ν(0), x̂i(k)), i = 1, 2, . . . , N. (4.4)

Additionally, for the description of the overall system, we introduce the symbol x(j) ∈

R2N as

x(j) =



x
(j)
1

x
(j)
2

...

x
(j)
N


. (4.5)

The global controller is the same as the conventional one (2.4).

Problem 4.1. We consider the system composed of the equations (4.1), (4.4)，and

(2.4). We assume that all vehicles stop at the initial time, that is, x
(1)
i (0) = 0, i =

1, 2, . . . , N . For the system, when any objective function J : R2N → R0+ is given,

derive the function of the local controller h which satisfies that

lim
k→∞

J(x(k)) = min
x∈R2N

J(x), (4.6)

lim
k→∞

x(1)(k) = 0. (4.7)

The equation (4.3) can be rewritten as

Pi :


xi(k + 1) = xi(k) + τx

(1)
i (k) + τ2

2 ui(k),

x
(1)
i (k + 1) = x

(1)
i (k) + τui(k)

(4.8)

and the overall system is modeled as

P :


x(k + 1) = x(k) + τx(1)(k) + τ2

2 u(k),

x(1)(k + 1) = x(1)(k) + τu(k).

(4.9)
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4.3 Ineffectiveness of Two-step Broadcast Control

4.3.1 Algorithm

In the section, we explain the two-step broadcast control approach same as the conven-

tional algorithm (2.6), and show the problem 4.1 can not be solved by the approach.

We derive the two-step local controller

u(k) =


ūe(k), if k is even,

ūo(k), if k is odd

(4.10)

satisfying with the differential equation same as (2.11) for the system (4.9), where

ūe(k) ∈ R2N and ūo(k) ∈ R2N mean the control inputs of all vehicles for the case

that k is even and odd (k = 0, 2, 4, . . . and k = 1, 3, 5, . . . ), respectively.

In the former case, the equation same as (2.10) should hold for the system (4.9).

Thus, we have

c(k)∆(k) = τx(1)(k) +
τ2

2
ūe(k), k = 0, 2, 4, . . . , (4.11)

that is,

ūe(k) =
2

τ2
c(k)∆(k)− 2

τ
x(1)(k). (4.12)

Next, from the equation (4.9), the state transition from k to k + 2 is given by
x(k + 2) = x(k) + 2τx(1)(k) + 3τ2

2 u(k) + τ2

2 u(k + 1),

x(1)(k + 2) = x(1)(k) + τu(k) + τu(k + 1).

(4.13)

By substituting the equation (4.12) into u(k) in the equation (4.13), we have

x(k + 2) = x(k) + 3c(k)∆(k)− τx(1)(k) +
τ2

2
ūo(k + 1), k = 0, 2, 4, . . . . (4.14)

The equation should correspond with the differential equation (2.11), then

−a(k)d(k, k + 1) = 3c(k)∆(k)− τx(1)(k) +
τ2

2
ūo(k + 1), k = 0, 2, 4, . . . . (4.15)

Therefore, the control input in the case k = 1, 3, 5, . . . is given by

ūo(k) = − 6

τ2
c(k − 1)∆(k − 1)− 2

τ2
a(k − 1)d(k − 1, k) +

2

τ
x(1)(k − 1). (4.16)
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4.3.2 Convergence Analysis

However, we prove that Problem 4.1 can not be solved by the two-step local controller

(4.10), (4.12), and (4.16).

Lemma 4.1. We consider the system composed of the equations (4.3), (4.10), (4.12),

(4.16), and (2.4). We assume that the objective function J is differentiable and has

some local optimums and there exists x∗ ∈ R2N satisfying with ∇J(x∗) = 02N×1.

