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Ⅰ.  Introduction

Predicting recessions is a challenging task 
due to their diverse nature and causes. For 
example, the most recent recession in the United 
States occurred in 2020, triggered by the COVID-19 
pandemic. The Great Recession, spanning from 
2007 to 2009, resulted from the subprime mortgage 
crisis1）. Furthermore, the economic downturn of 
2001 was primarily due to the bursting of the ”dot-
com bubble” and the “9/11” terrorist attacks. This 
study successfully uses different machine learning 
algorithms to predict the three recessions 
mentioned above. The MIxed DAta Sampling 

（MIDAS） approach is also used to maximize the 
utilization of high-frequency financial and economic 
data while minimizing information loss.

A common approach to predict recessions is 
to utilize the turning point dates determined by the 
Business Cycle Dating Committee of the National 
Bureau of Economic Research （NBER） in the 
United States. This paper also follows this approach. 
Researchers have used a variety of variables to 
model and forecast U.S. economic conditions. 
Among them, the slope of the U.S. yield curve has 
received the most attention. The early study of 
Estrella and Mishkin （1996） has already identified 
that the yield curve, especially the spread between 
10-year and 3-month Treasury bills, is a valuable 
forecasting tool for recession prediction. Moreover, 
Estrella and Mishkin （1998） added stock indices, 
monetary aggregates, macro indicators, and leading 
indicator variables to the input variables and found 
that stock prices and some well-known 
macroeconomic indicators are helpful at one- to 
three-quarter horizons. The study by Estrella et al. 

（2003） used binary models that predict either 
recessions or inflationary pressures and found that 
the prediction of recessions is stable over their 
entire sample period in Germany and the United 
States. Moneta （2005） confirmed the importance of 
using spreads as predictors of recessions for the 
euro area and found that the yield spread between 
the ten-year government bond rate and the three-
month interbank rate outperformed all other 

spreads in predicting recessions in the euro area. 
Drechsel and Scheufele （2012） focused on single 
and pooled leading indicator models to analyze the 
short-term forecasting performance of leading 
indicators for industrial production and found that 
pooling can substantially improve the reliability of 
leading indicator forecasts.

With the development of machine learning 
technology, more and more machine learning 
algorithms have been applied to the field of 
economics. Maehashi and Shintani （2020） used 
factor models and different machine learning 
algorithms to predict seven Japanese 
macroeconomic variables and found that machine 
learning models have better performance than 
autoregression models. In the field of recession 
prediction, many scholars （Coulombe et al., 2021; 
Gogas et al., 2015; Nyman and Ormerod, 2017; 
Goulet Coulombe et al., 2022; Vrontos et al., 2021） 
have employed machine learning techniques to 
accurately forecast economic recessions. These 
approaches have demonstrated notable 
performance in their predictive capabilities. As 
summarized by Gogas and Papadimitriou （2021）, 
recent machine learning （ML） applications in 
economics, including business cycles and recession 
forecasting, seem to be very successful compared 
to traditional empirical models. Gogas et al. （2015） 
provided the first empirical study of the relationship 
between the yield curve and the real output of an 
economy using the Support Vector Machine 
classifier, which outperforms the Logit and Probit 
models regarding overall predictive accuracy. 
Berge （2015） evaluated the usefulness of various 
macroeconomic indicators in predicting recessions 
with different forecasting methods and revealed 
that the Bayesian model averaging and boosting 
algorithm demonstrate their effectiveness in 
producing probability-based recession forecasts. 
Döpke et al. （2017） used a machine learning 
approach known as Boosted Regression Trees to 
reexamine the usefulness of selected leading 
indicators for predicting recessions. Pierdzioch and 
Gupta （2019） also estimated Boosted Regression 
Trees on a sample of monthly data to shed light on 
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the role of disaggregated uncertainty measures for 
forecasting U.S. recessions.

The study of Vrontos et al. （2021） is the first 
comprehensive, comparative study of machine 
learning techniques in the area of economic 
recession forecasting, which widely uses 
macroeconomic and financial indicators, focusing 
on the use of machine learning techniques to 
predict the probability of U.S. recessions, and 
showing that machine learning models outperform 
traditional econometric methods （Logit/Probit 
model） in recession predicting. However, some of 
these variables, like the yield curve, the stock 
index, and the initial claims, are sampled at a higher 
frequency （daily, weekly） than the recession data 

（monthly）. Typically, high-frequency variables 
are time-aggregated in this situation, which can 
lead to some loss of information. To take advantage 
of high-frequency data, the MIDAS approach 
introduced by Ghysels et al. （2004）, is able to use 
more information with higher flexibility. Ghysels et 
al. （2007） also mentioned that the MIDAS can 
capture the rich dynamics of high-frequency 
processes simply and concisely. Andreou et al. 

（2010） derived the asymptotic properties of the 
MIDAS nonlinear least squares estimator and 
compared it with traditional least squares 
estimators and showed that the traditional least 
squares estimator always has lower efficiency 
compared to the MIDAS least squares estimator. 
Moreover, MIDAS was not only limited to 
regression problems but was also used in 
classification contexts. Audrino et al. （2019） 
incorporated MIDAS into the conventional logit 
model to solve the binary classification problems 
using mixed frequency data and applied the 
MIDAS-Logit model to predict U.S. bank failures. 
Babii et al. （2022） offered a new perspective on the 
high-dimensional time series regression with data 
sampled at mixed frequencies to forecast U.S. GDP. 
Their model combined MIDAS and sparse-group 
LASSO to establish the model and outperformed 
other estimators and provides an example of using 
MIDAS in conjunction with machine learning in 
the field of economics. Galvão and Owyang （2022） 

proposed a MIDAS-Probit model and found that 
the weekly-sampled 10y-3m term spread 
outperformed the monthly-sampled to predict 
NBER recessions. Jiang et al. （2023） also used the 
MIDAS-Logit model in the area of bond ratings.

This paper extends the use of MIDAS to 
various machine-learning algorithms and further 
explores the study of Vrontos et al. （2021）. 
Specifically, inspired by the study of Galvão and 
Owyang （2022）, which used a MIDAS-Probit 
model with a weekly-sampled term spread and 
demonstrated superior performance compared to 
monthly-sampled data, this paper extends the 
application of MIDAS to the field of machine 
learning. Furthermore, following the 
recommendation of Xu et al. （2019）, various 
intelligent learning methods are considered, and 
mixed-frequency analysis methods are applied to 
build richer, effective models for exploring the 
nonlinear patterns contained in mixed-frequency 
data. The choice of algorithms is mainly based on 
Vrontos et al. （2021）, but some proven effective 
algorithms, such as the XGBoost, the Support 
Vector Machines, and the Neural Network, are also 
taken into consideration.

The main contribution of this study is 
improving the model predictability by applying the 
MIDAS approach to machine learning algorithms. 
As mentioned above, the study of Vrontos et al. 

（2021） using machine learning methods 
comprehensively for predicting the recession in 
three different horizons found that the machine 
learning models mostly beat the benchmark models 

（Logit/Probit model）. Compared with it, our 
empirical result shows that applying the MIDAS 
approach together with machine learning methods 
has better performance than the study by Vrontos 
et al. （2021）2） , with accuracy close to 95 percent 
and the AUC metrics3） nearly 95 percent. The 
reason for the better empirical results can be 
explained as follows: Compared with the Vrontos et 
al. （2021） study, the addition of the （Unrestricted-） 
MIDAS （which is short for （U-）MIDAS） method 
allows data to be analyzed at a finer time resolution, 
using the information from high-frequency data 
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while preserving the long-term trends present in 
low-frequency data, which is particularly helpful in 
improving prediction accuracy. As Xu et al. （2019） 
concluded, （U-）MIDAS technique integrates 
variables that are sampled at different frequencies, 
which allows the method to preserve the rich 
information present in high-frequency observations 
while avoiding likely challenges such as information 
loss, measurement inaccuracies, and timing issues 
associated with frequency conversion.

