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Chapter 1

Introduction

1.1 Background

In a geometric framework of classical mechanics, symplectic manifolds and
the group of Hamiltonian diffeomorphisms naturally appear. In [Ho90],
Hofer proved that for the most basic symplectic manifold (R2n, ω0) there ex-
ists an intrinsic norm on the group of Hamiltonian diffeomorphisms, which is
called the Hofer norm or symplectic energy of Hamiltonian diffeomorphisms.
After his remarkable discovery, this new geometry, which is called Hofer ge-
ometry, has been intensively studied in the framework of modern symplectic
geometry (we refer [Po01] and [HZ94] as standard texts on Hofer geometry).

For a Lagrangian submanifold L of a symplectic manifold (M,ω), we
denote by L(L) = L(L,M,ω) the set of Lagrangian submanifolds which are
Hamiltonian isotopic to L:

L(L) := {L′ ⊂M | L′ = φ(L) for some φ ∈ Hamc(M,ω)}.

Here Hamc(M,ω) is the group of compactly supported Hamiltonian diffeo-
morphisms on (M,ω). Similarly to the case of (R2n, ω0), we have the Hofer
norm ‖φ‖ on Hamc(M,ω) defined by

‖φ‖ := inf
∫ 1

0

(
max
p∈M

H(t, p) − min
p∈M

H(t, p)
)
dt,

where the infimum runs over all compactly supported Hamiltonians H ∈
C∞

c ([0, 1]×M) having time-one map φ1
H equal to φ. Using the Hofer norm,

we can define a pseudo metric, which is called the Lagrangian Hofer pseudo
metric on L(L), as follows:

d(L0, L1) := inf{ ‖φ‖ | φ(L0) = L1, φ ∈ Hamc(M,ω)}.

5
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In other words, d(L0, L1) is the minimal Hofer norm which is necessary for
transporting L0 to L1 by using Hamiltonian diffeomorphisms.

Chekanov showed in [Ch00] that this pseudo-metric d is non-degenerate
for any closed and connected Lagrangian submanifolds in tame symplectic
manifolds. Although our Lagrangian submanifolds studied in this article are
not closed, the same proof as Chekanov’s yields that d is also non-degenerate
for our cases below (see Section 2.3).

For a given Lagrangian submanifold L in a symplectic manifold (M,ω),
it is a fundamental question whether the Lagrangian Hofer metric space
(L(L), d) has an infinite diameter or not. There are some known exam-
ples of Lagrangian submanifolds whose Lagrangian Hofer metric space are
unbounded (see Section 2.3). In the Hamiltonian case, it is expected that
Ham(M,ω) is always unbounded with respect to the Hofer norm. In contrast
to this, an example of bounded Lagrangian Hofer metric space, which is as-
sociated to a displaceable Lagrangian submanifold, can be found in [Us13].
As Usher mentioned, this example suggests that there seems to be some
relation between intersection rigidity of a Lagrangian submanifold and un-
boundedness of its Lagrangian Hofer metric space.

1.2 Main Result

Before we state our results, we mention two results which are closely related
to ours.

In [Kh09], Khanevsky proved unboundedness of this metric when the
ambient space M is an open unit two dimensional disk B2 := {z ∈ C | |z| <
1} ⊂ C and the Lagrangian submanifold L is the real form Re(B2) := {z ∈
B2 | Im z = 0} of B2. Seyfaddini generalized Khanevsky’s unboundedness
result to the case of the real form Re(B2n) of higher dimensional open unit
ball B2n in [Se14].

In this paper, by adopting Seyfaddini’s technique, we prove unbounded-
ness of metric spaces L(L) for a certain continuous family of non-compact
Lagrangian submanifolds in bi-disks, which are mutually non-Hamiltonian
isotopic.

Let B2(r) ⊂ C be the open disk of radius r > 0 equipped with a sym-
plectic structure 2ω0, where ω0 is the standard symplectic structure on C so
that vol(B2(r)) = 2πr2. We simply denote by B2 the open unit disk B2(1).
We put (B2 ×B2, ω̄0) := (B2(1)×B2(1), 2ω0 ⊕ 2ω0) and define Lagrangian
submanifolds Lδ by

Lδ := Tδ ×Re(B2) ⊂ B2 ×B2
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for each 1/2 < δ ≤ 1. Here

Tδ := {|z1|2 = 1/(2δ)} ⊂ B2

and Re(B2) is the real form of B2.
We study the Lagrangian Hofer metric space L(Lδ, d) in this paper. We

prove the following.

Theorem 1.1. For any 1/2 < δ ≤ 1, (L(Lδ), d) has an infinite diameter.

In addition to unboundedness, we prove the following inequality for a
subfamily of {Lδ}.

Theorem 1.2. For any (2 +
√

3)/4 < δ ≤ 1, there exists a continuous map
Φδ : C∞

c ((0, 1)) → L(Lδ) such that

‖f − g‖∞ −Dδ

Cδ
≤ d(Φδ(f),Φδ(g)) ≤ ‖f − g‖,

where Cδ and Dδ denote positive constants.

In this statement, C∞
c ((0, 1)) denotes the space of compactly supported

smooth functions on an open interval (0, 1) and the two norms on C∞
c ((0, 1))

is defined by
‖f‖∞ := max

x∈(0,1)
|f(x)|,

and
‖f‖ := max

x∈(0,1)
f(x) − min

x∈(0,1)
f(x).

These norms are equivalent. We note that ‖f‖∞ = ‖f‖ for any non-negative
functions f ≥ 0.

Remark 1.1. (1) In [Se14], Seyfaddini proved the same type inequality as
in Theorem 1.2 for the case of the real form Re(B2n).

(2) As for the condition on δ in Theorem 1.2, see Remark 5.3.

1.3 Comparison with Seyfaddini’s result

In this subsection, we compare our result and method with prior research,
especially Seyfaddini’s work [Se14].

Let L ⊂ (M,ω) be a Lagrangian submanifold of (M,ω). In order to
obtain unboundedness of (L(L), d), it is useful to construct a function µL :
Hamc(M,ω) → R with the following properties.
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Required properties. There exist positive constants CL, DL > 0 such that
for any φ, ψ ∈ Hamc(M,ω),

(1) |µL(φ)| ≤ CL‖φ‖.

(2) φ(L) = ψ(L) ⇒ |µL(φ) − µL(ψ)| ≤ DL.

(3) There exists a subset XµL ⊂M such that

H|XµL
≡ h (constant) ⇒ µL(φ1

H) = h.

The property (2) is, roughly speaking, “well-definedness” of µL on L(L).
If there exists a function µL on Hamc(M,ω) satisfying the properties (1)
and (2), we can easily obtain an inequality:

|µL(φ)| −DL

CL
≤ d(L, φ(L)).

In [EP03], by using a family of conformally symplectic embeddings θδ :
B2 → S2, Entov-Polterovich constructed the family of Calabi quasi-morphisms
on Hamc(B2) as pullbacks of their single Calabi quasi-morphism on Hamc(S2).
Here the parameter δ is taken from some open interval in R.

In [Kh09], Khanevsky slightly modified Entov-Polterovich’s Calabi quasi-
morphisms on Hamc(B2) and obtained the family of homogeneous quasi-
morphisms µδ

Re(B2) satisfying these properties.

Remark 1.2. The properties (1), (2) and (3) were not listed in [Kh09].
However he proved implicitly that µδ

Re(B2) has the properties.

Khanevsky found a Hamiltonian diffeomorphism φ ∈ Hamc(B2) such
that µδ

Re(B2)(φ) 6= 0 for some δ and proved unboundedness of L(Re(B2)) as
follows:

d(Re(B2), φm(Re(B2))) ≥
m|µδ

Re(B2)(φ)| −DRe(B2)

CRe(B2)
→ ∞ (m→ ∞).

Thus construction of a non-trivial homogeneous quasi-morphism satisfy-
ing the properties is sufficient to obtain the unboundedness.
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1.3.1 Seyfaddini’s case

In [BEP04], by using a family of conformally symplectic embeddings θδ :
B2n → CPn, Biran-Entov-Polterovich constructed the family of Calabi
quasi-morphisms on Hamc(B2n) as pullbacks of the single Calabi quasi-
morphism on Hamc(CPn) constructed in [EP03]. As in Kanevsky’s con-
struction, Seyfaddini also obtained the family of non-trivial homogeneous
quasi-morphisms µδ

Re(B2n) satisfying the properties (1), (2) and (3) by using
the symplectic embeddings θδ : B2n → CPn.

Remark 1.3. Khanevsky’s proof of the property (2) for his µδ
Re(B2) depends

on the dimension of the ambient space B2. By a different proof which
is applicable in all dimensions, Seyfaddini proved the property (2) for his
µδ

Re(B2n).

Using this family µδ
Re(B2n), Seyfaddini proved unboundedness of L(Re(B2n)).

Moreover, he obtained the following theorem.

Theorem 1.3 (Seyfaddini [Se14]). There exist a map Ψ : C∞
c ((0, 1)) →

L(Re(B2n)) and two constants CRe(B2n), DRe(B2n) ∈ R>0 such that

‖f − g‖∞ −DRe(B2n)

CRe(B2n)
≤ d(Ψ(f),Ψ(g)) ≤ ‖f − g‖∞.

In particular, (L(Re(B2n)), d) has an infinite diameter.

We explain Seyfaddini’s proof. We simply denote by Xδ a subset in the
property (3) for each µδ

Re(B2n) and regard the parameter δ as an arbitrary
element in the open interval (0, 1). We note that Xδ can be taken as pairwise
disjoint closed subsets.

To define the map Ψ : C∞
c ((0, 1)) → L(Re(B2n)), Seyfaddini constructed

h : C∞
c ((0, 1)) → C∞

c (Re(B2n)) satisfying the following property:

h(f)|Xδ
≡ f(δ) for any f ∈ C∞

c ((0, 1)).

By using this map h, he defined Ψ : C∞
c ((0, 1)) → L(Re(B2n)) as follows:

Ψ(f) := φ1
h(f)(Re(B

2n)).

As a result, he obtained the following inequality for any δ ∈ (0, 1),

|f(δ)| −DRe(B2n)

CRe(B2n)
=

|µδ
Re(B2n)(φ

1
h(f))| −DRe(B2n)

CRe(B2n)
≤ d(Re(B2n),Ψ(f)),
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where Re(B2n) = Ψ(0). Take a δ′ such that ‖f‖∞ = f(δ′). Then one can
obtain

‖f‖∞ −DRe(B2n)

CRe(B2n)
≤ d(Re(B2n),Ψ(f)).

This is the left hand side inequality of Theorem 1.3 with g = 0 for (M,L) =
(B2n, Re(B2n)). This is the most crucial inequality in the theorem.

1.3.2 Our case

For each Lagrangian submanifold Lδ ⊂ B2 ×B2 with 1/2 < δ ≤ 1, by using
conformally symplectic embeddings Θδ′ : B2×B2 → S2×S2 with 1/2 < δ′ ≤
1 (see Section 5.2 for the definition of Θδ′), we can also construct a family of
homogeneous quasi-morphisms µδ′

Lδ
on Hamc(B2 ×B2, ω̄0) from the Entov-

Polterovich’s Calabi quasi-morphism on Hamc(S2 ×S2, ω̄std) constructed in
[EP03].

When δ′ = δ, the homogeneous quasi-morphisms µδ
Lδ

satisfies the prop-
erties (1), (2) and (3). By using this single quasi-morphisms µδ

Lδ
, we can

prove Theorem 1.1 as Khanevsky proved unboundedness of L(Re(B2)) (see
Remark 5.4).

However, we have to construct a family of quasi-morphisms on Hamc(B2×
B2, ω̄0) satisfying the properties (1), (2) and (3) to prove Theorem 1.2. For
this purpose, we use the family of Calabi quasi-morphisms on Hamc(S2 ×
S2, ω̄std) constructed by Fukaya-Oh-Ohta-Ono in [FOOO11] instead of Entov-
Polterovich’s Calabi quasi-morphism (see Section 5.1 and Section 5.2).

1.4 Organization of the thesis

In Chapter 2, we introduce basic notions on symplectic geometry, Hofer
geometry and define Lagrangian Hofer metric. In Chapter 3, we recall Cal-
abi quasi-morphisms and symplectic quasi-states which were introduced by
Entov-Polterovich in a series of papers [EP03, EP06, EP09]. In Chapter
4, we recall the Lagrangian Floer theory on toric manifolds developed by
Fukaya-Oh-Ohta-Ono in [FOOO09-I, FOOO09-II, FOOO11a, FOOO11b],
which will be used in the proof of Lemma 5.3. In Chapter 5, we prove
Theorem 1.1 and Theorem 1.2.
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Chapter 2

Preliminaries in Hofer
geometry

In this chapter, we recall some basic terminologies and define Lagrangian
Hofer metric spaces. For comprehensive introductions to symplectic topol-
ogy and Hofer geometry, refer to standard texts (e.g. [HZ94], [MS95],
[Po01]).

2.1 Symplectic manifolds and Lagrangian subman-
ifolds

A pair of a smooth manifold M and a 2-form ω ∈ Ω2(M) is called a symplec-
tic manifold if the 2-form ω is closed and non-degenerate. For a symplectic
manifold (M,ω), the 2-form ω is called a symplectic structure on M . Non-
degeneracy means that if ωp(u, v) = 0 for all v ∈ TpM then u = 0 for every
tangent space TpM . From this condition, it turns out that M has even di-
mension 2n. Moreover non-degeneracy implies that the top power ωn does
not vanish at any point. Thus M2n is orientable. In this thesis, we denote
by vol(M) the volume of M with respect to the volume form ωn ∈ Ω2n(M).