Furthermore, we also assume that J satisfies the condition (B1), a(k) and c(k) in

(4.12) and (4.16) satisfy the condition (B3), and ∆(k) satisfies the condition (B4) in

Lemma 2.1. Then, there exists an objective function J such that

lim
k→∞

x(1)(k) ̸= 0. (4.17)

Proof. From the equations (4.3), (4.10), and x(1)(0) = 0, the velocity at k = 0, 2, 4, . . .

can be written as

x(1)(k) = −2

τ

∑
l∈{0,2,...,k−2}

a(l)d(l, l + 1)− 2

τ

∑
l∈{0,2,...,k−2}

c(l)∆(l). (4.18)

Next, from the equation (2.11), we have

∑
l∈{0,2,...,k−2}

a(l)d(l, l + 1) = −x(k) + x(0). (4.19)

By substituting the equation into (4.18), we have

x(1)(k) =
2

τ
(x(k)− x(0))− 2

τ

∑
l∈{0,2,...,k−2}

c(l)∆(l). (4.20)

In the equation (4.20), the position time series x(0), x(2), x(4), . . . , converges to x∗

since the equation (2.11) holds by the local controller (4.10). Thus, velocity time

series x(1)(0), x(1)(2), x(1)(4), . . . converges to

x∗(1)
e =

2

τ
(x∗ − x(0))− 2

τ
δ, (4.21)

δ = c(0)∆(0) + c(2)∆(2) + c(4)∆(4) + · · · . (4.22)

Note that δ < ∞ holds from the conditions (B3) and (B4) in Lemma 2.1.
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On the other hand, from the equations (4.3) and (4.10), and (4.12), we have

x(1)(k + 1) = −x(1)(k) +
2

τ
c(k)∆(k). (4.23)

Then, from the conditions (B3) and (B4), the time series x(1)(1), x(1)(3), x(1)(5), . . .

converges to

x∗(1)
o = −x∗(1)

e . (4.24)

For the objective function J with x∗ satisfying

x∗ ̸= x(0) + δ, (4.25)

from the equations (4.21) and (4.24), we have

x∗(1)
e ̸= 0, x∗(1)

o ̸= 0 (4.26)

and

lim
k→∞

x(1)(k) ̸= 0. (4.27)

Note that from the equation (4.25), Problem 4.1 can be solved only if the following

special condition about the reference formation holds:

x∗ = x(0) + δ. (4.28)

We can find the condition rarely holds.

4.3.3 Numerical Simulation

We show the numerical simulation results for evaluating our claim in Lemma 4.1. We

set the same conditions as the case of simulation with the conventional local controller

in Section 2.5.1. Additionally, the sampling period is given by τ = 10−1.

Figure 4.2 and 4.3 illustrate the simulation result. These figures are illustrated in

the same manner as Figure 2.4 and 2.5.
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From Figure 4.2, we can find that vehicle positions converge to the reference

formation at k = 4000 and equilibrate at the same place after that. Additionally, from

Figure 4.3, we see that the objective function converges to 0 and positions converge

to 6 or −6 at k = 5000. These results are the same as Figure 2.4 and correspond to

the equation (4.6).

However, from the result of the velocity time series illustrated at the bottom of

Figure 4.3, we can confirm that the velocities do not converge and vibrate as the

equation (4.24) in Lemma 4.1.

From these results, we can say that the two-step local controller composed of

(4.10), (4.12), and (4.16) is not a solution for Problem 4.1.

4.4 Proposed Four-step Broadcast Control

4.4.1 Algorithm

In Section 4.3 and 4.3.3, we showed the ineffectiveness of the two-step local controller.

Thus, we derive the proposed local controller for solving Problem 4.1. It is the weak

point of the two-step local controller (4.10), (4.12), and (4.16) that the vehicles’

velocities are not explicitly considered and controlled.

Therefore, we develop the local controller by which not only positions but also

velocities are controlled. So, we propose to introduce additional time for controlling

the velocities. Figure 4.4 and 4.5 illustrate the switching timing of the conventional

two-step local controller and the proposed four-step one. By the proposed switching

timing shown in Figure 4.5, the following transitions are realized in k = 0, 4, 8, . . . :


x(k + 2) = x(k) + c(k)∆(k),

x(k + 4) = x(k + 2)− c(k)∆(k)− a(k)d(k, k + 2).

(4.29a)

(4.29b)

Thus, we derive the local controller satisfying that the total displacement from k to

k+2 is equal to c(k)∆(k). We can find that the number of unknown parameters (the

elements of u(k) and u(k+1)) is 4N , whereas the number of equations (the degree of
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Figure 4.2: Positions transition of vehicles with double-integrator dynamics and two-step

local controller in two-dimensional plane for objective function (2.20).
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Figure 4.3: Time series of the objective function (2.20), vehicles positions, and velocities

by two-step local controller.
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Figure 4.4: Switching timing of conventional broadcast control.
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Figure 4.5: Switching timing of proposed four-step broadcast control.

c(k)∆(k)) is 2N , which means the degree of freedom for u(k) and u(k + 1) emerges.

