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Abstract

Recent advancements in measurement technologies, such as camera-based systems, give

us an opportunity to improve our understanding of multi-agent behaviors in various fields.

However, due to their complexity, modeling the intricacies of multi-agent behaviors remains

a challenge. This has led to a shift towards model-free, data-driven approaches. Data-driven

modeling, especially in machine learning with complex structures like neural networks, plays

an important role in extracting insights and making predictions from real-world data. While

these models offer enhanced expressiveness and predictive capability, the interpretability

of their results poses a significant challenge. This is crucial in practical applications, such

as team sports, where understanding the rationale behind actions and plays is essential for

coaches and players. In particular, in team sports, the intricacies of multi-agent behaviors

also lead to extremely high labor costs for manual labeling. These factors make the im-

plementation of data-driven classification and analysis methods difficult in the field of team

sports.

To address these problems, utilizing machine learning techniques, two approaches are

proposed to classify and analyze cooperative play in team sports. In the first study, a clas-

sification approach based on semi-supervised learning methods is proposed for cooperative

play classification in team sports. I examine this approach for classifying strategic coop-

erative plays called screen-play in basketball using a smaller labeled dataset and a larger

unlabeled dataset. In the experiment, the classification performance of the semi-supervised
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learning approaches improved upon the conventional supervised approach for minor types of

screen-plays. For the interpretability, we found that self-training obtained similar or higher

contribution of some features than the baseline.

In the second study, for cooperative play analysis in team sports, a deep learning-based

comparative analysis method to analyze multi-agent trajectories in basketball games is pro-

posed. A neural network approach based on an attention mechanism using multi-agent mo-

tion characteristics (e.g., the distances between agents and objects) as the input is adopted,

designed to detect distinct segments in trajectories of given classes. This enables us to under-

stand differences between classes by highlighting segmented trajectories and which variables

correlate with the given labels.

In this thesis, these approaches are validated by comparing them with other baseline meth-

ods, and the second approach is also validated by analyzing the attacking plays in an NBA

dataset. In addition, these methods also reveal the relationship between some behaviors and

certain cooperation plays, which can provide coaches and athletes with more information or

guidance about the game.







1 Introduction

1.1 Background

Advancements in measurement technologies, such as global/local positioning and camera-

based systems, have played a crucial role in multi-agent behavior analysis in the real world.

Recent progress in this field has enhanced our comprehension of the fundamental principles

governing multi-agent behaviors, a critical concern across diverse scientific and engineering

domains, e.g., human behavioral science [1, 2], and robotics [3, 4].

Modeling, analysis, and understanding real-world multi-agent behavior often becomes

a big challenge because of the lack of physical links of multi-agent systems. Employing

mathematical models based on fundamental rules can provide a means to comprehend the

dynamics of multi-agent interactions, such as social force models [5], which have found

extensive application in pedestrian dynamic behavior analysis. Moreover, these models can

be extended to address intricate multi-agent behaviors in team sports [6, 7, 8].

However, due to the high complexity of multi-agent behaviors in various aspects, multi-

agent behavior modeling is a mathematical challenge. Thus, a model-free (or equation-

free) and data-driven approach becomes essential to enhance our comprehension of these

behaviors [9, 10].

Utilizing data-driven modeling represents a potent approach capable of extracting valuable

insights and making predictions from intricate real-world datasets. Especially in machine

learning, there has been a dedicated exploration of the learning dynamics inherent in models
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featuring complex, nonlinear structures like neural networks [11]. While these models can

deliver heightened expressiveness and predictive prowess, the interpretability of their results

poses a significant challenge, establishing a delicate balance between interpretability and

predictability. This dilemma becomes particularly pivotal in practical scenarios, such as

sports games, where coaches and players rely on understanding the rationale behind goals

and the characteristics evident in subsequent plays.

1.2 Challenges of This Thesis

In general, various cooperative plays in team sports can be manually labeled by experts,

and it requires much labor costs. In previous work, supervised learning methods in machine

learning have been used for automatic classification of labeled cooperative plays [12, 13, 14,

15, 16]. They used the complete pairs of the features as the input and labels of team play for

the classifier. However, it requires much labor costs, and a large amount of unlabeled data is

not utilized if it exists.

To solve this issue, semi-supervised learning [17] is one of the approaches utilizing a

large amount of unlabeled data, which is conceptually situated between supervised and un-

supervised learning and shows their strength when labeled data is scarce. I use a semi-

supervised approach for cooperative play classification in Study I. Unsupervised learning

and self-supervised learning are also effective methods for such issues, which are discussed

in Chapter 2. Moreover, a large amount of official data with some popular labels can be ob-

tained from official websites and used for analysis, such as score and turnover. Other kinds

of popular labels, such as shooting percentages, are computable by these labels directly. In

this case, a large dataset with labels can be obtained, which is used in Study II.

Another challenge of this thesis is that nonlinear machine learning models have difficulty

in interpretability. In other words, it is often hard to find out how the nonlinear machine
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learning models got the results. It prevents the researchers from understanding the underlying

rules of cooperative play. To solve this problem, earlier work proposed some model-free

interpretable methods, e.g., Local Interpretable Model-Agnostic Explanations (LIME) [18]

and SHapley Additive exPlanations (SHAP) [19], which have been widely used as effective

methods. I use such a model-free interpretable method in Study I. For deep learning methods,

the condition is different and complex. Besides the approaches mentioned above, several

unique approaches were proposed to enhance the performance of interpretability, such as

self-explaining neural network [20], attention-based deep neural network [21]. I use an

attention mechanism to interpret the model prediction in Study II.

In this thesis, some assumptions are made at first for the cooperative play classification

problem in team sports. Although multi-agent trajectory labels are complex and not clear

compared to image labels in general, I assume that the data with the same labels indicate that

they have some similar and unique features among their trajectory data. The data with dif-

ferent labels indicate that they have different features among their trajectory data. These dif-

ferences can be distinguished between different labels. With these assumptions, I conducted

two studies about team play classification and analysis in this thesis. Fig. 1.1 provides a

comprehensive overview of this thesis.

1.2.1 Team play classification

In this thesis, to solve the challenge of labor costs of labeling for multi-agent trajectory

data and interpretability of machine learning, a team play classification method based on

semi-supervised learning is studied in Study I (Chapter 3). Screen play is selected as the

target team play and classified by the proposed method. This is because screen play is a basic,

common, but essential team play in basketball, which appears in most half-court attacks, and

most team tactics in basketball are based on it. Furthermore, SHAP [19], which utilizes
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an interpretable approximate model of the original nonlinear prediction model, is used to

improve interpretability. For practical significance, this study can help coaches and athletes,

whether professional or unprofessional, to automatically label their play data with team play

labels and analyze their play with these labels.

1.2.2 Team play analysis

Also, to solve these challenges of labor costs of labeling for multi-agent trajectory data and

interpretability of machine learning, a team play analysis method based on deep learning is

proposed in Study II (Chapter 4). The effective attack, which is based on the concept of

wide-open shots, is chosen as a classification label and an evaluation criterion in this study.

This is because compared with goal/non-goal, which is affected by the effect of the shooting

skills of shooters and randomness of shooting, the effective attack evaluates whether a player

makes an effective shot attempt and can directly evaluate the tactics of attacks. And it can be

calculated by multi-agent trajectory data directly through its definition (For details, please

see Section 4.2.3). Furthermore, comparative analysis with deep learning with attention

mechanisms [21] are used in Study II to highlight the segments with handcrafted features to

improve interpretability. For practical significance, Study II can help coaches and athletes

automatically analyze and evaluate their play data and find a better way to make an effective

attack and obtain a score.

1.3 Thesis Overview

The thesis is organized as follows. In Chapter 2, related work on cooperative play classifi-

cation and analysis in team sports are discussed. In Chapter 3, a cooperative play classifica-

tion method based on semi-supervised learning is described. Chapter 4 discusses multi-agent
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trajectory comparative analysis using deep learning. In Chapter 5, the contributions of this

thesis are summarized, and future work is discussed.
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Figure 1.1: Overview of the thesis. Study I focuses on the classification of cooperative plays, while

Study II focuses on the analysis of cooperative plays. Both of them can provide coaching insights into

cooperative plays.



2 Literature Review

Studies related to this thesis can be divided into three categories. The first is research

on traditional analysis methods of team sport analysis. The second is research on machine

learning methods for team sport analysis. The third is interpretability problems in machine

learning for team sports. Here, I introduce related work on these topics.

2.1 Traditional analysis in team sports

Traditional methods without machine learning in various fields typically rely on researchers’

experience and established theories to evaluate the characteristics of multi-agent behaviors.

In the team sports field, for example, researchers have calculated the distances and relative

phases of two athletes [22, 23, 14], speeds of movements [24], frequencies and angles of

actions (e.g., shots [25] and passes [26, 27, 28]), as well as their representative values (e.g.,

average and maximum values). Some advanced measurement systems like motion capture

systems and force platforms have the ability to analyze skillful maneuvers [29, 30]. Using

the output of representative values from these systems, specific hypotheses have been tested

[14, 31]. In contrast, other studies have used more sophisticated mathematical approaches,

such as Voronoi diagrams [32], network theory [33], and group theories [34], to compute

representative values.

The above approach is inverse to obtaining insight from data, but there is a forward ap-

proach to considering models and performing simulations to understand the behaviors. In
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traditional approaches, mathematical models based on some simple rules are widely used to

understand the underlying rules of multi-agent movements. For example, social forces mod-

els in pedestrians [5], similar rules in flocks of birds [35], and schools of fishes [36]. And

those models also applied to team sports [6, 7, 8] under certain assumptions.

Traditional approaches indeed have their advantages, such as being easy to interpret and

applicable to small datasets in specific sports. However, they may need to be more flexible

to represent cooperative/competitive interactions in detail. Additionally, due to multi-agent

inherently higher-order social interactions, cognition, and body dynamics, these multi-agent

modeling methods can sometimes be mathematically difficult. To overcome these limita-

tions, data-driven approaches, including machine learning, have been developed to extract,

classify, and regress automatically.

