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1 Introduction

1.1 Type Theory

Lambda calculus is a mathematical way to represent computations or pro-
grams. The main purpose of type theory is to classify lambda terms[22,
9]. This is also relevant to logic, as lambda calculus can express not only
programs but also proofs. This fact is well known as the Curry–Howard
Correspondence[12, 14]. Yet another interpretation would see types as sets.
We write ‘t : T ’ if the term t has the type T . This can be interpreted in
several ways.

• Set Theoretical View
t : T means that t is an element of the set T .

• Programming Language View
t : T means that t is a value which has the type T .

• Proof Theoretical View
t : T means that t is a proof of the proposition T .

Type systems also have typing rules. By applying typing rules, one can infer
the type of a term.

In order to have a logical meaning, a type system must be consistent.
Consistency is the property that there doesn’t exist a term t whose type is
the empty type. The empty type is interpreted as the false proposition or the
empty set.

A general way to show the consistency of a type system is to construct
its model. A model interprets term and types into some semantical domain.
Let us write the interpretation of t : T as [[t : T ]]. For instance, in the set-
theoretical model, the judgment ‘t : T ’ is interpreted into the proposition [[t :
T ]] := ‘t ∈ T ’, i.e. a type is interpreted into some set, and a term is interpreted
into an element. The model is said to be sound if the interpretation [[t : T ]] is
true whenever t : T holds. Conversely, the model is said to be complete if t : T
holds whenever the interpretation [[t : T ]] is true. Constructing a complete
model of type theory is not easy, and the existing ones are complicated and
hard to understand. This thesis attempts to construct an intuitive and simple
model of type theory, yet close to ‘completeness’.
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1.2 Intuitionistic Logic

Almost all mathematicians use classical logic when proving mathematical
theorems. However, the proof theory underlying type theory is that of in-
tuitionistic logic[26] rather than classical logic. Intuitionism was first in-
troduced by Brouwer, and formalized by Heyting later. Intuitionistic logics
differ from classical logic in that the principle of excluded middle P∨¬P does
not hold in general. Therefore, some theorems cannot be proved in intuition-
istic logic such as the intermediate value theorem, among others. However,
by using intuitionistic logic, we get a proof which is more constructive. For
instance, consider the following proposition.

Proposition 1.1. There are irrational numbers x and y such that xy is a
rational number.

Proof. We will prove two cases, whether
√
2
√
2
is a rational number or not.

• If
√
2
√
2
is a rational number.

It is clear by (x, y) = (
√
2,
√
2).

• If
√
2
√
2
is not a rational number.

Let (x, y) = (
√
2
√
2
,
√
2), then

(
√
2
√
2
)
√
2 =

√
2
√
2×

√
2
=

√
2
2
= 2.

Hence the proposition holds in this case.

✷

In this proof, we used the excluded middle :
√
2
√
2
is a rational number or

not. In order to prove this proposition in intuitionistic logic, we would have
to know which case is true.

Many mathematical theories have been developed using intuitionistic
logic, such as constructive analysis[11], constructive set theory[6], construc-
tive topological theory[4](formal topology[24]).

1.3 Soundness of Type Systems

There are various models of type system. Werner’s Set-theoretical model
[28] provides an intuitive model of ECC. It combines a functional view of
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predicative universes with a collapsed view of the impredicative sort Prop.
However this model of Prop is so coarse that the principle of excluded middle
P ∨ ¬P holds in it.

In this paper, we construct a set-theoretical model of ECC in which the
principle of excluded middle P ∨ ¬P doesn’t hold, and thus more complete.

ECC(the Extended Calculus of Constructions) extends CC with a hierar-
chy of predicative sorts Typei and strong sums Σx : A.B. CC(the Calculus
of Constructions [12]) is a pure type system [8] with two sorts, impredicative
Prop and predicative Type.

In [28], Werner provides a remarkably simple model of ECC without
strong sums. In this model, λx : A.t is interpreted by a set-theoretical func-
tion for predicative sorts. Yet such a simple approach is known to fail for
impredicative sorts as it runs afoul of Reynolds’ paradox [23]. Therefore,
the model for Prop is two-valued, and proofs are not distinguished. Hence
the principle of excluded middle P ∨ ¬P is valid in this model. This simple
approach is to be contrasted with Luo’s original model of ECC which uses
ω-sets [17]. This is the drawback of simplicity while this approach avoids
many complications of more precise models, it is at times counter-intuitive,
as it completely ignores the intuitionistic aspect of CC. Our goal has been
to recover the intuitionistic part of CC without increasing the complexity of
the model. To do this, we interpret Prop into some topological space. Topo-
logical spaces are instances of Heyting algebras. Despite the fact that the
interpretation of Prop is many valued, we avoid Reynolds’ paradox by mak-
ing the interpretation of proofs undistinguished. Due to proof-irrelevance,
this model still validates some propositions that are not provable, hence this
model is still not complete. However this is sufficient to exclude many classi-
cal propositions such as the principle of excluded middle P ∨¬P . Note that,
to make the model coherent, we had to slightly restrict the type system. We
believe the scope is still sufficient to make this model practical, but hope to
remove these restrictions in the future.

This model is parametrized by a topological space (X,O(X)) and a point
p ∈ X, which is called the reference point1. By replacing the parameters of
the model, we can make it more or less precise. For instance if its parameters
are the topological space ({·}, {φ, {·}}) and the reference point ‘·’, we obtain
a model of classical logic, which is the coarsest one. It suffices to add one

1Our proof of soundness requires this reference point to satisfy a condition, which is
called the point condition.
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more point and shift the reference point to invalidate the principle of excluded
middle.

In section 2, we define the language of two type systems, λ→ and ECC. In
section 3, we introduce axiomatic set theories, ZFC, IZF and CZF. In section
4, we introduce ‘Coq’, proof assistant based on type theory. In section 5, we
give our set-theoretical interpretation of ECC, and prove its soundness. In
section 6, we show some examples of the model. In section 7, we analyze how
we avoid Reynolds’ paradox.

2 Type Theory

Type systems are logical systems, where one proves typing judgment through
typing derivations. A typing judgment is composed three object, a context,
a term and a type.

• Term
The ‘term’ means a proof, value or function. It is the subject of the
judgment.

• Type
The ‘type’ characterizes the term. In general, a term has at most one
type.

• Context
The ‘context’ assigns types to the variables that may appear in the
term. It is a list of pairs of term and type. More precisely, a context
has the form x1 : T1; x2 : T2; · · · ; xn;Tn where {xi}i is a distinct variable
and Ti is a term for each i.

Type systems also have typing rules. Typing rules are to decide the type of
a given term. We write the judgment Γ ⊢ t : T when the typing rules assign
type T to term t under context Γ. If such a type T exists, the term t is said
to be typable. Typability says that a term is valid with respect to the typing
rules.

There are various type systems such as CC[12], Martin-Löf Type theory[19].
In next subsection, we introduce λ→, which is the simplest type system.
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2.1 λ→

λ→ is the simplest type system. We introduce the definition of λ→.

Definition 2.1. λ→ is composed of terms, types and contexts.

1. Term
Let X be a set of variables. We define lambda terms recursively as
follows.

• If x ∈ X then x is a lambda term.

• If t1 and t2 are lambda terms, then (t1t2) is a lambda term.

• If x ∈ X, T is a type and t is a lambda term, then λx : T.t is a
lambda term.

2. Type
Let B be the set of base types. We define types recursively.

• If T ∈ B then T is a type.

• If T1 and T2 are types, then T1 → T2 is a type.

3. Context

• [] is a context. It is called the empty context.

• If Γ is a context, then Γ; (x : T ) is a context where x is a variable
and T is a type.

Next, we introduce the typing rules of λ→. We show the three typing
rules of λ→ in Table 1.

x : T ∈ Γ

Γ ⊢ x : T
(axiom)

Γ; (x : T1) ⊢ t : T2

Γ ⊢ λx : T1.t : T1 → T2

(abstraction)

Γ ⊢ f : T1 → T2 Γ ⊢ t : T1

Γ ⊢ ft : T2

(apply)

Table 1: Typing Rule of λ→
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The term ‘λx : T.t’ means the function of an argument x of type T which
returns the value t. For instance, the term ‘λn : N.n + 1’2 is the function
from n to n + 1. ‘Γ; (x : A) ⊢ t : B’ means that the term t has the type
B when the type of the variable x is A. Therefore the type of λx : A.t is
A → B.