The most basic example is the complex vector space Cn = {(z1, . . . , zn) |
zj = xj +

√
−1yj ∈ C, 1 ≤ j ≤ n} with the standard symplectic structure

ω0 :=
∑n

j=1 dxj ∧dyj . Of course the open ball B2n(r) := {z = (z1, . . . , zn) ∈
C2n | |z| < r} ⊂ Cn equipped with the symplectic structure ω0 is also a
symplectic manifold. However, in this thesis, we fix 2ω0 as a symplectic
structure on B2n(r).

A Lagrangian submanifold L ⊂ (M2n, ω) is a submanifold satisfying

13
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dim L = 1
2dim M = n and ω |L= 0. Typical examples of Lagrangian

submanifolds in (B2n(r), 2ω0) is the real form Re(B2n(r)) := {(z1, . . . , zn) ∈
B2n(r) | Imzj = 0, 1 ≤ j ≤ n} and tori Tn(r1, . . . , rn) := {z = (z1, . . . , zn) ∈
B2n(r) | |zj | = rj , |z| < r}.

Given two symplectic manifolds (M1, ω1) and (M2, ω2), the productM1×
M2 is also a symplectic manifold with respect to the symplectic structure
ω1 ⊕ ω2 := pr∗1ω1 + pr∗2ω2, where pri : M1 ×M2 → Mi are i-th projection
respectively (i = 1, 2). If L1 ⊂ (M1, ω1) and L2 ⊂ (M2, ω2) are Lagrangian
submanifolds, then it turns out that L1×L2 is also a Lagrangian submanifold
in (M1 ×M2, ω1 ⊕ ω2).

In this thesis, we deal with the following symplectic manifold and La-
grangian submanifolds. We define (B2×B2, ω̄0) := (B2(1)×B2(1), 2ω0⊕2ω0)
and define Lagrangian submanifolds Lδ := Tδ × Re(B2) ⊂ B2 × B2 for
1/2 < δ ≤ 1. Here Tδ := T 1( 1√

2δ
) ⊂ B2 and Re(B2) is the real form of B2.

Let us introduce symplectic diffeomorphisms and Hamiltonian diffeomor-
phisms.

For two symplectic manifolds (M1, ω1) and (M2, ω2), a symplectic diffeo-
morphism is a smooth diffeomorphism f : M1 → M2 satisfying f∗ω2 = ω1.
The group of symplectic diffeomorphisms on (M,ω) is denoted by

Symp(M,ω) := {f ∈ Diff(M) | f∗ω = ω}.

Consider a smooth map F : [0, 1]×M →M such that F (t, ·) ∈ Symp(M,ω)
for any t ∈ [0, 1]. ft := F (t, ·) is called a symplectic isotopy of (M,ω).
We denote by Symp0(M,ω) the set of all symplectic diffeomorphisms which
can be connected with the identity by a symplectic isotopy. We denote
by Sympc(M,ω) ⊂ Symp(M,ω) the subset consisting of all compactly sup-
ported symplectic diffeomorphisms, and also define Sympc

0(M,ω) ⊂ Symp0(M,ω)
similarly. For any compactly supported time-dependent function H : [0, 1]×
M → R, from non-degeneracy of ω, the time-dependent vector field XHt is
defined by

iXHt
ω = ω(XHt , · ) = dHt,

where Ht(p) := H(t, p). Traditionally, XHt is called the (time-dependent)
Hamiltonian vector field andH ∈ C∞

c ([0, 1]×M) is called a (time-dependent)
Hamiltonian on M . Consider the flow φt

H of XHt defined by

d

dt
φt

H = XHt(φ
t
H), φ0

H = id.

The flow φt
H is called the Hamiltonian flow generated by H. A compactly

supported Hamiltonian diffeomorphism φ : M → M is a one-time map φ1
H
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generated by some Hamiltonian H. Denote by Hamc(M,ω) the set of all
compactly supported Hamiltonian diffeomorphisms:

Hamc(M,ω) := {φ ∈ Diff(M) | φ = φ1
H , for some H ∈ C∞

c ([0, 1] ×M)}.

In case that M is compact, we denote it by Ham(M,ω).
We recall some facts about Hamc(M,ω) (see [MS95], [Po01] for more

properties and proofs).

Proposition 2.1. Hamc(M,ω) is a normal subgroup of Sympc
0(M,ω).

In general, Hamc(M,ω) does not coincide with Sympc
0(M,ω). For exam-

ple, in case of the 2-dimensional torus T 2 = R2/Z2 endowed with the area
form ω̃0 := dx∧ dy, one can obtain that Ham(T 2, ω̃0) ( Symp0(T 2, ω̃0) (see
e.g. Exercise 10.4 in [MS95]). Under some topological assumption, we can
show that Hamc(M,ω) = Sympc

0(M,ω) as follows.

Proposition 2.2. If H1
c (M,R) = 0 then

Hamc(M,ω) = Sympc
0(M,ω),

where H1
c (M,R) is the first de Rham cohomology with compact supports.

Given two time-independent Hamiltonians F,G ∈ C∞(M), we define the
Poisson bracket {F,G} by

{F,G} := ω(XF , XG) = dF (XG).

We note that two Hamiltonian diffeomorphisms φ1
F and φ1

G are commutative
if F , G are Poisson commutative (i.e. {F,G} = 0).

Definition 2.1. When M2n is closed, we define

A(M) := {F ∈ C∞(M) |
∫

M
Fωn = 0}.

When M2n is open, we define A(M) := C∞
c (M).

A Hamiltonian H ∈ C∞
c ([0, 1] ×M) is called normalized Hamiltonian if

Ht ∈ A(M) for all time t ∈ [0, 1].
Consider a smooth map F : [0, 1]×M →M such that F (t, ·) ∈ Hamc(M,ω).

ft := F (t, ·) is called a Hamiltonian isotopy of (M,ω). The next result was
established by Banyaga in [Ba78].
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Proposition 2.3. For any Hamiltonian isotopy {ft}t∈[0,1], there exists a
time-dependent normalized Hamiltonian H ∈ C∞

c ([0, 1] ×M) such that

d

dt
ft = XHt(ft) for all t ∈ [0, 1]. (2.1.1)

Remark 2.1. In this section, the sign convention for Hamiltonian vector
fields and the Poisson bracket coincide ones used in [MS95] and [FOOO11].

2.2 Hofer’s metric

In this section, we define the Hofer metric on the group of Hamiltonian
diffeomorphisms introduced by Hofer in [Ho90].

It is well known that the Lie algebra of Hamc(M,ω) can be identified
with A(M):

TidHamc(M,ω) 3 XH ↔ H ∈ A(M).

Thus, it is natural to define the length of a Hamiltonian isotopy {ft}t∈[0,1]

by using a norm ‖ · ‖ on A(M):

length({ft}) :=
∫ 1

0
‖ d
dt
ft‖ dt =

∫ 1

0
‖Ht‖ dt, (2.2.1)

where H ∈ C∞
c ([0, 1] × M) is a time-dependent normalized Hamiltonian

satisfies (2.1.1) in Proposition 2.3.
The pseudo-distance between two Hamiltonian diffeomorphisms φ, ψ ∈

Hamc(M,ω) is induced by

ρ(φ, ψ) := inf length({ft}),

where the infimum is taken over all Hamiltonian isotopy {ft}t∈[0,1] with
f0 = φ and f1 = ψ.

The following is obtained immediately.

Properties. For any φ, ψ, θ ∈ Hamc(M,ω),

• (symmetry) ρ(φ, ψ) = ρ(ψ, φ).

• (non-negativity) 0 ≤ ρ(φ, ψ).

• (triangle inequality) ρ(θ, φ) ≤ ρ(θ, ψ) + ρ(ψ, φ).
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Moreover, if a norm ‖ · ‖ on A(M) satisfies

‖H ◦ ψ−1‖ = ‖H‖ (2.2.2)

for all H ∈ A(M) and ψ ∈ Hamc(M,ω) then we have

Bi-invariance property. For any φ, ψ, θ ∈ Hamc(M,ω),

• ρ(ψ, φ) = ρ(ψθ, φθ) = ρ(θψ, θφ).

We define the normal subgroup N(ρ) of Hamc(M,ω) by

N(ρ) := {ψ ∈ Hamc(M,ω) | ρ(id, ψ) = 0}.

If N(ρ) = {id} then ρ is non-degenerate. The following is well known result
proved by Banyaga [Ba78].

Theorem 2.1. For any closed symplectic manifold (M,ω), Ham(M,ω) is
a simple group.

Consequently, ρ is either non-degenerate or identically zero for closed
symplectic manifolds. It is rather non-trivial work to check the non-degeneracy.

In case of M = R2n, Hofer defined the norm ‖ · ‖Hofer on A(M) by

‖H‖Hofer := maxH − minH,

and obtained the non-degeneracy of ρH associated to ‖ · ‖Hofer in [Ho90].
In [Po93] Polterovich generalized to some larger class of symplectic mani-
folds. Finally, the non-degeneracy was proved for all symplectic manifolds
by Lalonde and McDuff in [LM95].

Theorem 2.2. For any symplectic manifolds (M,ω), Hofer’s distance func-
tion ρH is non-degenerate.

This function ρH is called the Hofer metric. It turn out that ‖ · ‖Hofer

satisfies (2.2.2), thus ρH is a bi-invariant metric.
The Hofer norm ‖ψ‖ of ψ ∈ Hamc(M,ω) is defined by

‖ψ‖ := ρH(id, ψ) = inf
∫ 1

0

(
max
p∈M

Ht − min
p∈M

Ht

)
dt, (2.2.3)

where the infimum is taken over all normalized Hamiltonian H ∈ C∞
c ([0, 1]×

M) with φ1
H = ψ. The Hofer norm ‖ψ‖ is also called the symplectic energy

of ψ. The next section, we define the distance between two Hamiltonian
isotopic Lagrangian submanifolds by using the Hofer norm.
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2.3 Lagrangian Hofer’s metric

Fix a Lagrangian submanifold L ⊂ (M,ω) without boundary. A Lagrangian
submanifold L′ ⊂ (M,ω) is called Hamiltonian isotopic to L if there exists
a Hamiltonian diffeomorphism ψ ∈ Hamc(M,ω) such that ψ(L) = L′. We
denote by L(L) = L(L,M,ω) the set of all Lagrangian submanifolds which
are Hamiltonian isotopic to L0.

L(L) := {L′ ⊂ (M,ω) | L′ = φ1
H(L) for some H ∈ C∞

c ([0, 1] ×M)}.

In the previous section, the length of a Hamiltonian isotopy {ft}t∈[0,1] with
respect to ‖ · ‖Hofer is defined by

length({ft}) :=
∫ 1

0

(
max
p∈M

Ht − min
p∈M

Ht

)
dt, (2.3.1)

whereH is a time-dependent Hamiltonian such thatXHt generates {ft}t∈[0,1].
As an analogue of this length functional, the length of a path {Lt}t∈[0,1] ⊂
L(L) is defined by a normalized Hamiltonian H ∈ C∞

c ([0, 1]×M) such that
φt

H(L0) = Lt:

length({Lt}) :=
∫ 1

0

(
max
p∈Lt

Ht − min
p∈Lt

Ht

)
dt. (2.3.2)

The following is another expression of length({Lt}):

length({Lt}) = inf
φt

F (L0)=Lt

∫ 1

0

(
max
p∈M

Ft − min
p∈M

Ft

)
dt, (2.3.3)

where the infimum is taken over all normalized Hamiltonian F ∈ C∞
c ([0, 1]×

M) with φt
F (L0) = Lt. For any L0, L1 ∈ L(L), the Lagrangian Hofer pseudo-

metric d(L0, L1) is defined as infimum of lengths of all paths {Lt}t∈[0,1]

connecting L0 and L1:

d(L0, L1) := inf length({Lt}).

More convenient definition of d(L0, L1) can be obtained from (2.3.3):

d(L0, L1) := inf{‖φ‖ | φ(L0) = L1, φ ∈ Hamc(M,ω)}, (2.3.4)

where ‖φ‖ is the symplectic energy defined by (2.2.3) in the previous section.
The following properties are inherited from the Hofer norm.
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Properties. For any L0, L1, L2 ∈ L(L), φ ∈ Hamc(M,ω),

• (symmetry) d(L0, L1) = d(L1, L0).

• (non-negativity) 0 ≤ d(L0, L1).

• (triangle inequality) d(L0, L2) ≤ d(L0, L1) + d(L1, L2).

• (invariance) d(L0, L1) = d(φ(L0), φ(L1)).

As in case of Hofer’s metric on Hamc(M,ω), the non-degeneracy is rather
non-trivial. Chekanov proved the following theorem.

Theorem 2.3 (Theorem 2 in [Ch00]). Let d′ be a Hamc(M,ω)-invariant
pseudo-metric on L(L). If d′ is degenerate then d′ vanishes identically.

