
On the existence problem of Kähler-Ricci solitons

(ケーラー・リッチソリトンの存在問題について)

Ryosuke Takahashi



Abstract

In this paper, we consider the existence problem of Kähler-Ricci solitons.
Let M be a Fano manifold. We call a Kähler metric ω ∈ c1(M) a Kähler-Ricci
soliton if it satisfies the equation Ric(ω)−ω = LV ω for some holomorphic vector
field V on M . We study the explicit construction of Kähler-Ricci solitons on
special projective bundles, called “admissible bundles”, which were introduced
by Gauduchon and other collaborators to unify previous works on the existence
problem of canonical metrics on projective bundles. On admissible bundles,
the admissible Kähler-Ricci soliton condition can be written as a simple ODE,
and its existence is equivalent to the vanishing of Maschler-Tønnesen invariant.
We also study the K-stability for Kähler-Ricci solitons. It is known that a
necessary condition for the existence of Kähler-Ricci solitons is the vanishing
of the modified Futaki invariant introduced by Tian-Zhu. In a recent work
of Berman-Nyström, it was generalized for (singular) Fano varieties and the
notion of algebro-geometric stability of the pair (M,V ) was introduced. We
propose a method of computing the modified Futaki invariant for Fano complete
intersections in projective spaces.
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1 Introduction

Let M be a compact complex manifold. We say that a Kähler metric ω is Kähler-
Einstein if it satisfies the equation Ric(ω) = cω for some real constant c. After
normalizing constants, we may assume that c = −1, 0 or 1. Then c1(M) is repre-
sented by a negative, zero or positive real (1, 1)-form. These conditions are simply
written as c1(M) < 0, c1(M) = 0 and c1(M) > 0 repectively. In the case of com-
pact Riemann surfaces, the existence of a Kähler-Einstein metric follows from the
classical uniformization theorem, which states that there exists a unique metric of
constant scalar curvature on any compact Riemann surfaces. For higher dimensional
manifolds, it is well-known that every compact Kähler manifold with c1(M) ≤ 0 ad-
mits a unique Kähler-Einstein metric (cf. [Yau78], [Aub76]). On the other hand,
in the case of Fano manifolds, i.e., compact complex manifolds with c1(M) > 0,
there are examples admitting no Kähler-Einstein metrics. Hence we are especially
interested in the case of Fano manifolds.

Now let M be a Fano manifold. In this paper, we study the existence problem of
“Kähler-Ricci solitons”. A pair (ω, V ) of a Kähler form ω and a holomorphic vector
field V is called a Kähler-Ricci soliton if it satisfies the equation

Ric(ω)− cω = LV ω

for some constant c > 0, where LV denotes the Lie derivative with respect to V .
In particular, if V ≡ 0, ω is Kähler-Einstein. After normalizing constants, we may
assume that c = 1. A Kähler-Ricci soliton gives rise to a self similar solution of the
following PDE for a t-dependent Kähler form ωt, called Kähler-Ricci flow:{

∂ωt
∂t = −Ric(ωt) + ωt,

ω0 ∈ c1(M).

Generally, Kähler-Ricci flow has good properties that (1) The Kähler condition are
preserved under the flow. (2) Any solution ωt belongs to c1(M). (3) There is a unique
long time solution [Cao85]. Thus we obtain a deformation family ωt (0 ≤ t < ∞)
of Kähler forms in c1(M). If (ω0, V ) is a Kähler-Ricci soliton, a direct computation
shows that ωt = (exp(−Re(V )t))∗ω0 is a unique solution of Kähler-Ricci flow with
initial Kähler form ω0.

One motivation to study Kähler-Ricci solitons is that they are closely related to
the limiting behavior of solutions of Kähler-Ricci flow. Tian-Zhu [TZ07] showed that
if M admits a Kähler-Ricci soliton (ωKS , V ) and the initial metric ω0 is invariant
under the action of the one-parameter subgroup generated by Im(V ), then any
solution of Kähler-Ricci flow converges to the ωKS in the sense of Cheeger-Gromov.

Another motivation is the uniqueness of the vector field V which is the candidate
for a Kähler-Ricci soliton (ωKS , V ). In particular, the existence of a Kähler-Ricci
soliton with respect to a non-zero holomorphic vector field is an obstruction to the
existence of Kähler-Einstein metrics. To explain this, we first mention the modified
Futaki invariant introduced by Tian-Zhu [TZ02], that is an obstruction to the exis-
tence of Kähler-Ricci solitons: let κ be a real valued smooth function on M defined
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by the equation

Ric(ω)− ω =

√
−1

2π
∂∂̄κ,

here we remark that the function κ (Ricci potential) uniquely exists up to an
additive constant. Let h be the Lie algebra consisting of all holomorphic vector
fields on M . Then any V ∈ h can be lifted to the anti-canonical bundle −KM of M ,
and naturally acts on the space of Hermitian metrics on −KM . Let h be a Hermitian

metric on −KM such that ω = −
√
−1
2π ∂∂̄ log h and µh,V the holomorphy potential of

the pair (h, V ) defined by the equation LV h = −µh,V · h (cf. Definition 2.2). Then
we can easily check that {

iV ω =
√
−1
2π ∂̄µh,V

−∆∂µh,V + µh,V + V (κ) = 0,

where ∆∂ = −gij̄ ∂2

∂zi∂zj̄
denotes the ∂-Laplacian with respect to ω. Then one can

easily see that the pair (ω, V ) is a Kähler-Ricci soliton if and only if κ = µh,V holds
up to an additive constant. Let F be a function on h defined by

F(V ) = − 1

c1(M)n

∫
M

eµh,V ωn,

and FutV (W ) the modified Futaki invariant defined as the Gâteaux differential of F
at V in the direction W , i.e.,

FutV (W ) =
d

dt
F(V + tW )

∣∣∣∣
t=0

= − 1

c1(M)n

∫
M

µh,W eµh,V ωn

=
1

c1(M)n

∫
M

W (κ− µh,V )e
µh,V ωn.

Hence if there exists a Kähler-Ricci soliton (ω, V ), then we have κ = µh,V (up to
an additive constant) and FutV (W ) must vanish. They showed that FutV (W ) is
independent of a choice of ω ∈ c1(M) (In the case when V ≡ 0, this function coin-
cides with the original Futaki invariant and its independence was shown by Futaki
[Fut83]). Next, we consider FutV (W ) from the geometric view point. We denote
by Aut0(M) the identity component of the group of holomorphic automorphisms of
M . Since Aut0(M) is a linear algebraic group [Fuj78], the Chevalley decomposition
allows us to obtain a semidirect decomposition

Aut0(M) = Autr(M)⋉Ru,

where Autr(M) is a reductive subgroup of Aut0(M), which is the complexification
of a maximal compact subgroup K, and Ru the unipotent radical of Aut0(M). We
also obtain the corresponding decomposition of h

h = hr + hu,

where hr(= κ(M)C), hu and κ(M) denotes the Lie algebras of Autr(M), Ru and K
respectively. Tian-Zhu also showed that F is a real valued proper convex function
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if restricted to the linear subspace hr,R := {W ∈ hr|Im(W ) ∈ κ(M)}. Hence, from
the definition of FutV , we know that there exists a unique holomorphic vector field
V ∈ hr,R such that FutV ≡ 0 on hr. Moreover, Saito [Sai14] recently showed that
the equation FutV ≡ 0 also holds on hu by modifying the earlier Mabuchi’s work for
classical Futaki invariant [Mab90]. Hence the modified Futaki invariant is, strictly
speaking, not an obstruction to the existence of a Kähler-Ricci soliton, but it tells
us how to choose the candidate V for a Kähler-Ricci soliton (ω, V ).

It is conjectured that the existence of a Kähler-Ricci soliton is equivalent to some
stabilities. Let us first see that the case of Kähler-Einstein metrics. Let ω0 ∈ c1(M)
be a Kähler metric on M and H the space of all Kähler-forms in c1(M). Mabuchi
[Mab86] introduced a functional Mab: H → R, calledK-energy map by integrating
Futaki invariant:

Mab(ω) = − 1

c1(M)n

∫ 1

0

∫
M

φ̇t(Scal(ωt)− n)ωn
t dt, ω ∈ H,

where ωt (0 ≤ t ≤ 1) is a path in H joining ω0 to ω and φt is a smooth function

defined by ωt = ω0 +
√
−1
2π ∂∂̄φt. Then Mab is well-defined, i.e., independent of a

choice of such a path ωt. One can also see that changing a base point ω0 ∈ H
affects only the constant term of Mab. Hence the derivative of the K-energy map
is independent of a choice of a base point ω0 ∈ H. In particular, the derivative of
the K-energy map along the one-parameter subgroup ρt = exp(tRe(V )) (t ∈ R) for
a holomorphic vector field V is given by the real part of the Futaki invariant of V :

d

dt
Mab(ρ∗tω) = Re(Fut(V )).

By the definition, the critical point of the K-energy map is, if exists, a Kähler-
Einstein metric. Hence one might think that the existence of a Kähler-Einstein
metric is equivalent to the coercivity1 of the K-energy map. Tian [Tian97] showed
that this statement is true when Aut(M) is discrete. If this is not the case, it is
known that the coercivity of the K-energy map leads to the existence of a Kähler-
Einstein metric [CTZ05]. But the converse problem is still open.

Donaldson threw the fresh light on this problem from the view point of geomet-
ric invariant theory. He constructed a suitable manifold with a Hamiltonian action
of an infinite dimensional group so that its moment map is given by the scalar
curvature (cf. [Don97]). He also introduced an algebraic definition of the Futaki
invariant and generalized it for any (possibly singular) Fano variety (cf. [Don02]).
Then the asymptotic behavior of the K-energy map near the boundary of H can be
controlled by the generalized Futaki invariants of all degenerations of M . Donald-
son’s formulation of this picture generalizes Ding-Tian’s K-stability [DT92] and is
called (Donaldson’s) K-stability: we consider a degeneration of M , called a test
configuration, which is parametrized by C and which can be regard as a flat mor-
phism of schemes M → C on which C∗ operates equivariantly, where each fiber of

1The word “coercive” is also called “strongly proper”, which is defined quantitatively by means
of Aubin’s functional. See [BN14, Section 3.6] for the precise definition.
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M is (possibly singular) Fano variety. Each test configuration gives rise to a holo-
morphic vector field on the central fiber (the fiber over {0}), and we can associate
it with a number by means of the generalized Futaki invariant. We say that M is
K-stable if this number is non-negative for any test configuration and equals to 0
if and only if this test configuration is trivial. The idea of K-stability comes from
Hilbert-Mumford criterion (cf. Section 3.1.1) in geometric invariant theory, which
says that we have only to test all degenerations of M parametrized by C to check the
stability. It is known that M is K-stable if and only if M admits a Kähler-Einstein
metric. The “if” part was proved by Ding-Tian [DT92], Berman [Ber12] and Stoppa
[Stop09]. The “only if” part was recently proved by Chen-Donaldson-Sun [CDS13]
and Tian [Tian12].

Berman-Nyström [BN14] generalized Donaldson’s K-stability for pairs (M,V )
by extending the modified Futaki invariant for normal Q-Fano varieties with log-
terminal singularities, and showed that if M admits a Kähler-Ricci soliton with
respect to V , then (M,V ) is K-polystable. However, it is still an open question
whether the K-polystability of (M,V ) leads to the existence of a Kähler-Ricci soliton
with respect to V .