The term ’f t’ means the function application, i.e. ‘f(t)’. For instance,
the term ‘(λn : N.n+ 1) 3’ means 3 + 1(= 4). ‘Γ ⊢ f : A → B’ means that f
is a function from T1 into T2. Therefore the type of the term ‘f t’ is T2 when
the type of the term t is T1.

In order to clarify the image of terms, we introduce an equivalence relation
on terms, which is called beta equality. Before giving the definition of beta
equality, we define the substitution of a term.

Definition 2.2 (Substitution). Let t and v be terms and x be a variable. The
substitution t[x\v], which means ‘replace x by v in t’, is defined inductively
as follows:

(i) If y is variable, then y[x\v] =
{

v (y = x)

x (otherwise),

(ii) (t1 t2)[x\v] = (t1[x\v]) (t2[x\v]),

(iii) (λx′ : T.t′)[x\v] = λx′ : T.t′[x\v] (when x 6= x′).

Now, we are ready to define beta equality.

Definition 2.3 (Beta Equality). The transformation of ‘(λx : A.t) a’ into
‘t[x\a]’ is called beta reduction. The beta equality =β is the smallest equiv-
alence relation such that following conditions hold.

(i) (λx : A.t) a =β t[x\a].

(ii) If t1 =β t′1 and t2 =β t′2 then t1 t2 =β t′1 t
′
2.

(iii) If t =β t′ then λx : A.t =β λx : At′.

We can interpret λ→ in the following ways.

• Set Theoretical View

2When assuming that the symbols the symbol ‘+’ and 1 are defined as terms.
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– t : T means that t is an element of the set T .

– f : T1 → T2 means that f is a function from T1 into T2.

– Beta reduction means applying the function.

• Programming Language View

– t : T means that t is a value whose type is T .

– f : T1 → T2 means that f is a program with argument of type T1

which returns a value of type T2.

– Beta reduction means executing the program.

• Proof Theoretical View

– t : T means that t is a proof of the proposition T .

– f : T1 → T2 means that f is a proof of the proposition T1 ⇒ T2.

– Beta reduction corresponds to cut-elimination.

2.2 Definition of ECC

We define the type system ECC as follows (omitting strong sums, as in [28]).

Definition 2.4 (Term).

• x is a term for x ∈ V .

• If t1 and t2 are terms, then t1t2 is a term.

• If t and T is are terms, and x ∈ V then, λx : T.t is a term.

• If T1 and T2 are terms, and x ∈ V then ∀x : T1.T2 is a term.

• Prop,Typei are terms (i = 0, 1, 2, 3, 4, ...).

Type0 is named “Set” in Coq.

Definition 2.5 (Context).

• [] is a context.

• If Γ is a context, and T is a term and x ∈ V , then Γ; (x : T ) is a
context.
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In the absence of dependencies, order is irrelevant in contexts. We show
the typing rules of ECC in Table 2. They are standard, except that we
restricted the PI-Type rule in the case P : Prop and Q : Prop, and removed
the subtyping rule from Prop to Type. The unrestricted Prop-Prop PI-
Type rule creates difficulties when building an intuitionistic model, and if
we do not remove the subtyping rule it becomes possible to use the Prop-
Type case of the PI-Type rule in place of the restricted Prop-Prop case,
which would make the model incoherent. We believe these restrictions are
reasonable, as the proof component is seldom used in the PI-Type rule, with
the notable exception of the generic statement of proof-irrelevance. Removing
the subtyping between Prop and Type does not change the expressive power,
as it is still possible to explicitly duplicate properties using Type to Prop.
We hope to solve these problems in the future, and allow the standard typing
rules.

Γ ⊢ Prop : Typei Γ ⊢ Typei : Typei+1 (Axiom)

Γ ⊢ A : Typei

Γ ⊢ A : Typei+1

(Subtyping)

Γ ⊢ A : Typei Γ; (x : A) ⊢ B : Typej

Γ ⊢ ∀x : A.B : Typemax(i,j)

Γ ⊢ A : Prop Γ; (x : A) ⊢ B : Typej

Γ ⊢ ∀x : A.B.Typej (PI-Type)

Γ ⊢ A : Typei Γ; (x : A) ⊢ Q : Prop

Γ ⊢ ∀x : A.Q : Prop

Γ ⊢ P : Prop Γ ⊢ Q : Prop x does not appear in Q

Γ ⊢ ∀x : P.Q : Prop

Γ; (x : A) ⊢ t : B Γ ⊢ ∀x : A.B : Typei

Γ ⊢ λx : A.t : ∀x : A.B

Γ; (x : A) ⊢ t : B Γ ⊢ ∀x : A.B : Prop

Γ ⊢ λx : A.t : ∀x : A.B
(Abstract)

Γ ⊢ u : ∀x : A.B Γ ⊢ v : A

Γ ⊢ (uv) : B[x\v] (Apply)

(x : A) ∈ Γ Γ ⊢ A : Typei

Γ ⊢ x : A

(x : A) ∈ Γ Γ ⊢ A : Prop

Γ ⊢ x : A
(Variable)

Γ ⊢ x : A A =β B

Γ ⊢ x : B
(Beta Equality)

Table 2: Typing Rule of ECC

In Table 2, =β denotes beta equality and B[x\v] denotes substitution.
They are defined in Definitions 2.6 and 2.7 below.

Definition 2.6 (Substitution). Let t and v be terms and x be a variable.
The substitution t[x\v], which means v replaces x in t, is defined inductively

11



as follows:

(i) If y is variable, then y[x\v] =
{

v (y = x)

x (otherwise)
,

(ii) (t1t2)[x\v] = (t1[x\v])(t2[x\v]),

(iii) (λx′ : T.t′)[x\v] = λx′ : (T [x\v]).t′[x\v] (when x 6= x′),

(iv) (∀x′ : T1.T2)[x\v] = ∀x′ : (T1[x\v]).(T2[x\v]),

(v) (Prop)[x\v] = Prop,

(vi) (Typei)[x\v] = Typei (i = 1, 2, 3, ...).

Definition 2.7 (Beta Equality). Let =β be the smallest equivalence relation
such that following conditions hold.

(i) (λx : A.t) a =β t[x\a].

(ii) If t1 =β t′1 and t2 =β t′2 then t1t2 =β t′1t
′
2.

(iii) If t =β t′ and A =β A′ then λx : A.t =β λx : A′t′.

(iv) If A =β A′ and B =β B′ then ∀x : A.B =β ∀x : A′B′.

In this type system, the new sort Prop is introduced. It represents the
set of propositions.

Definition 2.8.

1. Propositional Term
The term P is called a propositional term for Γ iff Γ ⊢ P : Prop is
derivable.

2. Proof Term
The term p is called a proof term for Γ iff Γ ⊢ p : P is derivable for
some P which is a propositional term for Γ

3. Provable Propositional Term
The term P is called a provable propositional term for Γ iff P is a
propositional term for Γ and there exists p such that Γ ⊢ p : P is
derivable.

12



Lemma 2.9. The following statements are equivalent.

• p is a proof(resp. propositional) term for the context Γ; (x : U);∆.

• p[x\u] is a proof(resp. propositional) term for the context Γ;∆[x\u].

This lemma is consequence of the following proposition.

Proposition 2.10. If Γ ⊢ u : U is derivable, then Γ; (x : U);∆ ⊢ t : T is
derivable if and only if Γ;∆[x\u] ⊢ t[x\u] : T [x\u] is derivable.

Proposition 2.10 can be proved in the same way as in [20].
Lastly, here are some notations allowing to use other logical symbols [9].

Definition 2.11.