2.2 Machine learning approaches in team sports

Learning-based approaches that utilize positional data of players can be broadly catego-

rized into unsupervised, supervised, semi-supervised, self-supervised, and reinforcement

learning approaches. Here, I introduce these approaches in this order and the merits and

demerits for each approach is described in Table 2.1.

2.2.1 Unsupervised learning methods

Unsupervised learning is a type of machine learning where an algorithm is trained on

unlabeled data without explicit guidance on the desired output. Unlike supervised learning,

where the algorithm learns from labeled examples, unsupervised learning involves finding

patterns, relationships, or structures within the data without predefined categories or target

labels. Popular unsupervised methods include clustering and dimensionality reduction.
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Table 2.1: Comparison of Learning Approaches

Learning Approach Merits Demerits

Supervised High accuracy, clear objec-

tives, easier to measure per-

formance

Requires large amount of la-

beled data

Unsupervised No need for labeled data, can

discover hidden patterns in

data

Less accurate, harder to mea-

sure performance, results can

be ambiguous

Semi-Supervised Requires fewer labeled ex-

amples, can leverage large

amounts of unlabeled data

Performance dependent on

the quality and amount of la-

beled data

Self-Supervised Does not require external la-

bels, learns representations

by predicting parts of its in-

put

May not directly optimize for

the task at hand, requires

careful design of pretraining

tasks

Reinforcement Ideal for decision-making

tasks, learns through trial and

error, flexible to environment

changes

Complex to implement, re-

quires a lot of computational

resources, can be unstable

during training

In clustering, the algorithm aims to group similar data points based on inherent patterns or

similarities. The goal is to discover natural groupings within the data. There are various clus-

tering algorithms, such as hierarchical clustering, centroid-based clustering, density-based

clustering, and distribution-based clustering.

In team sports, hierarchical clustering [37, 38] based on similarity [39, 40, 41] and distribution-
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based clustering using a Gaussian mixture model [42] has been studied. However, clustering

time-series data can be challenging because it is hard to directly compute the similarity be-

tween data when the data does not fix the time length. In that case, Fréchet distance [43]

and dynamic time warping (DTW) [44] have been used to measure the similarity between

trajectories in basketball [39, 40] and soccer [39]. However, these methods have high com-

putational costs and are inappropriate for big data scales.

Dimensionality reduction transfers high-dimensional data to low-dimensional meaningful

data. Because of the importance of time-series structure in multi-agent movement, time-

series structure should be considered in dimensionality reduction in team sports. A proposed

method uses neural networks [45, 46] and self-organizing maps [47, 48] to transfer trajectory

data into images. Another approach for extracting physically-interpretable dynamical prop-

erties is a method called dynamic mode decomposition (DMD) [49, 50], which was applied

to basketball score prediction [51, 9] and screen-play and zone defense classifications [16].

2.2.2 Supervised learning

Supervised learning is a machine learning paradigm in which an algorithm learns from

labeled training data to make predictions or decisions without explicit programming. In this

approach, the algorithm is provided with a dataset consisting of input-output pairs, where the

inputs are the features or attributes of the data, and the outputs are the corresponding labels

or desired outcomes. The goal of supervised learning is for the algorithm to generalize from

the provided examples and accurately predict the output for new, unseen data. Supervised

learning can be categorized into two main types: classification and regression.

In classification tasks, the algorithm is trained to assign input data to predefined categories.

The regression algorithm is trained to output continuous values for the input data. In team

sports, supervised learning methods are applied to some classic problems by inputting fea-
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tures of the original data, such as screen-play classification in basketball [12, 13, 15]， score

prediction in basketball [52, 53, 54], team strategy assessing in [55]. These features can be

obtained by unsupervised learning methods, or they are hand-crafted static features that were

introduced in Chapter 2.1.

Due to the intricate multi-agent behaviors in team sports, time-series data features should

be considered in various problems. In this case, inputting dynamic features to models, which

can be obtained from unsupervised learning, is a straightforward strategy for supervised

learning. To illustrate, using the aforementioned dynamic mode decomposition (DMD) and

assessing similarity enables the classification of various tactics (defensive or offensive) [16]

and classification and prediction of scoring probability [51, 9].

Moreover, end-to-end approaches, which use a single model to handle the entire process,

from raw input data and extracting features to generating the final output, without explicitly

breaking down the task into sub-tasks, are also applied to team sports problems. For instance，
end-to-end deep learning approaches were used to classify NBA offensive plays [45], team

activity analysis [56], and micro-action evaluating [57].

However, end-to-end approaches are usually hard to interpret. To address this, some ap-

proaches that can balance predictability and interpretability have been proposed, such as

employing matrix [58], multi-resolution tensor learning [59], Poisson point processes [60],

and trajectory mining method [61].

As regression problem, simulating short-term multi-agent trajectories have been consid-

ered, which usually predict trajectories for several seconds in team sports, e.g. basketball

and soccer, based on recurrent neural networks (RNN) [62, 63, 64], hierarchical variational

RNN [65, 66], transformer [67] and conditional generative adversarial networks [68]. Re-

cent developments in graph neural networks [69, 70, 71, 72] have addressed the permutation

problem.
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2.2.3 Semi-supervised and self-supervised learning

Supervised learning provides a potent strategy when a large amount of labeled data is avail-

able, yet the associated disadvantages include big labor costs and often limited size of labeled

datasets. In response, semi-supervised learning combines both labeled and unlabeled data

for training machine learning models, integrating aspects of supervised and unsupervised

learning.

In semi-supervised learning, the model is trained on a dataset that contains labeled data and

unlabeled data, which are usually much bigger than labeled data. The key idea behind semi-

supervised learning is to use the limited labeled data along with a more abundant pool of

unlabeled data to enhance the model’s performance. In team sports, various semi-supervised

methods have been applied, ranging from generative models predicting annotated trajectories

[73] to the extraction of tactical patterns in soccer using graph neural networks (GNN) [74].

Addressing annotation cost concerns, self-supervised learning provides an alternative by

using unlabeled data and deriving supervisory signals through diverse preprocessing tech-

niques. Notably, transformer-based approaches, such as those applied in basketball for rec-

ognizing group behaviors [75] and learning trajectory representations [67], stand out as rep-

resentative examples.

While there are few studies on semi- and self-supervised learning in team sports at present,

the potential necessity for such approaches may grow in the future, particularly if access to

larger amounts of (unlabeled) data becomes available.

2.2.4 Reinforcement learning

Reinforcement learning (RL) is a machine learning method where an agent learns to make

decisions by interacting with an environment. The goal of the agent is to learn a strategy
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called a policy that maximizes the cumulative reward over time.

Some planning-based methods that are focused on long-term movement objectives pri-

marily formulate agents’ policies and paths to reach these objectives, usually related to rein-

forcement learning. And these planning-based methods can be roughly divided into inverse

and forward planning approaches.

The term “inverse planning” refers to the process of working backward from desired out-

comes to determine the actions or strategies necessary to achieve those outcomes. In the

context of machine learning, specifically reinforcement learning, inverse planning involves

the use of statistical learning techniques to estimate action models or reward functions based

on observed data.

In team sports, inverse planning approaches are like implementing a reinforcement learn-

ing framework in practical situations, where the focus is on assessing the actions and states

of agents to accomplish specific goals without features extracting. In the basketball field, in-

verse planning approaches were utilized in estimating possession outcomes [52, 76], double

teaming (a kind of defensive alignment) [77] with deep reinforcement learning, and state-

action values to evaluate players and teams [78]. In other sports, to value on-ball actions,

several studies have estimated Q-function or other policy functions [79, 80, 81, 82, 83]. In

terms of inverse reinforcement learning, there has been research on estimating reward func-

tions [84, 85].

Forward planning approaches center on anticipating future states and actions to achieve

the desired outcomes. In the context of reinforcement learning, forward planning involves

creating a sequence of actions that leads to optimal results based on predefined criteria. In

team sports, forward planning approaches involve devising algorithms aimed at achieving

a victory in competitions. For example, 3-vs-3 basketball simulator [86], Google research

football [87], and a soccer game with robot teams [88]. However, there are few studies on
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the integration of inverse and forward planning methods, and closing this gap should be a

central focus for future research [89].

2.3 Interpretability in machine learning for team sports

Interpretability in machine learning refers to the ability to understand and explain the

results made by a model. In the context of team sports, interpretability becomes crucial

for various reasons, including gaining insights into player performance, informing coaching

strategies, and ensuring transparency in decision-making processes. In this section, I intro-

duce some aspects of interpretability in machine learning for team sports. Among various

interpretability aspects, first, I introduce transparent models, which inherently offer clarity in

their decision-making processes. Moving beyond inherent transparency, I describe model-

agnostic methods, which provide insights into models regardless of their complexity. Lastly,

the role of attention mechanisms in deep learning is explained to derive meaningful insights

for team sports trajectories.

2.3.1 Transparent models

In team sports, it is essential for players, coaches, and analysts to comprehend the ra-

tionale behind machine learning model predictions, recommendations, and other outputs.

Transparent models, such as linear models and decision trees, inherently provide explana-

tions. However, purely linear models are rarely utilized in team sports. On the contrary,

decision trees find widespread use in various team sports such as in basketball analysis [90],

hockey analysis [91], and soccer [92].
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2.3.2 Model-agnostic methods for interpretability

Nevertheless, within team sports, numerous commonly employed machine learning ap-

proaches lack transparency. It becomes essential to utilize model-agnostic methods to en-

hance the interpretability of models. In this case, several model-agnostic methods, such as

SHapley Additive exPlanations (SHAP) [19] and Local Interpretable Model-agnostic Expla-

nations (LIME) [18], are widely applied in various domains.

SHAP [19] is a popular and powerful framework for interpreting the output of machine

learning models. It is based on cooperative game theory and is designed to allocate the

contribution of each feature to the prediction made by the model. The formula for calculating

SHAP values is as follows. For a given feature i and model f , the SHAP value ϕi is calculated

using the following formula:

ϕi = ∑
S⊆N\{i}

|S|! · (|N|− |S|−1)!
|N|!

