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A new method of perturbation for the study of nonlinea r wave 

propagation in a dielectric medium such as a magnetoplasma is 

proposed. By this method the wave equations which include the effects 

due to a nonlinearity or an inhomogeneity of the transverse waves 

propagating along magnetic field lines are rederived and summarized. 

Among many kinds of wave modulations described by these equations, the 

condition for wave-trapping in space plasmas is especially discussed 

in detail. 

1. Introduction 

Nonlinear wave propagation is one of the central problems in 

studies of wave phenomena in plasmas. Due to the ponderomotive force, 

which represents time-averaged and long-lived nonlinear wave effect, 

the quasi-monochromatic waves are self-modulated. It is known that 

the reductive perturbation method [Taniuti and Wei , 1969] is an 

effective means to study nonlinear wave propagation. By t his method 

many kinds of nonlinear wave equations have been derived such as the 

one-dimensional nonlinear Schrodinger equations [Taniuti and Washimi, 

1968; Taniuti and Yajima 1969], the de rivative nonlinear Schrodinger 

equation for Alfven wave [Mio et al., 1976] and the nonlinear 

Schrodinger equation in two- dimensional space, which describes t h e 

wave-focusing and the wave -t rapping [Taniuti and Washimi 1969, Washimi 

1973]. In the latter method the nonlinear wave equation and the 
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ponderomotive force can be estimated simultaneously. But for this 

reason, the calculation is very exten sive and sometimes physical - ly 

complicated because all varying component s in plasma fluid should be 

estimated up to the third or fourth order of the perturbation. On the 

oth e r hand, in the course of the study for the self-focusing and the 

self-t rapping, both the perpe ndicular and parallel directions of the 

ponderomotive force in a magnetop l asma were derived by Washimi [1 973], 

while the general expression of the ponderomotive force was 

independently by the thermodynamlc approach [Washimi and 

1976). Thus, with the help of the general expression 

derived 

Karpman, 

of the 

ponderomotive force, we can now develop a systematic and mo re 

comprehensive method of perturbation. 

Our starting equation is the following well-known equation 

V XV X E + (1/c 2)(d2fdt2) D 0 ( 1) 

a nd 

D K E (2) 

where E is the electric field, D the displacement vector and K the 

dielectric tensor. A basic assumption for our method is the deviatJon 

of the dielectric tensor, 6K, due to a nonlinearity or an inhomogenel­

ty from the linear and homogeneous part, Ke. i . e., 

8K K - Ke (3) 

which does not include a fast-varying part in time. This assumption 

is applied for the case of the ponderomotive force. The present study 

deals with the new formalism, and we r ederive the wave eq uations 

systematically. 

Another purpose o f this pape r is to discuss the wave-trapping of 

transverse waves propagating along magnetic field lines due to the 

nonlinearity of the waves or the inhomogeneity of the plasmas. 

Recently, the wave - trapping due to nonlinea r Alfven waves has been 

computer-simulated by Hoshino [1987]. Wave-trapping phenomena are 

expected in space plasmas, so, for the application of trapping 

phenomena to space plasma, it is worth summarizing the trapping 

condit ions for transverse waves propagating along magnetic field 

lines. 

It is well-known that the ducting propagation of whistler waves 



in the terrestrial magnetosphere along mAgnetic field 

explained by the ray- theory [Smith. 1961: llclliwell, 19651. 

to this theo ry both for w < w.,/2 in t he region o f loca lly 

plasma density and for w > Wc e/2 In Lhe region of depr essed 

the whistler waves are trapped. On the other hand, by the 

11 

lines is 

According 

enhanced 

density 

reductive 

perturbation method, the wave-trapping of the whistler waves in a n 

inhomogeneous plasma has been discussed using wave-theory [Washiml, 

19761. In the present study, the physi ca l meaning of the wave-trapping 

is also reconfirmed in our new formalism. 

The wave equations are derived by the dielectric tensor formalism 

in section 2, and the physical condition of the wave-trapping is 

discussed in section 3. The nonlinear wave modulation Is discussed in 

section 4 in which the condition for self-trapping is shown. In the 

last section 5, a summary is given. 

2. Method of wave equation derivation 

We consider a transverse wave of slab-shape propagation in z 

direction oriented along an applied magnetic field 80 and distributed 

In the x direction. The transverse wave is considered to be modulated 

in space and time due to weak inhomogeneity or weak nonlinearity, so 

that we may put 

E (1/2){6E(x,z,t)exp l(kz - wt) + c.c.} ( 4) 

The linear and homogeneous part of the dielectric tensor, K0. is given 

by (Stix, 1962) 

K0 s -iD 0 

s 0 (5) 

0 0 p 

where 

s (6a) 

D (6b) 
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and 

p (6c) 

Here Wp J and W e i are the angular plasma frequency and the angular 

cyclotron frequency, respectively. 

