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1 Introduction

In this paper, we consider nonlinear second order elliptic systems in divergence form of the
following type:
—divA(z,u, Du) = f(x,u, Du) in Q (1.1)

or its parabolic version:
uy — divA(z, t,u, Du) = f(z,t,u, Du) in Qp :=Q x (=7,0), T > 0, (1.2)

where Q is a bounded domain in R, n > 2, u takes values in RN, N > 1.

Considering about partial differential equations and systems has long history and so that
there are many results we have known. For example, harmonic functions, solutions of Laplace’s
equation (with Dirichlet boundary condition)

n 82 ‘ .
Au:;ax%uzo in Q C R,
u=20 on 0f2

has several well-known properties such as maximum principle, Liouville’s theorem, mean value
equality, etc.
Further, we knew that there are several ways of proving the existence of harmonic functions.

Dirichlet integral
1
D(u) = /|Du|2dx, Du = Ou
2 Jo Ox; i=1,

is one of the idea to find harmonic functions. Riemann claimed that the minimum point (mini-
mizer) of D is harmonic function. In fact, if a minimizer u exists, then the first variation of the
Dirichlet integral vanishes:

)

=0
t=0

d
SDu+t
g (u+typ)

for all smooth compactly supported functions ¢ in §2; an integration by parts then yields

d
= “Dlu+t
0 p” (u+ tp)

and arbitrariness of ¢ we conclude Au = 0.

As like above, the problem that considering about minimum points of functionals is called
Calculus of Variations. More precisely, it is to consider about the existence and differentiability
of minimum points for variational integrals of the type

Flu] ::/QF(x,u,Du)dx (1.3)
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where F(x,u,p): Q@ x RY x R™ — R and u: Q — RV, Let F is of class C' and assume that ug
is a minimum point. Then we have

d
2 t =0
i.e.,
/[Fpg (z,u, Du) Do’ + Fyi(x, u, Du)¢']dz = 0 (1.4)
Q

for all ¢ € C§°(Q2, RN ). Here and in the following, we use the notation that repeated indices are
summed: here a goes from 1 to n and ¢ from 1 to V.

If moreover we assume F, 2 and wu is sufficiently smooth then we can integrate by part in
(1.4) and get

—DoFyi (7, u, Du) + Fyi(z,u, Du) =0 in Q i=1,...,N (1.5)

which is a quasilinear system of partial differential equations. (1.4) and (1.5) are called Euler-
Lagrange equations.

The idea of using calculus of variations looks well to find harmonic functions but it is not
trivial that the minimizer of variational integral F exists in C?(£2) in general.

This fault was solved by using Hilbert space W12(Q) instead of C?(£2). Let us present
the existence theorem of solution for general elliptic equations (and minimizer for variational
integrals) in Hilbert space.

Theorem 1.1 ([19, Theorem 3.12]). Let AP € L>(Q) be elliptic and bounded, that is for some
AMA>O0
NEPP < AP ()eats < AEP, weq (1.6)

Then, for each g € WH2(Q) and fo, f* € L*(Q), a = 1,...,n, there exists one and only one weak
solution v € W12(Q) to the Dirichlet problem

{—Dﬁ(AaﬁDaw = fo—Daf*  inQ (1.7)

U=y on 0N

meaning u — g € WOLZ(Q) and

/AaﬁDauDggpd:EZ/(fOSO‘FfaDa%D)dx
Q Q

for all ¢ € C§°(2).
If in addition A% = AP, then the solution u is the unique minimizer of the functional
1
Fv) = / AaﬁDangvdx — / fovdx — / f¥Dyvdx
2 Ja Q )

in the class
{veWh(Q): v —ge W;2(Q)}.



Note that the case A®% = §7 is just as the case of Dirichlet integral. See also [19, Theorem
3.22] for the vector-valued case u: Q@ — RN, N > 1.

The previous theorem ensures the existence of harmonic functions, solutions of (1.7), but it
is able to find in W12(2) and not in C%(§2). Therefore there is a gap in the regularity scale.

The regularity problem for partial differential equations and systems (and also for calculus of
variations) is exactly the problem of filling this gap.

As the mathematicians considered more than a century for regularity problem, there are many
different results and that we could not quote all of them. Thus, we only present some important
results and we refer to [18, Chapter II] for detailed history about regularity problem.

One of the most important result in regularity problem is the theorem which due by De Giorgi
and independently by Nash. Let us consider variational integral defined on W12(Q, RY)

f(u)—/QF(Du)dx, (1.8)

where |F(p)| < L|p|? for some L > 0 and the derivatives of ' € C>°(R™"), which we write as
AS = D, F, satisty the growth and ellipticity conditions

[AF D) <clpl, D, AF(P)l < M w9)
D, A7 (P)&&h = NEl®, e R, '
for some A\, M > 0.
Then any critical point u of F satisfies the Euler-Lagrange equation
/ AX(Du)Da@'dz =0, Yo e Wy (Q,RY). (1.10)
Q

By the method of difference quotient, we differentiate (1.10).
Theorem 1.2 ([19, Proposition 8.6]). Let u € W12(Q,RY) be a weak solution to the elliptic

system (1.10) where A satisfy (1.9). Then u € VVif(Q,RN) and, for 1 < s <n, Dsu satisfies
the elliptic system

/ D ; A?(Du)Dg(Dsu!) Dol =0, Yo € Wy*(Q,RY). (1.11)
QO B8

The previous mathematician’s work (see for example [19, Corollary 5.16]) and Theorem 1.2
then imply that a critical point of the variational integral (1.8) is smooth as soon as the first
derivatives are continuous. Thus, we need to show that the solutions Dsu to the elliptic system
(1.11) are continuous. This is false in general but it is true in the scalar case (N = 1). Let us
assume N = 1 and rewrite (1.11) as

/ AP (2)DyvDgpdr = 0
Q

where v := Dyu and A%(zx) := D, A%(Du(z)). Now under the assumption (1.9), we can only
5

say that A% € L and A%P¢,&5 > A |§]2, and in this case we would like to show that v is
continuous, or has more regularity, say Holder continuous. This is exactly the claim of De
Giorgi-Nash’s theorem.



Theorem 1.3 (De Giorgi-Nash, [18, Theorem 2.1]). Let u € W2(Q) be a weak solution to
/ A% () DoyuDgpdr =0, Yo € C°(Q)
Q

where A% € L>®(Q) satisfies (1.6). Then u € Cﬁ)?( ) for some positive «, and, for Q' € Q,
[ullgo.e @y < C(Q Q) [Jull 20

Although regularity problem for elliptic systems in scalar case (N = 1) was solved by De
Giorgi-Nash’s theorem, we could not obtain the generalization of De Giorgi-Nash’s theorem for
general systems (N > 1). Nowadays, we know several counterexamples [18, Chapter II Section 3|
to the generalization of De Giorgi-Nash’s theorem for vector case. Therefore the goal is to obtain
partial regularity result, that is, to prove the existence of a regular set €2, C Q such that

Q, == {z € Q: u is continuous on a neighbourhood of z}.

Partial regularity result also involves obtaining estimates on the size of singular set Q\ ), (proving
that singular set has zero n-dimensional Lebesgue measure or better, controlling the Hausdorff
dimension of the singular set), and higher regularity on the regular set €,,.

In the next section, we will present some previous partial regularity results and our main
theorems.

2 Main theorems

The aim of this paper is to obtain a partial regularity of weak solutions to the elliptic system (1.1)
or the parabolic system (1.2) under p-growth condition, p > 2, and some suitable conditions to
the coefficients A(z,u, w) or A(z,u,w) where z = (z,t). Here we assume the p-growth condition,
that is, the estimate

Az, u,w)| + (1 + |w]) [ Dy Az, u,w)| < L1+ [w])P~ (2.1)
and the ellipticity condition

<DwA(x,u,w w zD> Z D, A (x, u, w)ws ~f > A (14 |w|?)P=2/2 (2.2)

1<4,6<N
1<j,a<n

holds to the elliptic system (1.1) for all 2 € Q, u € RN, w € R™" or

Az, 0, 0)] + (1 + ) |Duw A,y w)] < L1+ uo])? (2.3)
and
<D Az, u, w)w 1])> Z D, AZ (2, u, w)wy ]52 AM@]* (1 + w|?)P=2)/2 (2.4)
1<i,B<N
1<j,a<n

holds to the parabolic system (1.2) for all z € Qp, u € RV, w € R™V,



p-growth condition is originally comes from the growth order of integrand for integral varia-
tions. For example, Dirichlet integral,
/ |Dul? d,
Q

has quadratic growth (p = 2). Starting from Dirichlet integral, it is natural to consider the
variational integral of the form

/Q F(Du)dzx

where |F(w)| < L |w|* or more developed version |F(w)| < L |w[?, p > 1. The case 1 < p < 2 is
called subquadratic growth and the case p > 2 is called superquadratic growth. If the integrand
has p-growth, then by taking Euler-Lagrange equation, it is natural to assume that leading part
of the equation has a growth order of (p — 1) as like in (1.9).

The regularity result for general nonlinear elliptic systems under p-growth condition (2.1) was
first proved by Giaquinta-Modica [20] in case of p = 2. They proved that the weak solutions of
(1.1) has Holder continuous first derivatives for some Holder exponent outside of a singular set
of Lebesgue measure zero if

|DyA(z,u,w)| < L

holds for all (x,u,w) and (1 + |w|) " A(x,u,w) is Hélder continuous in variables (z,u) uniformly
with respect to w. Duzaar-Grotowski [12] used a new method, namely A-harmonic approxzimation
technique (see Lemma 3.2), and obtained the optimal partial regularity result with more simple
proof in [20], i.e., weak solutions to (1.1) belong to C** when the coefficients (14 |w|) "1 A(x, u, w)
are a-Holder continuous. Note that the Holder exponent for weak solutions « is same exponent
as for coefficients.

The superquadratic version is proved by Chen-Tan [8] and subquadratic case is by Beck [2].
In both cases, we have the optimal result in the sense of quadratic case [12].

On the other hand, the coefficients of systems are considered. The previous results are
all considered under Holder continuous coefficients. The regularity results under more mild
assumptions are first proved by Duzaar-Gastel [11]. They assume Dini-type condition instead of
Hélder continuity to the coefficients A(x,u,w) and proved Cl-regularity. More precisely, they
assume that the continuity of A(z,u,w) with respect to the variables (x,u) that

Az, u, w) = A(zo, uo, w)| < K([ul)n(lz = zo| + |u = uo[)(1 + |w]) (2.5)

for all z,29 € Q, u,ug € RN, p € R™, where : [0,00) — [I,00) is nondecreasing, and
n: (0,00) — [0,00) is nondecreasing and concave with n(+0) = 0. They also require that
r +— r~%n(r) is nonincreasing for some 0 < a < 1, and the Dini-type condition:

/ Mdp < 400 for some r > 0. (2.6)
o P

The subquadratic case, 1 < p < 2 was proved by Qiu [25].