A → B := ∀x : A.B (when ‘x’ does not occur freely in ‘B’),

⊥ := ∀P : Prop.P,

¬A := A → ⊥,

A ∧B := ∀P : Prop.(A → B → P ) → P,

A ∨B := ∀P : Prop.(A → P ) → (B → P ) → P,

∃x : A.Q := ∀P : Prop.(∀x : A.(Q → P )) → P,

A ↔ B := (A → B) ∧ (B → A),

x =A y := ∀Q : (A → Prop).Q x ↔ Q y.

3 Set Theory in Intuitionistic Logic

Before working on the models of type theory, I was interested in the for-
malization of logic. This led me to implement ZFC and IZF in Coq. Before
looking at this formalization, we discuss axiomatizations of set theory. There
are several axiomatical set theories, such as ZFC, IZF and CZF. The most
familiar one is ZFC(Zermelo-Fraenkel set theory and axiom of Choice). We
will also discuss IZF(Intuitionistic Zermelo-Fraenkel) and CZF(Constructive
Zermelo-Fraenkel)[6]. Some axiom of ZFC can imply excluded middle, IZF
prevents it. Hence IZF is weaker than ZFC.
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3.1 ZF

The most familiar axiomatical set theory is ZF. We introduce the axiom of
ZF3.

• Extensionality Axiom
∀z, (z ∈ x ⇔ z ∈ y) ⇒ x = y

• Pairing Axiom
If x and y are sets, then {x, y} is a set.

• Union Axiom
If A is a set, then its union

⋃

A is a set.

• Power Set Axiom
If A is a set, then its power set P(A) is a set.

• Infinity Axiom
There exists the set N of all natural number.

• Comprehension Scheme
Let P (x) be any formula with a variable x. If A is a set, then {x ∈
A|P (x)} is a set.

• Replacement Scheme
Let F (x) be any function on sets, then the set F (A) exists for any set
A, i.e. the image of A by F

• Foundation Axiom
∈ is a well-founded relation on sets.

3.2 IZF

IZF is the intuitionistic version of ZF. Here are the differences between ZF
and IZF.

• Remove the Foundation Axiom, but introduce the following new axiom

∀a((∀x ∈ a, φ(x)) ⇒ φ(a)) ⇒ ∀y, φ(y) (for any formula φ(x))

which is called the Set Induction Scheme.

3For detail, see [16].
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• Replace the Replacement Scheme into the following new axiom

∀x ∈ a∃y, θ(x, y) ⇒ ∃b, ∀x ∈ a∃y ∈ b, θ(x, y) (for any formula θ(x, y))

which is called the Collection Scheme

It is known that the Foundation Axiom and the Set Induction Scheme are
equivalent in classical logic. However the Foundation Axiom is properly
stronger than the Set Induction Axiom in intuitionistic logic, since the Foun-
dation Axiom can imply the principle of excluded middle[15]. Similarly, it is
known that the Replacement Scheme and the Collection Scheme are equiva-
lence in classical logic, but the Collection Scheme is properly stronger than
the Replacement Scheme in intuitionistic logic. Moreover, the axiom of choice
can imply the principle of excluded middle whereas the countable axiom of
choice cannot.

3.3 CZF

CZF is a predicative version of IZF. CZF excludes impredicative sets, hence
CZF is weaker than IZF. Here are the differences between ZF and IZF.

• Remove the Powerset Axiom, but introduce a new axiom

∃c∀u(∀x ∈ a∃y ∈ bφ(x, y, u) ⇒
∃d ∈ c(∀x ∈ a∃y ∈ dφ(x, y, u) ∧ ∀y ∈ d∃x ∈ aφ(x, y, u)))

which is called Subset Collection.

• Restrict the Separation Scheme, i.e. assume the scheme

∀a∃b∀c(c ∈ b ⇔ c ∈ a ∧ φ(c)) (where φ(x) is ∆0-formula).

which is called the Bounded Separation Scheme.

A ∆0-formula is a formula whose quantifiers are all bounded. The formulas
∀x ∈ A, ... and ∃x ∈ A, ... are called bounded quantifiers.

The Powerset Axiom is equivalent to Subset Collection and the following
lemma holds.

P({φ}) = {φ, {φ}}4
4P(X) is power set of X.
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Peter Aczel worked on the relationship between type theory and CZF[1,
2, 3], to construct a model of CZF.

In CZF, many important sets for general mathematics cannot be con-
structed, for instance open set families in discrete topological spaces. Hence,
several axioms are sometimes assumed with CZF, for instance REM(Regular
Extension Axiom[3, 5]), SGA(Set Generated Axiom[5]), some restricted Ax-
iom of Choice(Countable Axiom of Choice, ΣΠI-AC[3]) and more.

Moreover, there is a topological theory in CZF, which is called Formal
Topology[24, 4].

4 Formalizing Set Theory in Coq

4.1 Proof Assistant

Proof assistants are like a computer programming language. However in
proof assistants, we write proof code in stead of algorithm code. The main
role of proof assistants are to check the correctness of the proof code5. There
are various proof assistant such as Coq and Agda. Especially, some proof
assistants use type theory in checking the proof. For instance, Coq uses
the type system CIC. Proofs written by human may have some mistakes.
Proof assistants can prevent them. Moreover, proof assistants can remember
many hypotheses while proving theorems. Hence it makes easier proving such
complex theorems.

4.2 Type system of Coq

The Coq proof assistant is based on CIC, the Calculus of Inductive Construc-
tions. It extends the Calculus of Constructions with (co)Inductive definitions
[13, 21] and a hierarchy of universes.

Coq has the types ‘Typei’, ‘Prop’ and ‘Set’ as its base type, which are
called sorts. In Coq, we write

t : T

to denote t has the type T . And, the types(terms) ∀x : A.B, A → B and
λx : A.t are written as follows.

5Note that in general proof assistants do not prove theorems automatically.

16



forall x : A.B

A -> B

fun x : A => t

Next, we introduce the definition of inductive type. The types ’bool’ and
‘nat’ are defined as inductive types as follows.

Inductive bool : Set :=

| true : bool

| false : bool

.

Inductive nat : Set :=

| O : nat

| S : nat -> nat

.

In this definition, the ‘bool’ type has only two term ‘true’ and ‘false’. On
the other hand, the term ‘S’ in the definition of ‘nat’ means successor, hence
every natural number is defined recursively as follows.

0 := O

1 := S O

2 := S (S O)

3 := S (S (S O))
...

The language system of Coq also has match statement.

fun b : bool :=

match b with

| true => S O

| false => O

end

This term denotes the function which maps the value ‘false’ into the value
‘0’, and maps the value ‘true’ into the value ‘1’.

Other logical symbol ‘∨,∧,¬’ are written as follows.

A \/ B

A /\ B

~A

17



Inductive definition in CIC is very strong. In fact, the above three logical
symbols can be defined by inductive definitions.

Coq also has Axiom declarations. It enables one make the theory of Coq
stronger. For instance, if we insert the following text

Axiom classic : forall P : Prop, P \/ ~P.

then Coq’s theory becomes classical logic6. Note that using axioms incurs
some problems, since making the theory of Coq stronger may break consis-
tency.

4.3 Formalizing set theory

There are several attempts at implementing set theory in Coq. Here are some
examples.

• Benjamin Werner (IZF + ΣΠI-AC + REA + ...)[27]

• Bruno Barras(Finite ZF)[10]

• Carlos Simpson(ZFC)[25]

• Guillaume Alexandre(ZF)[7]

• Our Implementation(IZF)

4.3.1 Werner’s implementation

Werner started from Aczel’s model of CZF in Martin-Löf type theory7. This
model show that Martin-Löf Type Theory is strong enough to encode CZF.

On the other hand, CIC has an impredicative sort Prop. Hence, CIC can
also represent IZF

He defines a type of sets ‘Ens’ following Aczel’s construction as follows.

Inductive Ens : Type :=

sup : forall A : Type, (A -> Ens) -> Ens.

6Coq defaults to intuitionistic logic.
7See[1, 2, 3].
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This type ‘Ens’ contains the functions from any type ‘A’ to ‘Ens’ itself. For
instance, let A be the bottom type ⊥, then there exists f whose type is
‘⊥ → Ens’. Then ‘Ens ⊥ f ’ represents the empty set. Next, we can define a
paring set {a, b} as follows.