Then, we develop the local controller Li, i = 1, 2, . . . , N by which x(1)(k+2) = 02N×1

in the timing from k to k+2. On the other hand, about the timing from k+2 to k+4,

we develop the local controller in the same manner as the case of the timing from k

to k + 2, that is, we develop the local controller by which the total displacement is

equal to −c(k)∆(k)− a(k)d(k, k + 2) and x(1)(k + 4) = 02N×1.

We propose the function of the local controller h in the equation (4.4) as

h(ν(k), ν(k − 1), . . . , ν(0), x̂i(k)) =



c(k)
τ2 ∆i(k)− 2

τ x
(1)
i (k) if k ∈ N0,

u2
i (ν(k), ν(k − 2), x

(1)
i (k)) if k ∈ N2,

−ui(k − 1) if k ∈ N13,

(4.30)

where

u2
i (ν(k), ν(k − 2), x

(1)
i (k)) = −c(k − 2)

τ2
∆i(k − 2)− 2

τ
x
(1)
i (k)

−a(k − 2)

τ2
ν(k)− ν(k − 2)

c(k − 2)
∆−1

i (k − 2) (4.31)

and N0 = {0, 4, 8, . . . , }, N2 = {2, 6, 10, . . . , }, N13 = {1, 3, 5, . . . , }.
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4.4.2 Convergence Analysis

We prove the convergence of the proposed four-step local controller (4.4) and (4.30).

Theorem 4.1. We consider the system composed of the equations (4.3), (4.4), and,

(2.4). When the function of the local controller h is given by the equation (4.30),

the equation (4.29) holds. Additionally, we assume that the objective function J

is differentiable and there exits x∗ ∈ R2N satisfying ∇J(x∗) = 02N×1. When the

conditions (B1), (B3), and (B4) hold for J , a(k), and c(k) and the following other

conditions

(B2’) x∗ is asymptotically stable equilibrium of the gradient system η̇(t) = −∇J(η(t))

in the Lyapunov sense,

(B5’) E[J(x(k) + c(k)∆(k))2] is bounded for all k ∈ N0,

(B6’) For a compact set S ⊆ R2N such that η̇(t) = −∇J(η(t)) with x(0) ∈ S results

in limk→∞ x(∞) = x∗, x(k) ∈ S occurs infinitely often for almost all sample

points of ∆i(k) (i = 1, 2, . . . , N, k = 0, 1, . . . ),

(B7’) supk∈N0
∥x(k)∥ < ∞, w.p.1.,

hold,

lim
k→∞

x(k) = x∗, w.p.1, (4.32)

lim
k→∞

x(1)(k) = 0. (4.33)

Proof. By replacing k with k + 2 in the equation (4.13), we have
x(k + 4) = x(k + 2) + 2τx(1)(k + 2) + 3τ2

2 u(k + 2) + τ2

2 u(k + 3),

x(1)(k + 4) = x(1)(k + 2) + τu(k + 2) + τu(k + 3).

(4.34)

First, we prove that the equation (4.29) holds. When k ∈ N0, from the equations

(4.4) and (4.30), we have

u(k) =
1

τ2
c(k)∆(k)− 2

τ
x(1)(k), (4.35)

u(k + 1) = −u(k). (4.36)
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By substituting the above equations into the equation (4.13), we can find that the

equations (4.29a) and

x(1)(k + 2) = x(1)(k) (4.37)

hold. On the other hand, since k + 2 ∈ N2, from the equations (4.4), (4.30), and

(4.31), we have

u(k + 2) = −c(k)

τ2
∆(k)− 2

τ
x(1)(k + 2)− a(k)

τ2
ν(k + 2)− ν(k)

c(k)
∆−1(k),(4.38)

u(k + 3) = −u(k + 2). (4.39)

By substituting the above equations into the equation (4.34), we can also find that

the equations (4.29b) and

x(1)(k + 4) = x(1)(k + 2). (4.40)

Thus, the equation (4.29) holds. Next, we also prove the latter proposition.