Our first main theorem is an extension of the result due to Duzaar-Gastel [11] to superquadratic
case, p > 2. Let us assume that the coefficients A(x, u, w) has a modulus of continuity n: [0,00) —
[0, 00) and nondecreasing function x: [0,00) — [1,00) such that

A, u,w) — A(wo, uo, w)| < w(lul)n(|z — ol + Ju —uo|)(1 + w])P~* (2.7)
for all z,z¢ € Q, u,ug € RV, p € R, Further more we assume that
(n1) n is nondecreasing function with 7(0) = 0.

(n2) n is concave; to prove the regularity theorem we require that r +— r=¢

for some exponent « € (0,1).

n(r) is nonincreasing

We also assume modified Dini condition:
"n%(p)
(n3) F(r):= / ——=dp < 400 for some r > 0 and 3 € (0, 1].
0 P

We assume that the inhomogeneous term f has p-growth, i.e., there exist constants a and b, with
a possibly depending on M, such that

|f (2, u,w)] < a(M)|w’ +0b (2.8)

for all z € Q, u € RY with |u| < M and p € R™V.
Let us define that u € WHP(Q,RY) is a weak solution of (1.1) if u satisfies

/ (A(z, u, Du), Dipda — / (f o) da (2.9)
Q Q

for all p € C$°(Q,RY), where (-, -) is the standard Euclidean inner product on RY or R™V.
Now we are ready to state our first main theorem.

Theorem 2.1 (cf. [23], and Section 4). Let u € WHP(Q,RY) N L2 (Q,RY) be a bounded weak
solution of the elliptic system (1.1) satisfying (2.1), (2.2), (2.7), (2.8), (n1), (n2) and (n3) with
satisfying |lul|, < M and 20079)/2\ > a(M)M. Then there exists an open set Q, C Q such
that u € CH(Qy, RY) with Z™(Q\ Q) = 0. Moreover, Q\ Q, C X' UX? and

»h =<z e liminf][ |Du — (D) pP dz > 0 3,
PNO By (o)

¥? = wg € Q: limsup |[(Du)y, p| = +00 p .
JAN

In addition, for o € [a,1) and o € Q\ Q, the derivatives of u has modulus of continuity
r— 17 + F(r) in a neighborhood of x.



Note that our result is optimal in the sense that in the case n(r) = r®, 0 < a < 1, we have
F(r) = a~'r® and Ch%regularity is known to be optimal in that case.

As we knew already, if the coefficients A(x,u,p) is just continuous with respect to (x,u) then
we could not expect the continuity (and not even boundedness) of the gradients Du. But Foss-
Mingione [17] proved that we could still expect the Holder continuity of the weak solution w itself
under the superquadratic growth condition, p > 2. Subquadratic case was also proved by Beck
3].

Bogelein-Duzaar-Habermann-Scheven [4] proved that continuity of the coefficients with re-
spect to (x,u) is not necessary to guarantee the regularity result, and VMO-condition is sufficient
to prove Holder continuity of the weak solutions in case of homogeneous systems (f = 0). More
precisely they assume that the partial mapping = +— A(x,u,w)/(1 + |w|)?~! has vanishing mean
oscillation (VMO), uniformly in (u,w), i.e., the coefficients A(x,u,w) satisfies an estimate

A, u,w) = (A 1w, w))ao,p| < Vi (2, p)(1+ [w])P7H, - for all & € By(xo) (2.10)

where V,,: R™ x [0, po] — [0,2L] are bounded functions with
lim V(p) =0, V(p) := sup sup ][ Vi (x, r)dz. (2.11)
JAN) 20€Q 0<r<pJ By (x0)NQ

They also assume that u +— A(z,u,w)/(1 + |w|)P~! is continuous, i.e., there exists a modulus of
continuity w: [0,00) — [0, 00) such that an estimate

|A(z,u, w) — A(z, ug, w)| < Lw(|u — u0]2)(1 + Jw|)P~? (2.12)

holds for all z € Q, u,ug € RN, w € R™V.
Here we extend the result in [4] and gives Holder continuity of the weak solutions to inhomo-
geneous systems (1.1) with inhomogeneous term satisfying p-growth condition (2.8).

Theorem 2.2 (cf. [22], and Section 5). Let u € WHP(Q,RN) N L2(Q,RY) be a bounded weak
solution of the elliptic system (1.1) satisfying (2.1), (2.2), (2.12), (2.10), (2.11) and (2.8) with
satisfying ||lul| ., < M and 21079P)/2\ > a(M)M. Then there exists an open set Q, C Q such
that w € C%(Qy, RN) with Z"(Q\ Q) = 0 for every o € (0,1). Moreover, Q\ Q, C X' U ¥?
and

»h={20€: liminf][ |Du — (D) g p/P dz >0 3,
POy (o)

¥? = xg € Q: limsup |[(Du)y, p| = +00 p .
JAN)

Regularity result for the parabolic systems with Holder continuous coefficients are first proved
by Duzaar-Mingione [13] in case of quadratic growth (p = 2). They proved an analogous of A-
harmonic approximation lemma, so called A-caloric approzimation lemma (see Lemma 3.3), and
obtained the partial Holder regularity to Du, where Du denotes the gradient with respect to
the spacial variables z, i.e., Du(z,t) = Dyu(z,t). Then superquadratic case was proved by



Duzaar-Mingione-Steffen [15] and subquadratic case by Scheven [26]. Similarly as in the elliptic
systems, Dini-type condition and continuous coefficients are considered. Baroni [1] proved that
the special derivatives Du are continuous outside of singular set under Dini-type condition with
quadratic growth (p = 2). Conditions under continuous coefficients are considered by Bogelein-
Foss-Mingione [7] in case of p > 2 and by Foss-Geisbauer [16] in case of 1 < p < 2.

Our last result is an regularity theorem of parabolic systems (1.2) under VMO-condition
with superquadratic growth. As like in elliptic systems, let us assume that the partial mapping
z — A(z,u,w)/(1 + |w|)?~! has VMO, uniformly in (u,w), i.e., the coefficients A satisfies the
estimate

Az, w) = (A, w0)) a0 p] < Va2 )1+ [w])P7Y, forall z € Qplz0)  (2.13)

where V,,: R""! x [0, pg] — [0,2L] are bounded functions with

lim V(p) =0, V(p) := sup sup ][ Vao(z,7)dz2. (2.14)
AN 20€Q7 0<r<pJ Q. (20)NQr

Moreover we assume that u — A(z,u,w)/(1+|w|)P~! are continuous, i.e., there exists a bounded,
concave and non-decreasing function w: [0,00) — [0, 00) satisfying

|A(z,u, w) — Az, ug, w)| < Lw(|u — uol*) (1 + |w|)P~! (2.15)

for all z € Qp, u,up € RY, w € R®™. The inhomogeneous term f also satisfies p-growth condition,
i.e., there exist constants a,b > 0, with a possibly depending on M, such that

If(z,u,w)|] < a(M)|w|P +b (2.16)

for all z € Qp, v € RV with lu| < M and w € RV,
We will prove the following theorem concerning weak solutions of (1.2), i.e., u € CO(=T,0; L2(Q, RM))N
LP(—=T,0; WhP(Q,RN)), p > 2 satisfying

/Q <<“’%>_<A(Z’“’D“)’D<P>)d2—/ﬂ (frp)dz (2.17)

for all p € C5°(Qr, RY).

Theorem 2.3 (cf. [24], and Section 6). Let u € CP(—T,0; L*(Q,RY)) N LP(—T,0; WP (Q, RY))
be a bounded weak solution of the parabolic system satisfying (1.2) satisfying (2.3), (2.4), (2.13),
(2.14), (2.15) and (2.16) with |ul,, < M and 20079P)/2\ > a(M)M. Then there exists an
open set Q, C Qp such that u € C2(Q,,RN) with HIE2(Qr \ Qu) = 0 for every o € (0,1).
Moreover, Qr \ Q, C 22 UX2  and

par par

Ell)ar =<z € Qrp: liminf][ | Du — (Du)zo,p\p dz>0,
PO JQy(20)

Egar = 4 20 € Qp: limsup |[(Du)z,,p| = 400 ¢ .
PN\0



The previous result means that the weak solution u is Holder continuous in €2,, with exponent
a with respect to the parabolic metric dpa: (-, ) given by following:

dpar (2, 20) == max{]x — 0|, V|t — t0|} for z = (x,t), 20 = (20, t0) € Q7. (2.18)

In other word, u is Holder continuous in €2,, with exponent o with respect to space variable x and
with exponent /2 with respect to time variable t. Moreover, Hg;z denotes (n + 2)-dimensional
parabolic Hausdorff measure which is defined by

HEE2(X) = sup Hh 2 (X) (2.19)
6>0
where
HEL2(X) o= inf {Z R X | JQur Ri < 5} : (2.20)
=1 7=0

Note that Hg;f is equivalent to (n + 1)-dimensional Lebesgue measure.

We close this section by briefly summarizing the notation used in this paper. As mentioned
above, we consider a bounded domain  C R" and a cylindrical domain Q7 = Qx (—7,0) C R**?
where n > 2 and T > 0. u maps from  to RV, N > 1, in the elliptic setting and from Q to RY in
the parabolic setting. Du denotes the gradient of u, especially with respect to the special variables
z in the parabolic setting, i.e., Du(z,t) = Dyu(z,t). We write B,(x¢) := {z € R": |z — x¢| < p}
and Q,(20) := B,(z0) x (to — p?, to) where zo = (z0,t9) € R""1. For a given function g, we denote
the average of g on ball B,(xg) by gz, = pr(zo)ﬂQ gdr = m pr(:vo)ﬂQ gdx or average
on cylinder Q,(z0) by gz, = JCQp(zo)mQ gdz = Wlo)ﬂﬁl pr(ZO)ﬂQ gdz. We denote ¢ a positive
constants, possibly varying from line by line and special occurrences will be denoted by capital
letters C', C7, Cs or the likes.

3 Preliminaries

In this section we present A-harmonic approximation lemma, A-caloric approximation lemma
and other lemmas which we use to prove regularity theorems.

A-harmonic approximation technique (and also A-caloric approximation technique) has its
origin in De Giorgi’s harmonic approximation lemma [10] and Simon’s proof of the regularity
theorem of Allard [27]. The idea of this technique is simple. If we prove that the original solution
u is “close enough” to a solution v to an elliptic system with constant coefficients like

div[Dy A(x0, Uzy,ps DUz p)Dv] =0 in B,(xo),

then we knew that v is smooth in the interior of B,(z¢) and it satisfies good a priori estimates
by classical regularity theory. Thus we may hope that the good regularity estimates available
for v are in some sense inherited by u, and we may conclude the partial regularity of w. This
technique allowed us to obtain the regularity result without heavy tools such as LP-L?-estimates
for the gradient Du (which was known as Gehring’s lemma). For further detail about A-harmonic
approximation techniques we may refer to the survey paper [14].

Before we introduce the A-harmonic approximation lemma (and .A-caloric approximation
lemma), let us define the A-harmonic function and .A-caloric function.