Compared with the Galvão and Owyang 
（2022） study, in which the MIDAS-Probit model is 
employed for 1-year ahead recession prediction, 
this study further improves predictive performance 
by introducing machine learning algorithms. The 
result of Galvão and Owyang （2022） shows that 
their best MIDAS-Probit model has an AUC of 
about 0.8854） , but most of the AUC of MIDAS-ML 
models in this paper is around 0.95, which is much 
higher.

The remainder parts of this article are 
divided into the following sections: Section 2 
elaborates on the methodology employed in this 
study. Section 3 introduces the research data used 
in the study, along with the design of the empirical 
analysis. Section 4 presents the results of the 
empirical analysis. Finally, section 5 summarizes 
the research conclusions.

Ⅱ.  Methodology

This section provides an overview of 
methodologies used in the models employed in 
predicting recessions in the United States. The （U-
）MIDAS approach is utilized to treat variables, and 
the （U-）MIDAS-Probit and MIDAS-Logit models 

are used as benchmarks to compare performance 
with other U-MIDAS-ML5） models.

1.  MIDAS
The MIDAS method is commonly used to 

forecast low-frequency data using high-frequency 
data. Following Xu et al. （2019）, I also adopt （U-）
MIDAS and combine it with different machine 
learning algorithms. The MIDAS approach consists 
of two steps. The first step is frequency alignment, 
and the second step is parameter restricting   6）. 
Compared with the MIDAS, the U-MIDAS 
approach consists only of the first step of frequency 
alignment but omits the second step of parameter 
restricting. U-MIDAS can take full advantage of 
high-frequency data but the data dimension is not 
restricted.

First, the frequency alignment is applied on 
each daily and weekly predictor d

ô
［i］, w

ô'
［i］, to obtain 

d［i］
t−l/m and w［i］

t−l/m for l ＝ 0, 1, · · · , m − 1, where i 
denotes the i − th input variable, ô and ô' denote 
the length of the daily and weekly data respectively, 
m denotes the mismatched frequency7）, and t 
denotes the length of the low-frequency data.

Specifically, this step converts each high-
frequency data variable from a matrix format of  

（ô × 1） to a matrix format of （t × m）. It is perhaps 
easier to introduce matrix notation to provide a 
clearer perspective. We define R ≡ ［D, W, M］ as all 
raw independent variables, which consist of daily 
data D, weekly data W , and monthly data M, 
where D ≡ ［d［1］, d［2］, · · · , d［n］］ as a （ô × n） matrix 
that groups all the d vectors together, and W ≡ 

［w［1］, w［2］, · · · , w［n'     ］］ as a （ô' × n' ） matrix that 
groups all the w vectors together. Using d［i］ as an 
example, the frequency alignment looks like this:
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In Equation 1, each daily data d  ［i］
1  , d  ［i］

2  , . . . ,  
d  ［i］

ô−1, d  ［i］
ô   is re-indexed into d  ［i］

1
m
, d  ［i］

2
m
, . . . , d  ［i］

t－ 1
m
, d  ［i］

t  , 
and then be aligned into the matrix form with t 
rows and m columns. In this matrix, the first 
column is the value at the end of each month, and 
the other columns include information about daily 
lagged value. As mentioned in footnote 3, m equals 
28 for aligning monthly and daily data. In this 
study, this transformation is performed to align the 
frequency to monthly for each vector w and d with 
a higher frequency of weekly or daily.

The aligned data can then take lag and be 
used as the input variables directly, that is the 
U-MIDAS method. After the frequency alignment 
process, the dimension of data and the number of 
parameters are boosted to a huge number8）. Higher 
dimensions can provide a richer and more 
granulated feature representation, which helps to 
capture the complex patterns and relationships in 
the data more effectively, thereby improving the 
performance of the model. However, it also 
increases computational complexity, significantly 
adds to the computer’s runtime, and may also 
increase the risk of overfitting. As a result, the 
second step of parameter constraint might be 
necessary. In this step, for each matrix d［i］ 

mentioned above, a multiplication is performed, 
followed by a transformation into a single-column 
matrix achieved by the weighted multiplication,

　　　　　　x［i］＝∑
l＝0

L［i］

d  ［i］
t－ l

28
  ù［i］（ä ; l ）� ⑵

For weekly data, it is the same. In this case, each of 
the matrix w［i］ generated in the frequency 
alignment step is also transformed to x［i］

　　　　　　x［i］＝∑
l＝0

L［i］

 ù［i］
t－ l

4
  ù［i］（ä ; l ）� ⑶

In this study, the two parameters exponential 
Almon lag polynomial,

　　　ù［i］（ä ; l ）＝ exp（ä1l＋ä2l  2）
∑l＝0

m－1
 exp（ä1l＋ä2l  2）

� ⑷

is adopted as weighted multiplication, where ä1 and 
ä2 are parameters, and l denotes the lag of high 
frequency data, l is from 0 to m−1.

The dimension restriction process can also 
be shown in matrix form. Define ［x ［i］

1 , x ［i］
2 , . . . , 

x ［i］
t  ］' ≡ x［i］ mentioned in Equation 2.

d1

d2

d3
…

…
…

dô−1

dô

d 1
28

d 2
28

d 3
28

…
…

…
dt− 1

28

dt

Re−Index Alighment

d1

d2

…

dt－1

dt

…

…

…

…

…

d 27
28

d1 27
28

d（t－2）27
28

d（t－1）27
28

d 1
28

d1 1
28

…

d（t－2）1
28

d（t－2）1
28

� ⑴
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This study selects the optimal ä using a valid 
dataset, which will be mentioned below in the 
empirical design part. After this parameter 
restriction operation, each variable w, d is converted 
back into a single-column matrix x again. Then the 
h-lag term9） will be taken and the X ≡ ［x［1］

t−h , x［2］
t−h , 

x［n］
t−h］ will be used as input variable to the machine 

learning. This is the whole process of the data pre-

processing in this study.
To offer a clear representation, the entire 

process is depicted in Figure 1. Specifically, in 
Figure 1 （a）, the MIDAS model is illustrated, while 
in Figure 1 （b）, the U-MIDAS model is depicted. 
The variables w, d, and m represent daily, weekly, 
and monthly data, respectively, and i denotes the 
i-th input variable.

ù1

ù2

…

ù27

ù28

x1

x2

…

xt－1

xt

d1

d2

…
dt－1

dt

…

…

…

…

…

d 27
28

d1 27
28

d（t－2）27
28

d（t－1）27
28

d 1
28

d1 1
28

…

d（t－2）1
28

d（t－2）1
28

� ⑸×� ＝

（a） Data Pre-process Progress of MIDAS Model

This figure illustrates the whole process of the MIDAS. 
Circles on the left side are different variables with different 
frequencies, which are reshaped into a matrix with the 
same length of monthly data, and finally transformed back 
to vectors again by multiplying the almon weight function. 
After that, these transformed vectors will take lag and 
become input variables for machine learning algorithms or 
benchmark models.

This figure illustrates the whole process of the U-MIDAS. 
Circles on the left side are different variables with different 
frequencies, which are reshaped into a matrix with the 
same length of monthly data and directly taken lag, to 
become input variables for machine learning algorithms or 
benchmark models.