Contributions

The author’s contributions in this paper consist of mainly two parts and are based
on [Tak14] and [Tak14-2]:

(1) The author gained the existence result of a Kähler-Ricci soliton on “admis-
sible bundles” which are special projective bundles introduced in [ACGT08]:

Theorem 1.1 ([Tak14]). Let M be an admissible bundle and Ω an admissible class
on M . We assume that Ω is proportional to c1(M). Then there exists an admissible
Kähler-Ricci soliton in Ω.

It is well-known that there exists a Kähler-Ricci soliton on a toric Fano manifold
[WZ04] and a certain CP 1-bundle [TZ02]. Theorem 1.1 generalizes the existence
result proved by Tian-Zhu [TZ02] to the case when the dimension of the fiber is
greater than 1.

We say that M is an admissible bundle if it is a projective bundle of the form
P(E0 ⊕ E∞) → S, where E0 and E∞ are projectively flat hermitian vector bundles
over a compact Kähler manifold S, and the base manifold S is locally a Kähler
product

∏
a∈A Sa for some finite subset A ⊂ N. Then we assume that each Sa has

a constant scalar curvature Kähler metric (±ga,±ωa) (where ± is chosen so that
ωa is positive definite) and the condition c1(E∞)/rank(E∞) − c1(E0)/rank(E0) =∑

a∈A[ωa/2π]. In short, an admissible Kähler metric is a Kähler metric (g, ω)
on M parametrized by real constants {xa}a∈A (0 < |xa| < 1) and a smooth function
Θ: [−1, 1] → R satisfying (i) Θ > 0 on (−1, 1), (ii) Θ(±1) = 0, (iii) Θ′(±1) = ∓2.
Then we call Ω := [ω] an admissible Kähler class. Changing of such a function Θ
gives a deformation family of Kähler metrics, but their corresponding Kähler forms
(and hence admissible Kähler classes) are the same, which only depends on a choice
of real constants {xa}a∈A (see Definition 2.6 for more detail).
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Restricting our attention to admissible Kähler metrics, the equation of admissible
Kähler-Ricci soliton can be reduced to a simple ODE for a function F : [−1, 1] → R:

F ′(z) + k · F (z) = P (z), F (z) > 0 on (−1, 1), F (±1) = 0,

where k ∈ R, P (z) and pc(z) are some polynomial functions of z depending only
on {xa}, and we put F (z) := Θ(z) · pc(z). We can solve this equation and get an
explicit solution F (z) = e−kz

∫ z
−1 P (t)ektdt under the condition F (−1) = 0. Hence

the condition F (1) = 0 is equivalent to the vanishing of the Maschler-Tønnesen
invariant MT(k) :=

∫ 1
−1 P (t)ektdt.

The author showed that if Ω is proportional to c1(M), P (t) has exactly one root
on the interval (−1, 1) (cf. Lemma 4.20). Combining with some results proved by
Maschler-Tønnesen [MT11], we can show that there exists a unique k0 ∈ R such that
MT(k0) = 0. Then F (z) = e−k0z

∫ z
−1 P (t)ek0tdt satisfies F (z) > 0 on (−1, 1) and

an admissible Kähler-Ricci soliton is naturally constructed from this F . We prove
Theorem 1.1 at the end of Section 4.2.2.

In the course of the proof of Theorem 1.1, the author found an explicit relation
between the modified Futaki invariant and Maschler-Tønnesen invariant (cf. Lemma
4.20), both of which are obstructions to the existence of admissible Kähler-Ricci
solitons.

(2) The author invented the following explicit formula of the function F (there-
fore the modified Futaki invariant FutV as well) for Fano complete intersections in
projective spaces:

Theorem 1.2 ([Tak14-2]). LetM be a Fano complete intersection in CPN , i.e., M is
the (N − s)-dimensional Fano variety in CPN defined by homogeneous polynomials

F1, . . . , Fs of degree d1, . . . , ds respectively, and ω =
√
−1
2π ∂∂̄ log

(∑N
i=0 |zi|2

)
the

Fubini-Study metric of CPN . We suppose that there exists a constant m > 0
such that mω ∈ c1(M). Let V ∈ sl(N + 1,C) be a holomorphic vector field on
CPN such that V Fi = αiFi for some constants αi (i = 1, . . . , s). Then we have
m = N + 1− d1 − · · · − ds and the function F can be written as

F(V ) = − (N − s)!

d1 · · · dsmN−s
exp

(
s∑

i=1

αi

)∫
CPN

s∏
i=1

(diω + diθV − αi)e
mθV · emω, (1.1)

where θV := V log
(∑N

i=0 |zi|2
)
.

From the above theorem, we know that F(V ) can be written as a linear combi-
nation of the integrals I0,l := ml

∫
CPN (θV )

lemθV ωN (0 ≤ l ≤ s).
Though we can easily get a method of computing F using the localization formula

for orbifolds in [DT92], our formula (1.1) is still valuable since we need not to assume
that M has at worst orbifold singularities. And we also do not require the explicit
geometric knowledge of M , V and ω (local coordinates (uniformization), the zero set
of V , curvature, etc.). More concretely, in order to apply the localization formula in
[DT92] directly to our case, we have to know:
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1. The zero set Zero(V ) of V , where we assume that Zero(V ) consists of disjoint
nondegenerate submanifolds {Zi}.

2. The values of integrals ∫
Zi

em(ω+θV )

det(Li,V +Ki)
,

where Li,V (W ) := [V,W ] denotes an endomorphism and Ki the curvature
matrix of the normal bundle of Zi.

If s(= codim(M)) = 1 and dim(Zi) = 0, the above integral can be computed by
taking local coordinates (or uniformization) around Zi. However, it is very hard to
compute in general.

In the case of Kähler-Einstein metrics, the Futaki invariant of complete intersec-
tion was first computed by Lu [Lu99] using the adjunction formula and the Poincare-
Lelong formula. Then it was also computed by many mathematicians using different
techniques ([PS04], [Hou08] and [AV11]). Our formula (1.1) has in common with
Lu’s one in that F(V ) is expressed by the degree d1, . . . , ds of defining polynomials
of M and the weights α1, . . . , αs of the actions induced by the vector field V . How-
ever, we need more knowledge of V to compute the integrals I0,l (0 ≤ l ≤ s) (see
Section 5.2.3 for more details).

We prove Theorem 1.2 by modifying Lu’s approach for Futaki invariant studied
in Section 5.1. The author also gave another proof of Theorem 1.2 in quantized
settings. First, we define the quantization of the function F in reference to the
quantized modified Futaki invariant introduced by Berman-Nyström [BN14], and
then show that this F coincides with the one defined as an integral invariant if the
variety has log-terminal singularities (cf. Proposition 5.12). Thanks to this algebraic
formula, we can compute F by the equivariant Riemann-Roch formula (cf. Lemma
5.16). We study these things in Section 5.2.2. Finally, in Section 5.2.3, the author
gave some examples of computing F for some varieties partly given by [Lu99]. The
author gave a new example of a singular cubic surface in CP 3 whose singularity is
not log-terminal (cf. Example 5.22).
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2 Preliminaries

Various holomorphic invariants are closely related to holomorphic equivariant coho-
mology. A famous example is the Futaki invariant. In this section, we first review
some basic materials about holomorphic equivariant cohomology.

Then we make a breif review of admissible bundles, which are projective bundles
of the form P(E0 ⊕ E∞) → S, where E0 and E∞ are projectively flat Hermitian
holomorphic vector bundles over a compact Kähler manifold S. Admissible bun-
dles were introduced by Apostolov-Calderbank-Gauduchon-Friedman [ACGT08] to
unifiy and generalize previous works on the existence problem of canonical metrics
on projective bundles.

2.1 Holomorphic equivariant cohomology

Let M be a complex manifold and G be a Lie group acting holomorphically on M .
Denote g := Lie(G) the Lie algebra of G. Then for each ξ ∈ g, we denote by ξRM ,
the real holomorphic vector field on M given by

ξRM (f)(p) =
d

dt
f(exp(−tξ) · p)

∣∣∣∣
t=0

, f ∈ C∞(M), p ∈ M.

and ξM := 1
2(ξ

R
M −

√
−1JξRM ), the complex holomorphic vector field on M . Let C[g]

be the algebra of complex valued polynomial function on g. We regard each element
in C[g]⊗A(M) as a polynomial function which take values in differential forms. The
group G acts on an element σ ∈ C[g]⊗A(M) by

(g · σ)(ξ) = g · (σ(g−1 · ξ)) , g ∈ G and ξ ∈ g.

Let AG(M) = (C[g]⊗A(M))G be the space of G-invariant elements in C[g]⊗A(M).
For σ ∈ C[g]⊗A(M), we define the bidegree of σ by

bideg(σ) = (deg(P) + p,deg(P ) + q),

where σ = P ⊗ φ (P ∈ C[g] and φ ∈ Ap,q(M)). For instance, bideg(ξ) = (1, 1).
Thus AG(M) =

⊕
Ap,q

G (M) has a structure of a bigraded algebra. We define the
equivariant exterior differential ∂̄g on C[g]⊗A(M) as

(∂̄gσ)(ξ) = ∂̄(σ(ξ)) + 2π
√
−1iξM (σ(ξ)), σ ∈ C[g]⊗A(M).

Then ∂̄g increases by (0, 1) the total bidegree on C[g]⊗A(M), and preserves AG(M).
Hence we have a complex (AG(M), ∂̄g).

Definition 2.1. The holomorphic equivariant cohomology Hg(M) of the pair
(M,G) is the cohomology of the complex (AG(M), ∂̄g).

Let E be a G-linearized holomorphic vector bundle over M , and Herm(E) the
space of Hermitian metrics on E. The group G acts on Herm(E) by the formula

(g · h)(u, v) = h(g−1 · u, g−1 · v), g ∈ G and u, v ∈ E.
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Hence for ξ ∈ g, we define the real Lie derivative of g on Herm(E) by

LR
ξ h =

d

dt
exp(tξ) · h

∣∣∣∣
t=0

and the complex Lie derivative of g on Herm(M) by

Lξh =
1

2
(LR

ξ h−
√
−1LR

Jξh).

We can also define the representation of g on the space of sections Γ(E) in a similar
way. Let ∇ be the Chern connection with respect to h, and put

µh,ξ = Lξ −∇ξM .

Since µh,ξ(fs) = ξMf ·s+f ·Lξs−ξMf ·s−f ·∇ξM s = f ·µh,ξ(s) for any f ∈ C∞(M)
and s ∈ Γ(E), we have µh,ξ ∈ Γ(End(E)). Moreover, one can show that

Lξh = −µh,ξ · h, iξM θ(h) = −µh,ξ, and iξMR(h) =

√
−1

2π
∂̄µh,ξ,

where θ(h) = ∂h · h−1 is the connection form and R(h) =
√
−1
2π ∂̄(∂h · h−1) is the

curvature form with respect to h. Define the equivariant curvature form Rg(h) by

Rg(h) = R(h) + µh,ξ.

Then Rg(h) is ∂̄g-closed and defines an element in H1,1
g (M).

Now let us consider the case when E = L is a G-linearized ample line bundle.

Let h be a Hermitian metric on L with positive curvature, i.e., ω := −
√
−1
2π ∂∂̄ log h

is Kähler.2 Then µh,ξ is a complex valued smooth function on M . Conversely, for a

given ω, there exists a Hermitian metric h on L such that ω = −
√
−1
2π ∂∂̄ log h up to

multiple a constant. Hence the function µh,ξ dose not depend on a choice of such a
h, which we also denote by µω,ξ.