Now we estimate the term ()2D/()t2 in eq.(1) by referring to the 

method of estimation of ()D/()t given by Landau and Lifshitzs [1960]. 

Let us put 

/\ /\. 
ao;at f E , f = ()K/()t (7) 

Here the symbol A denotes operator. Because 6E is slowly modulated 

in time, the Fourier component of 6E is 

6E exp -i~t ( 1~1 << lwl). 

Accordingly, 

j', 

f 6E exp{-i(w+~)t} f(w+~) 6E exp{-i(w+~)t} {f( w) 

+ ~ ()f(w)/()w + (~2/2) ()2f(w)/()w2 + .. } 6E exp{-i(w+~)t} (8) 

Then we have 

A 
(()/()t)[f 6E exp{-i(w+~)t}] = {-iwf- i~(f+w()f/()w) 

- i(~2/2) (2()f/()w + w ()2f/()w<)} 6E exp{-i(w+~)t} (9) 

Oy summing up the Fourier component of ~. ()2D/()t2 is reduced to 

A 
(1/2) {(()/()t)f 6E exp i (kz-wt) + c.c.} 

(1/2)[{ - iwf + (f + w()f/()w)(()/()t) + (i/2)(2()f/()w 

+ w()2f/()w2)(()2f()t2) -4iw ()(6K)/()t 

6E exp i(kz- wt) + c.c.] 
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- (w2/2)[{ K + 1 (1/w2)(l(w2K)/(lw (Cl/dt) - (1/2w3)((l/(lw) 

{w 2(l( wK)/Clw}((l 2f(lt2) + (4i/w) (l(&K)/Clt } 

&E exp i(kz- wt) + c.c. ] (10) 

Thus, the tensor form expression of the starting equation is reduced to 

[e(Ae + At + A2) -{K+(i/w2)(l(w2K)/(lw((l/(lt) 

-(1/2w3)(Cl/(lw) {w 2(l( wK)/Clw}((l 2j(lt2) +(4i/w)(l (&K)/Clt}] &E 0 ( 11) 

where E is the dielectric constant, 

(12) 

and the tensors Ae, At and A2 are 

(13) 

At - (21/k)Cl/Cl z 0 (1/k)(l/dx 

0 -(21/k)d/Clz 0 (14) 

(1/k)Cl/dx 0 0 

and 

-(l!k2)(l2f(lz2 0 (l/k2)(l2J(lx(lz 

0 0 (15) 

(1Jk 2J(l2Jaxaz 0 -( 1/k2)(l 2J(lx2 
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respectively. The lowest order or eq.(ll) leads to 

o. w ( lG ) 

where &E <t > is t h e lowest o rder of .SE, i .e . , 

.SE &E <t > + &E <2> + &E <3> + ... (17) 

From the condition det(W ) 0, we have the dispers jon relation 

(1) e = ea s + 0 1 - Wp e 2 /w(W-Wc e) - Wp i 2 jw(W+W c i) (18a) 

(II) e e a s - 0 (18b) 

By using Wright eigenvector, R, &E <1 > js e xpressed as follows: 

R ¢ (x ,z,t) R 

(19) 

For the ne xt orde r of e q.( lt) , we have 

W &E <2 > + [W +eAt - (l/w 2 ){8(w 2 K0)/8w}(8/8t)] OE <:> 0 (20) 

By operating Left eigen vector 

L ( (+/-) i . 1 . 0) (21) 

to e q. (20) and by noting that 

- 1 (4/k) a;az (22) 

and 

L Ka R ( 23) 

we have 
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- i(4E/k) {(1/Ag)a/at + a;az .,6 (X, Z, t) 0 (24) 

where Ag is the group velocity, 

Ag = dW/Clk (25) 

Eq.(24) means that .p propagates with the group velocity within 

second-order accuracy. From eq.(20), sE<2> is given by 

8E < 2 > = ( 8E, < 2 > 

8E ~ < 2 > 

8Ez < 2 > 

where 

v 0 \ 
I 

:) 

R .p <2> (x,z,t) + V {E/(kP)} dl/>/dX 

For the thi rd -order equation of (11), we have 

- 8K - (4i/w) Cl( SK)/dtl sE<' > 0 

(26) 