（b） Data Pre-process Progress of U-MIDAS Model

Figure 1: Comparison of MIDAS and U-MIDAS Models
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2.  Benchmark
（1） MIDAS Logit Model

The MIDAS Logit model is applied as a 
benchmark to evaluate the performance of machine 
learning methods, following the study of Vrontos et 
al. （2021）, and Audrino et al. （2019）. The estimation 
equation is:

　　　　ln  pt

1−pt
 ＝X t   â＝â0＋∑

i＝1

N

 âi    x
［i］

t  ,� ⑹

where pt is the probability of recession during the 
time t, Xt is the vector including all input variables, 
x［1］, x［2］, . . . , x［N］, generated by MIDAS approach 
mentioned in Section 2.1 in the time t, and â is the 
parameter vector to be estimated. The left-hand 
side is the log odds of a recession that happens at 
time t. To calculate the probability, the equation 
can be transformed to

　　　　　pt ＝
exp  â0＋∑N

i＝1 âi    x
［i］

t 

1＋exp  â0＋∑N
i＝1 âi    x

［i］
t 

� ⑺

with the loss function of

　L＝∑
t＝1

T

 （−yt log （pt（Xt））−（1−yt）log（1−pt （Xt）））�⑻

where yt is a binary variable that simply indicates 
the occurrence （ yt＝1） or absence （ yt＝0） of a 

recession at the month t. In this part, the stochastic 
average gradient descent method is used to 
minimize the loss function.

（2） MIDAS Probit Model
The MIDAS Probit Model is another 

benchmark model, with the estimation equation 
defined as

　　　　　　　　　pt＝Ö（Xt      â）� ⑼

where Ö is the cumulative normal distribution 
function, â is a vector of coefficients, and Xt is a 
vector including the MIDAS transformed 
independent variables. The Probit model is also 
estimated by maximum likelihood, with the 
likelihood function defined as

　　　　L＝П
{  yt＝1}

Ö（Xt â）П
{  yt＝0 }

［1−Ö（Xt â）］.� ⑽

3.  Machine Learning Methods
The study employs twelve machine learning 

algorithms, which are briefly described in Table 1. 
These algorithms can be categorized into four 
types based on their underlying principles. These 
algorithms utilize data pre-processed using the 
U-MIDAS approach as input variables to establish 
the U-MIDAS-ML10） models. The specific details of 
the algorithms will be provided in the Appendix.

Table 1: The list of machine learning algorithms

Type Algorithm Description

Penalized Logit 
Models

Lasso
Ridge
Elastic Net

Logistic regression with L1 regularization
Logistic regression with L2 regularization
Logistic regression with a combination of L1 and L2 regularization

Bayes Models
LDA
Gaussian NB
Bernoulli NB

Linear Discriminant Analysis, a classifier with a linear decision boundary
Naive Bayes algorithm assuming Gaussian distribution
Naive Bayes algorithm assuming Bernoulli distribution

Tree-based Models

Classification 
Tree
Random Forest
XGBoost

An algorithm using tree-based structures to partition samples
Ensemble of decision trees using random feature and sample selection
eXtreme Gradient Boosting, a Gradient Boosting algorithm applied on 
classification trees

Other Models
SVM
KNN
Neural Network

Support Vector Machines, an algorithm for finding optimal hyperplanes
K-Nearest Neighbors algorithm
Network with multiple layers and neurons
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（1） Penalized Logit Models
The penalized logit models are similar to the 

standard Logit model in terms of the estimation 
function, but a regularization term is incorporated 
into the loss function to avoid overfitting and 
multicollinearity problem. We established three 
different models with different regularization 
terms: the Lasso model, by adding an L1 
regularization; the Ridge model, by adding an L2 
regularization; and the Elastic Net model, by adding 
both L1 and L2 regularizations. These three models 
need different hyperparameters, including the 
regularization strength for all three models and the 
ratio of two regularizations for the Elastic Net 
model. More details will be mentioned in the 
Appendix A.

（2） Naive Bayes Models
In this study, three different types of Naive 

Bayes models are used, including the Gaussian 
Naive Bayes model, the Bernoulli Naive Bayes 
model, and the Linear Discriminant Analysis 

（LDA） model. The difference between the first 
two algorithms is the computation of conditional 
probabilities, in other words, the different 
assumptions about the prior distribution. 
Furthermore, as mentioned in James et al. （2023）, 
LDA is considered to be a special case of the Naive 
Bayes model, and thus, it is included within this 
category as well.

（3） Tree-Based models
Tree-based models are built upon the 

classification tree, a supervised machine learning 
technique that identifies patterns and generates a 
prediction model by learning basic decision rules. 
To enhance the outcomes, two approaches are 
employed: bagging and boosting. In this study, the 
Random Forest algorithm is chosen as a 
representative of the bagging technique, while the 
eXtreme Gradient Boosting （XGBoost） algorithm 
is utilized for boosting.

（4） Other models
We also apply some other algorithms, 

including the Support Vector Machine （SVM）, the 
K-Nearest Neighbors （KNN）, and the Artificial 
Neural Network （ANN）.

4.  Evaluation of Model Performance
The majority of performance evaluation 

metrics in classification tasks are based on the 
confusion matrix, which compares the number of 
correct and incorrect predictions to the true value, 
including four combinations of predicted and actual 
values of True Positive （TP）, False Positive （FP）, 
False Negative （FN）, and True Negative （TN）. 
The confusion matrix is shown in Table 2.

Table 2: The confusion matrix

Not Recession Recession

Predicted value: 0   TN FN

Predicted value: 1 FP TP

• �True Positive （TP）: It refers to the number of 
cases where the classifier correctly （Truly） 
predicts economic recession （Positive） among 
the actual recession cases.

• �False Positive （FP）: It refers to the number of 
cases where the classifier incorrectly （Falsely） 
predicts economic recession （Positive） among 
the actual non-recession cases.

• �True Negative （TN）: It refers to the number of 
cases where the classifier correctly （Truly） 
predicts non- recession （Negative） among the 
actual non-recession cases.

• �False Negative （FN）: It refers to the number of 
cases where the classifier incorrectly （Falsely） 
predicts non-recession （Negative） among the 
actual recession cases.

According to the confusion matrix, the following 
performance metrics of evaluation models can be 
calculated. ROC and AUC. The Area Under the 
Curve （AUC） is a measure of classifier accuracy 
and is commonly used in binary classification. 
When classifying data, the Receiver Operating 
Characteristic （ROC） curve is often used to 
evaluate classifier performance, and the area below 
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the curve is the AUC metric. The ROC space is 
defined by the false positive rate （FPR） and true 
positive rate （TPR） horizontally and vertically, 
respectively. It illustrates the balance between true 
positive outcomes （benefits） and false positive 
results （costs）.11） The definition of TPR and FPR is 
as follows. Defining a set of threshold value tv 
which indicates a recession whenever ŷ ≥ tv, and 
expansion whenever ŷ ≤ tv. The tv is evenly spaced 
along the interval ［0, 1］. More significant numbers 
of thresholds lead to a smoother ROC curve with 
more points. For example, a potential set with 11 
thresholds would be 0, 0.1, 0.2, . . . , 0.9, 1. Then, the 
following conditional probabilities can be defined:

　　　　TPR （tv）＝P［ŷt ≥ tv｜yt＝1］	� ⑾

　　　　FPR （tv）＝P［ŷt ≥ tv｜yt＝0］	�  ⑿ 

For each tv, we create a coordinate: （TPR, FPR）. 
The ROC is generated by connecting these 
coordinates. The AUC is the integral of the ROC 
curve, representing the area under the curve.