This theorem is originally proved for any closed and connected La-
grangian submanifolds L, moreover, he proved non-triviality of d for any
such L in tame symplectic manifolds and obtained non-degeneracy. How-
ever, the same proof yields Theorem 2.3 for any connected Lagrangian sub-
manifold which has a Weinstein neighborhood. Therefore, our Theorem 1.1
implies that d is non-degenerate for our Lagrangians Lδ with 1/2 < δ ≤ 1.

There are some known results about the diameter of the Lagrangian
Hofer metric space. For any compact manifold N , Oh and Milinković proved
implicitly that the Lagrangian Hofer metric spaces (N,T ∗N,ωcan) has an
infinite diameter. Here ωcan is the standard symplectic structure on the
cotangent bundle of N (see Theorem III in [Oh97] and Theorem 3 in [Mi02]).
This is a case which an ambient space M is non-compact and a Lagrangian
submanifold L is compact. In [Le08], Leclercq obtained the unboundedness
in case of a meridian in a two dimensional torus by using his Lagrangian
spectral invariant.

We show two results which state the unboundedness for a continuous
family of Lagrangian submanifolds. In [Us13], Usher proved that L(L0 ×
L, T 2 × M) is unbounded if the Lagrangian Floer cohomology HF (L) is
nonzero. Here L0 ⊂ T 2 is a meridian in a two dimensional torus and M is
any tame symplectic manifold. From this theorem, by taking a continuous
family of Lagrangian manifolds with non-vanishing Floer cohomology (see
e.g. [FOOO11b]), we may have an example of a family of unbounded La-
grangian Hofer metric spaces associated to these Lagrangian submanifolds.
Another result is due to Khanevsky. Let B2

k be a k times punctured open
disk and let D ⊂ B2

k be a subset homeomorphic to the closed unit disk. He
proved that L(∂D,B2) is unbounded if the area of D is greater than B2

k (see
Section 4.4 in [Kh14]).
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An example of bounded Lagrangian Hofer metric space can be found in
[Us13]. He proved that L(S1) is bounded for the unit circle S1 ⊂ R2. On the
other hand, it is obvious that the unit circle is displaceable (i.e. there exists
a Hamiltonian diffeomorphism φ ∈ Ham(R2, ω0) such that φ(S1) ∩ S1 = ∅).



Chapter 3

Calabi quasi-morphisms and
symplectic quasi-states

In a series of papers [EP03, EP06, EP09], Entov and Polterovich developed
a way to construct Calabi quasi-morphisms and symplectic quasi-states for
some closed symplectic manifold (M,ω). In this chapter, we briefly recall
several terminologies and a generalization of their construction.

3.1 Calabi quasi-morphisms

As we mentioned in Section 2.2, Banyaga proved Ham(M,ω) is a simple
group for any closed symplectic manifold (M,ω). Therefore, there is no
non-trivial morphism on Ham(M,ω). This leads us to the notion of quasi-
morphisms.

A quasi-morphism on a group G is a function µ : G→ R which satisfies
the following property: there exists a constant D ≥ 0 such that

|µ(g1g2) − µ(g1) − µ(g2)| ≤ D for all g1, g2 ∈ G.

The smallest number of such D is called the defect of µ and we denote by
Dµ. A quasi-morphism µ is called homogeneous if µ(gm) = mµ(g) for all
m ∈ Z.

For any proper open subset U ⊂M , the subgroup HamU (M,ω) is defined
as the set which consists of all elements φ ∈ Ham(M,ω) generated by a
time-dependent Hamiltonian Ht ∈ C∞(M) supported in U . We denote
by H̃amU (M,ω) the universal covering space of HamU (M,ω). The Calabi

21
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morphism C̃alU : H̃amU (M2n, ω) → R is defined by

C̃alU (φ̃H) :=
∫ 1

0
dt

∫
M
Htω

n,

where φ1
H ∈ HamU (M,ω) and φ̃H is the homotopy class of the Hamiltonian

path {φt
H}t∈[0,1] with fixed endpoints. If ω is exact on U , C̃alU descends to

CalU : HamU (M,ω) → R.
A subset X ⊂ M is called displaceable if there exists a φ ∈ Ham(M,ω)

such that φ(X) ∩X = ∅.

Definition 3.1 ([EP03]). A function µ : H̃am(M,ω) → R is called a homo-
geneous Calabi quasi-morphism if µ is a homogeneous quasi-morphism and
satisfies

• (Calabi property) If φ̃ ∈ H̃amU (M,ω) and U is a displaceable open
subset of M , then

µ(φ̃) = C̃alU (φ̃), (3.1.1)

where we regard φ̃ as an element in H̃am(M,ω).

For each non-zero element of quantum (co)homology a ∈ QH(M), the
spectral invariant ρ( · ; a) : C∞([0, 1]×M) → R is defined in terms of Hamil-
tonian Floer theory (see [Oh97], [Sc00], [Vi92] for the earlier constructions
and [Oh05] for the general non-exact case).

In [FOOO11], Fukaya-Oh-Ohta-Ono deformed spectral invariants and
obtained ρb( · ; a) by using an even degree cocycle b ∈ Heven(M,Λ0), where
a is an element of bulk-deformed quantum cohomology QHb(M,Λ) (see also
[Us11] for a similar deformation of spectral invariants). Here coefficient
ring Λ0, which is called universal Novikov ring, and its quotient field Λ are
defined by

Λ0 :=

{ ∞∑
i=0

aiT
λi

∣∣∣∣ ai ∈ C, λi ∈ R≥0, lim
i→∞

λi = +∞

}
,

Λ :=

{ ∞∑
i=0

aiT
λi

∣∣∣∣ ai ∈ C, λi ∈ R, lim
i→∞

λi = +∞

}
∼= Λ0[T−1] ,

where T is a formal parameter and λi 6= λj for i 6= j.
Every element φ̃ ∈ H̃am(M,ω) is generated by some time-dependent

Hamiltonian H which is normalized in the sense
∫
M Htω

n = 0 for any t ∈
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[0, 1]. The spectral invariant ρb( · ; a) has the homotopy invariance property:
if F,G are normalized Hamiltonians and φ̃F = φ̃G, then ρb(F ; a) = ρb(G; a)
(see Theorem 7.7 in [FOOO11]). Hence, the spectral invariant descends to
ρb( · ; a) : H̃am(M,ω) → R as follows:

ρb(φ̃H ; a) := ρb(H; a) for any H ∈ C∞([0, 1] ×M),

where we denote by H the normalization of H:

Ht := Ht −
1

vol(M)

∫
M2n

Ht ω
n, vol(M) :=

∫
M2n

ωn.

By using this (bulk-deformed) spectral invariant ρb( · ; a), as in a series of
papers [EP03, EP06, EP09], they constructed a function µb

e : H̃am(M,ω) →
R by

µb
e(φ̃) := vol(M) lim

m→+∞

ρb(φ̃m; e)
m

,

where e ∈ QHb(M,Λ) is an idempotent.
The following theorem is the generalization of Theorem 3.1 in [EP03].

Theorem 3.1 (Theorem 16.3 in [FOOO11]). Suppose that there exists a
ring isomorphism

QHb(M,Λ) ∼= Λ ×Q

and e ∈ QHb(M,Λ) is the idempotent corresponding to the unit of the first
factor of the right hand side. Then the function

µb
e : H̃am(M,ω) → R

is a homogeneous Calabi quasi-morphism.

From standard properties of spectral invariants (Theorem 7.8 in [FOOO11]),
µb

e has two additional properties (Theorem 14.1 in [FOOO11]):

1. (Lipschitz continuity) There exists a constant C ≥ 0 such that for any
ψ̃, φ̃ ∈ H̃am(M,ω),

|µb
e(ψ̃) − µb

e(φ̃)| ≤ C‖ψ̃φ̃−1‖.

2. (Symplectic invariance) For all ψ ∈ Symp0(M,ω),

µb
e(φ̃) = µb

e(ψ ◦ φ̃ ◦ ψ−1).

Here C ≤ vol(M) is easily proved as in Proposition 3.5 of [EP03].
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3.2 Symplectic quasi-states

On the other hand, symplectic quasi-states are also constructed by using
(bulk deformed) spectral invariants. Let C0(M) be the set of continuous
functions on M .

Definition 3.2 (Section 3 in [EP06]). A functional ζ : C0(M) → R is called
symplectic quasi-state if ζ satisfies the following:

1. (Normalization) ζ(1) = 1.

2. (Monotonicity) ζ(F1) ≤ ζ(F2) for any F1 ≤ F2.

3. (Homogeneity) ζ(λF ) = λζ(F ) for any λ ∈ R.

4. (Strong quasi-additivity) If smooth functions F and G are Poisson
commutative: {F,G} = 0, then ζ(F +G) = ζ(F ) + ζ(G).

5. (Vanishing) If supp F is displaceable, then ζ(F ) = 0.

6. (Symplectic invariance) ζ(F ) = ζ(F ◦ ψ) for any ψ ∈ Symp0(M,ω).

By using the bulk deformed spectral invariant ρb( · ; e), a functional
ζb
e : C∞(M) → R is defined by

ζb
e (H) := − lim

m→+∞

ρb(mH; e)
m

.

This functional ζb
e extends to a functional on C0(M) as follows. We recall

the relation between ζb
e and µb

e (see Section 14 [FOOO11]). For any H ∈
C∞([0, 1] ×M), by the shift property of spectral invariant, we have

ρb(φ̃H ; e) = ρb(H; e) +
1

vol(M)
CalM (H), (3.2.1)

where CalM (H) is defined by

CalM (H) :=
∫ 1

0
dt

∫
M2n

Ht ω
n.

Since (φ̃H)m = φ̃mH for any autonomous Hamiltonian H, the following
relation is obtained from (3.2.1)

ζb
e (H) =

1
vol(M)

(
−µb

e(φ̃
1
H) + CalM (H)

)
.
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By the Lipschitz continuity of µb
e, we can extend ζb

e to a functional on
C0(M). From the same argument in Section 6 in [EP06], this functional ζb

e :
C0(M) → R becomes a symplectic quasi-state if one takes an idempotent e
from a field factor of QHb(M,Λ) as in Theorem 3.1.

In this thesis, we define superheavy subsets as follows.

Definition 3.3. Let ζ be a symplectic quasi-state on (M,ω). A closed
subset X ⊂M is called ζ-superheavy if for all H ∈ C0(M)

min
X

H ≤ ζ(H) ≤ max
X

H.

It is immediately proved that any ζ-superheavy subsets must intersect
each other and non-displaceable (see [EP09] for details).





Chapter 4

Brief review of Lagrangian
Floer theory

In this chapter, we recall the Lagrangian Floer theory on toric manifolds to
prepare notation and terminologies for the proof of Lemma 5.3. The descrip-
tions here are mainly based on Fukaya-Oh-Ohta-Ono’s survey [FOOO12a].
See also [FOOO11a], [FOOO11b] for details on toric cases, and [FOOO09-I,
FOOO09-II] for more general cases.

4.1 Notation

In this section, we recall the notation used in [FOOO11a], [FOOO11b],
[FOOO12a].

Let C be a graded free R module, where R is the coefficient ring. We
denote by C[1] the degree shifted module define by C[1]d := Cd+1 and define
the shifted degree deg′ on C[1] by

deg′ x := deg x− 1.

We define BkC by

BkC :=

k︷ ︸︸ ︷
C ⊗ · · · ⊗ C .

There exist an action of the symmetric group Sk as follows:

σ · x1 ⊗ · · · ⊗ xk := (−1)∗xσ(1) ⊗ · · · ⊗ xσ(k) ,

∗ :=
∑

i<j;σ(i)>σ(j)

deg xi · deg xj .

27



28 CHAPTER 4. LAGRANGIAN FLOER THEORY

Let EkC ⊂ BkC be the subset of Sk invariant elements. We put B0C =
E0C = R and define

BC :=
∞⊗

k=0

BkC , EC :=
∞⊗

k=0

EkC.

There exists a coassociative coalgebra structure ∆ : BC → BC ⊗ BC
defined by

∆(x1 ⊗ · · · ⊗ xk) :=
k∑

i=0

(x1 ⊗ · · · ⊗ xi) ⊗ (xi+1 ⊗ · · · ⊗ xk) ,

where the summand in the case i = 0 is 1 ⊗ (x1 ⊗ · · · ⊗ xn). By restriction,
coassociative coalgebra structure ∆ : EC → EC ⊗EC is induced. We note
that ∆ is graded cocommutative on EC.

We define ∆n−1 : BC →
n︷ ︸︸ ︷

BC ⊗ · · · ⊗BC by

∆n−1 := (∆ ⊗
n−2︷ ︸︸ ︷

id⊗ · · · ⊗ id) ◦ · · · ◦ (∆ ⊗ id) ◦ ∆.

For an element x ∈ BC, we express ∆n−1(x) as

∆n−1(x) =
∑

c

xn;1
c ⊗ xn;2

c ⊗ · · · ⊗ xn;n
c , (4.1.1)

where c runs over some index set depending on x.
In Section 3.1, we defined the universal Novikov ring Λ0 and its quotient

field Λ. The universal Novikov ring Λ0 is a local ring with the maximal ideal
Λ+ defined by

Λ+ :=

{ ∞∑
i=0

aiT
λi

∣∣∣∣ ai ∈ C, λi ∈ R>0, lim
i→∞

λi = +∞

}
.

We define a non-Archimedean valuation vT on Λ as follows

vT

( ∞∑
i=0

aiT
λi

)
:= inf{ λi | ai 6= 0}, vT (0) := ∞.

