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Abstract

We present explicit hyperkähler metrics induced from well-separated SU(2) monopole

walls which are equivalent to monopoles on T 2 × R. A hyperkähler manifold is a 4k-

dimensional Riemannian manifold equipped with three good-natured complex structures

which are defined in the same manner as pure imaginary quaternion bases. In particular,

the metric on a hyperkähler manifold corresponds to a vacuum solution of the self-dual

Einstein equations in four-dimensional Euclidean space that is a so-called gravitational

instanton. The monopole moduli spaces are hyperkähler manifolds. According to Man-

ton’s observation, the equations of geodesic motions on the moduli spaces correspond to

the equations of motions induced from the Lagrangian of slowly moving monopoles which

start to move with small velocity. Actually, some hyperkähler metrics have been explic-

itly obtained by calculating the interaction of well-separated monopoles. The metrics are

called the Gibbons-Manton metrics. Although the Lagrangian for periodic monopoles

diverge in the calculation, the relative Lagrangian can be defined by making the vacuum

expectation value of the Higgs field diverge at the expense of the center-of-mass La-

grangian. According to the above methods, we explicitly derive hyperkähler metrics with

doubly-periodicity by assuming the asymptotic fields of well-separated monopole-walls

and calcurating their interaction. Our metrics are of the ALH type. These are defined

on a T 3 fibration over R. The metrics have the modular invariance with respect to the

complex structure of the complex torus T 2. We also find a local isometric transformation

for the metrics. Moreover, we derive metrics from monopole walls with Dirac-type singu-

larities following methods for periodic monopoles. We specify the maximum number of

the singularities for our metrics by using spectral analysis which was used for calculating
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the boundary conditions and the dimension of the moduli space of such monopole walls.

The number is indeed equal to the maximal number of the matter hypermultiplets in

the fundamental representation in the corresponding super Yang-Mills theory with eight

super charges. In addition to these results, we review fundamental topics such as SU(2)

monopoles and the Gibbons-Manton metrics in non-periodic case, monopole walls and

spectral analysis.
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Chapter 1

Introduction

In differential geometry, a hyperkähler manifold is a 4k-dimensional Riemannian mani-

fold with three good-natured complex structures which are defined in the same manner as

quaternions. Hyperkähler manifolds can also be defined as 4k-dimensional Riemannian

manifolds whose holonomy group SO(4k) is reduced to the compact symplectic group

Sp(k). Hyperkähler manifolds have played important roles in the study of supersym-

metric quantum field theories and string theories, especially, in the context of the string

compactifications, duality tests and so on.

The explicit metric on a compact hyperkähler manifold is not known except trivial

examples. On the other hand, explicit forms of the non-compact hyperkähler metric have

been derived in several ways. Among them the most systematic one is the hyperkähler

quotient construction [1] (see also [2]). In four-dimensions, the hyperkähler metrics satisfy

the self-dual Einstein equations and arise as the gravitational instanton solutions (see e.g.

[3]). These can be classified into some categories: the ALE, ALF, ALG and ALH spaces

[4] according to their asymptotic volume growth.

In the context of three-dimensional gauge theories, hyperkähler metrics are obtained

by considering well-separated monopoles, which is due to Manton’s observation [5] that

the dynamics of k well-separated BPS monopoles can be approximated as a geodesic

motion on the asymptotic moduli space of the BPS k-monopole if the initial velocities of

each monopole are substantially small.
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Table 1.1: The correspondence of the periodicity of monopole, super Yang-Mills theory

and the asymptotic behavior of hyperkähler metric (four-dimensional topology).

Periodicity of monopole Super Yang-Mills theory Asymptotic behavior

R3 (non-periodic) N = 4 SYM on R3 ALF : S1 fibration on R3

S1 × R2 (periodic) N = 2 SYM on R3 × S1 ALG : T 2 fibration on C

T 2 × R (doubly-periodic) N = 1 SYM on R3 × T 2 ALH : T 3 fibration on R

For a non-periodic BPS k-monopole the moduli space can be written as Mk = R3 ×

(S1 × M̃0
k)/Zk, where the simply-connected part is denoted by M̃0

k, and the degrees

of R3 and S1 correspond to the center of mass and the gauge degree of global U(1),

respectively. The dimensions of the k-monopole moduli Mk are equal to 4k. The moduli

space Mk can be identified with the moduli space of a vacuum on the Coulomb branch

of the three dimensional SU(k) super Yang-Mills theory with eight supercharges [6]. The

relative moduli space of the two-monopole M̃0
2 is known as the Atiyah-Hitchin manifold

[7] which is the ALF space with S1 fibration over R3. In the case of well-separated BPS

monopoles, each monopole carries three moduli of the position and a degree of the U(1)

phase modulus. The latter degree corresponds to the electric charge and hence we should

include the electrical degree of the dyon. The effective dynamics of the k-dyon system can

be described by a sigma model Lagrangian whose target space is the monopole moduli

space. Hence the asymptotic metric of the moduli space of the BPS k-monopoles can be

obtained by calculating the Lagrangian of interactions of k well-separated BPS monopoles

(dyons). The metric is known as the Gibbons-Manton metric [8].

For a periodic BPS k-monopole on R2 × S1, which is called the monopole chain

[9, 10, 11], the moduli space is identified with the moduli space of a vacuum on the

Coulomb branch of the four dimensional SU(k) super Yang-Mills theory compactified on

S1 with eight supercharges. The relative moduli space of the two-monopole M̃0
2 is the

ALG space [12]. Since the periodicity is achieved by a chain of monopoles, the total energy

would diverge due to the infinite number of monopoles. However, the Nahm transform

can be well-defined and the asymptotic metric of the moduli space of monopole chains is
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obtained in the same manner as the non-periodic case [13]. The geodesic motion is also

discussed [13, 14, 15, 16].

For a doubly-periodic BPS k-monopole on T 2 × R, which is called the monopole

sheet or wall [11, 17] (see also [18]), the moduli space is identified with the moduli

space of a vacuum on the Coulomb branch of the five dimensional SU(k) super Yang-

Mills theory compactified on T 2 with eight supercharges [19]. One of the examples of

the correspondence between the monopole moduli and the vacuum moduli of the five

dimensional super Yang-Mills theory is that the number of the Dirac-type singularity

corresponds to that of the matter flavor. Asymptotically the relative moduli space of the

monopole walls is expected to be the ALH space with T 3k−3 fibration over Rk−1. As far

as we know, there are no examples of ALH hyperkähler metrics in the literature except

for the classical metric derived from the effective action of the N = 1 super Yang-Mills

theory on R3 × T 2 by Haghighat and Vandoren [19]. Furthermore, the doubly-periodic

monopoles have rich properties on the D-brane interpretation, string duality, and M-

theoretic interpretation via the various S,T-duality transformations [20]. Therefore the

analysis of the moduli metric would be applied to various situation of the corresponding

super Yang-Mills theory, string theory and M-theory.

In this thesis, we derive asymptotic hyperkähler metrics on the moduli space of the

monopole walls by calculating the effective sigma model Lagrangian of k well-separated

BPS walls following Manton’s observation [5]. In our calculation, the BPS wall is assumed

to be a doubly-periodic superposition of BPS monopoles. In the non-periodic direction,

the walls are assumed to be well-separated to each other compared with the thickness

of the monopole wall so that the fields can be well-approximated by superpositions of

linearized monopole walls. The metric computed in this thesis is for the case of two

identical non-abelian monopole walls, including the Dirac singularities as well. We prove

that the induced metrics actually have the modular invariance with respect to a complex

structure τ of the complex torus T 2 in addition to the expected periodicity. We also

present the metrics of monopole walls with Dirac-type singularities. We see that when

we consider k monopole walls the maximum number of singularities is 2k by a simple

3
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analysis using the Newton polygon. This is consistent with the fact that in the SU(k)

super Yang-Mills theory the number of the matter flavor has the upper bound 2k. This

bound is due to the requirement that the super Yang-Mills theory is either conformal or

asymptotically free. When the bound is saturated the theory has conformal invariance.

The present metrics would be the most explicit ones of the ALH type derived from

the solutions of monopole walls including the case with the Dirac-type singularities. The

symmetry and other properties are consistent with the corresponding super Yang-Mills

theory [19].

The results are already published in [21].

• M. Hamanaka, H. Kanno and D. Muranaka,

Hyper-Kähler metrics from monopole walls,

Phys. Rev. D 89, 065033 (2014). [arXiv:1311.7143 [hep-th]].

We discuss our main results in the last section of Chapter 4. The remaining sections of

the chapter and other chapters are reviews for complete understanding of our results. We

refer to some famous books, for example [22], [23] and [7]. Some graphs in this thesis are

produced by [24].

This thesis is organized as follows.

In Chapter 2, we review BPS monopoles and the moduli spaces. Bogomolny-Prasad-

Sommerfield (BPS) monopoles are topological solitons of SU(2) Yang-Mills-Higgs theory

in four-dimensional Minkowski space-time. These lead to non-compact hyperkähler man-

ifolds as the moduli space. Contrary to Dirac monopoles in U(1) gauge theory, SU(2)

monopoles are smooth. However, the quantization condition arises from topological char-

acters of the theory. Moreover, each of them can be regarded as N point-like particles if

the monopole belongs to a topological sector of topological charge N , at least the cores

are well separated. In addition, it is known that the moduli space of SU(2) monopoles

has finite dimension 4N as long as the Higgs field is massless, which is called the BPS

limit. We introduce the SU(2) Yang-Mills-Higgs theory in Section 2.1 and then give an

example of the monopoles in Section 2.2. Section 2.3 is devoted to explaining the BPS

limit and the moduli space of the monopoles.

4
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In Chapter 3, we review low energy dynamics of the monopoles and metrics on the

moduli space of BPS monopoles. If the fields are time-dependent, or if the time com-

ponent of the gauge field does not vanish, then an SU(2) monopole acquires an electric

charge and kinetic energy. Such monopoles are called dyons. The first example of SU(2)

dyons is the Julia-Zee dyon [31] obtained soon after the ’t Hooft-Polyakov monopole [26].

The dyon is static and the time component of the gauge field is non-zero. The dynamics

of BPS monopoles are treated carefully with an additional background gauge condition

which constrains deformations of monopoles to be time-dependent gauge transformations

and reveals phase moduli of BPS monopoles. The metrics of the moduli spaces of BPS

monopoles are given by the kinetic term of the Lagrangian of the theory, and the mo-

tion of slowly moving monopoles or dyons which start to move with infinitesimal initial

velocities corresponds to the geodesic motion on them. The metrics are hyperkähler as

mentioned above. The asymptotic metric of the moduli space is called the Gibbons-

Manton metric. We firstly explain the dyons and the dynamics of monopoles in Section

3.1 and 3.2, respectively, and then we review the Gibbons-Manton metric in Section 3.3.
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Chapter 2

BPS Monopoles

In this chapter we mainly review static BPS monopoles. In the first section we firstly

introduce SU(2) Yang-Mills-Higgs theory on Minkowski space-time and then explain how

the smooth monopoles arise from the theory. The second section is devoted to explaining

the ’t Hooft-Polyakov monopole which is a typical solution of the field equations with

spherical symmetry. In the third section we explain the BPS limit and then define the

monopole moduli spaces. The dynamics of monopoles and the moduli space metrics are

discussed in the next chapter.