 

　　　　　　AUC＝
0

1

ROC（r）dr� ⒀

 
Accuracy. The Accuracy represents the proportion 
of correctly classified samples out of the total 
number of samples. It is defined as follows:

　　　Accuracy＝ TP＋TN
TP＋TN＋FP＋FN � ⒁

Precision. The Precision represents the proportion 
of correctly classified recession cases out of the 
total cases predicted as a recession by the classifier. 
It is defined as follows:

　　　　　　Precision＝ TP
TP＋FP � ⒂

Sensitivity. Sensitivity represents the proportion of 
actual recession cases that are correctly predicted 
as a recession by the classifier. It is defined as 

follows:

　　　　　　Sensitivity＝ TP
TP＋FN � ⒃

Specificity. Specificity represents the proportion of 
actual non-recession cases correctly predicted as 
non- recession by the classifier. It is defined as 
follows:

　　　　　　Specificity＝ TN
TN＋FP � ⒄

 
Balanced Accuracy. Balanced Accuracy is usually 
used to address the problem of inaccurate accuracy 
due to class imbalance. It is the arithmetic mean of 
the Sensitivity （true positive rate） and Specificity 

（true negative rate）.
 

Balanced Accuracy＝ Sensitivity＋Specificity
2 � ⒅

F1 score. The F1 score is the harmonic average of 
Precision and Sensitivity commonly used to 
evaluate the overall performance of a classifier. It 
can be seen as a balance point between Precision 
and Sensitivity and is used to balance the accuracy 
and completeness of the classifier.

　　　　　F1＝ 2*Precision * Sensitivity
Rrecision＋Sensitivity � ⒆

Kappa. The kappa coefficient is another measure of 
inter-rater reliability （the degree of agreement） 
between the predicted and actual results from a 
classifier. It induces the hypothetical probability of 
chance agreement to overcome the drawback of 
accuracy influenced by positive and negative 
example ratios. Po represents the probability of 
inter-rater reliability between the classifier and 
actual results （in other words, the accuracy）, while 
Pe represents the hypothetical probability of chance 
agreement.12）
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　　　　　　ê＝ Po−Pe

1−Pe
＝1− 1−Po

1−Pe
� ⒇

The right-hand side of Equation 20 can be seen as 
one minus a ratio of model error and baseline error, 
which implies that a lower model relative error 
corresponds to a higher ê value.

Pesaran-Timmermann test. The test proposed by 
Pesaran and Timmermann （1992） examines the 
accuracy of forecasts and focuses on the correct 
prediction of the direction. In this study, same as 
Vrontos et al. （2021）, the null hypothesis is that the 
accuracy does not differ from the ratio that would 
be obtained in the case of no predictability, where 
the forecasts ŷ and the realized values y are 
independent. In contrast, the alternative hypothesis 
is that there exists recession predictability.

The process of Pesaran-Timmermann test 
is, for time series y and ŷ with n elements, firstly 
define the positive rate function:

　　　　　p（y）＝ 1
n∑t＝1

n

 yt ,   p（ŷ）＝ 1
n∑t＝1

n

 ŷt� �

and

q（y）＝ p（y）（1−p（y））
n , q（ŷ）＝ p（ŷ）（1−p（ŷ））

n ��

Then we calculate p, the same as Pe in calculating 
the ê statistic, and w, v for calculating the standard 
deviation.

　　p＝p（y）p（ŷ）＋（1−p（y））（1−p（ŷ））� �

　　　　　　　v＝ p（1−p）
n � �

　　w＝（2p（y）−1）2q（ŷ）＋（2p（ŷ）−1）2q（y）
　　　　　　　　　　　　　　　＋4q（y）q（ŷ）	�  �

Finally, the test statistic is

　　PT＝ Accurancy－p
v−w

∼ N（0, 1）� �

Ⅲ.  Data and Empirical Design

1.  Data
The Recession Indicator. The economic recession 
indicator is an observable variable from the 
National Bureau of Economic Research （NBER） 
Business Cycle Dating Committee’s records 
concerning the timing of the U.S. business cycle. 
These records consist of alternating peak and 
trough dates in economic activity, denoting 
expansion and contraction. During recession 
periods, the recession indicator is set as 1, while 
during expansion periods, it is set as 0. Subsequently, 
various explanatory variables are employed to 
establish a binary classification model.

Predictor Variables. Researchers have assessed 
various leading indicators of the U.S. business 
cycle, particularly those associated with recession 
periods. In this study, following the analysis of 
Vrontos et al. （2021）, a total of 52 leading indicators 
obtained from the Federal Reserve Bank of St. 
Louis’ FRED database are used. Detailed 
information is provided in Table B.6 in the 
Appendix.

As shown in Table B.6, variables with 
different frequencies are used in this study, 
including daily13）, weekly and monthly data. 
Besides, some quarterly variables, such as real 
gross domestic product （GDP）, real gross domestic 
income （GDI）, and corporate profits, are 
transformed into monthly frequencies using natural 
cubic spline interpolation. This also follows the 
study of Vrontos et al. （2021）. Among the 52 
variables, the most important one is the first 
variable in Table A.1, that is, the term spread of 
10-year Tbill and 3-month Tbill, and this variable is 
used to build the benchmark model in the empirical 
analysis. Besides, it should be noted that there 
exists collinearity among the 52 variables. The 
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correlation matrix is shown in Table B.7.
Figure 2 intuitively illustrates the 

relationship between the 10y-3m spread and 
recession. The line indicates the term spread with 
a 12-month lag, and the shaded part shows when 
the recession happened. It can be seen that when 
the 10y-3m term spread is smaller than zero, the 
recession may happen 12 months later. It is 
consistent with the study of Bauer and Mertens 

（2018）, ”A simple rule of thumb that predicts a 
recession within two years when the term spread is 
negative had correctly signaled all nine recessions 
since 1955 and had only one false positive, in the 
mid-1960s, when an inversion was followed by an 
economic slowdown but not an official recession. 
The delay between the term spread turning negative, 
and the beginning of a recession has ranged between 
6 and 24 months.”

This study analyses three different 
forecasting windows, short-term, medium-term, 
and long-term, due to the fluctuation in the 
effectiveness of various forecasting variables when 
predicting economic activity over different forecast 
horizons. These three prediction horizons are 
defined as follows:
• �Short-term: Predictors lagged by 3, 6, and 12 

months are used for a 3-month ahead prediction.
• �Mid-Term: Predictors lagged by 6 and 12 months 

are used for a 6-month ahead prediction.
• �Long-term: Predictors lagged by 12 months are 

used for a 12-month ahead prediction.

2.  Empirical Design
The analyzed period spans from January 

1983 to December 2022 （480 months） and is divided 
into training, validating, and testing sets. Following 
Vrontos et al. （2021）, an expanding-rolling splitting 
schema is used. The training data set is initially set 
as the first 132 months （11 years, from January 
1983 to December 1994）, following an expanding 
schema； the validation period is a rolling window of 
72 months. The testing data set, which has the 
same start point as Vrontos et al. （2021）, is from 
January 2000 to December 2022 （264 months）. The 
training data is used to establish the model, while 
the valid data is used for finding optimal 

Figure 2: The relationship between 10y-3m term spread and recession

In this figure, the line indicates the term spread with a 12-month lag, and the shaded part shows when the recession 
happened.
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hyperparameters. The testing data is employed to 
evaluate the forecasting performance of each 
model.

To provide a more straightforward 
explanation, a diagram is drawn below. In Figure 3, 
each row represents a data split, in which white 
rectangle denotes data not used, the light grey 
represents the training set, the grey represents the 
validating set, and the dark grey represents the 
testing set that only contains one piece of data at a 
time. By comparing different rows, it can be easily 
seen that the training dataset is expanding while 

the validating dataset is rolling. For example, in the 
first row, the first 132 data are used to train the 
model, and the later 72 data with an index from 133 
to 204 are used for validation and tuning 
hyperparameters. In the second row, the test 
dataset is expanded to 133, while the validation 
dataset keeps the same length of 72 but rolls to the 
right, with an index from 134 to 205. By repeating 
this expanding-rolling process for 275 iterations, 
the predicted values with an index from 205 to 480 
can be obtained respectively.