Definition Pair E1 E2 :=

sup bool (fun b : bool =>

match b with

| true => E1

| false => E2

end

).

4.3.2 Barras’ implementation

He defines a set as the following inductive type hf.

Inductive hf : Set :=

HF : list hf -> hf.

The term HF generates a set from a list of set.
The following code is the definition of the empty set and pair.

Definition empty := HF nil.

Definition pair x y := HF (x :: y :: nil).

Next, he defines the relations = and ∈ as follows.

Definition eq_hf x y :=

List.forallb (fun x’ => List.existsb (fun y’ => eq_hf x’ y’) y) x &&

List.forallb (fun x’ => List.existsb (fun y’ => eq_hf x’ y’) x) y

Definition in_hf x y := List.existsb (fun y’ => eq_hf x y’) y.

However, we can only define elements of Vω
8. We cannot define infinite

sets in this implement. As a result, the relation ∈ is decidable.

8See [16]
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4.3.3 Simpson’s implementation

Definition E := Type.

Axiom R : forall x : E, x -> E.

Axiom R_inf : forall (x : E) (a b : x), R a = R b -> a = b.

Definition inc (x y : E) := exists a : y, R a = x.

In this definition, every type(i.e. term of sort) is treated as a set. However,
this implementation may be stronger than IZF or ZFC.

4.3.4 Alexandre’s implementation

His implementation is direct and intuitive.
Firstly, he implements the type of sets as follows.

Parameter E : Set.

Parameter In : E -> E -> Prop.

The type ‘E’ means the type of set, and ‘In’ means the membership relation
‘∈’. We write a part of his code.

Axiom

axs_extensionnalite :

forall v0 v1 : E,

(forall v2 : E, In v2 v0 <-> In v2 v1) -> v0 = v1.

Variable paire : E -> E -> E.

Axiom

axs_paire : forall v0 v1 v3 : E,

In v3 (paire v0 v1) <-> v3 = v0 \/ v3 = v1.

The axiom ‘axs extensionnalite’ in above code means extensionality axiom.
And, ‘paire’ and ‘asx paire’ mean both axiom of paring. In this implementa-
tion, the axiom is written directly. However, one needs two axiom statements
per axiom of the theory, ‘paire’ and ‘axs paire’. The axiom ‘paire’ introduces
a function which maps two sets a and b into the set {a, b}. The axiom
‘axs paire’ expresses the conditions on ‘paire’.
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4.3.5 Our Implementation

In our implementation, we formalize IZF by coding each IZF axiom by an
axiom statement in a way similar to G.Alexander’s. However, we accept the
following two axioms.

Definition Unique (P : SET -> Prop) :=

(exists x, P x) /\

(forall a b, P a /\ P b -> a = b).

Axiom UniqueOut (P : SET -> Prop) : Unique P -> SET.

Axiom HUniqueOut :

forall (P : SET -> Prop) (unq : Unique P),

P (UniqueOut P unq).

Therefore we succeed to reduce the number of axiom sentence. For in-
stance, the following code represent a axiom of pair.

Definition IsPair a b c :=

forall x, In x c <-> x = a \/ x = b.

Axiom axiom_of_pair :

forall a b, exists c, IsPair a b c.

Theorem UniqueIsPair : forall a b, Unique(fun c => IsPair a b c).

Proof.

.

.

.

Qed.

Definition Pair a b :=

UniqueOut (fun c => IsPair a b c) (UniqueIsPair a b).

In this code, there is only one axiom. It can be proved in ZF that the set
which contains only a and b exists uniquely. Hence, we could reduce the
number of axioms by using ‘UniqueOut’.

4.4 Problem of consistency

Yet our implementation still uses many axiom sentences. Therefore it is
necessary to prove the consistency of those axiom statements. And it is
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necessary to prove the independence from the principle of excluded middle,
since we implement IZF. Hence, our next task is to construct a model of this
type system.

5 Interpretation

In section 4, we succeeded in formalizing the implementation of IZF in Coq.
However, we used some axiom sentence in this implementation. Is this im-
plementation also consistent, and independent from the principle of excluded
middle? To prove this, we construct a model which we restrain to intuition-
istic logic. For simplicity, we construct only a model of ECC in spite of Coq’s
type system being CIC9.

5.1 Lattice

In this paper, we use Heyting algebras[18, 26]. Heyting algebras provide
models of intuitionistic logic. Topological spaces form Heyting algebras, and
as such provide models of intuitionistic logic too[26]. We give a definition of
lattice and Heyting algebra as follows.

Definition 5.1 (Lattice). Let (A,≤) be a partial order set(i.e. reflexivity,
antisymmetry, and transitivity). (A,≤) is called Lattice when any two el-
ements a and b of A have a supremum ‘a ⊔ b’ and infimum ‘a ⊓ b’, which
are called join and meet10. A lattice is also called complete lattice if every
subset S of A has supremum ‘

⊔

S’ and infimun ‘

⊔

S’. If a lattice has an
exponential operator ab such that

x ≤ zy ⇔ x ⊓ y ≤ z

holds, then we call it Heyting Algebra.

The following lemma show that complete lattice is stronger than Heyting
algebra.

Lemma 5.2. If (A,≤) is a complete lattice, then this is also a Heyting
algebra.

9Constructing a model of CIC is one of our future goals.
10We use the lattice operation symbols join ‘⊔’ and meet ‘⊓’ instead of ‘∨’ and ‘∧’, since

we use these in another way in this paper.
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Proof. Let yx be
⊔

{t|t ⊓ x ≤ y}.
✷

Lemma 5.3. For any set X, the topological space (X,O(X)) is a Heyting
algebra, moreover it is a complete lattice.

Proof. In fact let a ≤ b be a ⊂ b, and define each operation as follows:

I := X,

O := φ,
⊔

S :=
⋃

S,

⊔

S :=
⊔

{t | ∀s ∈ S, t ≤ s} =

(

⋂

S

)◦
(where A◦ is the interior of A),

ba :=
⊔

{t | t ⊓ a ≤ b}.
✷

The following lemma states well known properties of complete Heyting
algebras.

Lemma 5.4. Let (A,≤) be a complete Heyting algebra. Then the following
conditions hold.

(xb)a = xa⊓b, (1)

⊔

{tta | t ∈ A} = a, (2)

xa ⊓ xb = xa⊔b, (3)

⊔

{at | t ∈ S} = a
⊔

S, (4)

x ≤ xy, (5)

xy ⊓ yx = 1 ⇒ x = y, (6)

⊔

S = 1 ⇒ ∀a ∈ S, a = 1. (7)

5.2 Preparation of interpretation

Let p, which is called the reference point, be some point of the topological
space (X,O(X)) such that the following condition

⋂

U(p) is an open set
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hold where U(p) is an open neighborhood11 of p. We will parametrize our
model with O(X) and p. Let us call this condition the point condition. The
point condition is necessary to prove soundness.

Definition 5.5 (Dependent Function). Let A be a set, and B(a) be a set
with parameter a ∈ A. We define dependent function domain as follows

∏

a∈A
B(a) := {f ⊂

∐

a∈A
B(a) | ∀a ∈ A, ∃!b ∈ B(a), (a, b) ∈ f}

that is functions whose graph belongs to
∐

a∈A
B(a) := {(x, y) ∈ A×

⋃

a∈A
B(a) | y ∈ B(x)}.

The function PT called Product Type is defined as follow.

Definition 5.6 (Product Type).

PTΓ,x(A,B) :=































PP (A is a propositional term for Γ

and B is a propositional term for Γ)

TP (A is not a propositional term for Γ

and B is a propositional term for (Γ; x : A))

T (otherwise)

The function PTΓ,x maps two types into string symbols {PP,TP,T}. Its
goal is to discriminate cases of ∀x : A.B to give them different interpretations.

Next, we introduce the Grothendieck universes as in [28].

Definition 5.7. Let α be an ordinal. We define Vα as follows.

• V0 = φ

• Vα =
⋃

β<α

P(Vβ)

And we define the Grothendieck universe U (i) as follows

U (i) = Vλi

where λi is i-th inaccessible cardinal.