· [ f (S∪{i})− f (S)] (2.1)

Here, N is the set of all features, S is a subset of features excluding i, | · | is the size of set,

f (S) is the model output with features in S, and f (S∪{i}) is the output when i is added to

S. Each term in the formula represents the marginal contribution of feature i when added

to a specific combination of features S. The contributions across all possible combinations

are weighted and summed to obtain the SHAP value for feature i. The weighting factor
|S|!·(|N|−|S|−1)!

|N|! ensures a fair distribution of contributions.

In team sports, various studies have applied SHAP, e.g., football team performance predic-

tion [93, 94], volleyball match outcomes prediction [95], and hockey player injury prediction

[96].

LIME [18] is another popular technique for interpreting machine learning models, with a

focus on providing local explanations for individual predictions. LIME aims to create simple

and interpretable models that approximate the behavior of more complex models in a specific
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local region of the feature space. For example, [97] utilized LIME to deduce and assess the

precise reasoning behind the model predictions on NBA outcomes.

2.3.3 Attention mechanism in deep learning

The attention mechanism in deep learning, particularly in the context of neural networks,

enhances the model’s ability to focus on specific parts of the input when generating the

output. It is akin to how human attention works: when we perceive a scene, we focus on a

certain part while perceiving others with less focus. In this case, the attention mechanism

could enhance the interpretability of the deep learning network. The formula for calculating

attention values is as follows. Assume we have an input sequence consisting of n vectors:

X = {x1,x2, . . . ,xn} (2.2)

Each xi is a d-dimensional vector, typically representing word embeddings or hidden states at

a certain time step in the sequence. Attention mechanisms typically introduce three matrices

W Q, W K , and WV to map each input vector xi into a query vector qi, key vector ki, and value

vector vi:

qi =W Qxi, ki =W Kxi, vi =WV xi (2.3)

where W Q, W K , and WV are learnable weight matrices. For a given query vector qi, we

calculate its similarity with all key vectors k j to obtain the attention scores:

score(qi,k j) =
qi · k j√

dk
(2.4)

Here, · denotes the dot product, and dk is the dimensionality of the key vectors, typically

equal to the dimensionality of the query vectors. The term
√

dk is a scaling factor to mitigate

the issue of growing dot product values with increasing dimensions. We convert the attention
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scores into attention weights (a probability distribution) using the softmax function:

αi j =
exp(score(qi,k j))

∑n
j=1 exp(score(qi,k j))

(2.5)

αi j represents the attention weight on input x j when computing the representation of input

xi. The output of the attention mechanism is the weighted sum of all value vectors:

zi =
n

∑
j=1

αi jv j (2.6)

where zi is the final output representation, integrating information from all inputs x j that are

relevant to xi.

In the field of multi-agent analysis, the attention mechanism is already used in some works

to interpret the result. For example, a self-explaining neural network [20] was applied in

multi-agent trajectory analysis [98].

Moreover, a multi-head attention mechanism is used in the transformer [99]. That allows

the model to jointly attend to information from different representation subspaces at differ-

ent positions. In team sports, a transformer-based approach [67] for learning team sports

trajectory representation was proposed recently.

2.3.4 Technical contributions

In Study I of this thesis, a semi-supervised learning-based method is used to classify co-

operative plays in basketball games due to the high labor costs of cooperative play labeling.

The proposed method utilizes a small labeled dataset with a large unlabeled dataset to train

the semi-supervised learning model. SHAP is used to show the relationship between the

input features and the predicted results.

In Study II of this thesis, a neural network approach based on an attention mechanism

is adopted for classifying the multi-agent trajectory in basketball and highlighting distinct
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segments. The attention values are utilized to show the correlation between input variables

and the labels. The distinct segments in trajectories can be detected by analyzing attention

values.



3 Team play classification via

semi-supervised learning in

basketball games

3.1 Introduction

Team sports represent a form of coordinated physical activity where participants organize

into teams, collectively pursuing common objectives such as scoring, winning matches, or

outperforming opponents. The research in this field spans various disciplines, including

sports science, psychology, computer science, and management, aiming to comprehensively

understand the essence of team sports and their impacts on different levels.

A notable challenge in this research landscape is the classification of complex behavioral

data within team sports. Successfully addressing this challenge could substantially enhance

our understanding of tactical cooperation or competition in these contexts. However, in such

functional collective motions, such as human groups, including team sports, the cooperation

often occurs locally and often changes their rules or objectives in a time-dependent manner

according to various situations [30, 14]. Therefore, the large variance of behaviors even

within the same functional formations makes it difficult to find similar and different motion

structures using the same and different labels, respectively [15].

Human groups performing sports have been recently studied (see also [11]) to clarify the

relationship between collective motion and an objective such as team plays [12, 13, 14, 15,
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16] and achieving a score [51, 9]. However, these investigations mainly employed supervised

learning methodologies and extensive datasets requiring manual labeling. This reliance re-

sulted in substantial labor costs associated with the labeling process. Consequently, while

these studies have contributed valuable insights, they also highlight the need for more effi-

cient and scalable analytical methodologies capable of adapting to the dynamic and complex

of team sports.

While classification methods based on semi-supervised learning [17] often work well

when labeled data is scarce. In such cases, it may be difficult to construct a reliable su-

pervised classifier, such as in computer-aided diagnosis, drug discovery, and part-of-speech

tagging [100]. Similarly, for team plays in sports, since there have still been no public an-

notated datasets, semi-supervised learning approaches will have the potential to improve

the detection performance of labeled cooperative behaviors. However, the effect of semi-

supervised learning methods on classification performance in cooperative plays of a team

sport is unknown.

This study examines semi-supervised learning methods for the classification of strategic

cooperative plays (called screen plays) in basketball using a smaller labeled dataset and a

larger unlabeled dataset, as illustrated in Fig. 3.1. After segmentation, I extract the input

features of the classifier for each screen play candidate. Finally, I obtain predicted labels

(i.e., screen play types) via semi-supervised learning models. I compare the classification

performance of several basic semi-supervised learning methods and a supervised method

and analyze the differences in the importance of the input features between both approaches.

The purpose of this study is to investigate the effect of semi-supervised learning methods on

the classification performance of cooperative plays in team sports.

To this end, I used screen play data to validate our method. Screen play is the play in which

an offensive player (called a “screener”) is standing on the course of a defensive player like a
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Figure 3.1: Overview of our semi-supervised approach. I use both labeled and (larger amount

of) unlabeled datasets. After the segmentation, I extract the input feature of the classifier for each

screen play candidate. I then perform semi-supervised learning and finally obtain predicted labels

(i.e., screen play types). The dashed rectangle is a supervised approach.

wall and uses their body to prevent the defensive movement against another offensive player

(called a “user”) in a legal way (Fig. 3.2), allowing the teammate to move more freely and

potentially create a scoring opportunity. Screen play is common and basic but important in

basketball games, and various basketball tactics rely on screen play. Therefore, in this study,

I choose screen play as the classification target. The main contributions of this work are as

follows:

1. I perform the classification of cooperative plays in team sports via existing semi-supervised

learning frameworks, including self-training, label-propagtion, and label-spreading.

2. Various types of screen plays, including minor types, are classified in completely auto-

matic ways.

3. Results show that the classification performance of the semi-supervised learning ap-

proaches improved upon the conventional supervised approach for minor types of screen

plays.
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3.2 Materials and methods

A dataset of international games with labels

I used a dataset with labels of various screen plays [15]. Here, I describe how the data were

collected. The positional data of players and the ball (25 frames per second) were obtained

from men’s Asian international-level practical games held in 2015 and preprocessed by the

STATS SportVU system (Northbrook, IL, USA). Data acquisition was based on the contract

between the teams and the company (STATS LLC.), not between the players and me. They

are top-level players, and then the data was not anonymized. The company was licensed to

acquire this data, and it was guaranteed that the use of the data would not infringe on any

rights of players or teams. I analyzed 220 min of play (in four days) in which the two teams

scored 746 points (386 vs. 360). For each day, players performed one and a half games (i.e.,

60 minutes) except for one day (only one game). The positional data contained the XY posi-

tion of each player on the court and the XYZ coordinates of the ball. I used this dataset as the

labeled dataset for supervised classification in the semi-supervised classification framework.

A dataset of NBA games with no label

I also used the basketball dataset from the National Basketball Association (NBA) 2015-

2016 season preprocessed by the STATS SportVU system (Northbrook, IL, USA). The

dataset contains trajectories of basketball players and the ball in the same format above.

Data acquisition was based on the contract between the league and the company (STATS

LLC.), not between the players and us (the remaining part is the same as the above). I chose

100 games from the dataset because I obtained enough amount of data (for details, see be-

low). I did not annotate the screen play labels and used them as the unlabelled dataset for the

semi-supervised classification.
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Data segmentation

Prior to data segmentation, I used an automatic individual play-detection system, such as

a shot using the positional data. In addition, for our analyses and to obtain label information,

all types of screens were labeled visually (for details, see [14, 15, 51]). In data segmentation,

I segmented 2,038 samples in the labeled dataset and 222,334 samples in the unlabeled

dataset (called “actions”), in which an offensive player moves to a defensive player and two

offenses who might use the screen and their defenses (shown in Fig. 3.2) were automatically

detected. At least two attackers are related to a screen play; a screener and a user. A screener

is defined as the attacker to set the screen. A user is defined as the attacker who uses the

screen to free from the defender. In legal screen plays, a screener sets the screen, and then

the user starts to move. An off-ball screen play is a screen play without relation to the ball

directly. In this study, an off-ball screen play was defined as a screen play in which the

candidate screener and user do not possess the ball when the distance was the shortest (I call

it the minimum distance in Fig. 3.2), whereas all other actions were defined as on-ball screen

plays.

For the segmentation, first, all offensive players were considered to be candidate screeners,

and for each candidate, two other offensive and three defensive players were defined as

candidate users and candidate defenders for screeners and users, respectively. Then, a signal

that screen play was likely to occur was defined if the players satisfied the following two

conditions: (1) the distance between a candidate screener and a candidate user-defender was

less than 1.2 m, and (2) the user-defender was the closest player to the candidate user. A

user-defender is defined as the defender mainly defending the user. I define the segment

of screen play candidates as 25 frames before and after the minimum distance in which the

distance between the screener and the user-defender was the minimum. I refer to the first and

last of the 25 frames as the start time and end time, respectively. Signals that were too short
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Figure 3.2: Segmentation of screen play candidates. A signal that screen play was likely to occur

was defined if the players satisfied the following two conditions: (1) the distance between a candidate

screener and a candidate user-defender was less than 1.2 m, and (2) the user-defender was the closest

player to the candidate user. I define the segment of screen play candidates as 25 frames before and

after the minimum distance in which the distance between the screener and the user-defender was the

minimum.