Definition 2.2. The function µh,ξ (resp. µω,ξ) is said to be the holomorphy
potential of the pair (h, ξ) (resp. (ω, ξ)).

2.2 Admissible bundles

We make a brief review of special projective bundles, called “admissible bundles”
(see [ACGT08] for more detail).

Definition 2.3. A projective bundle of the form M = P(E0 ⊕ E∞) → S is called
an admissible bundle if it satisfies the following conditions:

2In this paper, we sometimes say ω = −
√
−1∂∂̄ log h ∈ 2πc1(L) is a Kähler form considering the

compatibility of notations in other references.
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1. S has the universal covering S̃ =
∏

a∈A Sa (for a finite index set A ⊂ N) of
simply connected Kähler manifolds (Sa,±ga,±ωa) of complex dimensions da
with (ga, ωa) being pullbacks of tensors on S; here, “±” means that either +ωa

or −ωa is a Kähler form which defines a Kähler metric denoted by +ga or −ga
respectively.

2. E0 and E∞ are holomorphic projectively-flat Hermitian vector bundles over S
of rank d0 + 1 and d∞ + 1 with c1(E∞)/rankE∞ − c1(E0)/rankE0 = [ωS/2π]
and ωS =

∑
a∈A ωa.

Here the second condition means that we can choose Hermitian metrics on E0

and E∞ whose Chern connections have tracelike curvatures Ω0⊗IdE0 and Ω∞⊗IdE∞

satisfying Ω∞ − Ω0 =
∑

a∈A ωa.
Let M be an admissible bundle. We define several notations and give some

remarks that we will use later:

• we set the index set Â := {a ∈ N ∪ {0,∞}|da > 0}.

• e0 = P(E0 ⊕ 0) (resp. e∞ = P(0 ⊕ E∞)) denotes a subbundle of M . Then e0
and e∞ are disjoint submanifolds of M .

• P(E0) → S (resp. P(E∞) → S) is equipped with the fiberwise Fubini-Study
metric with the scalar curvature d0(d0+1) (resp. d∞(d∞+1)), which is denoted
by (g0, ω0) (resp. (−g∞,−ω∞)).

• Let M̂ be the blow-up of M along the set e0 ∪ e∞, and set Ŝ = P(E0) ×S

P(E∞) → S. Then M̂ → Ŝ is a CP 1-bundle (cf. Figure 1).

• We define a U(1)-action on M by the canonical U(1)-action on E0. Then the
Hermitian structures of E0 and E∞ induce the (fiberwise) moment map z :
M → [−1, 1] of this U(1)-action with critical sets z−1(1) = e0 and z−1(−1) =
e∞(we will see the explicit construction of z at the beginning of Section 2.2.2).

• K denotes the infinitesimal generator of the U(1)-action on M .

• ê0 (resp. ê∞) denotes the exceptional divisor corresponding to the submanifold
e0 (resp. e∞).

• Set M0 = M\(e0 ∪ e∞). Then M0 → Ŝ is a C∗-bundle, i.e., we have an
isomorphism M0/C∗ ≃ Ŝ, where we remark that U(1) acts on M0 freely and
this action can be extended to the corresponding C∗-action on M0 (cf. Figure
1).

2.2.1 Admissible Kähler classes and metrics

Now we only deal with special Kähler metrics that have nice properties. Before
discussing this, we introduce the Kähler class to which they belong.
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Figure 1: The blow up M̂ → M

Definition 2.4. A Kähler class Ω on M is called admissible if there are real con-
stants xa, with x0 = 1 and x∞ = −1, such that the pullback of Ω to M̂ has the
form

Ω =
∑
a∈Â

[ωa]/xa + Ξ̂, (2.1)

where Ξ̂ is the Poincaré dual to 2π[ê0 + ê∞].

We can see that any admissible class Ω has the form

Ω =
∑
a∈A

[ωa]/xa + Ξ, (2.2)

where the pullback of Ξ to M̂ is [ω0] − [ω∞] + Ξ̂, i.e., the cohomology class [ω0] −
[ω∞] + Ξ̂ vanishes along the fiber ê0 → e0 and ê∞ → e∞.

Remark 2.5. We call the parameters {xa} the admissible data of Ω. Since Ω is
Kähler, the admissible data {xa} satisfies the condition:

1. 0 < |xa| < 1 for all a ∈ A

2. xa has the same sign as ga.

In this paper, we also assume that ±ga has constant scalar curvature Scal(±ga) =
±dasa, where sa are constants defined in [ACGT08, Section 1.2].

12



Definition 2.6. Let Ω be an admissible class with the admissible data {xa}. An
admissible Kähler metric g is the Kähler metric on M which has the form

g =
∑
a∈Â

1 + xaz

xa
ga +

dz2

Θ(z)
+ Θ(z)θ2, ω =

∑
a∈Â

1 + xaz

xa
ωa + dz ∧ θ (2.3)

on M0, where θ is the connection 1-form (θ(K) = 1) with the curvature dθ =∑
a∈Â ωa, and Θ is a smooth function on [−1, 1] satisfying

Θ > 0 on (−1, 1), Θ(±1) = 0 and Θ′(±1) = ∓2. (2.4)

The form ω defined in (2.3) is a symplectic form, and the compatible complex
structure J of (g, ω) is given by the pullback of the base complex structure and the
relation Jdz = Θθ.

Remark 2.7. Using the relation dθ =
∑

a∈Â ωa, we can check that ω is closed and
Ω = [ω]. Hence g is a Kähler metric whose Kähler form ω belongs to Ω.

Remark 2.8. The defining equation (2.3) is motivated by the representation of the
canonical admissible metric gc in polar coordinates. In this case, the corresponding
function Θc is given by Θc(z) = 1− z2 (cf. Lemma 2.11).

The condition (2.4) is the necessary and sufficient condition for extending a
metric g on M0 which has the form (2.3) to a smooth metric defined on M (cf.
Section 2.2.3). In order to compute simply, we sometimes use the function

F (z) = Θ(z) · pc(z) (2.5)

instead of Θ(z), where pc(z) =
∏

a∈Â(1 + xaz)
da is a polynomial of z. Then the

equation (2.4) forces F to fulfill the condition

F > 0 on (−1, 1), F (±1) = 0 and F ′(±1) = ∓2pc(±1). (2.6)

Remark 2.9. Generally, this is only necessary condition for F , i.e., we can not re-
store Θ from F satisfying (2.6). However, it is possible if g is extremal or Generalized
Quasi Einstein (GQE)3 (cf. [ACGT08, Section 2.4] and [MT11, Section 4]).

Remark 2.10. In the original paper [ACGT08, Section 1.3, Section 1.4], admis-
sible classes and admissible metrics are defined by (2.2) and (2.3) ”up to scale”
respectively because the condition of canonical metrics (cscK, extremal, GQE, etc.)
are preserved under the scaling of metrics. In this paper, the argument of scaling
metrics sometimes becomes essential. This is why we define them not up to scale.

3These are certain kinds of generalizations of constant scalar curvature Kähler metrics.
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2.2.2 Constructing canonical admissible Kähler metrics

We start with any (not necessarily Kähler) cohomology class Ω defined by the equa-
tion (2.2). Now we can show that the condition mentioned in Remark 2.5 is the
necessary and sufficient condition for Ω to be Kähler (and hence, be admissible).
We can prove this by constructing the “canonical admissible metric” gc and its sym-
plectic form ωc belonging to Ω: Let ρ0 (resp. ρ∞) be a U(1)-action on E0 (resp.
E∞) defined by scalar multiplication. Then the moment map of this action is given
by z0 =

1
2r

2
0 (resp. z∞ = 1

2r
2
∞), where we denote by r0 (resp. r∞) the norm function

induced by a Hermitian metric on E0 (resp. E∞). We also denote by K0 (resp.
K∞) the infinitesimal generator of ρ0 (resp. ρ∞). Let us consider the diagonal
U(1)-action ρ := ρ0⊕ρ∞ on E0⊕E∞ with the moment map z0+ z∞. Since ρ is free
restricted to the moment level z0+z∞ = 2, the restriction of the Hermitian metric on
this level set descends to the fiberwise Fubini-Study metric on the quotient manifold
M , which we denote by (gM/S , ωM/S). Since ρ0 commutes with ρ and preserves the
Hermitian structure, ρ0 also descends to a fiberwise Hamiltonian U(1)-action ρ̃0 on
M . From general results in symplectic geometry, the moment map of this action is
given by z = z0 − 1 = 1− z∞.

We extend (gM/S , ωM/S) to a tensor on M by requiring that the restriction to
the horizontal distribution on M is zero. Hence (gM/S , ωM/S) is semi-positive. In
order to get a (positive definite) metric on M , we set

gc =
∑
a∈A

1 + xaz

xa
ga + gM/S , ωc =

∑
a∈A

1 + xaz

xa
ωa + ωM/S .

Then (gc, ωc) is a Kähler metric with respect to the canonical complex structure Jc
on M . Moreover, we have:

Lemma 2.11 ([ACGT08], Lemma 1). For any admissible data {xa}, the corre-
sponding canonical Kähler metric on M is of the form (2.3), where

Θ(z) = Θc(z) = 1− z2.

Proof. The inverse image in E0 ⊕ E∞ of M0 may be viewed as an open subset of
O(−1)E0 ⊕O(−1)E∞ . Then (gc, ωc) is the Kähler quotient of the metric defined at
the moment level z0 + z∞ = 2:∑

a∈Â

(1 + xa)z0 + (1− xa)z∞
2xa

ga +
dz20
2z0

+
dz2∞
2z∞

+ 2z0θ
2
0 + 2z∞θ2∞, (2.7)

where θ0, θ∞ are connection 1-forms for the U(1)-line bundles O(−1)E0 , O(−1)E∞ ,
with θ0(K0) = 1, θ∞(K∞) = 1, dθ0 = −ω0 + Ω0, dθ∞ = ω∞ + Ω∞.4 Here we
take notice of two points: (1) The fiberwise Fubini-Study metric g0 (resp. g∞) is
normalized to have scalar curvature d0(d0 + 1) (resp. d∞(d∞ + 1)). (2) We extend

4The standard metric of Cn+1 can be written as the form dz2

2z
+ 2zθ2, where 2z is the square of

the norm function and θ a connection of the U(1)-line bundle O(−1) → CPn such that −dθ is the
Fubini-Study metric of CPn.
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(gM/S , ωM/S) to a tensor on M by requiring that the restriction to the horizontal
distribution on M is zero. We also remark that Ω0 (resp. Ω∞) is degenerate along
the fiber P(E0) → S (resp. P(E∞) → S).

Put L̂ := O(1)E0 ⊗ O(−1)E∞ and regard M0 as an open subset of the blow-up
M̂ = P(O ⊕ L̂). Since ρ is generated by K0 + K∞, the form θ∞ − θ0 is invariant
under ρ, which defines the connection θ on M0 → Ŝ and corresponding line bundle
L̂ such that dθ = dθ∞− dθ0 = ωŜ (where, we used Ω∞−Ω0 =

∑
a∈A ωa). Using the

relation z0 = 1+z and z∞ = 1−z and taking the quotient of (2.7) yields (gc, ωc) is an
admissible Kähler metric corresponding to the function Θ(z) = Θc(z) = 1− z2.