Lemma 5.8. A ∈ U (i) and B(a) ∈ U (i) for each a ∈ A imply
∏

a∈A
B(a) ∈

U (i).

11An open neighborhood of p is a set of open sets containing the point p
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5.3 Interpretation of the judgments

In this model, a type T is interpreted into a set [[T ]], and a context x1 :
T1; x2 : T2; · · · ; xn : Tn is interpreted into a tuple in [[T1]]× [[T2]]× · · · × [[Tn]]
(when there are no dependent types in the context).

First, we define the interpretation of contexts [[−]], judgments [[− ⊢ −]]
and strict judgments [[− ⊢ −]]′ by mutual recursion as follows.

Definition 5.9 (interpretation). Let (X,O(X)) be a topological space, and
p be a reference point of X satisfying the point condition.

(i) Definition of the strict-interpretation of a judgment [[− ⊢ −]]′

[[Γ ⊢ A]]′(γ) =

{

[[Γ ⊢ A]](γ) ∩ {p} (A is a propositional term in Γ)

[[Γ ⊢ A]](γ) (otherwise)

(ii) Definition of the interpretation of a context [[−]]

[[[]]] := {()}
[[Γ; (x : A)]] := {(γ, α) | γ ∈ [[Γ]] and α ∈ [[Γ ⊢ A]]′(γ)}

=
∐

γ∈[[Γ]]
[[Γ ⊢ A]]′(γ)

(iii) Definition of the interpretation of a judgment [[− ⊢ −]]
If t is a proof term, then

[[Γ ⊢ t]] = p

otherwise,

[[Γ ⊢ Typei]](γ) := U (i)

[[Γ ⊢ Prop]](γ) := O(X)
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[[Γ ⊢ ∀x : P.Q]](γ) :=



































































(

[[Γ ⊢ Q]](γ)

)[[Γ⊢P ]](γ)

(when PTΓ,x(P,Q) = PP)

⊔

{[[Γ; (x : P ) ⊢ Q]](γ, α) | α ∈ [[Γ ⊢ P ]](γ)}
(when PTΓ,x(P,Q) = TP)

∏

α∈[[Γ⊢P ]]′(γ)[[Γ; (x : P ) ⊢ Q]](γ, α)

(when PTΓ,x(P,Q) = T)

[[Γ ⊢ λx : A.t]](γ) :=
{

(

α, [[Γ; (x : A) ⊢ t]](γ, α)
)

| α ∈ [[Γ ⊢ A]]′(γ)
}

[[Γ ⊢ uv]](γ) := [[Γ ⊢ u]](γ)

(

[[Γ ⊢ v]](γ)

)

[[Γ ⊢ xi]](γ) := γi

For simplicity, we write [[T ]] for [[[] ⊢ T ]](), when the context is empty.

The interpretation of a context [[Γ]] is a sequence whose length is the
length of Γ. [[Γ ⊢ t]] is the function whose domain is Γ and which maps
to some set. Most cases are similar to Werner’s interpretation, so we only
explain the interpretation of ∀x : P.Q. There are three cases, according
to the result of PTΓ,x(P,Q). When PTΓ,x(P,Q) = PP, the interpretation
of [[Γ ⊢ ∀x : P.Q]] represents the logical implication P ⇒ Q. We use the
Heyting algebra representation of this implication. Here we assume that x
does not appear in Q, thanks to our restriction. Otherwise we would need
to build the interpretation of [[Γ; (x : P ) ⊢ Q]](γ, p), but this requires that
p ∈ [[Γ ⊢ P ]](γ), which is not always true. When PTΓ,x(P,Q) = TP the
interpretation of [[Γ ⊢ ∀x : P.Q]] represents universal quantification, and
again we use the infinite meet operator of the complete Heyting algebra to
express it. In the last case only the representation becomes a set theoretical
dependent function.

Next, we introduce the substitution lemma as follows.

Lemma 5.10 (substitution lemma). We assume Γ ⊢ u : U is derivable. If

(γ, [[Γ ⊢ u]](γ), δ) ∈ [[Γ; (x : U);∆]]
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holds for any γ and δ, then

[[Γ;∆[x\u] ⊢ t[x\u]]](γ, δ) = [[Γ; (x : U);∆ ⊢ t]](γ, [[Γ ⊢ u]](γ), δ)

for all t and ∆.

This lemma appears already in [28] and [20]. Here we give a new proof
for our model. To prove it, we introduce the following two lemmas.

Lemma 5.11. Weakening the context does not change the interpretation,
i.e.

[[Γ ⊢ u]](γ) = [[Γ;∆ ⊢ u]](γ, δ)

for any γ and δ such that (γ, δ) ∈ [[Γ;∆]]

Lemma 5.12. If [[Γ; (x : U);∆ ⊢ t]] is well-defined, then so is [[Γ;∆[x\u] ⊢
t[x\u]]]. And more, (γ, [[Γ ⊢ u]](γ), δ) ∈ [[Γ; (x : U);∆]] implies (γ, δ) ∈
[[Γ;∆[x\u]]].

Next, we are ready to prove the substitution lemma 5.10.

Proof of Lemma 5.10. If t is a proof term, it is clear by Lemma 2.9. We will
prove it in the case where t is not a proof term. It is provable by induction
on term t. We write α for [[Γ ⊢ u]](γ).

1. When t = Prop,Typei.
Clear.

2. When t is variable.

• When t = x.
By Definition of interpretation of judgment, the equation

[[Γ; (x : U);∆ ⊢ x]](γ, [[Γ ⊢ u]](γ), δ) = [[Γ ⊢ u]](γ)

holds. Then by Lemma 5.11,

[[Γ ⊢ u]](γ) = [[Γ;∆[x\u] ⊢ u]](γ, δ)

also holds. Hence, the statement holds in this case.

• When t 6= x.
Clear.
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3. When t = λy : A.t′.
By hypothesis of induction, the following two conditions

[[Γ; (x : U);∆ ⊢ A]](γ, α, δ) = [[Γ;∆[x\u] ⊢ A[x\u]]](γ, δ)
[[Γ; (x : U);∆; (y : A) ⊢ t′]](γ, α, δ, υ) =

[[Γ; (x : U);∆[x\u]; (y : A[x\u]) ⊢ t′[x\u]]](γ, α, δ, υ)

hold. Hence we have the following equation.

[[Γ; (x : U);∆ ⊢ λy : A.t′]](γ, α, δ)

=
{

(

υ, [[Γ; (x : U);∆; (y : A) ⊢ t′]](γ, α, δ, υ)
)

| υ ∈ [[Γ; (x : U);∆ ⊢ A]](γ, α, δ)
}

=
{

(

υ, [[Γ;∆[x\u]; (y : A[x\u]) ⊢ t′]](γ, α, δ, υ)
)

| υ ∈ [[Γ;∆[x\u] ⊢ A]](γ, α, δ)
}

= [[Γ;∆[x\u] ⊢ λy : (A[x\u]).(t[x\u])]](γ, δ)

4. When t = t1 t2.
By hypothesis of induction, the following two conditions

[[Γ; (x : U);∆ ⊢ t1]](γ, α, δ) = [[Γ;∆[x\u] ⊢ t1[x\u]]](γ, δ)
[[Γ; (x : U);∆ ⊢ t2]](γ, α, δ) = [[Γ;∆[x\u] ⊢ t2[x\u]]](γ, δ)

hold. Therefore, we have following equation.

[[Γ; (x : U);∆ ⊢ t1 t2]](γ, α, δ)

= [[Γ; (x : U);∆ ⊢ t1]](γ, α, δ)
(

[[Γ(x : U);∆ ⊢ t2]](γ, α, δ)
)

= [[Γ;∆[x\u] ⊢ t1[x\u]]](γ, δ)
(

[[Γ;∆ ⊢ t2[x\u]]](γ, δ)
)

= [[Γ;∆[x\u] ⊢ (t1[x\u])(t2[x\u])]](γ, δ)

5. When t = ∀y : A.B.

• When PTΓ,x(A,B) = PP.
By hypothesis of induction, the following two conditions hold.