From the equations (4.37), (4.40), and x(1)(0) = 02N×1, we have

x(1)(0) = x(1)(2) = x(1)(4) = · · · = 02N×1. (4.41)

Then, we consider different three cases about k.

(i) k ∈ N0

By substituting the equations (2.4) and (4.29a) into (4.29b), the difference equa-

tion from k to k + 4 can be written as

x(k + 4) = x(k)− a(k)
J(x(k) + c(k)∆(k))− J(x(k))

c(k)
∆(−1)(k). (4.42)

The system corresponds to the equation (2.15) in which k+1 is replaced with k+4 in

Lemma 2.1. Therefore, when the conditions corresponding to (B1) to (B7) in Lemma

2.1, that is, (B1), (B3), (B4), (B2’), (B5’), (B6’), and (B7’), hold, the sequence

x(0), x(4), x(8), . . . converges to x∗ with probability 1 from Lemma 2.1.

(ii) k ∈ N2

Since k − 2 ∈ N0 in the case that k ∈ N2, from the equation (4.29a),

x(k)− x(k − 2) = c(k − 2)∆(k − 2) (4.43)
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holds. Thus, when the conditions (B3) and (B4) hold, the sequence ∥x(2)−x(0)∥, ∥x(6)−

x(4)∥, ∥x(10) − x(8)∥, . . . converges to 0. From the fact and the result of the case

(i), the sequence x(2), x(6), x(10), . . . converges to x∗ with probability 1.

(iii) k ∈ N13

From the equation (4.9),

x(k) = x(k − 1) + τx(1)(k − 1) +
τ2

2
u(k − 1) (4.44)

holds. We confirm convergence about each term on the right side of the above equa-

tion.

Since k − 1 ∈ N0 or k − 1 ∈ N2, from the result of the case (i) and (ii), x(k − 1)

converges to x∗ with probability 1. About the second term, from the equation (4.41),

x(1)(k − 1) = 02N×1. From the equations (4.30) and (4.31), we have

u(k − 1) =
c(k − 1)

τ2
∆i(k − 1)− 2

τ
x
(1)
i (k − 1), k − 1 ∈ N0 (4.45)

and

u(k − 1) = −c(k − 3)

τ2
∆i(k − 3)− 2

τ
x
(1)
i (k − 1)

−a(k − 3)

τ2
ν(k − 1)− ν(k − 3)

c(k − 3)
∆−1

i (k − 3), k − 1 ∈ N2. (4.46)

Thus, when the conditions (B3) and (B4) hold, from the equation (4.41), u(k −

1) converges to 02N×1. From these facts and the equation (4.44), the sequence

x(1), x(3), x(5), . . . converges to x∗ with probability 1.

On the other hand, about the velocity, from the equation (4.9),

x(1)(k) = x(1)(k − 1) + τu(k − 1) (4.47)

holds. From the equation (4.41) and the fact that u(k−1) converges to 02N×1, x
(1)(k)

also converges to 02N×1.

From the equation (4.41) and the cases (i), (ii), and (iii), the equation (4.32) and

(4.33) hold.
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4.4.3 Numerical Simulation

We show the numerical simulation results for evaluating the effectiveness of our pro-

posed algorithm (4.30) and the results of the convergence analysis in Theorem 4.1.

We set the same conditions in Section 2.5.1, 2.5.2 and 4.3.3.

Formation Control

Figure 4.6 and 4.7 illustrate the simulation result for the objective function of forma-

tion control (2.20). These figures are illustrated in the same manners as Figure 2.4

and 2.5.

From Figure 4.6, we see that the vehicles’ positions converge to the reference

formation like Figure 2.4 and 4.2. On the other hand, in Figure 4.7, the time series

of the vehicles’ velocities converge as well as the objective function and the vehicles’

positions unlike Figure 4.3. From these results, we can confirm that both positions

and velocities can be controlled and the effectiveness of the proposed four-step local

controller (4.30). However, we also see that the elapsed time for convergence in Figure

4.7 is twice as the case in Figure 2.5 due to increasing the number of steps in the local

controller.

Coverage Control

Figure 4.8 and 4.9 illustrate the simulation result for the objective function corre-

sponding to coverage control (2.22). These figures are illustrated in the same manners

as Figure 2.7 and 2.8.

From Figure 4.8, we see that the four vehicles converge to the positions for which

the areas of Voronoi regions are almost equal in the bounded area like Figure 2.7.