(less than three successive frames) were excluded from the analysis, and temporary adjacent

actions were jointed. This is because, in a legal screen play, a screener sets the screen, and

then the user moves in, and the distance keeps short at a certain time. The authors in the

previous work [15], who have experience playing basketball, labeled all actions (Table 3.1).

Feature vectors

I then computed three types of feature vectors for all classifiers (see the subsections below)

according to the previous work [15]: the inter-agent distance (40 dimensions), individual

geometric information (50 dimensions), and individual moving distance (4 dimensions). I

first computed the inter-agent distance employed in a previous study [12]. They used eight

distances between two of the screeners, the user, the user-defender, and the ball. Here, I

consider the following distances: S-D, S-U, D-U, S-U2, D-U2, S-B, U-B, and U2-B, where
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Table 3.1: Types of screen plays in the labeled dataset. All types of screen plays based on the

previous study (Hojo et al., 2018) are described, except for the flex screen because of fewer data (only

8 samples).

category screen type times description

off-ball down 104 A screen usually sets a screen relatively near the basket ring

and the user uses it to move toward the passer.

off-ball flare 68 A screener sets a screen far from the basket ring,

and it allows the user to move away from the passer and the ring.

off-ball pin 23 A screener sets a screen near the basket and baseline,

and the user uses it to move toward the corner.

off-ball back 31 A screener sets a screen on the back side of a user-defender far from the ring,

and the user uses it to move toward the corner.

off-ball cross 51 A screener moves parallel to the baseline toward the user, sets the screen,

and the user moves toward the screener ’s past position.

on-ball pick 140 A screener sets a screen for the user who has the ball (usually dribbling).

on-ball hand-off 42 A screener has the ball, makes a handoff pass, and sets the screen for the user.

no screen no screen 1427 No screen play.

S, D, U, U2, and B denote a screener, a user-defender, the first user candidate, the second

user candidate, and the ball, respectively. For each distance, I computed five features. Here,

I denote the time T1, T2, and T3 as the start, the minimum distance, and the end of the

analyzed interval, respectively. For each distance, I computed the distance at time T1, T2,

and T3, and the average in distance from T1 to T2 and that from T2 and T3. Thus, the

inter-agent distance had 40 dimensions in total. Next, the moving distance and geometric

information of the individual player were considered based on the previous work [15]. The

moving distances include the distances of four players (the screener, the defense of the user,

and two candidate users) from the start to the end of the action. The geometric information

includes the distances and angles from the midpoint of the endline to each of the four players
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and the ball. For each distance and angle, I computed five features in the same way as above

(i.e., the distance at time T1, T2, and T3, and the average distance from T1 to T2 and that

from T2 and T3).

Supervised classification method as a baseline

Here, I describe a supervised classification method as a baseline. This study employed

a multi-class support vector machine (SVM) to classify the detailed six types of off-ball

screen plays, two types of on-ball screen plays, and no screen play. SVM is widely used for

discriminative classification to find the optimal hyper-plane between two classes [101]. A

soft margin SVM using a Gaussian kernel was employed. Since SVM can not directly solve

multi-class classification problems, there are two strategies to solve this problem: one-to-all

SVM and one-to-one SVM. For the one-to-all SVM, k 2-class SVM models (k is the number

of classes. In this study, k = 9) were constructed. In the training of each SVM model in

one-to-all SVM, one class is labeled as positive, and the remaining classes are labeled as

negative. For the one-to-one SVM, k(k−1)/2 two-class SVM models were constructed. In

the training of each SVM model in one-to-one SVM, one class is labeled as positive, and

another class is labeled as negative, then the other classes are ignored. In general, for a few

classes’ classifications, one-to-all SVM will lead to a high accuracy [102] (11 classes). On

the other hand, as the number of classes increases, the imbalance of the number of samples

will lead to a decrease in accuracy. One-to-one SVM can solve the problem of imbalance to

some extent. In this study, the imbalance problem occurred in both strategies (see Table 3.1),

and the classification problem only considered nine classes; thus, I used the one-to-all SVM,

similarly to the previous study [15].
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Semi-supervised learning

Here I introduce three classical semi-supervised learning methods: self-training (e.g.,

[103]), label-propagation (e.g., [104]), and label-spreading (e.g, [105]). Although there have

been many semi-supervised variants, for interpreting the results and having fewer data, I

used the representative two methods.

The first is self-training, which uses labeled data to train the classifier. The algorithm is

shown as follows.

1. (Initial Training) Self-training starts with a small amount of labeled data. This data is

used to train a basic model.

2. (Prediction on Unlabeled Data) The trained model is then used to make predictions

on the unlabeled data.

3. (Con f idence T hresholding) The model’s predictions are evaluated based on a confi-

dence score. Predictions with confidence scores above a certain threshold are consid-

ered reliable. In this study, the threshold was set as 0.75 of prediction probability.

4. (Labeling Unlabeled Data) The highly confident predictions are used as pseudo-labels

for the previously unlabeled data.

5. (Re− training the Model) The model is re-trained on the expanded dataset, which now

includes both the original labeled data and the new pseudo-labeled data.

6. (Iteration) Steps 2 through 5 are often repeated multiple times until there are no changes

in the dataset. With each iteration, the model should ideally become more accurate as

it’s being trained on progressively more data.

The second is label-propagation. The algorithm is shown as follows.

1. (Graph Construction) The algorithm begins by constructing a graph where each data
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point, whether labeled or unlabeled, is represented as a node. Edges between nodes are

created based on the similarity between data points. This similarity is often calculated

using metrics like Euclidean distance.

2. (Propagation o f Labels) The algorithm then propagates these labels through the graph.

The idea is to spread the label information from the labeled nodes to the unlabeled nodes

based on the probabilistic transition matrix.

3. (Iterative Process) This propagation is typically an iterative process. In each iteration,

every unlabeled node updates its label based on the labels of its neighboring nodes.

4. (Convergence) The process continues until the labels converge, which means that the

labels of the unlabeled nodes do not change significantly between successive iterations.

5. (Final Label Assignment) Once the labels have converged, each unlabeled node is as-

signed the label that it most frequently received during the propagation process.

As a similar graph-based method, label-spreading (e.g., [105]) has been proposed, but

I used label-propagation method for simplicity (I obtained similar results between label-

propagation and label-spreading methods).

To compare with the one-to-all SVM, I use SVM as the base classifier for the self-train

algorithm. For label-propagation algorithm, I use the fitsemigraph function in Matlab 2021a

with the default hyper-parameters (e.g., Euclidean distance was used for the distance).

Statistical analysis

The F1 score was mainly used to validate the classifier. This is because the accuracy

presented issues when there were significantly more negative cases than positive ones, as

was the case in this study. As an intuitive example, accuracy scores are good even when all

negative cases are predicted from the data with only 10% positive cases. Instead, I mainly
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used the F1 score to evaluate whether the true positives can be classified without considering

the true negatives. The F1 score is expressed as

F1score =
2×Precision×Recall
(Precision+Recall)

, (3.1)

where the Recall is equal to the true-positive rate, and the Precision is defined as the ratio of

the sum of true positives and true negatives to false positives. In this index, only true positives

are evaluated, not true negatives. Furthermore, the contribution of the input variables to the

prediction of the method was calculated by SHAP (SHapley Additive exPlanations) [19],

which utilizes an interpretable approximate model of the original nonlinear prediction model.

3.3 Results

First, the classification performances among the methods are shown. Three methods are

compared: SVM, self-training, and label-propagation. These methods classify eight types of

screen plays, including minor types (i.e., flare, pin, back, cross, and hand-off). As described

above, the F1 score was used as the classification performance because the datasets were im-

balanced, and true positives should be appropriately evaluated. As shown in Table 3.2 using

a 95% confidence interval with the normal distribution, overall, classification performances

in semi-supervised methods were higher than those in the supervised method (SVM). For

major types of screen plays (i.e., down, pick, and no-screen), self-training shows similar or

better classification performance than other methods. For down screen, self-training out-

performed SVM, but for pick and no-screen, the performances in self-training were similar

to those of SVM. Label-propagation shows the worst performance for the major types of

screen plays. For minor types of screen plays, three types of semi-supervised methods show

better clarification performance than the supervised method. For flare, back, and hand-off

screens, self-training outperformed SVM, and label-propagation outperformed self-training.
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For pin and cross screens, the performances of self-training and SVM were similar, but label-

propagation outperformed both.

Supervised method Semi-supervised methods

SVM S-train Label-propagation

Mean 95% CI 95%CI Mean 95%CI 95%CI Mean 95%CI 95%CI

(lower) (higher) (lower) (higher) (lower) (higher)

down 0.394 −0.017 0.017 0.422 −0.014 0.014 0.361 −0.009 0.009

flare 0.003 −0.037 0.003 0.037 −0.015 0.015 0.173 −0.010 0.010

pin 0.003 −0.003 0.004 0.005 −0.005 0.005 0.039 −0.009 0.009

back 0.114 −0.025 0.025 0.173 −0.031 0.031 0.224 −0.015 0.015

cross 0.314 −0.018 0.018 0.322 −0.019 0.019 0.379 −0.014 0.014

pick 0.613 −0.009 0.009 0.615 −0.008 0.008 0.510 −0.007 0.007

hand-off 0.031 −0.013 0.013 0.069 −0.020 0.020 0.228 −0.013 0.013

no screen 0.879 −0.015 0.015 0.879 −0.015 0.015 0.825 −0.017 0.017

Table 3.2: Classification performance of two methods for eight classification tasks. F1 score

and accuracy are indicated. Overall, classification performances in the semi-supervised method were

higher than those in the supervised method.