[[Γ; (x : U);∆ ⊢ A]](γ, α, δ)

= [[Γ;∆[x\u] ⊢ A[x\u]]](γ, δ)
[[Γ; (x : U);∆; (y : A) ⊢ B]](γ, α, δ, p)

= [[Γ;∆[x\u]; (y : A[x\u]) ⊢ B[x\u]]](γ, δ, p)
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Since the variable y does not appear freely in B, the following
equation holds.

[[Γ; (x : U);∆ ⊢ B]](γ, α, δ) = [[Γ;∆[x\u] ⊢ B[x\u]]](γ, δ)

Therefore, we have following equation.

[[Γ; (x : U);∆ ⊢ ∀y : A.B]](γ, α, δ)

=
(

[[Γ; (x : U);∆ ⊢ B]](γ, α, δ)
)[[Γ;(x:U);∆⊢A]](γ,α,δ)

=
(

[[Γ;∆[x\u] ⊢ B[x\u]]](γ, δ)
)[[Γ;∆[x\u]⊢A[x\u]]](γ,δ)

=
(

[[Γ;∆[x\u] ⊢ ∀y : (A[x\u]).(B[x\u])]](γ, δ)

• When PTΓ,x(A,B) = TP
By hypothesis of induction, the following two conditions hold.

[[Γ; (x : U);∆ ⊢ A]](γ, α, δ)

= [[Γ;∆[x\u] ⊢ A[x\u]]](γ, δ)
[[Γ; (x : U);∆; (y : A) ⊢ B]](γ, α, δ, υ)

= [[Γ;∆[x\u]; (y : A[x\u]) ⊢ B]](γ, δ, υ)

Therefore, we have the following equation for TP.

[[Γ; (x : U);∆ ⊢ ∀y : A.B]](γ, α, δ)

=

⊔υ∈[[Γ;(x:U);∆⊢A]](γ,α,δ)
[[Γ; (x : U);∆; (y : A) ⊢ B]](γ, α, δ, υ)

=

⊔υ∈[[Γ;∆[x\u]⊢A[x\u]]](γ,δ)
[[Γ;∆[x\u]; (y : A[x\u]) ⊢ B[x\u]]](γ, δ, υ)

= [[Γ;∆[x\u] ⊢ ∀y : (A[x\u]).(B[x\u])]](γ, δ)

• When PTΓ,x(A,B) = T.
Respectively for T, we have the same equation replacing

⊔

by
∏

.

✷

We introduce the theorem for the interpretation of logical symbols in
definition 2.11. In this theorem, the validity of the interpretation can be
seen.

Theorem 5.13 (interpretation of logical symbols).
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(i) [[Γ ⊢ ⊥]] = φ

(ii) [[Γ ⊢ A ∧ B]](γ) = ([[Γ ⊢ A]](γ)) ⊓ ([[Γ ⊢ B]](γ))

(iii) [[Γ ⊢ A ∨ B]](γ) = ([[Γ ⊢ A]](γ)) ⊔ ([[Γ ⊢ B]](γ))

(iv) [[Γ ⊢ ∃x : A.Q]](γ) =
⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ Q]](γ, α)

(v) [[Γ ⊢ A ↔ B]](γ) = X ⇒ [[Γ ⊢ A]](γ) = [[Γ ⊢ B]](γ)

(vi) [[Γ ⊢ x =A y]](γ) = X ⇒ [[Γ ⊢ x]](γ) = [[Γ ⊢ y]](γ)

Proof. Let a, b, q(α) be

a := [[Γ ⊢ A]](γ)

b := [[Γ ⊢ B]](γ)

q(α) := [[Γ; (x : A) ⊢ Q]](γ, α).

By using Lemma 5.4 and Lemma 5.11 we have the followings:

(i) The proof of [[Γ ⊢ ⊥]] = φ.

[[Γ ⊢ ⊥]](γ) = [[Γ ⊢ ∀P : Prop.P ]](γ)

=

⊔

{[[Γ; (P : Prop) ⊢ P ]](γ, x) | x ∈ [[Γ ⊢ Prop]](γ)}

=

⊔

{x|x ∈ O(X)}
= φ

(ii) The proof of [[Γ ⊢ A ∧ B]](γ) = ([[Γ ⊢ A]](γ)) ⊓ ([[Γ ⊢ B]](γ)).

[[Γ ⊢ A ∧ B]](γ) = [[Γ ⊢ ∀P : Prop.(A → (B → P )) → P ]](γ)

=

⊔

{x(xb)a | x ∈ O(X)}

=

⊔

{xxa⊓b | x ∈ O(X)} (by Lemma 5.4 (1))

= a ⊓ b (by Lemma 5.4 (2))

= [[Γ ⊢ A]](γ) ⊓ [[Γ ⊢ B]](γ)
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(iii) The proof of [[Γ ⊢ A ∨ B]](γ) = ([[Γ ⊢ A]](γ)) ⊔ ([[Γ ⊢ B]](γ)).

[[Γ ⊢ A ∨B]](γ) = [[Γ ⊢ ∀P : Prop.(A → P ) → ((B → P ) → P )]](γ)

=

⊔

{(xxb

)x
a | x ∈ O(X)}

=

⊔

{xxa⊓xb | x ∈ O(X)} (by Lemma 5.4 (1))

=

⊔

{xxa⊔b | x ∈ O(X)} (by Lemma 5.4 (3))

= a ⊔ b (by Lemma 5.4 (2))

= [[Γ ⊢ A]](γ) ⊔ [[Γ ⊢ B]](γ)

(iv) The proof of [[Γ ⊢ ∃x : A.Q]](γ) =
⊔

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ Q]](γ, α).

[[Γ ⊢ ∃a : A.Q]](γ) = [[Γ ⊢ ∀P : Prop.(∀a : A.(Q → P ) → P ]](γ)

=

⊔

{x ⊔{xq(α) | α∈a} | x ∈ O(X)}

=

⊔

{xx
⊔
{q(α) | α∈a} | x ∈ O(X)} (by Lemma 5.4 (4))

=
⊔

{q(α) | α ∈ a} (by Lemma 5.4 (2))

=
⊔

α∈[[Γ⊢A]](γ)

[[Γ; (a : A) ⊢ Q]](γ, α)

(v) The proof of [[Γ ⊢ A ↔ B]](γ) = X ⇒ [[Γ ⊢ A]](γ) = [[Γ ⊢ B]](γ).

[[Γ ⊢ A ↔ B]](γ) = [[Γ ⊢ A → B]](γ) ⊓ [[Γ ⊢ B → A]](γ)

= ab ⊓ ba

Hence we have a = b by Lemma 5.4 (6) since ab ⊓ ba = X.

(vi) The proof of [[Γ ⊢ x =A y]](γ) = X ⇒ [[Γ ⊢ x]](γ) = [[Γ ⊢ y]](γ).

[[Γ ⊢ x =A y]](γ) = [[Γ ⊢ ∀Q : (A → Prop).Q x ↔ Q y]](γ)

=

⊔

f :a→O(X)

[[Γ; (Q : A → Prop) ⊢ Q x ↔ Q y]](γ, f)

Since [[Γ ⊢ x =A y]](γ) = X, we have the following fact:

∀f : a → O(X), [[Γ; (Q → Prop) ⊢ Q x ↔ Q y]](γ, f) = X

Therefore we have f([[Γ ⊢ x]](γ)) = f([[Γ ⊢ y]](γ)) for any function
f : a → O(X). Hence, the statement holds.

✷
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5.4 Proof of the Soundness

We are ready to prove soundness of this type system.

Theorem 5.14 (soundness). We assume [[Γ]] is non empty set.