The above rings Λ, Λ0 are complete with respect to the valuation vT .
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4.2 Moduli spaces

We recall the moduli space of the genus zero bordered holomorphic maps.
Let (M,ω) be a symplectic manifold and let L be a Lagrangian submanifold.
We denote by J a compatible almost complex structure on (M,ω), where
compatible means that ω(·, J ·) is a Riemannian metric on M .

A bordered semi-stable curve of genus zero with (k+1) boundary marked
points and ` interior marked points (Σ, z0, . . . , zk, z+

1 , . . . , z
+
` ) is a connected

union of disksD2
i , i = 1, . . . , r and spheres S2

j , j = 1, . . . , s with the following
properties:

1. Σ is simply connected.

2. D2
i and S2

j are called irreducible components. The intersection of two
different irreducible components is at most one point. A point which
belongs to different components is called a singular point.

3. For i 6= i′, D2
i ∩D2

i′ = ∂D2
i ∩D2

i′ and D2
i ∩ S2

j = Int(D2
i ) ∩ S2

j for any
i, j.

4. The intersection of three different irreducible components is empty.

5. The boundary marked points z0, . . . , zk are mutually distinct and none
of them coincide with singular points. The order of z0, . . . , zk is re-
quired to respect the counter-clockwise cyclic order of the boundary
of Σ. The interior marked points z+

1 , . . . , z
+
` are mutually distinct and

none of them coincide with singular points.

A bordered stable map of genus zero with (k + 1) boundary marked points
and ` interior marked points is a pair ((Σ, z, z+), u) such that (Σ, z, z+)
is a bordered semi-stable curve of genus zero with marked points and u :
(Σ, ∂Σ) → (M,L) is a continuous map which is J-holomorphic on each of the
irreducible components and ((Σ, z, z+), u) satisfies the stability condition.
The stability condition is equivalent to the condition that the automorphism
group, which is the set of biholomorphic maps ψ : (Σ, z, z+) → (Σ, z, z+)
satisfying ψ(zi) = zi, ψ(z+

j ) = z+
j and u ◦ ψ = ψ, is finite.

For β ∈ H2(M,L; Z), we denote by Mmain
k+1;`(L;β) the set of all the isomor-

phism classes of bordered stable maps ((Σ, z, z+), u) with (k + 1) boundary
marked points and ` interior marked points satisfy β = [u].

We define the evaluation maps evi : Mmain
k+1;`(L;β) → L, (i = 0, 1, . . . , k)

and ev+
j : Mmain

k+1;`(L;β) → L, (j = 1, . . . , `) as follows

evi([(Σ, z, z+), u]) := u(zi) ,
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ev+
j ([(Σ, z, z+), u]) := u(z+

j ).

In [FOOO09-I, FOOO09-II], for any closed relatively spin Lagrangian
submanifold L in any closed symplectic manifold, Fukaya-Oh-Ohta-Ono
proved Mmain

k+1;`(L;β) has a Kuranishi structure and they constructed an A∞
structure on a subcomplex C∗(L) of smooth singular chain complex of L.

To prove our theorem, we need to recall their Lagrangian Floer theory
on compact toric manifolds.

4.3 Compact toric manifolds

In this section, after summarizing the constructions of compact toric mani-
folds, we recall known results on symplectic toric manifolds. The description
here is mainly based on [CO06], [FOOO11a], [Au04], [Ca01].

4.3.1 Compact toric manifolds

To obtain a smooth compact toric manifold, we define a complete fan of
regular cones Σ. We denote by N , NR the lattice Zn and N⊗R respectively.

Definition 4.1. A convex set σ ⊂ NR is called a regular k-dimensional cone
if there exist k (k ≥ 1) linearly independent elements v1, . . . , vk ∈ N such
that the set {vi | i = 1, . . . , k} is a subset of some Z-basis of N and

σ = {a1v1 + · · · + akvk | ai ∈ R≥0}.

The set {vi | i = 1, . . . , k} determined by σ is called the integral genera-
tors of σ.

Definition 4.2. A regular cone σ′ is called a face of a regular cone σ if the
generators of σ′ are contained in the set of integral generators of σ. In this
case, we write σ′ ≺ σ.

Definition 4.3. A finite family of regular cones Σ = {σ1, . . . , σs | σ ⊂ NR}
is called a complete n-dimensional fan of regular cones, if the following
conditions are satisfied.

(1) If σ ∈ Σ and σ′ ≺ σ, then σ ∈ Σ.

(2) If σ, σ′ ∈ Σ, then σ ∩ σ′ ≺ σ and σ ∩ σ′ ≺ σ′.

(3) σ1 ∪ · · · ∪ σs = NR.
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Let Σ(k) be the set of all k-dimensional cones in Σ. For a complete n-
dimensional fan of regular cones Σ, we denote by G(Σ) = {v1, . . . , vm} the
set of all integral generators of 1-dimensional cones in Σ, where m = #Σ(1).

Definition 4.4. A subset P = {vi1 , . . . , vip} ⊂ G(Σ) is called a primitive
collection if P does not generate p-dimensional cones in Σ, while for all k
with 1 ≤ k < p each k-elements subset P generates a k-dimensional cone in
Σ.

Definition 4.5. Let Cm be an m-dimensional complex vector space with
coordinates z1, . . . , zm which are in one-to-one correspondence zi ↔ vi ∈
G(Σ), and let P = {vi1 , . . . , vip} be a primitive collection in G(Σ).

(1) Define the (m− p)-dimensional subspace A(P) ⊂ Cm as follows:

A(P) := {(z1, . . . , zm) ∈ Cm | zi1 = · · · = zip = 0}.

(2) Define the closed subset Z(Σ) ⊂ Cm as follows:

Z(Σ) :=
∪
P

A(P),

where P runs over all primitive collections in G(Σ).

(3) Define the open subset U(Σ) ⊂ Cm as follows:

U(Σ) := Cm \ Z(Σ).

We define a homomorphism α : Zm → N by

α(ei) := vi,

where {ei | i = 1, . . . ,m} is the basis vectors of Zm.
When Σ is a complete n-dimensional fan of regular cones, we have an

exact sequence:
0 → K := Ker(α) → Zm → N → 0.

We denote by D(Σ) the connected commutative subgroup in (C∗)m gen-
erated by all one-parameter subgroups:

aλ : C∗ −→ (C∗)m

∈ ∈

t 7−→ (tλ1 , . . . , tλm),

where λ = (λ1, . . . , λm) ∈ K.
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Proposition 4.1. The subgroup D(Σ) acts freely on U(Σ) ⊂ Cm.

The compact toric manifold XΣ is defined as following:

Definition 4.6. For a complete n-dimensional fan of regular cones Σ, the
compact toric manifold associated with Σ is defined by

XΣ := U(Σ)/D(Σ).

4.3.2 Symplectic toric manifolds and known results

A 2n-dimensional symplectic toric manifold is a compact connected sym-
plectic manifold (M2n, ω) equipped with an effective Hamiltonian action of
an n-dimensional torus ρ : Tn = (S1)n → Symp(M,ω) and with a choice
of a corresponding moment map π = (π1, . . . , πn) : M → Rn. Two sym-
plectic toric manifolds (M,ω, ρ, π) and (M ′, ω′, ρ′, π′) are called isomorphic
if there exists a Tn-equivariant symplectomorphism φ : M → M ′ such that
π′ ◦ φ = π.

The definition of Hamiltonian action implies that

dπi(X) = ω(X, t̃), (4.3.1)

where t̃ is the vector field on M introduced by the action of the i-th factor
S1

i of Tn (see [Ca01] for the definition Hamiltonian action for general Lie
groups).

Remark 4.1. Formula (4.3.1) corresponds with one used in [FOOO11a]. In
[FOOO11], they put a factor 2π in the right hand side of (4.3.1).

It is well known that the image P = π(M) ⊂ Rn is a convex poly-
tope, which is called the moment polytope of the symplectic toric manifold
(M,ω, ρ, π). Moreover, it turns out that P is a Delzant polytope (see [De88]).
Hence, in other words, there exist finitely many integral vectors vi ∈ Zn and
constants λi ∈ R (i = 1, . . . ,m) such that

• P = {u ∈ Rn | li(u) := 〈u, vi〉 − λi ≥ 0, i = 1, . . . ,m} .

• The number of facets ∂iP := {u ∈ R | li(u) = 0} meeting at each
vertex p is n. Let ∂i1 , . . . , ∂in be those faces. Then the corresponding
integral vectors vi1 , . . . , vin are a basis of Zn.

where 〈·, ·〉 is the standard inner product on Rn and integral vector vi is a
inward-pointing normal vector to the facet ∂iP .
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On the other hand, for a Delzant polytope P ⊂ Rn defined by affine
functions li : Rn → R as above, we can obtain a complete n-dimensional
fan of regular cones ΣP whose integral generators of 1-dimensional cones
are the set of the integral vectors vi ∈ Zn. We define the compact toric
manifold XΣP

:= U(ΣP )/D(ΣP ) associated to the fan ΣP . There exist
a natural real torus action ρP : Tn y XΣP

induced by the torus action
(C∗)m/D(ΣP ) y XΣP

. In [De88], Delzant proved the following existence
theorem of symplectic toric manifolds (see Section VII.2.a in [Au04]).

Theorem 4.1. There exists a symplectic structure ωP on XΣP
such that

the action ρP : Tn y XΣP
is Hamiltonian. Moreover, P is the image of a

moment map πP : XΣP
→ Rn associated to the Hamiltonian action.

In [De88], Delzant also proved that there exists a bijection between iso-
morphism classes of symplectic toric manifolds and Delzant polytopes.

By Delzant’s construction, it turns out that the symplectic structure
ωP is a Tn-invariant Kähler form with respect to the canonical complex
structure J on XΣp . The following theorem is obtained by Guillemin in
[Gu94].

Theorem 4.2. Define the function l∞ : (Rn)∗ → R by

l∞(u) := 〈u,
m∑

i=1

vi〉.

Then we have

ωP =
√
−1∂∂̄

(
π∗

( m∑
i=1

λi(log li) + l∞

))
over Int(P ).

For each facet ∂iP (i = 1, . . . ,m), we putDi := π−1
P (∂iP ) (the irreducible

component of toric divisors). For the principal bundle pr : U(ΣP ) → XΣP
,

pr−1(Di) is defined by the equation zi = 0 in U(ΣP ) ⊂ Cm.
Let u ∈ Int(P ). We denote by L(u) ⊂ XΣP

the inverse image of the
moment map πP : XΣP

→ Rn. Then L(u) is a Lagrangian submanifold
and an orbit of the Tn-action. We call L(u) a Lagrangian torus fiber over
u ∈ Int(P ). Cho-Oh show the next proposition in [CO06].

Proposition 4.2. There exist m elements βi ∈ H2(XΣP
, L(u); Z) such that

βi is represented by some holomorphic disk ui : (D2, ∂D2) → (XΣP
, L(u))

and
βi ∩ [Dj ] = δij ,
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2πli(u) =
∫

βi

ωP ,

where δij is Kronecker’s delta.

In the end of this section, we state Cho-Oh’s theorem (see Section 4 in
[CO06]).

Theorem 4.3. (1) (Maslov index formula) For a symplectic toric manifold
XΣP

, and Lagrangian torus fiber L(u) ⊂ XΣP
, the Maslov index of

any holomorphic disc with boundary lying on L(u) is twice the sum of
intersection multiplicities of the image of the disc with the codimension
1 submanifolds Di for all i = 1, . . . ,m, where m is the number of facets
of P .

(2) (Classification theorem) Any holomorphic map u : (D2, ∂D2) → (XΣP
, L(u))

can be lifted to a holomorphic map

ũ : (D2, ∂D2) → (Cm \ Z(ΣP ),pr−1(L(u)))

so that each homogeneous coordinates function z1(ũ), . . . , zm(ũ) is given
by Blaschke products with constant factors:

zi(ũ) = ci

µi∏
j=1

z − αi,j

1 − αi,jz

for ci ∈ C∗ and µi ∈ Z≥0 for each i = 1, . . . ,m.

(3) (Regularity theorem) The disks in the classification theorem are Fred-
holm regular (i.e., its linearization map is surjective ).

Remark 4.2. In the above theorem, the each non-negative number µi is
the intersection multiplicities of the image of the disc with the codimension
1 submanifolds Di and the each αi,j ∈ D2 is one of points mapped into Di.

4.4 Lagrangian Floer theory in toric case

In this section, we briefly recall the A∞ structure and the Lagrangian Floer
theory developed by Fukaya-Oh-Ohta-Ono in toric case (see [FOOO11a],
[FOOO11b] for details).

Let C be a graded free Λ0 module. We define a G-gapped unital filtered
A∞ algebra by using the notation defined in Section 4.1.
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Definition 4.7. A sequence of operators

mk : Bk(C[1]) → C[1]

of odd degree for k ∈ Z≥0 is called a G-gapped unital filtered A∞ algebra
on C if {mk}∞k=0 satisfies the following.

(1) (A∞-relation) For any xi ∈ C[1],

∑
k1+k2=k+1

k2∑
i=1

(−1)∗mk2(x1 ⊗ · · ·mk1(xi ⊗ · · · ⊗ xi+k1−1) · · · ⊗ xk) = 0 ,

where ∗ :=
∑i−1

j=1 deg′xj .

