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Fully autonomous intelligent mobile robots promise a mobility revolution, with an impact

on society similar to the industrial revolution. Despite some progress, we are still far from

achieving the full extent of a mobility revolution. The ansatz of this thesis is that the

full autonomous driving problem is not solvable by iterative engineering improvements,

but is in fact an artificial general intelligence agent problem.

This thesis presents conclusions from an investigation of limitations of common au-

tonomous driving paradigms. A theoretical framework for future autonomous general-

purpose mobile reasoning agent capable of spatio-semantic commonsense reasoning is

proposed to overcome identified limitations. In particular, an open-vocabulary predic-

tive state representations is presented as an artificial hippocampus implemented by a

latent variable generative predictive world model capable of continual learning based

on the principle of predictive coding. The mathematical theory of latent compositional

semantics is used to form queryable spatio-semantic memories.

The predictive state representation is supported by rigorous theoretical grounding and

experimental evidence in the autonomous driving domain. Experiments prove discover-

ablity of latent compositional semantics by vision-languge models (VLMs), learning to

predict a diverse set of spatially and semantically accurate predictive environment states

by the proposed open-vocabulary predictive world model (OV-PWM). The usefulness

of the predictive state representation is demonstrated by enabling a self-supervised di-

rectional soft lane probability model to learn navigational patterns better than SOTA

supervised models.

The proposed framework is well-grounded in the research literature and provides a multi-

tude of promising new research directions. Limitations and future work include expand-

ing the state representation from 2D to 3D, adding temporal dynamics, and improve

diversity and accuracy of latent compositional semantic VLM inference.
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ding maps Ẑ(m). All vectors zj are arranged in a tree structure TZ used
to conveniently organize indices of corresponding regions. A mean vector
z∗i is computed for each region. Next, I score each z∗i in terms of closeness
to each concept vector c(k), resulting in region-specific score vectors s∗i . . . 85

4.3 (Left) Examples of two generated view pairs. The first image displays
the actual view feed to the model. The second image illustrates the
mutual image region. The third image shows mutual superpixel regions
colored by region index. (Right) View generation centers sampled from a
probability mask representing image complexity measured by the Canny
edge detection algorithm [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.4 ViCE learns dense semantic embeddings from raw image data. Here I
visualize the output of a linear model interpreting the embeddings. The
left and center images display output for low- and high-resolution im-
ages. The right image shows output from my comparative SOTA baseline
PiCIE [5]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.5 The center figure show output embeddings visualized in RGB colors. The
right figure shows output of ViCE with the clustering-based evaluation
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.6 Dense embedding maps visualized as RGB images. . . . . . . . . . . . . . 88

4.7 Output cluster visualizations on COCO (top) and Cityscapes (bottom). . 88

4.8 Output visualizations of cluster and linear evaluation models trained on
low- and high-resolution COCO images. . . . . . . . . . . . . . . . . . . . 89

4.9 Visualization of output clustering. The center image shows clusters with
random colors. The right image shows how clusters are mapped to se-
mantic classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.10 The compositional semantics framework. An observation x is mapped
into an embedding z∗ that specifies an object description Z in terms
of interpretable semantic categories z(k) through fuzzy membership by
similarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



List of Figures ix

4.11 Similarity distributions between a latent compositional semantic embed-
ding z∗ and all object description embeddings z ∈ Z it represent (orange)
and randomly sampled unrelated word embeddings z′ (blue). Columns
show different embedding spaces. Each row shows object descriptions of
different size K. A z∗ is useful if it separates the distribution of z and z′

by cosine similarity (4.5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.12 Similarity distributions for large object descriptions Z in very high-dimensional
uniformly distributed embedding spaces. . . . . . . . . . . . . . . . . . . . 107

4.13 Similarity distributions for three realistic object descriptions Zi of varying
sizes K (orange) and randomly sampled word embeddings z′ (blue). . . . 107

4.14 I show that unconditional open vocabulary semantic segmentation VLM
models learn to map images into latent compositional semantic embed-
ding maps Z∗. The sufficient similarity inference method allows predicting
overlapping semantics for any set of queried semantics {z(k)} by similarity
with z∗, without requiring original input images. Conventional uncondi-
tional models like LSeg [6] fail at inferring semantic overlap (couch is
also furniture) and incomplete partitionings (other is a flawed substitute
for unspecified semantics). Projecting Z∗ to spatial coordinates result in
accurate and rich open-vocabulary spatio-semantic memories. . . . . . . . 109

5.1 Predictive world model. The encoder Encθ() learns a hierarchical latent
variables Z representing the environment x̂ conditioned on the past-to-
future partially observed state x∗. The posterior matching encoder Encϕ()
learns to predict the same distribution Z from the past-to-present state
x. The decoder Decθ learns to reconstruct diverse and plausible complete
states x̂ from Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.1 The unconditional dense VLM fθ transforms an image x into an em-
bedding map Z∗ representing compositional semantics z∗ for every pixel.
During training, predictions z∗ for elements masked by y are optimized
to be similar to targets z(k) and dissimilar to all other semantics z(k

′)

generated from text descriptions t(k) by a language encoder EncL. Dur-
ing inference, z∗ allows querying multiple semantics K by similarity. All
elements above the similarity threshold τk are members of the semantic
group k. τk is set to maximize likelihood of predicting past observations. . 126

6.2 Examples of overlapping semantics inferrable from latent compositional
semantic embeddings z∗ representing learned object descriptions Z. The
3rd and 4th examples illustrate failure cases related to sufficient similarity
threshold τk estimation for low- and high-level semantics, respectively. . . 130

6.3 The distribution of mean similarities between optimal z∗opt and learned z∗

CLIP (blue) and SBERT (orange) embeddings for three semantic levels. . 131

6.4 Process transforming sensor observations into open-vocabulary partial
world states. A semantic segmentation model interprets images. The
inferred semantic embedding map is attached to the point clouds. Se-
quential semantic point clouds are accumulated into an ego-centric ref-
erence frame. Top-down projection creates BEV representations. BEVs
can be measured for similarity and sufficient similarity with a query se-
mantic. High-dimensional semantic embeddings are projected to RGB
color values for visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 133



List of Figures x

6.5 Training plots. The mean ELBO (5.22), cosine distance (5.25), poste-
rior (5.23) and posterior matching (5.24) distribution separations metrics
continue to decrease with additional compute. . . . . . . . . . . . . . . . . 137

6.6 Conditional sampling visualizations. The high-dimensional open-vocabulary
partial observation input x and sampled predictive world model output x̂∗

are projected into RGB images by PCA. Semantic inference by sufficient
similarity are shown in the third column. The actual worlds perceived by
future observations are shown in the forth column. The first three rows
shows evaluation samples. The remaining two rows shows samples from
the training distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.7 Unconditional sampling visualizations. High-dimensional open-vocabulary
embedding maps are generated by the predictive world model pθ(x|Z)
through sampling from the learned prior distribution pθ(Z). The embed-
ding maps are visualized as RGB images by PCA projection. . . . . . . . 139

6.8 A visual example of how non-hierarchical VAEs [7] have limited capacity
to represent high-dimensional structured data with high fidelity. The top
row represent observed “road” semantics. The bottom row show predicted
fuzzy “road” structures. The filled lines in the upper row are observed
vehicle trajectories which presumably indicate “road”. . . . . . . . . . . . 141

6.9 Geometric data augmentation generates diverse sample variations from
a single real sample. Spatial information (dense maps) and observed
trajectories (red lines) are transformed by the same function. . . . . . . . 143

6.10 The Directional Soft Lane Probability (DSLP) model uses a dual decoder
U-Net [8] model to transform a plausible world state x̂ into a soft lane
probability (SLP) map Ŷ and directional probability (DP) tensor Ŵ . . . . 144
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fields Ŷ and Ŵ , the maximum likelihood graph, and dense lane maps for
evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.1 The alignment function fθ transforms predictive state representations x∗

to latent environment tokens Z in an LLM embedding space. fθ is opti-
mized using computational geometry as a bridge between geometric and
textual representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

C.2 The alignment method demonstrated by a visual example of how a “road”
semantic object. The resulting polygon is programatically inferred and
used as a self-supervised learning signal. . . . . . . . . . . . . . . . . . . . 172



List of Tables

2.1 Perception and semantic representation learning problems and proposed
solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Predictive world model learning problems and proposed solutions. . . . . 31

2.3 Spatial cognition and navigation problems and proposed solutions. . . . . 37

4.1 Representation quality experiment results on low- and high-resolution im-
ages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Performance of best models trained on high- and low-resolution images . . 91

4.3 Representation quality ablation study on low- and high-resolution images. 92

4.4 Domain generalization performance . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Compositional semantics expectation delta . . . . . . . . . . . . . . . . . . 103

4.6 Separation of related and nonrelated random semantics . . . . . . . . . . 103

4.7 Large object description expectation delta and separation . . . . . . . . . 104

4.8 Separation for realistic object descriptions . . . . . . . . . . . . . . . . . . 106

6.1 Unconditional open vocabulary segmentation and overlapping segmenta-
tion performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.2 Learning compositional semantics by overlapping annotations . . . . . . . 131

6.3 World model prediction accuracy by “best of N samples” on the urban
test sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.4 World model prediction accuracy by “best of N samples” on the highway
test sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.5 World model prediction accuracy by “best of N samples” on the training
distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6 Performance of predicted local probability fields . . . . . . . . . . . . . . . 150

6.7 Performance of global navigational pattern inference . . . . . . . . . . . . 151

6.8 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.9 Performance with varying data amounts . . . . . . . . . . . . . . . . . . . 153

xi



Chapter 1

Introduction

1.1 Background: The Promise of a Mobility Revolution

The philosopher Immanuel Kant formulated the Categorical Imperative as the supreme

principle of all moral beings to do what is “universally good” [9, 10]. A logical conse-

quence is that pursuing universally good actions is an intrinsically valuable pursuit for

moral beings like humans. Following the same reasoning, a collective of moral beings

also possess an imperative to pursue what is universally good, and by doing so improve

the existential circumstances of the collective as a whole. In modern socioeconomic

science the general goodness of human existence is denoted quality of life.

The development of society as the collective of collective moral human beings is studied

in the fields of political philosophy [11–13], social sciences [14, 15], and economics [16–

18]. Modern economists typically measure quality of life by measurable indicators, such

as Gross Domestic Product (GPD) per capita and Human Development Index [19]. The

anthropologist Harari [15] and economist Piketty [18] present historical socio-economic

evidence showing objective human quality of life has been correlated with the abundance

of produce in societies throughout the world. It is evident that the degree of quality

of life, and thus the advancement of society, is correlated with the amount of goods

produced and available for the populace. However, the amount of available human labor

is a limited and in most regions a costly resource. Consequentially, advancement of

society is also correlated with the efficiency with which humans can produce goods and

complete tasks. In other words, the quicker a task can be completed, or to the extent a

task can be automated, the more surplus goods can be produce to advance society and

quality of life.

1
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The current exponential trend of societal progress originated during the 16-17th century

with the scientific revolution [18]. The development of the scientific method of empir-

ical observation, causal experimentation, and logical reasoning led to the development

of new technological advancements including metallurgy, tooling, and machinery. The

ensuing industrial revolution in the 17-18th century gave humanity automated produc-

tion, resulting in a world with an abundance of goods. The electronics revolution in

the late 19th century automated information transmission, greatly enhancing efficiency

of human task completion by providing us with means of instantaneous communication

across space. This thesis proposes that a future mobility revolution is the next pro-

duction efficiency jump based on the promise of automated transportation of physical

goods and humans. Fully autonomous transportation is expected to revolutionize society

and further enhance production efficiency by freeing up human time spent on the task

of moving about and transporting goods. The fundamental technology for automated

transportation is autonomous vehicles powered by autonomous driving systems.

Autonomous driving (AD) systems are conceptually equivalent to AI agent systems. An

agent is a defined as an intelligent system that exists in an objective external dynamic

environment state xt at time t. The environment is perceived by a sensor and perception

or digital information processing system f(). The system produces imperfect partial

observations or percepts zt approximating the true environment state xt. In general,

an agent builds up an approximate environment state x̂t based on a state estimator h()

conditioned one or all previous observations z and the previous estimated state x̂t−1.

The goal of an agent is to perform an optimal actions at to satisfy a desired behavior

as deemed by an utility function h() conditioned on the estimated environment state x̂t

and previous actions

zt := f(xt) (1.1)

x̂t := g(x̂t−1, zt, . . . z0) (1.2)

at := arg maxh(at|x̂t, at−1, . . . a0). (1.3)

The approach taken to implement the perception function (1.1), the state representation

function (1.2), and behavior function (1.3) fundamental functions defines the agent.

The fundamental challenge of designing intelligent agents is how to perceive and repre-

sent the environment and its own state with sufficient sophistication, as well as produce

sequences of actions resulting in optimal behavior over the short- and long-term time

horizon. Recent advances in machine learning (ML) are rapidly enabling the realization

increasingly sophisticated agents.
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The deep learning revolution [20, 21] is believed to be the prime enabling technology for

intelligent autonomous driving systems. Throughout the history of AI several emerging

paradigms have enjoyed periods of widespread optimism. Prominent examples are ex-

pert systems [22, 23] reaching a peak popularity in the 1980s, and statistical modeling

approaches [24, 25] developed in the 1990s. Eventually optimism was dampened by

limitations in scope of practical applications of AI for general real-world problems. In

contrast, the levels of optimism and resilience of deep learning models as practical and

noise robust universal function approximators [26] and a versatile method for represen-

tation learning [27] has been on an increasing trend for over a decade. Current optimism

is backed up by revolutionary practical applications of AI throughout society [28]. The

distinguishing properties of the deep learning methodology are the capability to learn

useful semantic abstractions from imperfect noisy data, and the empirical observation

that prediction performance scales with amount of data, model size, and computational

resources [29]. Combined with the onset of the big data revolution in 2020s to digital-

ize information throughout society, the robust and scalable properties of deep learning

resulted in the hypothesis that any degree of intelligence could be reached simply from

obtaining enough data and computational resources [30]. A hypothetical practically fea-

sible path to achieving artificial general intelligence (AGI) was widely perceived for the

first time [31].

The capability of deep learning models to automatically discover complex features and

representations within the input data [27] makes them well-suited for core tasks in au-

tonomous driving, such as perception [32] and motion planning [33]. This has led many

researchers and engineers to believe that fully autonomous intelligent mobile systems,

and therefore the mobility revolution, are within reach in the immediate future. The

promised vision of fully automated transportation systems that can navigate from point

A to B, while interacting safely with their environment and other traffic participants, at

any given time, seemed like a principally solved problem based on deep learning technol-

ogy. The focus shifted from being a fundamental AI problem to an engineering problem

predominantly revolving around collecting enough data to fully cover the operational do-

main, annotate the data by human endowed semantic meaning, and possessing enough

computational resources to adequately process the amassed annotation data.

However, despite the progress made in ML and mobile robotics, this thesis argues that

we are still far from achieving a true mobility revolution as evident from the past decade

of partial progress. While progress has been made towards creating semi-autonomous

vehicles with advanced driver assistance features such as highway lane following [33] or

autonomous parking [34], achieving safe full autonomy in unconstrained environments,

and correctly handling unexpected long-tail events, remains a challenging problem. Cur-

rently research and development work is primarily done towards engineering refined
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versions of semi-automated systems that ultimately depends on human supervision to

ensure safe operation in uncontrolled dynamic environments. The design of these sys-

tems can navigate predefined routes and stop at specific locations without colliding with

anything en route while limiting acceleration and jerk. The proliferation of such sys-

tems has the potential to provide social convenience, but the impact is limited compared

to fully automated transportation as humans remain in the loop. Basing autonomous

driving systems on uninterpretable deep learning models also have ethical and legal im-

plications. The question of assignment of responsibility in the case a learned black box

decision making function causes an accident or violates traffic laws is generally avoided

by putting to the human being which supervises the system. Judging by empirical evi-

dence, the ability of machines to learn correlation patterns from data by deep learning

is not enough to create truly intelligent agents that can navigate any environment safely

and efficiently [35, 36].

The ansatz for this thesis is that solutions that work for sub-problems might not neces-

sarily scale up to solve the ultimate problem. The hypothesis is that region constrained

autonomous shuttle buses and taxis are primarily a software engineering problem, while

the creation of truly autonomous human-like intelligent mobile agents is very much still

a research problem requiring solutions beyond correlative pattern learning approaches.

It might even be the case that the full autonomous driving problem is an AGI problem.

While current AI systems can perform specific tasks with human-level performance, the

same narrow expert systems lack the ability to understand how to solve problems beyond

the training data, or produce efficient behavior for interacting with other agents in a fully

autonomous manner [35]. Creating truly intelligent transportation systems may require

not only advancements in software engineering and hardware but also breakthroughs in

AGI research.

This thesis analyzes the limitations of existing autonomous driving paradigms, and lays

out a novel direction based on the requirements of a future general-purpose mobile rea-

soning agent. The hypothesis is that a general-purpose agent capable of reasoning over

world knowledge, and learn to imagine the environment state beyond observations based

on experience, will also overcome the limitations plaguing existing rule- and learning-

based approaches to autonomous driving systems and finally realize the promised mo-

bility revolution.

The following section presents a brief history of autonomous vehicles. The exposition

clarifies how the functional components of modern commercial autonomous vehicle sys-

tems, such as remote operation, lane maps, and computer vision, where in fact originated

decades ago. The historical analysis argues that progress since the 1970s are dominantly

computer and sensor hardware, computer vision algorithms, and digitalization of lane
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maps. In comparison, the conceptual approach has evolved little from the modular

perception-planning-control methodology established more than 50 years ago.

1.1.1 History: 100 Years of Autonomous Vehicles

Understanding history provides context for interpreting current events and trends. To

understand the progress of the current state-of-the-art (SOTA) in autonomous driv-

ing systems, a broader inter-generational perspective is useful. In fact, the quest for

autonomous mobile robots capable of safely navigating public road environments with-

out human oversight has a long history spanning over a century. Here follows an ap-

proximately chronological account of the pursuit of autonomous vehicles, showing how

components of the current mainstream approach has naturally evolved over time.

Remote operation. The pursuit of self-driving vehicles began in 1925, when a driver-

less car rolled down the streets of New York City. This event was captivating to the

public and marked the beginning of the driverless car era. Francis P. Houdiina, a former

U.S. Army electrical engineer and founder of the Houdiina Radio Control Co., built what

is believed to be the first radio-operated automobile. He set up a 1926 Chandler sedan

with a transmitting antenna that operated small electric motors controlling the vehicle’s

speed and steering angle. A crew following behind in another car remotely controlled the

vehicle. The radio controlled vehicle drove through heavy traffic in Broadway, managing

to turn corners, accelerate, decelerate, and honking its horn. Unfortunately, the demon-

stration ended when it crashed into another vehicle. Despite this setback, variations

of the vehicle were showcased years later on public roads in the US to the excitement

of onlookers. The public has always held the prospect of autonomous driving in high

regard and heralded its benefits with enthusiasm.

Physical lane maps. Autonomous vehicles have been an ongoing commercial pursuit

since the early 1930s, with various visions and technologies being proposed and tested

throughout the decades. In the early stages, Norman Bel Geddes envisioned a future

where cars could drive themselves with electronic speed and collision control systems sim-

ilar to those found in railroads. His Futura ride for General Motors at the 1939 World’s

Fair imagined grooves that would keep cars apart in their own “lane tracks.” The idea

was to engage automatic systems and relieve the driver from driving until reaching one’s

exit, with related visions involving magnetic trails, physical slots or troughs, or train-like

rails engaging hidden steel wheels on the inside of each tire. Despite technological ad-

vancements over the years, the two basic ideas have remained largely unchanged: smart

cars and smart roads. Primary goals for autonomous vehicles include safety, speed,
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access, more cars sharing the road, intelligent intersection navigation, and reducing con-

gestion. Early self-driving plans focused on special freeways to guide suitably equipped

cars safely along them, but building public infrastructure proved challenging.

Navigation by AI and computer vision In the late 1960s, experimental robots

began navigating through novel environments at Stanford Research Institute (SRI) and

other US universities, testing out new artificial intelligence (AI) techniques [28]. By

1971, semi-autonomous space probes were landing on other worlds, spurring a visionary

future of autonomous intelligent mobile agents. Early AI researchers began dreaming of

cars smart enough to navigate ordinary streets on their own. However, the challenges

were daunting for then popular expert systems. Focus lay in reverse engineering the

relevant systems in a moving biological systems like cockroaches: sensing, environment

processing, and reacting with appropriate behavior. In the 1980-1990s, German pioneer

Ernst Dickmanns and his group at Univ. Bundeswehr Munich (UniBW) created three

generations of an autonomous driving Mercedes sedan called VAmP. The autonomous

vehicle would cover 1000 km in Paris traffic at up to 130 km/h, and 1700 km on the

German autobahn driving up to 180km/h while passing other cars [37]. In Japan, the

Tsukuba Mechanical Engineering Lab developed a computerized driverless car that could

achieve speeds of up to 30 km/h using machine vision to track white road markings.

Hardware, implementation, and digital maps. Autonomous driving research be-

gan in earnest in the 1980s when the Defense Advanced Research Projects Agency

(DARPA) launching the first Grand Challenge in 1984 to encourage widespread devel-

opment of self-driving cars. The DARPA Grand Challenges held from 2004 to 2007, were

revolutionary in advancing AV technology. The first competition, a 241 km course in

the Mojave Desert, saw no vehicle complete the route due to technical difficulties. How-

ever, the event sparked interest and investment in self-driving technology at universities

such as Stanford and Carnegie Mellon. In the subsequent years, universities and indus-

try made significant strides towards developing reliable practical autonomous vehicles.

Progress culminated in the DARPA Urban Challenge in 2007 that first demonstrated

autonomous vehicles operating in realistic urban environments [38].

Commercialization. By the late 2000s, Google started researching and developing

autonomous vehicle with the intent of future commercialization as part of a moon shot

project. The resulting Google Self-Driving Car Project lead by the DARPA Grand Chal-

lenge winners Sebastian Thrun and Anthony Levandoowski. Under Thrun’s leadership,

the team recruited top researchers in the field and began refining the DARPA Challenge

approach and technology into a commercial system. The goal was to create a reliable

self-driving car capable of safely carrying passengers in real-world urban traffic condi-

tions. Google’s autonomous vehicle system, now commercially developed by Waymo,
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has since guided a fleet of vehicles over at least 800,000 km without causing any acci-

dents, making the company a leading advocate for fully autonomous vehicles. As of the

2020s, a multitude of companies and universities in all regions of the world are devel-

oping autonomous driving systems according to diverse approaches. The main focus is

real-world safety and scalability, and reducing the need of human supervision. Practi-

cal problems include robust perception, interactive motion planning, system safety, and

defining legislative regulations.

This thesis proposes that the conventional paradigms pursued by the majority of com-

panies and universities are fundamentally limited. The following section explains why

the conventional approaches may not sufficiently scale up to realize the full extent of

autonomous mobility.

1.2 Autonomous Driving Paradigms and Limitations

Autonomous driving agents can be categorized based on their underlying design princi-

ple. This thesis proposes a categorization by one of three paradigms: First, rule-based

agents based on defining explicit behavior by human programmed rules, execution struc-

ture, or algorithms. Secondly, learning based agents where behavior emerges implicitly

from patterns in observational or example data. Finally, vision-language models (VLMs)

based on perception grounded with world knowledge and reasoning capabilities of large

language models. The limitations identified for each paradigm provide motivation for

why the full autonomous driving problem is an AGI problem, as well as how the pro-

posed predictive state representation based approach is a part of overcoming identified

limitations.

1.2.1 Rule-based procedural instruction

The rule-based approach to autonomous driving agents is a methodology that relies on

a set of predefined rules or heuristics to navigate and control self-driving vehicles [38–

40]. These rules are typically derived from traffic laws, road regulations, and common

driving practices, and they dictate how the vehicle should respond in different situations

and environments. A rule-based system is typically separates the agent system (1.1)-

(1.3) into separated task-specific modules or components to manage complexity [41].

Conventional systems partition components by task, such as perception, localization,

path planning, and control. The rule-based approach is characterized by its simplicity

and ease of implementation, and a capable working system can be designed without

complex algorithms or extensive computational resources.
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Figure 1.1: Rule-based autonomous driving agents have limited capability to make
complicated decisions, like to break or not break for a flying plastic bag in a congested
roadway, due to the challenge of programmatically defining “common sense” knowledge.

One of the main advantages of the rule-based approach is its ability to specify explicit

behavior on how the vehicle should behave in various scenarios. For instance, rules can be

defined for speed limits, lane changes, intersections, and overtaking maneuvers [42]. By

adhering to these rules, autonomous driving agents can verifiably be ensured that they

comply with traffic laws and regulations, which is crucial for safety and legal compliance.

Moreover, the rule-based approach allows autonomous vehicles to make decisions quickly

and efficiently, as there is typically no need for complex computations or extensive data

processing. For example, rule-based approaches for motion planning include generating

paths using Dijkstra’s algorithm [43] or the A-star algorithm [44]. The simplicity of

the rule-based approach makes it an attractive option for companies looking to develop

self-driving vehicles and other mobile robots quickly and cost-effectively.

However, rule-based approaches have limitations as they rely on handcrafted rules and

features that may not generalize well to all scenarios or environmental conditions [45].

One of the main challenges is that it can be difficult to anticipate all possible driving

scenarios and develop human-defined rules that cover every eventuality. For example,

if a self-driving vehicle encounters an unexpected obstacle, such as debris on the road,

there may not be a predefined rule for how to respond. Specifying explicit rules for what

debris that can and cannot be traversed is nontrivial. Another example is to break or

not break for a flying plastic bag in a congested highway environment as illustrated in

Fig. 1.1. Colliding with objects should in general be avoided, but common sense implies

that hitting a plastic bag is better than causing a high-speed chain collision by panic

breaking. Additionally, relying on human effort can lead to inconsistencies or errors

in implementation, or interaction of multiple rules result in conflicts and unexpected

outcomes [46]. Moreover, as road conditions and regulations change over time, the rules

need to be updated regularly to ensure that they remain accurate and relevant.

Predefined rules can provide a reliable framework for behaving safely and efficiently in

well-defined environments like highways where anomalies are relatively rare [39, 42, 47].

However, in general environments a system must be capable to learn from experience to

adapt itself to ambiguous, complex and changing environments. Human beings rely on

experience and “common sense” to overcome seemingly simple problems, like deciding to



Introduction 9

drive or not drive over a fallen tree branch. Such common sense rules generally cannot

be precisely defined by humans. Therefore an intelligent agent, like human beings,

must possess a predictive world model which allows simulating expected outcomes of

hypothetical actions based on common sense knowledge of the world.

While the rule-based approach allows for rapid proof of concept demonstrations, the

approach does not scale gracefully to uncontrolled environments. In particular, rule-

based systems lack “common sense” which humans generally rely upon to overcome

unexpected situations [48–50]. The lesson learned is that setting out to a priori define

correct behaviour to all encounterable situations in the real world is simply intractable,

and that common sense is hard to specify programatically. Continuous learning during

operation is therefore a required component of a fully autonomous mobile agent.

1.2.2 Supervised correlation pattern learning

The second autonomous driving agent paradigm is based on supervised learning for dis-

covering useful correlation patterns in data. Learning-based autonomous driving has

been a significant area of research for the past decade, with numerous studies focus-

ing on developing systems that can navigate complex environments semi- or fully au-

tonomously [33, 51, 52]. Learning-based methods use machine learning techniques such

as supervised imitation learning [53], reinforcement learning (RL) [54] and inverse RL

(IRL) [55] to enable an autonomous vehicle to make decisions based on the perceived

current and past environment states. The learning-based approach allows the agent

system to learn to integrate the perception (1.1), state representation estimator (1.2),

and behavior function (1.3) components in a highly adaptable manner.

One of the most popular learning-based approaches for autonomous driving is deep

reinforcement learning (DRL) [56, 57]. DRL combines deep neural networks with RL

algorithms to create agents that can learn complex behaviors from high-dimensional

sensory inputs, such as images or point cloud data. Several studies have demonstrated

the effectiveness of DRL in various tasks related to autonomous driving [58, 59]. The

hypothetical advantage of RL is that useful task semantics such as road, lane markings,

and other vehicles, can be learned implicitly from raw data based solely on a task reward

signal [31]. For instance, using Deep Q Network (DQN) [57] to train an agent to navigate

through urban areas using camera images as input [60, 61]. The network learned image

representations that detected the road successfully without being explicitly trained to

do so.

However, training an autonomous driving agent in real-world scenarios presents several

challenges [59]. RL methods typically require randomly exploring the action space to
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Figure 1.2: Learning-based system generally lack explicit decision factors and a log-
ical reasoning process, meaning the resulting behavior is not guaranteeably safe. The

capability of explicit rule specification and following is likewise limited.

gather experience for learning a behavior maximizing reward. In the real world random

exploration is not possible due to danger to the agent and environment. Moreover, it

may not always cover all possible situations that the agent could encounter during de-

ployment. Learning from a scalar reward is inefficient as methods generally lack a causal

model for what decision factors cause the reward. The combination of learning from fail-

ure and inefficient sample learning efficiency is the primary challenge in the autonomous

driving agent domain [62]. Human beings can learn and adapt quickly based on instruc-

tion or failure likely due to their capacity of performing commonsense reasoning based

on a highly capable world model facilitating cause-and-effect mental simulations [63, 64]

Another challenge is designing a robust reward function for real-world environments that

precisely specify the intended behavior aligned with human interests [65]. The problems

of learning-based agents are illustrated in Fig. 1.2 depicting the challenge of guarantee-

ing desirable and safe behavior of an agent traversing a complicated rule-constrained

multiagent environment.

To address the issue of safety, researchers have proposed using simulation environments

to train RL agents before deploying them in real-world scenarios [58]. Simulation allows

for generating a vast amount of data quickly and cheaply, making it an attractive option

for training autonomous driving policies [66]. Another approach is to bootstrap behav-

ior from models trained by imitation learning [33, 51, 67]. For instance, [68] introduced a

safe policy that learns to predict errors made by a primary policy trained initially with

supervised learning without querying a reference policy. This approach ensures that

the agent does not deviate from its learned behavior while still exploring new strate-

gies safely. However, imitation learning does not fundamentally solve the exploration

problem, and generating example data can be time-consuming and expensive.

Inverse reinforcement learning (IRL) is another popular learning-based approach for au-

tonomous driving. IRL involves inferring an underlying reward function from expert

demonstrations and using it to train RL agents. This method has been used in vari-

ous tasks related to autonomous driving, such as intent prediction for traffic actors like

pedestrians or vehicles [42]. However, estimating the cost function accurately is chal-

lenging, which can lead to sub-optimal policies being learned by the agent. To address
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this issue, researchers have proposed using end-to-end learning approaches that directly

map observations to actions without explicitly defining a cost function.

Another challenge associated with IRL and DRL methods is their reliance on i.i.d.

(independent and identically distributed) data assumptions for data generation. This

assumption does not hold in real-world scenarios where the environment’s state changes

dynamically due to factors such as weather conditions, traffic patterns, or pedestrian

behavior. To overcome this issue, researchers have proposed using Data Aggregation

(DAgger) methods [55, 69] that iteratively collect observation-action pairs during testing

and retrain the agent with aggregated data from both training and testing phases.

Learning-based approaches such as DRL and IRL have shown promise in enabling au-

tonomous vehicles to navigate complex environments independently. However, sev-

eral real-world challenges remain unaddressed, including data collection limitations,

exploration-exploitation tradeoffs, reward function specification, and non-i.i.d. sequen-

tial data considerations pose challenges to real-world application of learning-based ap-

proaches. This thesis proposes to overcome practical limitations of learning-based ap-

proaches by advancing beyond correlative pattern learning on the sensor observation

level. The reliance on inefficiently learn from failure experience can be mitigated by in-

corporating cognitive world models facilitating reasoning based on commonsense knowl-

edge. With commonsense world knowledge and a mental simulator, it becomes possible

to predict detrimental outcome of hypothetical action sequences with limited experience

of failure.

1.2.3 Vision-Language Models

Large language models (LLMs) trained on massive amounts of text data have proved

to be a scalable method to learn and reason about commonsense knowledge of the

world [70]. The capability of LLMs for common-sense reasoning and versatility in han-

dling various inputs has inspired researchers to explore their potential as components

in autonomous driving agents [71–76]. Vision-language models (VLMs) [77–81] adds a

visual encoder trained to transform image content into the language embedding space.

This agent paradigm enables end-to-end autonomous driving systems that leverage the

power of both computer vision and natural language processing. Representing percepts

by language provides a means to perform spatio-semantic commonsense reasoning by

LLMs grounded in the external environment. VLMs enable more robust generalization

by allowing the system to understand complex scenes better [75, 82], improve far-horizon

planning [83, 84], support rich and precise human-machine communication [73], and plan

safe trajectories [85–87].
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Figure 1.3: VLM-based agent systems typically lacks a principled spatio-semantic
state representation. Most agents are limited to perceive and act on what is in immidiate
view. Other agents leverage a explicit list of objects. Neither approach provides a

adequate state representation for recalling how to clean up a messy room.

Various approaches have been proposed for integrating VLMs in autonomous driving

systems that combines characteristics from rule- and learning-based systems by typically

applying learned models in a structured modular structure. The perception and state

representation functions (1.1)-(1.2) are modeled by a VLM outputting states estimates

x̂ functioning as both percepts and states. The behavior function (1.3) is typically

implemented by a LLM finetuned on domain data for outputting actions or analysing

the state x̂. A typical approach is based on designing a language prompt or instruction

for which a multimodal LLM completes by leveraging visual features, world knowledge,

and task knowledge specified in the prompt itself [88].

The integration of vision and language in autonomous driving systems has also enabled

the development of new applications, such as natural language-based user interfaces and

task instructions for vehicle control [73, 75], visual question answering (VQA) systems

for scene comprehension [89], and multimodal fusion techniques for improved percep-

tion [72].

While providing convincing proof of concept work, there are several limitations with

current VLM approaches that need to be addressed for their wider application in real-

world scenarios. One major limitation is the lack of generalization across unseen data

and tasks. While LLMs have demonstrated superior common-sense capabilities and im-

proved performance on various natural language processing tasks, incorporating these

capabilities into real-world autonomous driving tasks remains a challenge. This is par-

ticularly relevant in addressing long-tail scenarios, where the model needs to handle rare

or unusual situations that may not have been encountered during task-specific finetuning

training [75].

Another limitation is the complexity of designing prompts for optimal performance. The

effectiveness of VLMs relies heavily on the design and structure of the language prompt
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used to guide the reasoning process [70, 90]. This introduces a level of subjectivity into

the model’s performance, as different prompts can lead to significantly different results.

Additionally, it is not always feasible or practical to include all relevant environmental

observation information in the text prompt, which may limit the model’s ability to make

accurate predictions and decisions [91]. The effectiveness of these models is contingent

upon the quality and diversity of the training data, with a lack thereof potentially leading

to reduced performance or an inability to generalize effectively [75]. Furthermore, VLM

approaches are computationally intensive and require significant resources for training

and deployment. This can be a barrier to their wider adoption, particularly in resource-

constrained environments or applications with real-time requirements.

This thesis argues that the most limiting factor of VLM-based agents is their lack of a

principled spatio-semantic memory as illustrated in Fig. 1.3. The state representation

x̂+ t in (1.2) is typically limited to a textual description of an input image [91, 92], or at

best, an list of explicit semantic objects and their spatial location [91]. This thesis pro-

pose that the state representation of of VLM agents must go beyond an explicit listing of

all possible observed objects and their spatial location. The state representation should

instead be modeled as a 3D vector space or map containing the full geometric extent of

semantic objects similar to the biological hippocampus [93, 94] Additionally, semantic

information encoded into the map should querying of diverse visual and semantic at-

tributes of objects as demonstrated by my theory of latent compositional semantics [95].

1.3 Hypothesis: Full Autonomous Driving is an AGI Agent

Problem

The three mainstream approaches to designing autonomous driving agents each have

inherent limitations and challenges as explained in Sec 1.2. The identified limitations

and challenges serve as theoretical and experimental justification that revolutionary, not

evolutionary, progress is needed. Accordingly, I propose the hypothesis that solving the

full autonomous driving agent problem is akin to solving the embodied AGI agent prob-

lem. This section present how intermixing components of each paradigm compliments

their weaknesses and can result in a prototypical general-purpose AGI-like agent design.

The primary issue with rule-based procedural instructions programmed by humans is

scalability problems due to the vastness and complexity of the world, and the ambiguity

of commonsense knowledge. This thesis proposes that continuous learning from observa-

tional experience and building a predictive world model that predicts expected outcomes

of hypothetical actions based on world knowledge, learned from observational experience
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Figure 1.4: Elements of the proposed general-purpose mobile reasoning agent.

and non-observational knowledge source, must be an integral part of the solution. The

realization of commonsense reasoning agents is further deliberated upon in Chapter 3.

The primary issue with conventional correlation-based supervised pattern learning is the

unreliability of weakly structured connectionist models like neural network not discover-

ing causal mechanisms governing the world [36, 96]. Models without causal structure and

grounding in extensive world knowledge are bound to be fragile beyond the correlations

observed within the training dataset [35, 97]. Even the hypothetical experiment sup-

posing to capture and annotate data representing the entire world is principally flawed,

as the world is a dynamic and evolving system that cannot be captured by a static

data distribution [98]. Relying on correlation-based learning methods for decision mak-

ing is therefore a fundamentally and principally flawed approach, and a system based

on learning causal processes from observation, hypothesis formulation, and experiment

must be pursued [63]. This thesis proposes implementing directional state-transition

modeling based on semantically rich predictive world states natively compatible with

multimodal LLMs capable of reasoning over commonsense reasoning encoded in natural

language. A state-transition models bootstrapped with world knowledge allows learning

and predicting causal outcomes of actions as the inference is directional and decisions are

experimentally testable by the agent as an “artificial scientist”. The proposed predictive

state representation is deliberated upon on Chapter 5.

The fundamental issue with spatio-semantic reasoning by VLMs is their spatially and

semantically limited representation of the environment state, preventing flexibly and

efficiently mapping of “things” to “where”. Another related challenge is enabling the

representation and querying a diverse set of object semantics including affordances and

general attributes [99–101]. This thesis proposes to implement a spatio-semantic envi-

ronment representation capable of storing grounded memories of rich objects semantics
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akin to the biological hippocampus [94]. The proposed predictive state representation

both capture the spatial extent and rich object semantics as further deliberated on in

Chapter 5 and Chapter 6. A related challenge is representing and querying diverse learn-

able attributes or semantics of objects. This thesis proposes to leverage open vocabulary

predictive states [95] using latent compositional semantics [95]. The proposed predictive

state representation goes beyond explicit listing of all possible observed object semantics

and instead represents objects by learnable compositional semantics such as surface-of-a-

table-object corresponding to the semantic set [table, surface,wood, brown, furniture, . . .].

Additionally the thesis proposes the predictive state representation as an artificial hip-

pocampus, expanding VLM-based agents from a primarily image-centric world state to a

3D spatio-semantic spatial memory similar to maps relied upon by conventional mobile

robots.

Overcoming the limitations of the existing paradigms as proposed in this section will

result in an AGI-like general-purpose mobile reasoning agent as explained in the follow-

ing and visualized in Fig. 1.4. First, the agent is an AGI-like agent due to inheriting

the capabilities of LLMs to perform commonsense reasoning, contextual information in-

tegration, and few-shot learning. Additionally, the state-transition framework supports

mental simulations of sequences of abstract actions for discovering causal models of the

environment and avoiding negative outcomes based on commonsense knowledge instead

of trial-and-error. Secondly, the agent is general-purpose based on its ability to follow

abstract instructions specified in natural language, as well as leverage a semantically rich

and grounded open vocabulary predictive environment state representation facilitating

querying of a priori unknown task semantics. Finally, the agent is an embodied mobile

agent distinguished from a general-purpose multimodal LLM by the spatially grounded

semantic environment state representation.

1.4 Definition: General-Purpose Agents

Throughout this thesis the term “general-purpose agent” is used to signify the working

concept of an agent designed with the capability to complete a priori unknown tasks

requiring reasoning over an a priori unknown set of semantics. The concept of general-

purpose is closely aligned with AGI-like capabilities. A more throughout definition goes

as follows.

A general-purpose robot is a machine designed to perform a wide range of tasks rather

than being limited to a single specialized function. This versatility allows them to be

adapt to various tasks across multiple domains, such as navigation, object manipulation,
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question answering, and so on. Their flexibility is enhanced by hardware designs fea-

turing microphones, speakers, articulated arms, grippers, and mobility, enabling them

to work with various products or in diverse environments by leveraging multiple sensor

and actuator modalities.

The motivation behind the development of versatile general-purpose machines lies in

creating robotics systems that mimic the general capabilities and adaptability of hu-

mans, enabling them to operate effectively across many different situations and jobs.

This approach addresses some of the limitations and challenges faced by mainstream

autonomous driving agent approaches, such as scalability problems due to world com-

plexity and ambiguity of common-sense knowledge.

This thesis propose realizing general-purpose mobile reasoning agents by continuous

learning from observational experience, along with building a predictive world model that

anticipates expected outcomes based on hypothetical actions. The thesis also suggests

implementing causal state-transition modeling using predictive states compatible with

reasoning over common sense knowledge encoded in natural language. The use of open

vocabulary predictive states leveraging latent compositional semantics is proposed to

overcome representational limitations of flexibly and efficiently mapping object semantics

to a principled spatio-semantic spatial memory akin to an artificial hippocampus.

1.5 Scope of Thesis

This thesis presents conclusions from over six years of research into AGI-like frameworks

for mobile robotics including autonomous driving systems. The investigation starts from

a holistic analysis of strengths and limitations of common autonomous driving research

and development paradigms, as well as functional faculties of biological intelligence as a

proof of concept for the viability of general-purpose intelligent agents.

The scope of the thesis and related research literature is vast. The thesis contribution

consists of two parts. The first part focuses on the theory of latent compositional se-

mantics presented in Chap. 4, and open-vocabulary predictive state modeling framework

presented in Chap. 5-6. These topics are parts of published works and presented with

theoretical grounding together with extensive and rigorous experimental evidence. The

experimentally evidenced results provides a foundational basis of the larger theoretical

agent framework. The presented experimental results are for 2D top-down open vocabu-

lary environment state representations suitable for navigation tasks. A full 3D predictive

state representation for truly general-purpose agents is considered future work.
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The second thesis contribution part presents theoretical proposals concerning the struc-

ture and faculties of AGI-like agent frameworks. The theoretical findings are based

on extensive reading of inter-disciplinary research literature and deductive reasoning.

In particular, chapter 3 proposes a reasoning framework grounded in spatio-semantic

memories that identifies a set of core faculties as well as a computational structure

combining the faculties into an autonomous general-purpose mobile reasoning agent.