2.2.3 Symplectic potentials

Let M be an admissible bundle. Since M is a C∗-bundle over Ŝ, we can think M0

as a family of toric manifolds parametrized by a compact Kähler manifold Ŝ. Thus
we can apply some methods in toric geometry to each fiber of M . In particular, we
will mention symplectic potentials, which is important because the Kähler potential
of admissible metrics are represented by its Legendre transform.

We know that admissible metrics with a fixed symplectic form ω define a defor-
mation family of complex structures. Now we will show that this can be regarded
as the same complex structure Jc via U(1)-equivariant fiber-preserving diffeomor-
phisms.

Definition 2.12. A function u ∈ C0([−1, 1]) is called the symplectic potential
of an admissible Kähler metric Θ(z) if u′′(z) = 1/Θ(z), u(±1) = 0 and u − uc is
smooth on [−1, 1], where uc is the canonical symplectic potential defined by

uc(z) =
1

2
{(1− z) log(1− z) + (1 + z) log(1 + z)− 2 log 2} . (2.8)

The symplectic potential u is uniquely determined by the above condition. If we
put

y = u′(z) and h(y) = −u(z) + yz, (2.9)

then the direct computation shows that dcJy = θ and ddcJh(y) = ω −
∑

a∈Â ωa/xa
on M0. Let t : M0 → R/2πZ be an angle function (locally defined up to an
additive constant) and yc, hc the functions corresponding to uc defined by (2.9).
Since exp (y +

√
−1t) and exp (yc +

√
−1t) give C∗-coordinates on the fibers, there

exists a unique U(1)-equivariant fiber-preserving diffeomorphism Ψ of M0 such that

Ψ∗y = yc, Ψ
∗t = t and hence Ψ∗J = Jc. (2.10)

As Jc and J are integrable complex structures, Ψ extends to a U(1)-equivariant
diffeomorphism of M leaving fixed any point on e0 ∪ e∞. Hence Ψ∗ω is a Kähler
form on M with respect to Jc. As Ψ : (M,Jc) → (M,J) is biholomorphic by the
definition of Ψ, we obtain

ddcJch(yc) = ddcJch(Ψ
∗y) = Ψ∗ddcJh(y) = Ψ∗ω −

∑
a∈Â

ωa/xa,
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Ψ∗ω − ω = ddcJc(h(yc)− hc(yc))

on M0.

Lemma 2.13 ([ACGT08], Lemma 3). h(yc)− hc(yc) is extended smoothly on M .

Proof. Since Ψ is a diffeomorphism with Ψ∗y = yc, the statement holds if and only
if h(y)−hc(y) is smooth on M . By the definition of symplectic potentials, we know
that h(y) − hc(yc) = −(u(z) − uc(z)) + z(u′(z) − u′c(z)) is smooth on M . Hence
we have only to show hc(y) − hc(yc) is smooth on M . By (2.8), we can compute
hc(y)− hc(yc) as

hc(y)− hc(yc) = −1

2

(
log

(
1− z̃

1− z

)
+ log

(
1 + z̃

1 + z

))
,

where z̃ := Ψ∗z is the moment map of ω̃ := Ψ∗ω. Since Ψ is U(1)-equivariant and
fixes the critical set e0∪ e∞, we have z̃(±1) = ±1 regarded as a function of z. Using
the formula dz̃ = z′ · dz, we have

∇2z̃ = z′′dz2 + z′ · ∇2z.

Since z and z̃ are moment maps of the same U(1)-action ρ̃0 on M , they are Morse-
Bott functions with the same critical manifolds e0 and e∞ (i.e., the Hessians ∇2z
and ∇2z̃ are non-degenerate in the normal direction). Hence we have z̃′(±1) ̸= 0
and thus h(yc)− hc(yc) is smooth on M .

Let Kadm
ω be the moduli space of admissible metrics with a fixed symplectic form

ω. Then we obtain an inclusion map

Kadm
ω ↪→ {Kähler form in (Ω, Jc)}

defined by Θ 7→ Ψ∗ω, where (Ω, Jc) denotes the Dolbeault cohomology class with
respect to Jc.
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3 Geometric invariant theory

Stability is a condition on a orbit of a group action that should insure that the
moduli space of stable orbits be a well-behaved space. Mumford-Fogarty-Kirwan
[MFK94] studied an algebraic variety M on which an algebraic group G acts and
defined a variety M/G as a projective scheme of the graded ring consisting of all
G-invariant functions over M . The main difficulty in this approach is to understand
the projection map M to M/G. To define this map, we eliminate certain “bad”
orbits and consider only “semistable” ones.

This construction can be also interpreted from a view point of symlectic geom-
etry. Assume that M is a Kähler manifold with a Kähler form ω and a compact
group K acts on M by holomorphic isometry. Then Kempf-Ness theorem [KN79]
tells us that a G(:= KC)-orbit is semistable if and only if its closure contains a zero
of the moment map. This picture enables us to generalize this problem for infinite
dimensional settings.

In geometry, many important problems can be reduced to a PDE of the form

µ(x) = 0

where µ denotes the moment map and x runs over aG-orbit in an infinite dimensional
symplectic manifold (see, for instance [DK97]). Donaldson [Don97] showed that the
equation of constant scalar curvature Kähler (cscK) metric can be written as this
form, which gives us the formal aspects of stability.

3.1 Finite dimensional GIT

3.1.1 GIT stability

Let G be a reductive algebraic group with a finite linear representation V .

Definition 3.1. Let x ∈ P(V ), then

1. x is semistable if there exists a non-constant G-invariant homogenous polyno-
mial f such that f(x) ̸= 0.

2. x is polystable if x is semistable and the orbit G · x is closed in P(V )ss, where
we denote by P(V )ss the set of all semistable points.

3. x is stable if x is polystable and has discrete stabilizer.

We say that x is unstable if x is not semistable.

In particular, we have the following relations between three notions of stability

stable ⇒ polystable ⇒ semistable.

Since the tautological bundle O(−1) on P(V ) is just the blow-up at the origin, the
G-action defines a G-linearization of the line bundle O(−1) → P(V ). We often use
the following alternative interpretation of stability:

17



Proposition 3.2. Let x ∈ P(V ) and x̂ ∈ O(−1) a non-zero lift of x, then

1. x is semistable if and only if the closure of the orbit G · x̂ dose not intersect
the zero section of O(−1).

2. x is polystable if and only if the orbit G · x̂ is closed in O(−1).

Let A be the graded ring of all polynomials over V and AG the algebra of all
G-invariant elements in A. We define the quotient space P(V )//G as a projective
variety ProjAG. Then the inclusion AG ↪→ A induces a rational map P(V ) 99K
P(V )//G. This map is not defined at unstable points. But restricting attention to
the set of all semistable elements P(V )ss, we have a map P(V )ss → P(V )//G and
thus P(V )//G can be interpreted as the quotient of the set of all semistable points.

We want to generalize this picture for any polarized manifold (M,L) with a
group action, where we assume that G is a reductive algebraic group acting on M
homomorphically and can be lifted to a holomorphic action on L.

Definition 3.3. Let x ∈ M and x̂ ∈ Lx a non-zero lift of x, then

1. x is semistable if the closure of the orbit G·x̂ dose not intersect the zero section
of L.

2. x is polystable if the orbit G · x̂ is closed in L.

We also call a G-orbit is (poly/semi)stable if a point in the orbit is. This defini-
tion dose not depend on a choice of point in the orbit.

To see the relation with Proposition 3.2, we should consider the Kodaira embed-
ding M ↪→ P(H0(M,L))∗. For simplicity, we assume that L is very ample. Then
the G-action on L induces an action on H0(M,L) and L is just the restriction of
the hyperplane bundle O(1)|M .

Let Mss be the set of all semistable elements in M and set M//G := ProjAG,
where A :=

⊕∞
i=0H

0(M,Lk) is the graded ring of all functions over M . Then we
have a map Mss → M//G.

Let λ : C∗ → G be a nontrivial one-parameter subgroup and x ∈ M . Since M is
projective, we can define

x0 = lim
t→0

λ(t)x.

Since x0 is a fixed point of the G-action, we obtain a C∗-action on the fiber Lx0 ,
which has a weight −wλ(x). Or equivalently, wλ(x) is the unique integer such that
the limit

lim
t→0

twλ(x)λ(t)x̂

exists in L and is not zero, where x̂ is a non-zero lift of x (see Figure 2).

Proposition 3.4 (Hilbert-Mumford criterion). Let x ∈ M , then

1. x is semistable if and only if wλ(x) ≥ 0 for all λ.

2. x is polystable if and only if wλ(x) ≥ 0 for all λ and equality holds if and only
if λ fixes x.
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Figure 2: A C∗-orbit of a polystable point x

3. x is stable if and only if wλ(x) > 0 for all λ.

By virtue of Hilbert-Mumford criterion, we have only to consider any C∗-orbit
to check the stability.

3.1.2 Kempf-Ness theorem

Let (M,L) be an n-dimensional polarized manifold with a Kähler form ω ∈ c1(L)
and h the Lie algebra consisting of all holomorphic vector fields on M . We assume
that a compact group K acts on (M,ω) with a moment map µ by holomorphic
isometry.

First, we see that a choice of moment map is equivalent to a choice of linearization
of L. Let h1 be an ideal of h consisting of all holomorphic vector fields on M whose
zero set is non-empty.

Lemma 3.5 ([Kob95], Lemma 3, p.109). The space h1 coincides with the space of
holomorphic vector fields that can be lifted to L.

Proof. Let h be a Hermitian metric on L such that ω = −
√
−1
2π ∂∂̄ log h and θ its

connection form on the associated principal bundle L◦ := L−{zero section}. We fix
a non-vanishing holomorphic section σ of L◦ on a small open set U ⊂ M . Then we
have a natural identification L◦|U ≃ U ×C∗ with a coordinate system (z1, . . . , zn, t)
defined by σ. We denote by θU the pullback of the connection form θ by σ, then

θU = ∂(log ||σ||2h), θ = θU +
1

t
dt = ∂(log ||σ||2htt̄), ω =

√
−1

2π
∂̄θU ,

where 1
t dt is the Maurer-Cartan form along the fibers. Let V be a holomorphic

vector field on M belonging to h1. Then by [Kob95, Theorem 4.4], there exists a
function f on M such that

iV ω =

√
−1

2π
∂̄f.
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We lift V to a vector field V̂ on L◦ of type (1, 0) such that

−f = θ(V̂ ),

which determines V̂ uniquely. If we write

V̂ =
∑
i

fī
∂

∂zi
+ τ

∂

∂t
,

then
−f = θ(V̂ ) = θU (V ) +

τ

t
.

Applying ∂̄, we obtain

−∂̄f = ∂̄(iV θU ) + ∂̄
(τ
t

)
= −iV (∂̄θU ) + ∂̄

(τ
t

)
= 2π

√
−1iV ω + ∂̄

(τ
t

)
.

Hence ∂̄
(
τ
t

)
= 0. Since t is holomorphic, so is τ . Thus we have proved V̂ is

holomorphic. Hence V can be also lifted to a holomorphic vector field on L. This
completes the proof of Lemma 3.5.

Let G be a complexification of K and k, g the Lie algebra of K, G respectively.
By Lemma 3.5, the holomorphic vector field ξM defined by ξ ∈ k can be lifted to a
holomorphic vector field on L by

ˆξM = ˜ξM +
√
−1⟨µ, ξ⟩t,

where t := t d
dt denotes the canonical vector field on L. Thus we obtain an in-

finitesimal action of k and its complexified action of g on L. We suppose that these
infinitesimal action can be integrated to group actions on L.