10



Definition 3.1. Let 0 < A < L be given and let A be a bilinear form with constant coefficients
satisfying
Mw? < A(w,w),  A(w,w) < L|w||@] for all w,w € R™Y. (3.1)

A function h is called A-harmonic in the ball B,(x¢) if and only if it satisfies
/ A(Dh,Dp)dz =0  for all ¢ € C5°(B,(x0),RY),
Bp(z0)
and a function g is called A-caloric in the cylinder Q,(2o) if and only if it satisfies
/ ( )((g, o) — A(Dg, Dgo))dz =0 for all ¢ € C§°(Q,(20),RY).
Qp 20

Lemma 3.2 (A-harmonic approximation lemma, [4, Lemma 2.3]). Givene >0, 0< X < L and
p > 2 there exists 6 = §(n, N, \, L,e) < 1 with the following property: Whenever A is a bilinear
form on R™ satisfying (3.1), v € (0,1], and whenever

w € W"2(B,s(w0), RY)

s a function satisfying

| Dwl|? 4 P2 |Dw\p)d:c <1 (3.2)
Bp/2(x0)
and
[ () - ADwDp))ds <6 sup |Dy (33)
B, /2(x0) B, /2(z0)

or every @ € C3°(B,/a(xg), RY) then there exists a function
0 \Pp/
heW 1’2(Bp/4(1'0),RN)

which is A-harmonic on B, ,(xo) such that

£ (Db 7 DR )da < Cnp) (3.4)
Bp/4(x0)
and )
w—"h o |w—h?
—| P ——]| |dr<e. (3.5)
][BP/4(300) ( p/4 p/4 )

Lemma 3.3 (A-caloric approximation lemma, [15, Lemma 3.2]). Given e >0, 0 < A < L and
p > 2 there exists § = §(n, N,p, \, L,e) < 1 with the following property: Whenever A is a bilinear
form on R™ satisfying (3.1), v € (0,1], and whenever

w € LP(tg — (p/2)%, to; WH2(B, ja(0), RY))

11



s a function satisfying

w |? p
][ (‘ 2| Y )dz—i—][ (\Dw|2+'yp_2 |Dw\p>dz <1 (3.6)
Qpyaz0) \|P/2 p/2 Qp2(20)
and
| (we) - ADwbg)dz| <6 swp |Dy (3.7)
Qp/2(20) Qp/2(20)

for every ¢ € C°(Q,/2(20), RN) then there exists a function
h e Lp(to - (:0/4)27 lo; W172(Bp/4(x0)>RN))

which is A-caloric on Q,/4(z0) such that

2 P -
][ <]h4 2| )dz+ ][ (1Dh? + 72| Dhp)dz < Cnp)  (38)
Qpya(z0) \IP/ p/ Qpya(20)
and )
_ _ P
][ ‘wh 2|V RN (3.9)
Qpa(z0) \| P/4 p/4

The next two lemmas features standard estimates for A-harmonic functions and .A-caloric
functions.

Lemma 3.4 ([12, Theorem 2.3]). Consider A, X\ and L as in Lemma 3.2. Then there exists
Co > 1 depending only on n, N, X and L such that any A-harmonic function h on Bp/g(xo)
satisfies

P2 2, (P\* 2,12 P\? 2
= sup |Dh|"+ (% sup |D*h|" < Cy (= ][ |Dh|” dz. (3.10)
<2) B, /a(0) (2> Bp/4(xo)‘ | 0<2> B,/ (x0)

Lemma 3.5 ([15, Lemma 4.7]). Let h € L*(to — (p/4)?,to; W2(B,/4(20), RY)) be A-caloric
function in Q,/4(20) with A satisfying (3.1). Then h is smooth in B, 4(z0) X (to — (p/4)%,to] and
for any s > 1 there exists a constant C = C(n, N,L,\,s) > 1 such that for any affine function

£: R — RY there holds
s - h—1¢
][ dz < 0092][ -
Qop(20) Qpz0) | P/4

Here we state the Poincaré inequality in a convenient form. Its proof can be find in several
literatures, for example [19, Proposition 3.10].

s

h—1¢
dz  for every 0 < 6 > 1/4.

Op

Lemma 3.6. There exists Cp > 1 depending only on n such that every u € lep(Bp(mo),RN)
satisfies

/ U — Uz " dz < CppP |Du|? dx. (3.11)
BP(CKO) Bp(xO)
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For given function u € L?(B,(zo), R") we denote by £, , unique affine function minimizing
( lu— £ dz: (3.12)
Bﬂ(mo)

among all affine functions. An elementary calculation yield that £, , takes the form

gwo,p(x) = gwo,p(xo) + Dewop(w )

where s
n
Ezo,p(ffo) = Uy, and Dl ,= 2][ u® (r — xo)de.
p By (z0)

Using the Cauchy-Schwarz inequality we have the following lemma.
Lemma 3.7 ([4, Lemma 2]). Assume u € L*(B,(z0),RY), 29 € R", p >0 and 0 < § < 1. With

Leg,p and Ly, 0, we denote the affine functions from R™ to RN defined as above for the radii p and
0p respectively. Then we have

n(n+2) 2
DLy p — Dyl < ][ U — Loy p|* da (3.13)
o o (0p)%  J By, (x0) P
and more generally,
2
|Dly, , — DIJ* < n(n;)][ lu — 0)? da (3.14)
P »(20)

for all affine functions £: R® — RN
Lemma 3.7 implies that £, , has the following quasi-minimizing property for the LP-norm.

Lemma 3.8 ([4, Section 2]). Consider the minimizer of (3.12), that is, £y, ,. For any affine
functions £: R* — RN and p > 2 we have

][ |u — Ly plf d < c(n,p)][ |u —¢|P dx.
By (z0) Bp(wo)

Similarly as above, for given u € L2(Q,(20),RY), 29 € Qr, p > 0, we denote by £, , the
unique affine function minimizing

{— lu—0)*dz (3.15)
Qp(ZO)

among all affine functions ¢(z) = ¢(x) which are independent of the time variable t. Note that
.,p takes form
Loy (1) = Lo p(x0) + DUy p(x — 20)

where
n-+ 2

— u® (x — x0)dz,
P ]{gp(zo)

and same argument yields the parallel result of Lemma 3.7:

Loy p(T0) = Uz, and Dl , =

13



Lemma 3.9 ([15, Lemma 2.1]). Assume u € L?(Q,(20),RY), 20 € R"™, p> 0 and 0 < 0 < 1.
With £, , and £, g, we denote the affine functions from R" to RN defined in (3.15) for the radii
p and 0p respectively. Then we have

n(n+ 2) 9
Dl — Dl g,)* < ][ u— o2 dz 3.16
‘ 0,P 0, p| (HP)Q Qgp(zo) | 0 P| ( )
and more generally,
2
DC.,, — DU? < ”(”j)][ u— 02 dz (3.17)
P Qp(20)

for all affine functions £(z) = £(x) which defined on R"™ to RV,
The elementary calculation yields next two lemmas.

Lemma 3.10 ([22, Lemma 3.7]). Consider fized a,b > 0, p > 1. Then for any e > 0, there exists
K = K(p,e) > 0 satisfying
(a+b)P < (1+4¢e)a” + KbP.

Lemma 3.11 (20, Lemma 2.1]). For § > 0, and for all a,b € R* we have

1
42 (1 4 o + b — af)/? < / (1+]sa+ (1 - 5)b]*)"/?ds. (3.18)
0

4 Elliptic system: Dini-continuous coefficients

Before we start proving the regularity theorem of the elliptic systems (1.1) with Dini continuous
coefficients, i.e., Theorem 2.1, let us make a few remarks.

From (2.1), we infer the existence of a modulus of continuity p: [0,00) x [0,00) — [0, 1] such
that u(s,0) = 0 for all s, ¢t — p(s,t) is nondecreasing for fixed s, s — u(s,t) is concave and
nondecreasing for fixed ¢, and p also satisfies

| Dy Az, u, w) — Dy A(xg, uo, wo)|

<Lji (Jul + [w], | = zol? + Ju— wol* + w — wo|?) (1+ [w] + o)~ (4.1)

for all z, 29 € Q, u,ug € RN, w,wy € R™ with |u| + |w| < M.
For technical reasons, we rewrite the modulus of continuity n by

i(t) =2 (V).
Therefore we have
(71) 7 is continuous, nondecreasing and 7(+0) = 0.

(72) 7 is concave and t — t~*7(t) is nonincreasing for the same exponent « as in (72).

(73) F(t) := [2F(\/E)r - [/Ot \/@dT

< +4o00 for some t > 0.

14



Changing x by a constant, but keeping x > 1, we can also assume that
(74) (1) = 1, which implies ¢ < 7(t) <1 for all ¢t € (0, 1].

Fix 0 < 1/a. For t < s, we deduce 777 (t) < sn?(s). For s < ¢, we use nonincreasing property of
t=n(t) and 7(s) < 1, we obtain s7?(t) < ¢t. Combining both cases we have

1
sn?(t) <sn?(s)+t forse0,1], t >0, o < —.
o

In particular, we have
(15) sn(t) < sn(s) +t for s € [0,1], ¢ >0,

(16) s+/n(t) < s4/7(s) +t for s € [0,1], t > 0.

From (72) we infer for i € NU {0}, 6 € (0,1/8],t >0

92it / i
02t / P02y = 2 — (1 —0°F)\/78(62),
ity T Zt)B Joa(is1ye af

which implies
=06(H21 L
E \/ 1P (6%%) 2 90‘5 F(t) (4.2)

O£262

for k € N. This yields that

n(t) < WF(t) (4.3)
for all ¢ € [0,1]. Moreover we have
tTOF(t {\/ (0t) + / Vreq(r)re2 /QdT:|
<t [ F(6t) + &\/(915)— {\/Ta N, }]
2
< [\/t—aﬁ(et) + \/(et)—aﬁ(et)ll__eea/;]
< 4(0t)*F(6t). (4.4)

The first step of proving the regularity theorem is to establish a Caccioppoli-type inequality
which able to control the derivatives Du by the solution w itself with increasing support.
For s,t > 0 let

pi(s,t) =1+ s +1),  G(s,t):=(1+1)>k%(s+1).

Note that p;1 <1 and G > 1.
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Lemma 4.1. Consider v € R™W and ¢ € RN with || < M fived. Let u € WHP(Q,RN) N
L®(Q,RN) be a weak solution of the elliptic system (1.1) satisfying (2.1), (2.2), (2.7), (2.8),
(n1), (n2), (n3) and (n4) with ||ullee < M and 200=9P)2X\ > a(M)M. Then for any x¢ € Q and
p < pi(|&], |v]) with B,(zo) € Q there holds

][ |Du — v]? n |Du — v|P dr
5 aeoy | (L WD2 (T

u—&—v(x—=0)* | |u—&—v(z—m) S0 2 2 2
J{e,,uo){ e T AP }d“G('f”'”')”(p Sk bry

(4.5)

<Cy

for some Cy = Ci(p,\,L,a(M), M) > 1.