The resulting framework principally ties together real-world robot agents operating on

partial observations, state transition modeling for long-term planning, and LLM-based

reasoning over commonsense world knowledge as an internal mental simulator. A full

implementation and experimental evaluation of the proposed theoretical internal mental

simulator framework is considered future work.

The proposed predictive environment state representation and internal mental simu-

lation is well-grounded in the broad research literature and provides a multitude of

promising novel research directions for realizing a new generation of future versatile

mobile agents capable of commonsense reasoning over principled spatio-semantic envi-

ronment representations in the form of predictive states.

1.6 Thesis Overview

The thesis is organized as follows:

Chapter 2 presents a literature review of research directions related to state represen-

tations for general-purpose mobile reasoning agents. Topics include perception, open-

vocbulary semantic representation learning, data-driven world modeling, and spatial

cognition and navigation.

Chapter 3 provides background on biological general intelligent agents like humans and

artificial intelligence agents. A theoretical framework presents core components of the

proposed general-purpose mobile reasoning agent. The proposed open-vocabulary pre-

dictive state representation, associated predictive world model, and state-transition mod-

els incorporating commonsense world knowledge are the core component. Other topics

include learning spatial navigation, task descriptions, planning by simulation, and low-

level action execution.

Chapter 4 presents the theory of grounding latent compositional semantics as spatio-

semantic memories, forming the base representation of the predictive state model. La-

tent compositional semantics is a principled learning-based knowledge representation

and mathematical theory of unconditional open vocabulary semantic segmentation with

proved mathematical properties and guarantees of optimally. Experiments show a single



Literature Review 18

latent compositional semantic embedding can represent a set of 100 random semantics

for ideal uniformly distributed high-dimensional embedding spaces. Other experiments

show that latent compositional semantics are discoverable from visual appearance and

singular descriptions. A novel sufficient similarity semantic inference method overcomes

fundamental limitations of conventional “most similar” semantic inference, achieving

high-level overlapping semantic segmentation performance by 19.63 mIoU on average.

Chapter 5 explains the proposed open-vocabulary predictive world model as an artificial

hippocampus that learns based on the principle of predictive coding similarity to the

hippocampal formation in the brain. The chapter deliberates on the faculties of the

biological hippocampus from a computational neuroscience perspective. The theory

of predictive coding is proposed as a general learning framework grounded in biological

intelligence. The internal mental simulator proposed in Chap. 3 is proposed as equivalent

to an artificial hippocampus. The predictive world modeling methodology proposed in

this thesis is proposed as an implementable model of such an artificial hippocampus

by providing the required faculties, such as generating predictive spatio-semantic state

representations and learning from observational experience. The chapter concludes with

a mathematical derivation of the presented predictive world model. Derivations include

hierarchical latent variable generative models, the novel posterior matching optimization

algorithm, and the sampling-based inference algorithm.

Chapter 6 present an application of the latent compositional semantics and the open-

vocabulary predictive world model as a predictive state representation for autonomous

driving reasoning agents. The chapter explains how sensor observations are accumulated

to form partially observed world states, and how the open-vocabulary predictive world

model learns to generate a diverse set of plausible complete states. The usefulness of the

predictive state representation is demonstrated by enabling a self-supervised directional

soft lane probability model to learn navigational patterns better than SOTA supervised

model while limited to partial observations only.

Chapter 7 concludes the thesis by summarizing the contributions and discussing limita-

tions and future research directions.

Figure 1.5 provides a summary of the proposed core contributions. Each entry is cate-

gorized as an experimentally verified proposal, a theoretical proposal, or a synthesis of

existing literature.
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Conceptual framework
 Artificial Hippocampus as Learned Simulator (Sec. 5.3)

Computational Framework

 Predictive World Modeling (Sec. 3.4.4.1, 5.4)

 General-Purpose Agent Framework (Sec. 3.4)
 Latent Compositional Semantics (Sec. 4.3)

 Grounded Mental Simulator (Sec. 3.4.4.2, 3.7)
 Task Description (Sec. 3.6)
 Low-Level Action Execution (Sec. 3.8)

Application
 Open Vocabulary Predictive States (Sec. 6.3)
 Learning Navigational Patterns by Predictive States (Sec. 3.5, 6.4)

Figure 1.5: Structure of proposed core contributions presented in the thesis. Con-
tributions are partitioned into groups based on degree of practical implementation and
experimental verification. Red (⋆) entries denote original proposals with experimen-
tal evidence. Green (∗) indicates original theoretical proposals empirically supported
by the literature. Blue (⋄) proposals are synthesized from existing literature. Section

numbers indicate central parts describing each contribution.



Chapter 2

Literature Review

2.1 Introduction

This chapter consolidates research relating to the realization of general-purpose mobile

reasoning agents. The related research is partitioned into three main research groups

approaching a common problem focused on in this thesis. Each group partitions relevant

research into further refined sub-groups.

2.2 Perception and Semantic Representation Learning

The existing literature on self-supervised visual representation learning, dense represen-

tation learning, and open-vocabulary semantic segmentation suffers from several limita-

tions. Current methods struggle to scale to high-resolution images, require large datasets

with dense annotations, and often produce noisy or low-resolution feature maps. Addi-

tionally, common semantic interpretation methods like CLIP [77] lack spatial grounding,

making such models unsuitable for tasks that require precise spatial information. Fur-

thermore, unconditional open vocabulary semantic segmentation models like OVSeg [81]

are not yet deeply understood, and their practical usefullness is limited by semantic in-

ference requiring a complete partitioning of the image by a set of non-overlapping query

semantics [95]. Knowledge representation frameworks, such as semantic networks and

frames, are also limited by their inability to handle uncertainty, semantic vagueness, and

incomplete data.

This thesis addresses these problems by proposing a novel method ViCE [102] that en-

ables a model to efficiently learn to generate precise object-fitting semantic partitioning

even for high-resolution images, and improves the state-of-the-art unsupervised semantic

20
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segmentation benchmark on Cityscapes [103] and COCO [104]. Furthermore, the thesis

proposes a mathematical framework for understanding the representations learned by

unconditional open-vocabulary semantic segmentation models, showing that they can be

interpreted as latent compositional semantic embeddings [95]. The proposed “sufficient

similarity” open vocabulary semantic inference method overcomes the three fundamental

flaws of conventional “most similar” open vocabulary semantic inference as identified in

Sec. 4.3.4. See Table 2.1 for problem and proposed solution summaries. See the following

sections for additional information and literature grounding.

Table 2.1: Perception and semantic representation learning problems and proposed
solutions.

Problem Summary Proposed Solution

Dense self-supervised visual

representation learning lacks efficiency

and effectiveness.

Introduce the method ViCE [102] that

improves learning efficiency, allows

training on larger feature maps, and

reduce computational complexity by

O(1000) (see Sec. 4.2.1).

Open-vocabulary semantic

segmentation modeling lacks a

mathematical theory and principled

inference method for versatile

real-world application.

Present the mathematical theory of

latent compositional semantics [95]

that proves unconditional open

vocabulary semantic segmentation

models learns latent embeddings

representing sets of semantics (see

Sec. 4.3). The proposed sufficient

similarity inference [95] overcomes the

three fundamental limitations of

current open vocabulary inference

methods (see Sec. 4.3.4).

Knowledge representation lacks a

scalable method for learning and

revising a diverse set of category

associations from incomplete and noisy

data.

Introduces compositional semantic

embeddings [95] as a principled and

scalable approach to learn compact

and semantically diverse object

descriptions from uncurated data (see

Sec. 4.3.1).

Continued on next page
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Table 2.1 – continued from previous page

Problem Summary Proposed Solution

Cognitive psychology and philosophy

argue that real-world objects are not

perfectly described by a single

category, and categories have fuzzy

boundaries.

Provides a computational

framework [95] to learn natural kinds

from incomplete object descriptions,

supporting the idea of semantic

memories and hierarchical concepts

Sec. 4.3.1).

2.2.1 Self-Supervised Visual Representation Learning

Early works experimented with pretext tasks as a substitute for human annotations [105–

110]. Recent work demonstrates that image-level embedding classification with cross-

entropy minimization on large datasets is a more effective approach capable of surpass-

ing supervised pretraining [111, 112]. Contrastive methods [113–116] learn discrimi-

native latent embedding vectors for images by “pulling together” views of the same

image, and “pushing away” embeddings of different images. Recent non-contrastive

methods [112, 117, 118] demonstrate approaches to avoid negative sampling to improve

computational efficiency. Clustering methods [3, 119–124] simultaneously discovers a set

of clusters or prototypes, and learns discriminative image embeddings. Contrary to con-

tastive methods, the objective does not have to be approximated as optimizing over the

entire set of negative representative clusters is tractable. DeepCluster [119] iteratively

performs K-means clustering over the entire dataset and learns an embedding model and

classification head to predict the cluster assignment. SeLA [120] presents a principled

formulation for clustering and representation learning as a single optimization objective,

by casting cluster assignment as an optimal transport problem [125, 126]. SwAV [3] and

ODC [122] demonstrate that clustering can be done online per batch to increase learning

efficiency.

2.2.2 Dense Representation Learning

Recent clustering-based methods approach dense representation learning as an instance

segmentation problem [127–130] and regional feature correspondence [131–133]. These

methods are purposed for pretraining backbones and generally output small feature

maps (e.g. 7x7), in contrast to my method. Similarly to my method, VADeR [134]

learns dense representations by contrasting pixel-level embeddings in augmented views.

My method improves on VADeR by allowing training on larger feature maps (512x512

vs. 56x56 px), more views, optimization without a negative sample memory bank, and



Literature Review 23

contextual region masking. Self-supervised object detection [135–140] learns expressive

embeddings for plausible object proposal regions sampled randomly or heuristically [141].

Masked image modeling (MIM) [142–145] demonstrates strong representation learning

capability surpassing contrasting views. However, all these models output low-resolution

feature maps. In contrast, my method ViCE generates precise object-fitting semantic

partitioning even for high-resolution images.

Visual and semantic coherence is a useful inductive bias to enhance effectiveness of dense

representation learning for images. By assuming that visually similar regions represent

the same object semantics, redundant computation can be reduced by an O(1000) [102].

Existing works leverage self-supervised clustering approaches to learn coherent semantic

groupings from mutual information [146, 147], geometric equivariance [5], and GAN-

based approaches [148, 149]. Other works [150, 151] leverages self-supervised depth

map estimation [152, 153] for enhancing semantic segmentation performance. Recently,

DINO [112] demonstrated that attention maps for semantic objects naturally emerge

for self-supervised Vision Transformer (ViT) models [154, 155]. STEGO [156] presents

a method to distill features from DINO and achieve SOTA results. Karlsson et al. [102]

introduce superpixelization as a natural hierarchical region decomposition for dense con-

trastive learning in unsupervised semantic segmentation of high-resolution images. Per-

forming dense representation learning by decomposing images into a small set of visually

coherent regions reduces the computational complexity of contrasting cluster assign-

ment [3] by O(1000) while preserving detail. Experiments show that contrasting over

regions instead of pixels improves the effectiveness of contrastive learning methods, ex-

tends their applicability to high-resolution images, improves overclustering performance,

superpixels are better than grids, and regional masking improves performance.

2.2.3 Unsupervised Semantic Segmentation

Existing works leverage self-supervised clustering approaches to learn coherent semantic

groupings from mutual information [146, 147], geometric equivariance [5], and GAN-

based approaches [148, 149]. Other works [150, 151] leverages self-supervised depth

map estimation [152, 153] for enhancing semantic segmentation performance. Recently,

DINO [112] demonstrated that attention maps for semantic objects naturally emerge

for self-supervised Vision Transformer (ViT) models [154, 155]. STEGO [156] presents

a method to distill features from DINO and achieve SOTA results. My proposed model

ViCE [102] improves learning efficiency also on high-resolution images by contrasting

cluster assignment over superpixels. The expressiveness of the learned dense embed-

dings is demonstrated by improving the SOTA unsupervised semantic segmentation

benchmark on Cityscapes, and for convolutional models on COCO.
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2.2.4 Word embeddings and visual tokens

In natural language processing (NLP), the basic representation of words are categorical

tokens or one-hot vectors. Learning semantic embeddings for words using unsupervised

methods as a pretraining task [157–159] offers significant improvements for downstream

tasks compared with learning word embeddings as part of the task [160]. Word embed-

dings is the de facto elementary representation used by all recent language models [161–

164]. The metric of semantic similarity between words is co-occurrence in sentences [165].

Embedding models are optimized so that the embeddings for two words that often co-

occur is close in vector space. A separate set of sampled word embeddings assumed

to be unrelated are pushed away similarly to noise contrastive estimation [115, 166] to

avoid degenerate solutions [167].

In computer vision, the bag of visual words model [168–170] decompose images into

discriminative local image features typically extracted at keypoint locations by a SIFT

detector [171]. Later works propose to discover mid-level visual elements or words with

richer visual semantics in the form of discriminative patches [172] and mode seeking [173]

based on learning through iterative clustering and classification similar to recent self-

supervised clustering methods [119] but for representative HOG features [174] in pixel

space. More recently, extraction of latent embeddings or tokens for image patches is

demonstrated by prior GNN methods [175–177]. The Visual Transformer (VT) [178]

adds recurrence to generate visual tokens from current and previous spatial attention

maps. However, these methods require a separate transformation matrix to be learned

through dense supervised learning task.

2.2.5 Natural language processing

The study of using natural language as an interface for human-machine communication,

and how to enable machines to leverage human written knowledge, is called natural

language processing (NLP). Natural language is ambiguous and sentence correctness is

not perfectly decidable by rules [28]. Language models (LM) [161, 179] instead learn

to predict the likelihood p(X ) of any sequence of text tokens X according to a natural

language dataset.

Word embeddings [159, 180] substitute non-semantic word tokens by a semantic vector

representing the meaning of the word. Word embeddings are discovered from maximizing

similarity of embeddings of co-occurring words [181]. Contextual representations [182]

extends word embeddings by encoding context from surrounding words. Large language

models (LLM) [161, 179, 183] can generate semantic embeddings out of entire sentences.
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My approach differs from word and sentence embeddings as I represent a set of seman-

tic embeddings representing an object description by a single compositional semantic

embedding.

Clustering [184] and mixture models [185, 186] in NLP discover groups of semantically

similar text data. The Latent Dirichlet Allocation (LDA) model [185] parses documents

into mixtures of discovered latent topics that allow a finer semantic similarity search. A

generative probabilistic mixture model p(z) approximates the distributions of semantic

embeddings z ∈ Z by K mixture components pk(z) weighted by the probability πk that

each mixture component is sampled

p(z) =

K∑
k=1

πk pk(z). (2.1)

The optimal model is a mixture of Dirac delta distributions pk(z) = δ(z − z(k)) with

number of mixtures K equaling the number of semantics in the distribution Z. As

the set of possible semantics in natural languages are unbounded, a common distribu-

tion approximation is the Gaussian mixture model (GMM) with K ≪ |Z| components

pk(z) = N (µk,Σk) representing the K best semantic clusters. However, this approx-

imation has practical limitations. The required clusters K is generally not known.

Optimizing the mixture model p(z) is challenging. Storing the the mixture distribution

parameters or all K semantic embeddings µk can be inefficient.

My latent compositional semantics approach instead leverage properties of high-dimensional

hyperspheres to find an optimal semantic embedding z∗ akin to clustering. The vector

z∗ defines p(z ∈ Z) by similarity instead of approximating the entire distribution p(z).

My approach has mathematical guarantees of optimality, and can represent a large set

of semantics by a single embedding while optimizable by gradient descent.

2.2.6 Open-vocabulary semantic segmentation

Open-vocabulary semantic segmentation is a computer vision task that leverages the

power of vision-language models (VLMs) [77]. VLMs operate within a unified embed-

ding space, enabling them to bridge the gap between visual and textual information.

The core functionality of a global description VLM involves training a visual encoder

EncV () and a language encoder EncL() in tandem. These encoders operate on a paired

image x and text description t to generate semantically aligned visual embeddings zv

and textual embeddings zt within a shared embedding space Z. This alignment allows

VLMs to act as an interface for querying visual data using natural language. Cosine
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similarity is typically used to measure the semantic similarity between zv and zt. Train-

ing for these models often utilizes large-scale image-captioning datasets and contrastive

learning techniques. While global description models hold promise for various applica-

tions including image-text matching, multimodal search, and visual question answering

(VQA) [78, 79], their outputs lack spatial grounding within the input image. This limi-

tation hinders their effectiveness in tasks that require precise spatial reasoning, such as

navigation, manipulation, and environment mapping [85, 90, 187].

In contrast, dense vision-language models [6, 80, 81, 95, 188–193] produce aligned em-

bedding maps. These embedding maps represent semantic information at the pixel level,

allowing for a more precise fit to object boundaries within the image. One approach to

achieve densification involves modifying pre-existing global description models. Tech-

niques like removing the final global pooling layer, as employed in MaskCLIP [190],

leverage the strong generalization capabilities of these models. While this approach of-

fers the benefit of utilizing pre-trained global description models, the resulting outputs

often exhibit significant noise levels. This noise can significantly hinder the practical

application of such models in real-world robotics tasks requiring accurate segmentation

information.

An alternative approach to achieving dense descriptions leverages pre-trained region pro-

posal (RP) models [194]. These models predict a set of object-masked bounding boxes.

Each bounding box is then fed into a pre-trained global VLM [81] to generate a semantic

embedding. This embedding is subsequently projected onto all pixels encompassed by

the corresponding masked region within the original image. While the object-crop ap-

proach demonstrates promising results for object-centric image inputs typical of small,

controlled environments like kitchens or indoor spaces [80, 195], it exhibits limitations

in handling large-scale and complex scenes. Road environments, for instance, require

multi-scale object perception, which this approach struggles to achieve effectively. Fur-

thermore, the computational cost associated with performing individual inference for

each object can be significant.

In contrast to the previously discussed approaches, another research direction focuses on

training a novel vision model specifically designed for dense feature representation. This

model, denoted as fθ(), leverages an architecture and optimization scheme tailored for

this task. One example of such an approach is LERF [196]. LERF integrates language

embeddings within a neural radiance field (NeRF) [197], enabling semantic querying of

3D environment representations. This approach offers the potential for querying the

environment based on semantic concepts. However, limitations exist. LERF may strug-

gle with extrapolation tasks and potentially requires observing the entire environment

before functioning effectively. Open-vocabulary object detectors bridge the gap between
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semantic understanding and image regions by localizing predicted vision-language model

(VLM) embeddings to bounding boxes [198]. Within the field of open-vocabulary se-

mantic segmentation, two primary categories of models emerge: conditional and un-

conditional. Conditional models [189, 193, 199, 200] facilitate fine-grained semantic

segmentation guided by additional text or image input during the forward pass. How-

ever, this approach has limitations in projecting general-purpose, open-set semantics

into a broader representation encompassing both spatial and semantic information of

the environment. In contrast, unconditional methods [6, 95, 188, 192] focus on predict-

ing general-purpose embedding maps, enabling open-ended semantic querying after pro-

jection. Notably, unlike global embedding models [77], unconditional open-vocabulary

semantic segmentation models require smaller datasets with dense annotations for train-

ing. The theory of latent compositional semantics [95] provides a valuable mathematical

framework for understanding the representations learned by these unconditional models.

This theory sheds light on the properties, guarantees, and representational capacity of

these models.

The open-vocabulary predictive states proposed in this thesis leverages open-vocabulary

semantic segmentation to achieve accurate semantic projection as environment repre-

sentations. This projection is facilitated by the theory of latent compositional seman-

tics [95]. This theory provides valuable insights into the mathematical properties and

representational capacity of the modeled semantic embeddings.

2.2.7 Vision-language modeling

Multimodal models that semantically interpret images and text by a unified embed-

ding space are called vision-language models (VLMs). Global description generating

VLMs [77] consist of a visual EncV () and language encoder EncL(). Both encoders are

co-trained to generate a semantically similar visual and text embedding zv and zt for an

input image x and text t in an aligned embedding space Z. Alignment enables VLMs to

be used as an interface to query or express contents of visual data in natural language.

Semantic correspondence between zv and zl is measured by cosine similarity. The en-

coders are typically trained on internet-scale image captioning datasets using contrastive

learning. Global description models have many usages like image-text matching, multi-

modal search, multimodal generative modeling [78], and visual-question-answering [79].

However, outputs are not spatially grounded in the input image and therefore have

limitations for tasks requiring precise spatial information such as navigation [85], ma-

nipulation [90], and mapping [187].
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Dense description VLMs [6, 80, 81, 188–193] generate aligned embeddings for every image

pixel for fitting semantics to object boundaries. MaskCLIP [190] aims to leverage the

strong generalization power of global description VLMs by removing the global pooling

layer. However, the output is considerably noisy and have limited practical usefulness

for robotics tasks.

One approach to generate dense descriptions is to use a region proposal (RP) model [194].

The RP model predicts a set of object crops that are interpreted by a global VLM [81].

The resulting global embedding is projected onto all pixels covered by the region. The

object crop approach works well for object-centered image inputs typical for indoor

robotics environments, but less so for large and complex scenes requiring multi-scale

object perception [80, 195]. Computational cost is high due to performing inference for

every region separately.

Another direction of work instead trains a new vision model fθ() with and architecture

and optimization scheme designed for dense feature representation. LERF [196] grounds

language embeddings in a neural radiance field (NeRF) [197], allowing querying seman-

tics in 3D environment representations. Open-vocabulary (OV) object detectors localize

predicted VL embeddings to bounding boxes [198]. Works related to open-vocabulary

semantic segmentation can be categorized into two types. Conditional OV semantic

segmentation models [189, 193, 199, 200] allows fine-grained query guided by additional

text and/or image input. One drawback is that conditional inference require the orig-

inal image. Unconditional methods [6, 188, 192] learns to predict general embedding

maps such that the likelihood is maximized over the training dataset. Contrary to

global embedding models [77], unconditional semantic segmentation models are trained

on relatively small densely annotated datasets. The expressiveness of unconditionally

predicted embeddings is not yet deeply understood.

This thesis presents an interpretation of unconditional OV semantic segmentation predic-

tions as latent compositional semantic embeddings z∗. I show that the representation z∗

combines the compactness of unconditional inference, the expressiveness of conditional

inference, and the capacity to represent semantic object descriptions of length K.

2.2.8 Knowledge representation

A general-purpose intelligent agent needs to store information about the world in a prac-

tically useful form for reasoning and task completions. This problem is called knowledge

representations. An ontology is a framework for organizing and representing knowl-

edge into a hierarchy of categories or concepts. Philosophers and artificial intelligence

scientists commonly recognize six types of knowledge [28]: concrete objects including
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things and stuff, abstract categories for organizing objects in terms of similarity by

shared properties, measurements for ordering of properties, and events, fluents, and

time points specify temporally changeable statements.

First-order logic (FOL) [201] and extensions like fuzzy [202] and modal logic [203] tra-

ditionally express an object x being a member of a category Category as Category(x)

or x ∈ Category. Semantic networks [204] is a subset of FOL designed to represent

knowledge as a directed graph of objects and categories. Objects are associated to one

or more categories by MemberOf(·, ·) relations. Categories are associated to other cat-

egories to form a taxonomic hierarchy. The hierarchy of categories allows objects to

inherit semantic descriptions from higher-level categories, implying that an object that

is a chicken is also a bird (but not the other way around):

Chicken(x) ⇒ Bird(x). (2.2)

Frames [205] extend Semantic networks with inheritable default attribute values like

height = 1 and properties CanFly = True similar to object-oriented programming.

Semantic networks have several practical limitations. First, semantic vagueness is an

inherent aspect of object descriptions as explained in Sec. 2.2.9. Expressing degree of

membership is challenging in purely logical representations. Secondly, the problem of

inferring correct and diverse category associations from perception is not addressed.

Finally, a complete ontology encompassing the entire world does not exist. A scalable

method for learning and revising a diverse set of category associations from incomplete

and noisy data is needed.

This thesis presents compositional semantic embeddings as a principled and scalable

approach to learn compact and semantically diverse object descriptions from uncurated

data.

2.2.9 Cognitive Psychology and Philosophy

The proposed idea of latent compositional semantics has strong support in cognitive

psychology, neuroimaging, and philosophy. Cognitive scientists believe there exist two

types of long-term memory: declarative and nondeclarative [206]. Declarative memory

involves the conscious recollection of events and facts, encompassing memories that

can be explicitly articulated or recounted, while also including those that elude verbal

description. It is also known as explicit memory. Declarative memory is further divided

into two primary forms: episodic memory, which concerns personal experiences and

specific events in particular places and times, and semantic memory, which encompasses
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general knowledge about the world, concepts, and language [206]. Semantic memories are

derived from an agent’s experiences but is characterized by its abstract and conceptual

nature, devoid of ties to any specific encounter [207]. My approach implements the idea

of semantic memories into a computational learning framework.

Semantic concepts are organized into hierarchies [206]. These hierarchies comprise three

levels: super-ordinate categories, situated at the top (e.g., items of furniture); basic-

level categories, positioned in the middle (e.g., chair); and subordinate categories at

the bottom (e.g., office chair) [208]. Concepts are rarely processed in isolation; instead,

the processing is heavily influenced by the current context and environment [209, 210].

Qualities of observable objects are easier to contemplate [206], underscoring the intricate

nature of how perceptual and cognitive systems interact when processing concepts and

information about the world. My work shows how machines can learn hierarchical

concepts from independent visual observations.

Philosophers argue that real world objects are generally not perfectly described by a

single category, as categories themselves are not precisely specifiable. Categories with

fuzzy boundaries are called natural kinds. To give an example, finding a perfect log-

ical specification of a platonic “chair” is futile and is bound to results in unintended

inferences [211]. Representing real world objects instead in terms of fuzzy semantic

descriptions, and determining semantic membership through similarity, has strong sup-

port in philosophy. Wittgenstein [212] proposes that members of a category share family

resemblance instead of necessary and sufficient characteristics. Lakoff [213] argues for

categorization based on prototype similarity and analogies. Schwartz [214] writes that

category membership is a matter of degree, meaning similarity to a cluster prototype is

a useful measure of membership. In this work, I provide a computational framework to

learn natural kinds from incomplete object descriptions.

2.3 Learning Predictive World Models

The problems addressed in this thesis relate to the challenges of learning predictive world

models from partial observations. In various domains, such as image inpainting, stochas-

tic prediction models, bird’s-eye-view generation, and world models, there is a need to

predict complete representations from incomplete or partially observed data. Existing

approaches often rely on fully observed ground truth samples for training, assume a

fixed set of semantic classes, or lack interpretability. Moreover, existing approaches may

not be able to generate diverse plausible predictions, which is essential in real-world

scenarios where uncertainty is inherent.
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This thesis proposes a framework that addresses these limitations by learning to pre-

dict complete world states from partially observed states only [1, 2]. The approach is

based on arbitrary conditional density estimation and extends prior missing data VAE

approaches to high-dimensional representations. By learning a generative model that

can predict diverse plausible completions, the framework provides a more robust and

interpretable solution for predictive world modeling. The thesis also bridges the gap

between game environments and partially observed real-world mobile robotics environ-

ments, opening a new research direction in application of world modeling techniques to

real-world problems. See Table 2.2 for problem and proposed solution summaries. See

the following sections for additional information and literature grounding.

Table 2.2: Predictive world model learning problems and proposed solutions.

Problem Summary Proposed Solution

Stochastic state completion from

partial observations.

Extends prior missing data VAE

approaches to model high-dimensional

representations without requiring fully

observed ground truth samples for

training (see Sec. 5.4.1).

Stochastic generation of plausible

bird’s-eye-view representations from

perception inputs.

Learns to model pθ(x
∗|x) for

high-dimensional representations

without requiring fully observed

ground truth samples for training, and

can generate diverse plausible

predictions (see Sec. 5.4).

Learning a world model from partial

observations.

Presents a predictive world model

framework that learns to predict a 2D

spatio-semantic representation from

agent-centric partial observations,

bridging recent SOTA world modeling

approaches to partially observed

real-world mobile robotics

environments (see Sec. 5.4.3).

Spatio-semantic representation for

mobile robots.

Learns to predict a 2D spatio-semantic

representation from agent-centric

partial observations, enabling

top-down semantic partial observation

as input and plausible explicit world

representation as output (see Sec. 6.3

and Sec. 6.4).
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2.3.1 Arbitrary conditional density estimation

The problem of arbitrary conditional density estimation[215–217] is about estimating

the probability distributions p(xu|xo), where the random variables x are expected to be

partitioned into arbitrary plausible subsets of observed xo and unobserved xu random

variables. In this section I present methods incorporating different application-specific

presumptions on how x is partitioned into xo and xu.

Image inpainting methods predict unobserved pixels xu from observed pixels xo. The

problem formulation is similar to the problem of predicting complete world states from

partially observed states. The prototypical solution is to use an autoencoder (AE) [218]

to compress partially observed images xo into constrained latent codes z encoding similar

visual patterns as learned from reconstructing complete images x by matching global

contextual clues.

However, optimizing models simply by pixel-wise reconstruction is afflicted by the marginal-

ization problem, resulting in blurry outputs as missing regions can be filled by many

plausible pixel configurations. The Context encoder [219] attempts to address the blurri-

ness problem by introducing an adversarial objective. Furthermore, GLCIG [220] intro-

duces a course-to-fine generation scheme with diluted convolutions and two adversarial

objectives. The global objective ensures the image remains coherent as a whole, while

the local objective improves detail. Yeh et al. [221] find the closest sample in an im-

age database and use its latent code for prediction. Contextual attention [222] adds an

attention mechanism for long-distance information crossover. My framework similarly

applies an adversarial objective for learning to predict texture-like content such as lidar

reflectance intensity from road surface (henceforth, road surface intensity).

Other approaches focus on learning mask-aware convolutional filters. Liu et al. [223]

introduces a special convolution filter and a observed element mask update rule for

propagating information about which elements provide information. Yu et al. [224]

introduces gated convolutions for learned mask updating. While I add an observed

element mask to the model input following the missing data VAE approach, explicitly

convoluting over masks is an interesting future direction.

Another line of image inpainting works focuses on pluralistic stochastic state completion

methods based on generative models. GAN-based methods [225, 226] generate multiple

plausible completions by conditioning on a random vector. VAE-based methods [227]

replace the deterministic latent code generated by the AE to allow stochastic sampling of

multiple plausible predictions. Previous methods improve training stability by constrain-

ing the latent distribution of partially observed images by matching the distribution for
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fully observed images. PIC-Net [228] trains separate encoders for observable and unob-

servable image regions and matches the distributions between the two. UCTGAN [229]

adds a cross-attention module to mix latent representations of partially and fully ob-

served images. DSI-VQVAE [230] applies VQVAE to stabilize training. Concurrently to

my work, Posterior Matching [231] presents arbitrary conditioning based on HVAEs by

optimizing a secondary partially observed encoder to match the latent distributions of

a fully observed encoder. I extend prior VAE work by introducing a two-stage training

paradigm to allow learning to predict complete images from partially observed images

only.

Another approach frames predicting unobserved state variables from observed vari-

ables as the missing data VAE problem. HI-VAE [232] derives an evidence lower

bound (ELBO) for missing data by masking out contributions from unobserved data.

EDDI [233] introduces an alternative Partial VAE model which processes observable

data only by encoding elements by a positional encoding and processed by permutation

invariant operations similar to PointNet [234]. VAEM [235] is a hierarchical VAE that

operates on heterogeneous data by first transforming all input variables into a common

latent space by a type-specific transformation. HH-VAEM [236] is a recent hierarchical

VAE demonstrating effective sampling using the Hamiltonian Monte Carlo algorithm.

Collier et al. [237] demonstrate results on high-dimensional image data. My work extends

prior missing data VAE approaches by learning to model p(xu|xo) for high-dimensional

representations without requiring fully observed ground truth samples for training.

Video prediction methods aim to model a stochastic state transition process where a se-

quence of future images xu are predicted conditioned on a sequence of past fully observed

images xo. Babaeizadeh [238] presents a sequential stochastic variational video predic-

tion model based on predicting a latent code explaining away the stochasticity of the

sequence. Denton [239] presents an end-to-end framework to explain away stochasticity

by a frame-to-frame latent code and a learned prior to improve training robustness. The

predictive world model framework presented in this thesis reformulates the stochastic la-

tent variable video prediction approach of Denton to the problem of predicting complete

world states from partially observed world states only.

2.3.2 Bird’s-eye-view generation

Mobile robotics, and in particular AVs, pursue the problem of generating top-down

bird’s-eye-view (BEV) representations from perception inputs as a substitute or com-

plement to human annotated maps [240].
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Camera-based methods receive much attention because of affordability and motivation

by human vision. However, lifting 2D perspective images to 3D is fundamentally an

ill-posed problem. Inverse perspective mapping (IPM) [241–243] proposes to overcome

the problem by assuming the ground plane is flat. However, the flat plane assumption

is generally not true. Stereo cameras propose to solve the lifting problem by infer-

ring depth maps based on physics. However, the resulting depth maps tend to be

noisy for far-away objects, object borders, and objects covered with non-distinct tex-

tures. Learning-based methods are proposed to overcome the weaknesses of stereo-based

depth map estimation. Cam2BEV [244] presents an approach that projects semantic fea-

tures using IPM and corrects the projection by a spatial transformer module learned

from synthetic ground truth BEVs. Many works are based on using monocular depth

estimation [245–250] to lift images to a 3D point cloud before projection to a top-

down 2D grid. Schulter et al. [251] proposes an adversarial objective relying on ground

truth maps to refine the resulting BEV representation. MonoLayout [252] learns the

view transformation from self-supervised targets by integrating projected observations

while still relying on ground truth maps for BEV refinement. Later works introduce

probabilistic depth projection [253], categorical depth distribution network [254], and

multi-task learning [255]. VED [256] is a variational encoder trained from stereo vi-

sion to predict low-dimensional (64x64 px) semantic BEV representations from forward-

view monocular images. Other methods lift images using multilayer perceptrons (MLP)

trained on ground truth maps [257–259]. Recently, cross-attention based transformer

modules [260, 261] and Transformers modules [262] are applied to model view transfor-

mations motivated by the global attention mechanism not being limited to processing

neighboring pixel information like CNNs. However, due to lacking inductive biases

attention-based models tend to require more data, effort, and compute to train as well

as for inference. While my framework in principle is compatible with depth estima-

tion, I choose to leverage lidar for substantial improvements in representation accuracy

and observation integration performance. Additionally, my generative model can gener-

ate diverse plausible predictions, unlike view transformation models which typically are

deterministic functions.

Lidar-based BEV generation methods have a significant advantage from explicitly mea-

suring distance though deemed prohibitively expensive for mass deployment by some.

Fishing Net [259] utilizes lidar information to improve spatial accuracy of BEVs gener-

ated by sensor fusion. MP3 [263] uses a learned module for generating map elements

from lidar observations and ground truth map supervision. HDMapNet [264] also in-

cludes image information. In contrast to these methods, the predictive world model

framework presented in this thesis not rely on preexisting ground truth maps for super-

vised training. My method is also generative and can provide diverse predictions, which
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is fundamentally necessary as the correct prediction for occluded regions are generally

indeterminable.

2.3.3 World models

The idea of learning a predictive model of the world in machine learning was first in-

troduced by Schmidhuber [265–267]. A common approach is to learn latent state rep-

resentations from images using a VAE [268–270], and use the learned latent code as a

compact representation of the world state for planning actions. Other works use adver-

sarial learning to optimize the latent code [271, 272], or contrastive learning with latent

variables to model stochastic transition processes [273].

Another line of work focuses on inferring a set of object encodings from images. Watters

et al. [274] uses a variational encoder to infer a fixed set of latent object encoding vectors

from a sequence of images. Later works apply a VAEs to learn semantically richer

object embeddings [275, 276]. MONet [277] is a prominent model for learning to extract

a variable amount of semantic object encodings using a recurrent attention module.

Recent works leveraging MONet demonstrate the merits of explicit object discovery

for future state prediction using compositional reasoning [278], and for reinforcement

learning [279, 280] surpassing the performance of SOTA model-free RL models [281, 282].

This thesis approache the world modeling problem of learning to predict a 2D spa-

tiosemantic representation from agent-centric partial observations. The method bridges

recent SOTA world modeling approaches from game environments to partially observed

real-world mobile robotics environments.

2.3.4 Spatio-semantic representations

Mobile robots typically perform planning for spatial tasks by localizing its pose within

a map [283]. ICP [284] or SLAM [285] by modern implementations [286, 287] is the

conventional approach to map 3D environments by matching sequential point clouds

and accumulating them into a common vector space. Semantic SLAM not only estimate

the geometry but also the semantics of the environment or an object [288]. The 3D

representation can be projected onto a 2D birds-eye-view (BEV) map convenient for

navigation tasks [289]. The image-like 2D map representation is suitable for predictive

generative modeling [1]. Until recently, semantic mapping approaches were limited to

predefined sets of semantic classes, and thus to narrow tasks.

Open-vocabulary spatial representation methods encode maps by VL embeddings in-

stead of class embeddings. The VL embeddings are typically generated by a pretrained
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global VLM [290], open-vocabulary object detector [291], or a dense VLM [187, 292, 293].

The open-vocabulary approach in principle allows querying any task-relevant seman-

tics stored in the VL embeddings measuring cosine similarity with a text query em-

bedding. NeRFs implicitly represents 3D objects and environments by a neural net-

work [197, 294, 295] and have recently been extended represent open-vocabulary seman-

tics [296]. Integrating LLMs opens up new possibilities for spatio-semantic reasoning

based on a top-down perceptual feedback loop [291, 297] similar to the human vision-

for-perception system [298–300].

2.4 Spatial Cognition and Navigation

The existing approaches in spatial cognition and navigation for autonomous vehicles

suffer from several limitations. Many path prediction methods rely on a limited dataset

of ground truth maps for supervised learning which may not be correspond to partic-

ular encountered real-world environments. Additionally, these methods often focus on

specific observable actors or agents, neglecting the complexity of navigating in dynamic

environments with multiple agents and taking into consideration potential unobserved

agents. Lane graph and map prediction methods, on the other hand, are often limited by

their dependence on ground truth lane maps, annotated data, or specific road topologies

such as highways. Furthermore, end-to-end learning approaches for autonomous vehicles

generally lack explainability and modularity, making it challenging to incorporate prior

knowledge or adapt to new environments.

This thesis addresses these limitations by proposing a novel approach by introducing

a predictive state representation [1, 95]. The usefulness of the predictive state rep-

resentation is demonstrated by enabling learning to predict all plausible navigational

patterns in the environment independently of observed agents and without relying on

ground truth maps for supervision [301]. The proposed method facilitates learning ex-

plicit agent-agnostic navigational patterns, analogous to the function of an artificial hip-

pocampus. By doing so, the thesis presents a theoretical framework based on grounding

commonsense reasoning on the predictive state representations as a alternative approach

to end-to-end learning, potentially enabling modularization and incorporation of prior

knowledge and adaptation to new environments. The proposed method’s ability to pre-

dict navigational patterns from partial observations without requiring ground truth lane

map annotations makes it a potentially scalable and robust solution for autonomous

vehicles. See Table 2.3 for problem and proposed solution summaries. See the following

sections for additional information and literature grounding.
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Table 2.3: Spatial cognition and navigation problems and proposed solutions.

Problem Summary Proposed Solution

Predicting multimodal paths for

specific actors.

Learning to predict all plausible

navigational patterns in the

environment independently of observed

agents without depending on ground

truth maps for

supervision [45, 240, 301] (see Sec. 6.4).

Lane graph and map prediction relying

on ground truth annotations.

Predicting lane graphs from partial

observations without requiring ground

truth lane map annotations using the

directional soft lane probability

(DSLP) method [301] leveraging

predictive environment states [1, 2]

(see Sec. 6.4).

End-to-end learning for autonomous

vehicles lacking explainability and

out-of-distribution robustness.

Present a theoretical general-purpose

mobile robotics framework based

commonsense reasoning over world

model grounded in the experimentally

verified open vocabulary predictive

environment states [1, 2, 95] and

learned navigational patterns [301] (see

Sec. 3.4 and Sec. 6.4).

2.4.1 Path prediction

Recent works present methods to predict multimodal paths for specific actors. Salz-

mann et al. [302] and Baumann et al. [303] trains a convolutional neural network (CNN)

on bird’s-eye-view (BEV) environment representations to predict a dense map repre-

senting valid ego-vehicle paths using a weighted dense classification error and future

ego-vehicle trajectories. Barnes et al.[304] trains a CNN on perspective images with

self-supervised labels generated from driving data. Ort et al. [305] fuses high-level nav-

igational guidance from a coarse map with path generation reflecting the observed en-

vironment. Casas et al. [263] optimizes a model to predict an environment map and

possible paths for the ego-agent based on images and point clouds using a ground truth

lane map as supervision. Prez-Higueras et al. [306] trains a CNN model to predict a
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multimodal path affordance map between any two points to be used as a prior for an

RRT∗ path planner [307]. Kitani et al. [308] trains a Hidden Parameter Markov De-

cision Process (HiPMDP) model using inverse reinforcement learning and observation

data. Ratliff et al. [309] presents an imitation learning approach that maps input fea-

tures to a cost map based on example paths. My approach expands on prior works by

learning to predict all plausible navigational patterns in the environment independently

of observed agents without depending on ground truth maps for supervision.

2.4.2 Lane graph and map prediction

Homayounfar et al. [310] trains a recurrent neural network (RNN) model to predict

polylines as road lanes in highway road scenes using ground truth lane maps. An exten-

sion [311] introduces forking and merging lane topologies. Guo et al. [312] predicts 3D

road lanes from perspective images using ground truth annotations. Zürn et al. [313]

trains a Graph-RCNN model to predict lane anchors and edges using images and point

clouds with ground truth lane map supervision. Can et al. [314] trains a transformer

model to detect lane segments from images and subsequently connected into lane graphs.

Zhang et al. [315] trains a three-stage network using ground truth map supervision

to predict a dense lane map and subsequently predict keypoints used to generate the

graph. Mi et al. [316] presents a hierarchical coarse-to-fine approach to train an atten-

tion graph neural network to generate road lane graphs. Karlsson et al. [45] presents

a self-supervised method to train a directional soft lane affordance (DSLA) map from

single trajectories. A follow-up work [240] shows how to generate discrete road lane

graphs by searching for connected paths in the DSLA map using the A∗ algorithm. The

directional soft lane probability (DSLP) method [301] is a scalable approach to predict

lane graphs from partial observations without requiring ground truth lane map anno-

tations and yet achieve better performance than supervised baselines [313, 314]. DSLP

extends [45, 240] by introducing a principled regularizer, a sampling-based maximum

likelihood graph generation method, and demonstrates the approach on real-world data.