The benefit of this method is that it 
consistently preserves the complete historical 
information within the training set using a recursive 
approach. Additionally, the window size gradually 
expands to include the most recent observation. In 
line with the method of Gu et al. （2020）, there is no 
employment of cross-validation to uphold the 
chronological order of the data for prediction.

As mentioned in the methodology part, the 
overall predictive performance of the analysis 
heavily depends on the selection of hyperparameters. 
For example, if the penalty term in lasso regression 
or support vector machines is too strong, it will 
ignore some features and lead to underfitting. 
Conversely, if it is too weak, it will identify noise as 
features and lead to overfitting. Therefore, the best 
out-of-sample prediction can only be achieved by 

choosing the optimal hyperparameters. To find out 
the best hyperparameters, in the training process, 
various models with different sets of 
hyperparameters are trained using the training 
dataset. These models are then evaluated using a 
separate validation dataset to measure their 
accuracy. This evaluation aims to identify the 
model with the optimal performance on the 
validation dataset. This selected model is considered 
the final model, which is expected to generalize 
well to testing data.

Ⅳ.  Empirical Result

1.  Model performance in short-term
For empirical analysis, the Python 

programming environment （Van Rossum et al., 

This figure illustrates the expanding-rolling data splitting schema. The 
numbering of the rectangles represents the time, t. Each rectangle contains 
data of yt and Xt , where Xt includes the lagged value of variables processed 
after the MIDAS process. Each line represents a cycle of a prediction.

Figure 3: Schematic diagram of the expanding-rolling data splitting schema
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1995）, the Statsmodels library （Seabold and 
Perktold, 2010）, and the Scikit-learn library 

（Pedregosa et al., 2011） are used. In this section, 

the empirical results are presented. Table 3 shows 
the out-of-sample performance of different models 
for the short-term horizon （3 months ahead）.

To begin with, the U-MIDAS-Logit-YC in 
the first row is the U-MIDAS-Logit model 
mentioned in Equation 1 with only term spread 

（10y-3m） of yield curve daily data as the 
explanatory variable. Similarly, the U-MIDAS-
Probit-YC model in the second row is also used as 
another benchmark. Moreover, the MIDAS-Logit/
Probit-YC models are also used as another two 
benchmarks. In the first two rows, the accuracy of 
these two U-MIDAS benchmark models is about 
0.88, as shown in column 1. Additionally, both of 
these models have achieved an AUC of over 72% 

（shown in column 2）, indicating their overall 
performance. However, the Precision （around 
0.467） in column 3 indicates that out of the cases 
predicted as positive, only 46.7% are true positives. 
The Sensitivity in column 4 tells us that the model 

can correctly identify 47% of the actual positive 
cases. The Sensitivity and the Precision are 
seemingly less than ideal, but consistent with the 
result of Vrontos et al. （2021）14） Meanwhile, 
Specificity in column 5 indicates that the model can 
correctly identify 93.5% of the actual negative 
cases. The balanced accuracy of these two 
benchmark models shown in column 6 of about 0.7 
considers both Sensitivity and Specificity, providing 
a more robust accuracy measure suitable for 
imbalanced datasets. The F1 score of about 0.476 in 
column 7 also combines Precision and Sensitivity, 
providing a single metric that balances both 
aspects. The kappa value15）, approximately 0.4 in 
column 8, quantifies the level of agreement between 
the model’s predictions and the actual classes while 
also considering the chance agreement. Finally, the 

This table reports the performance evaluation measures of the Short-term horizon （3-months-ahead） forecasts 
obtained by （U）-MIDAS-Logit/Probit models and several U-MIDAS-ML models for the out-of-sample period 

（Jan. 2000 – Dec. 2022）.

Table 3: Performance Evaluation - Short term
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P-T statistic in column 10 and the p-value of the 
hypothesis test in column 11 show that the null 
hypothesis is significantly rejected.

Besides, the MIDAS-Logit-YC and MIDAS-
Probit-YC models in the third and fourth rows are 
constructed using the MIDAS process instead of 
U-MIDAS. Compared with U-MIDAS, the results 
are similar, but with slightly lower accuracies and 
slightly higher AUCs. So it is hard to say which 
method, MIDAS or U-MIDAS is better. Due to the 
U-MIDAS model being able to make full use of 
high-frequency data without any information loss, 
as well as saving the runtime of the computer 
program, we use the U-MIDAS method as a data 
pre-preprocess for machine learning models.

When it comes to machine learning methods, 
almost all of them except for the U-MIDAS-
Bernoulli NB model show higher predictability 
than the benchmarks. First, for the penalized logit 
models in the 5th to 7th row, all three models beat 
the benchmark models in all metrics. Each of these 
three models has an Accuracy over 92%, better 
than 88% of benchmark Accuracy. The AUCs of 
these three models are also higher than 93%, much 
better than 73% of benchmarks. As mentioned 
above, the Precision and Sensitivity of the 
benchmark models are only over 0.4, while the two 
metrics of the U-MIDAS-Lasso model and the 
U-MIDAS-Elastic Net model are around 0.7, which 
is a significant improvement over the benchmark. 
Other metrics also beat the benchmarks similarly 
with higher values. The U-MIDAS-Ridge model is 
not as good as the other two penalized models on 
Precision, with only around 61 percent, but it also 
beats the benchmarks.

The 8th-10th rows show the result of 
U-MIDAS-Naive Bayes Models. The first two 
models show higher performance on all metrics 
than the benchmarks. However, the U-MIDAS-
Bernoulli NB model does not beat the benchmarks. 
As for tree-based models shown in the 11th-13th 
rows, the U-MIDAS-XGBoost algorithm performs 
best, with the highest AUC. Then U-MIDAS-
Random Forest also improved the performances of 
U-MIDAS-Tree. They also beat the benchmarks on 

all metrics. And finally, in the last three rows, all 
these models beat the benchmarks on all metrics 
again.

Overall, considering all these metrics in 
Table 3, almost all machine learning models 
consistently provide accurate predictions in 
identifying recessions and non-recession periods. 
They show predictability in capturing the actual 
occurrence of recessions while minimizing false 
positives. Among them, the U-MIDAS-XGBoost has 
the highest Accuracy of 0.964 as well as the highest 
AUC of 0.972.

To visualize their predictive capabilities, 
Figure 4 illustrates the probability of a recession 
occurring as predicted by each model. In this 
figure, the solid line represents one of the 
benchmarks, the U-MIDAS-Logit-YC model, while 
other various dashed lines represent several well-
performing machine learning algorithms mentioned 
above. But in order to keep the figure from being 
too cluttered, only some of the models are shown 
here in two subfigures. Besides, the shaded regions 
correspond to three historical recession periods: 
the “dot-com” bubble recession, the Great Recession, 
and the COVID-19 recession. Upon observing the 
figure, it becomes evident that their strong 
performance across various evaluation metrics and 
their ability to capture both historical and real-time 
recession periods make them promising models for 
predicting future economic downturns. It can be 
seen that during the recession period, all these 
methods show high probability.

Figure 5 illustrates the ROC curves of each 
model, showing the trade-off between the True 
Positive Rate （Sensitivity） and the False Positive 
Rate （1-Specificity） at various classification 
thresholds. A higher ROC curve closer to the top-
left corner indicates better performance, as it 
signifies a higher true positive rate and a lower 
false positive rate. It can be seen that even though 
the ROC curves of the U-MIDAS-ML models are 
much on the top-left side of the benchmark and 
leave a larger area under the curve, meaning that 
U-MIDAS-ML models have better average 
performance over the entire distribution of positive 
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and negative samples. In other words, they have a 
low misjudgment rate and a high correct 

discrimination rate even under different 
classification thresholds.