2.1 SU(2) Yang-Mills-Higgs Theory

Firstly, we shall introduce SU(2) Yang-Mills-Higgs theory on four-dimensional Minkowski

space-time. The theory is described by pairs of triplet scalar field ϕa (a = 1, 2, 3) and

triplet vector field Aa
µ (µ = 0, 1, 2, 3) which are called the Higgs field and the gauge field

respectively. A local gauge transformation in the theory is defined by

ϕata =: ϕ : 7→ gϕg−1 ,

Aa
µta =: Aµ : 7→ gAµg

−1 + g∂µg
−1 , (2.1)

where g(x) ∈ SU(2) is a function defined on Minkowski space-time; the linear combina-

tions ϕ and Aµ are su(2)-valued functions; {ta} is a basis of the algebra su(2) with the nor-

malization conditions Tr(tatb) = −2δab and the commutation relations [ta, tb] = −2εabctc.

7
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Here we use the adjoint representation of SU(2); in particular, we take ta := iσa, where σa

are the Pauli matrices. The covariant derivative of the Higgs field and the field strength

are defined by, respectively,

Dµϕ
a := ∂µϕ

a − 2εabcA
b
µϕ

c , (2.2)

F a
µν := ∂µA

a
ν − ∂νA

a
µ − 2εabcA

b
µA

c
ν . (2.3)

Note that under the gauge transformations we have Dµϕ 7→ g(Dµϕ)g
−1 and Fµν 7→

gFµνg
−1. Here the above definitions imply an identity:

[Dµ, Dν ]ϕ
a = −2εabcF

b
µνϕ

c . (2.4)

Namely, in terms of differential geometry, the field strength means curvature, and the

gauge field corresponds to a connection. The identity is also denoted by [Dµ, Dν ] = Fµν .

From Jacobi’s identity and properties of the anti-symmetric tensors, one finds

εµνρσDνFρσ =
1

3
εµνρσ

(
[Dν , [Dρ, Dσ]] + [Dρ, [Dσ, Dν ]] + [Dσ, [Dν , Dρ]]

)
= 0 ,

that is, the following Bianchi identity with respect to the dual field strength F̃ aµν :=

1
2
εµνρσF a

ρσ holds in general:

DνF̃
aµν =

1

2
εµνρσDνF

a
ρσ = 0 . (2.5)

For convenience, we define the following SU(2) electric and magnetic fields, respectively,

Ea
i := F a

i0 , Ba
i := F̃ a

i0 =
1

2
εijkF

a
jk . (2.6)

Now we introduce the Lorentz invariant Lagrangian density:

L := −1

4
F a
µνF

aµν +
1

2
Dµϕ

aDµϕa − λ

4
(1− ϕaϕa)2 , (2.7)

where the positive constant λ is a parameter of the model. Note that all the variables in

the model are made to be dimensionless. Note also that the model has gauge invariance

with respect to SU(2) symmetry. By definition, the Lagrangian

L :=

∫
d3xL , (2.8)

8
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where the integration is over R3, can be divided as L = T − V ; the kinetic term is

T :=
1

2

∫
d3x (Ea

i E
a
i +D0ϕ

aD0ϕ
a) , (2.9)

and the potential term is

V :=

∫
d3x

{
1

4
F a
ijF

a
ij +

1

2
Diϕ

aDiϕ
a +

λ

4
(1− ϕaϕa)2

}
. (2.10)

This implies that the field configurations of the classical vacuum, which minimizes V ,

should satisfy F a
ij = 0, Diϕ

a = 0 and ϕaϕa = 1, where the non-zero vacuum expectation

value spontaneously breaks the symmetry SU(2) to U(1). Because of F a
ij = 0, the gauge

field is a pure gauge Aa
i ta = g∂ig

−1, where g(x) is an SU(2)-valued function on R3. By a

gauge transformation, Aa
i can be made vanishing, and then Diϕ

a = ∂iϕ
a = 0. Moreover

the Higgs field can be fixed to be the standard form ϕa = (0, 0, 1) by a certain global

gauge transformation. In this situation, g(x) is constrained to be gt3g
−1 = t3, which

implies that g(x) is generated by t3 and has only U(1) symmetry.

The field equations turn out to be the following coupled system of the second order

non-linear differential equations:

DµD
µϕa = λϕa(1− ϕbϕb) , (2.11)

DνF
aµν = 2εabcD

µϕbϕc . (2.12)

In order to make the energy, E := T +V , finite, the solutions must satisfy the conditions

of the vacuum at infinity. We further restrict the Higgs field to be ϕa(0, 0,+∞) = (0, 0, 1)

so that the framing is fixed to be g(0, 0,+∞) = 1. The spontaneous breaking of symmetry

can again be seen from the equations. Let ϕ0, W
1
µ , W

2
µ and aµ be infinitesimal fields, and

put ϕa = (0, 0, 1 + ϕ0) and A
a
µ = (W 1

µ ,W
2
µ , aµ). Then, by substituting them into (2.11)

and (2.12), one obtains the following wave equations:

∂µ∂
µϕ0 = −2λϕ0 ,

∂µ(∂
µW 1ν − ∂νW 1µ) = −4W 1ν ,

∂µ(∂
µW 2ν − ∂νW 2µ) = −4W 2ν ,

∂µ(∂
µaν − ∂νaµ) = 0 .

9
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Namely, the Higgs field obtains mass
√
2λ, two of the triplet gauge fields turn out to be

weak bosons with mass 2, and the remainder falls into a massless photon.

The possibility of the monopole solutions in the theory can be checked as follows [25].

Let us consider a normalized Higgs field ϕ̂a := ϕa/|ϕa| defined on a certain region in R3

and supposed to be

Dµϕ̂
a = 0 . (2.13)

Note that if the Higgs field is represented as ϕa =: hϕ̂a, where h is a positive function,

the covariant derivative of the Higgs field can be written as Dµϕ
a = (∂µh)ϕ̂

a, and one

of the field equations is simplified to ∂µ∂
µh = λh(1 − h2) with the boundary conditions

h2 = 1 and ∂µh = 0; the situation always occurs at infinity. Then the gauge field can be

obtained from (2.13) as, with an arbitrary smooth function aµ = Aa
µϕ̂

a,

Aa
µ = aµϕ̂

a +
1

2
εabcϕ̂

b∂µϕ̂
c , (2.14)

and thus the projection of the field strength toward ϕ̂a can be written as

fµν := F a
µνϕ̂

a = ∂µaν − ∂νaµ +
1

2
εabcϕ̂

a∂µϕ̂
b∂νϕ̂

c . (2.15)

This corresponds to the electromagnetic field tensor in abelian gauge theory because it

satisfies parts of U(1) Maxwell’s equations with no source, ∂νf
µν = 0. Therefore the

linearized magnetic field can be defined by bi :=
1
2
εijkfjk, where the surface integral at

infinity is identical to the magnetic charge g, i.e.,

g :=

∫
S2
∞

d2σi bi =
1

4

∫
S2
∞

d2σi εijkεabcϕ̂
a∂jϕ̂

b∂kϕ̂
c , (2.16)

where the integrations are over the 2-sphere at infinity, S2
∞, with the area element d2σi.

Here the region can be replaced with the target space S2 of ϕ̂a, and one finds

g = 2πN , (2.17)

where N ∈ Z is the winding number of ϕ̂a. In other words, continuous maps from S2
∞ to

S2 belong to the homotopy group π(S2) = Z, and each of them can be classified with the

integer N . Note that such maps can not be smoothly deformed to the other topological

10
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sectors without any singular transformation; the topological charge N is also called the

monopole number. Some configurations of the Higgs field are shown in Figure 2.1. We

can see from the configurations that the most fundamental but non-trivial solution is the

case, N = 1, which obviously has spherical symmetry.

N = 0 N = 1 N = 2

Figure 2.1: Conceptual diagrams of the Higgs field configurations (N = 0, 1, 2). In each

case, the direction in the internal space of the triplet Higgs field rotates N times when

we go around once on the 2-sphere at infinity. Note that all the arrows on the North Pole

are directed to the top due to the boundary condition, ϕa(0, 0,+∞) = (0, 0, 1).

2.2 The ’t Hooft-Polyakov Monopole

The solution of the field equations in the case, N = 1, can be obtained as follows. Since

the configuration of the Higgs field would be spherically symmetric, the asymptotic form

of the Higgs field at infinity can be written as follows:

ϕa =
xa

r
, (2.18)

where r := (xixi)1/2. Then, from the boundary conditions, one finds

ai = Aa
i ϕ

a = −1

2
εija

xjxa

r3
(2.19)

and

bi = Ba
i ϕ

a =
xi

2r3
=

g

4πr2
xi

r
. (2.20)

11
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The forms imply that the SU(2) monopole may look like a Dirac monopole sitting at the

origin when we stay far from the origin; nevertheless the core is smooth. (On the analogy

with the Dirac monopoles in U(1) gauge theory, the explicit form of the Higgs field might

have a zero at the origin because linearized Bianchi’s identity 1
2
εµναβ∂νfαβ = 0, which is

described by ϕ̂a := ϕa/|ϕa| anywhere, would be ill-defined at the origin.)

Based on the asymptotic forms, one may suppose the following ansatz [26] [27]:

ϕa = h(r)
xa

r
, Aa

i = −1

2
εija(1− k(r))

xj

r2
(2.21)

and Aa
0 = 0, where h(r) and k(r) are unknown functions which should satisfy h(0) = 0,

k(0) = 1, h(∞) = 1, and k(∞) = 0. Note that these fields are static, ∂0ϕ
a = ∂0A

a
i = 0,

and the time component of the gauge field is zero, Aa
0 = 0. Accordingly, D0ϕ

a = Ea
i = 0,

and thereby the kinetic energy would vanish at all. In this situation, the field equations

(2.11) and (2.12) are simplified to, respectively,

DiDiϕ
a = −λϕa(1− ϕbϕb) , (2.22)

εijkDjB
a
k = −2εabcDiϕ

bϕc , (2.23)

and the identity (2.4) and the Bianchi identity (2.5) are equivarent to, respectively,

εijkDjDkϕ
a = −2εabcB

b
iϕ

c , (2.24)

DiB
a
i = 0 . (2.25)

Substituting the ansatz into (2.22) and (2.23) and calculating a little, one obtains the

following coupled pair of the second order non-linear differential equations:

d2h

dr2
+

2

r

dh

dr
=

2

r2
hk2 − λ(1− h2)h , (2.26)

d2k

dr2
=

1

r2
(k2 − 1)k + 4h2k . (2.27)

This system indeed has a solution for each λ, however, it can not be in general obtained

without numerical computation; the analytic solution can be found only in the case,

λ = 0. The one-parameter family of solutions is called the ’t Hooft-Polyakov monopole.

We leave the detailed analysis of the numerical solutions for other books (see e.g., [22])

and only review the case, λ = 0, in the next section.