2.4.3 End-to-end learning for autonomous vehicles.

Originally proposed by Pomerleau [317] and more recently repopularized by Bojarski et al. [33],

the end-to-end learning paradigm aims to learn a driving model or policy mapping per-

ception to control by optimizing for an extrinsic goodness objective. Imitation learning

approaches [33, 318, 319] learn a policy that results in similar behavior as expert ex-

amples. Reinforcement learning (RL) approaches [54] optimize a policy to maximize

an extrinsically defined reward such as time-to-human-override. Recently, approaches
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learning an explicit predictive world model [320, 321] show that robust policies can

be learned from expert observation only. This thesis demonstrates how the proposed

predictive state represenatation facilitates learning explicit agent-agnostic navigational

patterns analogously to the function of an artificial hippocampus. Learning explicit

navigational patterns is an alternative approach to enhance explainability of end-to-end

learning, or incorporate an end-to-end learning aspect into the conventional modularized

mobile robotics system [322].

2.5 Summary

The first section presents related research involving perception and representation of

semantics. The review starts with presenting research for self-supervised representation

learning where machines discover generalizable semantics occuring across a dataset. Se-

mantic networks and compositionality are important concepts in cognitive psychology

and philosophy for representing knowledge about the world. However, semantic networks

face limitations such as uncertainty, semantic vagueness, inferring category associations

from perception, and learning from incomplete, noisy data. Research about methods for

learning semantics from data are presented, including word embeddings, visual tokens,

and natural language processing. Finally, research about learning to infer dense seman-

tic embedding maps are introduced, including open-vocabulary semantic segmentation

and recent SOTA vision-language models. This thesis propose latent compositional se-

mantics as a principled representation for forming queryable spatio-semantic memories

as a basis for predictive state representations. Additionally, latent compositional seman-

tics is presented as a mathematical model of unconditional open-vocabulary semantic

embeddings.

The second section presents literature on learning latent state representations from im-

ages using Variational Autoencoders (VAEs) for world modeling and planning actions

in reinforcement learning (RL) tasks. Some works infer object encodings from images

to extract semantic meaning, while others use adversarial or contrastive learning with

latent variables to model stochastic transition processes. Recent researach shows that

model-based RL can surpass the perfomance of SOTA model-free RL methods. The

thesis approaches the world modeling problem by predicting 2D spatio-semantic repre-

sentations from agent-centric partial observations, bridging recent SOTA world modeling

approaches to partially observed real-world mobile robotics environments.

The third section introduces literature of recent advancements in spatial cognition and

navigation for mobile robots like autonomous vehicles. Presented topics include Meth-

ods to predict multi-modal paths for specific actors from bird’s-eye-view or perspective
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images, and inverse reinforcement learning to map input features to cost maps based

on example paths. Lane graph and map prediction techniques for predicting naviga-

tional patterns or road lanes are presented. End-to-end navigation learning methods

aim to learn a driving model or policy mapping perception to control by optimizing for

an extrinsic goodness objective. Other approaches include imitation learning and RL

methods. Approaches with explicit predictive world models show robust policies can be

learned from expert observations. This thesis presents how to leverage predictive envi-

ronment state representions to learn navigational patterns from observation only. The

proposed approach is based on parallels with the biological hippocampus and facilitates

interpretable end-to-end learning from observation and is compatible with conventional

modularized mobile robotics systems.



Chapter 3

General-Purpose Mobile

Reasoning Agents

3.1 Introduction

This chapter introduces the concept of general-purpose mobile reasoning agents as pro-

posed in the thesis. The chapter starts by introducing biological general intelligence

agents and their characteristic faculties, as a proof of concept that creating adaptable

and generally intelligent agents are possible. Next, the artificial counterpart of biologi-

cal agents are introduce in general terms. A proposal for what faculties general-purpose

artificial intelligence agents require are given. The following section gives an overview of

the proposed general-purpose predictive agents, including open-vocabulary state repre-

sentation, open-vocabulary predictive world models, and state transition modeling. The

chapter concludes by deliberating on learning to navigate constrained environments,

means of providing task descriptions for general-purpose agents, as well as the potential

of realizing high-level planning incorporating world knowledge by mental simulation.

3.2 Faculties of Biological General Intelligence Agents

Naturalism is a philosophical perspective that supposes the universe is purely material-

istic and governed by natural laws and forces [323]. Naturalism rejects the existence of

supernatural or spiritual entities like non-material human souls. In the naturalist per-

spective, the existence of intelligent biological humans is therefore proof that creating

generally intelligent artificial agents is theoretically possible. Analyzing the difference

41



General-Purpose Mobile Reasoning Agents 42

between natural biological intelligence and current artificial machine intelligence may re-

veal insights into what missing constituents are necessary to achieve artificial generally

intelligent systems [93].

Human intelligence is a complex and multifaceted phenomenon that has long been a

subject of study in various scientific disciplines, including philosophy [324, 325], psy-

chology [326], neuroscience [327, 328], and cognitive science [93, 329]. According to

the predictive coding theory [330], one of the key features of human intelligence lies in

the extensive and versatile model of the world, which allows humans to establish useful

causal models and make sense of an inherently uncertain environment [331]. This ability

is thought to be supported by a range of cognitive processes, including sequence learning

and prediction, formation of memory-based predictions, processing of prediction errors,

and integration of multimodal sensor information [94].

At the heart of these cognitive abilities lies the hippocampus [332], a brain structure

that plays a crucial role in several aspects of predictive coding. The hippocampus is

known to be essential for learning and representing sequences of events or experiences,

and the formation and retrieval of episodic and spatial memories, which can be used to

generate predictions about sensory inputs based on past experiences in similar contexts

or environments [94, 330]. Furthermore, some theories suggest that the hippocampus

is involved in detecting and processing prediction errors, which are discrepancies be-

tween predictions and actual sensory inputs. These prediction errors are believed to

be crucial for updating internal predictive world models and the general mechanism for

learning [333].

However, it is important to note that human intelligence cannot be reduced solely to

the hippocampus or any other single brain region. Instead, it emerges from a complex

interplay of multiple brain regions, including the neocortex, prefrontal cortex, and other

subcortical structures [328]. The primary advantage of human intelligence over that

of other animals lies in our ability to harness abstract concepts, analogies, metaphors,

and stories to express our experiences and make sense of new information [334]. This is

thought to be supported by the hippocampus’s encoding of semantic knowledge in ways

that transcend the physical properties of the referenced item [93].

Having established the basis of human intelligence, the question about what is gen-

eral and non-general intelligence is still not a clear cut case. The concept of gen-

eral intelligence has been a topic of interest in both psychology and computer sci-

ence [93, 326, 335, 336], with different definitions and measurements being used to un-

derstand its nature. The notion of general intelligence agents implies systems that can

accomplish a variety of complex and novel tasks in complex and novel environments,

possibly including improvement by learning [337]. However, the definition of what is
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a complex task and a simple task is also not clear cut. Measuring and optimizing

performance for particular task losses the task’s meaningfulness as general intelligence

indicator [93, 338].

In psychology, traditional definitions of intelligence have been passed down from West-

ern philosophy drawing on standardized tests of abstract reasoning and pattern discov-

ery [338]. However, it is commonly considered that these definitions may be influenced

by social constructs and biases [339]. The measurement of intelligence in humans faces

the same dilemma as in AI research, where the nature and structure of mental ability

depend on how it is measured.

In computer science, researchers have been building AI systems that can perform specific

tasks with varying levels of success. However, there is debate about whether simple

algorithmic solutions will suffice for building AGI, or if there is a special ingredient or

combination of factors unique to natural general intelligence. A general intelligence is

likely more than the sum of many narrow intelligences [337, 340, 341].

This thesis takes a pragmatic approach to general intelligence and emphasize on particu-

lar faculties instead of degree of capability. Perhaps the most decisive faculty is the abil-

ity to learn and apply pre-existing knowledge in service of solving novel tasks [28, 336].

Another major faculty is the ability to communicate and store information by highly or

infinitely expressive language like human natural language [334]. Grounding a general

intelligence in human natural language provides two benefits: the possibility to boot-

strap learning from preexisting written human knowledge, and align the intelligence with

human values through the means of direct communication of abstract thought.

3.3 Artificial Intelligence Agents

This section presents a brief historical account of the scientific pursuit of artificial intel-

ligence (AI). The remainder of this section provides an analysis of how the conceptual

AI agent framework presented in Sec. 3.3 can be adapted to emulate key faculties of

biological general intelligence.

The field of Artificial Intelligence (AI) has undergone significant developments since its

inception. One of the early pioneers Aristotle discussed the concept of mechanisation of

logical reasoning in his works, suggesting an algorithm for decision-making that involves

deliberation about means rather than ends and that the conclusion resulting from two

premises is an action [342]. Alan Turing made significant contributions to modern AI.

His seminal paper introduced concepts like the Turing test, machine learning, genetic

algorithms, and reinforcement learning [343]. Turing also proposed it might be easier
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to create human-level AI by learning algorithms rather than explicitly programming

knowledge and intelligence in machines. The work of Herbert Simon and others in the

late 1960s proposed that finding approximate decisions that are “good enough” better

represent actual human behavior compared with finding optimal solutions as in theorem

proving [344, 345]. The importance of domain knowledge was emphasized in the devel-

opment of expert systems, leading to the first commercialization of AI in the 1980s [28].

Expert systems are based on encoding human knowledge into a system designed to make

intelligent decisions [22, 23, 346]. However, the scope of human knowledge that can be

manually encoded is severely limited, which in turn limit the practical versatility and

applicability of expert systems [347, 348]. Recently, AI has undergone a reunification of

subfields such as computer vision, robotics, speech recognition, multiagent systems, and

natural language processing due to renewed interest in learning from data by statistical

modeling, optimization, and machine learning [28, 349]. The shift towards big data and

data-driven learning approaches has led to significant advancements in the field since

the 2000s [30].

Unlike biological brains, which are characterized by their complexity and versatility,

conventional AI systems are typically based on relatively simple architectures that rely

on statistical pattern recognition and optimization methods [28]. While some modern AI

systems have achieved impressive performance in tasks such as image classification [20],

natural language processing [70], game playing [21], and scientific discovery [350], they

still fall short of human-level intelligence in many respects. One key limitation of AI

systems up until recently is their lack of generalizability and adaptability to new sit-

uations or contexts. Unlike humans, who can apply abstract concepts and knowledge

to a wide range of problems and domains, most AI models are highly specialized and

require large amounts of labeled data for training. This limits their ability to transfer

learning from one task to another and makes them vulnerable to overfitting and catas-

trophic forgetting [93]. Another limitation is the lack of common sense reasoning and

background knowledge that humans naturally possess. While AI systems can be trained

on vast amounts of data, they still struggle with tasks that require understanding of

context, causality, or commonsense inferences [36]. For example, a recent study showed

that a modern language models such as GPT-3 [70] could generate convincing text

based on given prompts but failed to answer basic questions about the world [35]. This

thesis presents an AI agent framework that is capable of commonsense reasoning and

planning by mental simulation based on a predictive environment state with semantics

grounding world knowledge in the perceived environment analogously to the biological

hippocampus.

The concept of an intelligent agent is central to the field of artificial intelligence (AI).

An agent is defined as a program that can perceive its environment, create a useful
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state representation, and perform actions, with the goal of maximizing a performance

measure. Here “performance” refers to how well the agent achieves its goals, which may

include maximizing utility or minimizing costs. [28] The driving challenge to realize use-

ful artificial intelligence agent is to create programs that produce rational behavior for

completing tasks in a manner aligned with the instruction and implicit human values. A

formal definition of agents is provided in Sec. 1.1 as a particular implementation of a per-

ception function (1.1), a state representation function (1.2), and behavior function (1.3).

This section reflects on correspondence between the agent components (1.1-1.3) and fac-

ulties of biological general intelligence as explained in Sec. 3.2.

Agent perception functions (1.1) implemented by computer vision systems based on hier-

archical feature representation learning have strong correspondence with the biological

visual cortex system [351]. Recent vision-languange models (VLMs) have provided a

means to implement language grounded bottom-up [81] and top-down [79, 193] visual

processing akin to the biological vision system. The human visual system comprises two

subsystems [352–354]. The vision-for-perception system located in the ventral stream

processes information in a slow, top-down manner to create perceptual representations

from ambiguous or incomplete visual input by leveraging visual and semantic mem-

ory [353]. These representations support conscious mental processes such as recogni-

tion, visual thought, and planning. The vision-for-action system located in the dorsal

stream processes information in a real-time, bottom-up manner to perceive the entire

environment and infer behaviorally-relevant visual affordances, including cues for spatial

navigation [355]. This thesis presents the theory of latent compositional semantics as

an agent perception framework for learning to infer and represent visual percepts by di-

verse sets of semantic attributes as required for general-purpose agent systems including

humans.

Agent state representation functions (1.2) based on explicit representations of space, like

latent feature maps and grid maps, are believed to have correspondence with the biolog-

ical hippocampus [332, 356]. However, unlike conventional task-specific grid maps used

in robotics to represent free space or specific semantics like “road”, the hippocampus

stores spatially grounded general-purpose semantic representations allowing querying of

any task-related semantic known to the human agent. Real-world agents can generally

only perceive a partial glimpse of the true environment state through its sensors. Par-

tially observed environment states naturally contain a high degree of ambiguity, which in

turn complicates learning optimal decision making [357]. In contrast, the hippocampus

provides predictive state representations based on predictive coding and observational

experience [94, 330, 331] and improve learning optimal decision making by disambiguat-

ing environment states. This thesis proposes a framework for an artificial hippocampus
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based on the theory of latent compositional semantics as general-purpose semantic rep-

resentation. Additionally, the thesis propose a predictive world model to disambiguate

partially observed environment states with a potential to robustify state-transition mod-

eling akin to an artificial hippocampus.

Agent behavior functions (1.3) generally involve frameworks for planning and control.

AI agents tasks with complex goal-driven problems like games [21] and robotics [358]

generally depend on a planning step based on traditional search algorithms or model-

based reasoning. Search algorithms are based on modeling the abstract problem into a

known current state, a deterministic state-transition model, and a goal state. Algorithms

like A* [359], breadth- or depth-first search [360], and Monte Carlo Tree Search [361]

explores the state space to find a path or sequence of actions from the current state to

the goal state. Model-based reasoning algorithms enhances the complexity of the state-

transition model by incorporating stochasticity and predictions over partially observed

states. Techniques like Markov Decision Processes (MDPs) [362], Partially Observable

MDPs (POMDPs) [363], and hidden Markov models (HMMs) [364] efficiently searches

for an optimal sequence of actions while taking into consideration uncertainty by effi-

cient algorithms like the Viterbi algorithm [365]. Current theories propose that behavior

of biological intelligent agents emerge from higher-order cognitive processes in the pre-

frontal cortex called denoted executive functions [366]. Mental simulations are critical for

predicting optimal actions for goal-driven behavior [63, 64]. Particular faculties include

episodic future thinking for imagining specific future events, counterfactual reasoning for

considering “what-if” scenarios, and prospection for grounding cognition in hypotheti-

cal future states [367–369]. AI agents transform high-level actions into low-level motor

and actuator command signals by control methods. Common techniques include inverse

kinematics [370] to find a set of joint angles for a target manipulator pose. Trajectory

optimization methods [371] output control signals for smooth and efficient movement.

Feedback control systems [372] ensures actions are performed as intended by adjusting

control signals during execution. Biological intelligence utilize an equivalent architec-

ture, with the motor cortex executes sequences of voluntary movements as planned by the

premotor cortex and supplementary motor area [373, 374]. Muscle fibre contractions are

controlled by signals originating from motor neurons and passing through neuromuscu-

lar junctions [375]. This thesis presents a predictive state representation simultaneously

providing a compact latent state encoding and a spatially grounded semantically rich

open vocabulary representation. Predictive state representation is analogous to an arti-

ficial hippocampus as explained in Chap. 5. The thesis provide theoretical justification

for why the hippocampus-like predictive state representation can facilitate higher-level

commonsense reasoning and abstract mental simulation [63, 64, 367]. The proposed
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predictive state representation is backed by rigorous experimental evidence. The com-

monsense reasoning and abstract mental simulation based on the proposed predictive

state representation is theoretically justified in Chap.4- 5. However, a proof of con-

cept implementation and experimental verification of the full general-purpose mobile

reasoning agent is out of scope of for this thesis.

The following sections propose fundamental cognition components needed to endow

future general-purpose mobile robot reasoning agents with faculties in line with those of

general-purpose biological intelligence agents like humans.

3.4 General-Purpose Predictive Agents

Throughout this thesis, several key requirements for general-purpose mobile agents ca-

pable of commonsense reasoning are identified and addressed. Requirements include

the ability to perform tasks defined by weakly specified goals [90], interpret the world

using a priori unknown task-relevant semantics [81], represent the environment by a

spatio-semantic memories supporting querying of spatially grounded task-relevant se-

mantics [95], predict plausible states by a predictive world model continually opti-

mized by surprise minimization over observational experience [333], and implement

problem solving by state-transition modeling leveraging reasoning over commonsense

knowledge [84].

This section expands on the required cognitive faculties listed in Sec. 3.3 with concrete

and implementable components. Section 3.4.2 General-Purpose Agents deliberates on

the components enabling a commonsense reasoning AI agent to complete tasks without

being explicitly programmed for the task, or depending on excessive task-specific demon-

stration data. Section 3.4.3 Open-Vocabulary Predictive State Representation presents

how open vocabulary predictive state representations enable AI agents to represent the

environment by grounded semantics satisfying the requirements of an embodied general-

purpose reasoning AI agent. Section 3.4.4 Predictive Agents explains the evolution from

reactive to predictive agents capable of predicting the outcome of a sequence of actions,

as well as evaluate the goodness or utility of the predicted outcomes. The remainder of

this section provides a holistic overview of the proposed structure of general-purpose mo-

bile reasoning agents. The presentation includes references to similarities with general

biological intelligence as presented in Sec. 3.2-3.3.

See Fig. 1.5 for a diagram delineating what components of the proposed agent frame-

work is experimentally verified or remain a theoretical proposal supported by literature

evidence.
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Figure 3.1: Conceptual overview of the proposed general-purpose predictive agent
framework. The agent perceives the world through sensor observations. The observa-
tions are accumulated into spatio-semantic memories. A predictive world model gen-
erates a set of diverse plausible worlds as explicit and compact latent open-vocabulary
states. On theoretically derived grounds supported by experimental evidence in the
literature, the states can be furthermore be interpreted by a multimodal LLM. Ra-
tional actions are inferred by reasoning over future outcomes. High-level actions are
transformed into low-level actuations by program synthesis and internal simulation.
Autonomous goal state detection allows the agent to know when a task is completed.

3.4.1 Agent Framework Overview

The presentation of the proposed general-purpose mobile reasoning agent framework

structure is based on the visualization in Fig. 3.1. The presentation is split into two

parts: the first part explains how the environment is transformed into predictive envi-

ronment states natively readable by multimodal large language models (LLMs). The

second part explains how the world knowledge and contextual information understand-

ing is leveraged to do commonsense reasoning and high-level mental simulation over

sequences of abstract actions. First, the external world or environment is perceived by

camera and depth sensors. The resulting precepts are RGB images and point clouds

with known correspondence by projection calibration parameters [1]. The RGB image

percepts are processed into observations by a vision-language model (VLM) into dense

latent compositional semantics embedding maps [95] as explained in Chap. 4. Point

clouds are used to ground semantic information in the embedding maps to a 3D vec-

tor space. Sequential observations are integrated into a common 3D vector space by a

simultaneous localization and mapping (SLAM) framework [287, 376]. The integrated

observations are denoted partially observed world states X [1] due to being limited to

only the perceived environment region. A predictive world model (PWM) maps the

partially observed world state X into a latent distribution, from which a set of diverse
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plausible complete world states {X∗} is sampled. Sampling complete states reduce am-

biguity and thus enhance the accuracy of predicted states while supporting predictive

diversity through sampling [1]. Predicted states X∗ is aligned with the language em-

bedding space of a multimodal large language model (LLM) by an encoder Encθ(). The

encoder is optimized by a novel method based on latent compositional semantics [95]

and computational geometry bridging the spatio-semantic and textual representation of

semantic objects with geometric extent. The optimization objective theoretically en-

sures that all geometric and semantic detail of the explicit state representation X∗ is

retained in the aligned representation Z consisting of K latent state embedding token

vectors. See App. C for further details regarding the optimization method.

The latent state embedding token vectors Z and natural language task description T

represent the goal-driven predictive world state S aligned with the multimodal LLM’s

language embedding space hypothetically with negligible information loss. A LLM-

based task completion detection module can infer if the current state S matches the

goal state defined by a natural language goal state description G. A LLM-based high-

level mental simulator takes the state S and goal description G to search for the optimal

high-level action a∗ to take based on traversing a tree of many potential high-level ac-

tion sequences. The mental simulator can leverage world knowledge and commonsense

reasoning to predict consequences of actions. Leveraging world knowledge and common-

sense reasoning allows the agent to avoid detrimental actions without requiring negative

experience through exploration. The optimal high-level action a∗ is given to a low-level

action execution function generating low-level action or control signals for realizing the

abstract action a∗. The hypothetical function is based on program synthesis leveraging

simulation and reinforcement learning with LLM generated reward functions [377, 378].

The resulting low-level actions are actuated and cause a world state transition getting

the agent closer to reaching the goal state.

The proposed general-purpose agent framework in Fig. 3.1 have similarities with biolog-

ical general intelligence in all parts of the system. The sensor to predictive environment

state information processing pipeline is analogous to how the biological visual cortex pro-

cesses retinal signals into spatio-semantic predictive representations in the hippocampal

cortex [94, 330, 332, 351, 379]. The subsequent commonsense reasoning and mental

simulation processing pipeline correspond to the higher-order executive functions [366]

and mental simulation [64] faculties of the biological brain.

As mentioned in Sec. 1.5 and Fig. 3.1, empirical evidence for the open vocabulary pre-

dictive state representation and related predictive world model is provided in Chap. 4-5.

The following sections explain how the proposed predictive state representation satisfies
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the theoretically deduced requirements for a rich spatio-semantic state presentation sup-

porting grounded commonsense reasoning. The remaining components in Fig. 3.1 are

theoretically deduced with empirically verified properties in their isolation as explained

throught this chapter. As explained in Sec. 1.5 and Chap. 7, the practical demonstration

of integrating all presented components into a general-purpose mobile agent is considered

out of scope for this thesis but is pursued as future work.

3.4.2 General-Purpose Agents

This section deliberates on core faculties required by a general-purpose agent, and how

this thesis propose to implement the identified faculties. Cognitive scientists believe that

adaptable intelligent agents like humans represent the world using a small set of foun-

dational cognitive faculties for perceiving inanimate objects, external agents, numeric

concepts, social relations, and spatial environments [99]. These cognitive abilities allow

intelligent agents to perform commonsense physical reasoning and imagine counterfac-

tual scenarios to facilitate task accomplishment [380]. A key capability is predictive

world modeling [265–267, 381]. See Sec. 1.4 for a definition of general-purpose in con-

trast to conventional specialized robot designed for a specific or a priori known narrow

range of tasks.

Weakly specified goal understanding. General-purpose mobile robots promise ma-

chines capable of safely completing tasks in novel environments without relying on exact

human programmed instructions [90]. Performing tasks defined by weakly specified goals

is crucial for general-purpose mobile agents, as it enables them to adapt to a wide range

of scenarios without being limited by predefined instructions. This contrasts, conven-

tional agents behavior functions defined by highly exact programming languages lack the

ability to express ambiguous instruction relying on commonsense, as so often is required

in complex real-world tasks. Behavior functions defined by learning-based methods like-

wise lack ability to perform ambiguously defined tasks without large amount of example

data and thus severely limit practical usefulness. See Sec. 1.2.1 and Sec. 1.2.2 for fur-

ther details about the limitations of rule-based and learning-based agent approaches. A

promising approach to realize general-purpose robots is to leverage large language mod-

els (LLMs) [85, 90, 92, 382–387] trained on internet scale information about the world.

LLMs as contextual information integrator functions enable previously infeasible capa-

bility to synthesize a natural language task instructions, extensive world knowledge, and

commonsense reasoning, to produce an output according to the instruction [70, 79, 388].

LLMs are thus a core enabling technology for general-purpose agents due to compre-

hending and completing instructions specified in fluid natural language. Furthermore,

multimodal LLMs allows communicating information to humans by natural language,
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potentially providing explicit causal decision factors [89] and intent of future actions

or predictions [75]. The explicit and specific nature of language-based feedback over-

comes limitations of implicit feedback in the form of attention masks [389–391] and other

ad-hoc explanability methods requiring human interpretation [392–394].

Open world semantics. Another required faculty is the ability to interpret the world

in terms of a priori unknown task-relevant semantics. To complete a novel task in a new

environment, a general-purpose mobile robot need to comprehended the environment

by an a priori unknown set of semantics. However, learning useful semantic represen-

tations from correlation patterns in raw observational data by self-supervised learn-

ing [3, 112] by itself does not result in semantic representation grounded in the innate

world knowledge and contextual information integration capabilities of LLMs [70, 79].

Open vocabulary Vision-language models (VLMs) [6, 77, 80, 81, 95, 188–193, 297, 395]

align self-supervised semantic feature extraction models [144, 396] with natural language

semantics. Interpreting percepts by VLMs and transforming the resulting open vocab-

ulary semantic embeddings into the LLM embedding space and connects the internal

reasoning processes of LLM agents with the external world. This thesis presents latent

compositional semantics as a mathematical theory of how open vocabulary semantics

are represented. A new sufficient similarity semantic inference method is proposed based

on the mathematical theory. The new inference method overcomes principal limitations

of the conventional most similar semantic inference method. See Chap. 4 for further

details.

Spatio-semantic memory. However, spatio-semantic reasoning tasks may require

information beyond what is currently observed. Efficiently fetching an item out of

view require a spatio-semantic memory of where the item is located [91]. Inferring

navigational patterns like road lanes may require predictive assumptions for the un-

observed environments behind obstructions [301]. A spatio-semantic memory [397] or

scene representations [398] allows an agent to query semantics from observational mem-

ory [290, 292, 293], to navigate [187], and plan by reasoning [92]. Common represen-

tations for spatio-semantic include 3D reconstruction [399], object-centric, topological

maps [400], scene graphs [401], and top-down metric grid maps [381]. This thesis pro-

pose open vocabulary predictive state representations as a principled means to represent

spatio-semantic memories for general-purpose mobile reasoning agents.

Spatially grounded visual reasoning. All required task semantics may not cor-

respond to visual object semantics. Inferring what visual object semantics to query to

complete a task is part of the visual reasoning problem [86, 91, 383, 402, 403]. For exam-

ple, to complete the task “fetch a cold beverage high in vitamin C”, the general-purpose
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mobile agent may need to reason beyond its explicit spatio-semantic memory about ob-

ject location, and reason that cold beverages are generally located in the fridge, and

reason about which of the available beverages have the highest vitamin C content [297].

If the general-purpose agent is tasked to navigate a cluttered parking lot to find a specific

car model. The agent must be able to reason about semantics relevant to safe navigation

including other vehicles, pedestrians, signs, and implicit rules of cooperative driving in

rule-constrained environment [75, 404].

Commonsense knowledge. General-purpose agents need to be capable of common-

sense reasoning due to handle the vastness and complexity of real-world environments

and task descriptions. Commonsense reasoning aids in resolving ambiguities that arise

from lack of explicit information, contradicting data points, and contextual integration

of ambiguous task descriptions and world knowledge. Commonsense knowledge enhance

the agent system’s real-world scalability by enabling more efficient utilization experi-

ence by learning with knowledge [28]. Concrete advantages include adaptation to new

situations by generalizing from limited observation or example data by efficient few-shot

learning [405, 406]. Learning from observational experience in the real world is feasible if

leveraging reasoning over commonsense knowledge to avoid negative outcome experience

during exploration [73, 75, 84, 89, 386]. Commonsense reasoning can serve as a good

heuristic for discovering causal mechanisms by leveraging high-level semantic knowledge

[70, 348, 407–409]. Finally, commonsense knowledge is strongly related with spatially

grounded visual reasoning as the primary means to infer what semantics to infer as well

as facilitating the reasoning process itself [410–412].

The proposed agent framework is primarily optimized by surprise minimization similar

to the predictive coding hypothesis in the biological brain. Learning via surprise min-

imization is hypothesized to be the fundamental principle of biological intelligence for

continuously evolve and improve based on existential experience [331]. The continual

learning capability of the biological brain is replicated in the proposed general-purpose

mobile agent. The latent compositional semantic vision encoder model is primarily op-

timized by self-supervised learning (SSL) objective [144]. The predictive world model

and alignment encoder is entirely optimized on observational experience by a SSL objec-

tive [2]. LLMs are primarily optimized by next token prediction [413] and can leverage

self-reflection for improving predictive performance with observational experience [414–

416]. Continual learning enables general-purpose agents to maintain a high-level of com-

petence and adapt to various domains while continuously improving their capabilities

over time.
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3.4.3 Open-Vocabulary Predictive State Representation

This section deliberates on state representations, and how open-vocabulary predictive

state representations relate to general-purpose predictive agents is deliberated on in this

section. A state representation is a data structure enabling agents to store relevant

information and represent the external environment as perceived by the agent [417].

The state may also contain information about the robots internal state. The state

representation must be computationally implementable, efficient, and support inference

to be useful for an agent. A good state representation should be expressive yet compact

and ideally be both machine and human readable in order to improve human-machine

communication.

Sensors for state estimation. The philosophical idea underlying state representa-

tions is that there exists an objective and predictable external world that can be mod-

eled [102, 325]. Environment states for real-world mobile robot agents fundamentally

cannot be perfectly known, but only estimated to a certain degree of accuracy by sen-

sor observations and world modeling [265]. Conventional sensors for mobile robots are

primarily composed of two types of physical light-sensing mechanisms with complemen-

tary strengths and weaknesses. First, active sensing lidar (light detection and ranging)

sensors accurately represent metric space using point clouds. Secondly, passive sensing

cameras captures rich semantic information about the perceived environment. Sensor

fusion approaches aim at leveraging the complementary strengths of both vision modali-

ties [259]. Image content can be projected to a 3D point cloud if the pixel-wise depth and

camera calibration parameters are known [418]. In principle, monocular [248, 419–421]

or stereo vision [422–425] can provide depth maps and enable a vision-only perception

configuration equivalent to biological vision systems [351]. Observations are seman-

tically interpreted by perception or computer vision models. Significant progress has

been made in recent decades in terms of increased semantic expressiveness and general-

ity due to exponential increase in computing power and data [20, 30]. Semantic point

clouds are the natural data structure for representing both spatial and semantic infor-

mation. Other modalities have been studied in robotics, such as auditory (hearing) and

tactile (touch) perception. Auditory perception has seen significant research in speech

recognition, music perception, machine learning of music, and general sounds [426, 427].

Tactile perception is important in robotics with manipulators. Automated perception

of smell has seen less research but deep learning models have been shown to predict

smells based on molecular structure [428]. This thesis does not however consider sensing

modalities beyond vision and lidar observations.
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Requirements for general-purpose mobile robots. The spatio-semantic environ-

ment representation for general-purpose mobile robots needs to satisfy three proper-

ties: First, the representation needs to encode rich open-set semantic object descrip-

tions [206, 209, 210]. For narrow problems like object avoidance in constrained en-

vironments, it may suffice to detect and represent an object by one of a fixed set of

classes like table. A general-purpose agent [92] however, requires a richer compositional

representation of the object including alternative names like desk, properties like rigid,

and affordances like flat surface, all of which cannot be manually annotated during the

system development phase. Secondly, the representation needs to support querying of

overlapping semantics, such as a dog also being an animal. Overlapping semantics must

be learnable from independent observations or datasets without relying on human cus-

tomization effort limiting scaleability [429]. Third, the representation must be efficient in

terms of storage. Spatio-temporal accumulations of raw observations rapidly grow into

an unreasonable amount of data [398]. To keep the environment representation compact,

observations need to be abstracted into declarative semantic memories [206–208]. An

additional practically beneficial property is explicit environmental representation. Ex-

plicit representations can communicate to humans robots’ environmental understanding,

intended plan of actions, along with interpretable factors for decision making. Explicit

representations also allow humans to provide precise spatially grounded instructions

to robots [85]. This thesis introduces semantically rich metric state representations

by open-vocabulary semantic embeddings grounded in a metric spatial representation.

The proposed state representation functions as rich spatio-semantic memory for general-

purpose mobile robots. The theory of latent compositional semantics [95] provides a the-

oretical background in the form of a mathematical model for the semantic queryability

and representational capacity of the embeddings making out the state representations.

Symbolic and metric state representations. State representations can be catego-

rized into symbolic and metric data structures. Symbolic state representations repre-

sentations, or knowledge bases, use symbolic, logical, or relational descriptions or formal

languages to represent the state of the robot and its environment [28]. Representational

structures include propositional logic, first-order logic, and semantic networks. Con-

structing knowledge-based agents involves a declarative approach where agents work by

combining assertions of sentences in the knowledge base with logical inference [430]. The

fundamental concepts of logic are independent of any specific form, enabling representa-

tion languages to specify syntax rules for forming sentences. Proposition logic is a simple

example of this concept, where the truth values of symbols determine the truthfulness of

sentences with respect to models in the real world [431]. However, proposition logic has

limitations and cannot express some statements such as those involving quantifiers like

all (∀) or some (∃). More complex languages like first-order and temporal logic enhances
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the generality of expressible states, such as quantifiers, though bring their own challenges

in terms of computational complexity and practical implementability [432, 433]. Sym-

bolic state representation have proven to be a useful and human interpretable tool for

building reliable intelligent agents capable of reasoning about the world around them

and take intended actions according to their current state or knowledge base. However,

Symbolic states principally do not support representing uncertainty, handling noise, and

representing continuous valued information or degree of truth [24, 96, 434]. The inherent

weakness to imperfect data limits learning symbolic knowledge from raw data without

sophisticated contextual information processing and world knowledge.

Metric state representations leverage numerical or continuous numerical values to rep-

resent the robot’s state and environment in terms of “degree” of some semantic [417].

Data structure examples include feature vectors or semantic embeddings, occupancy

grids, and topological maps. Metric representations can capture spatially detailed infor-

mation about the environment, but they may require significant processing power and

memory resources. The amount of semantics expressible by homogeneous state repre-

sentations like conventional grid maps is limited as much memory and computation is

required as one metric represent ion is required to specify the degree of each semantic.

The state representation approach presented in this thesis is based on accurate metric

environment information [2]. Lidar measurements are significantly less noisy and accu-

rate than vision-based depth estimation and thus the preferable spatial sensing modality

for the proposed approach. Furthermore, lidar sensor devices are becoming increasingly

affordable thanks widespread adoption resulting in sustainable mass production, leading

into a virtuous cycle.

Spatio-semantic memory. Spatio-semantic representation of the environment is es-

sential for general-purpose mobile agents [85, 187, 291]. By employing spatio-semantic

memory as state representations, an agent can query spatially grounded rich semantics

by aligned multi-modal vision-language models (VLMs) [6, 77, 80, 81, 188–193, 395]

compatible with human communicated instructions and support reasoning over com-

monsense world knowledge incorporated in large language models (LLMs) [92]. Spatial

grounding of VL embeddings in 3D can be done by projecting 2D dense VL embedding

maps to point clouds [290, 292, 293] or neural radiance fields (NeRF) [296]. The spatio-

semantic environment state representation for general-purpose agents thus requires the

following properties: encode an open-ended vocabulary of semantic concepts, represent

and allow querying of overlapping semantics (e.g. a couch is also a furniture), and store

observations compactly. Learning open-set semantic concepts as embeddings z existing

in a common semantic embedding space Z instead of K predefined classes as unit vec-

tors êk is a more scalable approach to increasingly understand the world with sufficient

sophistication to complete a wide range of tasks and environments, and adapt quicker
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to new unfamiliar situation. This thesis propose grounding latent compositional seman-

tics [95] using lidar observations into a common 3D vector space. See Chap. 4-6 for

further details.

Predictive state representations. Completing tasks generally requires information

beyond what is currently observed. A spatio-semantic cognitive memory [397], or se-

mantic scene representations [398], enables a mobile robot to query semantic information

about prior observations [290, 292, 293], to navigate [187], and do planning by language-

based reasoning [92]. Common spatio-semantic representations for mobile robots are 3D

reconstruction [399], object-centric, topological maps [400], scene graphs [401], and top-

down metric grid maps [1, 2]. Predictive state representations go beyond representing

past and current observations of the environment and agent state [2]. Predictive states

leverage a world model [1, 265] that allows predicting relevant information about the

environment and future agent states based on current observations and actions taken.

The world model is central to predictive states can be learned directly from data by max-

imizing the likelihood of predictions given observational experience of the world. World

models effectively piece together what is unseen from what is and has been seen, and can

predict outcomes of actions before they are taken. Examples include Predictive State

Representations (PSRs) for controlled dynamical systems [435] and Observable Oper-

ator Models (OOMs) generalizing hidden Markov models (HMMs) [436]. This thesis

introduces semantically rich predictive state representations of environments based on

an open-vocabulary world model [2]. Together with the proposed world model, the pre-

dictive state representation functions as an artificial hippocampus for general-purpose

mobile robots as explained in Chap. 5. The core advantage of the proposed open-

vocabulary predictive state and world model approach is the dual explicit and latent

state representation. The explicit representation x ∈ RH×W×D encodes the 2D environ-

ment represented by a grid map of height H and width W , by grounded rich semantics

of dimension D in a human interpretable representation supporting grounded semantic

querying. Simultaneously, the compact latent state representation z ∈ RD necessarily

captures the same information as the explicit representation x while being compatible

with the learned state-transition modeling paradigm.

3.4.4 Predictive Agents

This section explains how predictive agents based on combined state-transition modeling

and LLM commonsense reasoning over world knowledge relates to general-purpose mo-

bile reasoning agents. The concept of an agent is based on the existence of an external

environment and an entity with agency that interacts with the environment. A useful

agent has agency, meaning it is driven to complete a particular task, possibly involving
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completing sub-tasks by task decomposition [409, 437]. Typically goals are specified

by inherently goal-driven entities like humans, or intrinsically developed agency by the

machine agent [438] A formalization of completing a task is to find a sequence of actions

taking the agent from an initial state to a goal state [439]. Completing complex tasks

typically involve long and complex sequences of actions. Defining the agent behavior

functions or program that predicts or determines which actions are taken in each state

is one of the core challenges to solve in a any agent system. A predictive model is a

function or a mapping that takes input data representation and produces an output

prediction or estimate. Inputs are commonly referred to as features or independent vari-

ables. Outputs are called as target variables or dependent variables. Here follows an

analysis of requirement and implementable components of the proposed general-purpose

mobile reasoning agent framework as a predictive agent.

Agent frameworks. Agent programs embody the principles underlying intelligent

systems. As explained in Sec. 1.1 and formalized in (1.3), all agent programs can be

mathematically modeled as sequential state-transition models based on perceiving states

and attempting to predict rational action that completes the task. Particular implemen-

tations of state representations and state-transition models covers a wide spectrum of

complexity. Some models simply reacts on the current state being equivalent to the

percepts, while others integrates observations over time to elucidate a more complex

environment state to base actions on. Typically agents are organized into four types

according to abilities [28]:

1. Reflex or reactive agents [440] are the simplest type of intelligent agent, selecting

actions based solely on the current percept and ignoring the rest of the percept

history. A simple vacuum cleaner is a typical example of a simple reflex agent

that behaves according to pre-programmed instructions based on current sensor

readings. Reactive agents simply react to the current environment observations

without any form of internal memory, environment state, or world model.

2. Model-based reflex or reactive agents [417, 441] are more sophisticated than simple

reflex agents, as they use an internal environment model to keep track of its state

and history. This allows them to make decisions based on both current percepts

and previous experience.

3. Goal-based agents [442, 443] are designed to achieve specific goals by choosing ac-

tions that lead towards desired outcomes or follows an instruction. They may use

a hierarchy of goals to prioritize different objectives and select the most promising

action based on their current state and available options. Goal-based agents can

handle non-deterministic or partially observable environments better than simple
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and model-based reflex agents, as they can reason about future states and choose

actions accordingly. Goal-based agents are also deliberative agents, as they posses

an explicit internal model of the world and can reason about their actions before-

hand.

4. Utility-based agents [90, 357, 362, 444] are a more advanced type of agent program

that aims to not only reach a goal state, but also maximize expected utility by

considering the long horizon outcome of their actions. They use decision theory

to evaluate different options based on their potential outcomes and select the one

with the highest expected value. Utility-based agents can handle uncertainty and

risk effectively, but they require accurate models of the environment and precise

estimation of utilities.

Each kind of agent program combines particular components in particular ways to gen-

erate actions. The performance measure evaluates the behavior of the agent in an

environment, and a rational agent acts so as to maximize the expected value of the

performance measure. A mixed or hybrid agent combine elements from both reactive

and deliberative agents, allowing them to respond quickly to environment stimuli if nec-

essary while still planning ahead and reasoning. The same dichotomy of fast and slow

cognition is well-studied in human intelligence [445].

State-transition modeling with commonsense reasoning. Conventional utility-

based agent framework are structured as state-transition models initialized as blank

slates and learned by trial-and-error experience. This thesis propose to instead leverage

LLM powered commonsense reasoning as part of a state-transition framework based on

spatially grounded and semantically rich predictive state representations. The proposed

framework can therefore hypothetically plan long sequences of high-level actions without

requiring to experience negative outcomes in order to avoid unwanted states. Eliminating

the need to experience negative outcomes in order to learn to avoid such is a prerequisite

for safe learning from observation experience in the real world. Core LLM agent abilities

include perform hierarchical planning by task decomposition [409, 437] and program

synthesis [385–387], and reason with commonsense world knowledge [92]. The proposal

is discussed in detail in Sec. 3.4.4.2.

Complete vs. partially observed environment states. The distinction between

fully observable and partially observable environments is important in the design of real-

world mobile robot intelligent agents [1]. In a fully observable environment, the agent

can see the entire state of the world at any given time, while in a partially observable

environment, some aspects of the state may be hidden from view. This thesis provides a
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solution for the partially observable environment problem with potential to unify “game

AI” [21, 57] and mobile robotics approaches [2]. The solution is described in Sec. 3.4.4.1.

3.4.4.1 Predictive world modeling

The objective of the general-purpose predictive agent is to solve novel task by reasoning

over commonsense world knowledge. Predictive world modeling is the core component

bridging the spatio-semantic environment state as perceived by the agent with the world

knowledge and reasoning capability of LLMs as explained throughout this section.

Spatio-semantic representation requirements. Cognitive scientists believe that

adaptable intelligent agents like humans represent the world using a small set of founda-

tional cognitive components for perceiving inanimate objects, external agents, numeric

concepts, social relations, and spatial environments [99]. These cognitive abilities allow

intelligent agents to perform commonsense physical reasoning and imagine counterfac-

tual scenarios to facilitate task accomplishment [380]. A key capability is predictive

world modeling [265–267, 381]. In contrast, mobile robots are conventionally designed

and programmed for performing a priori specified tasks in known environments. General-

purpose mobile robots on the other hand, aim to be flexible intelligent agents that can

understand novel situations and complete a wide variety of tasks in new environments by

leveraging world knowledge. Large language models (LLMs) have emerged as a promis-

ing direction to achieve general-purpose agents [85, 90, 92, 382–387]. Core LLM agent

abilities include understanding weakly specified goals defined in natural language [90],

perform hierarchical planning by task decomposition [409, 437] and program synthe-

sis [385–387], and reason with commonsense world knowledge [92].