Next, I show the contribution of the input variables to the prediction of the SVM and

self-training method by SHAP [19] in Fig. 3.3. For variable names, here I denote dist as

the distance between the two players or individual moving distance among screener (S),

screener-defender (D), a first user candidate (U), a second user candidate (U2), and the ball

(B). I also denote the ang as the angle between the two players with the goal as the center or

the individual position angle relative to the center and a sideline.

For down screen and cross screen, the results of orders and SHAP values were very close.

For down screen, distSD, distD, distU, distU2B, distSU, distUB, and distU2 show high and
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close SHAP values in both SVM and self-training. For cross screen, distS, angU, angU2,

distSD, distU, distU2, and angD indicate high and SHAP values score in both SVM and self-

training, but the SHAP values of these input variables in self-training were slightly lower than

those in SVM. For back screen, the results of orders and sharpley values were quite different.

Most input variables show much higher SHAP values in self-training than in SVM.

Higher SHAP values suggest that features have a more significant impact on model pre-

dictions, making these effects easier to observe and understand. Self-training shows higher

SHAP values for most features compared to SVM, which indicates that the contributions of

features to the predictions are more pronounced and significant in self-training. This is often

interpreted as the model having higher interpretability because the impact of each feature on

the predictions is easier to identify and explain.

3.4 Summary

This study proposed a semi-supervised learning-based method for classifying cooperative

play, in particular, various types of screen plays, including minor types, in completely au-

tomatic ways. This approach utilizes a large unlabeled dataset and significantly reduces the

labor costs associated with data labeling. The proposed method first roughly filters potential

segments through the definition of screen play. Then, based on previous related research

[15], feature vectors for the semi-supervised learning model are extracted from these seg-

ments. These feature vectors, combined with a small amount of labeled data, are used to train

three types of semi-supervised learning models, including self-training, label-propagation,

and label-spreading. The effectiveness of the proposed method is validated by comparing

it with supervised learning models trained on the same labeled dataset. Additionally, the

relevance of various feature values to the prediction results is quantified by calculating the

SHAP values of the input features.
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In future work, the increase in the dataset amount could be considered. From Table 3.2, for

some minor types of screen plays, even though the semi-supervised learning obtained higher

F1 scores than SVM, the results were still not good. Major types of screen plays got much

better results than minor types of screen plays. To improve the classification performances,

the increase of data amount, especially minor types of screen plays, will be needed.
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Figure 3.3: Contribution of the input variables to the prediction of the SVM and self-training

method. Since the SVM (upper, supervised) and the self-training (lower, semi-supervised) can be

fairly compared, here I show the SHAP values in down, back, and cross screen plays, of which clas-

sification performances improved in the self-training. Of the top 10 features, those at the top had

greater contributions than those at the bottom.





4 Multi-agent comparative analysis of

team sport trajectories

4.1 Introduction

Data-driven modeling is a powerful tool that can extract information and make predictions

from complex real-world data e.g., multi-agent trajectories. Machine learning has actively

studied the learning process of models with complex, nonlinear structures such as neural

networks [11]. Although these models can offer higher expressiveness and predictive per-

formance, their results can be challenging to interpret, creating a trade-off between inter-

pretability and expressiveness (or predictability). This challenge is particularly important for

practical applications in actual sports games, where coaches and players need information

about why a goal was scored and the characteristics observed in subsequent plays.

Currently, the trajectory data of players and the ball in professional sports (e.g., basketball

or soccer) can be accessed. For trajectory analysis, combining with labels (e.g., good or bad

attacks in ball games) can provide insights compared to only trajectory data. There have

been many approaches for supervised and unsupervised learning of multi-agent trajectory

data (see Section 2.2). Compared with previous approaches, the analysis of multiple player

trajectories by highlighting the difference between labels to understand multi-agent behav-

iors has not been considered. In a different research field, that of animal trajectory analysis,

comparing two data classes to obtain useful insights is referred to as comparative analysis

using DeepHL [21]. However, this deep-learning-based method used only single-agent ani-
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mal trajectories; multi-agent motion characteristics (e.g., the distances between agents) were

not considered.

In this study, a comparative analysis method to analyze multi-agent trajectories for team

play in a ball game is proposed, called Multi-Agent Deep-learning based Comparative Anal-

ysis (MADCA, Fig 4.1). A neural network approach based on an attention mechanism is

adopted, which is the combination of a convolutional neural network (CNN) and a recurrent

neural network (RNN), to detect distinct segments in trajectories of given classes (Fig 4.1c).

Compared with the previous method [21], to apply the model to the multi-agent modeling

task, I input additional multi-agent motion features (e.g., distance between the agents) to

show the interaction between agents. Then, because of the significant increase in the train-

ing time for multi-agent tasks using MADCA, I made some modifications to the structure of

the DeepHL model to improve training speed without significantly impacting performance.

Finally, a new interpretable and simple label, effective attack, was defined to evaluate the

performance of a team.

This method enables us to understand the differences between classes by highlighting seg-

mented trajectories and identifying which variables correlate with the labels (Fig 4.1d). Our

approach was verified by comparing various ablated models and demonstrated its effective-

ness through use cases that analyze the difference between effective and ineffective attacks

in US National Basketball Association (NBA) games. For example, based on the correlation

between attention values and the handcrafted features, the distance between the shooter and

the shooter defender was selected and the histograms of the selected feature were clearly

different between the effective and ineffective attack classes.

The main contributions of this section are as follows:

1. MADCA is proposed, a comparative analysis method to analyze multi-agent trajectories

in ball games, the goal of which is to understand the differences between classes by
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Figure 4.1: Our framework of multi-agent trajectory comparative analysis using MADCA. (a)

Multi-agent trajectories of classes A and B are given. (b) Input feature sequences are computed

by pre-processing. (c) A MADCA model called MADCA-net comprises a 1D convolutional neural

network (CNN) and gated recurrent unit (GRU) with attention mechanism and outputs classification

results. (d) The main outputs are classification results, highlighted trajectories (left), attentions for

each layer and time (middle), and attended features (right). For details, see Sections 4.2.2 and 4.2.5.
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highlighting segmented trajectories and which variables correlate with the labels.

2. A neural network approach based on an attention mechanism is adopted that uses multi-

agent motion characteristics (e.g., the distances between agents and objects) as input

and detects distinct segments in trajectories of given classes.

3. Our approach is verified by comparing various ablated models with effective/ineffective

attack labels and goal/non-goal labels, using different sizes of the dataset. We also

demonstrate the effectiveness of our method through use cases that analyze the differ-

ence between effective and ineffective attacks in the NBA dataset.

The remainder of this section is organized as follows. First, our method is described in

Section 4.2. The experimental results are presented and discussed in Sections 4.3 and 4.4,

respectively.

4.2 Materials and Methods

In this section, the dataset is first described, then our machine learning model, preprocess-

ing, and analysis procedures.

4.2.1 Dataset

A basketball dataset from the NBA 2015-2016 season, preprocessed by the STATS SportVU

system (Northbrook, IL, USA), was used, which contains the positional data of players and

the ball (at a frequency of 25 frames per second). 600 games from the dataset were chosen be-

cause we deemed that this represented sufficient data. The positional data contained the (x,y)

positions of each player on the court and the (x,y,z) coordinates of the ball. The dataset was

divided beforehand into attack segments from the start of the attack (ball possession of the
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team or already divided segmentation in the raw data) to the transition to the next attack. The

end of the attack segment is defined as being when a shot is made or the ball is lost (known

as a turnover in basketball). The data contained a total of 45,307 attacks, sub-sampled at 10

Hz, i.e., the time between each point coordinate is always 0.1 seconds. In our dataset, there

were 18,021 shot successes, 27,286 shot failures (including 7131 turnovers), 22,159 effec-

tive attacks, and 23,148 ineffective attacks (the definitions of effective/ineffective attacks are

described in Section 4.2.3). The probabilities of scoring, given the attack was effective and

ineffective, were 0.466 and 0.333, respectively, which indicates that the effective attack indi-

cator is valid in terms of scoring on average. However, in a strict sense, scoring and effective

attack are different (for further detail, see Section 4.2.3).

In our analysis, the trajectories of five agents (Fig 4.1a) are considered. These five agents

comprise the ball and four players: the shooter (or the last player who was on the ball,

including a ball lost case), the defender of the shooter at the last frame (called DF1), the

last passer to the shooter (called passer), and the defender of the last passer at the last frame

(called DF2). These agents were selected because the verification of our approach is focused

on, and all trajectories may be too diverse for the model to learn a good representation for

highlighting the differences between the two labels. In general, this is a multi-agent role

assignment problem for an unsorted diverse dataset (see e.g., [40]). This problem is avoided

by using only predetermined roles about four players and the ball. It is considered that it is

more difficult to determine the roles in a fixed manner as the number of players increases,

and fewer players may be less informative in this analysis. Then, the interval from the ball-

receiving time of the passer to the end of the above attack segment was analyzed.
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4.2.2 Proposed Model

In general, neural network approaches are flexible in the field of team sports (e.g., trajec-

tory prediction [62, 106, 107, 108, 65, 109]), but they sometimes lack interpretability. To

obtain interpretable spatial representations, several approaches have been developed such as

using matrix [58] and tensor [59, 110] factor models, and Poisson point processes [60] that

focus on on-ball behaviors. Compared with these approaches, the analysis of the trajectories

of multiple players to understand multi-agent behaviors using a neural network with attention

mechanism is focused on in this study.

The proposed approach is designed to understand the differences between classes of multi-

agent trajectories in sports by highlighting segmented trajectories and which variables cor-

relate with the labels. To this end, a comparative analysis method is proposed to analyze

multi-agent trajectories called MADCA, which extends the single-agent trajectory DeepHL

framework [21] to the multi-agent trajectory problem. Similar to [21], we assume that there

are two classes of trajectory data with different characteristics such that each trajectory with

either class A or B (e.g., scored or not). Here, the neural networks for MADCA are ex-

plained, which are shown in Fig. 4.1c. The pipeline of MADCA is briefly introduced such

that:

1. Our network (hereafter called MADCA-Net) is first trained using the trajectory data of

two classes, which is the combination of CNN and RNN.