(2) m0(1) ≡ 0 mod (Λ+)

(3) (Unitality) There exists an element e ∈ C0 such that for any x, xi ∈ C[1]

・mk+1(x1 ⊗ · · · ⊗ e ⊗ · · · ⊗ xk) = 0 for k ≥ 2, k = 0，
・m2(e⊗ x) = (−1)deg xm2(x⊗ e) = x for k = 1. Such e is called a

strict unit.

(4) (G-gappedness) There exists an additive discrete submonoidG = {λi|0 =
λ0 < λ1 < · · · , i = 0, 1, 2, · · · } ⊂ R≥0 such that mk is written as

mk =
∞∑
i=0

mk,iT
λi ,

where mk,i : Bk(C[1]) → C[1] is C-linear.

(5) m2,0 coincides with the product on C up to sign.

After giving the definition of a bulk b ∈ A(Λ+), we give an overview
of the construction of gapped unital filtered A∞ algebra on the de Rham
cohomology H(L; Λ0) deformed by a pair of a bulk b ∈ A(Λ+) and an
element b ∈ H1(L; Λ0) for a Lagrangian torus fiber L in a symplectic toric
manifold (X,ω).

Let a symplectic toric manifold (X2n, ω, π, ρ) = (XΣP
, ωP , πP , ρP ) have

the moment polytope P as in Section 4.3.2:

P = {u ∈ Rn | li(u) := 〈u, vi〉 − λi ≥ 0, i = 1, . . . ,m} .
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Here m is the number of facets of P . For each facet ∂iP (i = 1, . . . ,m),
we put Di := π−1

P (∂iP ). We denote by J a subset of {1, . . . ,m} and denote
DJ := Dj1∩· · ·∩Djk

. We note that DJ is a real codimension 2k submanifold
in M and invariant under the Tn-action. If J = ∅, we put DJ = X. We
define A(Z) as the free abelian group generated by DJ and put the degree
on it by

deg(DJ) := codim DJ = 2k.

We define
A(Λ+) := A(Z) ⊗Z Λ+.

In this paper, an element b ∈ A(Λ+) is called bulk.
We note that the homomorphism A(Z) → H∗(M ; Z) and the Poincaré

duality induce a surjective homomorphism

π : A(Λ+) → H∗(M ; Λ+); b 7→ PD[b].

Remark 4.3. In [FOOO11b] and [FOOO12a], they use A(Λ0) = A(Z)⊗ZΛ0

as the set of bulk (see Section 11 in [FOOO11b]). Since A(Λ0) is not needed
to prove our theorems, we restrict ourselves to the case of A(Λ+).

We denote by pi (i = 0, 1, . . . ,m, . . . , B) the generator of A(Z), where
p0 = X and pi = Di for i = 1, . . . ,m. For I : {1, . . . , `} → {1, . . . , B}, we
define

pI := pI(1) ⊗ · · · ⊗ pI(`), [pI ] :=
1
`!

∑
σ∈S`

pI(σ(1)) ⊗ · · · ⊗ pI(σ(`)) ∈ E`A[2],

where S` is the symmetric group of order `!.
For any Lagrangian torus fiber L(u) ⊂ X2n, u ∈ P, β ∈ H2(X,L(u); Z)

and I : {1, . . . , `} → {1, . . . , B}, we define the fiber product in the sense of
Kuranishi structure:

Mmain
k+1;`(L, β;pI) := Mmain

k+1;`(L;β)(ev+
1 ,...,ev+

` ) ×X` pI .

This set consists of all bordered stable maps [(Σ, z, z+), u] ∈ Mmain
k+1;`(L;β)

satisfying u(z+
j ) ∈ pI(j) for all j = 1, . . . , `. Evaluation maps at boundary

marked points induce

ev = (ev0, . . . , evk) : Mmain
k+1;`(L, β;pI) → Lk+1.

By using this map, we define an operator

q`,k,β : E`A(Z)[2] ⊗BkH(L(u); C)[1] → H(L(u); C)[1].
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Since L(u) is a torus fiber, there exists a free and transitive Tn-action.
We fix a Tn invariant Riemannian metric on L(u). It turns out that har-
monic forms with respect to this metric can be identified with Tn invariant
forms. Hereafter, we regard the cohomology H(L(u); C) as the set of all Tn

invariant forms.
For h1, . . . , hk ∈ H(L(u); C), we define the operator q`,k,β as follows:

q`,k,β([pI ];h1 ⊗ · · · ⊗ hk) :=
1
`!

(ev0)!(ev1, . . . , evk)∗(h1 × · · · × hk),

where (ev0)! denotes the integration along the fiber of the evaluation map
ev0 : Mmain

k+1;`(L, β;pI) → L.

Remark 4.4. We can define the integration along the fiber when the eval-
uation map ev0 : Mmain

k+1;`(L, β;pI) → L is a submersion in the sense of Ku-
ranishi structure. By using a Tn equivariant multisection s, we can obtain a
perturbed moduli space Mmain

k+1;`(L, β;pI)s and ev0 : Mmain
k+1;`(L, β;pI)s → L

becomes a submersion and q`,k,β([pI ];h1 ⊗ · · · ⊗ hk) becomes Tn invariant
forms. For more details, see Section 3 and Remark 8.1 of [FOOO12a].

The operator q`,k,β has the following property.

Theorem 4.4 (Theorem 2.1 in [FOOO11b]). For each β ∈ H2(L(u); Z),
q`,k,β satisfies:

(1) Let x ∈ Bk(H(L(u); Λ0)[1]), y ∈ E`(A(Λ+)[2]) and let ∆1(y) =
∑

c1
y2;1

c1 ⊗
y2;2

c1 , ∆2(x) =
∑

c2
x3;1

c2 ⊗ x3;2
c2 ⊗ x3;3

c2 . We have∑
β=β1+β2

∑
c1,c2

(−1)∗q`,k,β1(y
2;1
c1 ;x3;1

c2 ⊗ q`,k,β2(y
2;2
c1 ;x3;2

c2 ) ⊗ x3;3
c2 ) = 0,

where ∗ = deg′ x3;1
c2 + deg′ x3;1

c2 + deg y2;2
c1 + deg y2;1

c1 .

(2) We put mβ;k := q0,k,β and define

mk :=
∑

β∈H2(M,L(u);Z)

mβ;kT
β∩[ω]/2π.

Then (H(L(u); Λ0), {mk}∞k=0, e := PD[L(u)]) is a gapped unital filtered
A∞ algebra, where PD[L(u)] denotes the Poincaré dual of the funda-
mental class of L(u).
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(3) ・ For β0 = 0 ∈ H2(M,L(u); Z) and for any x ∈ H(L(u); Λ0)[1],

mβ0,2(e ⊗ x) = (−1)deg xmβ0,2(x⊗ e).

・ For any xi ∈ Bki
(H(L(u); Λ0)[1]) and any y ∈ E`(A(Λ+)[2]),

q`,k1+1+k2,β(y;x1 ⊗ e ⊗ x2) = 0.

Next we define

q`,k : E`(A(Λ+)[2]) ⊗Bk(H(L(u); Λ0)[1]) → H(L(u); Λ0)[1],

q`,k :=
∑

β∈H2(M,L(u);Z)

q`,k,βT
ω∩β/2π.

By using an element (b, b) ∈ A(Λ+) ×Hodd(L(u); Λ0), we deform

mk : Bk(H(L(u); Λ0)[1]) → H(L(u); Λ0)

as follows.

Definition 4.8.

m
b,b
k (x1 ⊗ · · · ⊗ xk) :=

∞∑
l=0,

m0=0,··· ,mk=0

ql,k+m0+···+mk
(bl;

m0︷ ︸︸ ︷
b⊗ · · · ⊗ b⊗x1

⊗
m1︷ ︸︸ ︷

b⊗ · · · ⊗ b⊗x2 ⊗ · · · ⊗ xk ⊗
mk︷ ︸︸ ︷

b⊗ · · · ⊗ b). (4.4.1)

Fukaya-Oh-Ohta-Ono proved the following.

Theorem 4.5 (Lemma 2.2 in [FOOO11b]). For each (b, b) ∈ A(Λ+) ×
Hodd(L(u); Λ0), (H(L; Λ0),m

b,b
k , e) is a gapped unital filtered A∞ algebra.

Remark 4.5. In Definition 4.8, we take b ∈ Hodd(L(u); Λ0) instead of tak-
ing from Hodd(L(u); Λ+). By using a trick due to Cho [Cho08], the conver-
gence problem about right hand side of (4.4.1) is resolved (see Section 12 in
[FOOO11a] and Section 8 in [FOOO11b]).

We denote by M̂def,weak(L(u); Λ0) the set of all elements (b, b) ∈ A(Λ+)×
Hodd(L(u); Λ0) satisfying m

b,b
0 (1) ≡ 0 mod Λ+e. If M̂def,weak(L(u); Λ0) 6= ∅,
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then m
b,b
1 ◦m

b,b
1 = 0 for any (b, b) ∈ M̂def,weak(L(u); Λ0). Thus we can define

the bulk deformed Lagrangian Floer cohomology by

HF ((L, b, b); Λ0) :=
kerm

b,b
1

Im m
b,b
1

.

We define the bulk deformed potential function as follows:

POu : M̂def,weak(L(u); Λ0) → Λ+,

m
b,b
0 (1) =

∞∑
`=0

∞∑
k=0

q`,k(b`, bk) = POu(b, b)e.

Proposition 4.3 (Proposition 2.1 in [FOOO12b]). For any b ∈ A(Λ+),
there exists a natural inclusion:

A(Λ+) ×H1(L; Λ+) ⊂ M̂def,weak, (4.4.2)

For any b ∈ A(Λ+), there exists a natural inclusion:

A(Λ+) × H1(L; Λ0)
H1(L; 2π

√
−1Z)

⊂ M̂def,weak . (4.4.3)

In this toric case, there exists a torus action Tn on (X,ω) by the defini-
tion. Thus, by identifying L(u) with Tn, we have a canonical basis {ei}n

i=1

of H1(L(u); Z) represented by dti, where ti is the coordinate of i-th fac-
tor of Tn = (R/Z)n. An element b ∈ H1(L(u); Λ0) can be written as
b =

∑n
i=1 xiei. Put xi = xi;0 + xi;+, xi;0 ∈ C, xi;+ ∈ Λ+. We define

new coordinates yu
i by

yu
i := exp(xi;0) exp(xi;+) ∈ Λ0 \ Λ+,

where for xi;+ ∈ Λ+

exp(xi;+) :=
∞∑

k=0

(xi;+)k

k!

makes sense in the non-Archimedean sense.
From Proposition 4.3, we can regard the potential function as follows.

POu : A(Λ+) × (Λ0 \ Λ+)n → Λ+.

We denote by POu
b when we fix a bulk b.

Fukya-Oh-Ohta-Ono proved the next important relation between the
potential function and the Lagrangian Floer cohomology.
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Theorem 4.6 (Theorem 3.16 in [FOOO11b]). If (b, y = (y1, . . . , yn)) ∈
A(Λ+) × (Λ0 \ Λ+)n satisfies

yu
i

∂POu
b

∂yu
i

(y) = 0, i = 1, . . . , n,

then we have
HF ((L(u), b, b); Λ0) ∼= H(Tn; Λ0).

4.5 Quantum cohomology and Jacobian ring

In this section, we review the isomorphism between the big quantum coho-
mology of (X,ω) deformed by a bulk b and the Jacobian ring of the deformed
potential function by b (see [FOOO10] for details).

Let (X2n, ω) be a symplectic manifold. We denote by M`(α) the moduli
space of stable maps in class α ∈ H2(M ; Z) from genus zero semi-stable curve
with ` marked points. This moduli space M`(α) has a virtual fundamental
cycle, hence induce a class (see [FO99])

ev∗[M`(α)] ∈ Hd(X`; Q),

where d = 2n+ 2c1(X) ∩ α+ 2`− 6 and ev is an evaluation map:

ev = (ev1, . . . , e`) : M`(α) → X`.

Let h1, . . . , h` be closed differential forms on X satisfying

∑̀
i=1

deg hi = 2n+ 2c1(X) ∩ α+ 2`− 6.

The Gromov-Witten invariant is defined by

GW`(α;h1, . . . , h`) :=
∫
M`(α)

ev∗(h1 × · · · × h`) ∈ R.

We put GW`(α;h1, . . . , h`) = 0 for differential forms hi which do not satisfy
the degree condition.

A module homomorphism GW` : H(X; Λ0)⊗` → Λ0 is defined by

GW`(h1, . . . , h`) :=
∑

α∈H2(X;Z)

GW`(α;h1, . . . , h`)Tα∩ω/2π.

We regard a bulk b ∈ A(Λ+) as an element in H(X; Λ+) by an obvious
surjective homomorphism A(Z) → H(X; Z). The bulk deformed quantum
cup product ∪b is defined as follows.
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Definition 4.9. For each a, b ∈ H∗(X; Λ0), an element a ∪b b ∈ H∗(X; Λ0)
is defined by the following formula:

〈a ∪b b, c〉PD =
∞∑

`=0

1
`!
GW`+3(a, b, c, b, . . . , b), (4.5.1)

where we denote by 〈·, ·〉PD the Poincaré duality pairing.

The quantum product ∪b is graded commutative and associative. We
obtain a Z2-graded commutative ring:

QH∗
b (X; Λ0) := (H∗(X; Λ0),∪b).