To complete a novel task in a new environment, a general-purpose mobile robot need

to comprehended the environment by an a priori unknown set of semantics. Vision-

language models (VLMs) [6, 77, 80, 81, 188–193, 395] is a common approach to ground

rich open-vocabulary (OV) semantics in the observed environment and connect the inter-

nal reasoning processes of LLM agents with the external world. However, spatio-semantic

reasoning tasks may require information beyond what is currently observed. Efficiently

fetching an item out of view require a spatio-semantic memory of where the item is

located [91]. Inferring navigational patterns like road lanes may require predictive as-

sumptions for the unobserved environments behind obstructions [301]. A spatio-semantic

memory [397] or scene representations [398] allows an agent to query semantics from ob-

servational memory [290, 292, 293], to navigate [187], and plan by reasoning [92]. Com-

mon representations for spatio-semantic include 3D reconstruction [399], object-centric,

topological maps [400], scene graphs [401], and top-down metric grid maps [381]. The
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Figure 3.2: The framework integrates open-vocabulary semantic point cloud obser-
vations into a common vector space. A predictive world model samples a set of diverse
plausible complete world states from the partially observed state. The model improves
through continual learning from experience by comparing predicted and observed future
states based on predictive coding. High-dimensional semantic embeddings are projected

to RGB color values for visualization. [1, 2]

spatio-semantic environment state representation for general-purpose agents thus re-

quires the following properties: encode an open-ended vocabulary of semantic concepts,

represent and allow querying of overlapping semantics (e.g. a couch is also a furniture),

and store observations compactly. The theory of latent compositional semantics [95]

satisfies the above requirements.

Open-Vocabulary Predictive World Model. This thesis proposes an Open-vocabulary

Predictive World Model (OV-PWM) [2] as a spatio-semantic memory and internal sim-

ulator for general-purpose mobile robots. World models are abstract representations of

the environment that enable planning over latent structures decoupled from particular

observable appearances (i.e., pixels) [265–270, 273]. The advantage of world models

is demonstrated by recent model-based reinforcement learning [279, 280]. This thesis

presents a framework for implementing a self-supervised predictive world model that gen-

erates a diverse set of explicit plausible complete open vocabulary world states trained

from partially observed states only [1, 2]. The experimental results verify the feasi-

bility of this approach in realistic real-world environments as shown in Fig. 3.2. The

OV-PWM is a latent variable generative model [446–449] that learns from egocentric

partial observations to predict complete environment states represented by grounded

open-vocabulary semantics. The OV-PWM functions as an implementation of an ar-

tificial hippocampus that learns a distribution of compact latent codes capturing the

structure of observed environments. See Chap. 5 for further details about the predictive

world model as an artificial hippocampus.

The explicit open-vocabulary environment representations enabled by OV-PWMs pro-

vides several potential advantages to implicit representations and conventional offline
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map-based mobile robots with human-annotated semantics [2]. First, the OV-PWM

can disambiguate the observed state by substituting unknown regions with plausible

predictions based on prior observational experience. Committing to a particular com-

plete state simplifies learning policies by removing the implicit marginalization over

many plausible underlying states for state transition modeling. Secondly, OV-PWMs

can bridge conventional map-based and perception-based planning and control meth-

ods. For example, safer motion planning may be achieved by sampling diverse plausible

structures of unobserved regions and account for worst-case scenarios. Additional po-

tential advantages include improving localization by densifying observations, verifying

offline map consistency with the actually observed environment, and leverage the highly

expressive but compact latent state for planning in latent space [273]. Thirdly, learning

a world model based on grounded open-vocabulary semantics allows optimizing a single

general OV-PWM for multiple tasks requiring different semantic perceptual informa-

tion. Fourthly, leveraging unconditional open-vocabulary semantics supports inferring

overlapping semantics by sufficient similarity inference [95].

The proposed framework uses an HVAE model [449] to encode and reconstruct future

world states generated by the plausible state completion module. This process does not

substitute for the predictive world model, as it leverages future observations that are

not available at inference time. The original partially observed world representations

are transformed by data augmentation techniques, including random rotation, transla-

tion, and warping operations, when training the predictive world model. The geometric

augmentations are essential to achieve geometric invariance for generalization [2].

The predictive world models framework proposed by this work aims at generating plau-

sible complete worlds from partially observed states only via self-supervised learning

using sensor observations [1]. This approach is particularly useful for real-world spa-

tial environments, as it does not rely on maps or predefined representations. Instead,

the model learns to represent and sample general and spatially complex structures in a

probabilistic manner. The experimental results demonstrate that this framework effec-

tively closes the gap between perfect prediction and partially observed worlds by 61.7%

on average when evaluating over both past and future observations [2]. The process of

generating plausible complete world states involves multiple stages, including encoding

and reconstructing pseudo ground-truth world states using a regular hierarchical VAE

(HVAE) model with learned latent variable prior pθ(z) and posterior qθ(z|x), as well as

performing data augmentation on the original partially observed world representations

when training the predictive world model.

The experimental results presented in Chap. 5 show that the proposed framework can
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generate high-quality partially observed world states and accurately predict future ob-

servations with an average IoU of 98.73%. See Fig. 3.2 for visual examples of generated

plausible worlds.

Summary and limitations. Predictive world modeling is critical in creating general-

purpose mobile reasoning agents due to its role in producing an explicit spatially grounded

and semantically rich environment representation. The proposed approach leverages re-

cent advances in deep generative models and provides a promising alternative to tradi-

tional map-based navigation methods. The predictive environment representation can

be aligned with LLMs to enable common sense reasoning grounded in the observed en-

vironment as explained in Sec. 3.4.1. Facilitating commonsense reasoning over world

knowledge promises to make general-purpose agents adaptable to various tasks and en-

vironments while overcoming limitations of existing paradigms as explained in Sec. 1.2.

The predictive world modeling approach also has potential applications in narrower agent

tasks based on conventional autonomous driving systems explained in Sec. 1.2. Adding

spatio-semantic representations of the environment as perceived by the sensors can com-

pliment predefined maps by robustify against unsafe behavior or failure to operate due

to map errors [45, 240, 301].

A limitation of the presented OV-PWM implementation is the top-down 2D grid repre-

sentation. 2D embedding maps do not represent vertical information and multi-layered

environments as required for general 3D representations. Extending the OV-PWM ap-

proach to 3D representations using voxel grids or neural radiance fields is a promising

direction of future work to enable spatial reasoning in fully general complex 3D struc-

tures. Learning can be improved by reducing degenerate accumulated observation sam-

ples resulting from inaccurate and erroneous ICP scan matching steps by implementing

a robust SLAM-based observation accumulation framework. Allowing the OV-PWM

model to learn to recreate actual representations of the world instead of overfitting to

noisy samples is expected to improve both generative accuracy and learning efficiency.

3.4.4.2 State-Transition Modeling

This section presents an account of state-transition modeling as a mental simulation

framework. State-transition models are a type of probabilistic model used to represent

systems where entities can transition between different states over time. These mod-

els have been widely applied in various fields, including AI, robotics, and operations

research. In the context of AI, state-transition modeling has played a significant role

in areas such as planning, decision making, and control. The basic idea behind state-

transition models is that the system under consideration can be represented using a
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set of states and transitions between these states. This thesis presents state-transition

models as a sequence of abstract high-level actions by reasoning over commonsense

world knowledge grounded in the predictive environment state representation. The pre-

sentation starts with explaining the conventional state-transition modeling approach.

The later part explains how recent LLM-based reasoning frameworks are theoretically

adapted for mental simulation grounded in the aligned predictive world model states.

Search problems. Problem-solving agents leveraging search are the prototypical ap-

proach to solve problems by planning [28, 443]. Search problems are formalized by

defining a state space as a finite or infinite set of atomic states x as an abstraction of the

environment. The agents starts in an initial state xi. The objective is to reach one out

of potentially many goal states x′ ∈ Xg. A goal state function is goal(x) determines

the set of goal states

Xg = {x|is goal(x)}. (3.1)

The agent can do actions a. A state transition model fθ(x, a) specifies the new state x′

the agents will be in if the agent does action a being in state x

x′ := fθ(x, a) s.t. a ∈ actions(x). (3.2)

Only valid actions defined in fθ(x, a) and represented by the set actions(x) are doable.

The state transition model fθ(x, a) represents an approximation of the real world dynam-

ics relevant to the problem being modeled. A problem-solving agent solves a problem

by searching for a sequence of actions {a1, . . . , aN} taking the agent from xi to x′ ∈ Xg

based on fθ(x, a). An action cost function action cost(x, a, x′) represent the cost of

transitioning to x′ from x by a. An optimal sequence of actions or plan is the one with

smallest accumulated cost. The iterative search process results in a search tree growing

from the initial state xi outwards in search of a goal state x′ ∈ Xg [450]. Typical search

algorithms for problem-solving agents include uninformed algorithms like breadth-first

search and depth-first search [360]. Uninformed search algorithms expands the search

tree without knowledge of which nodes are more likely to lead towards a goal state.

Informed search algorithms like greedy best-first search [451] and A* [359] search with

variants like weighted A* [452] leverage a heuristic function h(x) to decide which states

to search. Heuristic functions h(x) estimates the optimal path cost from state x to a goal

state x′ ∈ Xg [451]. The search problem formulation is widely used in various areas of

AI, including constraint satisfaction algorithms, propositional logic, planning, Bayesian

networks, and machine learning algorithms.

Traditional problem-solving agents solves problems defined in fully observed, discrete,

deterministic, and known environments. Solving problems in partially observed, con-

tinuous, stochastic, and unknown infinite real-world environments require additional
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considerations explained in the reminder of this section.

Environment state representation. The real-world environment of general-purpose

mobile reasoning agents is far from atomic. Actions like actuation and sound generation

are continuous at the most fundamental level. The amount of inferable semantics in the

environment state is practically unbounded. A suitable level of abstraction is needed to

make the search problem tractable for real-world general-purpose agent problems. The

predictive state representation proposed in this thesis is such an abstraction.

The predictive state representation x can be seen as an approximate open vocabulary

spatio-semantic snapshot of the world at a particular time t. The state x is inferred based

on integrating past and current observational experience following the prototype The

state x is a dual latent and explicit representation, supporting both latent state transi-

tion modeling using compact but semantically expressive latent states z with equivalent

discriminability as the explicit states x. See Chap. 5 for more details about the predic-

tive state representation. The dimensionality for z and x for results presented in this

thesis is R16 and RH×W×768, respectively. The open vocabulary state x can represent

a large set of semantics by latent compositional semantic embeddings. See Chap. 4 for

more details about latent compositional semantics. The explicit spatio-semantic state

representation x can be aligned with the embedding space of LLMs by the computational

geometry based encoder optimization method presented in Appendix C.

Partially observed to predictive states. Real-world mobile agent environments

are typically expected to operate on partially observed environment states perceived

by the agent. Conventional state-transition modeling methods struggle with such in-

complete environment states. The naive probabilistic state-transition model approach

is to marginalize out uncertainty by predicting state transitions as probability distribu-

tions. The stochastic nature of probabilistic state transition modeling does not allow

long prediction sequences as uncertainty builds up in each prediction step

x̂′ =

∫
x
p(x)fθ(x

′|x, a)dx. (3.3)

The conventional approach to state-transition modeling under uncertainty include Markov

decision processes (MDPs) and partially observable Markov decision process (POMDPs).

MDPs model optimal decision making by extending traditional Markov chains through

incorporating both uncertain action outcomes specified by probabilistic transitions be-

tween states, as well as rewards associated with those transitions [453]. MDPs have

been widely applied in various domains, including game playing, resource allocation,

and robot control. MDPs can be solved by value iteration and policy iteration algo-

rithms. POMDPs extend MDPs problems to also include uncertain initial states. The
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solutions to POMDPs is based on maintaining a probabilistic distribution

p(X) = {p(x1), . . . , p(xN )} ,
N∑
n=1

p(xn) = 1 (3.4)

over the set of plausible states X the agent may be in. The set X is called a belief state.

In real-world environments the number of possible state in X is infinitely large, meaning

the approach does not scale well beyond simple discrete environments.

This thesis presents a predictive world model PWM() capable of generating a set of

discrete plausible worlds {x∗1, . . . , x∗K} originating the partially observed world x. Rep-

resenting the set of plausible worlds as a learned latent distribution is more scalable

than maintaining a set of explicit plausible words as in the belief state approach. The

predictive world modeling approach can equivalently be viewed as a learning-based ap-

plication of belief state prediction as a probabilistic distribution of latent states learned

from observational experience [2]. Basing state-transition modeling on explicit predic-

tive states x∗ sampled from a PWM() instead of the marginal distribution over all

possible states resulting from a partially observed state x is hypothesized to enable long

prediction horizons in real-world environments. State estimation uncertainty is elimi-

nated by replacing propagation of uncertainty with exploring a search tree of sampled

plausible explicit states akin to Monte Carlo Tree Search (MCTS) over fully observable

game environment states as demonstrated by AlphaGo [21]

x̂∗′ := fθ(x
∗, a) s.t. a ∈ actions(x∗) , x∗ ∼ PWM(x). (3.5)

The MCTS approach is visualized in Fig. 3.3. The agent perceives the world as a partially

observed environment state x. The predictive world model PWM() samples plausible

complete predictive states x∗i without uncertainty. Multiple search trees originating from

the predictive states explores the state space by a state transition model fθ() until a

goal state is goal(x∗) is found.

The proposed predictive state MCTS problem-solving agent approach is based on a the-

oretically sound state space of explicit and unambiguous environment states generated

by the predictive world model PWM(). However, the model does not address how to

represent actions, what actions are allowed in each state, and how to model the state-

transition function fθ(). The advantages of learning prediction models based on explicit

predictive states is demonstrated in Sec. 3.5 and Chap. 6. The remainder of this sec-

tion explains how integrating LLM-based reasoning solves the remaining limitations and

transforms the predictive state MCTS framework into a mental simulator leveraging

abstract actions and predicted state transitions based on commonsense reasoning over

world knowledge.
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Figure 3.3: A state-transition model allows an agent to search the space of action
sequences likely reaching a desired goal state.

LLM-based reasoning as mental simulator. Large language models (LLM) have

demonstrated a transformational capability to learn and represent commonsense world

knowledge from internet-scale text information [70, 161]. Furthermore, LLMs have also

demonstrated a capability to perform multi-step reasoning over the assimilated com-

monsense world knowledge [70, 409, 454–456]. This thesis propose a principled method

to ground LLM-based commonsense reasoning to the perceived environment and facil-

itate a MCTS search over abstract actions and state transitions. The versatility and

leverage of commonsense world knowledge is a promising principled direction to enable

future general-purpose mobile reasoning agents to complete complex tasks by search-

based planning grounded in the perceived environment. The remainder of this section

explains how to transform the predictive state MCTS approach visualized in Fig. 3.3

into a mental simulator leveraging reasoning over world knowledge.

The sampled set of predictive states x∗ in Fig. 3.3 represent explicit open vocabulary

plausible worlds underlying the partially observed environment state x. The predictive

states x∗ is hypothesized to be aligned into a LLM embedding space by the proposed

encoder optimized by computational geometry explained in Appendix C. Leveraging a

tree-of-thought (ToT) reasoning algorithm allows the LLM agent to predict doable high-

level actions a for each predictive state x∗. The state-transition function is implemented

by a LLM that predicts a high-level textual description of the environment state x∗′ based

on commonsense world knowledge. The branching step-by-step reasoning algorithm

runs until a goal state is found and a sequence of high-level actions {a1, . . . , aK} is

returned. The goal state is identified by a LLM function evaluating the high-level state

description and the task description [457–461]. Goal state detection methods allows

the AI agent to itself determine if a goal state has been reached. Goal state detection

enables versatile autonomous task optimization and learning from experience due to the

fact agents can autonomously set up and evaluate completion of causal hypotheses by
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experiment. Additionally, this direction opens up for causal discovery by formulating

a hypothesis that can be tested and evaluated in the real world. See Sec. 3.6 and

Sec. 3.7 for further details about task description representations and planning by mental

simulation. The high-level actions can be transformed into low-level control programs by

LLM-based program synthesis [377, 378, 387, 462, 463]. See Sec. 3.8 for further details

about program synthesis for low-level action execution.

The grounded LLM-based reasoning approach hypothetically enables versatile, efficient

and safe exploration of high-level action sequences. Versatility stems from semantically

grounding the environment representation in the LLM embedding space and predicting

state transitions based on commonsense world knowledge. The approach is efficient

because the level of state and action abstraction is aligned with human decision making

due to LLMs being trained written information based on the human world perspective.

The returned sequence of high-level actions are safe as undesirable state transitions

like collisions are identifiable by commonsense world knowledge inherent in LLMs. The

mental simulator can also be optimized by self-reflecting on predicted and experienced

high-level state outcomes in line with the predictive coding learning paradigm [331].

The ability to learn from future observations and update the state transition model

is particularly important in dynamic real-world environments where conditions may

change rapidly, requiring constant adaptation on the part of the agent [98]. The natural

language-based mental simulator supports versatile human-machine communication and

explainability by providing explicit sequences of actions, state transitions, and decision

factors, making it easier for humans to understand and evaluate how an agent arrived

at a particular conclusion or action.

The proposed mental simulator approach is limited in practice by the generality and

accuracy of commonsense world knowledge within LLMs, the correctness of reasoning

steps done by LLMs, accuracy of goal state detection, and achieving sufficient inference

speed for timely decision making. The practical investigation of the proposed mental

simulation based on predictive state representations is proposed as future work.

Another advantage of state-transition modeling lies in causal discovery, which involves

using structured models as mental simulations that can learn from real-world outcomes.

By creating such models, agents are better able to understand the underlying causes

of events and make more accurate predictions about future states based on current

observations.

The following sections provide a deeper contextual grounding and explanation of several

practical aspects of general-purpose mobile reasoning agents: navigation, task descrip-

tion, mental simulation, and low-level action execution.
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3.5 Navigational Patterns in Constrained Environments

General-purpose mobile agents perform tasks that involve traversing an environment.

To navigate rule-constrained structured environments robots are required to correctly

perceive and interpret the environment. This problem is called scene understanding.

Navigational patterns, or directional pathways, are a core component of understanding

how to traverse structured environments [322]. In particular, efficient and safe multi-

agent navigation depends on each agent following mutually known navigational patterns.

The patterns can be defined by explicit rules or be derived from social conventions

and emergent behavior. However, learning to infer navigational patterns for complex

environments based on observable features is difficult due to regional variation and noise

including varying or missing surface markings, geometries, and materials.

Current methods for spatial navigation can be categorized into mapping- and learning-

based approaches. The mapping approach [464] avoids the problem of automatized

understanding of environments by encoding human knowledge in the form of lane maps

and localizing the system within these maps. Creating a priori navigation maps is a

conceptually simple, interpretable, and predictable way to safely navigate environments.

In practice, this approach is difficult to scale up, as map creation, maintenance, and

verification are costly in terms of human labor, typically limiting application to small

predetermined environments. Additionally, dynamic navigational behavior like correctly

avoiding parked cars or debris cannot be a priori encoded in static maps.

The learning approach involves training a model to infer navigational patterns based on

environmental context. Some methods learn implicit patterns as part of accomplishing

the primary task [33, 318, 319]. Other methods learn explicit patterns but require ground

truth lane maps for training [313, 314]. Methods learning from observational data alone

are promising scalable solutions to infer navigational patterns, as driving data can be

obtained at a low cost. However, the real-world performance of existing methods is

fragile and unpredictable in complex environments and lacks interpretability.

The human visual system comprises two subsystems [352–354]. The vision-for-perception

system located in the ventral stream processes information in a slow, top-down man-

ner to create perceptual representations from ambiguous or incomplete visual input by

leveraging visual and semantic memory [353]. These representations support conscious

mental processes such as recognition, visual thought, and planning. The vision-for-action

system located in the dorsal stream processes information in a real-time, bottom-up man-

ner to perceive the entire environment and infer behaviorally-relevant visual affordances,

including cues for spatial navigation [353, 355].
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Figure 3.4: The method accumulates sensor observations into a common metric vector
space representing the partially observed world state x. A predictive world model
samples a set of diverse plausible complete world states x̂. The directional soft lane
probability (DSLP) model predicts two probability fields; the agent traversal probability
p(yi,j) and a multimodal directional probability distribution p(θi,j) for each point (i, j).
A fitted maximum likelihood graph corresponds to global navigational patterns. The
DSLP model can learn navigational patterns from observed trajectories representing

only a subset of all plausible trajectories.
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In this thesis I present a self-supervised method for learning to infer navigational pat-

terns from real-world partial observations as required for traversing unmapped real-world

environments. My approach is inspired by the biological dorsal visual pathway [353] and

endows artificial intelligent agents with a functionally similar self-improving system that

learns to infer visual affordances for spatial navigation [465].

The model learns general contextual environment features that explain observed tra-

jectories, and can thus infer navigational patterns for newly encountered environments.

Learning from observed trajectories means learning from only a subset of all plausible

trajectories. I propose an information-theoretic regularizer to overcome the problem

of false negative traversal observations resulting from partial observations. My model

combines complementary aspects of mapping- and learning-based approaches. It also

produces an interpretable representation akin to maps. Lastly, this model improves

with additional experience akin to continual learning [466] while avoiding catastrophic

forgetting by retaining a replay buffer of past experiences [57].

I identify the navigational pattern prediction problem based on static environmental

context as a sub-problem of the general dynamic agent behavior prediction problem. The

main difference is that I do not consider the influence of dynamic objects such as parked

cars and red traffic lights, or predict the movement of particular agents. While both

problems can be solved through the same framework, I choose to remove dynamic object

information from the input representation in order to objectively compare performance

against ground truth lane graph methods.

While I perform experiments in a real-world urban road environment my method is

applicable in any general structured environment.

3.6 Task Descriptions

This section discusses different paradigms established in the literature, and their inherent

limitations of specifying task descriptions for general-purpose agents.

Formal specification. The concept of formal task descriptions for intelligent agents

involves creating structured representations to define tasks in a precise, unambiguous

manner that can be processed by computational systems. Formal language approaches

were the dominant approach between 1950s-1980s culminating in expert system technol-

ogy. A formal task description typically represent the environment, action space, and

agent state in terms of logical rules, constraints, and Markov decision processes (MDPs).

A logical rule is a formal representation that captures the relationship between different

predicates or variables within an environment. Logical languages are precisely defined by



General-Purpose Mobile Reasoning Agents 71

syntax or a set of formation rules. Popular languages include propositional, first-order,

and temporal logic. These rules typically follow the form of IF-THEN statements, where

the antecedent or condition leads to specific consequences if met. In the context of AI,

these rules can be used to describe complex tasks and decision-making processes for

intelligent agents. While logical rules primarily focus on describing relationships be-

tween variables, constraints are used to limit the possible values or combinations thereof

within a given domain. Constraints can take various forms, such as equality, inequal-

ity, set membership, or mathematical expressions. By enforcing these restrictions, an

agent can narrow down its search space and improve learning efficiency. Optimization

problems are typically defined by constraints. Markov decision processes (MDPs) are

mathematical models consisting of states, actions, transition probabilities between states

based on chosen actions, and rewards associated with transitions [453]. Encoding tasks

as an MDP problem enables efficient dynamic programming algorithm like the Viterbi

algorithm [467] to find the optimal action sequence or plan that maximizes the expected

cumulative reward. Formally specified task descriptions solvable by theorem proving or

optimization are guaranteed to be optimal solutions.

The scope of problems that can be defined by formal languages are limited by real-world

complexities as degree of truth, ambiguous semantics, and practical infeasibility of en-

coding the problem and sufficient background knowledge by non-conflicting statements.

General-purpose agents should benefit from formally specified tasks when adequate, but

agents must also be able to comprehend tasks involving ambiguous, probabilistic, and

conflicting instruction statements.

Input-output examples. An implicit way of specifying a task is to exemplify it with

desired input-output examples. In other words, if a function f() successfully completed

task based on an input x, then the output should be y. This approach is prevalent for

narrow learning-based AI task solvers like computer vision models and machine trans-

lation, where a large dataset of input-output examples approximate the intended task

and is used to find a model fθ() that best complete the intended task. The approach

adequately addresses the problem of expressing ambiguity and conflicting or noisy in-

structions limiting approaches leveraging formal specifications.

However, the inherent implicit nature of specifying tasks do not provide a mean for

precise information as expressible by formal or natural languages. Another limitation is

the amount of examples required to adequately specify a task is generally unfeasible for

the use case of general-purpose agents. A related problem is the challenge of providing

extensive background world knowledge into the example-based task completion model

which may exist in a different representation modality than the input-output examples

defining the task.
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Reward functions. Another indirect means to specify a task is by a degree of goodness

expressing how an agent’s behavior contributes towards completing an intended task in

a desired manner. The goodness value is generated by a reward function based on

one or many components including environment state, agent state, and human-created

task heuristics. A reward function assigns scalar values to actions taken by an agent

in specific states or state-action pairs within the environment. These rewards provide

feedback on how well the agent is performing and help it learn optimal policies through

trial and error [56]. Specifying a task by a reward function, together with structured

search methods, is a powerful means to achieve superhuman task performance as has

often been demonstrated in games [21] and simulation environments [350].

The reward function approach has considerable challenges when it comes to specifying

complex real-world tasks. Specifying the reward function is non-trivial for typical real-

world tasks for many reasons. The action sequence length required to complete a task

might be excessively long, meaning the agent will have significant challenge to learn to

complete the task. While simulation-based agents can afford millions of try-and-error

experiments to find the desirable behavior, time efficiency is an important considera-

tion in real-world task execution. Searching for the intended behavior by maximizing

reward outside simulation may result in damage to the environment and the physical

agent itself. Reward hacking is when an agent may discover an unintended means to

accumulate reward and result in undesirable behavior. Even ignoring the challenge of

reward hacking, specifying the reward function itself is a practical concern for non-trivial

real-world tasks. While specifying tasks by reward functions provides means to achieve

superhuman performance on precisely definable and simulatable tasks, real-world ap-

plications face substantial challenges. Fundamentally the challenges stem from lacking

semantically rich means to specify reward functions and background world knowledge

to enable a desired interpretation of the intended behavior, or in other words, aligning

the agent.

Natural language. Task specification communicated between human beings are pre-

dominately in the form of natural language instructions. Natural language is considered

the core enabler of the success of homo sapiens [15] and provides unlimited means to

express any thought [334]. Deep learning has emerged as a powerful tool for NL pro-

cessing tasks, including understanding NL instructions [70, 468]. The success of deep

learning can be attributed to its ability to learn meaningful representations from raw

data without relying on hand-engineered features. This is particularly beneficial in the

context of NL processing, where the complexity and variability of natural languages

pose significant challenges for traditional rule-based approaches. Traditionally natural

language instruction was considered an intermediate representation to be translated into
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formal machine interpretable language like first-order logic. However, with the advance-

ment of huge transformer-based[155] large language models (LLMs) [70, 161] trained on

massive amounts of natural language data and examples of instruction following [468],

it is now possible for machines to interpret and follow task instructions specified directly

in natural language. The capability to complete tasks specified directly in natural lan-

guage provides significant advantages in practical usefulness and versatility of machine

learning models as general-purpose AI systems. Additionally, tasks can be completed

while leveraging extensive world knowledge abstracted into the network parameters.

Natural language instructions interpreted by LLMs have limitations in terms of fully

specifying tasks for embodied agents operating in a physical 3D world. To complete an

embodied task, a semantically rich and spatially grounded environment representation

needs to be provided in order to ground the abstract task in the particular 3D environ-

ment. Expressing the environment plainly by textual representation is limited due to

the inadequacy to concisely represent space and all possible semantic interpretations of

objects by text alone.

Natural language instruction interpretation as consolidator. This thesis pro-

poses an dual predictive environment state and task description representation that com-

pliments the strengths of each paradigm in order to overcome each individual limitation.

Natural language instruction can provide a fuzzy logic and approximate reasoning by

instruction [454] to enhance the applicability of formally defined tasks to broader real-

world problems solvable by general-purpose agents. The input-output example approach

is enhanced by integrating prior world knowledge, resulting in a more sample-efficient

approach to specify a task by example [70]. Note that the approach is compatible with

non-textual modalities like images when leveraging multi-modal LLMs [79]. Empirical

evidence shows that natural language instruction interpreted by LLMs as program syn-

thesis is a promising means to define effective and versatile reward functions by iterative

feedback-based improvement [377]. The proposed predictive world model framework,

capable of continuous improvement from observational experience, is a promising direc-

tion to learn internal world simulators that facilitate learning policies by optimizing a

reward function and subsequently transfer learned skills back to the real world [378].

3.7 Planning by Mental Simulation

Integrate Hierarchical planning by task decomposition [386, 387] is another critical

component of designing general-purpose mobile agents capable of generating effective

plans for accomplishing various tasks in new environments. Generation of effective
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plans include producing high-level goals with intermediate sub-goals down to the level

of actuation through program synthesis [385].

Planning by simulation, also known as forward search or model-based reasoning [28],

is a method used to find a sequence of actions that achieves a goal. It involves cre-

ating an internal representation of the world or environment and simulating outcomes

of potential actions within this approximative model of the world. This approach has

been widely studied in AI research for various applications, including general-purpose

problem solvers.

The idea of planning by simulation can be traced back to the work “Planning and Act-

ing” [439] based on AND–OR trees. Prior work related to simulation-based planning

include application to propositional theorem proving [469] and the AO* graph search

algorithms [470]. Astrom [471] proposed approaching partially observed problems based

on imperfectly estimated states as belief state problems solvable by optimal control

methods over Makrov decision processes. This concept has been applied to robotics

manipulation without sensors, as demonstrated by [472]. Further advancements include

search heuristics [473] and incremental solution by belief state subsets [474]. The prob-

lem of continual learning of dynamically changing environments is tackled by algorithmic

solutions like D*-Lite [475] and LifeLong Planning A* [476]. The fundamental limita-

tion of classical search-based methods is the limited state space and transition model

employed to approximate the world. While classical general problem solvers are guar-

anteed to find an optimal solution if a solutions exits, the approach does not scale up to

ambiguous task descriptions and solutions requiring reasoning over broad commonsense

world knowledge as required by general-purpose agents.

Large language models (LLMs) provides a unique capability to leverage commonsense

world knowledge for concrete and abstract planning problems. The recent SOTA Tree

of Thought (ToT) LLM-based algorithm [454] achieves versatile reasoning using world

knowledge by iteratively exploring a causal tree structure of actions and hypothetical

outcomes. The use of ToT enables the exploration of complex scenarios involving multi-

ple actions and events that are not explicitly stated but can be logically deduced based

on common sense. The process begins with an initial thought prompt, where the LLM

generates plausible thoughts or actions related to the specified problem. The generated

thoughts are then evaluated using another set of prompts, which assesses their feasi-

bility, relevance, and impact on subsequent actions. The evaluation results determine

whether a particular thought is selected as the next step in planning by simulation. This

iterative process continues until a logical path to the solution is found.

ToT allows LLMs to reason over commonsense world knowledge through two main mech-

anisms. First, implicit reasoning refers to the model’s inherent understanding of the
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relationships between various entities, actions, and events in the real world according to

the vast textual general information data used to train the LLM. This emergent grasp

of causality enables LLMs to generate thoughts that are logically consistent with each

other and the given scenario. Explicit reasoning involves using prompts specifically de-

signed to elicit logical deductions based on common sense. These prompts guide the

model through a series of questions or tasks that require it to apply its knowledge of

cause-and-effect relationships in order to generate relevant thoughts for further evalua-

tion.

The flexibility and effectiveness of ToT have been demonstrated across various tasks, in-

cluding creative writing, puzzle solving, and crossword puzzles [454]. In each case, LLMs

were able to reason about commonsense world knowledge using both implicit and explicit

reasoning mechanisms in order to generate coherent plans or solutions for the given prob-

lem. Moreover, ToT outperforms alternative methods such as Chain-of-Thought (CoT)

linear reasoning prompting [409] for complex scenarios requiring deliberate reasoning,

highlighting its potential utility in real-world applications where sophisticated general-

purpose planning capabilities are required.

This thesis propose a framework for spatio-semantic predictive world states which are

compatible with multi-modal LLMs. The semantically rich and spatially explicit states

represent a principled environment information source from which to do general-purpose

abstract reasoning grounded in the mobile robot agent’s environment.

3.8 Low-level Action Execution

Low-level action execution is a crucial aspect of robotics and artificial intelligence that

involves generating specific motor commands for achieving precise movements or manip-

ulation required to complete a given physical task. This process often requires program-

ming, simulation, and the use of reward functions to guide the learning and execution

of actions.

Program synthesis plays an essential role in recent state-of-the-art (SOTA) performance

for low-level action execution. Program synthesis involves automatically creating explicit

code or programs that control robots or other machines analogously to the conventional

human written control code in robotics. Program synthesis plays an essential role in

recent SOTA performance for low-level action execution [385]. It involves using large

language models (LLMs) to generate code that can be executed directly by robots or

other machines, allowing them to perform complex tasks with greater precision and

efficiency.



General-Purpose Mobile Reasoning Agents 76

Reward functions are used to guide the learning process by providing feedback on how

well an agent is performing a given task. In reinforcement learning scenarios, agents

receive rewards based on their actions and learn through trial and error to maximize

their cumulative reward over time. Rewards can be defined for specific goals or sub-

goals within a task, enabling the agent to break down complex problems into smaller,

more manageable components. Such task decomposition is another important aspect

of low-level action execution. It involves breaking down a complex task into smaller,

more manageable sub-tasks that can be executed sequentially or in parallel [387]. This

approach allows for greater flexibility and adaptability in the design of reward functions

and has been shown to improve the efficiency of low-level action execution.

One of the key challenges in designing reward functions for low-level action execution is

creating a function that accurately reflects the desired outcome while also being easy to

optimize [28, 56, 477]. Recent advancements in LLMs have opened new possibilities for

automating low-level action execution by program synthesis and reward function gener-

ation. LLMs can generate code or provide guidance on designing effective rewards based

on input prompts describing desired tasks or scenarios. Recent works have explored us-

ing coding LLMs [462] and free-form white-box reward code generation [463], which has

shown promise in producing more interpretable, adaptable, and human aligned rewards

than traditional scalar rewards.

Simulation is an essential tool for low-level action execution. It allows researchers to

test and refine reward functions in a controlled environment before deploying them on

physical robots or other machines [92]. Simulations allows safe faster than real time

trial-and-error optimization and environment generalization. Sim-to-real transfer [378]

allows learned policies to be implemented on real-world mobile robots and environments

with additional complexities like imperfect actuation and non-modeled dynamics.

Learned low-level action execution by LLM derived reward functions presented by recent

work [377, 378, 385, 462, 463] provides a promising and sound approach to implement

high-level actions represented by natural language instructions resulting from the pro-

posed theoretical framework based on the experimentally verified predictive environment

states.

3.9 Summary

The chapter starts with stating that the existence of biological humans is a proof that

creating generally intelligent agents is possible, with natural biological intelligence pro-

viding insights into the necessary constituents for artificial generally intelligent systems.
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Human intelligence is a complex phenomenon characterized by extensive and versatile

models of the world, supported by various cognitive processes such as sequence learn-

ing, prediction formation, memory-based predictions, processing of prediction errors,

and integration of multi-modal information. The hippocampus plays a crucial role in

these abilities, but human intelligence emerges from a complex interplay of multiple

brain regions that enable abstract concepts, analogies, metaphors, and stories to ex-

press experiences and make sense of new information. However, the definition of general

intelligence is not clear cut, with different definitions and measurements used across psy-

chology and computer science. This thesis takes a pragmatic approach by emphasizing

requirements of particular faculties instead of degree of capability.

Biological general intelligence is contrasted with AI agents. AI agents are programs that

perceive their environment, create a useful state representation, and perform actions

with the goal of maximizing task performance. The driving challenge is to produce ra-

tional behavior for completing tasks in line with instructions and implicit human values.

An AI agent possesses sensors or information input for perceiving the environment’s cur-

rent state, actuators or software commands to modify the environment, specific goals or

targets to achieve through actions, and can make decisions autonomously without direct

human intervention. The history of AI has seen significant developments since its incep-

tion, with early pioneers like Aristotle discussing practical reasoning and Alan Turing

introducing concepts such as machine learning and reinforcement learning. More recent

times have witnessed a shift towards big data-driven approaches leading to advance-

ments in various subfields like computer vision, robotics, speech recognition, multiagent

systems, and natural language processing. However, AI agents still fall short of human

intelligence due to their simplicity compared to biological brains characterized by com-

plexity and versatility. They also struggle with generalizability, adaptability, common

sense reasoning, and background knowledge that humans naturally possess. This thesis

propose components of general-purpose AI systems required to approach faculties of

biological intelligent agents.

This thesis proposes the open-vocabulary predictive world modeling framework as a

core component of general-purpose mobile agents. The novel learning method based on

the principle of predictive coding allows learning to generate spatially grounded and se-

mantically rich plausible complete environment representations from partially observed

states from observational experience only. The predictive world model enables versa-

tile new research directions for state-transition modeling using explicit predictive state

representations learned from observational experience. State-transition modeling in-

tegrating reasoning over commonsense world knowledge is an essential component of

designing general-purpose mobile reasoning agents due to its ability to support efficient

exploitation, planning, causal discovery, explainability, and continual learning through
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predictive coding. The dual latent and explicit open vocabulary predictive environment

states present the possibility for multimodal LLMs to do grounded spatio-semantic rea-

soning.

The predictive environment states facilities learning navigational patterns from experi-

ence of observed trajectories only. The chapter covers how the means to describe tasks

including by multimodal prompts interpretable by multimodal LLMs, how to perform

abstract planning via mental simulation leveraging commonsense world knowledge in

LLMs. Additionally, efficient learning of low-level action execution by LLM-derived

reward functions and mental simulation is presented.

The proposed predictive state representation has two limitations. The current latent

variable generative model is implemented for a top-down 2D grid map representation

of the environment. The 2D representation is adequate for mobile robot navigation

operating inn planar environments like autonomous vehicles but does not encode vertical

information. Future work could explore using alternative latent variable generative 3D

representations like voxel grids or neural radiance fields in order to better represent

spatio-semantic memories as predictive states of general 3D environments.

The proposed mental simulator approach is limited in practice by the generality and

accuracy of commonsense world knowledge within LLMs, the correctness of reasoning

steps done by LLMs, accuracy of goal state detection, and achieving sufficient inference

speed for timely decision making. The practical investigation of the proposed mental

simulation based on predictive state representations is proposed as future work.



Chapter 4

Grounded Latent Compositional

Semantics as Spatio-Semantic

Memories

4.1 Introduction

This chapter introduces the grounded latent compositional semantics as a principled

representation for forming queryable spatio-semantic memories as a basis for predictive

state representations. Additionally, latent compositional semantics is presented as a

mathematical model of unconditional open-vocabulary semantic embeddings.

The chapter starts by explaining the theoretical foundation of unsupervised dense rep-

resentation learning as a scalable method for discovering useful semantics from vast

amounts of raw observations. The usefullness of visual similarity as an inductive bias in

the form of superpixel region partitioning is presented as part of this thesis.

Next, the foundation of open-vocabulary semantics is presented as a method for assigning

human interpretable semantics to machine-discovered semantics. The remainder of the

chapter presents the mathematical theory of latent compositionality and the proposed

sufficient similarity semantic inference method.

79
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4.2 From Sensor Observations to Semantic Representa-

tions

4.2.1 Unsupervised Dense Representation Learning

Deep learning is recognized as the most potent modelling tool available for representation

learning on unstructured data [27]. The universal approximation theorem theoretically

proves that deep neural networks (DNN) unbounded in either depth [478] or width [26]

can approximate any function arbitrarily well.

Progress in state-of-the-art (SOTA) performance on general computer vision tasks in the

last decade has been based on supervised learning using relatively large datasets anno-

tated with semantic information by human labelers [20]. Despite a decade of progress,

arguments are made that the original promise of generalizable and robust computer vi-

sion deep learning models has not yet been achieved and that the necessity of increasing

the order of magnitude of labelled data is unsustainable in practice [35, 479]. Addition-

ally, arguments can be made that learning from top-down categorization (i.e. “what it

is”) from semantically vague and inconsistent human annotation could be limiting our

pursuit of robust computer vision [480], and that instead learning through bottom-up

association (i.e. “what it is like in a context”) is more akin to how visual concepts

emerge for humans as supported by cognitive science [481–484] and similar to how word

embeddings are learned in natural language processing (NLP) [157, 158, 165] as well as

a motivation for capsule networks [485].

In NLP, self-supervised learning on massive unlabeled datasets approximating the real-

world distribution of natural language sentences [486] is recognized as the de facto ap-

proach for leveraging the universal function approximation properties of DNNs, leading

to the recent breakthrough training massive language models [70, 161, 487]. The cru-

cial component that makes self-supervised learning successful in NLP is the fact that

probabilistic enumeration of possible configuration spaces of natural sentences is compu-

tationally tractable and proved to be a highly useful learning signal source [158, 488, 489].

On the other hand, in the case of computer vision, high-resolution visual images consist

of millions of high-dimensional and semantically meaningless pixels, making probabilis-

tic enumeration over all possible configuration spaces computationally intractable and

therefore limit transferability of contextual predictive self-supervised approaches known

to be highly successful in NLP [490]. I propose that obtaining a means to partition an

image into a small set of distinct regions encoded by a set of distinct and expressive se-

mantic visual concept embeddings, analogous to how words in sentences are represented,

is a necessary first step for unifying computer vision with NLP.
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This work presents a novel method inspired by transferring principles for learning word

embeddings [157–159] to the image domain. I devise how to train a model to represent

images as a semantically rich embedding map partitioned into distinct, coherent regions,

represented by a latent visual concept embedding (ViCE), similarly to how semantically

rich word embeddings are discovered for words in the context of natural sentences.

Essential aspects of my method are illustrated in Fig. 1, along with an embedding map

visualization. My working hypothesis is that there exists a strong analogy between how

image context defines the meaning of individually semantically meaningless pixel regions

and how sentence context defines the meaning of individually semantically meaningless

categorical word tokens [165]. Viewing the generation of natural images as a stochastic

process where a set of latent visual concepts give rise to observable pixel appearances, I

formulate my method to learn the inverse mapping from observed pixels to latent visual

concepts through self-supervised learning.

The contextual supervisory signal for learning word embeddings in NLP have been men-

tioned before as a conceptual motivator for pretext tasks for self-supervised computer

vision pretraining methods [105]. However, to the best of my knowledge, my method is

the first to consider learning dense visual embedding maps with the explicit intent to be

used as input representations for downstream task models.