12



February 12, 2015 Ph.D. Thesis, Daichi Muranaka

2.3 BPS Monopoles and the Moduli Space

By comparing (2.23) and (2.24) in the previous section, one finds that one of the static

field equations is automatically satisfied if the following condition holds:

Ba
i = Diϕ

a . (2.28)

In this case, from the Bianchi identity (2.25), the remaining static field equation (2.22)

requires −λϕa(1−ϕbϕb) = 0, that is, λ = 0. The condition (2.28) is called the Bogomolny

equation, and the case, λ = 0, is called the Bogomolny-Prasad-Sommerfield (BPS) limit

[28]. The Bogomolny equation can also be obtained from the energy. The energy of the

static monopoles in the case, λ = 0, can be written as

E =
1

2

∫
d3x (Ba

i B
a
i +Diϕ

aDiϕ
a)

=
1

2

∫
d3x (Ba

i −Diϕ
a)2 +

∫
d3xBa

iDiϕ
a , (2.29)

where the second term of the right-hand side of the second equality can be written in

terms of the magnetic charge g, i.e., for Stokes’ theorem and the Bianchi identity,

g =

∫
S2
∞

d2σiB
a
i ϕ

a =

∫
d3xDi(B

a
i ϕ

a) =

∫
d3xBa

iDiϕ
a . (2.30)

Thus, one finds the following Bogomolny energy bound:

E ≥ 2πN , (2.31)

and the Bogomolny equation (2.28) turns out to be an energy minimizing condition for

monopoles. (The necessity is not guaranteed.) Note that, in the BPS limit, the mass of

the Higgs field vanishes at all, and the norm of the Higgs field at infinity should be tend to

a harmonic function, as we have seen in the first section (h = |ϕa|); not only the energy,

E = 2πN , but also the energy density E(x) is determined by purely the configuration of

the Higgs field:

E(x) = 1

2
∇2|ϕ|2 , (2.32)

where |ϕ|2 := −1
2
Tr(ϕ2) = ϕaϕa is the matrix norm of the Higgs field.
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In the BPS limit, the pair of the field equations (2.26) and (2.27) with regard to the

’t Hooft-Polyakov ansatz is reduced to the following first order differential equations:

dh

dr
=

1

2r2
(1− k2) ,

dk

dr
= −2hk . (2.33)

This coupled system has the following Prasad-Sommerfield solution [29]:

h(r) = coth 2r − 1

2r
, k(r) =

2r

sinh 2r
. (2.34)

It may be useful to see the properties of the solution. Firstly, from the Taylor expansion

of hyperbolic functions, the solution indeed satisfies the boundary conditions at r → 0.

Secondary, the asymptotic form of the norm of the Higgs field at infinity is

|ϕ| = h(r) = 1− 1

2r
+O(e−4r) , (2.35)

which comes from

cothx =
1 + e−2x

1− e−2x
,

1 + x

1− x
= 1 + 2x+ 2x2 + 2x3 + · · · .

Thirdly, the energy density can be written in terms of h(r) and k(r) as follows:

E(r) = 1

4r4
(1− k2)2 +

2

r2
h2k2 , (2.36)

which indeed has no singularities and is localized at the origin (Figure 2.2). In addition,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
r

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Ε

Figure 2.2: The energy density of the Prasad-Sommerfield monopole.
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the asymptotic expansion of E(r) near the origin is

E(r) = 4

3
− 64

27
r2 +

64

25
r4 +O(r6) , (2.37)

and the energy can also be calculated as follows:

E = 4π

∫ ∞

0

dr r2E(r) = 2πh(1− k2)
∣∣∣∞
0

= 2π . (2.38)

The Prasad-Sommerfield solution is the most basic example of the BPS monopoles, and

we use some of the properties in the following chapters.

The moduli space of monopoles has remarkable properties. The N -monopole moduli

space is defined as follows. Let AN be the space of solutions of the Bogomolny equation

(2.28). Here each element is a pair (Ai, ϕ) of the spatial components of the gauge field

and the Higgs field which are smooth, satisfy the boundary conditions and are specified

with the topological charge N . Let G also be the space of all non-singular local gauge

transformations defined as (2.1). Then the N -monopole moduli space MN is defined by

the quotient:

MN := AN/G . (2.39)

MN is a connected and complete Riemannian manifold of dimension 4N [30] (the framing

parameter is added). In addition, all the moduli space metrics are hyperkähler. Namely,

the Bogomolny equation (2.28) can be written in terms of hyperkähler moment maps [1]:

µi(Q) :=
1

2
εijk[Qj, Qk]− [Q0, Qi] , (2.40)

where i, j, k = 1, 2, 3 and Q = Q0 + IQ1 + JQ2 + KQ3 is a quaternionic skew-adjoint

operator. For D = −ϕ+ ID1+JD2+KD3, the moment map is a map from the infinite-

dimensional quaternionic vector space to the space g∗ ⊗R3, where g∗ is the dual space of

su(2)-valued functions on R3; the Bogomolny equation (2.28) is equivarent to µi(D) = 0

for all i = 1, 2, 3 due to Fij = [Di, Dj] and Bi =
1
2
εijkFjk. Note that the moment map is

preserved for the action of G because the Bogomolny equation is gauge invariant. Now

the moduli space can be written as the following hyperkähler quotient:

MN =
3∩

i=1

µ−1
i (0)/G . (2.41)
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Although the hyperkähler moment maps are infinite-dimensional, the quotient is a finite-

dimensional hyperkähler manifold [32] [7]. The moduli space has the following metric

decomposition:

MN = R3 × S1 × M̃0
N

ZN

, (2.42)

where R3 × S1 is flat and decouples from M̃0
N , and M̃0

N is simply connected and admits

an SO(3) isometry group.

The moduli space metrics are well-studied. Especially, the explicit metric for N = 2,

which can be obtained with some properties of the hyperkähler metrics, is known as the

Atiyah-Hitchin metric [7] (see also [22]). On the other hand, the asymptotic metric of

the moduli space for general N , which can be derived by considering the force between

slowly moving BPS monopoles, is called the Gibbons-Manton metric [5] [8]. We review

the dynamics of monopoles and show some moduli space metrics in the next chapter.

16



Chapter 3

Dynamics of BPS Monopoles

In this chapter we review low energy dynamics of SU(2) monopoles and the metrics of

the monopole moduli spaces. We also explain SU(2) dyons which are related to moving

monopoles under a time-dependent gauge transformation. In the first section we review

the Julia-Zee dyon and the BPS limit of static dyons. The second section is devoted to

explaining the monopole dynamics; in particular Manton’s observation which indicates

how the metrics are obtained from monopole solutions. In the third section we review

the Gibbons-Manton metric which is the asymptotic metric of the moduli space and can

explicitly be obtained by using formulation of abelian electromagnetism. The derivation

in the last section can directly be applied to our calculation in the next chapter.

3.1 The Julia-Zee Dyon

From now on, we suppose that the fields are time-dependent, or the time component of

the gauge field is non-vanishing (i.e., either side of (3.7) remains). Then a monopole in

general acquires an electric charge and kinetic energy; the electric charge is defined in

the same way as the magnetic charge; the non-zero kinetic energy means that the right-

hand side of (2.9) does not vanish. Such monopoles are generally called dyons. More

precisely, a dyon is a particle or soliton with both magnetic and electric charges, which

is not strictly static, although it is stationary in certain gauge. In this situation, it may

17
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be useful to write down the equations and the identities in terms of the SU(2) electric

and magnetic fields (2.6). The pair of the Bianchi identity (2.5) and a part of the field

equation (2.12) is equivarent to the following SU(2) Maxwell equations:

DiB
a
i = 0 , (3.1)

D0B
a
i + εijkDjE

a
k = 0 , (3.2)

DiE
a
i = 2εabcD0ϕ

bϕc , (3.3)

D0E
a
i − εijkDjB

a
k = 2εabcDiϕ

bϕc , (3.4)

and the identity (2.4) can also be rewritten as

D0Diϕ
a −DiD0ϕ

a = 2εabcE
b
iϕ

c , (3.5)

−εijkDjDkϕ
a = 2εabcB

b
iϕ

c . (3.6)

In particular, the Gauss law (3.3) can be expanded as, in terms of su(2) matrices,

−DiDiA0 − [ϕ, [ϕ,A0]] = DiȦi + [ϕ, ϕ̇] , (3.7)

where the dots denote the time derivative. Note that we can always eliminate the time

component of the gauge field by the Gauss law at the expense of time dependence.

The ’t Hooft-Polyakov ansatz (2.21), which leads static, spherically symmetric solu-

tions, can be extended to the following Julia-Zee ansatz [31]:

ϕa = h(r)
xa

r
, Aa

0 = j(r)
xa

r
, Aa

i = −1

2
εija(1− k(r))

xj

r2
, (3.8)

where h(r), j(r), and k(r) are unknown functions. Note that Aa
0 has the same direction

as ϕa in the internal space, which is called the Julia-Zee correspondence. In this case,

the electric field is modified as Ea
i = DiA

a
0, whereas D0ϕ

a = 0 again holds due to

∂0ϕ
a = εabcA

b
0ϕ

c = 0. Hence the solution would acquire the electric charge and non-zero

kinetic energy; nevertheless the fields are static. The solution is called the Julia-Zee dyon.

Since D0ϕ
a = 0, the field equations (2.11) and (2.12) are reduced to as follows:

DiDiϕ
a = −λϕa(1− ϕbϕb) , (3.9)

DiE
a
i = 0 , (3.10)
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D0E
a
i − εijkDjB

a
k = 2εabcDiϕ

bϕc , (3.11)

which can further be simplified by the ansatz to the following equations:

d2h

dr2
+

2

r

dh

dr
=

2

r2
hk2 − λ(1− h2)h , (3.12)

d2j

dr2
+

2

r

dj

dr
=

2

r2
jk2 , (3.13)

d2k

dr2
=

1

r2
(k2 − 1)k + 4(h2 − j2)k . (3.14)

Although the coupled system can again be solved numerically, the solutions would have

an ambiguity; the boundary conditions of j(r) should be j(0) = 0 and j(∞) = C, where

C is an arbitrary constant. This implies that the electric charge and the kinetic energy

are not quantized in classical theory. Note also that the time component of the gauge

field vanishes if we take the following time-dependent gauge:

g(t,x) = exp(tA0(x)) . (3.15)

Then, Aa
0 becomes zero, the Higgs field does not change due to the Julia-Zee correspon-

dence, and the spatial components of the gauge field would be still spherically symmetric

but have complicated time-dependence. Furthermore, the gauge transformation changes

the framing; the framing at t becomes

g(t, 0, 0,+∞) = exp(tCt3) = diag(eitC , e−itC) , (3.16)

which rotates with the period 2π/C.

The BPS limit in the privious chapter again exists for dyons. We recall that the BPS

limit is a condition where the field equations is automatically satisfied as the identities.

In the case of dyons, such conditions can be obtained from both sides of (3.4) × C2 −

(3.2)×C1 = (3.6), where the constants C1 and C2 must be C2
1 +C

2
2 = 1; we set (C1, C2) =

(sinα, cosα) with an arbitrary real constant α. Thus, one obtains the following pair of

the Bogomolny equations for dyons:

Ea
i = Diϕ

a sinα , (3.17)

Ba
i = Diϕ

a cosα . (3.18)
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In this situation, for a sequential equation, Ea
i = Ba

i tanα, and the Bianchi identity (3.1),

the Gauss law (3.3) requires 2εabcD0ϕ
bϕc = 0, however it is always satisfied if the fields

are static and the Julia-Zee correspondence holds; the remaining field equation (2.11)

again requests λ = 0. The Bogomolny equations can also be derived from the energy of

dyons. If D0ϕ
a = 0 and λ = 0, then the energy can be written as

E =
1

2

∫
d3x (Ea

i E
a
i +Ba

i B
a
i +Diϕ

aDiϕ
a)

=
1

2

∫
d3x (Ea

i −Diϕ
a sinα)2 +

1

2

∫
d3x (Ba

i −Diϕ
a cosα)2

+ sinα

∫
d3xEa

iDiϕ
a + cosα

∫
d3xBa

iDiϕ
a , (3.19)

where the last two terms of the right-hand side of the second equality can be written in

terms of the SU(2) magnetic and electric charges, i.e., respectively, (2.30) and

q =

∫
S2
∞

d2σiE
a
i ϕ

a =

∫
d3xDi(E

a
i ϕ

a) =

∫
d3xEa

iDiϕ
a . (3.20)

Thus, one finds the following Bogomolny energy bound for dyons:

E ≥ q sinα + g cosα , (3.21)

and the system of the Bogomolny equations (3.17) and (3.18) turns out to be an energy

minimizing condition for dyons.