Proof. Assume zg € Q and p < 1 satisfying By(zg) € © and p < pi(|¢],|v|). We denote
&+ v(z — o) by £(x) and let take a cut-off function ¢ € C§°(B,(zo)) satisfying 0 < ¢ < 1,
|Dy| <4/pand i =1 on B, s(xo). Then ¢ := P (u —{) is admissible as a test function in (2.9),
and obtain

][ YP(A(z,u, Du), Du — v)dx
BP(J»’O)

= —][ (A(x,u, Du),pY* Dy @ (u — £))dx +][ (f, p)dz, (4.6)
Bp(wo) B

p(mO)

where £ ® ¢ := &(*. From equations
—][ VP (A(z,u,v), Du — v)dx
By (z0)
~[ A o - 0)de - | (Asu),De)ds, (@)
Bp(l"O) Bp(xo)

and

£ (At&w), Doyde =0 (48)
By (o)
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we have

][ YP(A(z,u, Du) — A(z,u,v), Du — v)dz
Bp(zo)

][ (A, u, D) — Ay u, ), pp? "D @ (u— 0))de
Bp(wO)

(A(

)

][Bﬂ(ﬁfo

- ][ (A(.0,v) — A(xo, &, ), D) da
Bp(ffo)

+ ][ (f,p)dx
BP(xO)
=I+1II+IIT+1IV. (4.9)

8

z,u,v) — Az, L, v), Dp)dz

The terms I, II, IIT and IV are defined above. Using the ellipticity condition (2.2) and Lemma
3.11 to the left-hand side of (4.9), we have

][ YP(A(z,u, Du) — A(x,u,v), Du — v)dx
Bp(xo)
1
:][ 1/;7’/ (DyA(z,u, sDu+ (1 — s)v)(Du — v), Du — v)dsda
B,(z0) 0
1
2][ VPN |Du — V|2/ (1+ |sDu+ (1 — s)v|)P~2dsdx
B,(z0) 0
2202—9?)/%][ YP{(1+|v[)P~2|Du — v|* + |Du — v[P }dz. (4.10)
BP(zO)

For £ > 0 to be fixed later, using (2.1) and Young’s inequality, we obtain

1] Se][ YP{(1+ v|)P=2 | Du — v|* + |Du — v|P }dx

BP( 0)

u— 4
+

+ c(p, L,E)][ 5

P
{(1 + |v])P2 }d:c. (4.11)
BP(QUO)
We use (2.7) and Dy = ¢P(Du — v) + pypP "' D1p @ (u — £), and split the term II as follows:

u—ﬂ’z
p

| S][ k(I + ] p)n(lu = €)1 + [V~ |Du — v] do

By (o)
4 Ji K(1E] + 2] p)n(lu — €)1+ (2P~ pu " | DY fu — €] da
p\Z0

Using Young’s inequality we estimate the term II; as

1
Mo<ef WP Du-vPdot S (U PRR(E] + i (ju - o) da.
By (w0) €

BP(J"O)
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Note that our choice p < p1(J¢], |v]) allow us to apply (775), so that we get

1 — 72
Mozef Qe IDu-vfde s of @l u‘ .
By (z0) gJB

p(xo)

b2 @R+ ) (2 )P+ D) da
By (zo

Using the definition of G(-,-) and the fact that 7(ct) < en(t) for ¢ > 1, we deduce

I gs][ YP(1 4 |[v))P72 | Du — v|* dz +
BP(xO)

1 ~
+ A+ PGl )i(p®).
Similarly we see

u— ¥

2
I < C(p,é‘)][ (1+ |v)P— dz + c(p,e) (1 + [V)PG(I¢], [v)7(p°).

BP(J”O)

Combining these two estimates and get

2

Msef  PaEpP D drtepaf [
Bp(xO) BP(xO)
+c(p,e)(L+ [V)PG(IE], IvDi(p?). (4.13)
In the same way we derive
I <f oy (e D (3 ) D v do
p\Z0
_ u—/
+][ (1 +[v])? 1H(§|+\V\P)n((lﬂv\)ﬂ)ﬁlp‘ da
B, (x0) P
2
<5][ PP(1+ \I/\)p_2|Du—V]2d:U—|—6][ (1+|v))P~2 M‘ dx
Bp(zo) By (z0)
+c(p,e) (L + [V)PG(IE], IvDi(p?). (4.14)

For ¢/ > 0 to be fixed later, using (2.8), Lemma 3.10 and Young’s inequality, we have

ITV| S][ (a|Du|? 4+ b)Y |u — ¢| dx
By (o

2
Sa(1+5')][ P |Du — vlP |u — ¢ dm+6b2p2—|—1][ u=t dx
By (z0) €JBy(z0) | P
o {ak .o} 1 D o
BP(QUO
!/ P 2 92 u — f 2
<a(l+£)2M + |v|p) P |Du — v|P dx + - I+ |y |——| dz
Bp(xo By(z0)
+e(1 4 [v|)Pp*{aK |v| + b}>. (4.15)
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Combining above estimates, from (4.9) to (4.15), and set A := 2(12-9P)/2\ — 3¢ — (1 +£')(2M +
|| p), this gives

A][ PP{(1 + ’V’)p‘Du—V’2+ |Du — ¢|P}dx
B, (z0)

<c(p, L) [][B( ){(1+\V\)p2

T e(1+ W) {ak [v] + b}

Now choose € = e(p, \,a(M), M) > 0 and &’ = &'(p,\,a(M), M) > 0 in a right way, we obtain
the claim. O

u—2F
p

u—Er
_"_

} de + (14 )P Gle] 1))

Lemma 4.2. Under the same assumptions in Lemma 4.1, take especially & = ug, ,. Then for
any xo € Q and p < p1([€], |v|) satisfy B,(xo) € Q, the inequality

][ A(DU’ D@)dl‘ < 02(1 + |V’) ﬁ1/2(|€’ + |V| 7(1)(1‘07 P, V))(I)l/2(x07p7 V)
BP(QCO)

T D20, pyv) + ClE] VA + pla ] + b)} sup Dyl

holds for all ¢ € C§°(B,(x0), RY), where
o
(14 [w])p=t

|Du—v|*>  |Du—uvlP
( PR NCER T AR (P
and Cy = Ca(n,p, L,a(M)) > 1.

Proof. Assume zg € Q and p < 1 which satisfy B,(z9) € @ and p < p1(|¢], |v]). Without loss
of generality we may assume supp (,,)[Du[ < 1. Note that this implies supp (o) [u| < p < 1.

Using the fact that pr(mo) A(wo, &, v)Dpdz = 0 for all ¢ € C§°(B,(x0), RY) we deduce

A(Dv,Dy) := (DyA(x0,&,v)Dv, Dy),

(1+\u\)p—1]{3( A, Do)
1
=][ / (IDuwA(0,6,1) — DA, &,v + s(Du — 1))|(Du — v), Dg)dsde
Bp(wO) 0
+ ][ (A(20, €, Du) — Alx, £, Du), Dy)da
Bp(f"O)

+][ (A(z, ¢, Du) — A(z,u, Du), Dy)dz
BP(IO)

+ ]1 (f. ¢)de
BP(QCO)
— T+ I+ I+ 1V (4.17)
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where terms I, II, III, IV are defined above.

We estimate the term I using the modulus of continuity fi(+,-) from (4.1), Jensen’s inequality
and Holder’s inequality, and we get

1
MSdnLy" (/;ma+wmum—w%u+h¢+wu—wv2um—uwwx
B, (z0) /O

<c(1 + y)p—l][

By (zo)

— _ p_l
ﬂ(l£\+|u|,|Du_Dg|2){‘D“ v| , |Du—v| }dw

IR
<e(L+ )P A2 (g1 + vl (1 + ) (a0, p, )02 o, )
+ BM7(€l+ V] (1 + )20 (@0, p, ) @Y/ (20, p, )|

<c(1+ ) [B2(€)+ 0], (w0, p, )8V (w0, p,0) + B0, p,v) (4.18)

where ¢ > 0 is a dual exponent of p > 2, i.e., ¢ = p/(p — 1). The last inequality follows from the
fact that a'/Pb1/1 = o/Ppl/Pp(P=2)/2 < q1/2p1/2 4 p holds by Young’s inequality and the fact that
f(s,ct) < cfi(s,t) for ¢ > 1 which deduce from the concavity of t — fi(s,t).

Similarly, using the modulus of continuity 7(-) from (2.7), Young’s inequality, and we deduce

11 <2P k(€] + [ (L + [ )P Vi (p?)
+2”_2][ r(I€] + WDV (L + [V))?) | Du — v~ da
By (z0)
<L+ WPG(E] V) Vi(p?) + 2072 (1 + [v])P @ (20, p, v). (4.19)
Here we have used 7?/2(p?(1 + |v])?) < /7(p2(1 + [v])2) which follows from the nondecreasing

)
property of ¢t — 7(t), (774) and our assumption p < p; < 1.
We derive, using again the modulus of continuity 7(-) from (2.7),

| T SC(p)][ RO+ )y =€) (L + )P~ da

Bp(mo)

+C(p)][ (€L + DA/ 7i(lu = £%) |Du — v P~ da
By (o)
=111 + IIIs.

Using Hélder’s inequality, Jensen’s inequality, (776) and the Poincaré inequality, we have
L < e(p)(L+ )7 (gl + )2 (£ Ju b ds
By (o)

<wﬁa+ww*{&u+u%ﬂm+wwW%fa+Mﬂﬂm+wm+f( W—W¢%

< c(p)A + [WDPGEL VD)V (p?) + clp,n) (1 + [V])P@(20, p, V).
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Similarly, we have, using Young’s inequality, (775) and the Poincaré inequality,

M, < c(p)f

By (o)

€]+ )P (o~ 02) do o) Du ol do
By(

o(z0)
<ef, [ 1o (s2el + )e?) + - ()] ot e1 + PR, p,0)
<c(1+ PG [v))Vi(p?) + e(n,p)(1 + [v])’ (0, p, v).
Thus we obtain
LI < e(p)(1 + [v)PG([E], V)V 7i(p?) + e(n, p) (1 + [v]))P@(x0, p, /). (4.20)

Using (2.8) and recall our assumption supp (,,) [¢| < p, we have

V] g][ pa(|Du — v| + [v|)Pdz + bp
Bp(zo
< 2L (1 + [W])P®(0, p, v) + 2 Lp(1 + )P (alv] + D). (421)
Combining these estimates, from (4.17) to (4.21), we obtain the conclusion. O

For fixed zp € Q and p < 1, let write ®(p) = ®(zo, p, (Du)4,,p) from now on. Now we are
ready to establish the excess improvement.

Lemma 4.3. Assume the same assumptions with Lemma 4.1. Let 6 € (0,1/8] be arbitrary and
impose the following smallness conditions on the excess:

(1) ,u1/2(|ux0,p| + [(Dw)zg,pl » P(p \/7 2 with the constant § = §(n, N,p, \, L, f"1P+2)
from Lemma 38.2;

(ii) (14 |(Dt)ag o)) 7(p) < 67 (24/CoC) "

where C’o and C' are constants from Theorem 3.4 and Lemma 3.2, and

— 0, [ﬁw(s 1{ (Jtagpl s (D)o o)) /7(02) + pla(l + |( Du)xop|)—|—b)H

(iii) p< pl(‘uxo7p| ) ‘(Du)ﬂfoaﬂ‘)'

Then there holds the excess improvement estimate
(0p) < Co82D(p) + H([ttan pl (D) p)71(0): (4.22)
with a constant C3 = C3(n, N,p, A\, L,a(M), M,0) > 1, where
H(s,t) := 85 2C3{G?*(1 + 5,1 +1t) + a(l +t) + b}.