By demonstrating the feasibility of representing images in terms of a small set of regions

encoded by a set of distinct semantic visual concept embeddings, similarly to how se-

mantic words embeddings partition sentences, I contribute towards realizing tractable

probabilistic enumeration of configuration spaces for images and as a practical solution

to the symbolic grounding problem [491] in vision. I hope my contribution will inspire

further effort towards increasing the transferability of successful probabilistic methods

from NLP to the visual domain and ultimately result in a similar breakthrough in self-

supervised computer vision as the one experienced in NLP.

The concept of “the thing in itself” in Kantian philosophy denotes the existence of

objects as they are independent of observation. Similarly, one can view natural images

perceived by a photometric sensor to be generated from a set of latent semantic visual

concepts. I model this process by a model f(x|z) that generates the observable sensor

measurements x of semantic entities represented by a set of latent semantic concepts

C = (c(1), . . . , c(K)).

The purpose of perceiving the world is to provide information for completing tasks. A

particular task requires interpreting the world in terms of a set of task-relevant semantics.

The goal of semantic interpretation methods is to learn a function fθ to approximate

the inverse mapping

fθ(X̃
(m)) ≃ Z ∀m ∈ (1, . . . ,M) (4.1)
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while simultaneously discovering the set of latent semantic concepts C. The problem of

finding the inverse mapping is called vision as inverse graphics [492–494].

I relate my approach to discovering semantic meanings for pixels to discovering semantic

meanings for words in NLP similar to recent MIM works [143–145, 495]. Methods to

learn semantically rich word embeddings [157–159] are based on co-occurrence [165] and

context [161, 496] of individually meaningless tokens. Each visual concept vector c cor-

responds to a distinct visual concept primitive or basis vector, and visual concepts are

linear combinations of these primitives. The set of concepts C is known and finite, en-

suring tractable probabilistic enumeration over possible configuration akin to successful

probabilistic language modeling approaches in NLP [161, 497]. I choose to demonstrate

my method with the recent SOTA self-supervised learning method SwAV [3] to learn

both fθ and C, though in principle any cluster-based self-supervised method can be

used. Fig. 4.2 shows an overview of my method.

Two concrete examples of semantic interpretations are image and point cloud sensor

observation representations. For images or vision sensor observations, the conventional

approach is to learn a mapping fθ that predicts the same visual concept embedding map

z ∈ RD×H×W with the same spatial resolution as the input image x ∈ R3×H×W .

For point clouds or 3D sensor observations, the conventional approach is to learn a

mapping gθ that predicts a semantic embedding z ∈ RD×N for each point in the input

point cloud P ∈ R3×N , where N is the number of points in the cloud. The mapping gϕ

is typically implemented as a deep neural network that takes the 3D coordinates of the

points as input and outputs a high-dimensional feature vector for each point, capturing

its semantic properties.

4.2.1.1 Superpixels: Visual Coherence as Inductive Bias

A high-resolution image contains millions of individually meaningless and mostly redun-

dant pixels. However, it is known that training on high-resolution images is beneficial

for learning to segment small objects such as poles and pedestrians [498]. Neverthe-

less, naively applying self-supervised representation learning methods based on vector

comparison on high-resolution embedding maps is inefficient. To solve this problem, I

propose to decompose the image into a small set of visually coherent regions using su-

perpixelization [499] and apply representation learning methods to this greatly reduced

set of elements. Superpixel methods like Simple Linear Iterative Clustering (SLIC) [500]

reduce elements by O(1000), transforming an image from millions of pixels into less than

a thousand regions. I choose SLIC because of advantages [501] such as more uniform
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region distribution compared to graph-based methods [502]. In contrast to grid decom-

position, which is the standard for ViT models [112, 154], superpixels can preserve detail

by representing thin and small patches like poles as distinct regions while requiring 75%

fewer elements on average with the same base element size. While in this thesis my

objective is to show that even the simplest form of region decomposition is useful, it

is likely that leveraging learning-based superpixelization methods [503–505] can further

improve performance.

View generation and region masking. I generate augmented views for discerning

the latent semantic visual concepts through photometric invariance [114] and geometric

equivariance [5]. I introduce region masking as an additional augmentation for con-

textual invariance shown to improve performance. To generate views with different

contexts, I first sample a center point (x, y)∗ in the image. Sampling is done in content-

rich regions to better satisfy the equipartitioning of concepts assumption [3, 120] for

each training batch. I found that probabilistic sampling from a Gaussian filtered Canny

edge detection map[4] is a useful measure of image content. Views X̃(m) are generated

by sampling M view centers (x, y)(m) around (x, y)∗ while ensuring a mutual image

subregion exists. I generate geometrically equivariant views by first sampling a resize

coefficient β(m) for each view m. β determines the size of the cropped view region as

exemplified by the red and blue crop regions in Fig. 4.2. All view crops are resized to

the common view size, thus enforcing the model to learn resolution invariant representa-

tions. All views are randomly flipped horizontally. All views are augmented by random

color distortion and Gaussian blurring before normalization to learn appearance invari-

ant visual concepts [114, 506, 507]. A ratio of superpixel regions is masked with noise

as a means to learn robust features and alleviate the shortcut learning problem [508]. I

provide the view generation algorithm as pseudocode in Appendix D.

Learning algorithm. The objective Lcl is designed to simultaneously learn the map-

ping function fθ in Eq. 4.1, and optimize the distribution of latent visual concepts C. The

algorithm can be viewed as an extension of SwAV [3] to the problem of learning dense

embedding maps. I refer to prior work for an explanation of SwAV [3, 120, 126, 509].

The rest of this section explains the flow of a training iteration as visualized in Fig. 4.2.

I provide pseudocodes in the Appendix.

A training iteration starts by partitioning an image X(n) ∈ R3×H×W with height H and

width W into a superpixel region map A(n) ∈ RH×W , with integer values specifying every

pixel’s region index. Next, a set of M augmented views X̃(n) = {X̃(1,n), . . . , X̃(M,n)}
and corresponding superpixel map crops Ã(n) = {Ã(1,n), . . . , Ã(M,n)} of size h and w are

generated for each image. Ã(n) is processed to contain only mutual regions existing in

all views. The learned function fθ transforms X̃(n) into a normalized visual embedding
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Figure 4.1: A hierarchical decomposition into visually coherent superpixel regions
represented by a representational embeddings z(i)∗ increases the effectiveness of self-
supervised methods for learning dense embedding maps. Learning z(i)∗ is posed as a
swapped prediction problem [3]. All embeddings z(j) are optimized to equal z(i)∗ for

regional coherence.
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Figure 4.2: Overview of ViCE. A training iteration starts by generating M aug-
mented views. First, I partition the image into I mutually common superpixel regions.
The model fθ transforms view images into visual concept embedding maps Ẑ(m). All
vectors zj are arranged in a tree structure TZ used to conveniently organize indices of
corresponding regions. A mean vector z∗i is computed for each region. Next, I score
each z∗i in terms of closeness to each concept vector c(k), resulting in region-specific

score vectors s∗i .

Figure 4.3: (Left) Examples of two generated view pairs. The first image displays
the actual view feed to the model. The second image illustrates the mutual image
region. The third image shows mutual superpixel regions colored by region index.
(Right) View generation centers sampled from a probability mask representing image

complexity measured by the Canny edge detection algorithm [4].

tensor Ẑ(n) ∈ RD×h×w. Next Ẑ(n) is decomposed region-wise into row vectors zj ∈ RD

and stored in a tree structure TZ used to conveniently organize indices of corresponding

regions i in view m of image n. Vectors of non-mutual regions are discarded. A single

mean vector z(i,m,n)∗ is computed to represent each region i and stored in TZ∗ . Each

vector z(i,m,n)∗ is scored in terms of compatibility or closeness to each visual concept

vector C = (c(1), . . . , c(K)) by computing the following matrix product

s∗ = (z∗)TC (4.2)

with C ∈ RD×K represented as an optimizable weight matrix. Note that the dot product
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z · c equals the cosine distance as both vectors are normalized. All regional score vectors

s(i,m,n)∗ are stored in a tree structure TS∗ . The concept assignments q(i) are determined

by optimally distributing s(i,m,n)∗ uniformly over all concepts c(k) so that the overall

compatibility between all s(i) and c(k) are maximized for regions in the primary view

m = 1 [3]. I compute q(i) efficiently by the Sinkhorn-Knopp algorithm [120, 126]. A FIFO

queue of accumulated s(i,1,n)∗ vectors is used to improve the empirical approximation of

a uniform distribution of concepts [3, 120]. The swapped prediction learning objective [3]

is

Lcl = − 1

N(M − 1)

N∑
n=1

M∑
m=2

1

I

I∑
i=1

q(i)log σ
(
1
τ s

(i,m)∗
)

(4.3)

where σ() is the softmax function and τ is temperature. Two normalized embeddings

z(a) and z(b) are compared for semantic similarity using the dot product. This operation

is equivalent to comparing two word embeddings by cosine distance [157, 158].

Experiments. I implement ViCE in the self-supervised learning framework VISSL [510]

based on PyTorch [511]. The quality of learned embeddings are evaluated on the COCO-

Stuff164k [512, 513] reduced to 27 classes [146] and the Cityscapes [103] benchmark

datasets. The reduced COCO-Stuff164k coarse dataset [146] has 118,000 train 4172

test images. The Cityscapes dataset has 2975 train and 500 test images. and I use

the framework MMSegmentation [514] for evaluation and visualization. The compar-

ative baseline for dense representation learning is the SOTA unsupervised semantic

segmentation CNN model PiCIE [5] based on DeepCluster [119]. I experiment with

ResNet 18 and 50 backbones [515] and two decoder architectures; the SOTA model

DeepLabV3+ (DLV3+) [516] for high-resolution images, and the Feature Pyramid Net-

work (FPN) [517] used in the baseline.

I evaluate the semantic richness and spatial accuracy of the resulting embedding maps

using clustering and linear models. For unsupervised semantic segmentation I compute a

set of K clusters based on output embeddings using FAISS [518]. Each cluster is greedily

assigned the majority label class, or optimally assigned by the Hungarian matching

algorithm [519] to cover all classes. For linear model evaluation, I train a 1×1 convolution

layer without a nonlinear activation function. All models are trained and evaluated on

separate train and validation sets. Note that the visual concepts learned by ViCE during

training are not used for evaluation, and it is therefore fair to compare ViCE and baseline

performance as long as the number of clusters is the same in both evaluation models.

I conduct experiments on 32 V100 32 GB GPUs. Each GPU loads four images, and

generates five augmented views. High- and low-resolution views correspond to 512 ×
512 pixels and 256 × 256 pixels, respectively. The resulting total batch size is 128

images with 640 views. To generating superpixels, I use SLIC [500] implemented in
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Figure 4.4: ViCE learns dense semantic embeddings from raw image data. Here I
visualize the output of a linear model interpreting the embeddings. The left and center
images display output for low- and high-resolution images. The right image shows

output from my comparative SOTA baseline PiCIE [5].

Figure 4.5: The center figure show output embeddings visualized in RGB colors. The
right figure shows output of ViCE with the clustering-based evaluation model.

OpenCV [520] with average region size 20 px. Maximal mask coverage is 25 %. The

view resize coefficients β are sampled between 0.5 to 2. The embedding dimension D

and the number of visual concepts C are 128. I use the same set of hyperparameters

in all experiments. Parameters for the objective Lcl are the same as SwAV [3]. The

FIFO queue consists of 5K score vectors s∗ per GPU. The model is optimized using

the LARS optimizer [521] with weight decay 10−6. The learning rate (LR) schedule is

linear warmup followed by cosine decay [522, 523]. I set the peak LR using the linear

LR scaling rule [524] with a base LR 0.04 for a single 4 GPU node. I initialize models

with the default PyTorch pretrained weights obtained by training on ImageNet [525]

for 600 epochs. However, my method can learn from random initialization as shown in

Table 4.1.

Results. Table 4.1 presents results on low-resolution image experiments. C K de-

notes evaluation with K clusters, ⋄ denotes reproduced results with optimal cluster

assignment, ⋆ denotes greedy assignment, and ∗ denotes ViT-based models. The best

CNN-based cluster and linear model results are written in bold. Both ViCE (low-res)

and PiCIE [5] use the same ResNet 18 backbone, FPN decoder, and 320× 320 px image

downsampling procedure for fair comparison. All ViCE models are trained for 4 epochs

for COCO, and 24 epochs for Cityscapes, respectively. I trained and evaluated my

PiCIE models using the official code [5]. The high-resolution and overclustered model

achieves SOTA results on Cityscapes, and on COCO for convolutional models. The
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Figure 4.6: Dense embedding maps visualized as RGB images.

Figure 4.7: Output cluster visualizations on COCO (top) and Cityscapes (bottom).



Grounded Latent Compositional Semantics as Spatio-Semantic Memories 89

Figure 4.8: Output visualizations of cluster and linear evaluation models trained on
low- and high-resolution COCO images.
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Figure 4.9: Visualization of output clustering. The center image shows clusters with
random colors. The right image shows how clusters are mapped to semantic classes.

generic image COCO results show that ViCE is adept at discovering concepts using

overclustering [527]. I believe this property stems from online clustering being more

stable than offline clustering methods [3, 122]. The Cityscapes results show ViCE im-

proving on PiCIE in all experiments. ViCE performs better than the SOTA ViT-based

model STEGO [156] on Cityscapes with high-resolution and overclustering. I trained

the best high-resolution C 256* COCO model in 64 h and the equivalent PiCIE model

in 52 h. Fig. 4.4 and 4.9 shows clustering output visualizations. Table 4.2 shows that

the best high-resolution models improves on the best low-resolution models evaluated

on high-resolution images. Note that effectively training on high-resolution images is

made possible by superpixelization.

The upper section of Table 4.3 provides an ablation study for low-resolution images

evaluated by a linear model. The first column represents the baseline ViCE model using

an RN18 backbone and FPN decoder [517] without region decomposition. The second

columns indicate gains from random masking. The third and fourth column shows gains

from applying grid and superpixel region decomposition. The final column indicates

that utilizing the more complex DLV3+ decoder [516] is detrimental in the case of low-

resolution images. I speculate this is because atrous convolutions in high-resolution

decoders skip relevant neighboring information in tiny feature maps. The first column

in the bottom section of Table 4.3 is empty, as learning dense embeddings for high-

resolution images without superpixelization is computationally intractable. The second

column showcase the radical difference in using superpixelization. The third column

demonstrates the importance of utilizing a high-resolution decoder. The final column

shows how superpixels are better than grids with equivalent base element sizes.
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Table 4.1: Representation quality experiment results on low- and high-resolution
images.

Model mIoU Acc. Model mIoU Acc.

COCO Cityscapes
ResNet50 [515] C 27 8.9 24.60 ResNet50 [515] C 27 - -
MoCoV2 [526] C 27 10.40 9.60 MoCoV2 [526] C 27 - -
DINO∗ [112] C 27 9.60 30.50 DINO∗ [112] C 27 - -

IIC [146] C 27 6.71 21.79 IIC [146] C 27. 6.35 47.88
PiCIE [5] C 27 13.84 48.09 PiCIE [5] C 27 12.31 65.50

C 27⋄ 14.60 48.37 C 27⋄ 11.85 64.29
C 27⋆ 9.27 38.31 C 27⋆ 8.80 82.48
C 128⋆ 10.75 49.81 C 128⋆ 7.97 56.52
C 256⋆ 12.42 66.02 C 256⋆ 12.71 89.86
Linear 14.77 54.75 Linear - -

PiCIE+H [5] C 27+100 14.40 50.0 PiCIE+H [5] C 27+100 - -
ViCE (low-res) C 27 11.40 28.91 ViCE (low-res) C 27 12.81 31.87

C 27⋆ 11.55 50.49 C 27⋆ 19.52 80.34
C 128⋆ 16.66 52.33 C 128⋆ 21.48 81.55
C 256⋆ 17.98 54.92 C 256⋆ 21.24 81.72
Linear 25.49 62.78 Linear 31.55 86.33

No pretrain Linear 24.84 82.99
ViCE (high-res) C 256⋆ 21.77 64.75 ViCE (high-res) C 256⋆ 25.23 84.28

Linear 29.38 68.16 Linear 30.40 87.0
STEGO∗ [156] C 27 28.20 56.90 STEGO∗ [156] C 27 21.00 73.20

Linear 41.00 76.10 Linear - -

Table 4.2: Performance of best models trained on high- and low-resolution images

Dataset Resolution Configuration Cluster mIoU Linear mIoU

COCO Low RN50, FPN 19.37 27.63
High RN50, DLV3+ 21.77 29.38

Cityscapes Low RN18, FPN 21.48 31.55
High RN18, DLV3+ 25.23 30.40

In Table 4.4 I show how ViCE benefits when learning from a large general visual do-

main. Training on COCO and evaluating on Cityscapes with a linear model increases

performance from 30.40 to 34.14 (+3.74) mIoU by improving the distinctiveness of com-

plex classes like “Traffic sign”. My findings show that general vision models can learn

more useful features compared to narrow vision models even when applied in the narrow

domain. The recent SOTA model STEGO [156] similarly uses a backbone trained on

ImageNet only.

Fig. 4.6 visualizes dense embedding maps to demonstrate how ViCE discovers distinct
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Table 4.3: Representation quality ablation study on low- and high-resolution images.

Low-resolution Cityscapes
FPN 1px Masking Grid 10px Super 10px DLV3+

mIoU 29.66 30.42 31.30 31.55 11.56
Time 34h 4min 31h 6min 5h 31min 5h 31min 5h 37min

High-resolution Cityscapes
FPN 1px FPN super 20px DLV3+ grid 20 px DLV3+ super 20px

mIoU - 8.98 25.53 29.38
Time 92h 20min (est.) 4h 55min 10h 1min 6h 16min

Table 4.4: Domain generalization performance

Training data domain Evaluation data domain mIoU aAcc

Cityscapes Cityscapes 30.40 87.00
COCO Cityscapes 34.14 86.10

semantic visual entities or concepts from natural images without human supervision or

proposals heuristics [135, 141]. For example, persons are represented differently from

the ground surface, and human faces and bodies are semantically similar. I visualize

embedding maps by PCA dimensionality reduction [528] and scale each z to the RGB

range.

4.2.2 Open-vocabulary Semantic Segmentation

As explained in Sec 4.2.1, unsupervised dense representation learning models discovers

semantics from commonalities in visual appearance within large sets of vision data. The

discovered semantics in the resulting embedding map fits image boundaries and allows

discriminating useful objects after identifying the semantic representation of said object

by linear modeling or clustering [102]. The resulting semantic information contained in

these embedding maps is rich but often remains implicit until it can be mapped into

another embedding space grounded human world. The human world grounding prob-

lem is important to facilitate human-machine communication, including understanding

human provided instructions and allow humans to understand the machine’s decision

process and possibly output itself. Additionally, grounding an agent’s semantics allows

for connecting the perceived environment with existing world knowledge recorded in

human written textual information.
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Open-vocabulary semantic segmentation is a computer vision task that aims to learn

dense maps of open vocabulary semantic embeddings. Conventional closed set semantic

segmentation models which maps pixels to one basis vector ek in a RK dimensional

embedding space. In contrast, open-vocabulary semantic segmentation models instead

maps pixels to a point on a unit hypersphere spanned by a fixed set of D orthogonal basis

vectors e1 . . . eD representing primitive latent semantics. Open vocabulary semantic

embeddings are generally distributed over all basis vectors, and the cosine similarity of

two embeddings specify their semantic similarity

sim(h1, h2) =
h1 · h2

||h1||||h2||
= (h1)

Th2. (4.4)

Segmentation models typically bootstrap learning by finetuning unsupervised models

on supervised data containing annotations of human world semantics. As such open

vocabulary semantic segmentation models addresses the challenge of mapping machine-

discovered semantics with the human world semantic embedding space. Once mapped,

the open vocabulary semantic embedding maps enable querying semantics as spatially

precise regions in images. The mapping is essential, as it allows computer vision systems

to semantically interpret sensor observation in a manner that connects with human

interpretable decision making processes and world knowledge.

While allowing for querying of any semantics, the models are nevertheless trained on a

closed set of semantics and example images. Open vocabulary models should therefore

not be considered truly open as in allowing query any semantics, but open in the sense

that they readily allow representation and training of very large and diverse set of classes

in a common embedding space. Creating boundary fitting dense semantic annotations

consumes far more effort than creating caption or object detection annotations. Open

world semantic segmentation modeling therefore faces challenges such as limited training

data for novel object classes that result in lower recall rates for these objects.

Promising directions for future research include enabling open-vocabulary capabilities

on other scene understanding tasks, unifying open vocabulary detection and open vocab-

ulary segmentation, and using multi-modal large language models to enhance perception

abilities by incorporating user intent reasoning within a linguistic context. Addition-

ally, exploring means to reduce computational cost and inference time is important

to enhance usability of open vocabulary segmentation models for practical real-world

general-purpose mobile agents.
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4.2.3 Spatially Grounded Semantics

Semantic information alone does not enable embodied agents to accomplish physical

tasks. By grounding semantics, information describing “what” and “where” is unified

to represent the semantics of spatial locations in the environment. The process involves

creating a spatial representation and map a semantic interpretation of the external

environment as it is perceived by sensor observations. The resulting spatio-semantic

environment representation consisting of grounded semantics facilitates spatio-semantic

reasoning by the agent.

Another perspective is that the gap between abstract task specifications and the external

environment is closed by grounding semantics perceived by the agent. Typically tasks

are described using natural language, or formal symbolic specifications, that may not

directly correspond to an agent’s sensory inputs or actuators. By grounding semantics

in spatial representations, a connection between these abstract representations and the

physical reality of the agent is established.

The process of grounding semantics in spatial representations typically consists of several

steps. First, the agent perceives the environment by multimodal sensors such as cameras

and lidars. Generally passively sensing cameras provide the best information to infer

semantics of the environments, while active sensing lidars captures an accurate measure

of the spatial structure of the environment. Secondly, the semantic representation is

mapped onto the spatial representation by projection or equivalent techniques [529].

The resulting information can be represented as a semantic point cloud that jointly

provide a means to query semantic information with spatial precision. Finally, the

resulting spatio-semantic representations are projected into a common vector space by

simultaneous localization and mapping (SLAM) [530–532]. SLAM works by computing

the translation and rotation transformation to optimally match sequential point clouds.

Knowing the transformation allows accumulation of point clouds in a common reference

frame or vector space accumulated over a sequence of observations.

From the other direction, task reasoning and planning involve mapping abstract task

specifications to action sequences executable in the physical world while considering

spatial constraints and affordances of the environment. This mapping is enabled by

the grounded semantic representation of knowing precisely “what” is “where”, as well

as the 3D geometric extent of objects. The spatio-semantic representation supports

monitoring how an action execution is proceeding by the same semantic and spatial query

mechanism, and thus bridge the gap between abstract task specifications, conceived plan,

and the embodied action execution in the physical world.
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Grounding semantics in spatial representations is particularly important for general-

purpose mobile robot agents, such as service robotics, where robots must understand and

operate within dynamic environments and leverage a priori unknown semantics in order

to accomplishing tasks specified by humans. A general spatio-semantic memory with

rich semantics grounded in a precise 3D spatial location is a principled representation

for general-purpose robots to interpret and execute tasks in the real world requiring

versatile semantic understanding, precise spatial representation of objects, as well as a

spatio-semantic memory of previously seen objects.

This thesis propose spatio-semantic memories as a means to unify conventional robotics

primarily relying on map-based representations for navigation and action planning, and

recent vision-language models (VLMs) which operate primarily based on ungrounded

semantic information about the currently perceived environment (e.g. a forward-facing

camera image)

4.3 Latent Compositional Semantics

In this section, I first present the idea of compositional semantics, and how a single

vector z∗ ∈ RD implicitly represents a diverse set of semantic object descriptions Z.

In Sec. 4.3.2-4.3.3 I derive properties of compositional semantic embeddings z∗ for uni-

form and non-uniform embedding distributions based on mathematical analysis of high-

dimensional hyperspheres. Finally, in Sec. 4.3.5.2 I analyze practical discoverability

of compositional semantics in real world VL embeddings spaces by iterative gradient

descent.

This section presents an investigation into latent compositional semantics as a means to

compactly represent objects by rich semantic descriptions within explicit environment

representations. I prove that mathematical properties of high-dimensional hyper-spheres

enable a single compositional semantic embedding z∗ to define a set of semantic text

descriptions encoded into semantic embeddings Z = {z(1), z(K)}. The experiments verify

that a single embedding z∗ can robustly represent 10 semantically related real-world

embedded text descriptions, and up to 100 randomly sampled embeddings for ideal

uniformly distributed embedding spaces. Based on my knowledge, this thesis propose

a new perspective on unconditioned dense VL embedding prediction models [6] as a

scalable, robust, and learnable neural approximations of semantic networks [204] for

knowledge representation.
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Figure 4.10: The compositional semantics framework. An observation x is mapped
into an embedding z∗ that specifies an object description Z in terms of interpretable

semantic categories z(k) through fuzzy membership by similarity.

4.3.1 Compositional Object Representations

Knowledge representations aim to describe concrete objects by membership to abstract

semantic categories. Semantic networks are a common object description representation

encumbered by practical limitations. I propose compositional semantics as an efficient

and practical vector space representation for describing objects by a potentially large set

of semantic categories by a scaleable learning-based method. Compositionality means

that complex expressions, such as sentences or functions, can be determined or under-

stood based on the meanings of their individual parts [533].

My proposed framework for compositional semantics is shown in Fig. 4.10. The objective

is to find a hyperspherical latent compositional semantic embedding z∗ ∈ SD−1 for an

object which is similar to all semantic embeddings in the set Z = {z(1), . . . , z(K)} that

broadly describe the object. Semantic similarity is defined in terms of separation distance

in the embedding space SD−1. Distances between embeddings on unit hyperspheres in

Euclidean vector spaces are conveniently represented by cosine similarity

cosω =
⟨z∗, z(k)⟩

||z∗|| ||z(k)|| = (z∗)T z(k). (4.5)

An observation x is mapped into a compositional semantic embedding z∗ discovered

by a learned one-to-one mapping function fθ(x). The optimal embedding z∗ is found

by maximizing the mean cosine similarity (4.5) over all describing semantics z ∈ Z.

I presume the distribution p(z) is approximate uniformly distributed. In this thesis I

show that contrastive optimization by minimizing (4.5) over negative samples z′ is not

required if Z is known. The mathematical properties of high-dimensional hyperspheres

ensure that any other randomly sampled embeddings is very likely to be dissimilar

to z∗. The optimal compositional semantic embedding z∗ thus separates the set of

describing semantics Z from all other semantics z′ ∼ U (SD−1). Observations x denote

any observable representation including image pixel regions.
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During inference, the representation z∗ for an observation x, implicitly encodes Z =

{z(1), . . . , z(T )} concatenated from past independent learning samples (x(t), z(t)). From

the perspective of knowledge representation, z∗ implicitly encodes the degree of mem-

bership for any queried semantic z by semantic distance or equivalently cosine similar-

ity (4.5) :

MemberOf(x, z) ∝ sim(z∗, z) z∗ := fθ(x). (4.6)

The set of inferred M̂ and original M set of object descriptions are approximately equal

M̂ = {MemberOf(x, ẑ) | ẑ ∈ Ẑ} (4.7)

M = {MemberOf(x, z) | z ∈ Z} (4.8)

|M̂ ∪M| ≃ |M| (4.9)

as the set of inferred sufficiently similar semantic description embeddings are approxi-

mately equal

Ẑ = {ẑ|sim(z∗, ẑ) > τ ∀ẑ ∈ SD−1} ≃ Z. (4.10)

The degree of membership by similarity (4.6) reflects the fact that real world objects

rarely have a single, clear-cut semantic specification [212, 213]. The threshold of suf-

ficient semantic membership τ is subjective and needs to be optimized in respect to

a purpose or task [214]. Note that the mapping fθ(x) discovers z∗ from independent

samples (x(t), z(t)) by iterative gradient descent.

4.3.2 Compositional properties of Uniformly Distributed Semantics

VL embeddings are typically located on the surface of a high-dimensional unit hyper-

sphere. In this section I analyse the compositional properties of VL embeddings spaces

based on mathematics for high-dimensional probability distributions [534].

I begin the analysis by formally defining latent compositional semantic embeddings z∗.

Definition 4.1. A vector z∗ ∈ RD on the unit hypersphere SD−1 is a compositional

semantic embedding for a set of semantic embeddings z ∈ Z if

E sim(z∗, z) > E sim(z∗, z′) ∀z ∈ Z, z′ ∼ U (SD−1) (4.11)

where U (SD−1) is the uniform distribution over SD−1.

The following theorem specify the theoretically optimal z∗ embedding is simply a cen-

troid.
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Theorem 4.2. [Discoverability I] It is always possible to find the optimal compositional

semantic embedding z∗ ∈ RD≫1 satisfying Definition 4.1 as the centroid of the set of

semantics Z

z∗ = 1
K

K∑
i=1

z(i) ∀z(i) ∈ Z. (4.12)

Proof. See Appendix B.3.

The proof is based on finding the z∗ maximizing cosine similarity by partially differen-

tiating the equivalent minimum square distance.

A property of high-dimensional vector spaces is that any two random variable vectors

are expected to be approximately orthogonal. The following lemma is used to prove

Theorem 4.2

Lemma 4.3. [Expected similarity] For two independent random vectors Z(i), Z(j) sam-

pled from an isotropic high-dimensional distribution Z ∈ RD with D ≫ 1

E sim(Z(i), Z(j)) =
1√
D
. (4.13)

Proof. See Appendix B.1

The proof involves recognizing Z as an isotropic distribution and computing the expec-

tation of a dot product for two random vectors Z(i) and Z(j).

Next I derive a probabilistic bound defining the separability of a set Z of object descrip-

tions and random descriptions z′ by similarity with the latent compositional semantic

embedding z∗ for Z.

Theorem 4.4. [Probabilistic bound] The probability P a compositional semantic embed-

ding z∗ is more similar to all its semantic members z ∈ Z than any unrelated semantic

embedding z′ ∼ U (SD−1) is

P
(
sim(z∗, z) > sim(z∗, z′)

)
= 1 − 1

2Isin2(θmin)
(D−1

2 , 12) (4.14)

where Ix(a, b) is the regularized incomplete beta function and

θmin = arccos(sim(z∗, zmin)) (4.15)

is the angle θmin defined by the least similar member

zmin = arg min(sim(z∗, z)) ∀z ∈ Z. (4.16)
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Proof. See Appendix B.4

The proof is based on noting that the probability P a randomly sampled unrelated

embedding z′ falsely in the set of semantic members Z is proportional to the area

ratio of the hyperspherical cap SD−1
cap spanned by z∗ and zmin. The proof builds upon

Lemma 4.3 and 4.5.

Lemma 4.5. [Hyperspherical cap] The compositional semantic embedding z∗ and all

semantic member embeddings z ∈ Z lie in a hyperspherical cap SD−1
cap

{z∗} ∪ Z ∈ SD−1
cap = {z ∈ RD : ∥z∥ = 1, θz ≤ θmin}. (4.17)

Proof. See Appendix B.2

I conclude that latent compositional semantic embeddings z∗ can always be found for VL

embeddings. The goodness of z∗ can be measured by the probabilistic estimate (4.14)

4.3.3 Compositional Properties of Open-Vocabulary Semantics

The mathematical properties for latent compositional semantic embeddings z∗ in Sec. 4.3.2

are derived for uniformly distributed embeddings. In this section, I analyze the validity

of the results for non-uniform hyperspherical distributions.

Proposition 4.6 (Discoverability II). It is always possible to find an optimal compo-

sitional semantic embedding z∗ ∈ RD for any non-uniform distribution z ∈ p(z|z ∈
RD>1, ∥z∥ = 1) that is not singular.

Proof. See Appendix B.5

The proof is based on showing that Definition 4.1 holds also when expected similarity

is higher than for uniformly distributed embeddings spaces as given by Lemma 4.3.

The shape of the non-uniform density p(z) of common VLMs is a product of opti-

mization by contrastive learning with random negative sampling [77]. Few general

properties can be inferred for non-uniform densities. So et al.[535] finds that vision

and text CLIP embeddings are distributed in separate modality-specific hyperspherical

caps. Wang et al. [536] identifies the uniformity-alignment dilemma stating that perfect

uniformity and alignment cannot be simultaneously achieved due to semantically similar

but randomly sampled false negatives.
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I found that using the probabilistic bound (4.14) for highly non-uniform VL embedding

densities p(z) results in poor estimates. The reason is that unrelated embeddings are

far more similar than those for uniform distributions. Instead I propose a statistical

sampling-based approach to obtain a probabilistic estimate for (4.11) in Definition 4.1

without requiring to estimate the non-uniform density p(z). The probability in (4.14)

is estimated by sampling N random semantic embeddings z ∼ p(z) and counting the

number of samples being within the hyperspherical cone SD−1
cap spanned by z∗ and zmin

(4.17) such that

P
(
sim(z∗, z) > sim(z∗, z′)

)
≃ 1

N

N∑
i=1

1SD−1
cap

(z(i)). (4.18)

The empirical results show that latent compositional semantic embeddings z∗ are useful

for all tested non-uniform VL embedding distributions. Additionally, the empirical

estimate (4.18) provides an accurate measure of goodness.

4.3.4 Sufficient Similarity Inference

Conventional semantic segmentation presume an input image can be sensibly partitioned

into a set of K fixed hand-crafted semantic classes EK . Each class k is represented by

a one-hot embedding e(k) ∈ EK . The embeddings EK span different dimensional axes

on the positive quadrant of the unit hypersphere SK−1. The partitioning is computed

by assigning class k∗ represented by the most similar embedding e(k) to each predicted

embedding ẑ

k∗ = arg max
k

[
sim(ẑ, e(k))

]
∀e(k) ∈ EK . (4.19)

Open world semantic segmentation likewise partition the image by assigning the most

similar semantic k∗ in a set of word semantics ZK distributed over SK−1. The semantics

of EK defines the orthogonal basis of SK−1 and thus limit queryable semantics to EK . In

contrast, learning word semantics results in a semantically meaningful orthogonal basis,

allowing any ZK to be defined and queried at inference time.

Boyi et al.[6] identifies two weaknesses of the most similar partitioning approach: First,

any object such as a window-on-a-building-facade can both be described as a “window”

as well as part of a “building” at a higher-level. Hard partitioning by highest similarity

haphazardly predicts one or the other. Secondly, hard partitioning assigns a semantic

to every image element even if all queried semantics have low similarity with the im-

age content. An example is a dog queried by the two semantics “grass” and “toy” is

interpreted as “toy”. The use of abstract word semantics like “other” as a substitute

for unspecified semantics is not a principled solution as there is no guarantee that the
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similarity between z∗ and queried but unrelated semantic z(k) is less similar than the

ambiguous semantic meaning of “other”

sim(z∗, zother)
?
> sim(z∗, z(k)) ∀z(k) ∈ ZK . (4.20)

I propose sufficient similarity as a principled inference method that allows semantic

overlap and empty query results by a single compositional semantic embedding z∗. To

evaluate semantic membership by sufficient similarity, I first compute a set of similarity

threshold values T = {τ1, . . . , τK} for each known semantic k ∈ {1, . . . ,K}. The value

of τk is found by maximizing the likelihood that sim(z∗, z(k)) > τk for true elements in

past observations. At evaluation time, instead of selecting the most similar semantic

k∗ in (4.19), any similarity with semantic z(k) higher than the threshold τk are deemed

sufficiently similar to be a member of the semantic group k

sim(z∗, z(k)) > τk ⇒ MemberOf(z∗, k). (4.21)

I view (4.21) as a practical probabilistic approach for finding the mathematically derived

hyperspherical cap SD−1
cap (4.17) defining the membership set Z (4.10) that maximizes the

likelihood over past observations. For simplicity, I estimate a single maximum likelihood

value τk for each semantic k by a logistic regression model. To fit the model, a set of

similarity values sim(z∗, z) are sampled from positive and negative elements of k using

annotations y. The optimal τk is the the decision boundary or sim(z∗, z) value that best

separates positive and negative elements according to the model

p
(
MemberOf (sim(z∗, z), k)

)
= 0.5. (4.22)

However, the method is not fundamentally limited to estimating only single constant

values τk. To the best of my knowledge, the similarity thresholding method proposed

by Cui et al. [537] is closest to my approach. While Cui et al. uses thresholding for

uncertainty estimation, I propose thresholding to determine category membership (4.6).

4.3.5 Latent Compositional Semantics from Data

4.3.5.1 Discovery from Semantic Sets

In the following sections I set out to verify the properties and discoverability of latent

compositional semantic embeddings z∗ derived in Sec. 4.3.1-4.3.3. I perform experi-

ments on embedding spaces for four representative models: the VLMs CLIP [77], Open-

CLIP [395], X-Decoder [193], and the language model SBERT [179]. Additionally, I do
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experiments on ideal uniformly distributed embedding spaces U (SD−1).

Experiments 1. The first set of experiments investigates the lower bound capacity for

z∗ to represent an arbitrary set of K randomly sampled VL embeddings. I estimate the

lower bound capacity of z∗ by sampling K embeddings z forming an object description

set Z of random semantics. Next I compute the optimal z∗ by (4.12) and measure the

separation between 100,000 randomly sampled embeddings Z ′ and the set Z represented

by z∗. Separability is measured by (4.18) approximating (4.14) for uniform and nonuni-

form distributions. High separability means it is highly unlikely any non-related random

semantic is closer to z∗ than the least close related semantic zmin = arg min(Z). In other

words, z∗ has high cosine similarity (4.5) only with semantics z of the object description

Z. See Fig. 4.10 for a visualization.

To generate embeddings, I sample words from the English lexical database WordNet [538].

Sampled words gets transformed into a semantic embedding z by the models’ language

encoders. Ideally distributed embeddings are sampled uniformly on the hypersphere

U (SD−1). CLIP experiments use the largest available ViT-L/14@336px model generat-

ing 768 dimensional embeddings. For OpenCLIP I use the largest ViT-bigG-14 model,

pretrained on the laion2b s39b b160k dataset, generating 1280 dimensional embeddings.

I use the largest available Focal-L model for X-Decoder outputting 512 dimensional

embeddings. SBERT uses the all-mpnet-base-v2 model generating 768 dimensional

embeddings. I measure performance of object descriptions Z of varying length K to

estimate maximum representation capacity of z∗ for each embedding space. Two addi-

tional experiments for higher dimensional embeddings explore the theoretical limits of

z∗ for large object descriptions Z. Each experiment is repeated 1000 times for statistical

estimation.

Results 1. Here I provide results and findings for z∗ representing sets Z of randomly

sampled semantics z. Table 4.5 shows the expected similarity between optimal z∗ (4.12)

and object description semantics z is always higher than for unrelated semantics z′.

The results verifies that z∗ for all embedding distributions and object description sizes

K satisfy Definition 4.1 and Theorem 4.2 for finding the optimal z∗. Table 4.6 shows

lower bound separability of related z ∈ Z and non-related semantics z′ ∈ Z ′ by z∗,

verifying Theorem 4.4. All embedding spaces allow reliable separability for small object

descriptions K ≤ 3, verifying Proposition 4.6 for finding z∗ for non-uniform distribu-

tions. For intermediate descriptions K ≤ 5 separability of CLIP embeddings reduces to

chance. SBERT maintains strong separability. Only ideal uniform distributions achieve

perfect separability for large descriptions K ≤ 10. Table 4.7 shows that sufficiently



Grounded Latent Compositional Semantics as Spatio-Semantic Memories 103

Table 4.5: Compositional semantics expectation delta

∆E = E sim(z∗, z) − E sim(z∗, z′)
Distribution K = 3 K = 5 K = 10

CLIP [77] b 0.135 (0.043) 0.083 (0.032) 0.043 (0.024)

OpenCLIP [395] c 0.245 (0.032) 0.156 (0.027) 0.083 (0.020)

X-Decoder [193] a 0.236 (0.045) 0.150 (0.037) 0.080 (0.027)

SBERT [179] b 0.397 (0.040) 0.273 (0.035) 0.156 (0.026)

U (z)D=768 0.577 (0.012) 0.447 (0.010) 0.316 (0.080)

U (z)D=1280 0.577 (0.010) 0.447 (0.080) 0.316 (0.006)

U (z)D=2048 0.577 (0.008) 0.447 (0.006) 0.316 (0.005)

U (z)D=4096 0.577 (0.005) 0.447 (0.005) 0.316 (0.003)

a: D = 512, b: D = 768, c: D = 1280

Table 4.6: Separation of related and nonrelated random semantics

P (sim(z∗, z) > sim(z∗, z′))
Distribution K = 3 K = 5 K = 10

CLIP [77] b 0.954 (0.117) 0.533 (0.261) 0.187 (0.143)

OpenCLIP [395] c 1.000 (0.001) 0.907 (0.115) 0.400 (0.180)

X-Decoder [193] a 0.990 (0.0223) 0.750 (0.1682) 0.301 (0.156)

SBERT [179] b 1.000 (0.002) 0.977 (0.043) 0.647 (0.188)

U (z)D=768 1 (0) 1 (0) 1 (0)

U (z)D=1280 1 (0) 1 (0) 1 (0)

U (z)D=2048 1 (0) 1 (0) 1 (0)

U (z)D=4096 1 (0) 1 (0) 1 (0)

a: D = 512, b: D = 768, c: D = 1280

high-dimensional uniformly distributed embedding spaces can represent very large ob-

ject descriptions of size K ≤ 100 with perfect separability. Note that largest 4096 dimen-

sion embedding space equals the ResNet output embedding map dimension [539]. The

probabilistic bound (4.14) accurately predict the empirical separation probability result

for uniform distributions. The bound fails for highly non-uniform distributions as ex-

pected. Figure 4.11 visualizes embedding similarity distributions for different embedding

spaces and object descriptions sizes K. Figure 4.12 shows how increasing dimensionality

gradually improves separability.

I find that the object description size K representable by z∗ is only constrained by

embedding space dimensionality D and degree of uniformity. The OpenCLIP embed-

ding space provides better separability than the popular CLIP and SOTA multi-task

optimized X-Decoder models. The pure language model SBERT has better embed-

ding space than all VLM models. I propose to learn unconditional dense VLMs on

language model embeddings instead of global description VLMs like CLIP as the pre-

trained vision encoder is not used. The findings motivate further work towards increasing
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Table 4.7: Large object description expectation delta and separation

K = 100

Distribution ∆E P (sim(z∗, z) > sim(z∗, z′))
Empirical (4.18) Bound (4.14)

CLIP [77] b 0.004 (0.008) 0.011 (0.011) 1.0⋆

OpenCLIP [395] c 0.009 (0.007) 0.013 (0.012) 1.0⋆

X-Decoder [193] a 0.008 (0.009) 0.013 (0.012) 1.0⋆

SBERT [179] b 0.018 (0.009) 0.015 (0.013) 1.0⋆

U (z)D=768 0.010 (0.001) 0.605 (0.148) 0.612

U (z)D=1280 0.010 (0.002) 0.838 (0.116) 0.863

U (z)D=2048 0.010 (0.002) 0.967 (0.040) 0.988

U (z)D=4096 0.010 (0.001) 1.000 (0.001) 1.000

a: D = 512, b: D = 768, c: D = 1280, ⋆: Error from non-uniformity
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Figure 4.11: Similarity distributions between a latent compositional semantic em-
bedding z∗ and all object description embeddings z ∈ Z it represent (orange) and
randomly sampled unrelated word embeddings z′ (blue). Columns show different em-
bedding spaces. Each row shows object descriptions of different size K. A z∗ is useful

if it separates the distribution of z and z′ by cosine similarity (4.5).
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uniformity of existing VLM embedding distributions to better leverage the capacity of

high-dimensional embedding spaces and to improve discriminatability of compositional

semantic embeddings [535, 540].