From Figure 4.9, we can find that the time series of the vehicles’ velocities converge

to 0 like Figure 4.6. From these results, we can find that the proposed four-step

local controller is also effective for the objective function (2.22). The elapsed time for

convergence is also twice as the case in Figure 2.8 like Section 4.4.3.
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Radar Surveillance System

Finally, we show the simulation results for the case that the vehicle dynamics is the

double-integrator system in the radar surveillance system in Capter 3. In this case,

the objective function is the equations (3.4) and (3.10) and the local controller is given

by (4.4) and (4.30). The parameters are almost same as Section 3.5 and a0 = 2.0×10

and c0 = 1.0 × 10−4. Figure 4.10 and 4.11 show the result by the same manner of

Figure 3.5 and 3.6. We can find that the almost same result is obtained as in the case

of Figure 3.5 and 3.6. Additionally, from Figure 4.11, the velocities of the vehicles

also converge.

4.5 Conclusion

In the chapter, we have proposed a new broadcast control algorithm for the vehicle

with the dynamics of the double-integrator system. In the double-integrator system,

the control input affects not only the vehicle position but also the velocity. Neverthe-

less, we have shown that the local minimization is achieved for the objective function

by the proposed control. The effectiveness of the proposed control has been verified

by the numerical simulations. In the future, we will expand the control law to the case

of the multi-integrator system. Additionally, for realizing the proposed algorithm, the

velocity sensor or the so-called “soft-sensor” such as observer in the control literature

is needed, which has the measurement or estimation error and results in the increasing

complexity of the control system. Therefore, we will also study the simple broadcast

control algorithm for the system with such noise.
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Figure 4.6: Positions transition of vehicles with double-integrator dynamics and four-step

local controller in two-dimensional plane for objective function (2.20).
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Figure 4.7: Time series of objective function (2.20), vehicles positions, and velocities by

four-step local controller.
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Figure 4.8: Positions transition of vehicles with double-integrator dynamics and four-step

local controller in two-dimensional plane for objective function (2.22).
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Figure 4.9: Time series of objective function (2.22), vehicles positions, and velocities by

four-step local controller.
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system.
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Chapter 5

Conclusion of Dissertation

This dissertation was concerned with the broadcast control, which is one of the new

cooperative controls and is composed of the base station and multi-vehicle. Espe-

cially, we studied the new broadcast control for the anti-drone systems such as radar

surveillance system and the case that the vehicle dynamics is the double-integrator

system.

In the conventional radar surveillance system, the sensors for drone detection were

mounted on the ground or the buildings. This seems to cause the target loss due to

the weakness of the signal level and/or occlusion. Thus, we assumed the system

composed of the base station with the receiving antenna and multi-vehicle with the

transmission antenna, which meant that the sensors could move and the system had

the capability of making the formation for drone detection. However, the radio wave

propagation model was unknown due to the radar cross section of the drone and it

was difficult to develop the cooperative control for the anti-drone system. On the

other hand, the broadcast control did not need information about the system model

and we focused on the control. In the conventional one, however, it was assumed that

the base station measured the degree of achievement about the vehicles’ positions

and the vehicle dynamics was the single-integrator system. Then, we proposed two

algorithms for the broadcast control as follows:
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1. An algorithm for maximizing the degree of achievement about not the positions

but the received signal level at the base station; we assumed that the vehicles

had the transmission antenna and the reflected signals from the illegal drones

were received at the base station.

2. An algorithm for the case that the vehicle dynamics is the double-integrator

system.

In the future, we will also consider the other vehicle dynamics like the two-wheel

vehicle system with the wheel-base parameter. Finally, we will evaluate the effective-

ness of the experience using the actual vehicles and the base station.
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Appendix A

Properties About Convexity

and Concavity

We show the properties of convexity and concavity in the following lemma.

Lemma A.1. Convexity and concavity have the following properties [65].

(C1) Nonnegative weighted sums operation preserves convexity and concavity, that

is, if the functions wi (i = 1, 2, . . . , N) are convex (or concave),

w = α1w1 + α2w2 + · · ·αMwN (A.1)

is also convex (or concave) for the nonnegative coefficients αi (i = 1, 2, . . . , N).

(C2) If the function w is concave and positive, then logw(k) is concave.
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