The Prasad-Sommerfield solution (2.34) can easily be extended for dyons by rescaling

each variables, and the analytic solution can be written as follows:

h(r) = coth(2r cosα)− 1

2r cosα
, (3.22)

k(r) =
2r cosα

sinh(2r cosα)
, (3.23)

j(r) = coth(2r cosα) sinα− tanα

2r
. (3.24)

Note that the electric charge is given by q = g tanα, while the magnetic charge is again

g = 2π; the energy or rest mass of the dyon is E =
√
g2 + q2, which follows from

sinα =
|q|√
g2 + q2

, cosα =
|g|√
g2 + q2

. (3.25)
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3.2 Dynamics and the Moduli Space Metrics

In order to make the time-dependent fields to be a solution of the Bogomolny equation,

we shall introduce an additional condition which would reveal the remaining moduli of

BPS monopoles. Let (Ai, ϕ) be a pair of gauge and Higgs fields which are smooth, decay

appropriately at infinity, have topological charge N and satisfy the Bogomolny equation

(2.28). Note that we do not have to consider A0 because it obeys the other fields via

the Gauss law (3.7). Then we consider a deformation (Ai + ai, ϕ+ ϕ0) with infinitesimal

fields ai and ϕ0. In order to make the deformed fields to be a solution of the Bogomolny

equation, the infinitesimal fields should satisfy the following equation:

1

2
εijk(D

A
j ak −DA

k aj) = DA
i ϕ0 + [ai, ϕ] , (3.26)

where we keep the terms up to the linear order. Here the solutions of the equation can

be written with an su(2)-valued function ω as (ai, ϕ0) = (−DA
i ω, [ω, ϕ]), in general, that

is, possible deformations must be infinitesimal gauge transformations of this type. Now

we shall require the following orthogonality condition to remove non-physical changes of

the fields: ∫
d3x

{
−Tr(aiD

A
i ω) + Tr(ϕ0[ω, ϕ])

}
= 0 . (3.27)

Here the condition is equivarent to the following background gauge condition:

DA
i ai + [ϕ, ϕ0] = 0 . (3.28)

Note that the condition has the same form as the right-hand side of the Gauss law (3.7);

in particular, if we fix the time component of the gauge field to be vanishing, then the

condition is satisfied with (ai, ϕ0) = (Ȧ, ϕ̇). Such deformations indeed exist, for example

a time-dependent gauge transformation for a static monopole with the following gauge:

g(t,x) = exp(θϕ(x)) , (3.29)

where θ is a time-dependent phase parameter, and whose change with time is supposed

to be small. Under the gauge transformation with keeping A0 = 0, the fields indeed
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satisfy Ȧi = −Di(θ̇ϕ) and ϕ̇ = [θ̇ϕ, ϕ] = 0 for an approximation g(t,x) ≃ 1 + θ̇ϕδt. In

particular, the Higgs field does not change, and thus the magnetic charge is again g = 2π.

Furthermore, from A0 = 0 and the Bogomolny equation, one finds

Ei = −Ȧi = θ̇Diϕ = θ̇Bi . (3.30)

Hence the monopole acquires the electric charge, q = gθ̇ = 2πθ̇, and the kinetic energy,

T = (g/2)θ̇2 = πθ̇2. Namely, in the BPS limit, there are not only position moduli but

also phase moduli for each constituent monopole, where the changes of the phases with

time generate electric charges and make the monopole to be a dyon. Such an argument

may be valid if the cores are well separated, and each of them can be regarded as a

dyon. Consequently, a well-separated BPS N -monopole or dyon has N − 1 relative phase

moduli and one total phase modulus, in which the total phase would be conserved, while

the relative phases might be exchanged each other through collisions.

Now we consider the metric on the moduli space MN defined in Section 2.3 (see [33],

[7] and [34]). Since MN is a hyperkähler manifold of dimension 4N , we can use local

coordinates (q1, · · · , q4N) on MN , and then a point q := {qα} (α = 1, · · · , 4N) on MN

denotes a family of gauge equivarent solutions by (Ai(x; q), ϕ(x; q)) ∈ MN , in which qα

correspond to the parameters of the solutions. Here the Lagrangian for a curve q(t) on

MN can be written as a sigma model Lagrangian,

L(q, q̇) =
1

2
gαβ(q) q̇αq̇β − U(q) , (3.31)

where gαβ(q) is a Riemannian metric on MN , and U(q) is a potential. We have seen in

the previous chapter that the energy of BPS monopoles is minimized in each topological

sector. Therefore, if the initial motion is tangent to MN , or equivarently the monopole

stays static at the initial time and starts to move with small initial velocity, then the

resulting motion remains close to MN , and the Lagrangian might be approximated by

the Lagrangian of the slowly moving monopole, in which the forms of gαβ and U is given

by the kinetic and potential terms of the Lagrangian, (2.9) and (2.10), respectively. In

particular, if we fix A0 to be A0 = 0, we have Ea
i = −Ȧa

i and D0ϕ
a = ϕ̇a, and the kinetic

term might be approximated as the inner product of a tangent vector (Ȧi, ϕ̇) up to the
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quadratic order if the fields satisfy the Bogomolny equation at initial time, and q̇α are

sufficiently smal:

gαβ q̇αq̇β ≃
∫

d3x (Ȧa
i Ȧ

a
i + ϕ̇aϕ̇a) , (3.32)

in which the potential for BPS monopoles can be written as

U(q) =

∫
d3x

(
1

4
F a
ijF

a
ij +

1

2
Diϕ

aDiϕ
a

)
. (3.33)

Although the integration over R3 of the right-hand side of (3.32) near the initial time

would be difficult in general, it can be avoided by replacing the kinetic term with the one

of N well separated BPS monopoles if the monopole can be regarded as a so-called well-

separated BPS N -monopole that is a BPS N -monopole whose moduli space coordinates

can be written as q = {xi, θi} (i = 1, · · · , N), where xi := (xi, yi, zi) are positions in R3,

and θi are phases; every |xi − xj| (i ̸= j) are sufficiently large. Namely, the Lagrangian

of a BPS N -monopole whose cores look like point particles for other N − 1 cores has

only long-range interaction as abelian electromagnetism. Consequently, the metric on

such asymptotic region of MN is given by the Lagrangian of interaction of well-separated

BPS monopoles or dyons with small velocities and phases (or electric charges).

3.3 The Gibbons-Manton Metric

As we have argued in the previous section, the metric on the asymptotic region of MN is

given by the Lagrangian of N slowly moviong dyons if the dyons are well separated and

each initial velocity is suffitiently small. Here the force between static BPS monopoles or

dyons is quite simple; for the existence of static solutions, the force would be cancelled,

so that each well separated dyon feels not only the magnetic and electric Coulomb force

but also an attractive force produced by the massless Higgs fields. The Lorentz boosted

Lagrangian would have the position and electric charge of each dyon, where the electric

charges can be replaced with the phases of dyons by using the Legendre transformation.

The effective Lagrangian is the one on the asymptotic region of a 4N -dimensional space

which might be the N -monopole moduli space.
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The force between well-separated BPS monopoles or dyons can directly be obtained

from the field equations [25]. Let us consider a monopole moving in background fields of

another monopole or anti-monopole (a monopole with opposite magnetic charge) at rest.

If the separation between them is large enough, then the background magnetic and Higgs

fields for the moving monopole can be approximated by the following magnetic Coulomb

and long-range Higgs fields,

bi ≃
1

2r2
xi
r
, |ϕ| ≃ 1− 1

2r
. (3.34)

On the other hand, if the monopole starts to move at t = 0 with a constant acceleration

a from the origin as a result of the existence of the background fields, then the fields of

the monopole at time t can be written as the following Lorentz boosted fields:

ϕa(t,x) = ϕa

(
x− 1

2
at2
)

≃ ϕa(x)− 1

2
at2 ·∇ϕa(x) , (3.35)

Aa
i (t,x) = Aa

i

(
x− 1

2
at2
)

≃ Aa
i (x)−

1

2
at2 ·∇Aa

i (x) , (3.36)

Aa
0(t,x) = at ·Aa

(
x− 1

2
at2
)

≃ at ·Aa(x) , (3.37)

where we use at for the velocity of the moving monopole at time t, and suppose at to be

small compared with the speed of light and estimate the fields up to the order O(|a|2).

Then, the time dependence of the Higgs and gauge fields are, respectively,

∂0ϕ
a(t,x) ≃ −ajt∂jϕa(x) , (3.38)

∂0A
a
i (t,x) ≃ −ajt∂jAa

i (x) , (3.39)

which lead D0ϕ
a = −ajtDjϕ

a and Ea
i = −ajtF a

ij, and thereby the static field equations

are modified as follows:

Di(Di + ai)ϕ
a = −λϕa(1− ϕbϕb) , (3.40)

εijk(Dj + aj)B
a
k = −2εabcDiϕ

bϕc . (3.41)

These are also satisfied if λ = 0, and the following modified Bogomolny equation holds:

Ba
i = Diϕ

a + aiϕ
a , (3.42)
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and it can be solved for ai by using the linearization, Ba
i = biϕ̂

a and Diϕ
a = ∂i|ϕ|ϕ̂, as

ai = bi − ∂i|ϕ| . (3.43)

By substituting the asymptotic background fields (3.34) into (3.43), one finds that the

force between a point of monopole and anti-monopole is twice of the expected magnetic

force, and there are no force between two well separated BPS monopoles. This is because

the massless Higgs field has long-range scalar interaction which is always attractive and

whose strength is the same as that of the magnetic force. Here the scalar charge of the

interaction can be read off from the coefficient of the 1/r term of the asymptotic expansion

of |ϕ|. The result can easily be extended to the case of dyons. The force between two

dyons with equal magnetic and electric charges vanishes as follows:

g2

4πs2
+

q2

4πs2
− g2 + q2

4πs2
= 0 , (3.44)

where s is the distance between two dyons and g, q and (g2 + q2)1/2 are the magnetic,

electric and scalar charges of each dyon, respectively.