Here I provide results and findings for z∗ representing sets Z of randomly sampled se-

mantics z. Table 4.5 shows the expected similarity between optimal z∗ (4.12) and object

description semantics z is always higher than for unrelated semantics z′. The results

verifies that z∗ for all embedding distributions and object description sizes K satisfy

Definition 4.1 and Theorem 4.2 for finding the optimal z∗. Table 4.6 shows lower bound

separability of related z ∈ Z and non-related semantics z′ ∈ Z ′ by z∗, verifying Theo-

rem 4.4. All embedding spaces allow reliable separability for small object descriptions

K ≤ 3, verifying Proposition 4.6 for finding z∗ for non-uniform distributions. For inter-

mediate descriptions K ≤ 5 separability of CLIP embeddings reduces to chance. SBERT

maintains strong separability. Only ideal uniform distributions achieve perfect separa-

bility for large descriptions K ≤ 10. Table 4.7 shows that sufficiently high-dimensional

uniformly distributed embedding spaces can represent very large object descriptions of

size K ≤ 100 with perfect separability. Note that largest 4096 dimension embedding

space equals the ResNet output embedding map dimension [539]. The probabilistic

bound (4.14) accurately predict the empirical separation probability result for uniform

distributions. The bound fails for highly non-uniform distributions as expected. Fig-

ure 4.11 visualizes embedding similarity distributions for different embedding spaces and

object descriptions sizes K. Figure 4.12 shows how increasing dimensionality gradually

improves separability.

I find that the object description size K representable by z∗ is only constrained by embed-

ding space dimensionality D and degree of uniformity. The OpenCLIP embedding space

provides better separability than the popular CLIP and SOTA multi-task optimized X-

Decoder models. The pure language model SBERT has better embedding space than

all VLM models. I propose to learn unconditional dense VLMs on language model em-

beddings instead of global description VLMs like CLIP as the pretrained vision encoder

is not used . The findings motivate further work towards increasing uniformity of ex-

isting VLM embedding distributions to better leverage the capacity of high-dimensional

embedding spaces and to improve discriminatability of compositional semantic embed-

dings [535, 540].

Experiments 2. The second set of experiments estimates the separability for 500

realistic object descriptions consisting of related semantics. Each object description

is generated by an LLM 1 and consists of K descriptive semantics including names,

1Claude 2 provided by Anthropic (claude.ai)

claude.ai
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Table 4.8: Separation for realistic object descriptions

P (sim(z∗, z) > sim(z∗, z′))
Distribution K = 3 K = 5 K = 10

CLIP [77] b 1 (0) 0.976 (0.059) 0.745 (0.192)

OpenCLIP [395] c 1 (0) 0.996 (0.015) 0.877 (0.146)

X-Decoder [193] a 1 (0) 0.998 (0.018) 0.917 (0.035)

SBERT [179] b 1 (0) 1.000 (0.001) 0.981 (0.056)

a: D = 512, b: D = 768, c: D = 1280

properties, and affordances. The results represent expected representational capacity of

z∗ in practical real-world application.

Results 2. Here I provide separability results for z∗ representing sets Z of realistic

object descriptions composed of related semantics z. Table 4.8 shows that realistic sets

of related semantics have better separability than the lower bound of random semantic

descriptions presented in Table 4.6. All VLMs achieve strong separability for K ≤ 5,

and SBERT allows large object representations of K ≤ 10.

Figure 4.13 visualizes similarity distributions for three particular object descriptions of

varying lengths K. The top row shows distributions for the short object description

of a “medium-sized utility vehicle” Z1 = {truck, van, vehicle}. All related z ∈ Z1 are

perfectly separable from the distribution of non-related z′ /∈ Z1 by z∗ and θz given by

4.15. The middle row shows the separability of a medium sized description for a “patch

on a drivable flat asphalt road with painted lane markings” Z2 = {road, lane marking,

drivable, asphalt, flat}. All models achieve above 99 % separability. The bottom row

visualizes the distribution of a large description of a “white wooden table surface” Z3 = {
’table’, ’wood’, ’counter’, ’solid’, ’surface’, ’white’, ’static’, ’flat’, ’furniture’, ’static’ }.

The VLMs do not reach reliable separability. In contrast, the language model SBERT

achieves 98 % separability, demonstrating that SBERT embedding are practically useful

up to about 10 semantics. I consider the results as upper bounds for visually learned

representations by VLMs.

4.3.5.2 Discovery from Visual Appearance

The mathematical properties in Sec. 4.3.2-4.3.3 are derived while presuming all member

semantics z ∈ Z are known. In this section I verify the possibility of finding latent

compositional semantic embeddings z∗ by iterative optimizing z∗ one z at a time, instead

of averaging the set Z as in (4.12).
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Figure 4.12: Similarity distributions for large object descriptions Z in very high-
dimensional uniformly distributed embedding spaces.
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Figure 4.13: Similarity distributions for three realistic object descriptions Zi of vary-
ing sizes K (orange) and randomly sampled word embeddings z′ (blue).
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Proposition 4.7 (Discoverability III). It is always possible to find an optimal compo-

sitional semantic embedding z∗ ∈ RD by iterative gradient descent optimization

z∗(t+1) = z∗(t) − λ ∇z∗

[
L∑
i=1

sim(z∗(t), z(i))

]
(4.23)

over random subsets Z̃(t) ⊆ Z, |Z̃(t)| = L given a sufficiently small learning rate λ.

Proof. See Appendix B.6.

The proof is based showing that the cosine similarity optimization objective is convex,

and noting that all convex problems have global convergence guarantees.

Figure 4.14 illustrate how an unconditional open vocabulary semantic segmentation

model discovers latent compositional semantic embeddings from independent visual ex-

amples. From visual examples of a “couch-object” being a couch, and from other visual

examples being furniture, I prove mathematically that the conventional unconditional

open vocabulary semantic segmentation objective results in learning a latent composi-

tional semantic embedding z∗ from which both semantic properties can be inferred by

sufficient similarity inference [95]. The bottom row illustrates how the conventional most

similar inference objective fails to infer that a “couch-object” is simultaneously a couch

and furniture. See Sec. 6.2 for further information and experimental results of inferring

latent compositional semantics from examples of visual appearance. See Sec. 4.3.4 for a

detailed explanation of the proposed sufficient similarity inference method.

4.4 Discussion and Limitations

While the proposed grounded latent compositional semantics breaks new theoretical

ground in directions for queryable spatio-semantic memory representations, practical

limitations to work out exist.

One limitation is the relative few point observations outputted by low-cost lidar sen-

sors. The sparsity of points results in a sparsity of mapped image-semantics to the

accumulated semantic point cloud. Accurate dense depth estimation methods would en-

able mapping all image-observation semantics to a semantic point cloud representation.

However, the technical inadequacy of dense depth estimation methods limits the prac-

tical usefulness of this approach. Physics-based stereo camera approaches have limited

long-range accuracy, while learned depth estimation methods have limited generalization

capability outside the training data domain. Another alternative is to investigate NeRFs
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Figure 4.14: I show that unconditional open vocabulary semantic segmentation VLM
models learn to map images into latent compositional semantic embedding maps Z∗.
The sufficient similarity inference method allows predicting overlapping semantics for
any set of queried semantics {z(k)} by similarity with z∗, without requiring original in-
put images. Conventional unconditional models like LSeg [6] fail at inferring semantic
overlap (couch is also furniture) and incomplete partitionings (other is a flawed substi-
tute for unspecified semantics). Projecting Z∗ to spatial coordinates result in accurate

and rich open-vocabulary spatio-semantic memories.

capable of real-time optimization and generation as an alternative means to spatially

encode image semantics into a dense 3D spatio-semantic memory representation.

The mathematical foundation of latent compositional semantics established, and the ex-

perimental results shows proimising results in discovering latent compositional semantics

from examples of visual appearance and semantics by bootstrapping from pretrained

dense representation learning computer vision models. Further experimental investi-

gation is needed to investigate sample efficiency for discovering latent compositional

semantics. For example, what is the relation between number of visual examples and

generalization of a semantic concept? Another example is investigating how to more

efficiently align discovered latent semantics to their ideal counterparts on the unit hy-

persphere. Further investigation into how to optimize the distribution of semantics in
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the encoding space of typical learned semantic embedding decoders like CLIP [77] and

SBERT [179] to cover a larger region of the hyperspherical shell embedding space [301].

Experimental results shows that a uniform distribution over the entire hypersphere would

greatly improve the capacity and discriminitability of sets of semantics by latent seman-

tic embeddings by an order of magnitude. The presented sufficient similarity semantic

inference method only allows inferring semantics based on one or many prior example

of said semantic. Further investigation into how the sufficient similarity method can be

extended to allow inference of novel semantics would greatly extend the usefulness of

the proposed method. Proposed future work includes investigating the relation between

number of example semantics and generalization performance when determining suffi-

cient similarity threshold values τ . Another direction is investigating how a set of priorly

known semantics are related to a novel semantic in order to infer a suitable similarity

threshold without explicit examples. For example, to infer a novel semantic like dog

from known semantics like furry, mammal, legged, pet, and so on.

4.5 Summary

Unsupservised dense representation learning to discover distinct semantic visual enti-

ties from natural images without human supervision or proposal heuristics. This thesis

presents visual similarity as an inductive bias in the form of superpixel region partitioning

to improve effectiveness of dense representation learning. Open-vocabulary semantic seg-

mentation models learn to map machine-discovered semantics with human interpretable

semantic embedding spaces, enabling querying of any semantics by relative similarity in

embedding space. Methods based on point projection and point cloud accumulation are

presented as means of grounding inferred semantics into a spatial representation.

The remainder of the chapter presents the mathematical theory of latent compositional

semantics as a means to discover and represent discriminable sets of semantics by a

single latent embedding. The sets of latent semantics are equivalent to compositional

object representations. The properties and representational capacity of latent compo-

sitional semantics are presented with mathematical proofs. Experiments on four em-

bedding spaces including CLIP and SBERT shows that latent compositional semantics

can represent up to 10 semantics encoded by SBERT, and up to 100 semantics for ideal

uniformly distributed high-dimensional embeddings. Experiments with VLMs show that

latent compositional semantics are discoverable from visual appearance by iterative gra-

dient descent. The proposed sufficient similarity semantic inference method overcomes

fundamental limitations of conventional inference, and improves higher-level overlapping

semantic inference performance by 19.63 mIoU in the presented experiments.



Chapter 5

Predictive State Representation

as Artificial Hippocampus

5.1 Introduction

The primary foundation of the intellectual powers of humans lies in their extensive

and versatile model of the world, including knowledge structures and concepts that

humans harness to relate objects, events, and words [93]. According to the predictive

coding theory, the brain continuously generates predictions or hypotheses about the

causes of sensory inputs based on prior knowledge and experience. These predictions

are then compared with the actual sensory inputs, and any discrepancies or prediction

errors are used to update the brain’s internal models and refine future predictions. The

hippocampus is believed to be the central orchestrator for such high-level abstraction

involving several aspects of predictive coding [94].

The hippocampus is known to be essential for learning and representing sequences of

events or experiences. This ability to encode and predict sequences is thought to be

a key component of predictive coding, as it allows the brain to anticipate upcoming

sensory inputs based on learned patterns.

The hippocampus plays a critical role in the formation and retrieval of episodic and

spatial memories. These memories can be used to generate predictions about sensory

inputs based on past experiences in similar contexts or environments. Some theories

suggest that the hippocampus is involved in detecting and processing prediction errors,

which are the discrepancies between the brain’s predictions and the actual sensory in-

puts. These prediction errors are thought to be crucial for updating the brain’s internal

models and driving learning. The hippocampus receives inputs from various sensory

111
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modalities, such as vision, audition, and spatial information. This integration of mul-

timodal information is thought to contribute to the formation of coherent predictions

and the updating of internal models based on prediction errors. It’s important to note

that the hippocampus does not act in isolation but is part of a larger network of brain

regions involved in predictive coding, including the neocortex, prefrontal cortex, and

other subcortical structures [333].

5.2 Predictive Coding as a Continual Learning Framework

Predictive coding from theoretical neuroscience and variational autoencoders (VAEs) [7]

from machine learning and identify their common origins and mathematical frameworks.

This work is inspired by previous works at this intersection, including hierarchical prob-

abilistic models in predictive coding and machine learning [541] and implementation of

predictive coding techniques in deep probabilistic models [542].

Predictive coding emerged within neuroscience as a theory that neural circuits are en-

gaged in estimating probabilistic models to make predictions about incoming sensory

input. This is done through an iterative process of prediction error minimization and

updating the internal model based on new information [330]. On the other hand, VAEs

are a type of deep generative model that uses variational inference to approximate the

posterior distribution over latent variables given observed data. They consist of an en-

coder network that maps input data to a lower-dimensional latent space and a decoder

network that reconstructs the original data from the latent representation [446].

The commonality between predictive coding and VAEs lies in their use of probabilistic

models for making predictions about sensory input or generating new samples. Both

approaches rely on minimizing prediction errors to update internal representations and

optimize model parameters. However, there are also key differences between the two

frameworks. For example, while predictive coding is a biologically plausible theory that

has been supported by empirical evidence from neurophysiological studies [330, 331, 333],

VAEs are based on mathematical principles and do not necessarily reflect biological

mechanisms [94].

5.3 Artificial Hippocampus as Learned Simulator

The hippocampus plays a vital role in various aspects of natural intelligence, includ-

ing learning associations, building causal models, encoding episodic memories, forming

spatial representations, and facilitating high-level abstractions. Its complex neuronal
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design principles offer valuable insights for developing artificial intelligence systems that

can mimic human cognition’s sophistication and adaptability [93]. The function of the

hippocampus in relation to biological intelligence has been extensively studied across

various disciplines, revealing its critical role in learning, memory, and abstract concept

formation. According to research, the human hippocampus acts as a nexus for high-level

abstractions, housing ”concept cells” that encode semantic knowledge beyond the phys-

ical properties of referenced items This neural structure allows the first vertebrates to

learn associations between stimuli, actions, and outcomes [93], playing a crucial role in

building causal models that help make sense of an uncertain world. The hippocampus is

involved in various aspects of human intelligence, including declarative memory [95], spa-

tial navigation [301], and facilitates the encoding, consolidation, and retrieval of episodic

memories, enabling individuals to recall past experiences. The hippocampus also con-

tributes to spatial cognition by forming cognitive maps that facilitates spatio-semantic

reasoning.

This thesis propose that the presented predictive state representation generated by a

predictive world model is analogous to an artificial hippocampus. Both predictive world

models and the hippocampus store cognitive maps or models of the world and generates

predictive spatio-semantic representations of future sensory input based on past observa-

tional experience. Like the hippocampus, the predictive state representation presented

provides an internal model supporting spatio-semantic memory formation and reason-

ing including navigation. The presented predictive world model framework is capable

of continual learning from observational experience based on the principle of predictive

coding, like the hippocampus. The plasticity of the hippocampus is high as one ob-

servation is sufficient to update the predictive model. The proposed machine learning

model is also shown to be capable of updating the predictive posterior based on a single

semantic observation.

However, a certain discrepancy exist. The hippocampus is adapt at learning temporal

sequences of events, while the currently presented predictive world modeling approach

does not incorporate temporal dynamics.

5.4 Predictive World Models

This work proposes an Open-vocabulary Predictive World Model (OV-PWM) as a spa-

tiosemantic memory and internal simulator for general-purpose mobile robots. The OV-

PWM is a latent variable generative model that learns from egocentric partial observa-

tions to predict complete environment states represented by grounded open-vocabulary

semantics. The OV-PWM functions as an implementation of an artificial hippocampus
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that learns a distribution of compact latent codes capturing the structure of observed

environments.

Predictive World Models (PWM) aim to learn latent representations capturing the un-

derlying structure of the environment. PWMs having learned the structure are able to

supplement perception by predicting unobserved regions. Prediction generation follows

the two-staged variational autoencoder (VAE) [7] latent variable approach: First, an

encoder predicts a latent distribution p(z|x) for the objectively real world x∗ partially

observed by sensors as x. Secondly, a particular latent variable z is sampled from p(z|x).

Finally, a decoder maps z into the most likely world x∗. The process is abstracted as

the arbitrary conditioning latent variable generative model p(x∗|x). In this thesis I

demonstrate how to learn p(x∗|x) to sample diverse and plausible complete worlds x∗

from partially observed worlds x represented by open-vocabulary semantic embeddings

h ∈ RD with dimension D >> 1.

The Open-Vocabulary Predictive World Model (OV-PWM) is implemented by the SOTA

hierarchical VAE (HVAE) model VDVAE [449] with an additional posterior matching

encoder [231, 381]. HVAEs [447–449] are capable of learning hierarchical latent variable

distributions expressing a high degree of structure at different abstraction levels. HVAEs

generalizes autoregressive models [449] and can achieve higher likelihoods than SOTA

autoregressive models like PixelCNN [543] using fewer learned parameters and generate

samples thousands of magnitudes quicker [449].

The explicit open-vocabulary environment representations enabled by OV-PWMs pro-

vides several potential advantages to implicit representations and conventional offline

map-based mobile robots with human-annotated semantics. First, the OV-PWM can

disambiguate the observed state by substituting unknown regions with plausible predic-

tions based on prior observational experience. Committing to a particular complete state

simplifies learning policies by removing the implicit marginalization over many plausible

underlying states for state transition modeling. Secondly, OV-PWMs can bridge con-

ventional map-based and perception-based planning and control methods. For example,

safer motion planning may be achieved by sampling diverse plausible structures of un-

observed regions and account for worst-case scenarios. Additional potential advantages

include improving localization by densifying observations, verifying offline map consis-

tency with the actually observed environment, and leverage the highly expressive but

compact latent state for planning in latent space [273]. Thirdly, learning a world model

based on grounded open-vocabulary semantics allows optimizing a single general OV-

PWM for multiple tasks requiring different semantic perceptual information. Fourthly,

leveraging unconditional open-vocabulary semantics supports inferring overlapping se-

mantics by sufficient similarity inference [95].
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The following sections presents detailed description of the model and how it is trained

and used for inference.

5.4.1 Learning complete states from partial states

The primary challenge is to learn a generative model predicting complete worlds by pre-

dictive coding [94, 542] from a set of partially observed incomplete worlds as “ground

truth” data only. In general, learning to predict “nothing” or “unknown” is an eas-

ier solution than predicting plausible structures when lacking a complete ground truth

learning signal to enforce commitment to a particular prediction. I employ the novel

posterior matching latent variable generative model as a solution introduced in my

prior work [381]. In this work I extend the approach to model high-dimensional open-

vocabulary semantic embeddings and in the process simplify the previous two-stage

approach into a single-stage end-to-end paradigm.

5.4.2 Latent variable generative modeling

The goal of generative modeling is to approximate the distribution p(x) by a learned

model pθ(x) maximizing the likelihood of finite empirical dataset D = {x(1), . . . , x(N)}.

A latent variable generative model p(x, z) approximates the joint distribution of observed

variables or data x and compact latent variables or codes z. The problem can be

factorized into a conditional model

p(x, z) = p(x|z)p(z) (5.1)

representing the process generating observed variables x from z as well as the distribution

of z. The problem is that learning pθ(x) and pθ(x|z) is computationally intractable

for high-dimensional data when using naive methods due to the unknown interactive

structure of x and z.

A solution is to reformulate the problem of learning pθ(x) is approximate variational

inference. Approximate variational inference propose to simultaneously learn an amor-

tized inference function qθ(z|x) approximating the true latent representation distribution

p(z|x) and the generative process pθ(x|z).

The variational inference scheme used to optimize the likelihood of the generative model

p(x) is derived as follows. The generative model p(x) is the marginal distribution of the

joint distribution of the latent variable generative model
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pθ(x) =

∫
pθ(x, z)dz =

∫
pθ(z|x)pθ(x)dz = Ez∼pθ(z|x)pθ(x). (5.2)

Taking the logarithm of both sides and leveraging the amortization factorization

pθ(x, z) = pθ(z|x)pθ(x) (5.3)

pθ(x) =
pθ(x, z)

pθ(z|x)
(5.4)

allows for a convenient decomposition

log pθ(x) = Ez∼pθ(z|x) log pθ(x) (5.5)

= Ez∼pθ(z|x) log
pθ(x, z)

pθ(z|x)
(5.6)

= Ez∼pθ(z|x) log
pθ(x, z)qϕ(z|x)

pθ(z|x)qϕ(z|x)
(5.7)

= Ez∼pθ(z|x) log
pθ(x, z)

qϕ(z|x)
+ Ez∼pθ(z|x) log

qϕ(z|x)

pθ(z|x)
(5.8)

= [E log pθ(x, z) − E log qϕ(z|x)] + [Eqθ(z|x) − Epθ(z|x)] . (5.9)

The optimization objective is derived by denoting the first RHS term as Lθ,ϕ(x, z) and

identifying the second RHS term as the KL divergence DKL(qϕ(z|x), pθ(z|x)) and rear-

ranging terms

log pθ(x) = Lθ,ϕ(x, z) + DKL(qϕ(z|x), pθ(z|x)) (5.10)

Lθ,ϕ(x, z) = log pθ(x) −DKL(qϕ(z|x), pθ(z|x)). (5.11)

As DKL(qϕ(z|x), pθ(z|x)) ≥ 0 it follows from (5.11) that

Lθ,ϕ(x, z) ≤ log pθ(x). (5.12)

The optimization goal is to maximize pθ(x), that is, the likelihood of data x according

to the model pθ(x). It follows from (5.11) that maximizing Lθ,ϕ(x, z) must necessarily

maximize pθ(x) as Lθ,ϕ(x, z) is a lower bound of Lθ,ϕ(x, z), giving Lθ,ϕ(x, z) the name

variational or evidence lower bound (ELBO). The computable optimization objective for
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maximizing Lθ,ϕ(x, z) is derived by equivalently minimizing the negation of Lθ,ϕ(x, z)

max
θ,ϕ

Lθ,ϕ(x, z) = min
θ,ϕ

−Lθ,ϕ(x, z) (5.13)

= min
θ,ϕ

− [E log pθ(x, z) − Eqϕ(z|x)] (5.14)

= min
θ,ϕ

− [E log pθ(x|z) − E log pθ(z) − Eqϕ(z|x)] (5.15)

= min
θ,ϕ

−E log pθ(x|z) + Eqϕ(z|x) − E log pθ(z) (5.16)

= min
θ,ϕ

−E log pθ(x|z) + DKL(qϕ(z|x), pθ(z)). (5.17)

The lower bound Lθ,ϕ(x, z), and indirectly the model likelihood pθ(x), is therefore opti-

mized by increasing pθ(x|z) and decreasing DKL(qϕ(z|x), pθ(z)).

The variational autoencoder (VAE) is a deep generative model that implements approxi-

mate variational inference. Both the amortized inference function qϕ(z|x) and generative

model pθ(x|z) are implemented by neural network function approximations. The VAE

simultaneously learns qϕ(z|x) and pθ(x|z) by inferring a distribution of latent variable z

and subsequently reconstruct a sampled z back into the observable variable x. The dis-

tribution of latent variables pθ(z) is assumed to be a known distribution like the Normal

distribution. The DKL(qϕ(z|x), pθ(z)) term constrains the learned posterior distribu-

tion qϕ(z|x) to match the prior pθ(z) so that new samples can be generated by simply

sampling from the known distribution pθ(z).

Vanilla VAEs suffer from constrained expressiveness due to being limited to a single

set of latent variables z. The limitation is characterized by generation of low-fidelity

high-dimensional data like blurry high-resolution images.

The hierarchical VAE (HVAE) overcomes this limitation by introducing layers of latent

variables Z = (z(1), . . . , z(K)). Each layer k models structure of different levels of ab-

straction. The hierarchical order of latent variables naturally results in a decoupling

of overall structure and visual appearance. The HVAE prior distribution, posterior

distributions, and generative model can be factorized as

pθ(Z) = pθ(z1|z2) . . . pθ(zK−1|zK)pθ(zK) (5.18)

qϕ(Z|x) = qϕ(z1|z2, x) . . . qϕ(zK−1|zK , x)qϕ(zK |x) (5.19)

pθ(x|Z) = pθ(x|z1) . . . pθ(zK−1|zK)pθ(zK) (5.20)
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Training Conditional inference

Unconditional generation

Figure 5.1: Predictive world model. The encoder Encθ() learns a hierarchical latent
variables Z representing the environment x̂ conditioned on the past-to-future partially
observed state x∗. The posterior matching encoder Encϕ() learns to predict the same
distribution Z from the past-to-present state x. The decoder Decθ learns to reconstruct

diverse and plausible complete states x̂ from Z.

where all random variables z are modeled by Normal distributions N (z|µ, σ). Deeper or

more abstract codes (i.e. zK) encode the global structure, while shallow codes (i.e. z1)

encode the visual appearance of elements in x. The deepest latent variable prior pθ(zK)

is a known distribution like the Normal distribution like a VAE. However, subsequent

priors pθ(zK−1) . . . pθ(z1) are learned priors for increased model expressivity.

5.4.3 Model implementation and training

I implement the OV-PWM based on the recent SOTA HVAE architecture called Very

Deep VAE (VDVAE) [449]. The HVAE model has 48 layers of 16 dimensional latent vari-

ables (e.g. K = 48) with incrementally increasing feature map resolution and decreasing

intermediate feature dimension throughout the layers.

I use two inputs to train the model. The first input is the presently observed world

x ∈ RH×W×D (e.g. past-to-present accumulated observations). The second input is the

future observed world x∗ ∈ RH×W×D (e.g. past-to-future accumulated observations).

x and x∗ are high-dimensional grid map with elements representing normalized open-

vocabulary semantic embeddings h ∈ SD−1 with dimension D. Unobserved elements

are represented by the zero vector 0.

The two inputs are processed by two structurally identical but separate encoders. The

future observed world x∗ is processed by the encoder Encθ(x
∗), approximating qθ(Z|x∗),

into intermediate feature maps Y ∗ = {y∗1 . . . y∗K−1} and a latent feature vector y∗K . The

presently observed world x is processed by a the posterior matching encoder Encϕ(x),

approximating qϕ(Z|x), into Y = {y1 . . . yK−1} and a latent feature vector yK .
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A single decoder generates a sample x̂∗ by first sampling the latent variable zK from a

distribution conditioned on y∗K . The intermediate reconstruction x̃∗K is computed from

zK and learned bias variables. Subsequent latent variables zk are sampled by the corre-

sponding intermediate feature maps y∗k from the encoder and the previous intermediate

reconstruction x̃∗k−1. Subsequent intermediate reconstructions x̃∗k are computed based

on the sampled zk and x̃∗k−1. The features Y = {y1 . . . yK} outputted by the posterior

matching encoder Encϕ(x∗) are optimized to predict the same latent distribution qθ(zk)

as the qθ(zk) distribution outputted by the future observation encoder Encθ(x
∗).

The final intermediate feature map x̃∗ ∈ RH,W,D′
is mapped into an open-vocabulary

semantic embedding map x̂∗ ∈ RH,W,D by a linear projection. Forcing the output to lie

on the hypersphere SD−1 and thus represent the latent compositional semantic denoting

the set of most likely membership semantics

∀xi,j ∈ x ∼ pθ(x|Z) ⇒ xi,j ∈ SD−1, (5.21)

resolves the problematic tendency of the previous semantic probability approach [381].

The prior probabilistic closed set semantics approach represents membership semantics

by K probabilities that element (i, j) is a member of semantic k ∈ K. Forcing the model

to predict a latent compositional semantic embedding h naturally allows inferring over-

lapping semantics while overcoming the maximum likelihood shortcut learning problem

of readily predicting “unknown” instead of penalizing commiting to a miss-prediction.

Uncertainty can instead be estimated by stochastic variation from repeatedly sampling

the posterior [544]. The prior two-stage approach with intermediate pseudo ground truth

states are not needed for OV-PWMs, and thus simplifying the method to a single-stage

end-to-end learning process.

The Encθ() and Decθ() components of the dual encoder HVAE is optimized by maxi-

mizing the hierarchical ELBO

max
θ,ϕ

Lθ,ϕ(x, Z) = min
θ,ϕ

E [− log pθ(x|Z) + DKL(qϕ(Z|x)||pθ(Z))] (5.22)

where log pθ(x|Z) is the likelihood of the sample x∗ reconstructed from Z, and a KL

divergence term that measures the separation between the learned posterior and prior

distributions

DKL(qθ(Z|x)||pθ(Z)) =

K∑
k=2

E
qθ(z≥k|x)

[DKL(qθ(zk−1|zk, x)||pθ(zk−1|zk))]+DKL (qθ(zK |x)||pθ(zK)) .

(5.23)
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I simultaneously train the secondary posterior matching encoder Encϕ() to predict latent

distributions Z for partially observed environments x which are similar to Z inferred

from the regular encoder Eθ(x
∗) with future observed worlds x∗. The second posterior

matching encoder is optimized by minimizing

DKL(qϕ(Z|x∗)||qψ(Z|xpo)) =

K∑
k=1

E
q(z>k|x)

[DKL(qϕ(zk|z>k, x∗)||qψ(zk|z>k, xpo))] . (5.24)

Maximizing the likelihood of pθ(x|Z) in (5.22) is equivalent to minimizing the cosine

distance for normalized OV semantic embeddings modeled by the OV-PWM model

minE− log(p|Z) = minE(1 − sim(x, x̂)) = minE(1 − xT x̂). (5.25)

The practical formulation of the hierarchical ELBO (5.22) used for optimizing the OV-

PWM model is therefore

max
θ,ϕ

Lθ,ϕ(x, Z) = min
θ,ϕ

E
[
(1 − xT x̂) + DKL(qϕ(Z|x)||pθ(Z))

]
. (5.26)

See Appendix A for a derivation of (5.25).

5.4.4 Model Inference

At inference time the model uses the posterior matching encoder Encϕ() to generate a

latent distribution Z that can be decoded by Decθ() into a predicted complete world

state x̂∗. The model can be used for unconditional generation by incrementally sampling

latent variables Z from the learned prior distribution qθ(Z). The regular encoder Encθ()

trained on future observations x∗ is not used during inference.

5.5 Discussion and Limitations

A limitation of my current approach is the top-down 2D grid representation. 2D em-

bedding maps do not represent vertical information and multi-layered environments as

required for general 3D representations. Extending the OV-PWM approach to 3D rep-

resentations using voxel grids or neural radiance fields is a promising direction of future

work to enable spatial reasoning in fully general complex 3D structures. While the

model already demonstrates promising generalization capability in new environments,
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the modeling of finely detailed semantics like road markings display room for improve-

ment. Given that the original VDVAE model was trained on 32 V100 GPUs for 2.5 weeks

(we: 6 A6000 GPUs for 4 days) on a large dataset of 70,000 samples [449] (we: 7000

samples), and the OV-PWM training performance trend indicate further improvement,

it is reasonable to expect additional training time and diverse observational experience to

further boost performance. Reducing degenerate samples resulting from inaccurate and

erroneous ICP scan matching steps by implementing a robust SLAM-based observation

accumulation framework may further improve training efficiency. Despite the limited

computational resources, training set size, and degenerate samples, my method learns

to generate outputs with intricate details emerging even from the unconditional prior.

Other directions include incorporating agents and temporal dynamics into predictive

world model, as well as demonstrating the advantages of learned simulators in practi-

cal embodied task planning and decision making problems using large-scale, real-world

data.

5.6 Summary

The human brain’s extensive model of the world, which includes knowledge structures

and concepts, is the foundation for human intelligence. The hippocampus plays a cru-

cial role in this process as it continuously generates predictions about sensor inputs

based on prior knowledge and experience, based on the theory of predictive coding. The

hippocampus learns sequences, forms memory-based predictions, processes prediction

errors, and integrating multi-modal information. Predictive coding is presented as a

principled continual learning framework that shares commonalities with variational au-

toencoders in machine learning. This thesis proposes that an artificial hippocampus

can be developed using predictive state representation generated by a predictive world

model, which can store cognitive maps and generate spatio-semantic representations of

future sensory input based on past observational experience.

The presented open-vocabulary predictive world model (OV-PWM) is presented as an

artificial hippocampus. The OV-PWM model learns hierarchical distributions of com-

pact latent representation of directly from raw observations using dual-encoder HVAE

with posterior matching optimization. The proposed predictive world model is capable

of predicting diverse complete environment states for unobserved environment regions

by iteratively sampling from the learned hierarchical prior distribution. The predictive

world model forms the basis of the dual explicit and latent predictive state representa-

tion.



Chapter 6

State Representation for

Autonomous Driving Reasoning

Agents

6.1 Introduction

This chapter presents a practical implementation of the proposed predictive state rep-

resentation formalism as presented in previous chapter. The focus is on future for

autonomous driving agents capable of spatio-semantic reasoning based on the spatially

grounded and semantically rich predictive environment states.

The chapter starts by presenting how sensor observation forms partially observed en-

vironment states. Practical implementation of unconditional open-vocabulary semantic

segmentation models, or dense vision-language models (VLMs), is explained. The suf-

ficient similarity semantic inference method for inferring overlapping semantics is pre-

sented, along with experimental results for learning latent compositional semantics from

examples of visual appearance.

The following sections presents the how to accumulate observations over time into par-

tially observed open-vocabulary environment state representations, as well as present ex-

perimental results for the proposed open-vocabulary predictive world model (OV-PWM)

applied in the autonomous driving domain. The chapter concludes by explaining how the

predictive state representation is used to learn navigational patterns from observation

only.

122
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6.2 Sensor Observations to Partial World States

This section describes how to generate open-vocabulary partial environment states from

multimodal sensor observations. I leverage recent advances in unconditional open-

vocabulary semantic segmentation based on the theory of latent compositional seman-

tics [95] as my semantic representation. The partial world state representations serve as

the input representation for learning Open-Vocabulary Predictive World Models (OV-

PWM) described in Section 5.4.

6.2.1 Sensor Observation Processing

Mobile robots perception systems typically fuse complementary sensor modalities. Pas-

sively sensing RGB cameras provide rich semantic understanding. Actively sensing lidars

or depth sensors provide accurate metric spatial perception. Sensor fusion approaches

aim at leveraging the complementary strengths of both vision modalities [259].

Semantic point clouds are the natural unified data structure for representing both spatial

and semantic information. A semantic point cloud is created by grounding semantic

embedding maps extracted from 2D image pixels into spatial coordinates. The grounding

is performed as follows: first, a point cloud is projected onto the image frame by a

transformation specified by camera calibration parameters. Predicted open-vocabulary

semantic embeddings are mapped to all points coinciding with the respective image

coordinates. All points outside the image frame are discarded. The remaining set

of points thus contain spatial information in the form of (x, y, z) ∈ R3 coordinates and

semantic embedding z ∈ RD with dimensionality D, resulting in a a semantic point cloud

P ∈ RN×3+D where N is the number of semantically annotated points. See Figure 6.4 for

visualized high-dimensional open-vocabulary semantic point clouds projected to RGB

values.

6.2.2 Interpreting Observations as Open-Vocabulary Semantics

I propose to map unconditional open-vocabulary, or latent compositional semantic em-

beddings to point clouds. Here follows a brief explanation starting from conventional

class semantics. A set of K class semantic embeddings are defined by separate basis

vectors ek in a RK dimensional embedding space. Each semantic represented by ek is

orthogonal to every other semantic el ̸=k, meaning every semantic is equally similar or

dissimilar to every other semantic. Conventional class semantics therefore do not encode

semantic similarity.
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Open-vocabulary instead has a fixed embedding space spanned by D orthogonal basis

vectors e1 . . . eD representing primitive latent semantics. All vectors ed defines a latent

prototypical semantic. All vectors in the embedding space are normalized and thus lie on

the unit hypersphere SD−1. A projection function fθ() maps any visual or text semantic

h onto SD−1. As h are generally distributed over all basis vectors, the cosine similarity

of two normalized embeddings measures the relative semantic similarity. The equation

for computing cosine similarity is repeated bellow:

sim(h1, h2) =
h1 · h2

||h1||||h2||
= (h1)

Th2. (4.4)

My predictive world modeling approach is based on interpreting RGB images by an

unconditional open-vocabulary semantic segmentation model [396]. The segmentation

model outputs a dense embedding map H = RH×W×D representing open-vocabulary

semantics with a one-to-one pixel correspondence. A mathematical theory of uncon-

ditional open-vocabulary semantics [95] explains how models learns to output latent

compositional semantics h∗ representing discriminable sets of membership semantics

H = {h1, . . . hK} as a hyperspherical cap SD−1
cap defined by h∗ and a sufficient similarity

threshold τ . To compute if an observation i in a semantic point cloud represents query

semantics (e.g. if a point is road), the cosine similarity between the latent compositional

semantic h∗i mapped to point i and the embedded query semantic hq must be higher

than the sufficient similarity threshold of the query semantic τq and thus in SD−1
cap :

sim(h∗, hq) > τq ⇒ MemberOf(point i, query semantic). (6.1)

Conventional “most similar” open-vocabulary inference approaches [81] forgo knowing

a sufficient similarity threshold τ and thus seemingly allow querying any never encoun-

tered semantic. Nevertheless, the “most similar” inference approach has two funda-

mental flaws [6, 95]: First, every point i can be a member of only one of the queried

semantics. For example, a point on window-on-a-building-facade should be simultane-

ously inferrable as both “window” and as part of a “building” at a higher-level. Naively

hard-coding rules such as stating “window” are also “building” is not generally true.

Secondly, the set of query semantics is presumed to constitute a complete partitioning

of all points, as even unrelated points will be mapped to one of the query semantics.

For example, a dog queried by “grass” and “toy” is interpreted as “toy”. Naively using

abstract word semantics like “other” as a substitute for unspecified semantics is not a

principled solutions as the similarity between the predicted semantic h and the unrelated



State Representation for Autonomous Driving Reasoning Agents 125

query semantic hq is not guaranteed to be lower than the ambiguous meaning of “other”

sim(h, hother)
?
≥ sim(h, hq). (6.2)

Sufficient similarity inference is a principled solution to the flaws of “most similiar”

inference by allowing overlapping semantic inference (e.g. semantic membership with

“window” and “building” can be simultaneously inferred) and inferring only true se-

mantics irrespective of the set of query semantics (e.g. dog is neither “grass” or “toy”).

In this work I follow the theory of latent compositional semantics interpretation of un-

conditional semantics [95] and demonstrate applying the sufficient similarity inference

method for OV-PWMs.

In this work, I investigate whether or not high-dimensional open-vocabulary embeddings

can be modeled by the predictive world model approach. I therefore do not consider the

perception problem of inferring unconditional open-vocabulary semantics from images,

and instead leverage point clouds annotated with CARLA ground truth semantics [545]

for experiments. I design a taxonomy where each ground truth semantics is provided

two additional high-level semantics (ex: a “road” is also a “drivable” and a “static”

object). A single optimal latent compositional semantic embedding h∗ is computed as

the mean centroid of the three associated semantics [95] and appended to each point

to form an open-vocabulary semantic point cloud. I refer to prior work for in-depth

investigations concerning learning and inferring open-vocabulary semantic embeddings

from visual data [6, 81, 95, 396].

6.2.2.1 Vision-Language Model

An unconditional dense VLM is a learned one-to-one function fθ() that maps images

x ∈ R3×H×W to dense embedding maps Z ∈ RD×H×W consisting of aligned VL embed-

dings z(i,j) ∈ RD at point (i, j) in the image frame. The output Z represents observations

abstracted into declarative semantic memories [206–208] which maximizes the predictive

likelihood over past observations given x, without conditioning on an input text [188] or

an image query [200]. Unconditional prediction [6, 77] is necessary for efficient open vo-

cabulary spatio-semantic memory representations as explained in Sec. 3.4.3. However,

since objects have not one but several semantic descriptions [206, 209, 210], a single

semantic embedding z(i,j) must simultaneously encode a multitude of task-relevant se-

mantics.

I investigate the feasibility of discovering compositional semantics by fθ as an im-

age encoder-decoder dense prediction deep neural network architecture. To maximize
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Figure 6.1: The unconditional dense VLM fθ transforms an image x into an embed-
ding map Z∗ representing compositional semantics z∗ for every pixel. During training,
predictions z∗ for elements masked by y are optimized to be similar to targets z(k)

and dissimilar to all other semantics z(k
′) generated from text descriptions t(k) by a

language encoder EncL. During inference, z∗ allows querying multiple semantics K by
similarity. All elements above the similarity threshold τk are members of the semantic

group k. τk is set to maximize likelihood of predicting past observations.

the generality of my findings, fθ is implemented by conceptually simple, general, and

well-performing SOTA modules as shown in Fig. 6.1. A vision transformer (ViT)

backbone [154] extracts visual features from image observations x. I use the ViT-

Adapter [396] as a dense prediction task adapter to enhance the ViT backbone with

vision-specific inductive biases. The adapter outputs a set of multi-scale feature maps

F = {F1, F2, F3, F4}. A Feature Pyramid Network (FPN) [517] integrates F into a sin-

gle feature map F . A simple decoder head bilinearly upsamples F into the input image

resolution and do a final 1 × 1 convolution to project features into normalized semantic

embedding maps Z.

In the remainder of this section, I explain how in fact dense latent compositional semantic

embedding maps Z∗ are discovered by an unconditional dense VLM fθ when trained to

predict Z.
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The model fθ is initialized with pretrained backbone parameters and trained end-to-end

to predict semantic embedding maps Z from images x and dense annotations. Annota-

tions consists of K types of paired semantic text descriptions t(k) encoded into semantic

embeddings z(k), and boolean image masks y ∈ BH×W specifying which image elements

x(i,j) are associated with t. I denote an observation n as a tuple (x, t, y)n.

I use the contrastive learning objective

LCL = E

[
− log

esim(z,z(k))/τ

esim(z,z(k))/τ +
∑

k′ e
sim(z,z(k

′))/τ

]
(6.3)

with temperature τ to optimize fθ to predict z similar to z(k) for elements specified by

y and negative samples z(k
′). The set of negative samples Z ′ = Z \ {z(k)} consists of all

known annotated semantics Z in the dataset except the current sample annotation z(k).