Proof. We consider B,(xg) €  and set £ = Uz, p, ¥ = (DU)ag,p, L = §+ v(x — 20). Assume (i),
(ii) and (iii) are satisfied. We rescale the solution u as

ou—/¢
(I+ )y
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Applying Lemma 4.2 on B,(zg) to w and combining the assumption (i), we obtain

][ A(Dw, Dp)dzx
By (z0)

< [/ﬂ? (16l + 141 V30 +V300) +§} sup |Dyl

By(z0)
<4 sup |Dey|

By (o)

for all p € C§°(B,(z0), RY). Moreover, we have, note that v > Ca1/®(p) holds from the definition
of v,

_ |Du — v]? o |Du—vl?
(IDwf? + 7 2|Dw|p}dx:][ Rt (g S =Cint
]ép(xo) By(wo) | Y21+ [V])? P(1+ [v|)P

) 1
<—<—-—5<1
v~ Oy
Thus, these two inequalities allow us to apply A-harmonic approximation lemma (Lemma 3.2),
to conclude the existence of an .A-harmonic function h satisfying

_phl? P
][ woh T 2|0 R g, (4.23)
B,a(xo) || P/2 p/2
and
£ (DH 457 D)o < Clnp), (4.24)
Bp/2($0

where we taken &€ = §"*P*2, From Theorem 3.4 and (4.24) we have

sup | D2h|” < 4CoCp%.
Bp/4($0)

From this we infer the following estimate for s = 2 respectively for s = p,

sup
B, /4(z0)

Dh‘s <c(n,N,\, L,p,s)p°.

For 6 € (0,1/8], Taylor’s theorem applied to h at xg yields
sup  |h(z) — h(zo) — Dh(xo)(x — x0)|° < ¢(n, N, X\, L, p, s)6%° p°.

Z‘EBQQP(I())
We have then
1220 o= hao) - Dhlan)(e ~ a0 do
Bagp (o)
<e(s)r*~2(26p)"* ][ w— h| do + ][ Il — h(xo) — Dh(ao)(x — ao)[* da
Bagp(0) Bagp(z0)

<c(n, N, \, L,p, s)6°.
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Set Py = v + (1 + |nu|)Dh(xg). Recall that the mean-value of u — Py(x — xg) on Bag,(xo) is
Uzy,20p, We have

(20;))_5][ U — Uz 200 — Po(x — x0)|” da (4.25)

Bagp (o)

<c(s)(20p) " *v*(1 + \1/\)8][ |w — h(xg) — Dh(xo)(z — x0)|" dz (4.26)
Bag,(z0)

<c(n, N, M\, L,p,s)(1+ |1/|)59272. (4.27)

By assumption (ii), we infer \/®(p) < 6"/2. This yields

(1 + ).

N | =

|(Dt)go,00 — V| < 9‘”][ |Du —v|de < 67"(1+[v|)v/®(p) <
Bp(fo)

Thus, combining with the estimate 1 + [v| < 1+ [(Du)y,0,| + [(Dw)a,0p — V|, We obtain
14 ] < 201+ [(Du)soap)) (428)
Then Theorem 3.4, (4.24) and assumption (iii) imply
[Pol < [V + [v(1 + [[) Dh(zo)| < [ +~(1 + [v[)v/ CoC(n, p) < % + [ (4.29)
Therefore, combining with (4.28), we have
14 [Po] < 3(1 4 [(Dt)y 6p)-

Applying the Caccioppoli-type inequality (Lemma 4.1) on Bag, (o) with § = uy 26, and v = Fy
O (0p) <6°P(x0,0p, Py)

yields
P
][ { } dx
Bagp(z0)

+ Gluzg 20,] , [Pol)1((200)%) + (a| Po| + 5)2(290)2] : (4.30)

U — Ugy 29p — Po(x — x0)
200(1 + | Po])

U — Ugy 20p — Po(x — x0) 2

<6PC
= 20p(1+ [ Pol)
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Using Holder’s inequality, the Poincaré inequality and assumption (ii) we have
Fo gy~ vla — mo))do
Bagp(z0)

1/2
+ ][ ‘U—ugm,p—V(x—l’o)F dx
Bag,(0)

1/2
< g pl + (29)771/2 (][ [u = Ugy,p — V(T — x0)|2 dx)
Bﬂ(xo)

< gy | + 07/ (1 + ) /B (P)
R

< ttggp| + 1. (4.31)

|Uao,200] < [tag,pl +

S |UI07P

+0~

S |uxo,P

Set Ho(s,t) = G*(1+ 5,1 +t) + {a(1 +t) + b}9 and using (4.29) we obtain

G(|tzo 20,] , [Po])71((20p)%) + (a|Po| +b)*(20p)* < Ho([€], [v])7(p?).- (4.32)

Definitions of v and Hy imply

2 <20y [<I><p> + 4572 {G(&0 VA + pla(1 + ) + b)}Q]
< 20,2[0(p) + 85~2Hol€] , )i o)) (4.33)
Plugging (4.27), (4.32) and (4.33) into (4.30), we deduce

®(6p) < 6°Cy [c(n, N, X\, L,p)6°y* + G(!uxozep\ !PO\Y((?@P)?) + (a|Po| + b)*(20p)?]
< 6°Cy [e0°Cy* {®(p) + 6> Ho(l¢], [v)i(p*) } + Ho(I€], [v])ii(p)]
< Oy [02®(p) + 85 2Ho (¢, [v)i(p?)] ,

and this complete the proof. O

For o € [a,1) we find 6 € (0,1/8] such that C36% < 629/2. For Ty > 1 there exists ®¢ > 0
such that

)
12 <2T0, \/2<1>0) +v2%0 < 3, (4.34)
204(1 + 2Tp) /2@ < 0", (4.35)
where Cy := C5(1 4+ 1/Cp). Note that &g < 1. Then we choose 0 < py < 1 such that

Cs5/17(po) < Po, (4.36)

(14 2T)(1+ VTp) [Coa2 R () _ 1

< =T 4.

on/2 (1 _ gaﬁ) =9 05 ( 37)
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where
2H (2Ty, 2Ty)

920{ _ 920 :

Lemma 4.4. Assume that for some Ty > 1 and B,(x) € 2 we have

Cs5 =Cs(n,N,\,L,p,a(M),M,«,0,Ty) =

(a) ‘uxo,p’ + ‘(Du)xo,p‘ S T07
(b) @(p) < Do,
(¢) p<po.

Then the smallness conditions (i), (ii) and (iii) are satisfied on Bk ,(zo) for k € N'U {0} in
Lemma 4.53. Moreover, the limit

Ay, = kl:m (D) 0%

exists, and the inequality

20
][ |Du — Ay, |® dx < Cg (r) d(p) + F(r?)
Br(z0) P

is valid for 0 < r < p with a constant Cs = Cs(n, N, A\, L,p,a(M), M, o, 3,0,Tp).

(4.38)

Proof. Inductively we shall derive for £ € NU {0} the following three assertions:
(Ir) ®(6%p) < 2dy,

(1Lx) |Umo,9kp‘ + |(Du) gy gv,| < 270,

) (Du)xo,ekp‘)‘

We first note that (I), (IIz) and (4.34) imply the smallness condition (i), i.e., (i) with 0%p
instead of p. Next we observe that (I), (IIx), (4.35) and (4.36) yield

(1) gkp < pl(}uxo,ekp

(L4 |(Du) gy 0%,]) (2 C'OC) ~(6%p)

)
<1+ [(Du) 4y o4,)) [CS\/ 200 + H |ty gr, | » | (D) g 01, ) v TN](POZ)}
<(1+ 2Tp) [ng/cho + H(2Ty, 2Tp) ﬁ(pOQ)}

2 20 _ p20
S(l + 2T0) |:Cg 20y + H(I)D:|

<2C3(1 + 2Tp) /2%
<1.

Thus we have (iix). Note that Co (2\/000) < (O3 and ®5 < 1 are hold from there definitions.
Finally (iiig) is just (ITI).
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By assumption (a), (b) and (c), there hold (Iy), (IIp) and (IIIp). Now suppose that we have
(I;), (II;) and (IIL;) for [ = 0,1,...,k — 1 with some k& € N. Then we can use Lemma 4.3 with p,
Op, ..., 05 1p, and yield

k k-1 l
2(00) < (50%°) 00+ 3 (56%) Hlltgonosoy ]| (D0hgas -,
=0
k k-1 l
< <;920> O(p) + H(2TH,2Th) > | (;92"> (0" "p)?).
=0

The nondecreasing property of t — t~“7j(t) and the choice of o imply

k—1 l k—1 l
Z (;9&7) ﬁ((ek_l_lp)Q) < 9—2aﬁ((9kp>2) Z <;92a—2a>

1=0 1=0
2i)((6%p)?)
— 29204 _ 920'
Therefore we have .
15, i
B(0p) < (292 ) B(p) + Cxil((60)) (4:39)

Keeping in mind of (b), (¢) and the choice of p, we prove (I). We next want to show (II). Using
the fact that JCBp(xo) v(x — xg)dz = 0 holds for all v € R™Y, Hélder’s inequality and the Poincaré

inequality, we obtain

‘uxoﬂkp‘ < ‘uxo,ek_lp‘ +

][ (u— Ug gh—1p — (Du)xoﬂk_1p(x — x9))dx
By ,(20)

< Jttgy gi1,| + 072/ Cp(1 + | (D), g-1,])1/ (0 1p)
k—1

< g ol + 072/ Cp > (14 [(Du) 4y g1,] )1/ 2(07p).

=0

Similarly we see

‘(Du)xoﬂkp‘ < ‘(D’U,)xoygk—lp‘ +

][ ( )(Du — (DU)IOﬂk—lp)d[L‘
gkp xo
k—1

< |(DWagpl + 672 (14 (D) gy 1)1/ ©(6p).

=0
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Combining above two estimates and using (4.39) and (4.2) we infer

|u$079kp‘ + ‘(Dwxoﬂk ‘

-1
(1++/Cp)(1 4+ 2Tp)
< |Uxo,p| + |(Du)3307p| + 0n/2 Z \/@7
=

k—1 l
1+ /Cp)(1 + 2Tp) .
<Tp+ ( Qn/z 0 {<\/§9 ) ) + 1/ Csn (6% p? }

=0
T+ (14++Cp)(1+2Tp) | v/2 p) C5a2ﬁ2F
>~10 Hn/2 \/i 90— 1 _ 9&[3
1 o2 1
STO + WT + 5 0
<27Ty.