Remark 4.6. In Definition 4.9, the right hand side converges with respect
to the valuation vT . If we take b ∈ H(X; Λ0) as a deformation parameter,
we need to modify the formula (4.5.1) in order to obtain the convergence
(see Remark 5.2 in [FOOO11]).

To define the Jacobian ring of POu
b , we define a norm on the Laurent

polynomial ring Λ[y, y−1] := Λ[y1, . . . , yn, y
−1
1 , . . . , y−1

n ]. Let a symplectic
toric manifold (X2n, ω) has the moment polytope P as in the previous sec-
tion:

P = {u ∈ Rn | li(u) = 〈u, vi〉 − λi ≥ 0, i = 1, . . . ,m} .

For each u = (u1, . . . , un) ∈ P , we put new n variables yu
i ∈ Λ[y, y−1] by

yu
i := T−uiyi. (4.5.2)

Any element f ∈ Λ[y, y−1] can be written by yu
i

f =
∑

(j1,...,jn)∈Zn

fu
j1...jn

(yu
1 )j1 · · · (yu

n)jn , fu
j1...jn

∈ Λ.

By using this expression, we define a valuation vu
T on Λ[y, y−1] as follows:

vu
T (f) := inf{vT (fu

j1...jn
) | fu

j1...jn
6= 0}, vu

T (0) := +∞.

We put
vP

T (F ) := inf{vu
T (f) | u ∈ P}.

This is not a valuation on Λ[y, y−1]. However, we can define a metric dP on
Λ[y, y−1] by

dP (f1, f2) := e−vP
T (f1−f2).



42 CHAPTER 4. LAGRANGIAN FLOER THEORY

We denote by Λ〈〈y, y−1〉〉P the completion of Λ[y, y−1] with respect to
the norm dP .

As mentioned in Section 4.4, the potential function POu
b is written by

u dependent variables yu
i . We replace the variables yu

i with new variables
yi defined by the same formula (4.5.2) and denote by POu

b(y1, . . . , yn). The
following is known.

Theorem 4.7 (Theorem 3.14 in [FOOO11b]). If we take b ∈ A(Λ+), then
POu

b(y1, . . . , yn) converges with respect to dP . i.e.,

POu
b ∈ Λ〈〈y, y−1〉〉P for any u ∈ Int(P ).

Moreover,
POu

b(y1, . . . , yn) = POu′
b (y1, . . . , yn)

for any u, u′ ∈ Int(P ).

Hence we denote by POb the potential function with the variables yi.

Remark 4.7. In the proof of Lemma 5.3, we use the potential function of
the toric manifold (S2×S2, 1

2ωstd⊕ 1
2ωstd). Since this symplectic manifold is

Fano and we use a bulk b with deg b = 2, the potential function is contained
in Λ[y, y−1] without the completion.

We next describe the isomorphism, which is called the Kodaira-Spencer
map, between the quantum cohomology QHb(X; Λ) and the Jacobian ring
Jac(POb; Λ).

The Jacobian ring Jac(POb; Λ) is defined as follows:

Definition 4.10. For b ∈ A(Λ+),

Jac(POb; Λ) :=
Λ〈〈y, y−1〉〉P(

yi
∂POb

∂yi
: i = 1, . . . , n

) ,
where the denominator is the ideal of Λ〈〈y, y−1〉〉P generated by yi

∂POb
∂yi

.

Remark 4.8. Since we take b from not A(Λ0) but from A(Λ+), we do not
take the closure of the ideal (see Remark 1.2.11 of [FOOO10]).

We now recall the surjective homomorphism

π : A(Λ+) → H∗(M ; Λ+); b 7→ PD[b].
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We fix a subset of the basis {pi} of A(Z)

{pij | j = 0, . . . ,m′, . . . , B′} ⊂ {pi | i = 1, . . . ,m, . . . , B}

so that π(pij ) forms a basis of H∗(X; Z) and pi0 = p0 = X, deg pij = 2 for
1 ≤ j ≤ m′. We identify H∗(X; Λ+) with the subspace of A(Λ+) generated
by {pij}. We put ej := π(pij ) ∈ H∗(X; Λ+). The Kodaira-Spencer map is
defined as follows. For any element b ∈ H(X; Λ+), we may write

POb =
∑

ak1...kn(b)yk1
1 · · · ykn

n ,

where b =
∑
wjej and ak1...kn(b) is a formal power series of wj with coef-

ficients in Λ which converges with respect to vT . By using this expression,
we put

∂POb

∂wj
(b) :=

∑ ∂ak1...kn(b)
∂wj

yk1
1 · · · ykn

n .

This summation converges in Λ〈〈y, y−1〉〉P for each b. The Kodaira-Spencer
map

ksb : H(X; Λ) → Jac(POb; Λ)

is defined by

ksb(ej) :=
[
∂POb

∂wj

]
.

The Kodaira-Spencer map ksb : QHb(X; Λ0) → Jac(POb; Λ0) is also defined.
In [FOOO10], Fukaya-Oh-Ohta-Ono obtained the following.

Theorem 4.8 (Theorem 1.1.1 in [FOOO10]). The map ksb is a ring iso-
morphism

QHb(X; Λ0) ∼= Jac(POb; Λ0).

In particular,
QHb(X; Λ) ∼= Jac(POb; Λ).





Chapter 5

Proofs of main results

5.1 Brief review of FOOO’s results

In [FOOO12b], Fukaya-Oh-Ohta-Ono computed the full potential function
of some Lagrangian tori in S2×S2 and they proved superheavyness of these
tori in [FOOO11]. In this section, we briefly describe the construction of
their superheavy tori.

Let F2(0) be a symplectic toric orbifold whose moment polytope P is
given by

P := {(u1, u2) ∈ R2 | 0 ≤ u1 ≤ 2, 0 ≤ u2 ≤ 1 − 1
2
u1}.

We denote by π : F2(0) → P the moment map, and denote by L(u) a
Lagrangian torus fiber over an interior point u ∈ Int(P ). Then F2(0) has one
singular point which corresponds to the point (0, 1) in P . They constructed
a symplectic manifold F̂2(0) which is symplectomorphic to (S2×S2, 1

2ωstd⊕
1
2ωstd), by replacing a neighborhood of the singularity with a cotangent disk
bundle of S2 (for details, see Section 4 [FOOO12b]). Under the smoothing,
Lagrangian torus fiber L(u) is sent to a Lagrangian torus in S2 × S2. In
particular, we denote by Tτ (0 < τ ≤ 1

2) this torus corresponding to L((τ, 1−
τ)) ⊂ F2(0).

Remark 5.1. These Lagrangian tori Tτ are not toric fibers with respect
to the standard toric structure on S2 × S2. Therefore, the full potential
function of Tτ can not be determined in terms of the moment polytope data
as in Chapter 4.

For these Lagrangian tori Tτ ⊂ S2 × S2, they obtained the following.

45
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Theorem 5.1 (Fukaya-Oh-Ohta-Ono [FOOO11]). For any 0 < τ ≤ 1/2,
there exist a bulk b(τ) ∈ Heven(M,Λ0) and idempotents eτ and e0τ , each of
which is an idempotent of a field factor of QHb(τ)(S2 × S2; Λ) such that

(1) Tτ is µb(τ)
eτ -superheavy and T 1

2
is µb(τ)

e0
τ

-superheavy.

(2) S1
eq × S1

eq is µb(τ)
e -superheavy for any idempotent e of a field factor of

QHb(τ)(S2 × S2; Λ). In particular,

ψ(Tτ ) ∩ (S1
eq × S1

eq) 6= ∅

for any symplectic diffeomorphism ψ on S2 × S2.

Here µb(τ)
eτ and µ

b(τ)
e0
τ

denote homogeneous Calabi quasi-morphisms as-
sociated to the idempotents eτ , e0τ ∈ QHb(τ)(S2 × S2; Λ) respectively (see
Theorem 3.1).

Remark 5.2. (1) In [FOOO11], (1) is Theorem 23.4 (2), and (2) is Theo-
rem 1.13.

(2) The notion of µb
e-superheavy is defined in Definition 18.5 of [FOOO11]

and they remark as Remark 18.6 that µb
e-superheavyness implies ζb

e -
superheavyness. In this paper, we need only to use ζb

e -superheavyness.

(3) The quasi-morphisms µb(τ)
eτ and µ

b(τ)
e0
τ

descend to homogeneous Calabi
quasi-morphisms on Ham(S2 × S2) as in [EP03].

Hereafter, we use only above homogeneous Calabi quasi-morphisms

µb(τ)
eτ

: Ham(S2 × S2) → R

with 0 < τ < 1/2 and denote them by µτ .

5.2 Pullback of the quasi-morphism µτ

To obtain quasi-morphisms on Hamc(B2 ×B2, ω̄0), we define a conformally
symplectic embedding Θδ : B2 × B2 ↪→ S2 × S2 for each Lagrangian sub-
manifold Lδ ⊂ B2 ×B2.

For each 1/2 < δ ≤ 1, we define a conformally symplectic embedding
θδ : (B2, 2ω0) ↪→ (S2, 1

2ωstd) ∼= (CP 1, ωFS) by

θδ(z) := [
√

1 − δ|z|2 :
√
δz ],
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where we identify the projective space with a unit sphere by using a stere-
ographic projection with respect to (1, 0, 0) ∈ S2 ⊂ R3 after regarding the
plane {v = (v1, v2, v3) ∈ R3 | v1 = 0} as the complex plane C. We note
that θ∗δ (

1
2ωstd) = δω0 and the image of θδ is {v ∈ S2 | v1 < 2δ − 1}.

Moreover, by the map θδ, the circle Tδ ⊂ B2 is mapped onto the equator
S1

0 := {v ∈ S2 | v1 = 0} and the real form Re(B2) is mapped into the
equator S1

eq := {v ∈ R3 | v3 = 0} ⊂ S2 .
Using this conformally symplectic embedding, we define Θδ : B2×B2 ↪→

S2 × S2 by

Θδ := θδ × θδ : (B2 ×B2, ω̄0) ↪→ (S2 × S2, ω̄std), (5.2.1)

where ω̄std denotes the symplectic structure 1
2ωstd ⊕ 1

2ωstd on S2 × S2. This
is a conformally symplectic embedding for each 1/2 < δ ≤ 1. Indeed, it is
obvious

Θδ
∗ω̄std = δω̄0.

For a time-dependent Hamiltonian F on B2 ×B2, we define a Hamilto-
nian F ◦ Θ−1

δ on S2 × S2 by

F ◦ Θ−1
δ (x) :=

{
F (t,Θ−1

δ (x)) (x ∈ Im(Θδ))
0 (x /∈ Im(Θδ)).

Since Θδ is a conformally symplectic embedding, we obtain

φ1
δF◦Θ−1

δ

= Θδφ
1
F Θ−1

δ .

Thus, ΘδφΘ−1
δ is a Hamiltonian diffeomorphism on S2 × S2 for any φ ∈

Hamc(B2 ×B2, ω̄0).
We define a family of quasi-morphisms µτ

δ : Hamc(B2 ×B2, ω̄0) → R by

µτ
δ (φ) :=

δ−1

vol(S2 × S2)
(
−µτ (ΘδφΘ−1

δ ) + CalΘδ(B2×B2)(ΘδφΘ−1
δ )

)
, (5.2.2)

where µτ are Fukaya-Oh-Ohta-Ono’s quasi-morphisms in Section 5.1 and
CalΘδ(B2×B2) is the Calabi morphism on HamΘδ(B2×B2)(S2 × S2, ω̄std) in
Section 3.1. The symplectic structure ω̄std is exact on Θδ(B2×B2), hence the
right hand side of (5.2.2) does not depend on the choice of the Hamiltonian
generating φ. Moreover, by the definition, it turns out that µτ

δ are quasi-
morphisms. To obtain another expression of µτ

δ , we define ζτ : C∞([0, 1] ×
S2 × S2) → R as the following :

ζτ (H) := − lim
n→∞

ρb(τ)(H#n; eτ )
n

,
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where we denote by H1#H2 the concatenation of two Hamiltonian H1 and
H2 :

H1#H2(t, x) :=

{
χ′(t)H1(χ(t), x)) 0 ≤ t ≤ 1/2
χ′(t− 1/2)H2(χ(t), x)) 1/2 ≤ t ≤ 1

for a smooth function χ : [0, 1/2] → [0, 1] with χ′ ≥ 0 and χ ≡ 0 near t = 0,
χ ≡ 1 near t = 1/2. Note that this definition is independent of the function
χ since the spectral invariant ρb(τ) has homotopy invariance property.

By the definition and (3.2.1), one can check that

ζτ (H) =
1

vol(S2 × S2)
(
−µτ (φ1

H) + CalS2×S2(H)
)

(5.2.3)

for any time-dependent Hamiltonian H and the restriction of ζτ to au-
tonomous Hamiltonians corresponds to the bulk-deformed quasi-state ζb(τ)

eτ

which is associated to µτ = µ
b(τ)
eτ .

Therefore, by (5.2.2) and (5.2.3), we obtain the following expression of
µτ

δ .

Lemma 5.1.
µτ

δ (φ
1
F ) = δ−1ζτ (δF ◦ Θ−1

δ ).