I optimize over all Z ′ for every batch instead of randomly sampling negatives as the

number of semantics are tractable. I note that the general objective (6.3) is equivalent

to the previously proposed cross-entropy over softmax normalized embedding similarity

objective [6]

LCE = E
[
−(c(k))T log σ

(
sim(ẑ, z(k))/τ

)]
(6.4)

with c(k) denoting one-hot class or description type vectors, σ() as the softmax function.

The equivalence is apparent by zeroing out all but the one-hot true target embedding

resulting from the dot product sum and expanding the softmax function

LCE = E

[
0 − . . .− log

esim(ẑ,z(k))/τ∑K
k′=1 e

sim(ẑ,z(k
′))/τ

− . . .− 0

]
. (6.5)

Next I verify that the objective (6.3), and equivalently (6.4), can learn latent composi-

tional semantic embeddings z∗ from independent nonoverlapping descriptions. Propo-

sition 4.7 proves that z∗ can be learned by gradient descent. I can therefore presume

without loss of generality, that two descriptions z(k1) and z(k2) appear simultaneously

in a batch for two independent but visually similar objects x1 and x2 mapping to the

same latent semantic z. The combined loss is

L =
1

2

(
LCL(z, z(k1)) + LCL(z, z(k2))

)
=

1

2

(
− log

1

c
esim(z,z(k1)) − log

1

c
esim(z,z(k2))

)
= −1

2

(
log esim(z,z(k1)) + log esim(z,z(k2)) − 2 log c

)
= −1

2

(
sim(z, z(k1)) + sim(z, z(k2))

)
+ log c

(6.6)
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As the optimal z minimizing (6.6) equals the centroid of z(k1) and z(k2), the optimal z

is the optimal latent compositional semantic embedding z∗ as proved by Theorem 4.2.

I conclude that the iterative optimization by objective (6.3) enable fθ to learn z∗ from

visual similarity and nonoverlapping descriptions.

6.2.3 Experimental Results: Latent Compositional Semantics From

Visual Appearance

The following experiment investigates if z∗ can be discovered from independent obser-

vations of visual appearance paired with nonoverlapping annotations. I present two

experiments to answer this question.

First, I evaluate how well four representative SOTA unconditional open vocabulary

semantic segmentation models can infer overlapping compositional semantics. Each

model is trained on conventional non-overlapping annotations. ZSSeg [81] generates

region proposals by SAM [546] and uses CLIP [77] to predict semantic embeddings z.

X-Decoder [193] is a conditional VLM that predicts N object mask proposals and match

masks with the most likely query semantic. I convert X-Decoder into an unconditional

model by integrating all N VL mask semantics by the mask probability at each pixel

location. I use largest available Focal-L model trained on COCO captions and dense

labels. LSeg [6] is a dense VLM trained to output unconditional VL embedding maps.

I use the released ViT-L/16 model weights trained on seven datasets including COCO-

Stuff [104], ADE20K [547], and Mapillary [548]. ViT-Adapter [396] is a recent general-

purpose dense computer vision architecture I implement as my trainable model. The

ViT backbone is initialized with self-supervised BEiT model weights [144]. The model is

trained with SBERT embeddings on the same seven dataset as LSeg for 160K iterations

on four A6000 GPUs with a total batch size 4 and 0.75e-4 learning rate. I create three

modified datasets with overlapping semantics following the three level label hierarchy

proposed in the COCO-Stuff dataset [104] (e.g. a car-object is described as either “car”,

“vehicle”, or “outdoor”). I emphasize that none of the models have been explicitly

trained on the additional overlapping semantics.

Secondly, I estimate the performance gained by directly training a model with overlap-

ping annotations on the COCO-Stuff dataset [104] as an upper performance bound. I

train four ViT-Adapter models using CLIP or SBERT embeddings with two dataset

variants. The first variant uniformly samples annotations from one of the three label hi-

erarchy levels. The second variant weights sampling so all annotation classes are equally

likely. Uniform and weighted sampling represent the long-tail distribution over low- and

high-level semantics, respectively. Each image annotation is sampled only once for each
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sample, meaning compositional semantics must be learned by generalizing from inde-

pendent observations of visual appearance. Additionally, I estimate separability (4.18)

and distance between the learned z∗ embeddings with the optimal z∗opt computed as the

centroid of the ground truth overlapping semantics (4.12).

I evaluate compositional semantics by mIoU computed using the conventional most sim-

ilar partitioning and my proposed sufficient similarity method introduced in Sec. 4.3.4.

To use sufficient similarity I precompute τk for every semantic category k from 2000

samples from the training dataset covering all annotation semantics.

My results show common VLM models trained on conventional nonoverlapping annota-

tions discover compositional semantics z∗ as specified by Definition 4.1 and Theorem 4.4.

Discovering z∗ enables inferring overlapping semantics by my proposed sufficient simi-

larity inference method.

Table 6.1 presents segmentation performance for original non-overlapping annotations

(e.g. COCO) and my novel compositional semantics (e.g. COCO CS) dataset variants

with overlapping annotations. Each model is evaluated by the conventional most similar

(MS) and my proposed sufficient similarity (SS) method. Levels (denoted (2)) specify

which hierarchical semantics are being evaluated (e.g. level 1 cat, level 2 animal, and

level 3 outdoor). The region proposal method ZSeg [81] underperforms other models

explicitly trained on dense annotations despite the promise of highest generality. The

mask-based conditional method X-Decoder [193] modified to output unconditional dense

embedding maps performs worse than the inherently unconditional pixel-level prediction

model LSeg [6]. My ViT-Adapter [396] based model implementation with a general-

purpose SOTA architecture for dense vision tasks performs even better on both my

novel overlapping and non-overlapping semantic inference tasks. My proposed sufficient

similarity inference method improves inference performance of second level overlapping

semantics across all models by 19.63 mIoU on average. Conventional most similar (MS)

inference has a performance advantage over the sufficient similarity (SS) inference on

level 1 semantics. The reason is that MS inference overfits level 1 semantics due to

their prevalence in training data. Additionally, MS inference is fundamentally limited

to predicting a single semantic, unlike SS inference which can theoretically achieve a

perfect overlapping segmentation score.

Table 6.2 shows evaluation results for ViT-Adapter [396] models trained directly on

overlapping COCO compositional semantics using different embedding spaces and an-

notation sampling strategies. Learning from a weighted sampling (WS) annotation dis-

tribution results in a uniform exposure of semantics from all levels and the best overall

performance despite rarity of higher-level semantics. The performance gap between

the best ViT-Adapter model in Table 6.1 and Table 6.1 on overlapping conventional
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Figure 6.2: Examples of overlapping semantics inferrable from latent compositional
semantic embeddings z∗ representing learned object descriptions Z. The 3rd and 4th
examples illustrate failure cases related to sufficient similarity threshold τk estimation

for low- and high-level semantics, respectively.
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Table 6.1: Unconditional open vocabulary segmentation and overlapping segmenta-
tion performance

mIoU

Model
COCO COCO CS

MS MS SS MS(2) SS(2)

ZSSeg [81] 11.23 10.87 2.24 3.21 8.28

X-Decoder [193] 28.57 25.33 28.14 10.19 22.52

LSeg [6] 38.42 37.10 20.41 14.59 14.66

ViT-Adapter [396] 48.12 46.97 39.16 12.55 54.19

Model
ADE ADE CS

MS MS SS MS(2) SS(2)

ZSSeg [81] 9.93 9.14 3.05 6.35 5.86

X-Decoder [193] 6.48 5.88 12.77 4.85 14.39

LSeg [6] 27.40 25.11 11.37 6.35 16.23

ViT-Adapter [396] 47.47 43.21 30.29 28.99 31.63

Model
Mapillary Mapillary CS

MS MS SS MS(2) SS(2)

ZSSeg [81] 6.51 5.39 3.39 0.67 13.75

X-Decoder [193] 11.52 9.07 9.39 2.03 20.26

LSeg [6] 30.08 24.51 11.81 0.01 22.97

ViT-Adapter [396] 46.92 37.94 24.69 0.00 40.15

MS: Most similar evaluation, SS: Sufficient similarity evaluation,
(2): Level 2 semantics evaluation only, CS: Compositional semantics

Table 6.2: Learning compositional semantics by overlapping annotations

Model p(D)
COCO CS [mIoU]

MS SS MS(2) SS(2) MS(2,3) SS(2,3)

CLIP
US 25.90 32.99 34.19 57.29 33.27 55.93
WS 45.94 37.89 12.71 50.18 12.18 48.82

SBERT
US 24.95 38.19 33.92 58.55 32.39 57.38
WS 45.67 42.23 12.77 56.55 12.26 55.57

US: Uniform sampling, WS: Weighted sampling, (2,3) Level 2 and 3 se-
mantics, SS: Sufficient similarity evaluation, MS: Most similar evaluation
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Figure 6.3: The distribution of mean similarities between optimal z∗opt and learned
z∗ CLIP (blue) and SBERT (orange) embeddings for three semantic levels.
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semantics is only 2.63 mIoU. The small gap indicate that learning z∗ from existing sin-

gle non-overlapping annotations is an effective approach. See Figure ?? and 6.2 for

overlapping semantic inference visualizations.

In Figure 6.3 I visualize the mean similarity distribution between learned z∗ and optimal

z∗opt embeddings by Theorem 4.2. Learned z∗ are far from optimal z∗opt for both CLIP and

SBERT embedding models, similarly to how learned VL embeddings have a similarity

or alignment gap with the encoded text annotations [536, 549]. However, the results

in Table 6.1-6.2 proves that learned z∗ have adequate similarity with z∗opt for sufficient

similarity segmentation of small semantic sets Z. Increasing alignment between learned

z∗ and z∗opt will enable z∗ to represent larger Z and approach the theoretical capacity of

the text embedding space investigated in Sec 4.3.5.

6.2.4 Observation accumulation

The agent accumulates a sequence of unfiltered semantic point clouds P (1), . . . , P (T )

centered in the agent’s reference frame over time t = 1 . . . T into a single semantic point

cloud P̄ (T ). This task is called point cloud registration or scan matching problem [417].

I use the Iterative Closest Point (ICP) algorithm [284] to estimate the sensor motion

and align sequential observations into the same reference frame. ICP takes the previous

and latest point cloud and computes the transformation matrix Tt→t+1 which best aligns

the previous point cloud P (t) to the latest one P (t+1). The matrix Tt→t+1 corresponds

to the agent motion between the two observations as shown in (6.7). Multiplying the

accumulated point cloud P̄ (t) with Tt→t+1 as in (6.8) transforms all points into P̃ (t+1) in

reference frame of the newest observations. This step is done recursively every timestep

as new observations are perceived. Finally I add the new observations P (t+1) to the

transformed accumulated observations P̃ (t+1), resulting in a new set of accumulated

observations P̄ (t+1) as in (6.9)

Tt→t+1 = ICP (P (t), P (t+1)) (6.7)

P̃ (t+1) = Tt→t+1P̄
(t) (6.8)

P̄ (t+1) = concatenate(P̃ (t+1), P (t+1)). (6.9)

A visual example of accumulated semantic point clouds is shown in Fig. 6.4.
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Figure 6.4: Process transforming sensor observations into open-vocabulary partial
world states. A semantic segmentation model interprets images. The inferred semantic
embedding map is attached to the point clouds. Sequential semantic point clouds are
accumulated into an ego-centric reference frame. Top-down projection creates BEV
representations. BEVs can be measured for similarity and sufficient similarity with a
query semantic. High-dimensional semantic embeddings are projected to RGB color

values for visualization

6.2.5 Partial World State Representation

The accumulated open-vocabulary semantic point cloud P̄ encodes the agent’s observ-

able environment in a sparse spatio-semantic 3D representation. However, conventional

perception and planning methods benefit from a top-down 2D representation for compu-

tational efficiency. 2D discrete grids can be processed by convolutional neural networks

(CNN) [550] and visual transformers (ViT) [154] forming the backbone of SOTA latent

variable generative models for images [449, 543, 551, 552].

I generate partial open-vocabulary semantic world state x ∈ RH×W×D by projecting

P̄ into a 2D top-down bird’s-eye-view (BEV) grid map spanning the region of size

(H × W ) around the agent. Let (i, j) index a grid cell in x. For each point p ∈ P̄

with coordinates (x, y, z), I compute the grid cell indices (i, j) and append xi,j with the

semantic embedding h of p. Set set of appended semantics H = {h(1), . . . , h(K)} of all

points p coinciding with a grid cell (i, j) are averaged into the centroid h∗ of H. The

theory of latent compositional semantics provides mathematical guarantees of optimally

retaining the original semantics of H [95]. A key advantage of open-vocabulary semantic

embedding representations is the inherent discrimination of unobserved or unknown

information by the zero vector 0⃗. In contrast, observed information is represented by

unit vectors h laying on the hypersphere SD−1. This naturally encodes ignorance in the

model and enables distinguishing unknown from empty regions during inference.

Leveraging the theory of latent compositional semantics with sufficient similarity in-

ference [95] allows seamlessly representing and inferring multiple overlapping semantics

in the same grid cell (i, j). For example, a grid cell corresponding to a road marking
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may also possess to road and drivable semantics, which is not principally achievable by

conventional “most similar” inference as explained in Sec 6.2.2.

The presented open-vocabulary partial environment state x forms the input and learning

signal to the open-vocabulary predictive world model described in the following section.

6.3 Open-Vocabulary Predictive States

Predictive World Models (PWM) aim to learn latent representations capturing the un-

derlying structure of the environment. PWMs having learned the structure are able to

supplement perception by predicting unobserved regions. Prediction generation follows

the two-staged variational autoencoder (VAE) [7] latent variable approach: First, an

encoder predicts a latent distribution p(z|x) for the objectively real world x∗ partially

observed by sensors as x. Secondly, a particular latent variable z is sampled from p(z|x).

Finally, a decoder maps z into the most likely world x∗. The process is abstracted as

the arbitrary conditioning latent variable generative model p(x∗|x). In this thesis I

demonstrate how to learn p(x∗|x) to sample diverse and plausible complete worlds x∗

from partially observed worlds x represented by open-vocabulary semantic embeddings

h ∈ RD with dimension D >> 1.

6.3.1 Experiments

In this section I describe the experiments conducted to measure how well an open-

world predictive world model (OV-PWM) can learn a compact latent representation of

environments represented by high-dimensional open-vocabulary embeddings.

I set up my experiments using the open source autonomous driving simulator CARLA [545].

The simulator provides a set of realistic 3D environment, a traffic manager, and supports

accurate rendering of synchronized sensor data streams like RGB images, depth maps,

and lidar point clouds. I used the latest 0.9.15 release.

The experimental set up is explained next. I run the simulator and collect approximately

20 minutes of observational experience from environments Town05, Town06, Town07,

and Town10 as observational experience or training data. A separate environment

Town04 is used for evaluation. The environments are chosen based on providing road

marking semantics. I compute and append ideal latent compositional semantics to the

point cloud according to a three level taxonomy with overlapping semantics as explained

in Sec 6.2.2. Semantics are encoded as 768 dimensional SBERT embeddings [179].

Next I process the sequential observations into accumulated semantic point clouds as
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explained in Sec 6.2.4. All points 2m above ground are filtered. Dynamic objects are

filtered by sufficient similarity inference. From accumulated point clouds I generate

BEV partial world representations as explained in Sec 6.2.5. I use the same translation

and warping data augmentation technique as detailed in prior work [381] on the model

training samples to improve generalization. The evaluation samples are not augmented.

The resulting number of training and evaluation samples are 7145 and 178 samples,

respectively.

The HVAE model is trained on the generated training samples for 180K iterations for

four days using six A6000 GPUs. See the public code repository for hyperparameter

details. The trained HVAE model is evaluated on the separate evaluation set of unaug-

mented samples.

The following two metrics are employed to measure the goodness of the OV-PWM model.

First, semantic similarity between the predicted embedding maps x̂∗ and future observed

worlds x∗ is measured as the mean cosine distance between the predicted and observed

open-vocabulary embeddings x∗i,j ∈ SD−1 and x̂∗i,j ∈ SD−1 covered by the observed

element mask M

sim(x∗, x̂∗) =
1

|M |
∑

(i,j)∈M
sim(x∗i,j , x̂

∗
i,j) =

1

|M |
∑

(i,j)∈M
(x∗i,j)

T · x̂∗i,j . (6.10)

Secondly, semantic accuracy is measured by intersection over union (IoU) of queried

semantics. I compute IoU based on sufficient semantics interpretation of uncondi-

tional open-vocabulary semantics according to the theory of latent compositional se-

mantics [95]. The OV embedding maps x̂∗ and x∗ are first checked element-wise for

membership with the query semantic by an a priori computed sufficient similarity thresh-

old value τsem

bi,j =

T, if sim(xi,j) > τsem

F, otherwise

resulting in the boolean maps b and b̂ with elements represented as true T and false F.

The query semantic IoU is computed as

IoU(x∗, x̂∗) =

∑
(i,j)∈M bi,j ∩ b̂i,j∑
(i,j)∈M bi,j ∪ b̂i,j

(6.11)

with the boolean map b̂ obtained from x̂∗ considered as ground truth target. The mean

IoU (mIoU) is used to quantify the performance over a set of query semantics H

mIoU =
1

H

∑
h∈H

IoUh. (6.12)
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I estimate optimal sufficient similarity threshold values for query semantics τq by logistic

regression models maximizing likelihood over the train split observations following prior

work [95]. The optimal τq is the decision boundary or (sim)(x, xq) separating true

positive and negative points with least error according to the model

τq = max [MemberOf(x, q) p(MemberOf(sim(x, xq) ≥ τq, q))] . (6.13)

I provide a set of unconditionally sampled world states x̂∗ to asses the robustness of

the learned open-vocabulary world model. Unconditional generation starts by randomly

sampling the deepest latent variable zK ∈ R16 in (5.20) and generate x̂∗ without condi-

tioning on a partially observed world x as input.

6.3.2 Results

In this section I present the CARLA simulator experiment results. The results shows that

environments represented by high-dimensional open-vocabulary semantic embeddings

can be accurately modeled by the predictive world modeling approach. Additionally, I

analyze the results with a perspective on potential real world, large-scale application.

Table 6.3 shows semantic IoU prediction accuracy for an urban environment sequence

not in the training sample distribution. I apply a “best of N samples” evaluation

approach [381] to demonstrate how sampling of diverse structures improves the likelihood

of predicting the actual world from partial observations. The mean IoU prediction over

all elements (i, j) and semantics is 65.13 mIoU with 1 sample, and increases to 69.19

mIoU with 32 samples. Modeling and predicting fine spatial patterns like road markings

is challenging and reaches only 22.99 IoU over 32 samples. The advantage of generative

modeling is most apparent in less predictable large semantic structures like vegetation

and sidewalk as sampling increases accuracy by 9.45 and 9.10 IoU points, respectively.

Over all semantics sampling increases the mean IoU by 4.06 IoU points.

Table 6.4 shows IoU prediction accuracy on a highway sequence not in the training

distribution. Predictive performance for highway environments is generally higher than

urban environments due to higher determinism. However, road marking predictability

is lower due to lacking localized contextual cues such as intersection and narrow road

structures.

Table 6.5 shows performance on a random subset of 200 samples from the training

distribution. The results indicate that model training is not yet saturated on the limited

training dataset as semantics like road marking, side walk, and vegetation has margin to

improve. Comparison with test set performance given in Table 6.3 shows comparable
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Figure 6.5: Training plots. The mean ELBO (5.22), cosine distance (5.25), posterior
(5.23) and posterior matching (5.24) distribution separations metrics continue to de-

crease with additional compute.

Table 6.3: World model prediction accuracy by “best of N samples” on the urban
test sequence.

IoU
#Samples 1 2 4 8 16 32

road
All 92.75 93.36 93.61 93.89 94.20 94.33
Unobs. 84.07 85.70 86.10 86.69 87.54 87.74

road marking
All 21.02 21.21 21.95 22.31 22.91 22.99
Unobs. 12.85 13.77 14.24 14.84 15.47 16.00

side walk
All 51.39 53.45 56.49 57.38 59.57 60.49
Unobs. 41.50 45.51 48.72 50.33 52.07 52.53

vegetation
All 34.91 37.25 40.54 41.67 43.42 44.36
Unobs. 28.11 31.97 35.08 36.27 37.96 40.02

static
All 97.61 97.61 97.85 98.08 98.12 98.23
Unobs. 97.73 97.88 98.15 98.22 98.35 98.40

drivable
All 93.10 93.69 93.94 94.25 94.63 94.71
Unobs. 84.89 86.60 87.00 87.55 88.52 88.72

mIoU
All 65.13 66.10 67.40 67.93 68.81 69.19
Unobs. 58.19 60.24 61.55 62.32 63.32 63.90

performance with the training set, meaning generalization is achieved. As the training

performance continues to improve log linearly as shown in Figure 6.5, it is reasonable

to conclude that generalization performance will continue to improve with additional

training.

My proposed OV-PWM framework lacks direct comparative baselines. To the best of my

knowledge, only my prior work leverages lidar point clouds with generative modeling to

predict spatial environments without requiring ground truth map data [381]. The prior

closed set predictive world model trained on KITTI-360 data [553] is quantitatively

evaluated only for road semantics and achieves 98.73 IoU. I consider my open-vocabulary

urban environment result of 94.33 IoU to be of comparable quality and thus conclude

learning open-vocabulary world models performs equivalently to closed set world models
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Figure 6.6: Conditional sampling visualizations. The high-dimensional open-
vocabulary partial observation input x and sampled predictive world model output
x̂∗ are projected into RGB images by PCA. Semantic inference by sufficient similarity
are shown in the third column. The actual worlds perceived by future observations
are shown in the forth column. The first three rows shows evaluation samples. The

remaining two rows shows samples from the training distribution.
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Figure 6.7: Unconditional sampling visualizations. High-dimensional open-
vocabulary embedding maps are generated by the predictive world model pθ(x|Z)
through sampling from the learned prior distribution pθ(Z). The embedding maps

are visualized as RGB images by PCA projection.

Table 6.4: World model prediction accuracy by “best of N samples” on the highway
test sequence.

IoU
#Samples 1 2 4 8 16 32

road
All 98.01 98.15 98.20 98.29 98.31 98.34
Unobs. 95.93 96.68 96.96 97.14 97.28 97.44

road marking
All 9.90 11.15 11.19 12.02 12.19 13.20
Unobs. 9.51 10.61 10.67 11.53 12.09 12.49

vegetation
All 38.29 38.64 39.22 40.01 40.23 40.45
Unobs. 43.11 43.68 44.27 44.83 45.37 45.33

static
All 98.54 98.73 98.79 98.83 98.88 98.90
Unobs. 95.10 96.40 96.64 97.10 97.36 97.49

drivable
All 98.02 98.15 98.21 98.29 98.31 98.34
Unobs. 95.91 96.62 96.92 97.07 97.23 97.41

mIoU
All 68.55 68.96 69.12 69.49 69.58 69.85
Unobs. 67.91 68.80 69.09 69.53 69.87 70.03
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Table 6.5: World model prediction accuracy by “best of N samples” on the training
distribution.

IoU
#Samples 1 2 4 8 16 32

road
All 97.16 97.20 97.30 97.35 97.38 97.42
Unobs. 95.00 95.27 95.45 95.63 95.79 95.89

road marking
Obs. 34.14 34.33 34.62 34.83 35.04 35.24
Unobs. 26.79 27.06 27.57 28.13 28.37 28.53

side walk
All 58.23 58.36 58.56 58.93 59.10 59.11
Unobs. 55.03 56.17 56.20 57.12 57.54 57.69

vegetation
All 75.44 76.06 76.71 76.98 77.21 77.57
Unobs. 66.33 68.01 68.67 70.03 71.29 71.89

static
All 98.79 98.81 98.81 98.82 98.83 98.84
Unobs. 98.47 98.56 98.56 98.59 98.61 98.62

drivable
All 97.27 97.32 97.41 97.47 97.51 97.55
Unobs. 95.47 95.83 96.09 96.25 96.27 96.39

mIoU
All 76.84 77.01 77.24 77.40 77.51 77.62
Unobs. 72.85 73.48 73.76 74.29 74.65 74.84

while greatly simplifying the learning method to a one-stage end-to-end paradigm, as

explained in Sec 6.3.

Other comparative baselines include image-based methods which generally are not gen-

erative models and trained and evaluated on the same ground truth data domain (e.g.

within the same city). One such baseline is a recent SOTA image-based monocular

model [260] achieving 68.34 road IoU on the KITTI Raw dataset [554]. The perfor-

mance difference exemplify the advantage of leveraging lidar point clouds as done in my

method.

Figure 6.6 provides visual examples of plausible world samples x̂∗ generated from par-

tial observations x. Examples of semantic inference by sufficient similarity are shown.

The actual world perceived in future observations are included for comparison. The

examples illustrates how large structures like road are accurately learned. Finer seman-

tic details like road markings are comparatively challenging to represent and predict.

However, training samples display improved granularity of fine semantics, indicating

that further training on a larger training distribution covering additional pattern may

enhance performance.

Figure 6.7 display a set of randomly sampled environments from the learned prior distri-

bution pθ(Z). The sampled environments showcase intricate details like road markings

and semantically plausible configurations. Some generated samples are partially degen-

erate. Additional optimization of the learned prior pθ(Z) and generative model pθ(x|Z)
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Figure 6.8: A visual example of how non-hierarchical VAEs [7] have limited capacity
to represent high-dimensional structured data with high fidelity. The top row represent
observed “road” semantics. The bottom row show predicted fuzzy “road” structures.
The filled lines in the upper row are observed vehicle trajectories which presumably

indicate “road”.

is expected to reduce the likelihood of degenerate samples. Figure 6.5 shows that both

pθ(Z) and pθ(x|Z) are likely to improve with additional training.

Figure 6.8 shows the representational capacity for a non-hierarchical vanilla VAE [7]

with 128 dimensional latent variable z trained to represent boolean “road” structures

as a one-dimensional Bernoulli distribution p(xi,j = road|z). It is clear that vanilla

VAEs struggle to represent high-resolution structured data with high fidelity, let alone

modeling a latent distribution of 768 dimensional open vocabulary semantic embeddings

as possibly by HVAE models [447–449].

The predictive world model mean inference time is 0.175 sec or 5.71 Hz on an RTX 4090

GPU. My method is thus applicable for real-time application given a modern SLAM

implementation [286, 287, 555] capable of operating faster than sensor frame rates.

6.4 Learning Navigational Patterns by Predictive States

6.4.1 Predictive state representation

I generate partial world states based on accumulated sensor observations following the

method described in prior work [1]. The method shares similarities with a hierarchical

biological model of human representation and processing of visual information [556].

The agent is initialized within an unknown metric vector space. Sensor observations are
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projected onto this common vector space at discrete timesteps. Semantic information

is inferred from images using a pretrained semantic segmentation model and appended

to coincident 3D points to form semantic point clouds. Past semantic point clouds are

integrated with new observations by scan matching using the ICP algorithm [557] and

SLAM [558] for loop closure. The accumulated semantic point cloud is reduced to a

five-layered 2D probabilistic BEV representation x ∈ RI×J×C with dimension I × J

elements, and C denoting the number of semantic information channels. In this work,

C consists of five channels representing the semantic attributes of a spatial point (i, j);

I represent road probability p(road) by a beta distribution, lidar reflection intensity ϵ as

a scalar value, and visual appearance by RGB values.

Dynamic objects are detected by a pretrained object detection model and represented

by 3D bounding boxes. Trajectory observations are generated by temporally tracking

detected objects. Dynamic objects are considered “moving” if motion is observed or

“static” otherwise. This classification allows filtering away observations associated with

moving dynamic objects while keeping observations of static dynamic objects for train-

ing, as they may influence how other agents navigate the environment such as swerving

out of the lane to avoid a parked car. The static dynamic objects can be removed at

inference time to provide an agent-agnostic prediction of navigational patterns akin to

a lane map.

The predictive world model [1, 2] samples diverse and plausible complete world states x̂

conditioned on partially observed world states x as exemplified in Fig. 3.4. The world

model is functionally similar to the biological ventral cortical pathway as the model

disambiguates the partially observed environment by leveraging past experience [353].

The world model is computationally conceptualized as an arbitrary conditioning gen-

erative model and implemented by the recent SOTA hierarchical VAE (HVAE) model

VDVAE [449] with the encoder module replaced by a posterior matching encoder [1]. In

this work, the HVAE models the joint distribution of observable variables p(r, ϵ, R,G,B)

factorized as the conditional distribution

p(r, ϵ, R,G,B) = p(R|G,B, r)p(G|B, r)p(B|r)p(ϵ|r)p(r) (6.14)

using hierarchical latent variables z. Here r and ϵ denote road and lidar reflection

intensity, and RGB are image color channels. The latent variable prior p(z) and posterior

q(z|x) distributions are factorized as

p(z) = p(z1|z2) . . . p(zK−1|zK)p(zK) (6.15)

q(z|x) = q(z1|z2, x) . . . q(zK−1|zK , x)q(zK |x) (6.16)
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Figure 6.9: Geometric data augmentation generates diverse sample variations from
a single real sample. Spatial information (dense maps) and observed trajectories (red

lines) are transformed by the same function.

with random variables z modeled by normal distributions.

The world model learns to approximate the prior and posterior distributions by the

parameterized models qθ(z|x) and pθ(x|z) using variational inference [446] and trained

using self-supervised learning to predict future observations from present observations

akin to the predictive coding problem [94]. Note that the vanilla HVAE cannot learn

to generate diverse complete representations from partially observed representations

only. I follow the posterior matching optimization method visualized in Fig. 5.1 and

presented in prior work [1] to overcome this limitation. The method trains a regular

HVAE using pseudo ground-truth world states x∗full, and a secondary encoder qϕ(z|x) to

predict a similar hierarchical latent distribution z = {z1, . . . , zK} as the primary encoder

qθ(z|x∗full) from x.

At inference time the model uses the partially observed encoder to generate a latent

distribution qϕ(z|x) that can be decoded by pθ(x̂|z) into a completely observed plausible

world state x̂ similar to a pseudo ground-truth world state x∗full without the need to

observe the future.

6.4.2 Data Augmentation

I leverage geometric data augmentation [45] on all training samples to improve model

generalization performance by learning geometric invariance. By learning geometric

invariance, learned models are able to generalize beyond particular observed road scene

geometries within the dataset. The same augmentation is applied on both the dense

predicted environment state and observed trajectories.

Data augmentation is performed by random rotation and applying component-wise poly-

nomial warping [559] to the road scene context and trajectory label. In the following ξ

is a substitute for spatial coordinates i and j, and ξ′ denotes warped coordinates. The
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Enc

DSLP model

Figure 6.10: The Directional Soft Lane Probability (DSLP) model uses a dual decoder
U-Net [8] model to transform a plausible world state x̂ into a soft lane probability (SLP)

map Ŷ and directional probability (DP) tensor Ŵ .

warping is specified by the following nonlinear function

a0(ξ
′)2 + a1(ξ

′) + a2 = ξ (6.17)

with the following boundary conditions: ξ′ = 0 ∧ ξ = 0, ξ′ = ξmax ∧ ξ = ξmax, ξ′ =

ξ′0∧ξ = ξ0. The input dimension is denoted ξmax. The warp is defined by setting ξ′0, ξ0).

The coefficients in 6.17 are derived using the previous boundary conditions

a0 =
1 − a1
ξmax

, a1 =
ξ0 − (ξ′0)

2/ξmax
ξ′0(1 − ξ′0/ξmax)

, (6.18)

where (i0, j0) are set to the input state mid-point, and the warping location (i′0, j
′
0) is

sampled from a radial Normal distribution N (ξ|µ, σ2) with a mean µ centered at radius

0.15 ξmax with values above 0.3 ξmax clipped. I create dense warp maps by using the

inverse function of (6.17) to map each warped coordinate ξ′ to an original coordinate ξ.

Fig. 6.9 shows visual examples of a sample augmentation.

6.4.3 Directional Soft Lane Probability Model

Here I present a method to train a model to predict unbiased probability maps of local

directional traversability. The model input is the plausible world state x̂ described in

Sec. 5.4. I also present a method for inferring global navigational patterns from the local

probability maps. See Fig. 3.4 and Fig. 6.13 for output visualizations.

The model is implemented by a U-Net neural network [8] with a single encoder and

two decoders as illustrated in Fig. 6.10. The first decoder outputs a probability map

Y ∈ RI×J representing soft lane probabilities for elements in a grid map of size I×J . The

second decoder outputs a map of categorical distributions W ∈ RM×I×J representing

M direction interval probabilities for each location (i, j). The methods for optimizing

both probabilistic outputs are explained below.
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6.4.3.1 Soft Lane Probability (SLP) Modeling

The likelihood of each environment location (i, j) being traversed by an unspecified agent

is modeled by the predicted probability value ŷi,j ∈ Ŷ and is called soft lane probability

(SLP). Learning to predict an unbiased Ŷ from partial observations is nontrivial, as the

self-supervised learning signal contains false negative traversal observations (i.e. lack-

ing an observed trajectory where traversals are probable). I formalize the problem as

follows. Ideally I want to learn a distribution q(y) that approximates the true distribu-

tion p(y). However, optimizing q(y) according to the learning signal results in learning

the distribution of partially observed samples p̃(y). A principled solution is to use a

regularizer to decrease bias and make q(y) better match p(y).

In this thesis I present a semi-supervised objective that enables learning an unbiased

probabilistic prediction of traversability based on an information-theoretic regularizer

derived from balancing the information contribution from positive and negative partial

observations in Y .

In information theory, the entropy H(y) of a distribution p(y) is considered a quantity

that measures information content. The cross-entropy

H(p, q) ≜ −
K∑
k=1

p(y = k) log(q(y = k)) (6.19)

measures the information overhead to compress a sample y ∼ p(y) using a code based

on q(y) [560].

Each partial observation Y contains two distinct groups of traversal information; a set

of true positives representing certain information, and a set of true and false negatives

representing uncertain information. The contributed information of the set of positive

and negative observations are

H(Ypos ⊆ Y, Ŷ ) = −
∑

i,j∈Ypos
yi,j log(ŷi,j) (6.20)

H(Yneg ⊆ Y, Ŷ ) = −
∑

i,j∈Yneg

(1 − yi,j) log(1 − ŷi,j). (6.21)

I devise a regularizer based on balancing the information contribution provided by (6.20)

and (6.21) according to the ratio of observations

αIB = |Ypos| / (|Ypos| + |Yneg|) (6.22)
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where |Y∗| denotes the number of positive and negative observed elements (i, j). The

balanced information contribution H∗(Y |Ŷ ) is obtained by linearly interpolating the

information contributions according to the ratio of observations

H∗(Y |Ŷ ) = αIB H(Yneg|Ŷ ) + (1 − αIB) H(Hpos|Y ). (6.23)

Linear interpolation is a monotonic function that balances the information contributions

while preserving the total information quantity

0 ≤ H∗(Y |Ŷ ) ≤ max(H(Ypos|Ŷ ), H(Yneg|Ŷ )). (6.24)

I formulate the problem specific optimization objective LSLP as the mean balanced

information contribution

LSLP = − 1

|Y |
∑
i,j∈Y

[αIB(1 − yi,j)log(1 − ŷi.j)

+(1 − αIB)yi,jlog(ŷi,j)]

(6.25)

where ŷi,j and yi,j is the predicted and observed soft lane probability for the element

located at i, j. |Y | denotes the number of traversable elements. The information con-

tribution ratio αIB provides the optimal interpolation between positive and negative

traversal observations.

One can view (6.25) as the cross entropy objective with an additional dynamic regular-

izer between positive and negative observations. Experiments show that the balanced

information contribution cross-entropy objective (6.25) performs better than finetun-

ing a static hyperparameter weighting [45], and allows learning probabilistic predictions

despite occasional abnormal observations unlike the barrier loss objective [240].

The negative log likelihood NLLSLP of an observed sample y according to a model

prediction ŷ based on modeling p(y|ŷ) as a Bernoulli distribution is

NLLSLP = −
∑
i,j∈Y

[yi,j log(ŷi,j) + (1 − yi,j) log(1 − ŷi,j)] . (6.26)

6.4.3.2 Directional Probability (DP) Modeling

The likelihood of local traversal directionality at each location (i, j) is modeled by the

predicted vector ŵi,j called directional probability (DP). The ŵi,j models a categorical

probability distribution representing the direction interval θ ∈ [0, 2π) by M uniformly
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spaced intervals

wi,j = (p(θ ∈ [0,
2π

M
)), . . . , p(θ ∈

[
(M − 1)2π

M
, 2π

)
))T . (6.27)

The learning signal is created by encoding observed trajectories into wi,j as a discrete von

Mises distribution. In the case of multiple overlapping trajectories the individual distri-

butions are superimposed and renormalized. Learning to match distributions improve

multimodal prediction compared with learning to predict single values by maximum

likelihood estimation [45].

The optimization objective LDP is formulated as learning to predict the directional

distribution by minimizing the mean KL divergence between predicted ŵi,j and observed

wi,j directionality over all elements wi,j ∈ W

LDP =
1

|W |
∑
i,j∈W

DKL(wi,j ||ŵi,j). (6.28)

Note that the learning signal used to optimize the DP objective (6.28) lacks false nega-

tives and therefore does not require regularization like the SLP objective (6.25).

The negative log likelihood NLLDP of an observed sample wi,j according to a model

prediction ŵi,j based on modeling p(w|ŵ) as a categorical distribution is

NLLDP = −
∑
i,j∈Y

M∑
m=1

w
(m)
i,j log(ŵ

(m)
i,j ). (6.29)

6.4.3.3 Maximum likelihood lane graph inference

Evaluating the goodness of local navigational patterns using the predicted DSLP field is

straightforward. To also evaluate the usefulness of the predicted DSLP field for inferring

global navigational patterns, I present a sampling-based method to generate a maximum

likelihood road lane graph fitted to the predicted DSLP field. The graph generation

process is illustrated in Fig. 6.11.

First, I infer entry and exit points at the edges of the predicted DSLP field. A non-

maximum suppression (NMS) operation is performed on the SLP field Ŷ to find the most

likely path centers. Each point is designated as an entry and/or exit point according to

the predicted DP field Ŵ . Additional entry and exit points are inferred from directional

field regions which are coherent but lack a NMS point.
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Figure 6.11: The maximum likelihood graph is generated by connecting entry (•)
and exit (×) points by the most probable of many sampled paths given the predicted

DSLP field.

Secondly, I incrementally build a graph by searching for valid connecting paths between

all entrance and exit points by a sampling-based approach. A set of second-degree poly-

nomial spline paths is generated between an entry and exit pair by randomly sampling

a valid spline control point (i, j)∗ from a normal distribution with rejection sampling.

The likelihood of each sampled path is evaluated using the location and directionality

of M equidistant points along the path given the predicted DSLP field using (6.26) and

(6.29). The path with the lowest total NLL is selected as the best path. Repeating this

process results in a set of most likely paths representing the maximum likelihood graph.

A post-processing operation removes undesired edges between neighboring lanes (i.e.

u-turns) using a simple distance threshold heuristic. Representing navigational patterns

by splines is a useful inductive bias, as agents tend to navigate structured environments

in a continuous and smooth manner.

6.4.3.4 Experiments

I evaluate the model performance on the right-side driving daytime Boston scenes in

the nuScenes dataset [561] similar to my baseline methods [313, 314]. The observation

accumulation method described in Sec. 6.2.4 generates a partially observed training

sample x every 1 m using accumulated observations from six 360◦ field-of-view RGB

cameras and a top-mounted 32 beam lidar and a single pretrained semantic segmentation

model [1]. Each x is augmented 20 times. Partitioning the generated training samples

into the nonoverlapping regions shown in Fig. 6.12 results in 60,960 (34.7 %), 40,960

(23.3 %), and 73,780 (42.0 %) samples for regions 1 to 3. Evaluation region 4 contains

samples generated every 10 m without augmentation. I use a semantic segmentation

model pretrained on two different public datasets [1]. I accumulate observations using

ground truth pose information to reduce engineering effort, as prior work demonstrates

the feasibility of accumulation based on pose estimation [1]. The plausible world state

model input representation x̂ consists of a five-layered 256×256 grid map encompassing

a 51.2×51.2 m region similar to prior work [313].
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Region 1: (990, 100)  (2990, 950)
Region 2: (140, 950)  (990, 2050)
Region 3: (990, 950)  (2740, 1850)
Region 4: (240, 200)  (990, 950)

1
4

2

3

Figure 6.12: Samples are partitioned into four nonoverlapping regions. Regions are
specified by bottom-left and top-right corners in world coordinates.

I conduct a model hyperparameter study and find that a smaller 1.4 M parameter model

generalizes best. The model as depicted in Fig. 6.10 has a common 8-layered CNN

encoder with filter count increasing from 16 to 256, and two 8-layered CNN decoders

with bilinear upsampling and filter count decreasing from 64 to 8. See the code for

further implementation details.

I use the following benchmarks to evaluate my DSLP model. I compare the global

navigation pattern inference performance against the two most relevant and recently

published SOTA supervised models STSU [314] and LaneGraphNet [313]. Both baselines

are trained on nuScenes data [561] to predict lane graphs using complete ground truth

graphs as supervision. I compare the local probability field estimation performance

against the prior self-supervised SOTA model called DSLA [45].

Local probability field estimation. I evaluate the predicted soft lane Ŷ and direc-

tional Ŵ probability fields by computing the summed negative log-likelihood (NLL) of

the ground truth lane map using (6.26) and (6.29). Lower NLL means the ground truth

lane map is more likely according to the model. Directional accuracy measures the ratio

of elements within ±45◦ of the ground truth direction.

Global navigational pattern inference. I evaluate the usefulness of the predicted

probability fields for inferring global navigational patterns by computing the intersection

over union (IoU) and F1 score between the maximum likelihood graph and ground truth

lane map. My method does not consider the spacing of graph nodes as an integral

part of navigational patterns and thus does not view node displacement as a relevant

performance metric.
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Table 6.6: Performance of predicted local probability fields

NLLSLP NLLDP NLL Dir. acc.

DSLA [45] 2.499 12.596 15.095 0.864

DSLP

const α 0.423 12.241 12.663 0.855
mean αIB 0.444 12.038 12.482 0.881

αIB 0.556 11.769 12.325 0.892
full obs. 0.539 11.666 12.205 0.900

Ablation studies. I evaluate the advantage of my proposed predictive world modeling

approach [1] for learning navigational patterns from sampled plausible completed worlds

x̂ instead of partially observed worlds x. I conduct an experiment using unaugmented

samples to quantify the performance contribution of my geometric data augmentation

method [45] on real-world data. I conduct experiments on dataset splits including a

different number of regions to estimate how performance increases with additional data.