(27) 

(28) 

By operating L to eq.(28) from the left-hand side, and by noting that 

( 1/2 W 3 ) ( d/ d W) { W 2 d ( WE 0 ) /d W} 

(29) 

- i (4/k) a.p< 2 >/az - (E/k 2P) C) 2 .pJax2 (30) 
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and 

( 31) 

we obtain 

- (4t:lk)[i{(1/A 9 ) 3¢ <2> 13t + 3¢ <2> 13z}- (112)(32kj(lw2)(32¢13t2) 

+ i {(11Ag)3¢13t + 3¢13z} + p 3 2¢13x 2- U ¢ - (4ilw)(3U13t)¢) 

= 0 (32) 

Here, by using the asymp tot..lc relations 

(33) 

and 

(34) 

we obtain a gene r al wave e qua tion 

+ i {(1/A 9 ) 3¢13t + 3¢/dz} + p 32¢13x 2- U ¢ - (4i/w)(3U13t) ¢ 

0 ( 35) 

where the potentjal U is 

U - {L (8K) R} I (4t:lk) = - (kl2) {8t:ld 

=- (kl2t:) {(3t:I3P) 6p + (3t:l38) 68} (36) 

Now because 

(3 t:I3P) 6p (E - 1) (6p I P0) (37) 



and 

(3c/d8) oB 

(38) 

U is exp ressed by 

U - (k/2c) [(c- 1) (Op I P0) - [c- 1 + {Wpe 2/((+/ - )W co- w) 2 } 

+ { w p ; 2 I ( ( +I - ) w c , + w) 2 } I ( 68 I B 0 ) I (39) 

The coefficient of the diffraction term, p, ls 

p v I 2k (40) 

and 

v = 1 + (ll2)(ciP- 1) 

( 41) 

Eq.(35) involves all terms in one-dimensional Schrodinger equations, 

derivative nonlinear Schrodinger equation and the two-dim e nsional 

Schrod lnger equation . 

If a time -s tationary state is assumed, i.e., 

3/dt =>< 0 (42) 

The wave-equation (35) reduces to the two- dimensional Schrodinger 

equation 

1 39'1/dz + p 3 2¢13x 2 - U(x,z) 9'1 0 (43) 
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3. Physical condition for wave-trapping 

In this section the physical condition for wave-t rapping is 

discussed by comparing the wave-theory and the ray-theory. When the 

wave normal is inclined from z-axis by B, the angle between the ray 

and the wave - normal, ~. is given by (e.g., Stix [1962]) 

tan - t{-(1/n) (In/dB} (44) 

where n = kc/w is the refractive index (Figure 1). When B ls suffi­

ly small, ~ is reduced to 

~ tan - t{-(1/E) (IE/(l(B2) 8} (for 8 <<1) (45) 

To discuss the wave-trapping or detrapping, the term of the ene rgy 

flow across the z-axis, which is shown by the diffraction term in 

eq.(38}, is important. 

When the plane wave E obt is 

Eo b t (l/2)[6Eobt exp{i(k cosB z + k sin 8 x- w t)} + c.c.] 

(for 8<<1) (46) 

Putting this into the linearized system of basic equations in homoge­

neous plasma, we get 

~k ~)Z 

Fig. 1. Directions of wave normal and ray. 



(

(l-8212)E-S -iD 

lD E-S 

l8E 0 

0 

; 
(l - 8 2 I2)P i 

In view of eqs. (26) and (47) we have 

6E o b I {R + V (18) (EIP)} ~ o bi 

oE o b, 0 

where ~ o bi is a constant and the dlspersion relation is 

E = E0 {1 - (2kp - 1)8 2 } 

Then p is expressed by 

p = (112k) [1 - {(liE) dEid(8 2 )} =0) 

-i 9 

( 47) 

( 48 ) 

(49) 

(50) 

In vi e w of eqs.(45) and (50), the coefficient of the diffraction, p, 

is found to be expressed by the ray direction as follows, 

p = v I ( 2k l. v = (¢I 8) -e. ¢ 8 + (t (51) 

Therefore the physical condition for wave-trapping is expressed as 

follows: Because eq.(40) is a Schrodinger-type wave equation, the wave 

is trapped when 

p u < 0 (52 ) 

which means 

p > 0 and u < 0 (53a) 

or 

p < 0 and u > 0 (53b) 

Oecause the wave - normal is refracted to the region of larger 

dielectric constant (oE > 0), which corresponds to the region U < o. 
(as shown in Figure 2), the wave energy piles up in the same region if 
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the ray is refracted in the same sense as the wave-normal (p > 0). 