Now we derive the asymptotic metrics of the moduli spaces of monopoles [5] [8]. Let

us consider n well separated BPS dyons. Then the Lagrangian of the n-th dyon can be

assumed to be as follows:

Ln = −(g2 + q2n)
1/2ϕ (1− V 2

n )
1/2 + qnVn ·A− qnA0

+ gVn · Ã− gÃ0 , (3.45)

where g, qn, (g
2 + q2n)

1/2 and Vn are the magnetic, electric, scalar charges and velocity

of the n-th dyon, respectively; ϕ and (A, A0) are the asymptotic background Higgs and

gauge fields, respectively, in which each field is simply a superposition of the remaining

fields; Ã and Ã0 are the dual vector and scalar potentials to A and A0 defined through

the dual electric and magnetic fields Ẽ and B̃, respectively, so that

∇× Ã = B̃ = −E = ∇A0 + Ȧ , (3.46)

−∇Ã0 −
˙̃
A = Ẽ = B = ∇×A . (3.47)
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Note that the first term of the Lagrangian denotes the long-range scalar interaction, the

pair of the second and third terms corresponds to the ordinary Lorentz force in U(1)

gauge theory, and the pair of the fourth and fifth terms describes the dual Lorentz force

with respect to the magnetic interaction. The explicit form for the Lagrangian of the n-th

dyon in the presence of the first dyon can be obtained as follows. Firstly, the asymptotic

Higgs field of a monopole in the BPS limit can be written as

ϕ ≃ v − g

4πr
+O(e−8πvr/g) , (3.48)

where v is the vacuum expectation value. (We put g = 2π for each dyon as the Julia-Zee

dyon with charge N = 1 and recover the vacuum expectation value v = 1 from the non-

dimensionalization of the theory.) Then the corresponding vector potential must satisfy

the linearized Bogomolny equation ∇ϕ = ∇×A; accordingly,

A = − g

4π
w , (3.49)

where w(x) = w(−x) is a vector function defined so that ∇×w = ∇(1/r). Note that

w is the Dirac potential for the harmonic function 1/r, and the explicit form of w is not

concerned in the calculation. Hence the fields of the first dyon can be obtained by simply

replacing the fields in the same manner as the Julia-Zee dyon:

ϕ = v − (g2 + q21)
1/2

4πrn1
, A = − g

4π
wn1 , A0 = − q1

4πrn1
, (3.50)

where rji := xj − xi, rji := |rji|, and wji := w(rji); xi is the position of the i-th dyon.

Furthermore, the dual potentials turn out to be

Ã = − q1
4π

wn1 , Ã0 =
g

4πrn1
. (3.51)

The Higgs field of the moving first dyon can be derived by replacing the static field with

the Liénard-Wiechert potential:

ϕ = v − (g2 + q21)
1/2

4πsn1
(1− V 2

1 )
1/2 ≃ v − g

4πrn1

(
1 +

q21
2g2

− V 2
1

2

)
, (3.52)

where sn1 := (r2n1 − |rn1 × V1|2 + O(V 2
1 ))

1/2, but it can be approximated by rn1 because

the explicit form of the denominator plays no role in the calculation; we assume that the
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velocity and the electric charge (or the change of the phase with time) of each dyon are

sufficiently small and can be approximated with keeping the terms quadratic in velocities

and electric charges as expected in the observation in Section 3.2. The remaining fields

can also be obtained by the Lorentz boost with the same approximation:

A = − q1
4πrn1

V1 −
g

4π
wn1 , A0 = − q1

4πrn1
− g

4π
V1 ·wn1 ,

Ã =
g

4πrn1
V1 −

q1
4π

wn1 , Ã0 =
g

4πrn1
− q1

4π
V1 ·wn1 . (3.53)

Substituting them into the Lagrangian (3.45) and summarizing terms up to the order of

q2n, V
2
n , q

2
1, V

2
1 and so on, one obtains

Ln1 = −mn +
1

2
mnV

2
n +

1

8πrn1
(qn − q1)

2 − g2

8πrn1
(Vn − V1)

2

− g

4π
(qn − q1)(Vn − V1) ·wn1 , (3.54)

where mn := v(g2 + q2n)
1/2 is the rest mass of the n-th dyon. Note that the sum of the

first and second terms is ordinary kinetic energy, and all the remaining terms are also

quadratic if we regard the electric charges as velocities.

It is straightforward to extend the above calculation for the first dyon to all the

remaining dyons. The Lagrangian of the n-th dyon in the presence of the other n − 1

dyons can be written as

Ln =
1

2
mnV

2
n +

1

8π

n−1∑
i=1

(qn − qi)
2

rni
− g2

8π

n−1∑
i=1

(Vn − Vi)
2

rni

− g

4π

n−1∑
i=1

(qn − qi)(Vn − Vi) ·wni , (3.55)

where we omitted the constant, −mn. Although the Lagrangian is not symmetric for the

indices, the total Lagrangian L, which can be obtained by adding the ordinary kinetic

terms of all the remaining dyons and the interactions from all the pairs of dyons which

do not contain n-th dyon to Ln, can be symmetrized as

L =
n∑

i=1

1

2
mV 2

i +
1

8π

∑
1≤i<j≤n

(qj − qi)
2

rji
− g2

8π

∑
1≤i<j≤n

(Vj − Vi)
2

rji

− g

4π

∑
1≤i<j≤n

(qj − qi)(Vj − Vi) ·wji , (3.56)
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where m := vg, and we use apploximations, miV
2
i ≃ mV 2

i . Note that not only the terms

after the second term but also the first term can be expressed by the center of mass or

relative coordinates; the first term can be expanded as

n∑
i=1

1

2
mV 2

i =
1

2n
m

(
n∑

i=1

Vi

)2

+
∑

1≤i<j≤n

1

2n
m(Vj − Vi)

2 . (3.57)

As we have mentioned in Section 3.2, the electric charges qi is related with the phase

moduli θi of dyons, so the Lagrangian we have derived can be compaired with the sigma

model Lagrangian on the asymptotic region of MN . The Lagrangian is finally written as

the following form:

L =
1

2
gijVi · Vj +

1

2
hij(θ̇i +Wik · Vk)(θ̇j +Wjl · Vl) , (3.58)

where gij, hij and Wij depend only xi, and gij and hij are symmetric and invertible.

This form is in fact the Gibbons-Hawking type [35]. For the purpose of comparing the

Lagrangian (3.58) and (3.56), one considers the following effective Lagrangian:

Leff := L − 1

κ
qiθ̇i , (3.59)

where κ is a constant which should be fixed by a certain condition. From ∂Leff/∂θ̇i = 0,

one finds that the effective Lagrangian has n conserved quantities which can be regarded

as the electric charges qi, that is,

qi = κhij(θ̇j +Wjk · Vk) , θ̇i =
1

κ
hijqj −Wij · Vj , (3.60)

where hij is the inverse of hij. Hence the effective Lagrangian can be rewritten as

Leff =
1

2
gijVi · Vj −

1

2κ2
hijqiqj +

1

κ
qiWij · Vj . (3.61)

By comparing this and the Lagrangian (3.56), one finds

gjj = m− g2

4π

∑
i̸=j

1

rij
, (not summed over j) , gij =

g2

4π

1

rij
, (i ̸= j) ,

Wjj = − gκ

4π

∑
i̸=j

wij , (not summed over j) , Wij =
gκ

4π
wij , (i ̸= j) .
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The remaining variables can be also fixed. It is sufficient to set hij = (κ2/g2)gij. One

also puts κ = 4π/g in order to avoid the singularities of the Dirac potential. Finally, the

asymptotic metric of MN , the so-called Gibbons-Manton metric, can be written as

ds2 = gijdxi · dxj + g−1
ij (dθi +Wik · dxk)(dθj +Wjl · dxl) , (3.62)

where

gjj = 2−
∑
i̸=j

1

rij
, (not summed over j) , gij =

1

rij
, (i ̸= j) ,

Wjj = −
∑
i̸=j

wij , (not summed over j) , Wij = wij , (i ̸= j) ,

with the conditions that the metric is hyperkähler,

∂

∂xai
Wbjk −

∂

∂xbj
Waik = εabc

∂

∂xci
gjk ,

∂

∂xai
gjk =

∂

∂xaj
gik , (3.63)

where a, b, c = 1, 2, 3 are space indices. In other words, the set of the above gij and Wij

is a simple but non-trivial solution of the system of the equations (3.63).

The Gibbons-Manton metric is derived by using purely the asymptotic behavior of

BPS monopoles, and the procedure would directly be used for the monopoles with period-

icities. The asymptotic metrics of the moduli spaces of periodic monopoles are obtained

[12], which also include the case that the monopoles have Dirac-type simgularities. In the

next chapter we derive the asymptotic metrics of the moduli spaces of doubly-periodic

monopoles following this method.
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Chapter 4

Monopole Walls and the Metrics

In this chapter we firstly review doubly-periodic monopoles or monopole walls, and we

then derive hyperkähler metrics with doubly-periodicity by using Manton’s observation

reviewed so far. We would like to derive metrics of not only SU(2) monopole walls but

also the ones with Dirac-type singularities. Such monopole walls can be treated by using

the spectral analysis. In the first section we define monopole walls with some simple

examples. In the second section we review the spectral analysis. The third section is

devoted to explaining our main results which also include the derivation of the maximum

number of Dirac singularities.

4.1 Monopole walls

First of all, we define U(n) monopole walls [20]. Let xα := (x, y, z) (α = 1, 2, 3) denote

the coordinates of the three dimensional space T 2 × R, where x and y are periodic with

period one, i.e., x ∼ x+1 and y ∼ y+1. The Higgs field ϕ and the gauge field A satisfy

the Bogomolny equation:

∗DAϕ = −F , (4.1)

where DAϕ := dϕ + [A, ϕ] and F := dA + A ∧ A. We assume that the gauge group is

generally U(n) in which ϕ is an n× n anti-Hermitian matrix and A denotes a one-form.

We frequently express the gauge field by A = Axdx + Aydy + Azdz. We treat the fields
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as real-valued functions in the case of U(1). The energy density is defined by

E := −1

2
Tr(|DAϕ|2 +B2) = ∇2|ϕ| , (4.2)

where |ϕ| := −1
2
Trϕ2 is the matrix norm of the Higgs field and Bi :=

1
2
εijkFjk.

In this situation the simplest U(1) wall is the following constant-energy solution:

ϕ = 2π(Qz +M) , A = 2π(Qy dx− p dx− q dy) , (4.3)

where Q, M and p, q ∈ [0, 1) are real constants. Here the solution is not doubly-periodic

unless we perform appropriate gauge transformations because the gauge field explicitly

depends on the periodic coordinates x and y. By contrast, the Higgs field does not depend

on any periodic coordinates. This solution has constant energy density E = 8π2Q2, which

is the origin of the name.

Based on the above constant-energy solution, one supposes the asymptotic behavior

of U(n) monopole walls to be as follows:

EigValϕ =
{
2πi(Q±,ℓz +M±,ℓ) + o(1/z) | ℓ = 1, · · · , n

}
, (4.4)

where Q±,ℓ and M±,ℓ are real constants. Here Q±,ℓ, which are called the monopole-wall

charges, are indeed rational numbers [20]; if there are f± distinct monopole-wall charges

Q±j (j = 1, · · · , f±) as z → ±∞, the Charn number of the line bundle E±j defined at

large |z| obey∫
T 2
z

c1(E±j) =
i

2π

∫
T 2
z

Tr(F±j) = − i

2π

∫
T 2
z

Tr(∗DAϕ±j) = r±jQ±j , (4.5)

where T 2
z is the complex torus at z and r±j are the multiplicities of Q±j.

In addition to smooth solutions having the above asymptotic behavior, we consider

solutions such as the following U(1) monopole wall with a Dirac-type singularity [20]:

ϕ = ϕ0 −
1

2r
− 1

2

∑
j,k∈Z

(
1

rjk
− 1

ejk

)
+ πz , (4.6)

A+ =
1

2

∑
j,k∈Z

(y − k) dx− (x− j) dy

rjk(z + rjk)
+
π

2
(3y dx+ x dy) , (z ≥ 0) , (4.7)

A− =
1

2

∑
j,k∈Z

(y − k) dx− (x− j) dy

rjk(z − rjk)
+
π

2
(y dx− x dy) , (z < 0) , (4.8)
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where the constant ϕ0 is taken so that the summation would converge; the summations

do not include the case, j = k = 0; r := (x, y, z), r := |r|, ejk := (j, k, 0), ejk := |ejk|,

and rjk := |r − ejk|. Note that the additional constant-energy part shifts the original

charges (Q−, Q+) = (−1
2
, 1
2
), which come from doubly-periodic Green’s function [36], to

the standard 1-monopole wall charges (Q−, Q+) = (0, 1). Such solutions with Dirac-type

singularities are called the Dirac monopole walls.