6.4.3.5 Results

Local probability field estimation. Table 6.6 presents evaluation results for the

predicted probability fields. My proposed DSLP model optimized with the informa-

tion balance regularizer αIB (6.22) predicts the least biased probability field among

all models trained and evaluated on accumulated past observation inputs. I conclude

that the probabilistic objective (6.25) substantially reduces bias compared with the non-

probabilistic DSLA affordance objective [45]. Training and evaluating on accumulated

past and future observation inputs in an offline map creation manner (i.e. full obs.)

reduces bias, demonstrating that more comprehensively observed environments result

in better performance. I performed experiments with different constant α values to

demonstrate the merit of the proposed hyperparameter-free regularizer αIB (6.22). The

best constant weight α value 0.1, found over five hyperparameter experiments, results

in worse performance than using αIB. I demonstrate the merit of dynamic, per-sample

computed αIB values (6.22) by running an experiment with the constant mean αIB

value 0.122 computed over all training samples, which results in worse performance. See

Fig. 6.13 for probability field visualizations.

Global navigational pattern inference. Table 6.7 presents results showing that the

maximum likelihood graph fitted to the probability field predicted by my self-supervised

DSLP and prior DSLA model [45] from partially observed world representations x,

outperforms the supervised SOTA baselines STSU [314] and LaneGraphNet [313] trained

on ground truth lane graphs. My self-supervised method not only improves upon the
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Table 6.7: Performance of global navigational pattern inference

IoU F1 score

STSU [314] 0.389 0.560

LaneGraphNet [313] 0.420 0.574

DSLA [45] 0.427 (0.128) 0.839 (0.07)

DSLP

constant α 0.418 (0.146) 0.853 (0.08)
mean αIB 0.410 (0.147) 0.846 (0.08)

αIB 0.442 (0.125) 0.834 (0.07)
full obs. 0.454 (0.128) 0.839 (0.08)

Table 6.8: Ablation studies

WM Aug. NLL∗
SLP NLLDP NLL∗ Dir. acc. IoU

✓ ✓ 0.189 11.769 11.958 0.892 0.442

✗ ✓ 0.266 12.785 13.051 0.853 0.223

✓ ✗ 0.167 13.764 13.931 0.848 0.453
∗Mean over all elements

supervised baseline results while limited to the same training data domain, but is also a

scaleable solution for real-world mobile robotics as the model can improve by continual

learning from new observational experience. While the baselines do not specify train

and evaluation regions for an ideal comparison, my experiments in Table 6.9 show my

model surpassing the supervised baseline methods also when training on one region

only, demonstrating that the exact train and evaluation region split is not critical for

achieving my favorable results. I note that the probabilistic DSLP model outperforms

the non-probabilistic DSLA affordance model [45], the proposed regularizer αIB (6.22)

outperforms the best constant hyperparameter regularizer α and the mean αIB value,

and that more comprehensively observed environments result in better performance. See

Fig. 6.13 for visualizations of inferred navigational paths and dense lane maps used for

evaluation against baselines.

Ablation studies. Table 6.8 shows that leveraging the predictive world model (WM) [1]

and proposed data augmentation (Aug.) [45] method reduces bias in the predicted proba-

bilistic fields. I note that the unaugmented experiment generates output biased towards

ego-agent trajectories, resulting in worse overall NLL while the maximum likelihood

graph remains accurate. I believe this indicates the potential to further improve the

graph generation algorithm to better leverage the more accurate probability field pre-

diction. I refer to prior work [1] for world model performance evaluation.

Table 6.9 shows that increased observational experience reduces bias in the predicted

probability field, providing evidence that the model can be trained to infer an unbiased

probability prediction in the limit of infinite data



State Representation for Autonomous Driving Reasoning Agents 152

Partly observed
world state 

Sampled plausible
world state Directional soft lane probability (DSLP) field prediction

Pred. GT

Pred. GT

Figure 6.13: Model output visualizations. The left column shows accumulated partial
observations x. The middle column shows plausible world states x̂ sampled from x.
The right column visualizes the predicted probability fields Ŷ and Ŵ , the maximum

likelihood graph, and dense lane maps for evaluation.
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Table 6.9: Performance with varying data amounts

# Regions NLLSLP NLLDP NLL Dir. acc. IoU

{1} 0.478 12.696 13.174 0.861 0.423

{1, 2} 0.544 12.013 12.557 0.874 0.444

{1, 2, 3} 0.556 11.769 12.325 0.892 0.442

Inference time. I analyze the time taken for one iteration of my proposed system as

follows. The mean inference time for the predictive world model and DSLP model is

0.175 sec and 0.017 sec, resulting in a total mean time of 0.192 sec per iteration or 5.21

Hz on an RTX 4090 GPU. I conclude that my method is feasible to run in real-time as it

introduces a 0.192 sec overhead with a real-time SLAM implementation [557] operating

faster than sensor frame rates.

6.5 Discussion and Limitations

The experiments involving the predictive environment state representation shows promis-

ing results in terms of spatial accuracy, semantic inferrability, and diversity of posterior

and unconditional sampling of plausible states. However, the current observation ac-

cumulation implementation lacks a robust point cloud odometry estimation and loop

closure. The proof-of-concept software implementation is does not run in real-time and

thus not applicable for real-world usage. Refactoring the proposed framework by an

existing optimized SLAM framework [286, 376, 555] would solve this limitation. Ad-

ditionally, a more robust observation accumulation implementation would reduce the

amount of degenerate samples with failed scan matchings that hampers the predictive

world model learning performance by random noise and nonsensical environment struc-

tures.

The current predictive state representation as top-down 2D grid representations are ad-

equate for mobile robot navigation operating in planar environments like autonomous

vehicle. However, in the general case, general-purpose mobile robots must be able to

leverage a full 3D state representation of the environment. This thesis propose extend-

ing the predictive states to 3D representations using voxel grids [562] or neural radiance

fields [197, 294] in order to enable spatial reasoning in fully general complex 3D struc-

tures.

The presented implementation of the predictive world model only models elements of the

static environment as predictive state representations. Incorporating temporal dynamics

into the predictive world model would enable the model to incorporate representation

of dynamic objects and agents, as well as predicting agent behavior and outcomes of

actions altering the physical environment.
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Next I identify limitations and directions for future work for learning navigational pat-

tern based on the predictive state representation framework. The representation of

spatially small but semantically important environmental cues, such as road markings,

is inefficiently represented by uniform grid maps. Traffic information on signs is not

represented at all. I propose to instead detect and semantically draw road markings and

signs in the input representation. Graph generation can be improved by inferring start

and end points within the BEV, sampling higher-order splines, and decomposing splines

into a sparse graph [240]. Understanding navigational patterns may require a temporal

memory of past observations to resolve ambiguity. I propose an additional module that

maintains a latent environment encoding by learning from sequences instead of i.i.d.

data.

6.6 Summary

This chapter presents an implementation and experimental evaluation of the proposed

predictive state representation based on latent compositional semantics in the autonomous

driving domain. The presented VLM trained to predicit dense embedding maps of latent

compositional semantics is evalauted and compared with previous SOTA baseline meth-

ods. Results show that the proposed approach outperforms existing methods in terms

of both accuracy and scalability, demonstrating its potential for real-world applications.

Next, the open-vocabulary predictive world model (OV-PWM) is experimentally vali-

dated on autonomous driving data generated by the CARLA simulator. The experiments

show OV-PWM can learn a compact latent representations and generate diverse and ac-

curate worlds with fine detail like road markings, achieving 69 mIoU over six query

semantics on an urban evaluation sequence. The results supports using OV-PWM as a

versatile continual learning paradigm for providing spatiosemantic memory and learned

internal simulation capabilities to future general-purpose mobile robots.

The remaining section presents a self-supervised method for inferring global navigation

patterns from partially observed environments using probabilistic modeling leveraging

a novel regularizer based on information balance. Experimental results show that the

presented self-supervised approach outperforms fully supervised SOTA baselines even

when trained on the same amount of data, and that the model can infer unbiased

probability predictions with infinite data. The timing experiments show the proposed

method can run in real-time provided a faster than real-time SLAM implementation.



Chapter 7

Conclusions

7.1 Summary of Thesis

The human brain continuously generates predictions about sensory inputs based on prior

knowledge and experience, which is known as predictive coding. The hippocampus plays

a crucial role in this process by learning sequences, forming memory-based predictions,

processing prediction errors, and integrating multi-modal information. This thesis pro-

poses an artificial hippocampus based on open-vocabulary predictive states representa-

tions generated by a predictive world model for future general-purpose mobile reasoning

agents. The predictive states represent the environment by a dual latent and explicit

representation. The compact latent representation can represent environments with high

spatial accuracy and rich semantics suitable for state-transition modeling. The explicit

state representation represent the environment by spatially grounded open-vocabulary

semantic embeddings readable by multimodal large language models (LLMs). This the-

sis propose the predictive state representation as a new direction to allow multimodal

LLMs to achieve spatial comprehension and perform spatio-semantic reasoning.

The thesis presents latent compositional semantics as a mathematical model of the un-

conditional open-vocabulary semantic embeddings underlying the predictive state rep-

resentation. The sufficient similarity semantic inference method is presented as a means

to query overlapping semantics. Experimental results show that VLM can discover la-

tent compositional semantics representing sets of semantics by examples of independent

visual examples of member semantics.

The proposed open-vocabulary predictive world model (OV-PWM) is learns hierarchi-

cal distributions of compact latent representation directly from raw observations using

a dual-encoder hierarchical variational autoencoder (HVAE) with posterior matching
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optimization. The predictive world model can generate diverse complete environment

states for unobserved regions by iteratively sampling from the learned hierarchical poste-

rior distribution. Experimental results show OV-PWM can learn to predictite a diverse

set of spatially and semantically accurate predictive environment states conditioned on

partially observed environments.

The predictive state representation is used to learn navigational patterns from obser-

vation only using a self-supervised method that outperforms fully supervised SOTA

baseline models even when trained on the same amount of data.

In short, the thesis presents how the concept of an artificial hippocampus and predic-

tive coding can be implemented in artificial systems and applied in autonomous driving

domains to generate spatio-semantic representations for future sensory inputs based

on past observational experience. The proposed OV-PWM model provides a versatile

continual learning paradigm that can provide spatial memory and learned internal sim-

ulation capabilities to general-purpose mobile robots, making it a promising approach

for developing future intelligent autonomous systems akin to general-purpose mobile

reasoning agents.

7.2 Limitations and Future Work

While the proposed predictive state representation as a conceptual implementation of

artificial hippocampus and predictive coding shows promising proof of concept results,

there are several limitations and areas for future work.

The thesis explores the conceptual analogies between the predictive environment rep-

resentation and biological neural networks like the hippocampus. This investigation is

not exhaustive and future work could focus on integrating additional insights from neu-

roscience to improve the proposed method’s efficiency, performance, and generality, in

addition to deeper theoretical grounding.

The current top-down 2D grid map representation of the explicit spatio-semantic mem-

ory state has limitations in capturing spatio-semantics in the general case. In particular,

the 2D representation cannot principally represent complex 3D environments and dy-

namic objects. Future work could explore using alternative 3D representations like

voxel grids or neural radiance fields adapted in order to better represent spatio-semantic

memories of general 3D environments.

The current implementation of the predictive world model only accounts for static ele-

ments in the environment and does not consider temporal dynamics, such as dynamic
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objects and agent behaviors. Incorporating temporal information into the predictive

world model could enable more accurate representation and prediction of agent behav-

ior and outcomes of actions altering the physical environment.

The current spatial representation as top-down 2D grid representations is adequate

for mobile robot navigation operating in planar environments like autonomous vehicles

but lacks sufficient granularity when representing semantically important environmental

cues, such as road markings, and representability for 3D information like traffic signs.

Future work could focus on incorporating temporal context into a ”latent memory” mod-

ule to maintain an temporal environment encoding that learns from sequences instead

of i.i.d. data.



Appendix A

Deriving Cosine Distance from

Negative Log Likelihood

Minimization

Here we show that minimizing the negative log likelihood p(x|Z) in (5.22) is equivalent

to minimizing the cosine distance for normalized OV semantic embeddings modeled

by the OV-PWM model. Proposing that the output variable distribution is a Normal

distribution and presuming the stochastic process variance σ2 is constant and thus does

not affect the minimization objective
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min− log(p(x|Z) = min− logN (x|µ(Z), 2σ2I) (A.1)

= min− log

[
1√

2πσ2
exp

(
−1

2

(x− µ(Z))2

σ2

)]
(A.2)

= min−
[
log(2πσ2)−

1
2 − 1

2

(x− µ(Z))2

σ2

]
(A.3)

= min
1

2

[
log(2πσ2) +

(x− µ(Z))2

σ2

]
(A.4)

∝ min
1

2
(x− µ(Z))2 (A.5)

= min
1

2
(x− µ(Z))T (x− µ(Z)) (A.6)

= min
1

2

(
xTx− 2xTµ(Z) + µ(Z)Tµ(Z)

)
(A.7)

= min
1

2

(
1 − 2xTµ(Z) + 1

)
(A.8)

= min
1

2
(2 − 2xTµ(Z)) (A.9)

= min(1 − xTµ(Z)). (A.10)

Noting that the predicted OV semantic embeddings x̂∗ correspond to µ(Z) shows that

(A.10) is is the cosine distance (5.25) and thus completes the derivation.



Appendix B

Mathematical proofs

This Appendix provides full mathematical proofs for all theoreoms, propositions, and

lemmas.

B.1 Proof for Lemma 4.3

Proof. All normalized semantic embeddings z are vectors in the set of vectors constitut-

ing the unit hypersphere

z ∈ SD−1 = {z ∈ RD : ∥z∥ = 1}. (B.1)

The distribution of uniformly sampled random vectors Z ∼ U (SD−1) is isotropic (i.e.

properties rotationally invariant). The covariance matrix Σ of isotropic distributions

equals the diagonal matrix ID:

Σ(Z) = EZZT = ID. (B.2)

For the expected inner product of two independent random vectors Z(i), Z(j) sampled

from an isotropic distribution it follows

E⟨Z(i), Z(j)⟩2 = E
Z(j)

E
Z(i)

[
⟨Z(i), Z(j)⟩2|Z(j).

]
(B.3)
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Assuming a particular but arbitrary vector z(j) and substituting (B.2) the inner expec-

tation becomes

E
Z(i)

⟨Z(i), z(j)⟩2 = z(j)T E
[
Z(i)Z(i)T

]
z(j)

= z(j)T IDz
(j)

= z(j)T z(j)

= ∥z(j)∥2

(B.4)

The outer expectation after substituting (B.4) and (B.2) becomes

E
Z(i)

⟨Z(i), z(j)⟩2 = E
Z(j)

∥z(j)∥2 = EZ(j)TZ(j)

= E tr
[
Z(j)TZ(j)

]
= E tr

[
Z(j)Z(j)T

]
= tr

[
EZ(j)Z(j)T

]
= tr [ID] = D.

(B.5)

Expanding the inner product of two normalized random Euclidean vectors Ẑ(i), Ẑ(j)

sampled from an isotropic distribution

E⟨Ẑ(i), Ẑ(j)⟩ = E Ẑ(i) · Ẑ(j)

= E Z(i)

∥Z(i)∥ · Z(j)

∥Z(j∥

= E 1
∥Z(i)∥∥Z(j)∥⟨Z

(i), Z(j)⟩

=
√
D√

D
√
D

= 1√
D
.

(B.6)

Taking the limit shows that any two random vectors are orthogonal in high-dimensional

isotropic vector spaces

lim
D→∞

E⟨Ẑ(i), Ẑ(j)⟩ = 0. (B.7)

As orthogonality is invariant to vector length

E⟨Ẑ(i), Ẑ(j)⟩ = E⟨Z(i), Z(j)⟩ = 1√
D
. (B.8)

Noting that inner product ⟨Z(i), Z(j)⟩ equals cosine distance similarity sim(Z(i), Z(j))

for Euclidean spaces completes the proof.
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B.2 Proof for Lemma 4.5

Proof. Supposing the optimal compositional semantic embedding z∗ is found given a set

of K sub-semantic embeddings Z = {z(1), . . . , z(K)} such that

z∗ = arg max 1
K

K∑
i=1

sim(z∗, z(k)) − E sim(z∗, z′) (B.9)

where z′ is a semantic embedding of any unrelated object description.

Note that the sub-semantics Z can be ordered by similarity with z∗, and that the least

similar sub-semantic zmin and its similarity value ϵ is known

zmin = arg min sim(z∗, z)∀z ∈ Z. (B.10)

ϵ = sim(z∗, zmin). (B.11)

A hyperspherical cap SD−1
cap is defined by z∗ as the normal center vector and the angle

θmin between z∗ and zmin

SD−1
cap = {z ∈ RD : ∥z∥ = 1, θz ≤ θmin} (B.12)

where the angles θ are related to similarities by

θz = arccos(sim(z∗, z)) (B.13)

θmin = arccos(sim(z∗, zmin)). (B.14)

Since

sim(z∗, z) ≥ sim(z∗, zmin) ⇔ θz ≤ θmin ∀z ∈ Z (B.15)

sim(z∗, z∗) = 1 ⇔ θz∗ = 0 < θmin (B.16)

all z ∈ Z and z∗ are in SD−1
cap .
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B.3 Proof for Theorem 4.2

Proof. The optimal compositional semantic embedding z∗ ∈ RD representing a set of K

sub-semantics z ∈ Z in a uniform distribution over the unit hypersphere U (SD−1) is

z∗ = arg max
K∑
i=1

sim(z∗, z(i)) = arg max
K∑
i=1

(z∗)T z(i). (B.17)

Maximizing cosine distance similarity sim(z∗, z) is equivalent to minimizing squared

distance ||z∗ − z||2 on the unit hypersphere as

min
K∑
i=1

||z∗ − z(i)||2 =
K∑
i=1

(z∗ − z(i))T (z∗ − z(i))

= min
K∑
i=1

[
||z∗|| − 2(z∗)T z(i) + ||z(i)||

]
= min

K∑
i=1

[
2 − 2(z∗)T z(i)

]
= min

[
2K − 2

K∑
i=1

(z∗)T z(i)
]

∝ min

[
−

K∑
i=1

(z∗)T z(i)
]

= max

K∑
i=1

(z∗)T z(i)

(B.18)

The vector z∗ maximizing (B.17) can thus be found from the derivative with respect to

the vector z∗

d

dz∗

K∑
i=1

||z∗ − z(i)||2 = 0. (B.19)

To apply the general chain rule [563], we rewrite (B.19) with variable substitution so

that each operation in the function is factored into single variable components for easily

finding partial differentials:

K∑
i=1

||z∗ − z(i)||2 = g =

K∑
i=1

||f ||2

f = z∗ − z(i).

(B.20)
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Applying the chain rule and noting that ||f ||2 = fT f gives

∂g

∂z∗
=

∂g

∂f

∂f

∂z∗

=
K∑
i=1

2fT
∂

∂z∗

(
z∗ − z(i)

)
= 2

K∑
i=1

(z∗ − z(i))T
[
∂
∂z∗1

(z∗ − z(i)), . . . , ∂
∂z∗D

(z∗ − z(i))T
]

= 2

K∑
i=1

(z∗ − z(i))T [e1, . . . , eD]

= 2

[
K∑
i=1

(z∗1 − z
(i)
1 ), . . . ,

K∑
i=1

(z∗D − z
(i)
D )

]T
= 0

(B.21)

where ed is the one-hot vector with the dth element set to 1. Equation (B.21) is an

element-wise system of equations stating that for every dth element

K∑
i=1

(z∗d − z
(i)
d ) = 0 (B.22)

meaning the optimal z∗ maximizing (B.17) equals the centroid of the sub-semantics

z(i) ∈ Z

z∗ =
1

K

K∑
i=1

z(i). (B.23)

To prove z∗ specified by (B.23) satisfies Definition 4.1 we write

E sim(z∗, z) = E

[(
1
K

K∑
i=1

z(i)

)
· z
]

= 1
K

K∑
i=1

E z(i) · z. (B.24)

As z equals one of the z(i) ∈ Z we can assume z = z(k) without loss of generality and

expand the sum in (B.24) as

E sim(z∗, z) = 1
K

(
E[z(1) · z(k)] + . . .

+E[z(k) · z(k)] + . . . + E[z(K) · z(k)]
)

(B.25)

We find a lower bound for (B.25) by applying Lemma 4.3 and noting that the expected

similarities sim(z(i), z(j))∀z(i), z(j) ∈ Z must be higher or equal to random vectors, and
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that z(k) · z(k) = 1

E sim(z∗, z) ≥ 1
K

(
D− 1

2 + . . . + 1 + . . . + D− 1
2

)
= 1

K

(
(K − 1)D− 1

2 + 1
)
.

(B.26)

Substituting the bound (B.26) into Definition 4.1 and applying Lemma 4.3 on the RHS

E sim(z∗, z) ≥ 1
K

(
(K − 1)D− 1

2 + 1
)
> D− 1

2 . (B.27)

Rearranging the two leftmost inequalities in (B.27)

(K − 1)D− 1
2 + 1 > KD− 1

2 (B.28)

KD− 1
2 −D− 1

2 + 1 −KD− 1
2 > 0 (B.29)

−D− 1
2 > −1 (B.30)

D− 1
2 < 1 (B.31)

√
D > 1 (B.32)

which is true for D > 1 and thus proves Theorem 4.2.

B.4 Proof for Theorem 4.4

Proof. A random vector z′ sampled from the uniform distribution over the unit hyper-

sphere U (SD−1) is equally likely to be a point anywhere on SD−1. The probability z′ is

sampled in a particular surface region AD,r is

P (z′ ∈ AD,r) =
AD,r

AD
(B.33)

where AD is the total surface region.

The probability z′ is sampled into the surface region defined by the hyperspherical cap

SD−1
cap with surface area Acap given in Lemma 4.5 is therefore

P (z′ ∈ SD−1
cap ) =

Acap

AD
. (B.34)

The surface area ratio of a hyperspherical cap [540] is

AD,r = 1
2ADIsin2(θ)(

D−1
2 , 12) (B.35)
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where Ix(a, b) is the regularized incomplete beta function.

Substituting (B.35) into (B.33) gives

P (z′ ∈ SD−1
cap ) = 1

2Isin2(θ)(
D−1
2 , 12). (B.36)

The probability that z′ is not sampled in SD−1
cap is

P (z′ /∈ SD−1
cap ) = 1 − P (z′ ∈ SD−1

cap )

= 1 − 1
2Isin2(θ)(

D−1
2 , 12).

(B.37)

By Lemma 4.5 and (B.14) we know

∀z′ sim(z∗, zmin) ≥ sim(z∗, z′) ⇔ z′ /∈ SD−1
cap . (B.38)

Substituting the bound sim(z∗, zmin) by (B.15) gives

∀z′, z ∈ Z sim(z∗, z) ≥ sim(z∗, z′) ⇔ z′ /∈ SD−1
cap . (B.39)

Substituting the LHS of (B.39) into (B.37) and recollecting (B.14) proves Theorem 4.4.

B.5 Proof for Proposition 4.6

Proof. Non-uniformity means the distribution of vectors is not maximally dispersed over

the hypersphere [549]. Recalling Lemma 4.3 for uniform distributions, the expected

similarity of two non-uniformly distributed independent vectors Z(i), Z(j) ∼ p(Z) is

therefore

E sim(Z(i), Z(j)) = C ≥ 1√
D
. (B.40)

By substituting (B.40) in Definition 4.1 gives

E sim(z∗, z) > E sim(z∗, z′) = C. (B.41)

Expanding the LHS of (B.41) using the same idea as in (B.24) and (B.25)

E sim(z∗, z) ≥ 1
K [(K − 1)C + 1] . (B.42)
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Substituting (B.42) into (B.41)

1
K [(K − 1)C + 1] > C (B.43)

KC − C + 1 > KC (B.44)

−C > −1 (B.45)

C < 1. (B.46)

Since sim(z(i), z(j)) ∈ [−1, 1[ s.t.z(i) ̸= z(j) the inequality (B.41) is true for all distribu-

tions p(z) except the singular distribution and thus proves Proposition 4.6.

B.6 Proof for Proposition 4.7

Proof. The global convergence guarantee for convex optimization problems [564] proves

that for any convex function f is guaranteed that the value z∗(t) converges to the optimal

value z∗

lim
t→∞

f(z∗(t)) = f(z∗) (B.47)

given a sufficiently small learning rate λ.

We prove that the cosine similarity optimization objective (B.17) is a convex problem

by noting that the set (B.1) is convex and show that the Hessian matrix

H (f(z∗)) = ∇2
z∗f(z∗) =

[
∂

∂z∗i ∂z
∗
j
f(z∗)

]
(B.48)

is a positive semidefinite matrix [563]. Note that f(z∗) substitutes
∑K

k=1 sim(z∗, z(k)).

Recalling the form of the first partial derivatives (B.21) and taking another partial

derivative for an arbitrary element

∂
∂z∗i ∂z

∗
j
f(z∗) = ∂

∂z∗i

[
Kz∗j −

K∑
k=1

z
(k)
j

]
= K1i=j . (B.49)

The Hessian matrix is thus the scaled identity matrix

H (f(z∗)) =
[
Kei

]
= KID (B.50)

meaning f(z∗) is a convex function.
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Finally noting that

E

[
1

L

L∑
i=1

z ∈ Z(t)

]
=

1

K

K∑
i=1

z(i) ∈ Z, Z(t) ⊆ Z (B.51)

shows that the optimal convergence value obtained by optimizing (B.17) by gradient

descent results in the optimal compositional semantic embedding z∗ obtained by (B.23).



Appendix C

Aligning Predictive States and

LLMs by Computational

Geometry

Large language models (LLMs) can serve as general-purpose agents in robotics and au-

tonomous vehicle applications. Agents are called general-purpose due to their capability

and versatility to understand and follow natural language instructions in the context of

the perceived environment and agent state. The capability to understand instructions

grounded in the environment enables spatial reasoning. Spatial reasoning is the ability

to complete tasks involving question-answering, action or manipulation, and navigat-

ing environments involving semantic objects and leveraging external knowledge. Spatial

reasoning for autonomous driving agent systems include making rational decisions for

navigating dynamic environments. Examples include whether to panic break for a plas-

tic bag on the highway, or how to traverse complicated rule-constrained environments

like intersections. See Sec. 1.2 for further details.

Existing LLM-based agents capable of spatial reasoning utilize various spatio-semantic

representations of the environment. Parametric object lists [82, 84, 90, 384, 386, 412,

565–568] represents the environment in terms of a set of discrete semantic objects. Ob-

ject list representations are intuitive and simple to implement for proof of concept works.

However, enumerating all possible useful objects and their properties as explicit textual

entries in each reasoning step is not a practical nor computationally efficient approach

due to context window length considerations [95, 155, 569]. Transforming images into

visual tokens [73, 411, 570] as input for multimodal LLMs is also intuitive and simple to

implement to learn to represent the environment by finetuning a vision encoder or jointly

optimizing the encoder and LLM on multimodal data. Training multimodal LLMs on
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sequential visual input can provide a form of latent spatio-semantic memory [571–574].

Such spatio-semantic memories lack the spatial grounding of object semantics associ-

ated with explicit maps, as well as human-machine interpretablity and the ability to

input spatio-semantic information to the machine. Other notable environment repre-

sentations include 3D reconstruction [399], object-centric, topological maps [400], scene

graphs [91, 401], and top-down metric grid maps [85].

This thesis propose predictive environment states x∗ aligned to the embedding space of

LLMs as a principled spatio-semantic memory representation for LLMs. The advantage

of LLM-readable x∗ are explicit and human communicable map representations of the

environment. The latent compositional semantic embeddings of x∗ is also an efficient

representation where an ideal single embedding can represent a set of hundreds of random

object semantics as demonstrated in Chap. 4. The encoder used to transform predictive

states x∗ into latent state tokens Z in the LLM embedding space Z is technically similar

to the visual encoder using in multimodal LLMs. The primary challenge is how to design

a self-supervised optimization objective to enable continual learning from observation

experience [330].

The optimization objective is based on computational geometry as the bridge between

geometric and textual representations. A self-supervised ground truth representation

for the 2D open vocabulary predictive states x∗ presented in this thesis is be derived

pragmatically as follows. First, the state x∗ ∈ RH×W×D is queried element-wise by a

known object semantic xq ∈ RD using sufficient similarity inference (4.21) presented in

Chap. 4:

sim(x∗i,j , xq) > τq ⇒ MemberOf(x∗i,j , query semantic). (C.1)

The query results in a set of boolean masks as dense representation of geometries

m ∈ BH×W . Secondly, the masks m can be converted into textual descriptions such

as a sequence of polygon vertices [(i, j)1, . . . , (i, j)M ] [575] using a computational geom-

etry library like CGAL [576]. Finally, the encoder fθ is optimized so the transformed

spatio-semantic information in Z = (z(1), . . . , z(K)) allows the LLM to predict the same

geometric textual description based on a semantic query and in-context example of the

computational geometry file structure. The loss is the negative log likehood of the

tokenized sequences y and y′ of the programatic txt and predicted txt′ text descriptions

LNLL(txt, txt′) = − 1

N

N∑
n=1

[
n∑
i=1

log p(yi = y′i|y1, . . . , yi−1)

]
(C.2)

See Fig. C.1 for a visual representation of the alignment framework. A pictorial demon-

stration of learning to align “road” object semantics is shown in Fig. C.2.
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Computational geometry

Mask(s)

Figure C.1: The alignment function fθ transforms predictive state representations
x∗ to latent environment tokens Z in an LLM embedding space. fθ is optimized using
computational geometry as a bridge between geometric and textual representations.

Prior work leveraging LLMs in the semantic segmentation task provide empirical proof

that LLMs are adept at predicting coordinate sequences based on image data, natural

language instruction, and few-shot learning examples. LLaFS [577] use world knowledge

in LLMs to guide dense segmentation of queried object semantics. The LLM takes visual

tokens generated by an image encoder and learns to predict fixed-length polygons repre-

senting object masks. The LLM-based mask predictor improves SOTA few-shot seman-

tic segmentation. PolyFormer [578] and SeqTR [579] trains a multimodal transformer

model to autoregressively predicit object masks based on an image and natural language

referring expression query text encoded into visual and text tokens, respectively. The

work demonstrates that polygon outputs perform better than dense pixel-wise output

in the semantic semgmentation task. BoundaryFormer [580] presents a differentiable

rasterizer based on the signed distance function for end-to-end trainable autoregressive

polygon prediction.

Future work include experimentally prove that aligning the predictive state represen-

tation x∗ by computational geometry objectives, like autoregressive polygon predic-

tion [577, 578, 580], is a principled way to ground multimodal LLMs in a memory-

enabbled spatio-semantic state representation. The proposed alignment method for fθ

supports continual learning on observational data as the learning signal is based on a

self-supervised target.
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Figure C.2: The alignment method demonstrated by a visual example of how a “road”
semantic object. The resulting polygon is programatically inferred and used as a self-

supervised learning signal.



Appendix D

ViCE Pseudocodes

Algorithm 1 explains the generation of M views for a batch of N images. The algo-

rithm samples an image X(n) and computes a superpixel index map A(n). M views are

generated from the sampled image and superpixel index map. Each of these views are

randomly masked before being resized to the same pixel dimension. Only mutual regions

existing in all views are kept. All views are geometrically augmented by random hor-

izontal flipping, and appearance augmented by color distortion and randomly blurred.

All generated views are gathered and converted into a 4D tensor.

Algorithm 1 View generation

X̃ := {} ▷ Empty sets
Ã := {}
for n ∈ {1, . . . , N} do

X(n) ∼ dataloader ▷ Sample an image
A(n) := superpixels(X(n))

X̃(n), Ã(n) := gen views(X(n), A(n))
# X̃(n) = {X̃(1,n), . . . , X̃(M,n)}
# Ã(n) = {Ã(1,n), . . . , Ã(M,n)}

X̃(n), Ã(n) := mask views(X̃(n), Ã(n))
X̃(n), Ã(n) := resize views(X̃(n), Ã(n))
X̃(n), Ã(n) := mutual regions(X̃(n), Ã(n))

X̃(n), Ã(n) := geometric aug(X̃(n), Ã(n))
X̃(n) := appearance aug(X̃(n))

X̃ := X̃ + X̃(n) ▷ Add new views to set
Ã := Ã + Ã(n)

end for
X̃ := to tensor(X̃) ▷ X̃ ∈ RB×3×h×w

Ã := to tensor(Ã) ▷ Ã ∈ RB×1×h×w
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Algorithm 2 explains the learning algorithm. The model fθ generates an embedding map

Ẑ from the image view tensor X̃. The single tensor Ẑ is decomposed into B tensors

Ẑ(b) each corresponding to a single view. Next, four trees are created to contain the

latent visual embeddings z for all elements in each mutual region i. A mean vectors z∗

is computed to represent regions. Each mean vector gets computed a concept compati-

bility score s∗ as distance to each cluster C = (c(1), . . . , c(K)). The swapped prediction

objective is computed using the score vectors s∗ stored in the tree TS∗ . The model

parameters θ and set of visual concept vectors C are optimized to reduce the loss L.

Algorithm 2 Learning algorithm

# Generate embedding maps
Ẑ := fθ(X̃) ▷ Ẑ ∈ RB×D×h×w

{Ẑ(1), . . . , Ẑ(B)} := decompose(Ẑ)

# Create embedding and score trees
TZ(n,m, i) := {} ▷ Empty depth-3 trees
TZ∗(n,m, i) := {}
TS∗(n,m, i) := {}
for b ∈ {1, . . . , B} do

Z̃(b) := unroll(Ẑ(b)) ▷ Z̃(b) ∈ Rhw×D
Ã(b) := unroll(Ã(b)) ▷ Ã(b) ∈ Rhw
n,m := img view index(b)
I := num regions(Ã(b))
for i ∈ {1, . . . , I} do

# Compute mean vectors for region
{ẑ(j)} := extract region(Z̃(b), Ã(b), i)
TZ(n,m, i) := {ẑ(j)}
z(i)∗ := mean(TZ(n,m, i))
TZ∗(n,m, i) := z(i)∗

# Compute score vectors for region
s(i)∗ = (TZ∗(n,m, i))TC
TS∗ := s(i)∗

end for
end for

L = swapped prediction(TS∗)

optimize(θ, C,L)

The swapped prediction objective is explained in Algorithm 3. First, we compute an

optimal assignment of visual concepts Q based on the scores in the first view m = 1. The

loss is minimized when predicted visual embeddings in secondary views m ≥ 1 are closer

to the optimally assigned visual concept vectors for each region i in all views m of all

images n. This results in a cross-entropy optimization objective when both assignments

q(i) and compatibility scores s(i)∗ are normalized.
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Algorithm 3 Swapped prediction objective

L := 0
Q := optimal assignment(TS∗)
for n ∈ {1, . . . , N} do

for m ∈ {2, . . . ,M} do
for i ∈ {1, . . . , I} do

q(i) := Q(n, i)
s(i)∗ := TS∗(n,m, i)
p(i) := σ

(
1
τ s

(i)∗)
L −= q(i)log p(i)

end for
L := L/I

end for
end for
L := L/(N(M − 1))
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[200] Timo Lüddecke and Alexander Ecker. Image segmentation using text and image

prompts. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 7086–7096, June 2022.

[201] John McCarthy. Programs with common sense. In Proc. Symposium on Mechani-

sation of Thought Processes, volume 1, pages 77–84, 1958.

[202] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8:338–353, 1965.

[203] Saul A. Kripke. A completeness theorem in modal logic. Journal of Symbolic

Logic, 24:1 – 14, 1959.

[204] M. Ross Quillian. A design for an understanding machine. Paper presented at a

colloquium: Semantic Problems in Natural Language, King’s College, Cambridge,

England, Sep 1961.

[205] Marvin L. Minsky. A framework for representing knowledge. In The Psychology

of Computer Vision, pages 211–277. McGraw-Hill, 1975.



Bibliography 194

[206] M.W. Eysenck and M.T. Keane. Cognitive Psychology: A Student’s Handbook -

8th ed. Psychology Press, 2020. ISBN 9781351058506.

[207] Jeffrey R. Binder and Rutvik H. Desai. The neurobiology of semantic memory.

Trends in Cognitive Sciences, 15(11):527–536, 2011. ISSN 1364-6613. doi: https:

//doi.org/10.1016/j.tics.2011.10.001.

[208] Eleanor Rosch, Carolyn B Mervis, Wayne D Gray, David M Johnson, and Penny

Boyes-Braem. Basic objects in natural categories. Cognitive Psychology, 8(3):382–

439, 1976. ISSN 0010-0285. doi: https://doi.org/10.1016/0010-0285(76)90013-X.

[209] Ling ling Wu and Lawrence W. Barsalou. Perceptual simulation in conceptual

combination: Evidence from property generation. Acta Psychologica, 132(2):173–

189, 2009. ISSN 0001-6918. doi: https://doi.org/10.1016/j.actpsy.2009.02.002.

[210] Lawrence W. Barsalou. The Human Conceptual System, page 239–258. Cambridge

Handbooks in Psychology. Cambridge University Press, 2012.

[211] Willard Van Orman Quine. From a Logical Point of View. Harvard University

Press, 1953. ISBN 9780674323513.

[212] Ludwig Wittgenstein. Philosophical Investigations. Blackwell Publishing, Inc.,

1953. ISBN 9780631231271.

[213] George Lakoff. Women, Fire, and Dangerous Things. University of Chicago Press,

1987. ISBN 0-226-46803-8.

[214] Ithaca Schwartz. Naming, Necessity, and Natural Kinds. Cornell University Press,

1977. ISBN 9780801410499.

[215] O. Ivanov, M. Figurnov, and D. Vetrov. Variational autoencoder with arbitrary

conditioning. In ICLR, 2019.

[216] Y. Li, S. Akbar, and J. Oliva. Acflow: Flow models for arbitrary conditional

likelihoods. In PMLR, 2020.

[217] R. Strauss and J. Oliva. Arbitrary conditional distributions with energy. In

NeurIPS, 2021.

[218] D. Ballard. Modular learning in neural networks. In AAAI, 1987.

[219] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. Efros. Context encoders:

Feature learning by inpainting. In CVPR, 2016.

[220] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally consistent image

completion. ACM Transactions on Graphics (TOG), 2017.



Bibliography 195

[221] R. Yeh, C. Chen, T. Lim, A. Schwing, M. Hasegawa-Johnson, and M. Do. Semantic

image inpainting with deep generative models. In CVPR, 2017.

[222] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huang. Generative image inpainting

with contextual attention. In CVPR, 2018.

[223] G. Liu, F. Reda, K. Shih, T. Wang, A. Tao, and B. Catanzaro. Image inpainting

for irregular holes using partial convolutions. In ECCV, 2018.

[224] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. Huang. Free-form image inpainting

with gated convolution. In ICCV, 2019.

[225] W. Cai and Z. Wei. Piigan: Generative adversarial networks for pluralistic image

inpainting. IEEE Access, 8:48451–48463, 2019.

[226] Y. Liu, Z Wang, Y. Zeng, H. Zeng, and D. Zhao. Pd-gan: Perceptual-details gan

for extremely noisy low light image enhancement. In ICASSP, 2021.

[227] D. Kingma and M. Welling. Auto-encoding variational bayes. CoRR, 2013.

[228] C. Zheng, T. Cham, and J. Cai. Pluralistic image completion. In CVPR, 2019.

[229] L. Zhao, Q. Mo, S. Lin, Z. Wang, Z. Zuo, H. Chen, W. Xing, and D. Lu. Uctgan:

Diverse image inpainting based on unsupervised cross-space translation. In CVPR,

2020.

[230] J. Peng, D. Liu, S. Xu, and H. Li. Generating diverse structure for image inpainting

with hierarchical vq-vae. In CVPR, 2021.

[231] R. Strauss and J. Oliva. Posterior matching for arbitrary conditioning. In NeurIPS,

2022.

[232] A. Nazabal, P. Olmos, Z. Ghahramani, and I. Valera. Handling incomplete het-

erogeneous data using vaes. Pattern Recognition, 107, 2018.

[233] C. Ma, S. Tschiatschek, K. Palla, J. Hernández-Lobato, S. Nowozin, and C. Zhang.

Eddi: Efficient dynamic discovery of high-value information with partial vae. In

ICML, 2019.

[234] R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. CVPR, 2017.

[235] Chao Ma, Sebastian Tschiatschek, José Miguel Hernández-Lobato, Richard E.
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Potapenko, Alex Bridgland, Clemens Meyer, Simon Kohl, Andrew Ballard, An-

drew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas

Adler, and Demis Hassabis. Highly accurate protein structure prediction with

alphafold. Nature, 596:1–11, 07 2021. doi: 10.1038/s41586-021-03819-2.

[351] N. Medathati, H. Neumann, G. Masson, and P. Kornprobst. Bio-inspired computer

vision: Towards a synergistic approach of artificial and biological vision. Computer

Vision and Image Understanding, 150:1–30, 2016.

https://openreview.net/forum?id=1ikK0kHjvj


Bibliography 205

[352] J. Gibson. The ecological approach to visual perception. Houghton Mifflin, Boston,

MA, 1979.

[353] D. Milner and M. Goodale. Two visual systems re-viewed. Neuropsychologia, 46

(3):774–785, 2008.

[354] Z. Han and A. Sereno. Modeling the ventral and dorsal cortical visual pathways

using artificial neural networks. Neural Computation, 34(1):138–171, 2022.

[355] D. Milner. Is visual processing in the dorsal stream accessible to consciousness?

Proc Biol Sci, 279:2289–2298, 2012.

[356] Paul St ower, Christian Schlieker, Achim Schilling, Claus Metzner, Andreas Maier,

and Patrick Krauss. Neural network based successor representations to form

cognitive maps of space and language. Scientific Reports, 12, 07 2022. doi:

10.1038/s41598-022-14916-1.

[357] Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning

and acting in partially observable stochastic domains. Artificial Intelligence, 101

(1):99–134, 1998. ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(98)

00023-X.

[358] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in

robotics: A survey. Int. J. Rob. Res., 32(11):1238–1274, sep 2013. ISSN

0278-3649. doi: 10.1177/0278364913495721. URL https://doi.org/10.1177/

0278364913495721.

[359] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions on Systems

Science and Cybernetics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.

[360] E. F. Moore. The shortest path through a maze. Proceedings of an International

Symposium on the Theory of Switching, Part II, 4(2):285–292, 1959.
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Oriol Vinyals, Andrew Zisserman, and Karén Simonyan. Flamingo: a visual lan-

guage model for few-shot learning. In S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-

grave, K. Cho, and A. Oh, editors, Advances in Neural Information Processing

Systems, volume 35, pages 23716–23736. Curran Associates, Inc., 2022.

[572] Guo Chen, Yin-Dong Zheng, Jiahao Wang, Jilan Xu, Yifei Huang, Junting Pan,

Yi Wang, Yali Wang, Yu Qiao, Tong Lu, and Limin Wang. Videollm: Modeling

video sequence with large language models, 2023. URL https://arxiv.org/abs/

2305.13292.

[573] Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem. To-

wards general purpose vision systems: An end-to-end task-agnostic vision-

language architecture. In 2022 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 16378–16388, 2022. doi: 10.1109/

CVPR52688.2022.01591.
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