This is the case of eq.(53a). On the other hand, if the ray and the 

wave-normal are refracted ln the opposite dJrectlon, respectively (p < 

0), the wave energy accumulates in the region where BE < 0, which 

corresponds to the region U > 0. This is the case of eq.(53b). 

For high -frequency electromagnetic waves (w >>Wee. w >>Wool. because 

p is 

p "' l/2k (54) 

and U is expressed by 

u (55) 

oe: > o 

<C(:: //; 
k 

oe: < o 

Fig. 2. Condillons of wave-lrapping for BE > 0 (a) and BE < 0 

(b) . 
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which result in the wave -t rapping in the depressed dens ity r egion. 

6p < 0 (56) 

For the whistler waves, p is 

P"" [{(1/2)Wce- w}/(W co-W)] / 2:< (57) 

and U is 

U""- (k/2) [(6p/pa)- {Wce/(W c o-w)}(68/Ba)] (58) 

Then, with the increase of w, p c hanges its 

negative at about w ""Wco /2, and the wave 

enhanced region when w < Wc e/2 

sign from positive 

trapping occurs in 

to 

Lhc 

6 p > 0 (for W < Wc o/2) (59) 

and in the depressed region when w > Wce/2 

6p < 0 (for W > Wc o/2) (60) 

This result is qui te consistent with the ray-theory [Smith, 1961]. 

For Alfven waves, p is 

p "' 1 I 4k (61) 

and U is 

U "'- (k/2){(6p/pa) - 2(68/Ba)} (62) 

Then the wave -trapping occurs where 

6p > 0 (63) 
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4. Nonlinear wave modulation 

In the general expression of the wave equation (35) in which the 

potential U is given by eq. (36) and the coefficient of t he 

diffraction term, p, is given by eqs. (43) or (52), we consider here 

the cases when 5p and 58 are derived by the ponderomotive force. As 

is the case for whistler waves shown hy Karpman and Washimi [1977], 

8p and 58 are generally described as perturbations driven by the 

ponderomotive force in the following MHO system, 

ap 1 at + v (pVJ 0 (64) 

p {av 1 at + <v v)v} - v p + ( 1 I 4Jr) ( v X 8) X 8 + F (65) 

and 

ao 1 at + v x <v x s> 0 (66' 

where the ponderomotive force due to the transverse wave is generally 

expressed by Washimi and Karpman [1976] as follows: 

F = (ll167r) (K; ;- 5; 1 ) V(E; 'E 1 ) + (11c) J0 x 8 

+(1I16C7r)[(alat)[{(E-l)E}I1' + w[{(aEiawJ(aEiat)}D'] + c.c.] (67) 

where 11 is the magnetic field and J 0 the nonlinear current. Due to 

the ponderomotive force of the waves. slowly varying components 5p and 

58 are driven, which results in the self-modulation of the waves. 

Therefore eqs.(35) and (36) together with eqs.(64)-(67) constitute a 

closed system of wave equations. 

When the wave propagates along the field lines, whjch is th e 

pres e nt case, eq.(67) is reduced to [Washlmi, 1973] 

Fx = -(1116Jr)[a{w(E-1)} I awl a1Ei2 I ax (68) 

and 

Fz (lll67r)[(E - 1)alaz + (klw 2 )[a{w 2 (E-l)}lawJ(alat)] IEI 2 (69) 
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The coefficient of a!EI 2 I ax in eq. (68) is negative for all waves 

which means that the ponderomotive force in the x direction acts as a 

wave-pressure force. Thi s force induces the depression of th~ magnetic 

pressure for the total pressure balance. On the other hand, the 

ponderomotive force in the z direction acts as 

for the whistler and the Alfven waves because 

al£1 2 /az in eq.(69) is positive f or these waves. 

plasma density at the intense wave region. 