We have shown only some simple examples of U(1) walls because the solutions of the

Bogomolny equation with periodicities are more complicated than the non-periodic case

and are therefore studied with some specific methods, for example perturbations for the

study of an SU(2) monopole wall with four-moduli [11] and numerical computations to

obtain a solution of the SU(2) Bogomolny equation without any moduli [17]. However,

some crucial features of monopole walls are recently revealed. In particular, the explicit

boundary conditions and the dimensions of the moduli spaces are obtaind by using the

spectral analysis [20]. The method is sufficient for our computations because Manton’s

observation needs only the asymptotic behavior of the fields. For this reason, we rely

on other papers for details of solutions and review only the spectral analysis in the next

section.

4.2 Spectral Analysis

Let us consider the following pair of complex and real equations which can be obtained

from the Bogomolny equation (4.1) in the privious section: [Dz − iDy, Dx + iϕ] = 0 ,

[Dz − iDy, (Dz − iDy)
†] + [Dx + iϕ, (Dx + iϕ)†] = 0 .

(4.9)

Here the first equation implies that the characteristic polynomial Fx := det[Vx(y, z)− t]

is a holomorphic function of the complex variable s := exp[2π(z − iy)], where Vx is the

holonomy of Dx + iϕ around the x-direction. Based on these definitions, we define the

x-spectral curve Σx by

Σx :=
{
(s, t) ∈ C∗ × C∗ |Fx(s, t) = 0

}
. (4.10)
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For later convenience, we also define the x-spectral polynomial Gx(s, t) := P (s)Fx(s, t)

with a common denominator P (s) of Fx so as to remove all the negative exponents of

each term of Fx(s, t). The y-spectral curve Σy is defined in the same way as Σx by using

Fy(s̃, t̃) := det[Vy(s̃)− t̃], where Vy(s̃) is the holonomy of Dy + iϕ around the y-direction.

Note that the variables s̃ := exp[2π(z + ix)] and t̃ differ from s and t, respectively. For

example, the holonomy with respect to the U(1) constant-energy solution (4.3) around

the x-direction is naively

Vx = exp

[
−i

∫ 1

0

(Ax + iϕ) dx

]
= exp[2πQ(z − iy) + 2π(M + ip)] = sQe2π(M+ip) (4.11)

which leads a spectral curve, s = t, if Q = 1 and M = p = 0. Note that the holonomy

around the y-direction is Vy = s̃Qe2π(M+iq) in some gauge.

The Newton polygon, which is generally derived from a Laurent polynomial, is useful

for visualizing the asymptotic behavior of the spectral curve. The Newton polygon Nx of

the x-spectral curve is defined as follows. Firstly, we mark points (a, b) which correspond

to the degree of each term satb of Gx(s, t) on the integer lattice. Then, Nx is a minimal

convex polygon which includes all the marks. In addition, there is another diagram that

shows the asymptotic behavior of the spectral curve and relates to the Newton polygon.

Namely, the amoeba Ax of an x-spectral curve Σx = {(s, t) ∈ C∗ × C∗ |Fx(s, t) = 0} is

defined as the image of the logarithmic map:

Ax :=
{
(log |s|, log |t|) ∈ R2 |Fx(s, t) = 0

}
. (4.12)

The amoeba is in general a connected domain with tentacle-like asymptotes and holes.

The relation between the Newton polygon and the amoeba is as follows.

• The number of tentacles is equal to the number of subedges (parts of edges divided

by the points) where each asymptote is orthogonal to the corresponding subedge.

• The number of holes of the amoeba is bounded by the number of internal points in

the Newton polygon.
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• The area Area(N ) of the Newton polygon N and the area Area(A) of the amoeba

A satisfy an inequality, Area(A) ≤ π2Area(N ).

Technically speaking, the amoeba of the x-spectral curve can be visualized as follows.

Let s =: exp(u+iθ) so that (log |s|, log |t|) = (u, log |t(u, θ)|), where (u, θ) is a pair of real

parameters; t(u, θ) is a solution of Fx(s, t) = 0 with respect to t. Then the parametric

plot of (u, log |t(u, θ)|) where θ runs from zero to 2π is a part of the graph of the amoeba.

Accordingly, the total graph would be classified by n-color if the gauge group is U(n).

The graph can easily be drawn by Mathematica [24].

The characteristic polynomial Fx(s, t) = det[Vx(s)−t] with respect to a smooth SU(2)

monopole wall can be written as follows:

Fx(s, t) = t2 −Wx(s)t+ 1 , (4.13)

where Wx(s) := TrVx(s), and note that detVx(s) = 1. Therefore the Newton polygon of

an SU(2) monopole wall should be a rhombus with some internal points. For example,

the following spectral curves, with a real parameter a, describe a one-parameter family

of SU(2) monopole walls with monopole-wall charges (Q−, Q+) = (1, 1):

st2 − s2t− t+ s+ ast = 0 . (4.14)

The Newton polygon and the amoeba of the spectral curves are shown in ref. [20].

For the spectral curve of the constant-energy solution, the complex variables (s, t) of

x-spectral curves asymptotically satisfy t ∼ sQe2π(M+ip), that is,

• If t→ ∞ or t→ 0 while s→ s0, with a constant s0, the monopole wall has a Dirac-

type singularity whose coordinates can be seen from z− iy = 1
2π

log(s0) because the

eigenvalue of the Higgs field can not be determined at the point.

• If s → ∞ or s → 0 while t → t0, with a constant t0, the real and imaginary parts

of log(t0) are asymptotic values of eigenvalues of the Higgs field and the holonomy,

respectively, because the limits correspond to z → ±∞.

• If s → ∞ or s → 0 while t ∼ sα/β, with some relatively prime integers α and

positive β, the asymptotic behavior of the eigenvalue of the Higgs field is t ∼ sα/β,

and the corresponding charge is Q = α/β.
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The asymptotic behavior of the spectral curve can be read off from the Newton polygon.

Moreover, the Newton polygon tells us some crucial features of the monopole wall [20].

The properties can be summarized as follows.

1. The height of the Newton polygon is n if the gauge group is U(n).

2. The number of points on the top or bottom edges of the Newton polygon is equal

to r±0 + 1, where r±0 is the number of positive or negative Dirac singularities.

3. If an edge of the Newton polygon has a finite tangent β±j/α±j and r±j + 1 points,

the monopole wall has charges Q±j = α±j/β±j with multiplicities r±j.

4. The Newton polygon Nx and Ny of x- and y-spectral curves, respectively, coincide

if the curves come from the same monopole wall.

5. The dimension of the moduli space M of a monopole wall is given by the number

of internal points IntNx of the Newton polygon as follows:

dimM = 4 IntNx . (4.15)

6. The Nahm transform for monopole walls is the operation which exchanges s and t

or turns the Newton polygon with respect to the diagonal line.

One can see from the first, second and third properties that the shape of the Newton

polygon is strictly restricted by the boundary data. In fact, the boundary conditions of

monopole walls can explicitly be written in terms of the monopole-wall charges, asymp-

totic values of eigenvalues of the Higgs field and the holonomy, and the position of Dirac

singularities. On the other hand, the inner points are free from the asymptotic behavior,

and hence the dimension of the moduli space relates to the number of these points. The

last property implies the necessity of Dirac-type singularities. For example, the Nahm

transform for a U(1) Dirac monopole wall with two negative poles leads a smooth SU(2)

wall with charges (Q−, Q+) = (0, 1) [20]. We use the above properties for the derivation

of the maximum number of Dirac singularities with respect to U(2) monopole walls with

four-moduli in the next section.

36



February 12, 2015 Ph.D. Thesis, Daichi Muranaka

4.3 Hyperkähler Metrics from Monopole Walls

Now we derive asymptotic metrics of well-separated monopole walls. In addition to the

definition of the monopole walls in the first section, we introduce the metric on T 2 × R

as follows. Let τ := τ1 + iτ2 (τ1, τ2 ∈ R) be a standard complex structure on the torus

T 2, and then we introduce a holomorphic coordinate ξ := x+ τy. The periodicity is now

represented by ξ ∼ ξ +m+ τn (m,n ∈ Z). By using the vector notation x := (ξ, z), the

metric on T 2 × R is represented as follows:

dx · dx :=
ν

τ2
(dx2 + 2τ1dxdy + |τ |2dy2) + dz2

=
ν

τ2
|dξ|2 + dz2 =: gαβdx

αdxβ, (4.16)

where the volume of the torus is denoted by ν :=
√
det g (g := (gαβ)). Note that two

dimensional metric has three independent components, and we have traded them with τ1,

τ2 and ν. One of the crucial features of our construction of doubly-periodic hyperkähler

metrics in the following is the invariance under the modular transformation:

ξ 7→ ξ

cτ + d
, τ 7→ aτ + b

cτ + d
, τ2 7→

τ2
|cτ + d|2

, (4.17)

where ( a b
c d ) ∈ SL(2,Z).

We would like to derive hyperkähler metrics according to Manton’s observation, so

we firstly find the asymptotic background fields produced by SU(2) monopole walls. Let

us consider k well-separated SU(2) monopole walls sitting at the points aj := (ξj, zj)

(j = 1, · · · , k) in which the monopole-wall charges of the j-th wall are supposed to be

(Q−j, Q+j) = (0, 1) or (1, 0) so that k =
∑

j(|Q−j|+ |Q+j|). (Note that at least the case

(Q−j, Q+j) = (0, 1) can be regarded as a smooth SU(2) monopole arranged per unit cell

[17]. Note also that it is not clear that multi-monopole walls indeed have the moduli of

separation, however, at least the case of (Q−j, Q+j) = (1, 1) has four-moduli [11].) If the

separations |zj − zi| are large enough compared with the thicknesses of each wall, the

fields are well-approximated by superpositions of linearized monopole walls:

ϕ(x) = v +
k∑

j=1

ϕj(x− aj) , (4.18)
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Aξ(x) = b+
k∑

j=1

Aj
ξ(x− aj) , Az(x) = 0 , (4.19)

where v is the vacuum expectation value of the Higgs field and b is the background gauge

field. Furthermore, the asymptotic Higgs field of each monopole wall can be estimated

as a superposition of linearized ’t Hooft-Polyakov monopoles arranged in a finite (2M +

1)× (2N + 1) rhombic lattice:

ϕj(x) =
1

4π

M∑
m=−M

N∑
n=−N

−g√
|ξ −m− nτ |2 + z2

, (4.20)

where g is the magnetic charge of the ’t Hooft-Polyakov monopole. Here, the asymptotic

form of the summation for large |z| can be seen from the analysis of the doubly-periodic

Green function [36], and we find

ϕj(x) =
g

2
|z| − gCM,N , (4.21)

where CM,N is a positive constant diverging linearly in the limit M,N → ∞. Although

the summation would diverge, the part of the effective Lagrangian can be defined in the

same manner as periodic monopoles [12]. Namely, we set

ϕ(x) = vren +
g

2

k∑
j=1

|z − zj| (4.22)

and keep vren := v − kgCM,N finite with v diverging at the same order as CM,N . We

note that the configuration is not localized in the periodic directions. This implies that

the superposition of doubly-periodic monopoles is represented as a constituent monopole

wall in the asymptotic region.