Theorem 3.6 (Kempf-Ness, [KN79]). 1. A G-orbit is semistable if and only if
its closure contains the zero of the moment map. Such a zero is called a
“de-stabilizer” of the original G-orbit. The de-stabilizers all lie in the unique
polystable orbit in the closure of the original G-orbit.

2. A G-orbit is polystable if and only if it contains a zero of the moment map.
The zeros within it form a unique K-orbit.

Outline of the proof. We fix a point x ∈ M , its non-zero lift x̂ ∈ Lx and a K-
invariant Hermitian metric on L. The key idea is considering the following function,
called Kempf-Ness function:

Φ: G/K ∋ g 7→ log ||g · x̂|| ∈ R

Actually, this map is well-defined since the norm || · || is invariant under the action
of K. Hence we have only to consider the

√
−1k-direction. For ξ ∈ k, we set

x̂t := exp(
√
−1tξ) · x̂, xt := exp(

√
−1tξ) · x and define

f(t) := Φ(exp(
√
−1tξ)) = log ||x̂t||, t ∈ R.
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Then

f ′(t) =
1

2||x̂t||2
d

dt
||x̂t||2 = −⟨µ(xt), ξ⟩, (3.1)

f ′′(t) = d⟨µ(xt), ξ⟩(JξRM ) = 2πω(ξRM , JξRM ) = ||ξRM (xt)||2 ≥ 0. (3.2)

This yields that Φ is convex along geodesics and g is a critical point of Φ if and only
if µ(g · x) = 0. Regarding Φ as a function on the orbit G · x̂, we obtain

x is polystable ⇔ G · x̂ is closed in L

⇔ Φ has a critical point

⇔ G · x contains the zero of the moment map.

In particular, we have an isomorphism as a set

Mps/G ≃ µ−1(0)/K, (3.3)

where Mps is the set of all polystable points in M , and the RHS is a symplectic
quotient at moment level 0. Let us show a simple example.

Example 3.7. This example is a special case of [Szèk06, Example1.2.1]. We define
a U(1)-action on C2 by t · (z0, z1) := (tz0, t

−1z1) (t ∈ C; |t| = 1), which naturally
descends to a U(1)-action on CP 1. Since O(−1) is just the blow-up of C2 at the
origin, U(1) also acts on O(−1) and its dual O(1). Then the compatible moment
map for the action on O(1) → CP 1 with respect to the Fubini-Study metric of CP 1

is given by

µ([z0, z1])a =
|z0|2 − |z1|2

|z0|2 + |z1|2
a, [z0, z1] ∈ CP 1, a ∈ R(≃ u(1)).

Hence µ−1(0) is the “equator” of CP 1. Complexified orbits (C∗-orbits) of this action
are O1 := [1, 0], O2 := {[z0, z1]|z0 ̸= 0 and z1 ̸= 0} and O3 := [0, 1]. By Kempf-Ness
theorem, O2 is polystable, and O1, O3 are unstable. We can also show this by
Hilbert-Mumford criterion. For instance, if we set xt := [tz0, t

−1z1] for [z0, z1] ∈ O2,
we have limt→0 xt = [0, 1]. Then the induced action on O(−1)|[0,1] is given by
t · (0, 1) = (0, t−1), which has positive weight, and so is the induced action on
O(1)|[0,1]. Similarly, we can show that xt := [t−1z0, tz1] tends to [1, 0] as t → 0 and
the weight of the induced action on O(1)|[1,0] is positive. Hence O2 is polystable. In
this case, the isomorphism (3.3) is

O2/C∗ ≃ (the equator of CP 1)/U(1) ≃ {a point}.
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3.2 Infinite dimensional GIT

Let (M,ω) be a 2n-dimensional symplectic manifold. We say that an almost complex
structure J is ω-compatible if a Riemann metric

gJ(u, v) := ω(u, Jv)

is almost Kähler. Let J be the space of all ω-compatible almost complex structures.
Then J is an infinite dimensional manifold, and for each J ∈ J , the tangent space
at J is given by

TJJ = {A ∈ End(TM)|AJ + JA = 0, ω(u,Av) = ω(v,Au) = 0},

where we used that J2 = −IdTM and ω(Ju, Jv) = ω(u, v). The symplectic form ω
gives a natural identification between the tangent bundle and the cotangent bundle,
i.e., for A ∈ TJJ , we define

µA(u, v) = ω(u,Av). (3.4)

Then one can check that µA is a symmetric anti J-invariant section of T ∗M ⊗T ∗M .
Conversely, any symmetric anti J-invariant section of T ∗M ⊗ T ∗M gives rise to an
element in TJJ via the relation (3.4). Since J is the space of smooth sections of
an Sp(2n)/U(n)-bundle over M , it carries a natural Kähler structure. Actually, for
µ ∈ TJJ , we define a complex structure Ĵ on J by

(Ĵµ)(u, v) := −µ(Ju, v)

and a Kähler metric on J as an L2 inner product

(µ, ν)J :=

∫
M

gJ(µ, ν)ω
n, J ∈ J , µ, ν ∈ TJJ .

We denote by Jint a subvariety of J consisting of all ω-compatible integrable complex
structures on M . Let K := Symp0(M,ω) be the identity component of the group
of symplectic automorphisms. For simplicity, we assume that H1(M) = 0. Then K
is isomorphic to the group of Hamiltonian diffeomorphisms, and the Lie algebra k
of K consists of all Hamiltonian vector fields on M . We identify k with the space
of all Hamiltonians with mean value 0, which we denote by C∞

0 (M) (here, the Lie
bracket over C∞

0 (M) is given by the standard poisson bracket for functions).
For f, g ∈ C∞

0 (M), we define a K-invariant inner product on C∞
0 (M) as an L2

inner product

(f, g) =

∫
M

fgωn. (3.5)

The group K acts on the space J (as a pullback of a tensor), and this action
preserves holomorphic and symplectic structure of J . Donaldson [Don97] showed
that
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Proposition 3.8. Via the inner product (3.5), the moment map of the action of K
on Jint is given by

Jint ∋ J 7→ Scal(J)− Scal ∈ C∞
0 (M),

where Scal(J) denote the scalar curvature of gJ and Scal the average of scalar cur-
vature, which is independent of a choice of J ∈ Jint.

Next, we consider what a G(:= KC)-orbit is. Since K is infinite dimensional,
there may not exist a genuine complexification G. However, we can still define a
foliation of J , and we think of the leaves of this foliation as G-orbits. For a fixed
J0 ∈ Jint, the complexified orbit G · J0 is given by

G · J0 = {J ∈ Jint|∃φ ∈ Diff0(M) such that φ∗J = J0},

where we remark that for each J ∈ G · J0, a choice of φ is unique modulo the
action of automorphisms with respect to J0. Let H0 be the space of Kähler forms in
([ω], J0), where ([ω], J0) denotes the Dolbeault cohomology class with respect to J0.
For simplicity, we assume that the stabilizer of J0 is discrete. Then there exists a
unique φJ ∈ Diff0(M) such that (φJ)

∗J = J0, and we can define a map G ·J0 → H0

with this φJ as
G · J0 ∋ J 7→ (φJ)

∗ω ∈ H0.

Actually, the infinitesimal action of a Hamiltonian f ∈ C∞
0 (M) on ω is

L−J0Xf
ω = −d(iJ0Xf

ω) = −dJ0df = −2
√
−1∂∂̄f,

where Xf is the Hamiltonian vector field corresponding to f . The Kernel of this map
is exactly the group of Hamiltonian diffeomorphisms, thus we obtain G ·J0/K ≃ H0,
where the inverse morphism H0 → G · J0/K is given by Moser’s theorem [Mos65]
(i.e., for any ω̃ ∈ H0, there exists an isotopy joining ω to ω̃). Hence we conclude
that each G-orbits can be regarded as the space of Kähler metrics in a fixed Kähler
class with respect to a fixed complex structure5.

5In the Calabi-Yau theory, one studies the deformation of Kähler metrics in a fixed Kähler class.
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4 Stability of manifolds

4.1 K-stability

Futaki [Fut83] introduced a holomorphic invariant which generalizes the obstruction
of Kazan-Warner to prescribe Gauss curvature on S2. Futaki invariant is defined
as an integral invariant, which is a Lie algebraic character from the Lie algebra of
holomorphic vector fields into C. The vanishing of this holomorphic invariant is a
necessary condition for the existence of a Kähler-Einstein metric. But the problem
is that Futaki invariant dose not work when the manifold dose not have a non-trivial
holomorphic vector field.

Ding-Tian [DT92] extended Futaki invariant to a new obstruction to the exis-
tence of Kähler-Einstein metric on Fano manifolds using the jumping of complex
structures. However, this obstruction inherits original analytical definition and hard
to use. Besides, we had to assume the normality of varieties.

Finally, Donaldson [Don02] gave a pure algebraic definition of the Futaki in-
variant, and extending it to singular Fano varieties, which enabled us to define an
algebro-geometric stability of manifolds, called K-stability. In the definition of K-
stability, we can catch a glimpse of philosophy of Hilbert-Mumford criterion (cf.
Proposition 3.4).

4.1.1 Futaki invariant

Let (M,L) be a n-dimensional polarized manifold and h a Hermitian metric on L

with positive curvature ω = −
√
−1
2π ∂∂̄ log h ∈ c1(L) and h the Lie algebra consisting

of all holomorphic vector field onM . Then there exists a real-valued smooth function
κ (called Ricci potential) on M such that

Ric(ω)−HRic(ω) =

√
−1

2π
∂∂̄κ,

where HRic(ω) is the harmonic representative of Ric(ω). Then ω is cscK if and only
if κ is a constant. In particular, a Kähler form ω ∈ c1(M) is cscK if and only if it
is Kähler-Einstein. Calabi [Cal85] extended the original Futaki invariant [Fut83] to
an obstruction to the existence of cscK metrics for any polarized manifolds, which
is also called Futaki invariant:

Fut(W ) =
1

c1(L)n

∫
M

W (κ)ωn, W ∈ h1,

where h1 is an ideal of h defined in Section 3.1.2. The Futaki invariant Fut is a
holomorphic invariant, i.e., independent of a choice of Kähler form ω ∈ c1(L). The
vanishing of Fut is a necessary condition to the existence of a cscK metric, but
not sufficient. Tian [Tian97] found a Fano manifold whose automorphism group is
discrete. Hence Fut is trivial, but dose not admit any Kähler-Einstein metrics.
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4.1.2 Ding-Tian’s K-stability

Let M be an n-dimensional normal Q-Fano variety6. We first introduce a general-
ization of Futaki invariant. The original definition of (generalized) Futaki invariant
(hereafter referred as Futaki invariant) was given by Ding-Tian [DT92]. In this
paper, we adopt an alternative characterization shown by Hou [Hou08, Theorem
2.7] as the definition of Futaki invariant. For simplicity, let us make the following
assumptions:

1. M is a compact subvariety of a projective manifold N .

2. L is an ample line bundle on N such that on the regular part Mreg of M , the
isomorphism

L|Mreg ≃ −kKMreg (4.1)

holds for some integer k.

3. The Lie group G := Aut(M) acts on (N,L) such that the isomorphism (4.1)
is G-equivariant.

Remark 4.1. In fact, M can be embedded into CPN ≃ H0(M,−kKM ) for a
sufficiently large integer k, and (CPN ,O(1)) satisfies the requirement above.

Definition 4.2. A Hermitian metric h on −KMreg is said to be admissible if hk can
be extended to a Hermitian metric on L over N under the isomorphisms (4.1).