a negative pressure 

the coefficient of 

This enhances t he 

When a;at ~ 0: in eq.(35) and above equations (64)-(69), we have 

an equation of modulation in x-z space (43) 

i a¢/az + p a 2¢1ax 2 - U(x . z) ¢ o 

and U (eq.(36)) is 

U(x.z) = - (k/2el {(ac!dPl op + !ae/aB) oB} 

where 

0 p I P0 (1/2) (TB/2) - 1 (E- 1) {j¢j2 I 13a 2 } (70) 

and 

oB I Be - (1/2) (E - 1 + Wpe2 /{(+/-)Wc 0 -m}2 

( 71) 

in which B is 

B (2/T)(V s I V A) 2 (72) 

where T is the adiabatic constant, Vs (=( TP ress/Pe ) 1 ' 2) the sound 

velocity and VA (=B0/(4wpe) 1 ' 2 ) the Alfven velocity. In view of 

eq.( 70) oP is found to be positive for the whistler and the Alfven 

waves which results in the self-foc using and the self-trapping. On 

t h e other hand, oB is negative for these waves. Finally, we have 

(73) 

q (k/4E) [(TB/2) 1 (E-1) 2 + (c -l +{W pe 2f((+/-)m-m c •J2} 
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(74) 

Because q is positive for all cases, the self-focusing and self­

trapping occur when p is positive. The soliton solution is, by 

assuming ~ ~ exp(i# 2Kz) where # is a smallness parameter. 

( 75) 

The above analysis is quite parallel for a cylindrical symmetric 

system, and we have a wave equation 

i a~;az + p {a 2~/ar 2 + (1/r)a~;ar} + q 1~1 2 ~ 0 (76) 

The profile of the soliton for this case is given in Chiao et al. 

(1964), and the threshold power for the wave-trapping is given by 

Pc (c/4x)!E x B 2xr dr 3.7 x {c 2/(w/k)} p/q (77) 

For high-frequency electromagnetic waves, pis given by eq.(54) and q 

by: 

q (k/4E) {l/(4xTPr e • • )} (Wpe/w)4 (78) 

Then the threshold power for s e lf-trapping is 

P c 2.36 X (w/k) A2 {Te 2 (w/Wpe} 4 } Pre • • (79) 

where A is the wave-length. 

For whistler waves 

q "' (k/4) ( TB/2) - I E I 130 2 (80) 

The self-focusing and self-trapping occurs when p (eq. (57)) is 

positive, which corresponds tow < Wc e/2, and the threshold power is 

P c "'2.36 X (w/k) A 2 [ T{(l/2)Wc e- W}/(W c o-W)] Pr•• • (81) 

Let us estimate 6p and 68. 

diameter, d, is 

The power of the wave beam of the 
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p (c/4~) JE x 8 2~r dr (~/2) (W/k) d2 (8ave 2 I 8~) ( 82) 

The condition P P c gives 

1.5 X (Aid) 2 [T{(112)W c e- w}I(Wce - W)] B (83) 

o P I P e (114) (TBI2) 1 {Ba ve I 8~) 2 

0.75 X (Aid) 2 [{(112)Wce-W}I(Wce-W)) (84) 

For Alfven waves, pis given by eq.(61) and q is 

q"" (kl4) (TBI2) - t c: I 8~2 (85) 

Then the threshold power ls 

P c "" 1.18 x VA A 2 T Press (86) 

The power of the Alfven wave beam is 

p (cl4~) JE x 8 2~r dr (87) 

and from the condition P P c we have 

0.75 x (Aid)2 T B (88) 

o P I P~ (114) (TBI2) - ! (Bave I 8~) 2 =0.38 X (Aid)2 (89) 

5. Summary 

1. With the help of the general expression of the ponderomotive force 

eq.(67), it was shown by dielectric tensor formalism that the wave 

equation is rederived. 

2. The physical meaning of the wave-trapping condition (53) was 

clarified in respect to the relation between the ray direction and the 

wave diffraction. Both for inhomogeneous and nonlinear effects, it 

was clarified that the sign of the de nsity deviation op should be 

negative for the high- frequency electromagnetic wave and for the 
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whistler wave of w > Wc e/2 , an d positive for the whistler wave of w < 

Wc e/2 and the Alfven waves for the wave-trapping. 

3. The ponderomotive force due to the whistler and the Alfvcn waves 

acts outwardly across the fi e ld lines but also inwardly along the 

field lines. This e nhances the plasma dens ity, which results in the 

self-focusing and the self-trapping in the enhanced plasma region. 

4. Recently, the coronal loop in the solar atmosphere due to the 

Alfven wave trapping is under discussion by Y. Chiu and the present 

author (personal communication, 1988). The whistler wav e trapping In 

the terrestrial magnetosphere is also under discussion by T . Okada 

and the writer (personal communica tion, 1988). 13ecause q in cq.(74) 

involves the factor B. the threshold power becomes very 

self- trappi ng in space plasmas. The analysis in the 

provides a basis for these studies. 
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