The asymptotic gauge field should satisfy the Bogomolny equation, which leads

Aj
ξ(x) =

iνg

8τ2
sign(z) ξ̄ , Aj

z(x) = 0 , (4.23)

where sign(z) denotes the sign of z, that is, sign(z) = 1 when z is positive and otherwise

sign(z) = −1; we employ the following convention of the Hodge star operator:

∗(dxµ1 ∧ · · · ∧ dxµp) =

√
|g|

(n− p)!
εµ1···µp

νp+1···νndx
νp+1 ∧ · · · ∧ dxνn . (4.24)
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Note that, as seen in the first section, appropriate gauge transformations should be sup-

posed so as to make the gauge field to be doubly-periodic for ξ ∼ ξ +m + τn. This is

essential for our calculation because the phase θ of a dyonic monopole wall appears in a

zeromode ψ of the Dirac equation used for the Nahm transform [17] in which the U(1)

gauge transformations change the fields as A 7→ A+dθ and ψ 7→ ψeiθ. Namely, our U(1)

bundle over the complex torus is non-trivial, and accordingly we have to impose the fol-

lowing twisted boundary condition where the phase of any functions in the fundamental

representation of the gauge group shifts as follows:

θ 7→ θ +
νg

4
sign(z) y when ξ 7→ ξ + 1 , (4.25)

θ 7→ θ − νg

4
sign(z)x when ξ 7→ ξ + τ . (4.26)

For later convenience, we introduce the following functions:

u(z) =
1

2
|z| − CM,N , w(x) =

iν

8τ2
sign(z) ξ̄ , (4.27)

which satisfy u(z) = u(−z) and w(x) = w(−x). Note that u(z) is a harmonic function

on R with δ-function source at the origin.

As seen in the third chapter, the asymptotic metric of the moduli space of monopoles

can be obtained by calculating the long-range interactions of dyons, which would directly

be applied for our case. Let us suppose the Lagrangian of the ℓ-th monopole wall as

Lℓ = −(g2 + q2ℓ )
1/2ϕ(1− V 2

ℓ )
1/2 + qℓVℓ ·A− qℓA0

+ gVℓ · Ã− gÃ0 , (4.28)

where (g2 + q2ℓ )
1/2, qℓ and Vℓ := (ξ̇ℓ, żℓ) are the scalar charge, the electric charge and the

velocity of the ℓ-th wall respectively; (Ã, Ã0) is the dual potential which satisfy F̃ = ∗F .

The background fields ϕ, A, A0, Ã and Ã0 are produced by the remaining k− 1 moving,

dyonic monopole walls and can be derived by using the solution previously derived. For

j ̸= ℓ, the asymptotic fields of the j-th dyonic monopole wall at rest can be obtained in

the same way as the non-periodic monopoles, and we have

ϕj(x) = (g2 + q2j )
1/2u(z) (4.29)
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and

Aj
ξ(x) = gw(x) , Aj

z(x) = 0 , Aj
0(x) = −qju(z) ,

Ãj
ξ(x) = −qjw(x) , Ãj

z(x) = 0 , Ãj
0(x) = −gu(z) , (4.30)

where u(z) and w(x) for the monopole wall are given by (4.27). Then, the fields for a

moving monopole wall can be obtained by the Lorentz boost. (Note that we can use the

ordinary Lorentz boost for the fields because our definition (4.16) of the metric on T 2×R

is flat.) Keeping the terms of order q2j , qjVj and V 2
j , we find

ϕj(x) ≃ (g2 + q2j )
1/2u(z)(1− V 2

j )
1/2 ,

Aj
ξ(x) ≃ −qju(z)Vjξ + gw(x) ,

Aj
z(x) ≃ −qju(z)Vjz ,

Aj
0(x) ≃ −qju(z) + g(wV ξ

j + w̄V ξ̄
j ) , (4.31)

Ãj
ξ(x) ≃ −gu(z)Vjξ − qjw(x) ,

Ãj
z(x) ≃ −gu(z)Vjz ,

Ãj
0(x) ≃ −gu(z)− qj(wV

ξ
j + w̄V ξ̄

j ) ,

where the scalar potentials are replaced by the Liénard-Wiechert potentials with the

approximation of the distance (r2− |r×V |2+O(V 2))1/2 by r. Substituting the boosted

fields into the Lagrangian for k = 2 and keeping terms of the second order in q1, V1, q2

and V2, we obtain

L2 = −m2 +
1

2
m2V

2
2 + q2(bV

ξ
2 + b̄V ξ̄

2 )

+
g2

2
u(z2 − z1)(V2 − V1)

2 − 1

2
u(z2 − z1)(q2 − q1)

2

+ g(q2 − q1)
{
w21(V

ξ
2 − V ξ

1 ) + w̄21(V
ξ̄
2 − V ξ̄

1 )
}
, (4.32)

where mj := v(g + qj)
1/2 is the rest mass of the j-th dyonic monopole wall and wji :=

w(xj −xi). Furthermore, expanding mj and making symmetrization, we obtain the total

Lagrangian L21 as follows:

L21 =
vg

2
(V 2

2 + V 2
1 ) +

g2

2
u(z2 − z1)(V2 − V1)

2
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− v

2g
(q22 + q21)−

1

2
u(z2 − z1)(q2 − q1)

2

+ b(q2V
ξ
2 + q1V

ξ
1 ) + gw21(q2 − q1)(V

ξ
2 − V ξ

1 )

+ b̄(q2V
ξ̄
2 + q1V

ξ̄
1 ) + gw̄21(q2 − q1)(V

ξ̄
2 − V ξ̄

1 ) . (4.33)

The Lagrangian may look ill-defined due to the diverging v, however, it can be replaced

by vren which remains finite. Then, the Lagrangian can be divided into the two parts:

L21 = LCM + Lrel, where

LCM =
vg

4
(V2 + V1)

2 − v

4g
(q2 + q1)

2

+
b

2
(q2 + q1)(V

ξ
2 + V ξ

1 ) +
b̄

2
(q2 + q1)(V

ξ̄
2 + V ξ̄

1 ) (4.34)

and

Lrel =
g2

2

(
vren
2g

+
1

2
|z2 − z1|

)
(V2 − V1)

2 − 1

2

(
vren
2g

+
1

2
|z2 − z1|

)
(q2 − q1)

2

+

{
b

2
+

iνg

8τ2
sign(z2 − z1) (ξ̄2 − ξ̄1)

}
(q2 − q1)(V

ξ
2 − V ξ

1 )

+

{
b̄

2
− iνg

8τ2
sign(z2 − z1) (ξ2 − ξ1)

}
(q2 − q1)(V

ξ̄
2 − V ξ̄

1 ) . (4.35)

The center of mass Lagrangian LCM would diverge while the relative Lagrangian Lrel

would converge in the limit of M,N → ∞. The asymptotic metric of the moduli space

can be read off from the relative Lagrangian. For convenience, we introduce relative

variables by ξ := ξ2 − ξ1, z := z2 − z1, V := V2 −V1 and q := q2 − q1 and further replace

the electric charge q in Lrel by the relative phase θ via the Legendre transformation,

L′
rel = Lrel + qθ̇ . (4.36)

As we will see shortly the coefficient of qθ̇ can be fixed so that the asymptotic metric

has the double periodicity. After the Legendre transformation, we obtain the asymptotic

metric of the moduli space in the form of the Gibbons-Hawking ansatz [35],

1

g
ds2 = Udx · dx+

1

U
(dθ +W · dx)2 , (4.37)

where

U =
vren
2

+
g

2
|z| , Wξ =

b

2
+

iνg

8τ2
sign(z) ξ̄ ,
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Wξ̄ =W ξ , Wz = 0 . (4.38)

At first sight the metric seems to have a constant shift when we go around the closed

cycles on T 2, since Wξ explicitly depends on the coordinate ξ̄. However we can confirm

the double-periodicity of the metric by observing that the constant shift of Wξ can be

cancelled by the phase shift due to the necessary U(1) gauge transformation in the twisted

boundary conditions (4.25) and (4.26), which also determines the coefficient of qθ̇ in

(4.36). Furthermore, we can also easily check the invariance of the metric under the

modular transformation (4.17). Thus our metric (4.37) is well-defined on T 3 × R with

local coordinates (θ, ξ, z). Finally the hyperkähler metric (4.37) allows the following local

isometries with parameters (α, β, γ);

θ → θ + α+
νg

4
sign(z) (βy − γx) ,

x→ x+ β , y → y + γ . (4.39)

It is straightforward to extend the above computation for k = 2 to the case of general

k. The total Lagrangian of the k well-separated dyonic monopole walls can be obtained

by generalizing (4.33) as follows

Lk =
vg

2

k∑
j=1

V 2
j +

g2

2

∑
1≤i<j≤k

u(zj − zi)(Vj − Vi)
2

− v

2g

k∑
j=1

q2j −
1

2

∑
1≤i<j≤k

u(zj − zi)(qj − qi)
2

+ b
k∑

j=1

qjV
ξ
j +

∑
1≤i<j≤k

gwji(qj − qi)(V
ξ
j − V ξ

i )

+ b̄

k∑
j=1

qjV
ξ̄
j +

∑
1≤i<j≤k

gw̄ji(qj − qi)(V
ξ̄
j − V ξ̄

i ) . (4.40)

This can be decomposed into the two parts Lk = LCM + Lrel, where

LCM =
vg

2k

(
k∑

j=1

Vj

)2

− v

2kg

(
k∑

j=1

qj

)2

+
b

k

(
k∑

j=1

qj

)(
k∑

j=1

V ξ
j

)
+
b̄

k

(
k∑

j=1

qj

)(
k∑

j=1

V ξ̄
j

)
(4.41)
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and

Lrel =
g2

2

∑
1≤i<j≤k

(
vren
kg

+
1

2
|zj − zi|

)
(Vj − Vi)

2

− 1

2

∑
1≤i<j≤k

(
vren
kg

+
1

2
|zj − zi|

)
(qj − qi)

2

+
∑

1≤i<j≤k

{
b

k
+

iνg

8τ2
sign(zj − zi) (ξ̄j − ξ̄i)

}
(qj − qi)(V

ξ
j − V ξ

i )

+
∑

1≤i<j≤k

{
b̄

k
− iνg

8τ2
sign(zj − zi) (ξj − ξi)

}
(qj − qi)(V

ξ̄
j − V ξ̄

i ) . (4.42)

On the other hand, the Gibbons-Hawking ansatz for general k can be written as

1

g
ds2 = UIJdXI · dXJ + U−1

IJ (dΘI +WIK · dXK)

· (dΘJ +WJL · dXL) , (4.43)

where I, J,K, L = 1, · · · , k − 1; we have introduced the following relative coordinates

measured by the position of k-th moving monopole wall:

ΞJ := ξJ − ξk , ZJ := zJ − zk , ΘJ := θJ − θk , XJ := (ΞJ , ZJ) .

By comparing the coefficients of (4.42) and the sigma model Lagrangian for the Gibbons-

Hawking ansatz, we find, on the diagonal line,

UJJ = (k − 1)
vren
k

+
g

2

∑
I ̸=J

|ZJ − ZI | , (4.44)

(Wξ)JJ = (k − 1)
b

k
+

iνg

8τ2

∑
I ̸=J

sign(ZJ − ZI) (Ξ̄J − Ξ̄I) , (4.45)

while for I ̸= J ,

UIJ = −vren
k

− g

2
|ZJ − ZI | , (4.46)

(Wξ)IJ = − b

k
− iνg

8τ2
sign(ZJ − ZI) (Ξ̄J − Ξ̄I) , (4.47)

and (Wξ̄)IJ = (W ξ)IJ and (Wz)IJ = 0 in anywhere.