Let h be an admissible Hermitian metric on −KMreg with positive curvature ω :=

−
√
−1
2π ∂∂̄ log h.

Definition 4.3. We define the Futaki invariant by

Fut(W ) = − 1

c1(M)n

∫
M

µh,Wωn, (4.2)

where µh,W is the holomorphy potential of the pair (h,W ) (cf. Definition 2.2).

We remark that µh,W and ω can be extended continuously to M since h is
admissible. Hence the above integral is finite. Futaki invariant is independent of a
choice of admissible metric h on −KMreg , and coincides with the Futaki invariant
defined in Section 4.1.1 when M is smooth.

Now let M be a smooth Fano manifold and consider the Kodaira embedding
M ↪→ CPNk (Nk := dimH0(M,−kKM )) defined by a basis of H0(M,−kKM ). Let
V ∈ sl(Nk +1,C) be a holomorphic vector field on CPNk and σt the one parameter
subgroup generated by Re(V ). Set Mt := σt(M), then it is known that Mt coverges
to a subvariety M∞ in CPNk as t → ∞. Then σt fixes M∞. Therefore ReV is
tangent to M∞. Ding-Tian showed that the following:

6We say that a normal projective variety M is Q-Fano if for a large integer k, −kKMreg can be
extended to an ample line bundle over M .
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Theorem 4.4 ([DT92], Theorem 0.1 (also refer to [Ber12], [Stop09])). Let M , σt,
V , M∞ as above, and assume that the subvariety M∞ is normal and M admits a
Kähler-Einstein metric. Then Fut(V ) is non-negative.

Especially, when V is tangent to the image of M , we have Fut(V ) ≥ 0, and
replacing V with −V forces the converse inequality Fut(V ) ≤ 0. Thus we obtain:

Corollary 4.5 ([Fut83]). If M admits a Kähler-Einstein metric, then Fut(V ) = 0
for any holomorphic vector field V on M .

4.1.3 Donaldson’s K-stability

Let (M,L) be an n-dimensional polarized manifold.

Definition 4.6. A test configuration for (M,L), of exponent r consists of:

• A flat morphism of schemes M → C.

• A line bundle L → M.

• An equivariant C∗-action ρ on L → M → C, where C∗-acts on C by scalar
multiplication.

such that the generic fiber (M1, L1) is isomorphic to (M,Lr).

In the original definition proposed by Donaldson [Don02], M is a (not neces-
sarily normal) scheme. However, in the case of anti-canonical polarizations, it is
known that we have only to test on the “special” test configurations to check the
K-polystability, i.e., test configurations whose central fibers are normal Q-Fano va-
rieties with log-terminal singurarities (cf. Section 4.2.3).

There are a few remarks which immediately follow form the definition. First,
all the fibers (Mt, Lt) (t ∈ C∗) are isomorphic to the generic fiber (M1, L1) via the
action ρ. Second, the C∗-action induces an action on the central fiber (M0, L0),
and on the cohomology H0(M0, kL0) which we denote by ρk. We also let Bk ∈
End(H0(M0, kL0)) be defined by

ρk(w) = exp(tBk) = wBk for w = exp t ∈ R+ (t ∈ R).

According to [PS07], a test configuration can be embedded into a projective
space as in the following:

Lemma 4.7 ([PS07], Lemma 4.1). Let T be a test configuration of exponent r = 1
for the pair (M,L). Let h be a positively curved metric on L. Let k be an integer
such that Lk is very ample. Then there is

1. an orthogonal basis s = (s0, . . . , sNk
) of H0(M,kL) ≃ H0(M1, kL1).

2. an embedding Is : (kL → M → C) ↪→ (O(1) × C → CPNk−1 × C → C),
satisfying the following property: for every w ∈ C∗ and every lt ∈ kLt,

Is(ρ(w)lt) = (wBk · Is(lt), wt),
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where wBk is a diagonal matrix whose eigenvalues are the eigenvalues of
ρk(w) ∈ End(H0(M0, kL0)). The matrix Bk is uniquely determined, up to
a permutation of the diagonal entries, by k and the test configuration T .
Moreover, the basis s is uniquely determined by h and T up to an element of
U(Nk + 1) which commutes with Bk.

In particular, we obtain an embedding M ↪→ CPNk−1 × C and a family of
subschemes of CPNk−1 parametrized by t ∈ C. These aspects are very similar to
those given by Ding-Tian [DT92] (see Section 4.1.2). But there are some obvious
differences between them. Ding-Tain considered only Fano manifolds polarized by
the anti-canonical bundle, and restricted their attention to test configurations with
normal central fibers. On the other hand, Donaldson [Don02] invented an algebraic
definition of Futaki invariant, which can be applied, more widely, to the central fiber
of any test configuration.

Let (M,L) be an n-dimensional polarized scheme andW be a holomorphic vector
field on M generating a C∗-action which can be lifted to L. We define the quantized
Futaki invariant Futk(W ) at level k by the weight of the induced C∗-action on the
top exterior power

∧Nk H0(M,kL), i.e.,

Futk(W ) :=
d

dt

∣∣∣∣
t=0

Trace(etW )|H0(M,kL) =

Nk∑
i=1

w
(k)
i ,

where (w
(k)
i ) are the joint eigenvalues of the infinitesimal action generated by Re(W ).

By the general theory, we know that the integers Futk(W ), Nk are given by polyno-
mials of k for sufficiently large k. Moreover,

Lemma 4.8. The quantity Futk(W )
kNk

is bounded, i.e., Futk(W ) is at most the degree
of Nk plus 1.

Proof. We can prove this in the same way as [PS07, Lemma 3.1]. For simplicity,
we may assume that L is very ample. Then M can be embedded to CPN1−1 and
the image of M is a subscheme of CPN1−1 defined by a homogeneous ideal I ⊂
C[z1, . . . , zN1 ], where (z1, . . . , zN1) is the standard coordinates of CN1 . We can write

C[z1, . . . , zN1 ]/I =
⊕
i≥0

Si/Ii,

where Si ⊂ C[z1, . . . , zN1 ] is the space of polynomials which are homogeneous of
degree i and Ii = Si ∩ I. Then we have H0(M,kL) ≃ Sk/Ik for sufficiently large k.
This isomorphism is C∗-equivariant if t ∈ C∗ acts on Sk by the formula

t · zp11 · · · zpN1
N1

= t
p1w

(1)
1 +···+pN1

w
(1)
N1 · zp11 · · · zpN1

N1
, p1 + · · ·+ pN1 = k.

Thus,

{w(k)
1 , . . . , w

(k)
Nk

} ⊂ {p1w(1)
1 + · · ·+ pN1w

(1)
N1

|p1 + · · ·+ pN1 = k}.
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On the other hand, we clearly have |p1w(1)
1 + · · ·+ pN1w

(1)
N1

| ≤ supi=1,...,N1
|w(1)

i | · k,
which yields that

|w(k)
i | ≤ Ck for i = 1, . . . , Nk

and hence
|Futk(W )| ≤ CkNk.

This completes the proof of Lemma 4.8.

By Lemma 4.8, we have an asymptotic expansion as k → ∞:

2Futk(W )

kNk
= F0 + F1k

−1 +O(k−2). (4.3)

Definition 4.9. We define the Futaki invariant Fut(W ) of the pair (M,L) with a
holomorphic vector field W to be the coefficient F1.

Proposition 4.10 ([Don02], Proposition 2.2.2). When M is smooth, Donaldson-
Futaki invariant is given by

F1 =
1

c1(L)n

∫
M

W (κ)ωn.

Proof. By the (equivariant) Riemann-Roch formula, we have

Nk =

∫
M

ch(Lk)td(M)

=

∫
M

ekω
(
1 +

1

2
Ric(ω) + · · ·

)
=

kn

n!

∫
M

ωn +
kn−1

2(n− 1)!

∫
M

Ric(ω) ∧ ωn−1 +O(kn−2)

=
c1(L)

n

n!
kn +

c1(L)
n

2n!
Scal · kn−1 +O(kn−2)

=: Ckn +Dkn−1 +O(kn−2),

Futk(W ) =
d

dt
Trace(etW )|H0(M,kL)

∣∣∣∣
t=0

=
d

dt

∫
M

ek(ω+tµh,W )

(
1 +

1

2
(Ric(ω) + t∆∂µh,W ) + · · ·

)∣∣∣∣
t=0

=
kn

2(n− 1)!

∫
M

µh,WRic(ω) ∧ ωn−1 +
kn

n!

∫
M

(
1

2
∆∂µh,W + kµh,W

)
ωn +O(kn−1)

=
kn+1

n!

∫
M

µh,Wωn +
kn

2n!

∫
M

µh,V Scal(ω)ω
n +O(kn−1)

=: Akn+1 +Bkn +O(kn−1).

Since

Futk(W )

kNk
=

A+Bk−1 +O(k−2)

C +Dk−1 +O(k−2)
=

A

C
+

AD −BC

C2
k−1 +O(k−2),
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we obtain

F1 = 2 · AD −BC

C2

= − 1

c1(L)n

∫
M

µh,W (Scal(ω)− Scal)ωn

=
1

c1(L)n

∫
M

µh,W∆∂κω
n

=
1

c1(L)n

∫
M

W (κ)ωn.

If we choose another lift of W , then the eigenvalues of the infinitesimal action on∧Nk H0(M,kL) are given by (w
(k)
i + kα) for some k-independent constant α. Then

we have
2
∑Nk

i=1(w
(k)
i + kα)

kNk
=

2
∑Nk

i=1w
(k)
i

kNk
+ 2α.

Hence the choice of lift of W contributes only the constant term in the RHS of (4.3),
and hence Fut(W ) is independent of a choice of lift of W to L.

Let (M,L) be a polarized manifold. A test configuration T for (M,L) induces the
C∗-action on the central fiber (M0, L0). We denote by W its infinitesimal generator.
We say that a test configuration T is a product configuration if M = M ×C and
its C∗-action ρ is given by a scalar multiplication to the second factor of M. The
analogue of the Hilbert-Mumford criterion in this setting is the following:

Definition 4.11. We say that the pair (M,L) is K-polystable if

1. Fut(W ) ≥ 0 for any test configuration T for (M,L).

2. M0 is normal and Fut(W ) = 0 if and only if the test configuration is a product
configuration7.

Theorem 4.12 ([CDS13] and [Tian12]). If a Fano manifold M is K-polystable, then
it admits a Kähler-Einstein metric.

In the case of general polarizations, it is conjectured that the existence of a
cscK metric is equivalent to more stronger stability, for instance, strong K-stability
[Mab09] and uniform K-stability [Szèk06].

4.2 Kähler-Ricci solitons

Tian-Zhu generalized Futaki invariant for the pair (M,V ) of a Fano manifold M
and a holomorphic vector field V , called the modified Futaki invariant, which is an
obstruction to the existence of Kähler-Ricci soliton with respect to V . However,
it looks different in character compared to original Futaki invariant. First, we can

7There is an example of a non-normal test configuration with Fut(W ) = 0 (cf. [LX11], [Mab13]).
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always choose V so that the modified Futaki invariant vanishes. Second, the modified
Futaki invariant is closely related to the canonical lift to the anti-canonical bundle
−KM although Futaki invariant is independent of a choice of lift (see Section 4.1.3).

In the case of anti-canonical polarizations, the author generalized Tian-Zhu’s
existence result [TZ02] of Kähler-Ricci solitons on a certain CP 1-bundle over special
manifold, to an admissible bundle on which the existence of extremal metrics were
studied by Gauduchon and other collaborators. We study this construction method
in Section 4.2.2.