5.2.1 Properties of quasi-morphisms µτ
δ

In this section, we prove some properties of the quasi-morphisms µτ
δ by

following procedures in [Se14]. Since Proposition 5.1 and Proposition 5.2
are proved by using only standard properties of Calabi quasi-morphisms,
two proofs are the same as in [Se14]. However the proof of Proposition 5.3
depends on some properties of Lagrangian submanifolds and ambient spaces,
thus we need to modify the proof slightly for our Lagrangian submanifolds
Lδ ⊂ B2 ×B2.

Proposition 5.1. For any 0 < τ < 1/2 and 1/2 < δ ≤ 1, we have

(1) |µτ
δ (φ)| ≤ Cδ‖φ‖, where Cδ is a positive constant.

(2) If a time-dependent Hamiltonian Ht on B2 × B2 is supported in a dis-
placeable subset for any time t ∈ [0, 1] then we have

µτ
δ (φ

1
H) = 0.
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Proof. Let φ1
F be an element in Hamc(B2×B2, ω̄0). Since the quasi-morphisms

µτ have Lipschitz continuity property with respect to the Hofer norm on
Ham(S2 × S2, ω̄std) and Θδφ

1
F Θ−1

δ = φ1
δF◦Θ−1

δ

, we obtain

|µτ (Θδφ
1
F Θ−1

δ )| ≤ vol(S2 × S2)‖φ1
δF◦Θ−1

δ

‖.

By the definition of the Hofer norm, it turns out that

‖φ1
δF◦Θ−1

δ

‖ ≤ δ‖φ1
F ‖.

Hence, we have

|µτ (Θδφ
1
F Θ−1

δ )| ≤ δvol(S2 × S2)‖φ1
F ‖.

On the other hand, an easily calculation shows that

CalΘδ(B2×B2)(Θδφ
1
F Θ−1

δ ) = δ3
∫ 1

0
dt

∫
B2×B2

F (t, x) ω̄2
0.

As a result, we can obtain the following:

|CalΘδ(B2×B2)(Θδφ
1
F Θ−1

δ )| ≤ δ3vol(B2 ×B2)‖φ1
F ‖.

Consequently, it turns out that

|µτ
δ (φ)| ≤ δ−1

vol(S2 × S2)

(
|µτ (ΘδφΘ−1

δ )| + |CalΘδ(B2×B2)(ΘδφΘ−1
δ )|

)
≤ (1 + δ2)‖φ‖.

Thus (1) is proved.
The property (2) follows immediately from Calabi-property of µτ . In-

deed, two terms in the definition of µτ
δ are canceled each other.

Let X ⊂ S2 × S2 be a ζb(τ)
eτ -superheavy subset. By definition, we have

min
X

H ≤ ζb(τ)
eτ

(H) ≤ max
X

H

for all autonomous Hamiltonians H on S2 × S2. One can obtain the same
inequality for ζτ : C∞([0, 1]× S2 × S2) → R if a closed subset X ⊂ S2 × S2

is ζb(τ)
eτ -superheavy. More precisely, for all time-dependent Hamiltonians H

on S2 × S2, we have

min
[0,1]×X

H ≤ ζτ (H) ≤ max
[0,1]×X

H. (5.2.4)
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This is easily proved as mentioned in [Se14] without the detail. Indeed, we
can take two autonomous Hamiltonians Hmin,Hmax for any time-dependent
Hamiltonian H such that Hmin ≡ min[0,1]×X H, Hmax ≡ max[0,1]×X H on
X and Hmin ≤ H ≤ Hmax on S2 × S2. By applying the anti1-monotonicity
property of ρb(τ) (i.e. H ≤ K ⇒ ρb(τ)(H; eτ ) ≥ ρb(τ)(K; eτ ), see Theorem
9.1 in [FOOO11]) and the fact H ≤ K implies H#n ≤ K#n to above
Hamiltonians Hmin,H,Hmax, we can obtain (5.2.4) immediately.

From Lemma 5.1 and this inequality (5.2.4), we obtain the following.

Proposition 5.2. Suppose a closed subset X ⊂ S2 ×S2 is ζb(τ)
eτ -superheavy

and F is any compactly supported time-dependent Hamiltonian on the bi-
disks B2 ×B2 such that F ◦ Θ−1

δ |X≡ c, then

µτ
δ (φ

1
F ) = c.

Proposition 5.3 is the most important to obtain unboundedness of (L(Lδ), d).
In [Kh09], Khanevsky proved the similar property and obtained the un-
boundedness for the case where the ambient space is two-dimensional open
ball. In [Se14], by a different proof, Seyfaddini also obtained the similar
property for (L(Re(B2n)), d).

Proposition 5.3. If two Hamiltonian diffeomorphisms φ, ψ ∈ Hamc(B2 ×
B2, ω̄0) satisfy

φ(Lδ) = ψ(Lδ),

then we have

|µτ
δ (φ) − µτ

δ (ψ)| ≤ Dµτ

δvol(S2 × S2)
for all

1
2
< δ ≤ 1, 0 < τ <

1
2
,

where Dµτ denotes the defect of µτ .

We prove this proposition by slightly modifying Seyfaddini’s proof.

Proof. Throughout the proof, we fix δ, τ with 1/2 < δ ≤ 1, 0 < τ < 1/2,
respectively. From the definition of µτ

δ and its homogeneity we obtain that

|µτ
δ (φ

−1ψ) + µτ
δ (φ) − µτ

δ (ψ)|
= |µτ

δ (φ
−1ψ) − µτ

δ (φ
−1) − µτ

δ (ψ)|

=
1

δvol(S2 × S2)
|µτ (Θδφ

−1ψΘ−1
δ ) − µτ (Θδφ

−1Θ−1
δ ) − µτ (ΘδψΘ−1

δ )|

≤ Dµτ

δvol(S2 × S2)
.

1Fukaya-Oh-Ohta-Ono used different sign conventions from [EP03, EP06, EP09] (see
Remark 4.17 in [FOOO11]).
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Consequently, it is sufficient to prove the proposition that µτ
δ (φ) vanishes

for Hamiltonian diffeomorphisms φ satisfying φ(Lδ) = Lδ.
Now we take any Hamiltonian F ∈ C∞

c ([0, 1] × (B2 × B2)) and assume
the Hamiltonian diffeomorphism φ1

F preserves the Lagrangian submanifold
Lδ.

For 0 < s ≤ 1, we define a diffeomorphism as : B2 × B2(s) → B2 × B2

by
as(z1, z2) := (z1,

z2
s

).

Using this map, we define a compactly supported symplectic diffeomorphism
ψs for each 0 < s ≤ 1:

ψs :=

{
a−1

s φ1
Fas |z2| ≤ s

id |z2| ≥ s
.

As compactly supported cohomology group H1
c (B2 × B2; R) = 0 and ω̄0

is exact on B2 × B2, any isotopy of compactly supported Symplectic dif-
feomorphisms on (B2 × B2, ω̄0) is a compactly supported Hamiltonian iso-
topy. Thus, for each 0 < s ≤ 1, we can take a time-dependent Hamiltonian
F s ∈ C∞

c ([0, 1] ×B2 ×B2) such that ψs = φ1
F s .

This Hamiltonian diffeomorphisms ψs have the following properties:

(1) ψ1 = φ1
F 1 = φ1

F ,

(2) ψs preserves Lδ for each 0 < s ≤ 1,

(3) There exists a compact subset Ks in B2 such that F s is supported in
Ks ×B2(s) ⊂ B2 ×B2 for each 0 < s ≤ 1.

Hereafter we fix sufficiently small ε > 0 such that Kε × B2(ε) is dis-
placeable inside the bi-disks B2 × B2. By Proposition 5.1 (2), it follows
that

µτ
δ (ψε) = 0. (5.2.5)

We take a time-dependent Hamiltonian H ∈ C∞
c ([0, 1] × B2 × B2) so

that φt
H := ψ−1

ε ψt(1−ε)+ε for 0 ≤ t ≤ 1. In particular, we have the time-one
map φ1

H = ψ−1
ε φ1

F by the above property (1).
We note that Hamiltonian vector field XHt is tangent to the Lagrangian

submanifold Lδ since φt
H preserves Lδ. Consequently, for each t ∈ [0, 1],

Ht = H(t, ·) is constant on Lδ. Because of this and non-compactness of Lδ,
the restriction of Ht to Lδ is 0 for all t ∈ [0, 1]. Since Lδ = Tδ × Re(B2) is
mapped into S1

0 × S1
eq by Θδ, hence H ◦ Θ−1

δ vanishes on a torus S1
0 × S1

eq.
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On the other hand S1
0 × S1

eq is ζb(τ)
eτ -superheavy by Fukaya-Oh-Ohta-Ono’s

result (Theorem 5.1), therefore we have

µτ
δ (φ

1
H) = 0. (5.2.6)

Here we used Proposition 5.2.
As a consequence of these two equalities (5.2.5), (5.2.6) and quasi-additivity

of µτ
δ , it follows that

|µτ
δ (φ

1
F )| = |µτ

δ (φ
1
F ) − µτ

δ (ψε) − µτ
δ (φ

1
H)| ≤ Dµτ

δvol(S2 × S2)
.

Because (φ1
F )n preserves Lδ for any n ∈ N, we can apply the same

argument to (φ1
F )n and obtain |µτ

δ ((φ
1
F )n)| ≤ δ−1vol(S2 × S2)−1Dµτ . Since

µτ
δ is a homogeneous quasi-morphism, we have

µτ
δ (φ

1
F ) = 0.

By applying Proposition 5.1 (1) and Proposition 5.3, we obtain the fol-
lowing.

Proposition 5.4. For any φ ∈ Hamc(B2×B2, ω̄0) and any 1
2 < δ ≤ 1, 0 <

τ < 1
2 , the following inequality holds.

µτ
δ (φ) − δ−1vol(S2 × S2)−1Dµτ

Cδ
≤ d(Lδ, φ(Lδ)),

where Dµτ is as above.

Proof. We take any ψ ∈ Hamc(B2×B2, ω̄0) satisfying φ(Lδ) = ψ(Lδ). From
Proposition 5.3, we obtain the following inequality.

|µτ
δ (φ) − µτ

δ (ψ)| ≤ Dµτ

δvol(S2 × S2)
.

By using Proposition 5.1 (1), we have

|µτ
δ (φ)| − Dµτ

δvol(S2 × S2)
≤ |µτ

δ (ψ)| ≤ Cδ‖ψ‖.

Therefore, by definition of the metric d, we obtain the following inequality:

|µτ
δ (φ)| − Dµτ

δvol(S2 × S2)
≤ Cδ · d(Lδ, ψ(Lδ)).



5.3. CONSTRUCTION OF Φδ : C∞
C ((0, 1)) → L(Lδ) 53

5.3 Construction of Φδ : C∞
c ((0, 1)) → L(Lδ)

5.3.1 Locations of FOOO’s superheavy tori

To construct a mapping Φδ : C∞
c ((0, 1)) → L(Lδ) in Theorem 1.2, we de-

scribe the locations of Fukaya-Oh-Ohta-Ono’s Lagrangian superheavy tori
by following Oakley-Usher’s result. Let us recall their description. In
[OU13], they constructed a symplectic toric orbifold O which is isomorphic
to F2(0) as symplectic toric orbifolds by gluing S2 × S2 \ ∆̄ to B4/{±1}.
Here ∆̄ denotes anti-diagonal of S2 × S2 and B4 is a four dimensional open
ball. The moment map π : O → R2, which has the same moment polytope
P of F2(0) in Section 5.1, is expressed on S2 × S2 \ ∆̄ by

π(v, w) =
(1

2
|v + w| + 1

2
(v + w) · e1, 1 − 1

2
|v + w|

)
∈ R2

for (v, w) ∈ S2 × S2 \ ∆̄ and e1 := (1, 0, 0). Therefore one can consider a
torus fiber L(u) ⊂ F2(0) as π−1(u) ⊂ S2 ×S2 \ ∆̄ for any interior point u in
the moment polytope.

By replacing B4/{±1} by the unit disk cotangent bundle D∗
1S

2, they
obtained a smoothing Π : Ô → O which maps the zero-section of D∗

1S
2

to the singularity of O and whose restriction to S2 × S2 \ ∆̄ is the identity
mapping. Moreover they gave an explicit symplectic morphism Ô ∼−→ S2×S2

which is the identity mapping on S2 × S2 \ ∆̄. Hence above tori π−1(u) are
invariant under the smoothing and the symplectic morphism Ô ∼−→ S2 ×S2.

Using this construction, Oakley-Usher proved that the Entov-Polterovich’s
exotic monotone torus in [EP09] is Hamiltonian isotopic to the Fukaya-Oh-
Ohta-Ono’s torus over (1/2, 1/2) (for details, see the proof of Proposition
2.1 [OU13]).

Proposition 5.5 (Oakley-Usher [OU13]). Fukaya-Oh-Ohta-Ono’s super-
heavy Lagrangian tori Tτ can be expressed as

Tτ =
{

(v, w) ∈ S2 × S2 | 1
2
|v + w| + 1

2
(v + w) · e1 = τ, 1 − 1

2
|v + w| = 1 − τ

}
,

where the parameter τ is in (0, 1/2]. In particular, the Lagrangian torus
T1/2 is Entov-Polterovich’s exotic monotone torus.

The following corollary is proved by an easily calculation.

Corollary 5.1. The image of i-th projection pri : S2 × S2 → S2 (i = 1, 2)
is

pri(Tτ ) =
{
v ∈ S2 | |v · e1| ≤

√
1 − τ2

}
, (5.3.1)



54 CHAPTER 5. PROOFS OF MAIN RESULTS

where τ is 0 < τ ≤ 1/2.