This proves (IIg). By (c¢), (IIg), (74), the definition of H and (4.36), we easily derive

) (Du)mo,ekp‘)e

(0 1Dt (1,
<H(2Tb,2To)\/7(po)
<1.

Thus, we prove (III}).
We next want to prove that (Du),, gx, converges to some limit A, in R™Y . Arguing as in
the proof of (II) we deduce for k > j

k
‘(Du)xoﬁkp - (Du):c()ﬁjp| < Z |(Du)x0,91p - (Du):coﬁl*lp‘
I=j+1
k
< 57 0721+ |(Du) gy g, )1/ 201 )
I=j+1
o (1+200)/0770(p | 1+ 2Ty Csa2(2F(62162) (4.40)
- 9n/2(\/§ _ ga) gn/2 4(1 _ gaﬂ)Q : :

Taking into account our assumption (73) we see that {(Du),, gr,}x is a Cauchy sequence in RN,
Therefore the limit
A:Uo = lim (Du)xo,ekp

k—o0

exists and from (4.40) we infer for j € NU {0}

’(Du)xo,ejp - AWO} < ‘(Du)xo,ekp - (Du)mo,ejp’ + |(Du)x0,9kp - AIO’

— C7\/020j‘1>(p) + F(0%p2) (as k — 00)
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where

\/§(1+2T0)\/ 1 Csa2/3?
C7 =

Combining this with (4.39), and recalling the estimate (4.3) we arrive at
][ |Du — Ay |? dae < 2(1 + 2T0)®(67p) + 2 |(Dt) g 05 p — Aag !2
Bejp(IO)

< Cs {0270 (p) + P(0777 )}

with

Cg =2 {1 +omy 4 02 4 S04 2Th) } .

4(1 — goB)2
For 0 < r < p we find j € NU {0} such that 6’*!p < r < #7p. Then using the above estimate
with (4.4) imply

][ Du—Ayy[Pde <0 "f  |Du— Ay |?dz
B (z0) Bjp(xo)

< G067 ®(p) + F(6%p?)

< 4Cgh "% { ( )20 ®(p) + F(ﬂ)} .

This proves (4.38) with Cg := 4Cg0~" 27, O

3

The regularity theorem (Theorem 2.1) is obtained from Lemma 4.4 by using standard argu-
ments.

5 Elliptic system: VMO-coefficients

From p-growth condition (2.1), we may infer the modulus of continuity function p: [0,00) —
[0,00) such that p is bounded, concave, non-decreasing and we have

|w — wo|

Dy, A(x,u,w) — DyA(z,u, <Lp(—————
IDuAGe. ) = Do wn)] < L (1 2

) (1 + |w| + |wo|)P~2 (5.1)
for all z € Q, v € RY, w,wy € R™. Without loss of generality, we may assume pu < 1. Note
that p is differ from the one we take in the case of Dini-continuous coefficients, (4.1).

Lemma 5.1. Let u € WHP(Q,RY) N L®(Q,RY) be a weak solution of the elliptic system (1.1)
satisfying (2.1), (2.2), (2.12), (2.10), (2.11) and (2.8) with |ju|, < M and 20079)/2\ > o(M)M.
For any zo € Q and p < 1 with B,(zo) € Q and any affine function £: R™ — RN with [((z0)| < M,
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we have the estimate
|Du — DI)*  |Du— DIJP
7 + - dx
B, (o) | (L +[DE)? — (1+[DY])
u— ¢ lu — £
<Cy [][ + dz
By(zo) | PP(1+[DL)?  pP(1+ [DL|)P

+w <][ lu — ()2 d:z:) +V(p)+ (a?|DL|* + bq)pq] (5.2)
Bﬂ(xo)

with the constant Co = Cy(p, A\, L,a(M), M) < 1.

Proof. Similar as in the proof of Lemma 4.1, we take a standard cut-off function ¢ € C§° (€2, RY)
and insert the admissible test function ¢ := ¢P(u — ) to (2.9) we obtain

][ VP (A(z,u, Du) — A(x,u, D{), Du — D{)dz
Bp(xo)
——f (A D) — A0, DO, DY (1= )
Bﬂ(zo)
(A0, DO) - Az (), DO), D)
By(z0)

- Ji (A ), DO — (AC ), DOV D

+ ][ (f, o)de
Bp(xo)
=1+ 11+ 11+ 1V. (5.3)

Note that the term IIT is differ from (4.9). The left-hand side of (5.3), the term I and IV are
estimated as similar as in Lemma 4.1, and we have

][ YP(A(z,u, Du) — A(z,u, DC), Du — Df)dx
By (z0)

22(12—9,;)/2)\][

¢P{(1+ \DE)Y?~2 | Du — DeJ? ]Du—DE\p}dx (5.4)
By (o)

1] §5][ WP {(1 +|D¢))?~2 |Du — DU? | Du — Dz\p} dx
By(xo
u— fP

p

u—4F 2
+elp Lo f - \ ;

Bp(xo)

{(1 + | De|)P~2

}dw (5.5)

V| <a(l +£)(2M + | DY| p)][ P | Du — DIP da

By(zo
+etnof
Bp(xo)

u —

p
8 do + (1 + | DO p1{at K7 | DE? + b7} (5.6)
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where £, > 0 to be fixed later. In order to estimate the term II, we use (2.12), Dy = ¢?(Du —
DO) + pyP~ L @ (u — £), and Young’s inequality, we get

11| §5][ \Du—Dﬁ\pdx—i—aq/p][ Liw(|u — £(x0)|*)(1 + | DI|Pda
p\Zo By(z0)

+ 8][
BP(CL’O) P
Ss][ P |Du — DL dx—i—s][
Bp(xO) Bp(xo)

+c(p, L,e)(1 + | DI])Pw (][

By (z0)

u—4

P
di + e-q/p][ (ALp) T (|u — £(zo) )1 + |DE]Pda
Bp(xo)

p

—/
Y dz

p

lu — E(m0)|2> dz, (5.7)

where we use Jensen’s inequality in the last step. We next estimate the term III by using VMO-
condition (2.10) and again Young’s inequality, we have

4 _ P op—1 a/p
I < —— o Du— Dol + 2= (2 Vo (x, p)(1 + | DY))Pde.
op—1
B, (zo) P € By (zo)

Then using the fact that V, ¢ = V971 - Vi, < (20)7'V,, < 2LV,,, and (2.11) we infer

! dx + c¢(p, L,e)(1 + |DL))PV (p). (5.8)

ITIT| < 5][ P |Du — DLP dx + ¢(p, a)][
By (o) B P

p(IO)

Combining (5.3) through (5.8), and set A := 20279)/2)\ — 3¢ — q(1 + ') (2M + | D{| p), this gives

A o |Du — D{)*  |Du — DIJP p
Bp(o) (L+[De)> — 1+ |Dejp

2
][ ‘ u—4
B, (x0) { p(1+ |DL])

+e{a?(1+ K(q,€")?|Dl|* + b7} pl.

u—/

< L
s o

g 2
} dx 4+ w (ﬂp(m) |u — €(xo)| da:) +Vip)

Now choose € = (A, p,a(M),M) > 0 and & = &'(\,p,a(M), M) > 0 in a right way, we obtain
(5.2). O
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Here let us write

fu;:u—f:u—f(,’ljo)—DE(ﬂf—fE(]),

A(Dv, Dyp) := W< (DeA(-, £(zo), DK))xoprv, D<p>,

|Du — DI)*  |Du— DIP
B(z0,p,0) = ][ n dx
( e | A 1DE2 T (14 (DA
ju— 4P ju— e
W(xg, p, ::][ + dx
o 0= {pm Faye 1Dy

\IJ*(J;O) P:g) = \Ij(x()apa e) tw <][
B

lu — £(x0))? d:):) + V(p) + (a?|De|? + b9) 1

P(xo)
for shorten.

Lemma 5.2. Assume the same assumptions in Lemma 5.1. Then for any xg € 2 and p < pg
with satisfy Bay(z0) € Q, and any affine function £: R™ — RY with [{(x0)| < M, the inequality

][ A(Dv, Dp)da < Cro(1 + | DY) [,ﬂ/? (\/\1/*(930,2;;,5)) V. (20,2, 0)
BP(:EO)

+ W, (20,2p,0) + p(a DI + )| sup Dyl (5.9)

By (zo
holds for all p € Cgo(Bp(:z:o),RN) and a constant Cy9 = Cro(n,p, A, L,a(M)) > 1.

Proof. Assume zp €  and p < 1 satisfy B,(x) € Q.

(1+ ]D€|)p1][ A(Dv, Dy)dx
Bp(xo)

1
:]{3 » /O ([(DuAC.ta0). DE),,, — (DuAC, (o), DE+ 5DV)),, | Du, Do dsd

+][BP($O) < (A(" Hao), Du))l"ovﬂ — A(z, ((z0), Du), D‘P>daj
( )<A(:E,£(:Uo),Du) — A(z,u, Du), Dp)dax

i
By

+ ][ (f, o)da
BP(IO)
=T+ 11+ 1141V (5.10)

Using the modulus of continuity pu(-) from (5.1), Jensen’s inequality and Hoélder’s inequality, we
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estimate

1] < el )1+ DAy f
Bp(xo)

< 1+ (DU |1 (V0. p,0)) /B0, p.0) + 17 (@' (0,p.0)) /(0. p,0)
< (1 + |De|)P! [MW <\/<I>(m0,p, e)) V(0. p, £) + B(x0, p, e)} . (5.11)

|Du— DI\ | |Du—D¢| |Du— DeP!
s + dx
1+ |D¢| 1+ |D¢| (1+ |De))p—1

The last inequality follows from the fact that al/pbl/q = a/Ppl/Pp(P=2)/P < ¢1/2p1/2 1 p holds by
Young’s inequality.

By using the VMO-conditions (2.10), (2.11), Young’s inequality and the bound V,,(x, p) < 2L,
the term II can be estimated as

1] < e(p)(1 + |Df|>p—1][
By (o)

< c(1+ DO + LYV (p) + (xo, p, 0)] (5.12)

Du — DeJP~!
{%0($ap) + on(x’p)|(1+l)£|)|p—1} d

Similarly, we estimate the term III by using the continuity condition (2.12), Young’s inequality,
the bound w < 1 and Jensen’s inequality. This leads us to

11| < L][ (14 |Dt| + |Du — DO)P~Lw(ju — £(zo)|*)dz
B,(z0)

w <][ u— z(xo)%x) + D20, p, e)] (5.13)
By (z0)

The term IV is estimated as similar as in Dini-continuous coefficients case, Lemma 4.2, therefore

< c(p, L)1+ [De)y~!

we have
V] g][ p(a|Dul? + b)da
By (z0)
< 2?7 La(1 4 |DL)PD(wo, p, £) + 2P p(1 + |DL)P~ (a | DEP + b) (5.14)

Combining estimates (5.10) through (5.14), we arrive at

][ ( )A(Dv,Dgo)dw
By(zo
<c(p, L, a(M))(1 + [ DE])
< [0 (V(@0,0.0) V0o, p.0) + ®(wo. p,€) + Vw0, p,€) + plal DIP + )|

<Cio(L+1Dt]) |1 (VUalw0,2p.0) ) v/ Tul20.20.0) + W20 20.0) + pla | DIP + 1)

where we use the Caccioppoli-type inequality (Lemma 5.2), ®(z, p,¢) < C1¥.(x0,2p, ) and the
concavity of u to have p(cs) < cu(s) for ¢ > 1 at the last step and this complete the proof. [
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From now on, for fixed g € Q and p < 1 let us write ®(p) = P(xo,p,lzy,p), Y(p) =
V(x0, p, lag,p) and Wi (p) = V. (x0, p, £ay,p) for shorten. Here £, , is a minimizer which we intro-
duce in (3.12).