In [BN14, Theorem 1.3], Berman-Nyström have shown that a normal Q-Fano va-
riety admitting a (singular) Kähler-Ricci soliton necessarily has at worst log-terminal
singularities. They studied the existence problem of Kähler-Ricci solitons on this
class of varieties. They generalized Donaldson’s K-stability to Kähler-Ricci soliton
case, and showed that the existence leads to K-polystability for the pair (M,V ) (cf.
Section 4.2.3).

4.2.1 The modified Futaki invariant

Let M be a n-dimensional Fano manifold and h a Hermitian metric on −KM with
positive curvature ω = −

√
−1
2π ∂∂̄ log h ∈ c1(M). Let h be the Lie algebra consisting

of all holomorphic vector fields on M . Let κ be a Ricci potential of ω defined by

Ric(ω)− ω =

√
−1

2π
∂∂̄κ.

Then one can see that ω is a pair (ω, V ) is a Kähler-Ricci soliton if and only if
κ = µh,V up to an additive constant. The modified Futaki invariant is defined
as a functional

FutV (W ) =
1

c1(M)n

∫
M

W (κ− µh,V )e
µh,V ωn, V ∈ h,

which is independent of a choice of a Hermitian metric h [TZ02, Section 2].

4.2.2 Examples on admissible bundles

We first consider the existence problem of Generalized Quasi Einstein (GQE) met-
rics, which is a straightfoward extension of Kähler-Ricci solitons for any polarizations
defined as follows:

Definition 4.13. Let M be a compact complex manifold with Kähler class Ω. we
say that a Kähler form ω ∈ Ω is Generalized Quasi Einstein (GQE) if it satisfies
the equation

Ric(ω)−HRic(ω) = LV ω (4.4)

for some homolorphic vector field V on M .

Let κ be a Ricci potential of an admissible metric g:

Ric(ω)−HRic(ω) =
√
−1∂∂̄κ. (4.5)
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Then a Kähler metric is GQE if and only if its Ricci potential κ is Killing, i.e.,
Jgradκ is a Killing vector field (cf. [Kob95, p.93, 94]).

Examples of GQE metrics on admissible bundles were studied by Maschler and
Tønnesen-Friedman [MT11]. They showed that there exists an admissible GQE
metric in any admissible class if its admissible data {xa} is sufficiently small, i.e.,
|xa| is sufficiently small for all a ∈ A. In reference to this result, we study the case
when Ω is proportional to c1(M) and prove Theorem 1.1.

Now we start with the review of constructing GQEmetrics on admissible bundles.
We adopt the notations defined in Section 2.2. Let M be an n

(
:=
∑

a∈Â da + 1
)
-

dimensional admissible bundle and Ω an admissible class on M . Let C∞([−1, 1]) be
the space of smooth functions over the interval [−1, 1].

Lemma 4.14 ([MT11], Proposition 3.1). For any admissible metric and S ∈ C∞([−1, 1]),
we have

∆∂S(z) = − [S′(z) · F (z)]′

2pc(z)
. (4.6)

Proof.

∆∂S(z) = −1

2
(ddcS(z), ω) = −1

2
(dJdS(z), ω) = −1

2
(d(S′(z)Jdz), ω)

= −1

2

(
d

(
S′(z)

F (z)

pc(z)
θ

)
, ω

) (
Because Jdz = Θ(z)θ =

F (z)

pc(z)
θ.

)
= −1

2

((
[S′(z)F (z)]′

pc(z)
− S′(z)F (z)p′c(z)

(pc(z))2

)
dz ∧ θ, ω

)

−1

2

S′(z)
F (z)

pc(z)

∑
a∈Â

ωa, ω

 Because dθ =
∑
a∈Â

ωa.


= −1

2

[S′(z)F (z)]′

pc(z)
+

1

2
· S

′(z)F (z)

pc(z)

p′c(z)
pc(z)

−
∑
a∈Â

daxa
1 + xaz


= −1

2

[S′(z)F (z)]′

pc(z)

(
Because (dz ∧ θ, dz,∧θ) = 1, (ωa, ω) =

daxa
1 + xaz

.

)
.

According to [ACG06, (79)], the scalar curvature of an admissible metric is given
by

Scalg(ω) =
1

2

∑
a∈Â

2dasaxa
1 + xaz

− F ′′(z)

pc(z)

 . (4.7)

Let C∞
0 ([−1, 1]) be the set of smooth function on [−1, 1] normalized so that they

integrate to zero when viewed as smooth function on M by compositing with z.
Then,

Corollary 4.15 ([MT11], Corollary 3.2). Given an admissible metric g, its Lapla-
cian gives a surjective map from C∞

0 ([−1, 1]) to itself (considered as a space of
smooth functions over M).
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Proof. Given R(z) ∈ C∞
0 ([−1, 1]), we can obtain an explicit solution of ∆∂S(z) =

R(z) outside the critical set of z by virtue of Lemma 4.14. Using de l’Hôpital’s rule
and (2.6), this solution extends to the critical set of z.

Taking the trace of (4.5), we obtain

Scalg(ω)− Scal = −∆∂κ (4.8)

Combining with Corollary 4.15 and (4.7), we have:

Corollary 4.16 ([MT11], Corollary 3.3). The Ricci potential κ of an admissible
metric is a function of z.

For any admissible metric, the space of Killing potentials depending only on z is
a vector space spanned by 1 and z, i.e., the space of all affine functions of z. Hence,

Lemma 4.17. An admissible metric is GQE if and only if there exists k ∈ R such
that κ = kz up to an additive constant.

Define the polynomial P (t) by

P (t) = 2

∫ t

−1

∑
a∈Â

dasaxa
1 + xas

 · pc(s)−
β0
α0

· pc(s)

 ds+ 2pc(−1), (4.9)

where α0 and β0 are constants defined by

α0 =

∫ 1

−1
pc(t)dt and β0 = pc(1) + pc(−1) +

∫ 1

−1

∑
a∈Â

dasaxa
1 + xat

 pc(t)dt. (4.10)

Clearly, these quantities are independent of a choice of admissible metric, depend
only on M and the admissible class Ω. We added a constant 2pc(−1) to the RHS of
(4.9) so that P (±1) = ∓2pc(±1) holds. Then P (t) has the following properties:

Lemma 4.18 ([MT11], Lemma 4.3). For any given admissible data, P (t) satisfies:
If d0 = 0, then P (−1) > 0, otherwise P (−1) = 0. If d∞ = 0, then P (1) < 0,
otherwise P (1) = 0. Furthermore, P (t) > 0 in some (deleted) right neighborhood
of t = −1, and P (t) < 0 in some (deleted) left neighborhood of t = 1. Concretely,
we see that if d0 > 0, then P (d0)(−1) > 0 (and the lower order derivatives vanish),
while if d∞ > 0, then P (d∞)(1) has sign (−1)d∞+1 (and the lower order derivatives
vanish).

Lemma 4.19. For any admissible metric, we have

F ′(z) + κ′(z) · F (z) = P (z). (4.11)

Proof. From (4.6) – (4.10), we get

F ′′(z) + [κ′(z) · F (z)]′ = P ′(z),
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where we used the relation Scal = β0

α0
(cf. [ACGT08, Section 2.2]). Since F (z) and

P (z) have the same boundary condition F (±1) = P (±1) = ∓2pc(±1), integrating
the above on z yields

F ′(z) + κ′(z) · F (z) = P (z).

In particular, by Lemma 4.17 and Lemma 4.19, the admissible GQE condition
can be written as

F ′(z) + k · F (z) = P (z)

for some constant k ∈ R. The point is that the admissible GQE condition can be
reduced to simple ODE of z. Hence we get an explicit solution

F (z) = e−kz

∫ z

−1
P (t)ektdt (4.12)

under the boundary condition F (−1) = 0. In order to construct a GQE metric from
this F (z), we also need F (z) to satisfy F (1) = 0. Therefore

MT(k) :=

∫ 1

−1
P (t)ektdt (4.13)

is an obstruction to the existence of admissible GQE metrics with the Ricci potential
kz, which we would like to call Maschler-Tønnesen invariant. Actually, since
P (t) depends only on M and Ω, so MT is.

Next, we assume that Ω is proportional to c1(M). Then there are two obstruc-
tions to the existence of an admissible Kähler-Ricci soliton, namely, the modified
Futaki invariant and Maschler-Tønnesen invariant. We study the relation between
these two invariants. For any k ∈ R, let Xk

J be a holomorphic vector field such
that iXk

J
ω =

√
−1∂̄Jkz, where J is the compatible complex structure induced by an

admissible metric. Since K is the infinitesimal generator of the U(1)-action on M
and the function z is the moment map of this action, we get iKω = −dz. Hence
X2

J = −JK −
√
−1K and Xk

J = k
2 ·X2

J = −k
2 (JK +

√
−1K).

Lemma 4.20. Let M and Ω are defined as above. Then

1. If we set Ω = 2πλ−1c1(M) for some positive constant λ, then we have λ =
d0+d∞+2

2 .

2. The modified Futaki invariant and Maschler-Tønnesen invariant have a relation

Futλ−1Xk
J
(X2

J) = α−1
0 exp

(
−kC

2λ

)
MT(k). (4.14)

as a function of k, where C := d0 − d∞ is a constant.

Proof. In this proof, we consider a fixed admissible metric g whose Kähler form ω
belongs to Ω.
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(1) Put g′ = λg and ω′ = λω, then (g′, ω′) defines a Kähler structure and ω′ ∈
2πc1(M). Let κ be the Ricci potential of ω. Since the Ricci form is preserved under
scaling of ω, κ is also the Ricci potential of ω′. Let µω′,X be the holomorphy potential
of the pair (ω′, X). Then µω′,X satisfies the equation −∆∂,g′µω′,X+µω′,X+X(κ) = 0,
where ∆∂,g′ is the ∂-Laplacian with respect to g′. We set µω′,X2

J
= 2λz−C for some

constant C, then C is computed by

C = −2∆∂,g′λz + 2λz + κ′(z) ·Θ(z)

= −2∆∂,gz + 2λz + κ′(z) ·Θ(z)

=
F ′(z)

pc(z)
+ 2λz + κ′(z) ·Θ(z),

(4.15)

where we used (4.6) andX2
J(κ(z)) = −JK(κ(z)) = −d(κ(z))(JK) = κ′(z)Jdz(K) =

κ′(z) ·Θ(z), and denoted by ∆∂,g the ∂-Laplacian with respect to g. In order to find
C as above, we take the limit of z to the boundary. Since

F ′(z)

pc(z)
= Θ′(z) + Θ(z) · p

′
c(z)

pc(z)
= Θ′(z) + Θ(z) ·

∑
a∈Â

xada
1 + xaz

,

using (2.4) and de l’Hôpital’s rule, we get

lim
z→1

F ′(z)

pc(z)
= −2− 2d∞.

Similarly, we have limz→−1
F ′(z)
pc(z)

= 2 + 2d0. Therefore combining with (4.15), we

obtain C = −2−2d∞+2λ = 2+2d0−2λ, and hence C = d0−d∞ and λ = d0+d∞+2
2 .

(2) From the argument in (1), we have µω′,X2
J
= 2λz−C and µω′,Xk

J
= kλz− kC

2 .

Hence, by (4.11) and (4.15), we have

2λzpc(z)− Cpc(z) + P (z) = 0.