1. If t1 =β t2, and Γ ⊢ t1 : T,Γ ⊢ t2 : T is derivable, then [[Γ ⊢ t1]](γ) =
[[Γ ⊢ t2]](γ).

2. If Γ ⊢ t : T is derivable and [[Γ]] is non-empty set, then [[Γ ⊢ t]](γ) ∈
[[Γ ⊢ T ]](γ).

Proof of Theorem 5.14.
1. It is sufficient that [[Γ ⊢ (λx : U.t) u]](γ) = [[Γ ⊢ t[x\u]]](γ). By using
Lemma 5.10,

[[Γ ⊢ (λx : U.t)u]]

= [[Γ ⊢ λx : U.t]](γ)
(

[[Γ ⊢ u]](γ)
)

= [[Γ; (x : U) ⊢ t]](γ, [[Γ ⊢ u]](γ))

= [[Γ ⊢ t[x\u]]](γ)

Hence, the statement holds.

2. This is proved by induction on Typing Rules in Table 2. We assume that
p is a reference point.

1. Case of Axiom
[[Γ ⊢ Prop]](γ) ∈ [[Γ ⊢ Typei]](γ) is clear. Similarly, [[Γ ⊢ Typei]](γ) ∈
[[Γ ⊢ Typei+1]](γ) is also clear.

2. Case of Subtyping
The fact that [[Γ ⊢ A]](γ) ∈ [[Γ ⊢ Typei]](γ) implies [[Γ ⊢ A]](γ) ∈ [[Γ ⊢
Typei+1]](γ) is clear.

3. Case of PI-Type
We will show the fact that

(

∀γ, α, [[Γ ⊢ A]](γ) ∈ [[Γ ⊢ s1]](γ)

and [[Γ; (x : A) ⊢ B]](γ, α) ∈ [[Γ; (x : A) ⊢ s2]](γ, α))
)

⇒ ∀γ, [[Γ ⊢ ∀x : A.B]](γ) ∈ [[Γ ⊢ s3]](γ).

There are three cases as follows.
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• PTΓ,x(A,B) = T
By definition of the interpretation of judgment, the following equa-
tion

[[Γ ⊢ ∀x : A.B]](γ) =
∏

α∈[[Γ⊢A]]′(γ)

[[Γ; (x : A) ⊢ B]](γ, α)

holds. There are the following two cases:

– A is not a propositional term for Γ
Since [[Γ ⊢ A]](γ) ∈ U (i) , [[Γ; (x : A) ⊢ B]](γ, α) ∈ U (j) for
any γ, α and Lemma 5.8, we have

∏

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α) ∈ U (max(i, j)).

– A is a propositional term for Γ
Since [[Γ ⊢ A]](γ) ∈ O(X ) ⊂ U(j) , [[Γ; (x : A) ⊢ B]](γ, α) ∈
U (j) for any γ, α and Lemma 5.8, we have

∏

α∈[[Γ⊢A]](γ)

[[Γ; (x : A) ⊢ B]](γ, α) ∈ U (j).

Hence, the statement holds.

• PTΓ,x(A,B) = TP
It is clear since [[Γ ⊢ ∀x : A.B]](γ) is an open set by definition of
the interpretation of judgment.

• PTΓ,x(A,B) = PP
It is clear since [[Γ ⊢ ∀x : A.B]](γ) is an open set by definition of
the interpretation of judgment.

4. Case of Abstraction
We will show the fact that

(

∀γ, α, [[Γ; (x : A) ⊢ t]](γ, α) ∈ [[Γ; (x : A) ⊢ B]](γ, α)

and [[Γ ⊢ ∀x : A.B]](γ) ∈ [[Γ ⊢ s]](γ)
)

⇒ ∀γ, [[Γ ⊢ λx : A.t]](γ) ∈ [[Γ ⊢ ∀x : A.B]](γ)

There are three cases as follows.
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• PTΓ,x(A,B) = T
By definition of the interpretation, we have the following equa-
tions:

[[Γ ⊢ λx : A.t]](γ) =
{

(

α, [[Γ; (x : A) ⊢ t]](γ, α)
)

| α ∈ [[Γ ⊢ A]]′(γ)
}

[[Γ ⊢ ∀x : A.B]](γ) =
∏

α∈[[Γ⊢A]]′(γ)

[[Γ; (x : A) ⊢ B]](γ, α)

= {f ⊂
∐

a∈A
B(a) | ∀a ∈ [[Γ ⊢ A]](γ), ∃!b, (a, b) ∈ f}

Then, we must prove the following equation:

{

(

α, [[Γ; (x : A) ⊢ t]](γ, α)
)

| α ∈ [[Γ ⊢ A]](γ)
}

∈ {f ⊂
∐

a∈A
B(a) | ∀a ∈ [[Γ ⊢ A]](γ)

But it is clear12 by induction of hypothesis.

• PTΓ,x(A,B) = TP
Since λx : A.t is a proof term, we have the following equations

[[Γ ⊢ λx : A.t]](γ) = p

Hence, the fact we must prove is

p ∈ [[Γ ⊢ ∀x : A.B]](γ)

By definition we have the following equation.

[[Γ ⊢ ∀x : A.B]](γ) =

⊔

{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}.

If [[Γ ⊢ A]](γ) is the empty set, then the statement holds since
[[Γ ⊢ ∀x : A.B]](γ) = X13 . We assume that [[Γ ⊢ A]](γ) is a
non-empty set. We have

∀α ∈ [[Γ ⊢ A]](γ), p ∈ [[Γ; (x : A) ⊢ B]](γ, α).

12Especially, If [[Γ ⊢ A]](γ) is the empty set, then [[Γ ⊢ ∀x : A.B]](γ) = {φ} and
[[Γ ⊢ λx : A.t]](γ) = φ.

13

⊔

φ = X

34



since [[Γ; (x : A) ⊢ t]](γ, α) = p. Therefore, we have the following
equation:

p ∈
⋂

{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}

However

⊔

S 6=
⋂

S hold in general, since

⊔

S is the interior of
⋂

S when S is non empty subset of X. Now, we apply the point
condition here14. We have

[[Γ ⊢ ∀x : A.B]](γ) =

⊔

{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}

=
⋂

{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}

since
⋂

{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)} is an open set
by the point condition. Hence, the condition holds in this case.

• PTΓ,x(A,B) = PP
Since λx : A.B is a proof term, we have the following equation

[[Γ ⊢ λx : A.t]](γ) = p

Hence, the fact we must prove is

p ∈ [[Γ ⊢ ∀x : A.B]](γ)

By definition of the interpretation of judgment, we have

[[Γ ⊢ ∀x : A.B]](γ) =

(

[[Γ ⊢ B]](γ)

)[[Γ⊢A]](γ)

.

By characteristic of Heyting algebra,

[[Γ ⊢ B]](γ) ⊂ [[Γ ⊢ ∀x : A.B]](γ).

By induction hypothesis p ∈ [[Γ ⊢ B]](γ), so that the condition
holds in this case.

5. Case of Apply
We will show the fact that

(

∀γ, [[Γ ⊢ u]](γ) ∈ [[Γ ⊢ ∀x : A.B]](γ) and [[Γ ⊢ v]](γ) ∈ [[Γ ⊢ A]](γ)
)

⇒ ∀γ, [[Γ ⊢ u v]](γ) ∈ [[Γ ⊢ B[x\v]]](γ)
There are three cases as follows.

14This is the place we need it in the proof.
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• PTΓ,x(A,B) = T
By definition of the interpretation of judgment, the following equa-
tion

[[Γ ⊢ u v]](γ) = [[Γ ⊢ u]](γ)
(

[[Γ ⊢ v]](γ)
)

[[Γ ⊢ u]](γ) ∈
∏

α∈[[Γ⊢A]]′(γ)

[[Γ; (x : A) ⊢ B]](γ, α)

holds. Therefore, we have

[[Γ ⊢ u v]](γ) ∈ [[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ))

By Lemma5.10, we have

[[Γ; (x : A) ⊢ B]](γ, [[Γ ⊢ v]](γ)) = [[Γ ⊢ B[x\v]]](γ).

Hence, the statement holds in this case.

• PTΓ,x(A,B) = TP
We will show that p ∈ [[Γ ⊢ B[x\v]]](γ) since [[Γ ⊢ u]](γ) = [[Γ ⊢
u v]](γ) = p. We have the following equation

p ∈

⊔

{[[Γ; (x : A) ⊢ B]](γ, α) | α ∈ [[Γ ⊢ A]](γ)}.