Now we are ready to establish the excess improvement estimate for VMO-coefficients system.
Note that the excess improvement estimate (5.15) is established by functional ¥ and not by ®
as like in (4.22), Lemma 4.3, because our purpose is to prove v € C%* and not Du € C% in this
section.

Lemma 5.3. Assume the same assumptions in Lemma 5.1. Let 6 € (0,1/4] be arbitrary and
impose the following smallness conditions on the excess:

(i) p2(\/T(p)) + /U (p) < § with the constant § = 5(n, N,p, \, L, 0"P+2) from Lemma 3.2.

9n+2

(i) Y(p) < Tmrays
(iii) Y(p) = [22(p) + 6~9p%(a| Dy | + )7/ < 1.
Then there holds the excess improvement estimate
U (0p) < C116%T,(p) (5.15)
with a constant C11 = C11(n, N,p, A\, L,a(M), M,0) > 1.

Proof. We first rescale u and set

w U — Ly p
C(l + ‘Dea:o,p’)’y

Similarly as Dini-coefficient case, by Lemma 5.2 and assumption (i), the map w is approximately
A-harmonic in the sense that

]{BW(IO) A(Dw, Dg)dz < [;u/z (\/\IJ*(p)) +/W.(p) + g] sup | Dl

B, /2(%0)

<d sup |Dyl,
Bp/Q(xO)

for all ¢ € C§°(B,/a(x0), RY). Moreover, we have

v,
][ {IDwP + 772 |Dwp} do < GU) o O o,
B, )a(w0) Cro™y Cho

and thus Lemma 3.2 ensures the existence of an A-harmonic function h with the properties

B,a(wo) || P/2 p/2

][ {|Dh|2 P2 |Dh|p} dz < C(n, p). (5.17)
lgp/Q(zO

w—h

p
}d:v < grtpt? (5.16)
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Using Lemma 3.4 and Taylor’s theorem, we have the decay estimate for s = 2 as well as for s = p,
where 6 € (0,1/8] can be chosen arbitrarily:

732(9/))3][ |w — h(xg) — Dh(xo)(z — x0)|” dz
BGp(xO)

<257 1572(p) 7S [][ |w — h|® dx —l—][ |h — h(z0) — Dh(zo)(x — z0)|” dz
By, (zo) By, (x0)

<c(s,n, N,p, \, L)6?

Scaling back to u and using Lemma 3.8 we get

(9,0)_8][ i — Loy 0|° da

ng(ﬂi())

Sdamwmsf = gty = Cua (14 1Dl ) (o) = Dhlzo)z — o))
BQp Zo

:C(S,’I’L, N7p7 )‘a L’ a(M))(ep)_s’ys(l + |D€3307P|)s][ (z0) ‘w - h(,l?o) - Dh(ﬂ;’o)(l‘ - :1:0)|s dx
BGp zo

ey (14 | Dby )62
2/
<e(1+ Dl )62 [0.92(p) + 2075700, ()|
(14 | Dy )*6° 0. () (5.18)

Here we would like to replace the term |D/, ,| on the right-hand side by |Df, g,|. For this, we
use Lemma 3.7 and the assumption (ii) in order to estimate

n(n +2) 2
\Dzm,—pﬁxﬁyg]l i — oy |2 da
P o (00)* J By, (x0) 0P
n(n + 2)][ 2
< —0F U — gy p|” dx
0n+2p2 By (z0) | 0 p|

n(n +2)

(14 | Dl o) 2T (p) < = (1 4 |Dlyy )2

| =

- on+2
This yields

1
14 |Dlyy p| <14 |Dlyypp| + | Dley,p — Dlyyopl < 14| Dl p] + 5(1 + [ DAy pl)s
and after reabsorbing the last term from the right-hand side on the left, we obtain

14 |Dlyy p| < 2(1 + | Dy, p|)-
Plugging this into (5.18)

(QP)_S][ o [ — Loy 0p° dx < c(s,n, N, p, A\, L,a(M))(1 + | Dly 0,])° ¥ (p)
BG/J Zo

for s = 2 and s = p. Dividing by (14 |D{,,,|)®, then adding the corresponding terms for s = 2
and s = p, we deduce the claim. ]
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We fix an arbitrarily Holder exponent v € (0,1) and define the Campanato-type excess

Calp) = Calo, p) = p-m][ ot tagy |2 d.
Bp(xo)

In the following lemma, we iterate the excess improvement estimate (5.15) from Lemma 5.3 and
obtain the boundedness of the two excess functionals, C, and W.

Lemma 5.4. Under the same assumption with Lemma 5.1, for every a € (0,1), there exist
constants ey, ks, ps > 0 and 0, € (0,1/8], all depending at most on n, N, p, A, L, a(M), b, a,
w(+), po, w(-), V(-) and M, such that the conditions

U(p) <ey, and Culxo,p) < ks ((Ao))
for all p € (0, pi) with B,(xg) € 2, imply
W0 +* p) < e, and Ca(zo,0%p) < K ((Ag))
respectively, for every k € N.

Proof. We begin by choosing the constants. First, let

1 1/(2-20) 4 1
0, := min <> < Z
16n(n + 2) ’ vV 4011 o 8’

with the constant C; determined in Lemma 5.3. In particular, the choice of 8, > 0 fixes the
constant ¢ > 0 from Lemma 3.2. Next, we fix an ¢, > 0 sufficiently small to ensure

9n+2
<
~ 16n(n+2)

and  p!/? (V&) + 5*g§.

¢ 2

Then, we choose k4 > 0 so small that
W(ks) < Ex.

Finally, we fix p, > 0 small enough to guarantee

px < min{pp, ﬁi/@*za), 1}, Vi(ps) <ex and {(a\/n(n + 2)1{*)(1 + bq} plt < e,

Recall that ¢ = p/(p — 1). Now we prove the assertion (Ay) by induction. We assume that we
have already established (Ay) up to some k € NU{0}. We begin with proving the first part of the
assertion (Agy1), that is, the one concerning W(6%+1p). First, using Lemma 3.7 with £ = Uy 0k ps

we obtain
n(n + 2)][ 2
D, gk, < ——5" U — Uy gk,| dx
‘ 005 = (k)2 By, (o) 000
= n(n+2)(04p)%2C, (0 p)
< n(n + 2)p?* %k,. (5.19)



Thus, the assumption (Ayg), the choice of k, and p, and the above estimate infer
U, (6% p) < U0 p) +w (Ca(ﬁfp)> LV (6%p) ( ’Dﬁm 0| + b) (0% )
<ew+w(ke) +Vips) + ((a\/n(n + 2)@) + bq> plt < Ade,. (5.20)

Now it is easy to check that our choice of e, implies that the smallness condition assumptions (i)
and (ii) in Lemma 5.3 are satisfied on the level 6 p, that is, we have

)
12 < \I@(Qﬁp)) + /U (0kp) < p (VAes) + Ve, < 2
and
i 0n+2
vl < —.
(0ip) <e < In(nt2)
Furthermore, we have the smallness condition assumption (iii), that is,
1/
V(6% p) = [mz/g(a,’: )+ 079(6% p) ( ’DZIO 65 b)q} T (5.21)

To check (5.21), first, note that ¥, (6%p) < 1 holds by the estimate (5.20) and the choice of e,.
This implies

5
wi(0kp) < W(0p) < Vi < . (5.22)
Next, using (5.19) and p¢~! > 1, we obtain

5=9(0% ) (‘szoek

+b) <5 (a n(n + 2)ksp® +b)q

< 57480 (am + b)q

< §-apreanir { (a\/m)q +}.
Then the choice of p, and e, imply

0
8

Therefore combining (5.22) and (5.23), we have (5.21). We may thus apply Lemma 5.3 with the
radius 0¥p instead of p, which yields

5-9(6% p) ( ‘Demk

+B) < §ag~italrg2a < 2 (5.23)

(OF T p) < C1a02, (0% p) < 4C110%, < e,

by the choice of 6, > 0. We have thus established the first part of the assertion (Ag4+1) and it
remains to prove the second one, that is, the one concerning Cy (zq, 8% 1p). For this aim, we first
compute

o,
(0%p)2 ) i, (@0)

0

2

2
dr < (1+ ‘Dewfp 22U (0% p) < 2, + 2,

u — Elfoﬂgf Démo,@,’fp
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where we used the assumption (Ay) in the last step. Since £, gk, () = Uy, gr + Dl gr (T — T0),
we can estimate

ax%+%>s«%“m—Mf

Bef"‘lp(m)

2
dzx

u — uwo,@’fp

< 2(05+1p)—2a ][
Befﬂp(ﬂ?o)

2 2
w—{ dz + ‘szo’gfp (051 )2

1’079>pr

< 2(9)’:+1p)72a 0”][
By o0

2
w1 dz +| Dty g,

CE(),@,IEP

?%“mﬂ

< A8 207 4 Db,

2
(5*9*7”7204 +932a):| .

Using (5.19) and recalling the choice of py, €. and 6., we deduce

Co(08p) < 4p272% [,0,772% + n(n + 2)kup? 2% (2,0, "2 + 0272%)]

1
< pr_%‘ﬁf_z“ + 8n(n 4 2) k022
< — Ky + 5/@* < K.

AN

This proves the second part of the assertion (Agi1) and finally we conclude the proof of the
lemma. O

Now, to obtain the regularity theorem (Theorem 2.2), it is similar argument as in [4, Section
3.5] by using Lemma 5.4 and so we omit it.

6 Parabolic system: VMO-coefficients

Similarly as in the elliptic case, from (2.3), we may infer a modulus of continuity function
p: [0,00) — [0,00) such that p is bounded, concave, non-decreasing and we have

|w — wo|

DyA(z,u,w) — DyA(z,u,wy)| < Lp | —————
DAz 0) = Dz, )] < L (L0

)u+hw+mmw* (6.1)

for all z € Qp, u € RY, w,wg € R™V. Without loss of generality, we may assume p < 1.