By this corollary and the definition of the conformally symplectic em-
bedding Θδ : B2 ×B2 ↪→ S2 × S2. We have the following.

Corollary 5.2. For any (2+
√

3)/4 < δ ≤ 1 there exists a sufficiently small
εδ > 0 such that∪

τ∈Iδ

Tτ ⊂ Θδ(B2 ×B2), Iδ := [1/2 − εδ, 1/2].

Remark 5.3. The condition (2+
√

3)/4 < δ ≤ 1 in Theorem 1.2 guarantees
that the image of Θδ contains a continuous subfamily of superheavy tori
Tτ ⊂ S2 × S2 as in Corollary 5.2. However, for any 1/2 < δ ≤ 1, it is likely
that there exist φδ ∈ Ham(S2 × S2) such that the image of Θδ contains
∪τ∈I′δ

φδ(Tτ ) for some open interval I ′δ ⊂ (0, 1/2]. In this case, we can show
Theorem 1.2 under the weaker assumption 1/2 < δ ≤ 1.

5.3.2 Construction of Φδ

We fix δ with (2+
√

3)/4 < δ ≤ 1 and consider the interval Iδ = [1/2−εδ, 1/2]
in Corollary 5.2. We take a segment Jδ in the moment polytope P = π(O) ⊂
R2 defined by

Jδ := {(τ, 1 − τ) | τ ∈ Int(Iδ)} ⊂ Int(P ).

We denote byB2(u0;
√

2εδ) the open disk of which center is u0 := (1/2, 1/2) ∈
Int(P ) and radius is

√
2εδ. We may take and fix a sufficiently small εδ > 0 so

that the open disk B2(u0;
√

2εδ) is contained in P and moreover the inverse
image of B2(u0;

√
2εδ) under π̃ := π ◦ Π : Ô → P is contained in the image

of Θδ : B2 ×B2 → S2 × S2.
We identify Jδ with an open interval (0, 1) and will define a map Φδ on

C∞
c (Jδ). First, we extend a function f ∈ C∞

c (Jδ) to the function fB2 on the
open disk B2(u0;

√
2εδ) which is constant along the circle centered at u0.

More explicitly, we define fB2 : B2(u0;
√

2εδ) → R by

fB2(u) := f(( |u− u0|/
√

2, 1− |u− u0|/
√

2 )), u ∈ B2(u0;
√

2εδ) ⊂ Int(P ).

We define f̃ ∈ C∞
c (B2 ×B2) for f ∈ C∞

c (Jδ) as the pull-back:

f̃ := Θ∗
δ π̃

∗fB2 . (5.3.2)

By the construction, the restriction of f̃ on Θ−1
δ (Tτ ) is constantly equal

to f(τ) for all 1/2 − εδ < τ < 1/2.
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Definition 5.1. For any (2 +
√

3)/4 < δ ≤ 1, we define Φδ : C∞
c ((0, 1)) →

L(Lδ) by the following expression:

Φδ(f) := φ1
f̃
(Lδ),

where we regard f as an element in C∞
c (Jδ).

For the proof of Theorem 1.2, we prove the next lemma.

Lemma 5.2. For any f, g ∈ C∞
c ((1/2 − εδ, 1/2)) there exists a constant

1/2 − εδ < τ ′ < 1/2 such that

|µτ ′
δ (φ1

f̃−g̃
)| = ‖f − g‖∞,

where δ is (2 +
√

3)/4 < δ ≤ 1.

Proof. For any f, g ∈ C∞
c ((1/2 − εδ, 1/2)), there exists τ ′ ∈ (1/2 − εδ, 1/2)

such that

‖f − g‖∞ = max |f(x) − g(x)| = |f(τ ′) − g(τ ′)|.

Thus µτ ′
δ (φ1

f̃−g̃
) is equal to ‖f − g‖∞ because of (5.3.2) and Proposition

5.2.

5.4 Proof of Theorem 1.1 and Theorem 1.2.

proof of Theorem 1.1. For all 1/2 < δ ≤ 1, the image of Θδ contains the
torus S1

0 ×S1
0 ⊂ (S2×S2, ω̄std). If we take a Hamiltonian H ∈ C∞

c (B2×B2)
for any h ∈ R such that H ≡ h on the torus Θ−1

δ (S1
0 × S1

0), then we have
from Proposition 5.2 and ζb(τ)

eτ -superheavyness of S1
0 × S1

0

µτ
δ (φ

1
H) = h,

where we fix any τ ∈ (0, 1
2). By applying Proposition 5.4, we obtain

h− δ−1vol(S2 × S2)−1Dµτ

Cδ
≤ d(Lδ, φ(Lδ)).

Since h is an arbitrary constant, Theorem 1.1 is proved.

Remark 5.4. To prove Theorem 1.1, it is not necessary to use a family
of quasi-morphisms on Hamc(B2 × B2, ω̄0). Indeed, since the torus S1

0 ×
S1

0 is superheavy with respect to Entov-Polterovich’s symplectic quasi-state
ζEP (see [EP03, EP06, EP09]), we can use the Calabi quasi-morphism µEP

associated to ζEP instead of Fukaya-Oh-Ohta-Ono’s Calabi quasi-morphisms
µτ .
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On the other hand, to prove Theorem 1.2, it is necessary that the image
Θδ(B2 × B2) contains a continuous subfamily of superheavy tori φδ(Tτ ) ⊂
S2 × S2 for some φδ ∈ Ham(S2 × S2) as mentioned in Remark 5.3.

In this thesis, we consider the case φδ = id. Then we need to use the
parameter δ of our Lagrangian submanifolds Lδ with (2 +

√
3)/4 < δ ≤ 1 as

in Corollary 5.2.

proof of Theorem 1.2. First, we will prove the left-hand side inequality. For
any f, g ∈ C∞

c ((1/2 − εδ, 1/2)), we have f̃ , g̃ ∈ C∞
c (B2 × B2) defined by

(5.3.2). Then we apply Proposition 5.4 to φ−1
g̃ ◦ φ1

f̃
∈ Hamc(B2 ×B2, ω̄0) to

obtain

|µτ
δ (φ

−1
g̃ ◦ φ1

f̃
)| − δ−1vol(S2 × S2)−1Dµτ

Cδ
≤ d(Lδ, φ

−1
g̃ ◦ φ1

f̃
(Lδ)), (5.4.1)

where φ−1
g̃ is the inverse of φ1

g̃. By the construction of autonomous Hamil-
tonians f̃ , g̃ in (5.3.2), we find that the Poisson bracket {f̃ , g̃}ω̄0 vanishes.
Thus we have

φ−1
g̃ ◦ φ1

f̃
= φ1

f̃−g̃
.

Therefore the inequality (5.4.1) becomes

|µτ
δ (φ

1
f̃−g̃

)| − δ−1vol(S2 × S2)−1Dµτ

Cδ
≤ d(φ1

g̃(Lδ), φ1
f̃
(Lδ)).

By Lemma 5.2, we obtain the following inequality:

‖f − g‖∞ − δ−1vol(S2 × S2)−1Dµτ ′

Cδ
≤ d(Φδ(f),Φδ(g)),

where the constant τ ′ depends on f and g. We will prove the following
lemma in Section 5.5.

Lemma 5.3. For any bulk-deformation parameter τ ∈ (0, 1/2), the defect
Dµτ of quasi-morphisms µτ satisfies

Dµτ ≤ 12.

Therefore, we obtain the left-hand side inequality by putting Dδ :=
δ−1vol(S2 × S2)−1 · supτ Dµτ .

The right-hand side inequality is proved immediately. Indeed, we can
estimate as the following:

d(Φδ(f),Φδ(g)) = d(Lδ, φ
−1
g̃ φ1

f̃
(Lδ)) ≤ ‖f̃ − g̃‖

= ‖f − g‖.



5.5. FINITENESS OF Dµτ 57

This completes the proof of Theorem 1.2.

5.5 Finiteness of Dµτ

The estimate in Lemma 5.3 can be obtained by almost the same calculation
of Proposition 21.7 in [FOOO11]. For this reason, we only sketch the outline
of the calculation and use the same notation used in [FOOO11].

proof of Lemma 5.3. From Remark 16.8 in [FOOO11], upper bounds of de-
fects Dµτ can be taken to be −12vT (eτ ), where vT is a valuation of bulk-
deformed quantum cohomology QHb(τ)(S2 × S2; Λ). The proof of Theorem
5.1 (Theorem 23.4 [FOOO11]) implies that the idempotent eτ ∈ QHb(τ)(S2×
S2; Λ) can be taken from one of four idempotents inQHb(τ)(S2×S2; Λ) which
decompose quantum cohomology as follows:

QHb(τ)(S
2 × S2; Λ) =

⊕
(ε1,ε2)=(±1,±1)

Λ · eτε1,ε2 .

Here the quantum product in QHb(τ)(S2 ×S2) respects this splitting (i.e. it
is semi-simple).

Hence, to prove Lemma 5.3, we only have to estimate the maximum
valuation of eτε1,ε2 . For this purpose, we regard S2 × S2 as the symplectic
toric manifold with the moment polytope:

P = {u = (u1, u2) ∈ R2 | li(u) ≥ 0, i = 1, . . . , 4},

where
l1 = u1, l2 = u2, l3 = −u1 + 1, l4 = −u2 + 1.

We denote by ∂iP := {li(u) = 0} each facets of P and put Di := π−1(∂iP ),
where π : S2 × S2 → P ⊂ R2 is the moment map. In the following, we fix

e0 := PD[S2 × S2], e1 := PD[D1], e2 := PD[D2], e3 := PD[D1 ∩D2]

as basis of H∗(S2 × S2; C) and denote by L(u0) the Lagrangian torus fiber
over (1/2, 1/2) ∈ P .

The element b(τ) in Theorem 5.1 is defined by

b(τ) := aPD[D1] + aPD[D2], a := T
1
2
−τ . (5.5.1)

In our case, since S2 × S2 is Fano, the potential function POb(τ) is deter-
mined in terms of the moment polytope data. Hence we obtain the following
expression as in the proof of Theorem 23.4 [FOOO11]
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POb(τ) = eay1 + e−ay2 + y−1
1 T + y−1

2 T,

where y1, . . . , y4 are formal variables and ea :=
∑∞

n=0 a
n/n! ∈ Λ0 (see Section

3 in [FOOO11b] and Section 20.4 in [FOOO11] for the definition of potential
functions for toric fibers).　

By Proposition 1.2.16 in [FOOO10], the Jacobian ring Jac(POb(τ); Λ)
of the potential function POb(τ), which is defined as a certain quotient
ring of the Laurent polynomial Λ[y1, . . . , y4, y

−1
1 , . . . , y−1

4 ] for our case, is
decomposed as follows:

Jac(POb(τ); Λ) =
⊕

(ε1,ε2)=(±1,±1)

Λ · 1τ
ε1,ε2 ,

where 1τ
ε1,ε2 is the unit on each component. More explicitly, we have

1τ
ε1,ε2 =

1
4
[1 + ε1e

a
2 y1T

− 1
2 + ε2e−

a
2 y2T

−1/2 + ε1ε2y1y2T
−1].

We denote by eτε1,ε2 the idempotent of QHb(τ)(S2 × S2; Λ) which corre-
sponds to 1τ

ε1,ε2 under the Kodaira-Spencer map:

ksb(τ) : QHb(τ)(S
2 × S2; Λ) → Jac(POb(τ); Λ),

which is a ring isomorphism (see Theorem 4.8). The same calculation as in
Remark 1.3.1 [FOOO10] shows that the Kodaira-Spencer map ksb(τ) maps
the basis of QHb(τ)(S2 × S2; Λ) to the following:

ksb(τ)(e0) = [1], ksb(τ)(e1) = [eay1], ksb(τ)(e2) = [e−ay2], ksb(τ)(e3) = [qy1y2].

Here q ∈ Q is defined as follows (see Definition 6.7 in [FOOO11b]). Let
β1 + β2 be the element of H2(S2 × S2, L(u0); Z) satisfies

(β1 + β2) ∩Di = 1 (i = 1, 2)

with Maslov index µ(β1 + β2) = 4 and

q := ev0∗[Mmain
1;1 (L(u0), β1 + β2; e3)] ∩ L(u0).

The classification theorem of holomorphic disks in [CO06] implies q = ±1
immediately.

By comparing eτε1,ε2 with 1τ
ε1,ε2 , we can obtain for (ε1, ε2) = (±1,±1),

eτε1,ε2 =
1
4
(
e0 + ε1e−

a
2T− 1

2 · e1 + ε2e
a
2T− 1

2 · e2 + ε1ε2q
−1T−1 · e3

)
.

Since a = T
1
2
−τ and 0 < τ < 1/2, we obtain vT (eτε1,ε2) = −1. This

implies Lemma 5.3.
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[Mi02] D. Milinković. “Action spectrum and Hofer’s distance between La-
grangian submanifolds.” Diff. Geom. and App.17 (2002): 69-81.

[Oh97] Y. G. Oh. “Symplectic topology as the geometry of action functional.
I.” J. Diff. Geom. 46.3 (1997): 499-577.

[Oh05] Y. G. Oh. “Construction of spectral invariants of Hamiltonian paths
on closed symplectic manifolds.” The breadth of symplectic and Poisson
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