2. The attention mechanism in MADCA-Net computes the attention values of each time

stamp of the trajectory.

3. After obtaining the attention, distinctive parts of the trajectories in two classes are high-

lighted using the attention in a particular layer. To find such a layer (hereafter referred to

as a “distinctive layer”), the score is computed for each layer using the attention value.

4. MADCA also extracts the highlighted segments with handcrafted features, which is
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based on the correlation between the attention values and the features (Fig. 4.1d mid-

dle).

Next, the input of the model is described. The input is a time series of features, an

lMAX ×N f matrix, where lMAX is the maximum length of the input trajectories and N f is

the dimension of the features. The features in DeepHL [21] include basic features used in

locomotion analysis (e.g., position and speed). In this study, multi-agent motion features

such as the distances between the K agents and an object (e.g., a goal called a ring in bas-

ketball) are used. For further details of the input features, see Subsection 4.2.3. Since the

lengths of the trajectories are not identical to each other, the missing elements are masked

when training the network.

MADCA-Net classifies a trajectory into either class and outputs the segments of a tra-

jectory to which the distinctive layer pays attention. Figure 4.1c shows the architecture of

MADCA-Net, consisting of four stacks of 1D convolutional layers and a gated recurrent unit

(GRU) [111] layer, which is one of the RNN architectures. As used in DeepHL [21], the 1D

convolutional layers (the orange blocks in Fig. 4.1c) extract short-term features. To compute

features at different levels of scale, in each 1D convolutional layer, we extract features using

a kernel size or filter width Ft , which are 3%,6%,9%, and 12% of lMAX in the four convolu-

tional stacks. A step size or stride of one sample is used in terms of the time axis. Padding is

employed to ensure that the length of the outputs of a given layer is corresponded with that

of the inputs to the layer. The convolutional stacks are constructed to compute features at

different levels of scale by utilizing different filter sizes across the different stacks.

In contrast, the GRU layers compute features reflecting long-term dependencies (the con-

figuration of the attention mechanism is the same as in the 1D convolutional layers). Com-

pared with DeepHL [21], which uses long short-term memory (LSTM), we used a GRU,

which has a smaller number of parameters than LSTM, since in preliminary experiments,
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the original DeepHL models took a long time to train. In addition, because we believe last-

moment information (e.g., shot) will be important, and the different levels of abstraction

may not be important for multi-agent trajectory data in sports, a simple two-layer GRU is

implemented rather than four stacks of LSTMs with different layer sizes [21].

In order to identify which segments of the trajectories are significant for each layer, an

attention mechanism [112] is incorporated into the model like the previous work [21] as il-

lustrated in Fig. 4.1c. The output of each 1D convolutional/GRU layer for an input trajectory

is used to calculate the attention vector such that

a = softmax(tanh(WaZ⊤+ba)), (4.1)

where a∈R1×lMAX . This indicates the importance of each time stamp in the trajectory, which

is used to highlight parts of the trajectory. An attention vector has the same length as the

trajectory, where lMAX is the maximum length of the input trajectories. Matrix Z ∈RlMAX×N

is an output of the 1D convolutional/GRU layer, where N is the number of nodes in the

convolutional/GRU layer. Wa ∈ R1×N and ba ∈ R1×lMAX are the weight matrix and its bias,

respectively. The softmax function ensures that the sum of all output values is equal to

one, while the tanh function constrains the output value of its input to a range between

−1 and 1. The attention mechanism is implemented as a neural network in MADCA-Net,

specifically using layer-wise attention as indicated by the aqua blocks in Fig. 4.1c. The

attention vector a is multiplied by the outputs of the 1D convolutional/GRU layer using

matrix multiplication (MatMul), as shown by the khaki blocks in Fig. 4.1c. The outputs of

all layers are concatenated and used to estimate the class (Class A or B) in the final layer

of MADCA-Net, which is a densely connected output layer using the softmax function,

as shown in Fig. 4.1c. Again, the model is designed to compute attention information at

different levels of scale using 1D convolutional/GRU layers.

It is noteworthy that the parameters in Eq. (4.1) for each layer, including Wa, ba, and
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the parameters of the convolutional and GRU layers, are estimated in the training. The tanh

activation function is introduced into Eq. (4.1) to smooth the output attention. Without the

tanh function, if an outlying large value is included in WaZ⊤+ba at time t, attention values

other than those at time t become extremely small. This causes only one data point to be

colored in red when visualizing a trajectory using such attention values, making it difficult

to identify important segments.

For processing the layers in MADCA-Net, a scoring system is employed, similar to that

used in DeepHL [21], using the following equation:

s(Ai,CA ,Ai,CB) = sfc(Ai,CA ,Ai,CB)+ sit(Ai,CA ,Ai,CB), (4.2)

where Ai,CA and Ai,CB with the ith layer are sets of attention vectors calculated from trajec-

tories belonging to class A and B, respectively. Since an attention vector from a distinctive

layer is expected to exhibit high values within a restricted range of segments, sfc(Ai,CA ,Ai,CB)

computes the average variance of the attention values, which is normalized based on the av-

erage trajectory length, as follows:

sfc(Ai,CA ,Ai,CB)

=

√√√√ 1
|Ai,CA ∪Ai,CB | · l(Ai,CA ∪Ai,CB)

∑
a∈Ai,CA∪Ai,CB

Var(a),
(4.3)

where Var(·) computes the variance and l(·) computes the average trajectory length. Us-

ing l(Ai,CA ∪Ai,CB), the computed variance is normalized. To prevent a larger variance for

longer trajectories because the softmax function in Eq. (4.1) ensures that all values sum to

one, the average variance is normalized using the average trajectory length.

Additionally, to assess the difference in attention value distributions between the two

classes, the score sit(Ai,CA ,Ai,CB) is computed as follows:

sit(Ai,CA ,Ai,CB) = (1− Intersect(h(Ai,CA),h(Ai,CB))). (4.4)
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Figure 4.2: Example of histogram intersection. In this fictitious example, 5 bins for normalized

histograms 1 and 2 are considered. Equation 4.5 computes the sum of the intersection histogram.

Based on DeepHL [21], h(·) computes a normalized histogram of attention values with 200

bins, and Intersect(·, ·) computes the area of overlap between the two histograms as illus-

trated in Figure 4.2. Specifically, the computation is given by the equation:

Intersect(H1,H2) = ∑
i

min(H1(i),H2(i)), (4.5)

where H1(i) denotes the normalized frequency of the ith bin of histogram H1.
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4.2.3 Processing Procedure

Here, the steps taken in this study are described to compute the input features and target

labels for MADCA-net. For the input features, the variables used in DeepHL [21] are first

computed: position, speed, and distance from the initial location for each agent. The lo-

cation data have two dimensions, while the speed (the norm of two-dimensional velocity)

and distance from the initial location have one dimension for each agent. In this study, as

multi-agent features, various distances among the agents and the ring (a fixed object) were

added: shooter-DF1, shooter-DF2, passer-DF1, passer-DF2, shooter-ring, passer-ring, and

ball-ring. Furthermore, the moving average and moving variance of the above variables as

per DeepHL [21] are computed.

Next, the steps are described to compute target labels. Two types of labels are considered:

goal/no-goal and effective/ineffective attacks. The two MADCA-Nets were trained sepa-

rately using the two types of labels. The goal/no-goal label can be straightforwardly defined

based on the results of the attacks. However, since goal predictions are difficult in general

(e.g., [51, 9]), another label was defined to be based on whether or not a particular play was

an “effective attack,” rather than whether a goal was scored in a particular play.

The tactics and strategy of a coach and team may be most influential up until the point at

which there is a good scoring opportunity to make a shot, and it is then the skills/form of the

individual player that determines whether this opportunity is actually converted into a goal. A

good scoring opportunity in basketball is considered to be a shot being attempted in a context

in which there is a high expected probability of scoring based on historical attempted and

successful shots. Therefore, an interpretable and simple indicator is computed from available

statistics (i.e., based on the frequency) to evaluate whether a player makes an effective shot

attempt, rather than using a label based on whether a goal was scored or a learning-based

score prediction model.
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From the available NBA statistics, two basic factors were focused on for effective attacks

at an individual player level: the shot zone on the court and the distance between a shooter

and the nearest defender. This is based on the previous work [109] that only uses shooter and

DF1 information (not all four players). These two factors are considered important for bas-

ketball successful shot prediction [14, 51, 9]. In the NBA advanced stats [113], probabilities

of successful shots attempted in each zone and distances for each player can be accessed.

The shot zones are separated into four areas: the restricted area, in-the-paint, mid-range, and

3-point area. The restricted area is defined as the area within a radius of 2.44 m (the distance

between the side of the rectangle and the ring) from the ring. The in-the-paint area is defined

as the area within a radius of 5.46 m (the distance between the ring and the farthest vertex

of the rectangle) from the ring. The three-point area is defined as the area that is outside of

the 3-point line. The mid-range area is the remaining area. The shooter’s distance from the

nearest defender is categorized into four ranges: 0-2 feet, 2-4 feet, 4-6 feet, and more than 6

feet.

An effective attack is defined as one that meets the following criteria:

• The shooter’s position in the restricted area is effective at any distance

(because a defender is often located near the shooter).

• The shooter’s position in the paint and mid-range is effective at a distance

of 6 feet or more from the nearest defender (this range is regarded as “open”

in the NBA advanced stats).

• The shooter’s position in the 3-point area is effective when a player with a

shot success probability of at least 0.35 attempts a shot at a distance of 6

feet or more from the nearest defender (because some players do not shoot

tactically).

Based on the statistics in the 2014/2015 season and the tracking data, The probabilities of
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Figure 4.3: Prediction performances of all models. The effective/ineffective attack prediction and

goal/non-goal prediction accuracies (a,b) and F1-scores (c,d) are shown.

successful shots were computed for each zone and the distances for each player. The proba-

bility of the player who attempted shots less than 10 times was computed as the probability

of the player that is of the same position (i.e., guard, forward, center, guard/forward, and

forward/center based on their registration in the NBA 2014/2015 season). It should be noted

that certain characteristics of a good shot can differ depending on the court location and

context, for example, for 2-point and 3-point shots. Note that, unfortunately, those for only

two areas (the 2-point and 3-point areas), with four distance categories, could be accessed.