Figure 4: Out-of-Sample Prediction Result in the short-term

This figure illustrates the model prediction result of the short-term horizon （3-months-ahead） forecasts obtained by 
MIDAS- Logit/Probit models and several MIDAS-ML models for the out-of-sample period （Jan. 2000 – Dec. 2022）. 
Different lines denote the probability given by the models, and the shaded area represents the period during which the 
recession actually occurred. In order to keep the figure from being too cluttered, only some of the models are shown 
here in two subfigures.

Figure 5: ROC curves in the short-term

This figure shows the ROC curves for several models. The solid line illustrates the benchmark model and other dash or 
dot lines illustrate different MIDAS-ML models. The closer the curve is to the upper left corner, the better the model 
performs. For details of ROC, please see Section 2.4.

Economic Recession Prediction using Machine Learning

― 25 ―



2.  Model performance in mid-term
Table 4 represents the predictive results of 

various models for the mid-term economic 
recession. Compared to the short-term recession 
predictions, the mid-term recession results are 
similar. The first four rows in the table indicate 
that the （U-）MIDAS-Probit/Logit model has an 
accuracy of more than 85 percent and an AUC of 
over 75, and exhibits excellent significance.

However, compared to the other machine 

learning models, almost every MIDAS-ML model, 
except for the U-MIDAS-Bernoulli NB model, beats 
nearly all four benchmarks on every metric. It is 
noticeable that the U-MIDAS-KNN model shows 
the highest accuracy of about 96.7 percent. The 
U-MIDAS-SVM and U- MIDAS-Lasso model both 
have the highest AUC, around 95.4 percent. The 
predicted probability and ROC curve are shown in 
Figure 6. The ROC curves are shown in Figure 7.

Table 4: Performance Evaluation - Mid term

This table reports the performance evaluation measures of the Mid-term horizon （6-months-ahead） forecasts 
obtained by （U）-MIDAS- Logit/Probit models and several U-MIDAS-ML models for the out-of-sample period （Jan. 
2000 – Dec. 2022）.
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This figure illustrates the model prediction result of the mid-term horizon （6-months-ahead） forecasts obtained by 
MIDAS-Logit/Probit models and several MIDAS-ML models for the out-of-sample period （Jan. 2000 – Dec. 2022）. 
Different lines denote the probability given by the models, and the shaded area represents the period during which the 
recession actually occurred.

Figure 6: Out-of-Sample Prediction Result in the mid-term

Figure 7: ROC curves in the mid-term

This figure shows the ROC curves for several models. The solid line illustrates the benchmark model and other dash or 
dot lines illustrate different MIDAS-ML models.
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3.  Model performance in long-term
As for the performance of long-term 

prediction, as shown in Table 4, compared with the 
other two horizons, all metrics of almost all models, 
including four benchmarks, are slightly lower than 
those of the short-term and mid-term. But the 
conclusion in the long-term is consistent with the 

mid-term as well as the short-term, that is, the vast 
majority of U-MIDAS-ML models （except for the 
U-MIDAS-Bernoulli NB model） show better 
prediction performance than the four benchmarks 
on almost all of the metrics evaluated. The 
prediction results and ROC curves are also shown 
in Figure 8 and 9.

Table 5: Performance Evaluation - Long term

This table reports the performance evaluation measures of the Long-term horizon （12-months-ahead） forecasts 
obtained by （U）-MIDAS- Logit/Probit models and several U-MIDAS-ML models for the out-of-sample period （Jan. 
2000 – Dec. 2022）.
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This figure illustrates the model prediction result of the long-term horizon （12-months-ahead） forecasts obtained by 
MIDAS-Logit/Probit models and several MIDAS-ML models for the out-of-sample period （Jan. 2000 – Dec. 2022）. 
Different lines denote the probability given by the models, and the shaded area represents the period during which the 
recession actually occurred.

Figure 8: Out-of-Sample Prediction Result in the long-term

Figure 9: ROC curves in the long-term

This figure shows the ROC curves for several models. The solid line illustrates the benchmark model and other dash or 
dot lines illustrate different MIDAS-ML models.
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Ⅴ.  Conclusion

The conclusions of this study are as follows: 
First and most importantly, we apply the MIDAS 
and U-MIDAS methodology to the Logit and Probit 
benchmark models with ten-year and three-month 
spreads and use more high-frequency information 
in the training and testing of the models. Regardless 
of the prediction horizon, the model’s prediction 
accuracy is over 86 percent. We also also use the 
U-MIDAS method in machine learning methods. 
This is a complement to the study of Vrontos et al. 

（2021）, which fills the gap by applying the method 
in benchmark models and provides new ideas and 
methods for prediction research in related fields.

Second, this paper demonstrates that the 
yield curve, particularly the ten-year and three-
month spreads, is predictive of recessions in all 
three horizons: long-, medium-, and short-term. 
These findings are consistent with other existing 
literature, like （Choi et al., 2023）. Therefore, using 
the yield curve as a predictor variable in the 
benchmark model is a reasonable choice.

Moreover, adding other variables to the 
benchmark model can improve the performance of 
the model. However, due to the high degree of 
multicollinearity in economic variables, the “kitchen 
sink approach” of adding variables without selection 
can lead to model misspecification. Therefore, the 
introduction of machine learning algorithms, 
especially regularization algorithms with the ability 
to screen variables, can solve the multicollinearity 
problem and improve the model performance.

Fourth, this paper demonstrates that almost 
all machine learning models outperform traditional 
economics models in predicting recession in all 
terms. This result is also consistent with the study 
of Vrontos et al. （2021）. The analysis is carried out 
using an expanding-rolling window approach, 
which incorporates various model performance 
measures including hypothesis testing to ensure 
statistical significance and mitigate the effects of 
random chance.

In conclusion, this paper combines mixed-
frequency data with machine learning algorithms 

to provide a new approach to economic forecasting 
and finds better performance than traditional 
models. This provides new ideas for future research 
directions in economic forecasting.

However, this study currently has several 
limitations. For example, the recession analysis in 
this study is limited to the United States and has 
yet to be researched in other countries. In addition, 
this study only contributes to the prediction 
accuracy by using the yield curve as the primary 
variable supplemented by other economic variables, 
without investigating the relative importance of 
these variables. Furthermore, due to the general 
principle that more extensive data sets yield better 
results in machine learning, only 52 variables might 
be considered insufficient.

For future work, we have the following 
suggestions: First, machine learning algorithms 
require a large amount of data and can handle 
high-dimensional data. As a result, we can explore 
more factors that may influence recessions in the 
United States by including more macroeconomic 
variables to explore their relationship with 
predictive models. For example, in the Davig and 
Hall （2019） research, 135 variables in the FRED-
MD dataset （McCracken and Ng, 2016） are used. 
Moreover, we could even consider incorporating 
non-traditional unstructured and qualitative input 
variables, such as using large language generation 
models to perform sentiment analysis for economic 
forecasting, like Consoli et al. （2022）, Liu et al. 

（2021）.
Second, the machine learning algorithms 

used in this study are still simple and can be 
further optimized and improved to increase the 
Accuracy and Precision of the predictive models. 
For example, the use of more complex models such 
as Long Short Term Memory （LSTM） neural 
networks, which have been shown to have 
advantages in handling time series data16）. In 
addition, the LSTM model can capture both long-
term trends and short-term fluctuations in time 
series data, making them a potential candidate for 
combination with the MIDAS approach.

Third, validating the universality of 
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recession prediction patterns by using data from 
more countries would be beneficial. Besides, it is 
also worth considering using methods such as 
Shapley Additive exPlanations （SHAP） value or 
feature importance score using XGBoost or 
Random forest to explore the importance of 
predictive variables.

 
Notes

1 ）  There are also other views on the causes of the 
Great Recession. For more details, please refer to 
Jagan-nathan et al. （2013）.