Lemma 6.1. Let u € C)(=T,0; L*(Q,RN))NLP(—=T, 0; WLP(Q,RY)) be a bounded weak solution
to the parabolic system (1.2) under the structure conditions (2.3), (2.4), (2.15) and (2.16) with
lulloo < M and 2(10-9p)/2\ - a(M)M. For any zy = (xo,t0) € Qp and p <1 with Q,(20) € Qr,
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and any affine functions £: R™ — RN with |€(xq)| < M, we have the estimate

sup ][ 2dw+][ ’Du—DﬁQ
0—(p/2)2<t<te) B, (o) | P(1+ [ DE]) Q,2(z0) || (1 + DL

P
dz
—¢ | u—t P
<C [][ ‘ Y + ‘ dz
! QP(ZO){ (1+ [De)) p(1+ |Di))
+w<][ lu — (xo \dz) + (a?| Dl 4 b7)p ] (6.2)
Qp(ZO

with the constant C; = C1(\,p, L,a(M),M) > 1

u— ¥

N ‘ Du — D¢
(1+|D¢))

Proof. The following calculations are not rigorous enough. To proceed in a rigorous way, we
should use a smoothing procedure in time via a family of non-negative mollifying functions or
via Steklov averages, but this is standard argument and yields only technical minor changes we
shall proceed formally.

Assume zg € Qp and p < 1 satisfy Q,(z0) € Q7. We take a cut-off functions x € C5°(B,(z0))
and ¢ € C1(R). More precisely, let us take £ € (tg — p?/4,to) and 9 € (0,p?/4 — ) and then
¢ € CY(R) satisfying

(=1, on (—p?/4,t — 1),
(=0, on (—o0, —p?) U (£,00),
0<(<1 onR, (6.3)

G=-1/9, on (t—19,1),
LG < 1/p%, on (—p%, —p?/4).

Moreover, x € C§°(B,(wo)) satisfy 0 < x < 1 on By(wg), x = 1 on B,/s(x0) and [Dx| < 4/p.
Then p(z,t) := ((t)xP(x)(u(z,t) — £(x)) is admissible as a test function in (2.17), and we obtain

][ CxXP(A(z,u, Du), Du — D{)dz
Qp(z0)
= —]Z (A(z,u, Du), pOxP ™' Dx @ (u — €))dz
Qp(z0)

+][ <u,atso>dz+][ (f. ). (6.4)
Qp(20) Qp(20)

Furthermore, we have

_][ CxP{A(z,u, DY), Du — Df)dz
Qp(20)

— ][ (A(z, 1, DE), pOxP~"Dx ® (u — €))dz — ][ (A(z,u, D), DYz, (6.5)
Qp(20) Qp(z0)

and

][ (A £(x0), D))y p» Dig}dz = 0. (6.6)
Qp(20)
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Adding these three equations and we obtain
][ CxXP(A(z,u, Du) — A(z,u, D{), Du — D{)dz
Q@p(20)

= —][ (A(z,u, Du) — A(z,u, D0),p{xP ' Dx ® (u — 0))dz

]{g (z,u, Dl) — A(z,€(x0), Dl), Dp)dz
]é A(z,0(x0), Dl) — (A(-,€(x0), DY) 2. p, Dip)dz

+][ U—g 6t(p>d
Qp(

p

+ f (f. ¢)dz
Qp(zO)
I+ T+ I+ IV + V. (6.7)

As like in elliptic case, using the ellipticity condition (2.4) and Lemma 3.11 to the left-hand side
of (6.7), we get

(A(z,u, Du) — A(z,u, D¢), Du — DY)
>22=9)/2)f(1 + | D¢|)*~2 | Du — D¢ + |Du — D[P}, (6.8)

The terms I, II, IIT and V are estimated as similar as in elliptic case:

1 §5][ P14+ |DEYP2 [Du — DOP + |Du — DOPYdz
Qp 20

e y
repzaf Saepap-2 A 2 s 69)
Qp(zo) P P
2
11| Saj[ CxXP(1+ |De)P~2 | Du — D€|2 dz + 5][ (14 |De|)P~2 M‘ dz
Qp(20 Qp(20) P
+e(p, L,e)(1 + | DePu? (Jé o ““”2“) | (6.10)
p 20

p

g e, L e) (1 + DAV (), (6.11)

111} Sa][ CXP | Du — DUP dz + ¢(p, 5)][
Qp 20 Q P

p(ZO)
p

dz

4
VI <a(+ )M + D] 0 IDu= DI e+ clpef |
Qp(20)

+e(1+ |DY)Pp? {atK(p,e') |DLT + b} . (6.12)

o(20)

where e, > 0 are fixed later and K(p,e’) > 0 is a constant from Lemma 3.10.
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To estimate the term IV, recall that ¢; satisfies ( = —1/9 on (f — 9,t) and |(;| < 1/p? on
(—p?, —p?/4). This implies

IV:][ Ctxp|u—£|2dz+][ Cxp-(?t}]u—ﬁﬁdz
(20 Qo(20) 2
1

= ][ GxX” Ju — £ dz
2JQp(z0)

1 to— p2/4/
B 2|QP <0 | to—p? Bp(:vo

1 t
da:dt—/ / X |u — ¢ dedt
21|Q,(20)] Ji—g B, (z0) | |

<1][ (1+ [De))P~2 u_€2dz—1/t / P lu— 0% dz (6.13)

T 2JQ,(z0) 21Qp(20)| Ji—9 JB,(w0) ' '

Combining (6.7) through (6.13) then choose suitable ¢ = e(p, A\, a(M), M) > 0 and &’ = &'(p, A\, a(M), M) >
0. Further, taking the limit ¥ — 0, we obtain (6.2). O

Lemma 6.2. Assume the same assumptions in Lemma 6.1. Then for any zy = (xo,t0) € Qp
and p < po satisfying Q2p(20) € Qr, and any affine functions £: R™ — RN with |¢(zo)| < M, the
nequality

][ ((v,t) — A(Dv, Dy))dz
Qp(ZO)

<Cy(1+ |DY)) [,ul/Q (\/\I/*(Zo, 2p,€)) V. (20,20, 0) + Wu(20,2p, ) + pla| DLP + b)} sup |Dy|
Qp(20)
(6.14)

holds for all p € C§°(Q,(20),RY) and a constant Cy = Ca(n, A, L,p,a(M)) > 1, where
vi=u—Ll=u—L{(zg) — Dl(x — xp),

A(Dv, Dy) := (1+|J:-L?€)p‘1 < (OwA(-, £(z0), DE))ZWDU, D<p>,

U(z p€)'][ ’ u-t ’ dz
O mE Q,(z0) | 1P(1+ DY) ’

W, (20, p, ) = W(z0,p, () + (f fu e<xo>|2dz> £V (p) + (a?| DI + b7
Qp(z0)

2 ‘ u—4
(1+ D))

To obtain the estimate (6.14), calculation goes parallel as in Lemma 5.2 and so that we omit
the proof of Lemma 6.2.

From now on, let us write ®(p) = ®(20, p,l2.,p), Y(p) = ¥(20,0,2.,0), Y«(p) = Vi(20,p,L2,p)
for fixed 29 € Q7 and 0 < p < 1 as like in previous sections. Here /., , is a minimizer which we
introduce in Section 3.

Lemma 6.3. Assume the same assumptions in Lemma 6.1. Let 0 € (0,1/4] be an arbitrary and
impose the following smallness conditions on the excess:
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(i) u1/2(\/\1’*(p)> + 1/ .(p) < § with the constant § = 5(n, N,p, \, L, 0"*P+4) from Lemma
3.3,

9n+4

(i) \I/(P) < In(nt2)’
(iii) (p) = [¥22(p) + 6-9p%(a| D] + b1/ < 1.
Then there holds the excess improvement estimate
U (hp) < C30°V,(p) (6.15)
with a constant C3 = C3(n, A\, L,p,a(M)) > 1.
Proof. Set
u— ¥
w = .
C(1+[DL])y(p)

As like in Lemma 5.3, the assumptions (i), (ii), (iii) and the claim of Lemma 5.2 enable us to use
A-caloric approximation lemma (Lemma 3.3) so that there exists a function

h € LP(tg — (p/4)?, to; W2 (B, 4(z0)), RY)

which is A-caloric on Q,/4(20) and satisfies

2 P
][ ’h ,YP—Q i dz +][ (|Dh|2 + ,YP—Q ’Dh|p) dz < 2. on=+2+2p
Qulz0) \| P/4 p/4 Qp(z0)
and ,
_ P
][ ‘ﬂ)h p—2 Lh dZ S 9“+P+4‘ (616)
Qulz0) \| P/4 p/4

Then from Lemma 3.5, we have for s = 2 respectively for s = p
78_2(0[))_8][ |h - hzo,p/4 - (Dh)zo,p/él(x - xO)‘s dz
QGP(ZO)

s—2ps (P ° s
<c(s)y*7°0 (Z) ][C2p/4(z0) ‘h — Py p/a — (Dh)ZO7p/4(a: — x0)| dz

s— s—2ps (P\° $ s (LY
<3 7ler 0 (3) [Jép/4<zo)|hr A+ g gpa|" + [ (DD (4>]

<2. 35 Leys2g8 [(Z)_s][ Ih|® dz +][ \Dh|* dz]
Qp/4(z0) Qp/4(ZO)

S2n+4+p X 38—1008‘
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Thus, using (6.16) we obtain

VS_Z(HP)_S][ "LU - hzo,p/4 - (Dh)zo,p/4($ - IEO)}S dz

Qop(20)

<2°"'(6p)* []{9 ( )75—2 lw— h|*dz + 75—2][ |h = Ry pya — (DR pya(@ — 20)|” dz
0p\20

er(zo)
<25—1 [471—}—2—59—71—2—8][ 75—2
Qp/4(zO)

<951 <4n+2—s L ogsl, 2n+4+pc(s))92'

w—hl®

p/4

dz+3%71. 2”+4+Pc98]

Scaling back to u, we have

<ep>-s][ = ey gp|° d2
QGp(ZO)

<c(n, 8)(9/>)S]£2 - |t = Lg,p = O+ [ Dl pl) (g pja = (Dh) g ppa(x — x0))[ dz
0p 20

=cC*y*(1 + |DBZO,p|)S(9'0)_S][ |w o hzo7p/4 - (Dh)zovﬂ/4($ B xo){s dz
QGp(ZO)
SC(n, S, P, 0)72(1 + |D£ZO7P‘)898

o1 + | Dby ) 0210.9/2(p) + 2975710, () 2/
<Sc(1 4 [Dlzy p])°0° W ().

By the similar arguments in Lemma 5.2, we can replace the term (14 |DZ,, ,|) by (1+ |DZ.; ,])
and this immediately yields the claim. O

Let fix an arbitrarily Holder exponent o € (0, 1) and define the Campanato-type excess

Calet ) i= Calp) =02 sy
Qp(ZO)

The similar arguments as in Lemma 5.4 yields the following lemma.

Lemma 6.4. Assume the same assumption in Lemma 6.1. For every a € (0,1) there exist
constants €y, kix, px > 0 and 0, € (0,1/8] such that the conditions

U(p) < e and Cu(p) < K (Ao)
for all 0 < p < py with Qp(20) € Qp, imply
U(0kp) < e. and Co(0%p) < ks (Ag)

respectively, for every k € NU{0}.
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Now it is easy to obtain Theorem 2.3 from Lemma 6.4 by using the integral characterization
of Holder continuous functions with respect to the parabolic metric of Campanato-Da Prato [9)].
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