Thus, the shot success probabilities in the restricted, in-the-paint, and mid-range areas were

computed using those from the 2-point area.
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Figure 4.4: Example results of MADCA in effective and ineffective attacks. (a,d) Example of

highlighted trajectories on a basketball court, (b, e) Example of attention values and feature se-

quences, and (c,f) Distinctive attended feature histogram for a test dataset. In the highlighted trajec-

tories, blue, red, and green represent the ball, attacker, and defender when the features are distinctive

between the labels (otherwise, they are white). Attention sequences (blue) are presented with a spe-

cific feature (red). The attended feature histogram is based on the distinctive features between the

labels during the specific (highlighted) interval.

4.2.4 Training

MADCA-Net was trained on 80% of the trajectories, which were randomly selected, to

minimize the binary classification error on the training data, employing backpropagation

based on the Adam optimizer. Then, the trained MADCA-Net was tested using the remaining

20% of trajectories to compute the classification accuracy. All models were trained for 50

epochs, and there were 128 neurons in each convolutional/GRU layer. To reduce overfitting,

dropout was used with a rate of 0.5.
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4.2.5 Analysis

In our analysis, our methods were first validated in terms of classification performance.

Then, example visual analyses were shown using our framework. Lastly, analyses of team

performances were demonstrated.

To validate our methods in terms of classification performance, we used accuracy and

F1-score metrics. When comparing our full model, CNN-RNN (MADCA), to two ablated

models, separating 1D CNN and GRU (RNN) models was considered. Our approach was

verified by comparing the models with effective/ineffective attack labels and goal/non-goal

labels using different dataset sizes (1,024, 8,192, and all 45,307 samples). It is speculated

that 1K is the minimum size of the training, and 8K is roughly an intermediate size between

the minimum and full sample sizes in a log scale. Note that it is not obvious that more data

provides a better result in this dataset and these tasks if a classification task is inherently

difficult or some aspect of the model or input features is wrong. To examine these possibili-

ties, we verified our approach using different dataset sizes. With five different random seeds,

when splitting the data into training and testing sets, the mean and standard deviation of the

classification performances were evaluated.

To understand the meaning of the highlights, as per DeepHL [21], the Pearson correlation

coefficients between the attention values of each layer and handcrafted features were com-

puted as shown in Fig. 4.1d middle. Based on the correlation coefficients, the highlighted

trajectories (Fig. 4.1d left) were plotted. For feature analysis, the differences between the

distributions of each handcrafted feature for two classes within the highlighted segments

were computed [21] as follows:

diff(Ai,CA ,Fj,CA ,Ai,CB ,Fj,CB) = 1− Intersect(h(m(Ai,CA ,Fj,CA)),h(m(Ai,CB ,Fj,CB))),

(4.6)

where Fj,CA is a set of time series of the jth handcrafted feature, calculated from trajectories
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belonging to class A. In addition, m(·, ·) is a masking function that extracts feature values

within the highlighted segments. Distinctive features were selected based on this value and

plotted a histogram to understand the attended (or highlighted) features (Fig. 4.1d right).

Finally, for team analysis, the average number of effective attacks and goals was analyzed

to examine the effective attack label as a team evaluation metric. Pearson correlation coef-

ficients (r-value) were computed between statistical results (e.g., actual goals and effective

attacks) and the 2015-16 NBA season results (field goal percentage and field goal scores),

which were obtained from the official NBA website (nba.com). For season results, it was

confirmed that field goal percentage was very highly correlated with the season ranking

(τ = −0.990 using Kendall’s τ), which suggests the field goal percentage reflects the team

winning, whereas the field goal scores reflect more offensive aspects. Since the sample size

was small (N = 30) in the correlation analysis, the r value was used as an effect size for

evaluation rather than the p-value. As described in a previous study [114], correlation coef-

ficients less than 0.20 can be interpreted as slight, almost negligible relationships, between

0.20 and 0.40 as low correlation; between 0.40 and 0.70 as moderate correlation; between

0.70 and 0.90 as high correlation, and correlation greater than 0.90 as very high correlation.

4.3 Results

The purpose of our experiments was to validate our methods for application to real-world

team sports data. To this end, our methods were first validated in terms of classification

performance. Then, example visual analyses were presented using our framework. Lastly,

quantitative analyses of team performance were shown using our approaches.
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4.3.1 Model validation

First, our methods were validated in terms of classification performance. Our approach

was verified by comparing two baselines with effective/ineffective attack labels and goal/non-

goal labels, using different sizes of the dataset (1,024, 8,192, and all 45,307 samples), as

shown in Fig 4.3. First, as the size of the datasets increased in effective/ineffective attack pre-

diction, the prediction performances increased in all models and predictions, indicating that

all models would benefit from a greater amount of data. Compared with the goal/non-goal

prediction models, effective/ineffective attack prediction models show better performance,

which seems reasonable because goal/non-goal prediction is inherently more difficult than

effective/ineffective attack prediction. Thus, we basically used the effective/ineffective at-

tack prediction model was basically used with all data for the following analysis. Among

the three models, in the effective/ineffective attack prediction, the performance was better

in descending order of RNN, CNN-RNN (MADCA-Net), and CNN particularly when suf-

ficient data is available. In the goal/non-goal prediction, the differences among the models

were similar. The prediction performance of the RNN was better than that of MADCA-Net

and CNN, but to find the distinctive (highlighted) part of trajectories was aimed, which can

be modeled by a 1D CNN. Then, MADCA-Net was used for the following analysis, which

combined the interpretability of the 1D-CNN model and the predictability of an RNN model.

4.3.2 Example analysis

Next, example visual analyses were shown using our framework. In this subsection, ex-

ample results of effective/ineffective attacks were presented in Fig 4.4, and then those of

goal/no-goal attacks were presented in Fig 4.5.

First, distinctive layers were found by computing a score for each layer by providing a
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Figure 4.5: Example results of MADCA in goal/no-goal attacks. (a,d) Example highlighted tra-

jectories on a basketball court, (b, e) Example attentions and feature sequences, and (c,f) Distinctive

attended feature histograms for a test dataset are shown. Color configurations are the same as those

in Fig 4.1.

ranking of the layers based on the calculated scores. In both effective/ineffective and goal/no-

goal attacks, the last layer of the fourth 1D-CNN is the distinctive layer, which means that

the longest filter width in the 1D CNN layers was selected.

Next, trajectories colored by the identified distinctive layer were compared. In the ex-

ample of Fig. 4.4d (colored by a distinctive layer with the highest score), the start and end

segments of effective attack trajectories were highlighted in color. On the other hand, in the

example of Fig. 4.4a, almost no trajectory segments in an ineffective attack were highlighted.

Qualitatively, the latter (Fig. 4.4a) may be a usual attacking play from the top position (and,

therefore, not distinctive), while the former (Fig. 4.4d) may be an effective shooter move-

ment for creating a scoring opportunity.

Lastly, we tried to understand the meaning of the highlighted segments. MADCA offers
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two methods for comprehending the rationale behind the attention drawn to a specific seg-

ment through a distinctive layer. First, a correlation is computed between the time series of

attention values and each of the pre-computed handcrafted features. In effective/ineffective

attacks, the distance between the shooter and DF1 (the shooter defender at the last frame)

was selected, which seems reasonable because the shooter-DF1 distance is related to shot

performance. In Figs 4.4b and e, activation in attention and the shooter-DF1 distance were

negatively correlated, which indicates that MADCA-Net focused on the scoring opportuni-

ties with larger shooter-DF1 distances. Second, the difference was provided in the distri-

butions of each handcrafted feature among the two classes within the highlighted segments.

In Figs 4.4 c and f, the histograms of the attended feature (in this case, the shooter-DF1

distance) were different between effective and ineffective attacks, which indicates that the

attended feature can distinguish between the effective and ineffective attacks.

Beside the feature of the distance between the shooter and DF1, the highest 5 diff values

(which was mentioned in Equation 4.6) of features in MADCA and RNN were shown in Fig.

4.6. Since the results for CNN and MADCA were similar, the histogram of features with high

diff values in MADCA and RNN were shown in Figs. 4.7 and 4.8 respectively. Through Figs.

4.6, Fig. 4.7 and Fig. 4.8, it is clear that higher diff values indicate more distinct histogram

distributions. In Fig. 4.6, the highest diff value in MADCA was significantly higher than

RNN. When the attention values of a feature show significant differences across different

classes, it indicates that the model is clearly focusing on these features to distinguish between

categories. This noticeable distinction helps us understand which features the model relies

on to make decisions, thereby enhancing the model’s interpretability. And in this study, that

means the MADCA model has a better performance on interpretability.

Next, example MADCA results of goal/no-goal attacks were shown in Fig 4.5. In the ex-

ample of Fig. 4.5a, the start and end segments of effective attack trajectories were highlighted
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Figure 4.6: Highest diff values in MADCA and RNN. Here I show the highest 5 diff values of

features in MADCA and RNN respectively.In this figure, d1 means DF1. d2 means DF2. s means

shooter. g means ring. b means ball. loc_y means y coordinate. loc_x means x coordinate. Dist

means the distance between the following 2 agents. dist_from_init means the distance between the

following agent and its initial position.
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Figure 4.7: Histograms of top-5 features in MADCA. Here I show the histograms of features with

high diff values in MADCA for a test dataset.
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Figure 4.8: Histograms of top-5 features in RNN. Here I show the histograms of features with high

diff values in RNN for a test dataset.
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in color. On the other hand, in the example of Fig. 4.5d, almost no trajectory segments were

highlighted in a goal play. Qualitatively, this may not provide useful information because we

want to know the highlighted trajectories (i.e., movements) in goal plays rather than no-goal

plays. As a distinctive feature, in goal/no-goal attacks, the DF1 y-coordinate was selected,

which seems somewhat reasonable but not essential information about multi-agent interac-

tion because this feature indicates that a shooter defender retreated toward the end-line of

the court, but there is no information about the shooter. In fact, there was almost no corre-

lation between activation in attention and the DF1 y-coordinates in Figs 4.5 b and e. In Figs

4.5 c and f, the histograms of the attended feature (in this case, DF1’s y-coordinate) were

almost the same in goal and no-goal plays, which indicates that it would be difficult to distin-

guish between the two types of plays using the attended feature. Note that, in the above two

cases, the information of all features (e.g., passer and DF2) were considered in this analysis.