2 ）  The testing period of this paper and Vrontos et al. 
（2021） is not quite the same. The testing dataset of 
this paper ranges from January 2000 to December 
2022, while the study of Vrontos et al. （2021） ranges 
from January 2000 to July 2019. In comparison, this 
paper includes the economic recession in 2020 
caused by COVID-19, which makes the prediction 
more difficult. In addition, an attempt was made to 
remove the prediction results from July 2019, and it 
was found that the model performance metrics were 
improved.

3 ）  More details about model performance metrics 
are explained later in Section 2.4

4 ）  In that study, the metric ROC_S is used, which 
equals 2AUC－1. The original result is ROC_S＝
0.770, to compare with my result, I solved that AUC
＝0.885

5 ）  In this study, I only show the result of U-MIDAS-
ML models but not MIDAS-ML models because the 
result of U-MIDAS-ML and MIDAS-ML is quite 
similar

6 ）   This step is to constrain the number of 
parameters, in other words, to reduce the dimension 
of the variables.

7 ）  For daily and monthly data, m is set to 28, since 
there are at least 28 days in a month; Similarly, for 
weekly and monthly data, m＝4.

8 ）  For daily data, the number of variables increased 
to 28 times by adding 27 daily lagged variables to 
the monthly aligned data. And for weekly data, the 
dimension increased to 4 times.

9 ）  Here h denotes the prediction horizon. In this 
study, three horizons are used: Short, Mid, and Long 
term. For the Short-term analysis, X is lagged by 3, 
6, and 12 months. For the Mid-term analysis, X is 
lagged by 6 and 12 months. For Long-term analysis, 
X is lagged by 12 months only.

10）  The MIDAS method was also utilized in this 
study. The results obtained with MIDAS were found 

to be quite similar to those obtained with U-MIDAS. 
Therefore, only the results of U-MIDAS-ML models 
are presented in the results section. It is important 
to note that the MIDAS method requires extensive 
computational time due to the large number of 
hyperparameters that need to be explored. These 
hyperparameters include those within each machine 
learning algorithm as well as the weights of the 
MIDAS parameter restricting step. Additionally, the 
iterative nature of the rolling-window analysis 
further contributes to the runtime. Consequently, we 
recommend using U-MIDAS-ML models.

11）  More details can be found in （Liu and Moench, 
2016）

12）  Specifically, Pe＝p（y）p（ŷ）＋（1−p（y））（1−p（ŷ））.
13）  Certain variables, such as Credit Spread （Code 21 

in Table B.6）, are available daily. Nevertheless, the 
monthly frequency is used instead because there 
was a lack of daily data in earlier years, which led to 
an incomplete dataset.

14）  In the short-term study of Vrontos et al. （2021）, 
the Precision and Sensitivity of Logit-YC model is 
only 0.231 and 0.400 respectively.

15）   It can be regarded as a modified accuracy that 
e l iminates chance consistency .  For further 
explanation, please refer to the description of 
equation 20 in Section 2.4.

16）  See Siami-Namini et al. （2018）
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Appendix A. Details of machine learning algorithms

1.  Penalized U-MIDAS Logit Model

The penalized U-MIDAS Logit regression is similar 
to the standard U-MIDAS Logit regression in 
terms of the estimation function, but it incorporates 
a regularization term in the loss function to 
minimize overfitting. Specifically, in the process of 
the parameter estimation of â in Penalized Logit 
Regression, a regularization term ã（â） is added to 
the loss function:

　　　
â

min∑
t＝1

T

（－yt log（p（Xt））－

　　　　　（1－yt）log（1－p（Xt）））＋ëã（â）� （A.1）

where the ë denotes the strength of regularization 
term ã（â）, which is explained below. To get 
consistent with the notation of other machine 
learning algorithms, the equation is transformed 
here by setting C ＝ ë−1:

　　　
â

min C∑
t＝1

T

（－yt log（p（Xt））－

　　　　　（1－yt）log（1－p（Xt）））＋ã（â）� （A.2）

In equation A.2, C represents the inverse of 
regularization strength. Specifically, smaller C 
values imply higher regularization, reducing the 
impact of predictors with limited explanatory 
power. The hyperparameter- choosing approach 
will be mentioned in Section 3 below.

The U-MIDAS-LASSO logit model. Lasso 
regression is an appropriate model for datasets 
with a high number of features, as its algorithmic 
design allows for automatic feature selection and 
management of highly correlated features. The 
Lasso approach is proposed by Tibshirani （1996）. 
The method is by adding a L1 term to the loss 
function. Specifically, the ã（â） in Equation A.2 is

ã（â）＝ ¦¦ â ¦¦1＝∑
i＝1

N

¦ âi ¦

The U-MIDAS-Ridge logit model. The Ridge 
regression proposed by Hoerl and Kennard （1970）, 
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differs from Lasso regression as it only shrinks the 
coefficients of insignificant features to near zero 
rather than compressing them to zero. The Ridge 
regression is considered more stable when multiple 
significant predictor variables are presented. 
However, it is not a suitable model for datasets that 
contain many features but only a few truly relevant 
features. Similarly, the loss function is also Equation

A.2, with ã（â）＝ 1
2

¦¦ â ¦¦22＝
1
2∑i＝1

N

âi
2

The U-MIDAS-Elastic-Net logit model. Elastic Net, 
a mixed linear model, is a combination of two 
penalty techniques, L1 and L2, designed to manage 
the limitations and improve the advantages of each 
method. This hybrid technique was proposed by 
Zou and Hastie （2005）. The Elastic Net can be 
applied to datasets with heteroscedasticity and is 
effective in the elimination of multicollinearity. The 
penalty term of the Elastic Net is

ã（â）＝ñ ¦¦ â ¦¦1＋
1－ñ

2
¦¦ â ¦¦22＝ñ∑

i＝1

N

¦ âi ¦＋
1－ñ

2 ∑
i＝1

N

âi
2, 

where ñ is another hyperparameter controlling the 
strength of L1 regularization versus L2 
regularization.

2.  The Bayes Models
The Naive Bayes Models. The Naive Bayes is 
considered a simple but effective supervised model 
with the “naive” assumption of conditional 
independence between every pair of features（Davig 
and Hall （2019））, which leverages Bayes’ theorem 
to calculate the conditional probability of the 
observed data belonging to a particular class of 
observations. The Bayesian theorem for classes can 
be expressed as:

　　　　　　　P（y ¦ X）＝ P（X ¦ y）
P（X） � （A.3）

where X is the vector including all input variables 
［x［1］, x［2］, . . . , x［n］］. Using the naive conditional 
independence assumption that

　P（x［i］ ¦ y, x［1］, x［2］, . . . , x［i−1］, x［i＋1］, . . . , x［n］）
　　　　　　　　　　　　　　　＝P（x［i］¦ y）�（A.4）

For all i, the relationship is

　P（y ¦ x［1］, x［2］, . . . , x［n］）＝ P（y）∏n
i＝1P（x［i］¦ y）

P（x［1］, x［2］, . . . , x［n］）
� （A.5）

The decision rule is:

　　　　ŷ＝arg max
y
   P（y）П

i＝1

n

P（x［i］¦ y）� （A.6）

U-MIDAS Linear Discriminant analysis. Linear 
discriminant analysis （LDA） is a supervised 
learning technique with the basic idea that, given a 
set of training samples, try to project the samples 
onto a line. Meanwhile, the projection points of 
similar samples are as close as possible, and the 
centers of the projection points of dissimilar 
samples are as far away as possible.