Finally, we discuss the asymptotic metric of monopole walls with Dirac-type singular-

ities. We note that it is proved that the maximum number of the singularities is four in
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the case of monopole chains with four-moduli. Accordingly, we shall derive the inequality

for the maximum number of Dirac singularities of monopole walls with four-moduli by

using the spectral curves and Newton polygons reviewed in the privious section. The key

is simply a geometric restriction. For a given number of internal points, the maximum

Newton polygon of U(2) monopole walls with singularities must be a trapezoid which has

height n = 2 and has length of top and bottom edges r+0 and r−0, respectively (Figure

4.1). From the shape of the Newton polygon, the maximum number of singularities obvi-

Figure 4.1: The maximum Newton polygon Nx of a U(2) monopole wall with r+0 singu-

larities and r−0 singularities.

ously have a relation, r+0 + r−0 = 2(IntNx + 1) (which can also be derived by the Pick’s

formula). Therefore, the total number of singularities r0 := r+0 + r−0 is limited by the

dimension of the moduli space M of the monopole walls as

r0 ≤
1

2
dimM+ 2 . (4.48)

Especially the maximum number of singularities of k well-separated monopole walls is

2k because the dimension of the relative moduli space is 4(k − 1). This is consistent

with the fact that the maximal number of the matter hypermultiplets in the fundamental

representation is 2k in the corresponding SU(k) super Yang-Mills theory with eight super

charges.

Here we restrict our calculation to the monopole walls with four-moduli, that is, for

k = 2. Then the maximal number of the Dirac singularities is r0 = 4. Since these singu-
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larities are stationary and have no electric charge, the metric can be obtained by simply

replacing the vacuum expectation value and the background field by v+
∑r0

ℓ=1 gℓu(rℓz−z)

and b +
∑r0

ℓ=1 gℓw(rℓ − x), respectively, where gℓ and rℓ := (rℓξ, rℓz) are the magnetic

charges and the positions of each singularity [12]. Substituting them into (4.38), we have

U =
v′ren
2

+
g

2
|z|+ 1

4

r0∑
ℓ=1

gℓ

∣∣∣rℓz − z

2

∣∣∣
+

1

4

r0∑
ℓ=1

gℓ

∣∣∣rℓz + z

2

∣∣∣ ,
Wξ =

b

2
+

iνg

8τ2
sign(z) ξ̄ +

iν

16τ2

r0∑
ℓ=1

gℓ sign
(
rℓz −

z

2

)(
r̄ℓξ −

ξ̄

2

)
+

iν

16τ2

r0∑
ℓ=1

gℓ sign
(
rℓz +

z

2

)(
r̄ℓξ +

ξ̄

2

)
,

Wξ̄ = W ξ , Wz = 0 , (4.49)

where

v′ren := v −

(
2 +

r0∑
ℓ=1

gℓ
g

)
gCM,N (4.50)

and we assume x1 + x2 = 0.

In the correspondence with N = 1 super Yang-Mills theory on R3 × T 2, the function

U(z) is identified with the low energy effective coupling, or the second derivative of the

prepotential on the Coulomb modulus R>0.
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Conclusion

In this thesis, we have explicitly derived hyperkähler metrics whose asymptotic behavior

is of ALH type from the low energy dynamics of well-separated monopole walls. The

metric in four dimensions is defined on a T 2×S1 fibration over R and enjoys the modular

invariance on T 2. We have also derived the maximal number of the Dirac singularities for

U(2) monopole walls by using the Newton polygon of the spectral curve. Furthermore,

we have reviewed some fundamental topics to give readers complete understanding of

the background of our study such as BPS monopoles and the moduli space, dynamics of

monopoles, the metrics of the moduli space, monopole walls and the spectral analysis.

One of the next challenges is the low-energy scattering of the monopole walls as

a geodesic motion on the moduli space. In the present discussion, the monopoles are

assumed to be well-separated and hence the collision process is excluded.

In order to obtain a global metric on the moduli space of monopole walls, we need

some ideas such as the one for the Atiyah-Hitchin metric [7] for non-periodic SU(2) two-

monopole in BPS limit. On the super Yang-Mills theory side, the region of well-separated

monopoles corresponds to the weak coupling region of the moduli space of the Coulomb

branch, where the vacuum expectation values of the scalar fields in the vector multiplets

are large compared with the dynamical scale of the theory. In order to obtain a global

metric which is valid on the whole Coulomb branch, the inclusion of instanton corrections

is crucial. A successful example of such computation is the Ooguri-Vafa metric [40]. See
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also [41] and [42] for recent developments.

In the periodic monopoles, the monopole scattering has been successfully discussed

by using the Nahm transform, the spectral curve and the corresponding Hitchin equation

[13, 14, 15]. In addition, some recent works would give us ideas for the study of the

explicit metrics of the moduli space of monopole walls. More practical classifications of

monopole walls by using the Newton polygon are discussed [37]. The numerical analysis

of the moduli space metric of monopole walls in terms of spectral curves are performed

[38]. The metrics in [39] might also be helpful for our study.
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Hyperkähler metrics and supersymmetry,

Commun. Math. Phys. 108, 535 (1987).

[2] G. W. Gibbons, P. Rychenkova and R. Goto,

HyperKähler quotient construction of BPS monopole moduli spaces,

Commun. Math. Phys. 186, 581 (1997). [hep-th/9608085].

[3] T. Eguchi, P. B. Gilkey and A. J. Hanson,

Gravitation, gauge theories and differential geometry,

Phys. Rept. 66, 213 (1980).

[4] S. A. Cherkis, Instantons on gravitons,

Commun. Math. Phys. 306, 449 (2011). [arXiv:1007.0044].

[5] N. S. Manton, Monopole interactions at long range,

Phys. Lett. B 154, 397 (1985). [Erratum-ibid. 157B, 475 (1985)].

[6] N. Seiberg and E. Witten,

Gauge dynamics and compactification to three-dimensions. [hep-th/9607163].

[7] M. F. Atiyah and N. J. Hitchin,

The Geometry and Dynamics of Magnetic Monopoles,

Princeton University Press (1988).

[8] G. W. Gibbons and N. S. Manton,

The moduli space metric for well-separated BPS monopoles,

Phys. Lett. B 356, 32 (1995). [hep-th/9506052].

49



Ph.D. Thesis, Daichi Muranaka February 12, 2015

[9] S. A. Cherkis and A. Kapustin,

Nahm transform for periodic monopoles and N = 2 super Yang-Mills theory,

Commun. Math. Phys. 218, 333 (2001). [hep-th/0006050].

[10] S. A. Cherkis and A. Kapustin,

Periodic monopoles with singularities and N = 2 super-QCD,

Commun. Math. Phys. 234, 1 (2003). [hep-th/0011081].

[11] R. S. Ward, Periodic monopoles,

Phys. Lett. B 619, 177 (2005). [hep-th/0505254].

[12] S. A. Cherkis and A. Kapustin, Hyper-Kähler metrics from periodic monopoles,

Phys. Rev. D 65, 084015 (2002). [hep-th/0109141].

[13] D. Harland and R. S. Ward, Dynamics of periodic monopoles,

Phys. Lett. B 675, 262 (2009). [arXiv:0901.4428].

[14] R. Maldonado, Periodic monopoles from spectral curves,

JHEP 1302, 099 (2013). [arXiv:1212.4481].

[15] R. Maldonado and R. S. Ward, Geometry of periodic monopoles,

Phys. Rev. D 88, 125013 (2013). [arXiv:1309.7013].

[16] R. Maldonado, Higher charge periodic monopoles, arXiv:1311.6354.

[17] R. S. Ward, Monopole wall,

Phys. Rev. D 75, 021701 (2007). [hep-th/0612047].

[18] K. -M. Lee,

Sheets of BPS monopoles and instantons with arbitrary simple gauge group,

Phys. Lett. B 445, 387 (1999). [hep-th/9810110].

[19] B. Haghighat and S. Vandoren,

Five-dimensional gauge theory and compactification on a torus,

JHEP 1109, 060 (2011). [arXiv:1107.2847].

[20] S. A. Cherkis and R. S. Ward, Moduli of monopole walls and amoebas,

JHEP 1205, 090 (2012). [arXiv:1202.1294].

50



February 12, 2015 Ph.D. Thesis, Daichi Muranaka

[21] M. Hamanaka, H. Kanno and D. Muranaka,

Hyper-Kähler metrics from monopole walls,

Phys. Rev. D 89, 065033 (2014). [arXiv:1311.7143 [hep-th]].

[22] N. S. Manton and P. Sutcliffe, Topological Solitons,

Cambridge Monographs on Mathematical Physics, 2004.

[23] Ya. Shnir, Magnetic Monopoles, Springer, 2005.

[24] Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014).

[25] N. S. Manton, The force between ’t Hooft-Polyakov monopoles,

Nucl. Phys. B 126, 525 (1977).

[26] G. ’t Hooft, Magnetic monopoles in unified gauge theories,

Nucl. Phys. B 79, 276 (1974).

[27] A. M. Polyakov, Particle spectrum in quantum field theory,

JETP Lett. 20, 194 (1974).

[28] E. B. Bogomolny, The stability of classical solutions,

Sov. J. Nucl. Phys. 24, 449 (1976).

[29] M. K. Prasad and C. M. Sommerfield,

Exact classical solution for the ’t Hooft monopole and the Julia-Zee dyon,

Phys. Rev. Lett. 35, 760 (1975).

[30] E. J. Weinberg, Parameter counting for multimonopole solutions,

Phys. Rev. D 20, 936 (1979).

[31] B. Julia and A. Zee,

Poles with both magnetic and electric charges in non-Abelian gauge theory,

Phys. Rev. D 11, 2227 (1975).

[32] N. J. Hitchin, The self-duality equations on a Riemann surface,

Proc. Lond. Math. Soc. 55, 59 (1987).

[33] N. S. Manton, A remark on the scattering of BPS monopoles,

Phys. Lett. B 110, 54 (1982).

51



Ph.D. Thesis, Daichi Muranaka February 12, 2015

[34] D. Stuart, Commun. Math. Phys. 166, 149 (1994).

[35] G. W. Gibbons and S. W. Hawking, Gravitational multi-instantons,

Phys. Lett. B 78, 430 (1978).

[36] C. M. Linton,

Rapidly convergent representations for Green’s functions for Laplace’s equation,

Proc. R. Soc. Lond. A 455, 1767 (1999).

[37] S. A. Cherkis,

Phases of five-dimensional theories, monopole walls, and melting crystals,

JHEP 1406, 027 (2014). [arXiv:1402.7117 [hep-th]].

[38] R. Maldonado and R. S. Ward, Dynamics of monopole walls,

Phys. Lett. B 734, 328 (2014). [arXiv:1405.4646 [hep-th]].

[39] S. Bolognesi,

Instanton bags, high density holographic QCD and chiral symmetry restoration,

Phys. Rev. D 90, 105015 (2014). [arXiv:1406.0205 [hep-th]].

[40] H. Ooguri and C. Vafa, Summing up D instantons,

Phys. Rev. Lett. 77, 3296 (1996). [hep-th/9608079].

[41] D. Gaiotto, G. W. Moore and A. Neitzke,

Four-dimensional wall-crossing via three-dimensional field theory,

Commun. Math. Phys. 299, 163 (2010). [arXiv:0807.4723].

[42] A. Neitzke, Notes on a new construction of hyperkähler metrics,

arXiv:1308.2198 [math.DG].

52