According to the procedure in Section 4.2.5, we selected and showed the distinctive features.

4.3.3 Team analysis

Lastly, quantitative analyses of team performance are shown to examine the effective at-

tack metric. Table 4.1 shows the 2015-2016 rankings and season field goal percentages and

points, as well as statistical results (e.g., actual scores and effective attacks) for each team.

The season performance (1,230 games) was estimated using tracking data from a subset of

the season’s games (600 games).

To gauge the importance of these metrics, using the results from Table 4.1, Pearson cor-

relation coefficients were computed between the statistical results (actual goals and effective

attacks) and 2015-16 NBA season results (field goal (FG) percentage and points). Note that

the Golden State Warriors was excluded, who had a record win-to-loss ratio (73 wins and 9

losses) at the time, from the analysis because the Warriors had, by far, the highest season FG
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Table 4.1: Rankings and statistics of teams in the 2015-2016 NBA season, including season field goal

(FG) percentages and points, as well as statistical results (mean actual goals and effective attacks

from our data).

Team Name Rank Season Season Mean Mean

FG % FG pts goal eff. att.

Golden State Warriors 1 48.7 8055 0.413 0.478

San Antonio Spurs 2 48.4 7148 0.443 0.512

Oklahoma City Thunder 3 47.6 7422 0.417 0.463

Miami Heat 4 47.0 6798 0.416 0.493

Milwaukee Bucks 5 46.7 6730 0.400 0.501

Los Angeles Clippers 6 46.5 7079 0.395 0.468

Minnesota Timberwolves 7 46.4 6645 0.398 0.466

Sacramento Kings 8 46.4 7226 0.390 0.532

Washington Wizards 9 46.0 7185 0.383 0.505

Cleveland Cavaliers 10 46.0 7222 0.398 0.490

Atlanta Hawks 11 45.8 7151 0.398 0.588

Orlando Magic 12 45.5 7120 0.396 0.522

Brooklyn Nets 13 45.3 6803 0.433 0.466

Houston Rockets 14 45.2 7066 0.387 0.517

Toronto Raptors 15 45.1 6720 0.403 0.483

Portland Trail Blazers 16 45.0 7198 0.403 0.453

Indiana Pacers 17 45.0 6947 0.386 0.460

Utah Jazz 18 44.9 6608 0.389 0.496

New Orleans Pelicans 19 44.8 7008 0.408 0.533

Dallas Mavericks 20 44.4 6934 0.387 0.506

Denver Nuggets 21 44.2 6842 0.399 0.505

Chicago Bulls 22 44.1 6981 0.387 0.460

Memphis Grizzlies 23 44.0 6542 0.386 0.517

Boston Celtics 24 43.9 7149 0.387 0.491

Detroit Pistons 25 43.9 6962 0.369 0.477

New York Knicks 26 43.9 6654 0.422 0.388

Charlotte Hornets 27 43.9 6945 0.414 0.501

Phoenix Suns 28 43.5 6840 0.398 0.505

Philadelphia 76ers 29 43.1 6704 0.364 0.502

Los Angeles Lakers 30 41.4 6399 0.359 0.407



4.4. Summary 61

Table 4.2: Pearson’s r-values with each of the quantitative metrics from our data and team

performance in the 2015-2016 season (excluding the Warriors).

Quantitative Metric Season FG (%) Season FG points

Mean goals 0.595 0.296

Mean effective attacks 0.237 0.349

points (8,055) in the league (the second highest was Oklahoma City Thunder with 7,422).

From Table 4.2, the results show that mean actual goals had moderate and low positive rela-

tionships with season FG percentage (r = 0.595) and points (r = 0.296), respectively. Mean

effective attacks, on the other hand, had low positive correlations with season FG percentage

(r = 0.237) and points (r = 0.349), respectively. From these results, the mean FG goal from

our data can estimate season FG percentage, which seems reasonable given it is the same

data, and the mean effective attacks can estimate season FG points better than the mean FG

goals from our data. The results may be related to the effective attack considering the shot

area (including 2- and 3-points). Note that, from the correlation results, it is difficult to di-

rectly examine the effectiveness of an effective attack because there is no ground truth of

an effective attack without considering the scoring results. In other words, the correlation

is examined with scoring results, but a higher correlation does not mean higher reliability.

These results are discussed in the next section.

4.4 Summary

In this study, a comparative analysis method called MADCA was proposed, which ana-

lyzes multi-agent trajectories in ball games. The proposed method utilized a deep neural net-

work which was combined with CNN layers and GRU layers, and this network was trained

by multi-agent features that were extracted from the dataset. Moreover, an attention mech-
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anism was applied in the deep neural network. To evaluate the performance of each attack,

the concept of effective attack was adopted, and its rationality as an evaluation criterion was

demonstrated by analyzing NBA game data. In addition, the proposed is compared with var-

ious ablation models with effective/ineffective attack labels and goal/non-goal labels. Fur-

thermore, the proposed method can extract distinctive layers in MADCA-Net and features in

each prediction task to highlight the segmented trajectories and show which variables were

correlated with the labels. This could provide insight into the relationship between attack

efficiency and certain attack characteristics.

This approach can extract distinctive layers in MADCA-Net and features in the effec-

tive/ineffective attack prediction task, as shown in Fig 4.4. However, specifically, for goal/non-

goal prediction, when the trajectories of ball sports are dealt with, note that all trajectories

may not have the characteristics of a specific class. For example, the shooting skills of a

shooter and the randomness of the successful shot affect the goal/non-goal prediction perfor-

mance. In addition, it can be speculated that in top-level teams (e.g., Warriors), players can

score even in ineffective situations because of their superior shooting skills. Although it is

inherently difficult to validate the effective/ineffective attack metric as mentioned above, we

believe it would be more plausible than the metric based on goal/non-goal prediction from

these prediction performances.
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5.1 Summary of the Thesis

This study proposed methods to classify various team plays and analyze multi-agent tra-

jectories in team sports. This thesis addressed the following problems. The first is how to

utilize large amounts of unlabeled data in cooperative play classification. The second is how

to understand the differences between different trajectories of team play and the correlation

between variables and labels of team play.

Chapter 2 introduced the literature review of previous related works in three aspects.

Firstly, I introduced the traditional classification and analysis methods in team sports, in-

cluding inverse approaches and forward approaches, both relying on researchers’ expe-

rience and established theories, easy to interpret but hard to model. Secondly, I intro-

duced machine learning methods, including unsupervised learning, supervised learning, self-

supervised learning, semi-supervised learning, and reinforcement learning, easy to model but

hard to interpret. Finally, interpretability in machine learning for team sports was introduced.

In Chapter 3, to classify team plays in basketball utilizing large amounts of unlabeled data,

a semi-supervised learning framework was adopted (Study I). In this study, large amounts

of unlabeled data were labeled by prediction models, and various types of screen-plays were

classified in a completely automatic way. To provide insights into features used in classifiers,

SHAP [19] was also applied in this method to show the relationship between each feature

and prediction results.
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In Chapter 4, to analyze multi-agent trajectories of team play in team sports, a multi-agent

deep learning-based comparative analysis method in basketball was proposed (Study II). This

study provided a way to understand the differences between given classes by highlighting

segmented trajectories using the attention mechanism-based neural network and correlation

between variables and labels.

Overall, these two studies of this thesis all aim to discover insights of team sports. Even

though the two studies focus on different directions, they can both provide some more unique

insights for coaches’ tactical guidance of team sports.

5.2 Future Work

Although our proposed approaches in this thesis could provide some insights in coop-

erative play classification and analysis without much labor cost for labeling, a number of

challenges still remain.

Limited number of considered agents. In this thesis, including Study I and II, only a part

of the agents were considered to improve interpretability and avoid the role assignment prob-

lem. In more general cases, all agents (in basketball, 11 agents including a ball) should be

considered to provide a more accurate insight for team sports in future work. For example, a

graph neural network [69, 108, 109] could be applied to improve predictability and a Gaus-

sian mixture model [106, 65] to address the role assignment problem in order to improve the

interpretability.

Limitations of a single kind of team sport. The two studies mentioned in this thesis both

focus on basketball and primarily use the same dataset from the NBA. Therefore, whether the

methods proposed in this thesis can be effectively applied to basketball games at other levels
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or even to other types of ball sports remains unknown. Moreover, the features that need to

be extracted from the trajectories may vary for different ball sports. Accordingly, as future

work, it could be considered to test the methods on basketball leagues at different levels and

to incorporate expertise from other ball sports into the proposed methods to expand their

applicability.

Introduce other machine learning methods. In future work, introducing other machine

learning methods into the study of this thesis could be considered, which may help us

further improve the performance. For example, some studies in graph neural networks

[69, 70, 71, 72] can improve representation ability in team sports trajectory. Transformer-

based approach [67] can also be expected to learn better trajectory representation in bas-

ketball games to evaluate players and teams. However, more complicated models will of-

ten decrease interpretability. Thus, the trade-off between predictability and interpretability

should be considered. As another approach to directly evaluate the actions of players, a deep

reinforcement learning-based approach for basketball games [78] can be considered.

Practical application. The practical application of studies in this thesis should also be con-

sidered in future work. In the study I’s framework, to a given basketball game’s trajectory,

the framework can classify which kind of screen play appeared among it in an automatic way

after the games. Due to this functionality, this framework could be applied in automatic an-

notation in team play for basketball games instead of manual annotation. It not only reduces

the labor cost but also provides the annotation faster.

In the study II’s framework, with a large amount of training data, the MADCA model is

trained, and then to the given basketball game’s trajectory data, which the users are interested

in, MADCA can classify effective/ineffective attacks and highlight distinct subtrajecory for
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effective attack. It could be useful for players and coaches to analyze players’ performance

in attacks.
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