LDA can be derived from simple probabilistic 
models that represent the class conditional 
distribution of the data P（Xt ¦ yt ＝ k） for each class 
k, which denotes recession （k ＝ 1） or not （k ＝ 0）. 
Predictions can then be obtained by using Bayes’ 
rule for each training sample x ∈ Rd:

　　P（yt＝k ¦ xt）＝ P（xt ¦ yt＝k）P（yt＝k）
P（xt）

� （A.7）

and then select the class k which maximizes this 
posterior probability. More specifically, for LDA, 
P（xt ¦ yt） is modelled as a multivariate Gaussian 
distribution with density:

 P（xt ¦ y＝k）＝ 1
（2ð）d/2 ¦Σk ¦ 1/2

　　　　exp  － 1
2（xt−ìk）t∑k

−1
（xt−ìk）,�（A.8）

where d denotes the number of features, and ì 
denotes the mean value of x. According to the 
model above, the log of the posterior is:
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　log P（yt＝k ¦ xt）＝

　− 1
2（xt−ìk）t∑−1

（xt−ìk）＋log P（yt＝k）＋Cst.

� （A.9）

The term （xt − ìk）t    Σ−1 （xt − ìk） corresponds to the 
Mahalanobis Distance between the sample xt and 
the mean ìk.17）

3.  Tree based methods
Classification Tree. The Classification Tree is 
another supervised machine learning method to 
make classifications. The process includes two 
main steps: node splitting and threshold 
determination. Specifically, the first step of node 
splitting generally happens when the attribute 
represented by a node does not give a judgment, 
thus splitting this node into two child nodes. Then, 
the second step of threshold determination is to 
choose an appropriate threshold value to minimize 
the training error. By repeating these two steps, a 
tree is grown.

To improve generalizability and robustness over a 
single classification tree, two kinds of ensemble 
methods are widely used by combining the 
predictions of several trees. The first is averaging 
methods, and the second is boosting methods. On 
the one hand, in averaging methods, the driving 
principle is to build several estimators independently 
and then average their predictions. On average, the 
combined estimator is usually better than any 
single base estimator because its variance is 
reduced. On the other hand, in boosting methods, 
base estimators are built sequentially, and one tries 
to reduce the bias of the combined estimator. The 
motivation is to combine several weak models to 
produce a powerful ensemble.

Random Forest. The random forest approach by 
Breiman （2001） is a machine learning method used 
to make predictions by generating numerous 
regression trees and averaging the outcome of 
each tree to find the final result. To construct the 

random forest, a bootstrap is performed on the 
dataset, and from these, subsets of features are 
randomly chosen to grow various trees. These two 
sources of randomness can reduce the variance 
and overcome the overfitting problem. The final 
result is given by averaging the probabilistic 
prediction of each tree.

XGBoost. The XGBoost is an algorithm proposed 
by Chen and Guestrin （2016）. The basic idea is to 
combine classifiers that are iteratively constructed 
through the resampling of the training data by 
assigning increased weight to misclassified 
observations. Thus, a new classifier is produced 
that can boost the performance of previous 
problematic cases. This process is repeated to 
combine several classifiers into a final classifier by 
applying a weighted majority vote.

4.  Other Models
Support Vector Machine. The Support Vector 
Machine （SVM） is a machine learning algorithm 
proposed by Cortes and Vapnik （1995）, widely 
used to solve classification and regression problems. 
The basic concept of an SVM is to select a few 
specific data points, known as support vectors 

（SV）, from the data set, which are used to create 
a hyperplane that effectively separates the two 
classes of observations. This hyperplane is chosen 
as the solution that maximizes the distance 
between the support vectors. In the case of linear 
separability, the SVM can find the hyperplane 
directly in the original feature space. And even if 
the data is not linearly differentiable, SVM uses 
kernel function techniques to map the data into a 
higher dimensional feature space, thus making the 
data linearly differentiable. For the n-dimensional 
feature vector X ≡ ［x［1］, x［2］, . . . , x［n］］, a linear 
boundary （hyperplane） can be defined as 
w'X ＋ b ＝ 0, where w ＝ is the normal vector 
determining the direction of the hyperplane, and b 
is the bias term determining the distance between 
the hyperplane and the origin. The hyperplane can 
classify the training samples correctly, that is, for a 
sample （Xt, yt）if yt ＝ ＋118）, then w'Xt ＋ b > 0; else if 
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yt ＝ −1, then wT Xt ＋ b < 0. The Support Vector 
Machine solves the following primal problem:

　　　　　  minw,b,æ
1
2 w'w＋C∑n

t＝1
 æt

　　 subject to yt（w'ö（Xt）＋b） ≥ 1−æt,� （A.10）
　　　　　　　　　  æt ≥ 0, t＝1, . . . , n

The principle is to maximize the margin （by 
minimizing ¦¦ w ¦¦2） while incurring a penalty when a 
sample is misclassified or within the margin 
boundary. And, some misclassified samples are 
allowed to be at a distance æi from their correct 
margin boundary. And the term C controls the 
strength of this penalty. The function ö maps X 
into a higher dimensional space. And the dual 
problem to Eq.（5） is:

　　　　　　　　   miná

1
2 á'Q  á−e'á

　　　　　　　　　subject to y'á＝0
　　　　　　　0 ≤ át ≤ C, t＝1, . . . , n� （A.11）
 
where e is the vector of all ones, and Q is a n × n 
positive semidefinite matrix, Qij ≡ yi    yj     K（xi   , xj）, 
where K（Xi   , Xj） ＝ ö（Xi）'φ（Xj） is the kernel. The 
terms ái are called the dual coefficients, which are 
upper-bounded by C. Here is a list of kernel 
functions used in this study.19）

　　Linear:	 K1（Xi, Xj）＝Xi'Xj

　　Radial basis function （RBF）:
		  K2（Xi, Xj）＝e−íXi−X2

j� （A.12）
　　Polynomial:	 K3（Xi, Xj）＝（íX'i   Xj＋ã）d

　　Sigmoid:	 K4（Xi, Xj）＝tanh（íXi'Xj＋ã）

K-Nearest Neighbors. K-Nearest Neighbors （KNN） 
is a widely used algorithm for classification, which 
is computed from a simple majority vote of the 
nearest neighbors of each point: a query point is 
assigned the class with the most representatives 
within the nearest neighbors of the point. In other 
words, the new observation is assigned to the most 
common class among its K-nearest neighbors. 
There are two critical elements in the KNN 
algorithm: the measurement of distance and the 
choice of K. This study uses the Euclidean distance 
metric for computing distances in a multidimensional 
predictor space with quantitative variables. As for 
a selection of K, generally, a more extensive K 
suppresses the effects of noise but makes the 
classification boundaries less distinct.

Neural Network. The Neural Network is a 
supervised learning algorithm that learns a function 
f（·） : RN → R1 by training on a dataset, where N is 
the number of dimensions for input and 1 is the 
number of dimensions for output. For solving this 
recession classification question, the function passes 
through the logit function g（z） ＝ 1/（1＋e−z） to 
output a number from 0 and 1, standing for the 
probability of recession. However, unlike logit 
regression, there are also one or multiple non-linear 
hidden layers between the input and output layers. 
Figure A.10 provides an example of a neural 
network with two hidden layers, in which x denotes 
input variables, and am indicates the m − th artificial 
neurons in a layer. The choice of hyperparameters 
including the number of hidden layers and number 
of nodes in each layer will be mentioned in Section 
3.
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Appendix B. Variables and correlation

In this section, the variables used in this study, and 
their correlation matrix is listed.

Figure A.10: An example figure of Neural 

This figure illustrates a Neural Network with two hidden layers. The circles on the left 
side denote n input variables, and the circles in the middle are artificial neurons in 2 
hidden layers. The circle on the right is the output neural.

Economic Recession Prediction using Machine Learning

― 37 ―



The ”YoY % Diff” and ”MoM % Diff” on the ”Transform” column denote the Year-on-Year percentage difference and the 
Month-on-Month percentage difference respectively. The ”D”, ”W”, ”M” and ”Q” on the ”Freq.” column denotes daily, 
weekly, monthly and annually respectively.

Table B.6: The list of predictive variables
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