This equation implies the fact that

∀α ∈ [[Γ ⊢ A]](γ), p ∈ [[Γ; (x : A) ⊢ B]](γ, α).

By Lemma 5.10 and the fact [[Γ ⊢ v]](γ) ∈ [[Γ ⊢ A]](γ), we have

p ∈ [[Γ ⊢ B[x\v]]](γ).

Hence, the statement holds in this case.

• PTΓ,x(A,B) = PP
We will show that p ∈ [[Γ ⊢ B]](γ) since [[Γ ⊢ u]](γ) = [[Γ ⊢ v]](γ) =
[[Γ ⊢ u v]](γ) = p and the variable x does not appear freely in B.
The following equation holds.

[[Γ ⊢ ∀x : A.B]](γ) =

(

[[Γ ⊢ B]](γ)

)[[Γ⊢A]](γ)

36



By definition of Heyting algebra, we have

[[Γ ⊢ ∀x : A.B]](γ) ∩ [[Γ ⊢ A]](γ) ⊂ [[Γ ⊢ B]](γ).

Then we have
p ∈ [[Γ ⊢ B]](γ).

by induction hypothesis. Hence, the statement holds in this case.

6. Case of Variable
We must show that

(

(x : A) ∈ Γ and ∀γ, [[Γ ⊢ A]](γ) ∈ [[Γ ⊢ s]](γ)
)

⇒ ∀γ, [[Γ ⊢ x]](γ) ∈ [[Γ ⊢ A]](γ)

It is clear by definition of [[Γ]].

7. Case of Beta Equality
We must show that

(

∀γ, [[Γ ⊢ x]](γ) ∈ [[Γ ⊢ A]](γ) and A =β B
)

⇒ ∀γ, [[Γ ⊢ x]](γ) ∈ [[Γ ⊢ B]](γ)

It is clear by Theorem 5.14 (1).

✷

Corollary 5.15. If P is a provable propositional term for Γ, then

∀γ ∈ [[Γ]], p ∈ [[Γ ⊢ P ]](γ)

holds.

6 Application

Let’s compare Werner’s classical model with our intuitionistic model on some
simple cases.
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xy 0 1 2

0 2 0 0
1 2 2 1
2 2 2 2

Table 3: value of xy

6.1 Classical model

Let

X := 1 = {φ},
O(X) := {0, 1} = {φ, {φ}},

p := 0 = φ.

This coincides with Werner’s Model [28]. But this model is classical, since

0 ∈ [[∀P : Prop.P ∨ ¬P ]]

=

⊔

o∈O(X)

o ∨ ¬o = 1

holds.

6.2 Models disproving excluded middle

Let

X := 2 = {0, 1},
O(X) := {0, 1, 2} = {φ, {φ}, {φ, {φ}}},

p := 1 = {φ}.

In this model, we have the following fact

1 /∈ [[∀P : Prop.P ∨ ¬P ]] = 1

by using the following equations

¬0 = 2,
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xy φ α β γ X

φ X φ φ φ φ
α X X α α α
β X β X β β
γ X X X X γ
X X X X X X

Table 4: value of xy

¬1 = 0,

¬2 = 0.

Hence this model avoids the principle of excluded middle.
However in this model, P → Q∨Q → P holds, since we have the following

fact by Table 3.

[[∀P : Prop.∀Q : Prop.(P → Q) ∨ (Q → P )]]

=

⊔

o1,o2∈O(X)

oo21 ∨ oo12

= 2.

By adding more elements we can refine the model further. Let

X := {a, b, x}
O(X) := {φ, α, β, γ,X},

= {φ, {a}, {b}, {a, b}, {a, b, x}},
p := x.

In this model, P → Q ∨ Q → P does not hold, since we have the following
fact by Table 4.

x /∈ [[∀P : Prop.∀Q : Prop.(P → Q) ∨ (Q → P )]] = γ

7 Reynolds’ Paradox

There is a problem when expanding the set theoretical model, which is called
Reynolds’ paradox [23]. Basically the Reynolds’ paradox says that if the in-
terpretation of an impredicative sort has more than one element, it causes a
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cardinality paradox in the set theoretical model. This seems to be in contra-
diction with our model, so in this section we will analyze its assumptions.

7.1 Outline of the Paradox

Let T be an impredicative sort, i.e. if Γ ⊢ A : s and Γ; (x : A) ⊢ B : T are
derivable for any sort s then Γ ⊢ ∀x : A.B : T is derivable. We assume that
there exists a type B whose sort is T such that [[B]] has at least two elements,
i.e.

⊢ B : T and ♯[[B]] ≥ 2.

In [23] Reynolds says that the existence of such a term B causes a para-
dox in set-theoretical models. First, we define the category SetsI and the
endofunctor T of SetsI.

Definition 7.1.

• Let SetsI be a category with:

– Obj(SetsI) := {[[P ]] | ⊢ P : I is derivable }
– Hom([[P1]], [[P2]]) := [[P1]] → [[P2]]

• Let T be a endofunctor of SetsI with

– T ([[P ]]) := ([[P ]] → [[B]]) → [[B]]

– T (ρ) := h ∈ T ([[P1]]) 7→ {(g, h(g ◦ ρ))|g ∈ [[P2]] → [[B]]}
where ρ ∈ [[P1]] → [[P2]]

The paper [23] claims the following lemma:

Lemma 7.2.

• ∃u ∈ Obj(SetsI), ∃H ∈ Hom(Tu, u) s.t.
∀s ∈ Obj(SetsI), ∀f ∈ Hom(Ts, s), ∃!ρ ∈ Hom(u, s) s.t.

following diagram commutes.

Tu
Tρ−−−→ Ts

H





y





y

f

u
ρ−−−→ s
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• Tu and u are equivalent, i.e. Tu ∼= u.

By definition of endofunctor T , ♯[[B]] ≥ 2 implies Tu and u have different
cardinalities in spite of Tu and u being isomorphism. Therefore, the existence
of a type B of impredicative sort such that ♯[[B]] ≥ 2 causes a paradox.

7.2 Avoiding the Paradox

In ECC, we have an impredicative sort Prop, and there is a type B of Prop
such that ♯[[B]] ≥ 2. However, this doesn’t cause a paradox. In fact, to prove
the existence of a function H ∈ Tu → u, Reynolds constructs a term t of
the type ((P → B) → B) → P ) in the proof of lemma 2 in [23], where P
is a type such that [[P ]] = u. However in our model [[(P → B) → B]] is not
equal to the set theoretical function T ([[P ]]) = ([[P ]] → [[B]]) → [[B]] but is
just some open set of (X,O(X))

[[(P → B) → B]] = [[B]][[B]][[P ]]

since both P and B are propositional terms. Thus this discussion moves to
the Heyting algebra part of the model where we need not fear such paradox.

8 Future Work

There are still three remaining questions we would like to answer in the
future: whether the point condition is really needed to prove soundness,
whether we can handle full ECC, without our restrictions on the type system,
and how close to completeness is our model.

The point condition is very restrictive. It seems to allow only discrete
models. Hence we would like to remove it to allow a wider variety of mod-
els. In fact we have not found any counterexample when removing the
point condition, up to now.

We would also like to lift the restrictions on the PI-Type rule, which pro-
hibits statements about proofs, and on the subtyping rule. They come from
the fact that, in the interpretation of contexts, we use the strict interpreta-
tion, which restricts all propositional terms to either φ or the singleton {p},
so that we cannot build an element when the non-strict interpretation, while
being non-empty, does not contain p. We are considering several approaches
to overcome this problem.
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While this model rejects the excluded middle, it still admits proof-irrelevance

∀t1, t2, (t1, t2 is proof term for Γ) ⇒ [[Γ ⊢ t1]](γ) = [[Γ ⊢ t2]](γ).

Since the existence of t such that following condition

Γ; (p1 : P ); (p2 : P ) ⊢ t : p1 =P p2 (where Γ ⊢ P : Prop is derivable)

holds is not provable in general, this means that our model is still not com-
plete. We are now investigating how close to completeness it is, with and
without the restriction.
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