Hence the direct computation shows that

(2π)nc1(M)n = λn

∫
M

ωn

= λnn!

∫
M

pc(z)

∧
a∈Â

(ωa/xa)
da

da!

 dz ∧ θ

= 2πλnn!α0Vol

S,
∏
a∈Â

ωa

xa

 ,
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∫
M

µω′,X2
J
exp(µω′,λ−1Xk

J
)(ω′)n

= λn

∫
M
(2λz − C)ekz−

kC
2λ ωn

= λnn! exp

(
−kC

2λ

)∫
M
(2λz − C)ekzpc(z)

∧
a∈Â

(ωa/xa)
da

da!

 dz ∧ θ

= 2πλnn! exp

(
−kC

2λ

)
Vol

S,
∏
a∈Â

ωa

xa

∫ 1

−1
(2λz − C)pc(z)e

kzdz

= −2πλnn! exp

(
−kC

2λ

)
Vol

S,
∏
a∈Â

ωa

xa

MT(k),

where we used the equation ωn/n! = pc(z)
(∧

a∈Â
(ωa/xa)da

da!

)
dz ∧ θ (cf. [ACGT08,

Section 2.2]). Thus we obtain

Futλ−1Xk
J
(X2

J) = α−1
0 exp

(
−kC

2λ

)
MT(k).

Corollary 4.21. We assume the same as above. Then Ω = 2πc1(M) holds if and
only if d0 = d∞ = 0, i.e., a blow-down occurs. In this case, we have

Futλ−1Xk
J
(X2

J) = α−1
0 MT(k) (4.16)

for any admissible metrics.

From Lemma 4.18, we know that the polynomial P (t) has at least one root in
the interval (−1, 1). If P (t) has exactly one root in the interval (−1, 1), Maschler-
Tønnesen invariant has good behavior.

Lemma 4.22 ([MT11], Proposition 4.2). If the function P (t) has exactly one root
in the interval (−1, 1), then there exists a unique k0 ∈ R such that MT(k0) = 0.
Moreover, for this k0, the function F (z) defined by (4.10) satisfies F > 0 on (−1, 1),
and an admissible GQE metric is naturally constructed from F .

Proof. Since P (t) has exactly one root t0 in the interval (−1, 1), we may write

P (t) = (t− t0)p(t).

By Lemma 4.18, p(t) is negative for all t ∈ (−1, 1). Let us consider the function

G(k) := e−kt0

∫ 1

−1
P (t)ektdt =

∫ 1

−1
p(t)(t− t0)e

k(t−t0)dt.

By the direct computation, one can show that G′(k) is negative and limk→±∞G(k) =
∓∞, which yield the existence and uniqueness of k0 such that G(k0) = 0, or equiva-
lently, MT(k0) = 0. It is clear that F (t) is positive on (−1, 1) since P (t)ek0t changes
sign exactly once in (−1, 1). This completes the proof of Lemma 4.22.
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Proof of Theorem 1.1. This is a direct corollary from Lemma 4.20: from the ar-
gument in the proof of Lemma 4.20, we know that P (t) = (C − 2λt)pc(t), where
λ = d0+d∞+2

2 and C = d0−d∞ are constants. Thus P (t) has exactly one root t = C
2λ

in the interval (−1, 1). Therefore we have the desired result by Lemma 4.22.

Our theorem includes Tian-Zhu’s example on a CP 1-bundle [TZ02, Example 4.1]
as a special case:

Example 4.23. We consider an admissible bundle M := CP l+1#CP l+1 = P(O ⊕
O(1)) → CP l for l ≥ 1. Since the 2nd betti number of CP l is 1, every Kähler class
on M is admissible up to scale (cf. [ACGT08, Remark 2]), so c1(M) is admissible up
to scale. By Corollary 4.21, there exists an admissible class Ω with the admissible
data x ∈ (−1, 1) (x ̸= 0) such that Ω = 2πc1(M). Then we have

MT(0) = −2

∫ 1

−1
t(1 + xt)ldt = −4

[(l+1)/2]∑
i=1

(
l

2i− 1

)
x2i−1

2i+ 1
.

This is a linear combination of monomials of odd degree with negative coefficients,
that yields MT(0) ̸= 0. Combining with Theorem 1.1, there exists an admissible
Kähler-Ricci soliton with respect to a non-trivial holomorphic vector field.

4.2.3 K-stability for Kähler-Ricci solitons

In this section, we study K-stability for Kähler-Ricci solitons introduced by Berman-
Nyström [BN14]. LetM be a Fano manifold and a pair (ω, V ) a Kähler-Ricci soliton:

Ric(ω)− ω = LV ω. (4.17)

Taking the imaginary part of the above equation yields LIm(V )ω = 0, hence ω is
invariant under the group action generated by Im(V ). We first see that the Ricci
soliton vector field V comes from an element in a Lie algebra of a complex torus
acting homomorphically on M . More generally, we show that:

Proposition 4.24 ([BN14], Lemma 2.13). Let M be a Fano manifold and V a holo-
morphic vector field on M . If there exists a Kähler metric ω which is invariant under
the action of Im(V ), then there exists a complex torus Tc acting holomorphically
on M such that Im(V ) may be identified with an element in the Lie algebra of the
corresponding real torus T ⊂ Tc.

Proof. First, we check that the isometry group K of ω is a compact Lie group.
This is shown by considering the canonical imbedding M ↪→ H0(M,−kKM ) and
the K-invariant Hilbert norm ||s||2 :=

∫
M |s|2kωn (s ∈ H0(M,−kKM )). Actually,

K is identified with a subgroup of the group consisting of unitary transformations
on H0(M,−kKM ) with respect to || · ||, which yields K is compact. Taking the
topological closure of the 1-parameter subgroup generated by Im(V ) in K, we get
a real torus T as desired. In general, any holomorphic action of a real torus on M
can be naturally extended to the corresponding complex torus action on M .
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Definition 4.25. We say that a variety M has log-terminal singularities if we can
write K

M̃
= π∗KM +

∑
i aiEi with ai > −1 for a log resolution π : M̃ → M , where

ai ∈ Q and Ei are exceptional irreducible divisors.

Definition 4.26. A special test configuration T for (M,V ) consists of:

• A flat morphism of schemes M → C.

• An equivariant C∗-action ρ on M → C, where C∗-acts on C by scalar multi-
plication.

• A holomorphic vector field V on M.

such that

1. Each fiber of M → C is a normal Q-Fano variety with log-terminal singulari-
ties.

2. The generic fiber (M1, V1) is isomorphic to (M,V ).

3. The vector field V preserves the each fiber of M → C.

4. The action ρ preserves V.

Let W be a holomorphic vector field on M generating the C∗-action ρ, which
commutes with V by the assumption. Then there are two commuting vector fields
V0 := V|M0 , W0 := W|M0 tangent to the central fiber M0.

Remark 4.27. (1) In the original paper [BN14], they studied the existence problem
of (singular) Kähler-Ricci solitons on a normal Q-Fano variety M , which is defined
as a pair (ω, V ) of a Kähler metric ω with the maximal volume (i.e., the volume
coincides with the global algebraic top intersection number c1(M)n) and a holomor-
phic vector field V on the regular set Mreg satisfying the equation (4.17) on Mreg.
If (M,V ) admits a Kähler-Ricci soliton, M have at worst log-terminal singularities
[BN14, Theorem 1.3]. In that sense, it seems natural to assume that each fiber of
M has log-terminal singularities.

(2) As the case of cscK is so, we may need to consider more general test configu-
rations, not only special ones. In fact, [WZZ14] introcuced slightly different notion
of K-stability, and studied the case of toric degenerations on toric manifolds, on
which the existence of Kähler-Ricci solitons has already been shown by Wang-Zhu
[WZ04].

Let M be a normal Q-Fano variety with log-terminal singularities. Let V be
a holomorphic vector field on M generating a torus action and W a holomorphic
vector field on M generating a C∗-action commuting with V . Set

Nk := dimH0(M,−kKM ).

We define the quantized modified Futaki invariant at level k as

FutV,k(W ) := −
Nk∑
i=1

exp(v
(k)
i )w

(k)
i , (4.18)
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where (v
(k)
i , w

(k)
i ) are the joint eigenvalues for commuting action of Re(V ) and Re(W )

on H0(M,−kKM ) defined by the canonical lift to −KM . In the same way as Lemma
4.8, we know that the limit limk→∞

1
kNk

FutV,k(W ) exists.

Definition 4.28. We define the modified Futaki invariant for (M,V ) as the limit

FutV (W ) := lim
k→∞

1

kNk
FutV,k(W ) (4.19)

Remark 4.29. In [BN14], they adopted an alternative definition of the modified
Futaki invariant, which is defined as the derivative of the modified K-energy8.

The analogue of the Hilbert-Mumford criterion in this setting is the following:

Definition 4.30. Let M be a Fano manifold and V a holomorphic vector field on
M generating a torus action. We say that the pair (M,V ) is K-polystable if

1. FutV0(W0) ≥ 0 for any special test configuration T for (M,V ).

2. FutV0(W0) = 0 if and only if the special test configuration is a product config-
uration.

Then Berman-Nyström showed that:

Theorem 4.31 ([BN14], Theorem 1.5). If the pair (M,V ) admits a Kähler-Ricci
soliton, then (M,V ) is K-polystable.

8One needs a special test configuration for defining the modified K-energy.
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5 Fano complete intersections

In this section, we prove Theorem 1.2. We first recall the preceding results on Futaki
invariant shown by Lu [Lu99] and Hou [Hou08]. Then we give two definitions of the
function F (and the modified Futaki invariant). One is a Ding-Tian type integral
invariant for normal Q-Fano varieties defined in terms of admissible metrics. The
other is a quantized version of F for normal Q-Fano varieties with log-terminal
singularities. These definitions are equivalent when the variety has log-terminal
singularities. Correspondingly, we give two proofs of Theorem 1.2. Finally, we give
some examples of computing F .

5.1 Preceding results on Futaki invariant

Let M be an n-dimensional normal variety in CPN and X a holomorphic vector field
on CPN . Then X can be identified with the linear vector field

∑N
i,j=0 aijz

i ∂
∂zj

on

CN+1 and the traceless matrix (aij)0≤i,j≤N ∈ sl(N+1,C) such that the push-foward

of
∑N

i,j=0 aijz
i ∂
∂zj

with the standard projection π : CN+1 → CPN is equal to X.
For a holomorphic vector field X, we define a complex valued smooth function

on CN+1 − 0 by

θX := X

(
log

(
N∑
i=0

|zi|2
))

, (5.1)

which descends to a smooth function on CPN . Let ω =
√
−1
2π ∂∂̄ log(

∑N
i=1 |zi|2) ∈

πc1(O(1)) be the Fubini-Study metric of CPN . Then we have

iXω =

√
−1

2π
∂̄θX . (5.2)

We say that “X is tangent to M” if and only if Re(X) leaves M invariant. If M
is a hypersurface defined by a homogenous polynomial F of degree d, X is tangent to
M if and only if X fixes [F ] ∈ P(H0(M,O(d))), or, equivalently, XF = γF for some
constant γ. For any X which is tangent to M , the equation (5.2) can be written as

Xi = gij̄
∂θX

∂xj̄
(i = 1, . . . , n), X =

n∑
i=1

Xi ∂

∂xi
, (5.3)

at some smooth point in local holomorphic coordinates (x1, . . . , xn) of M , where
(gij̄) is the matrix of ω.

Now let M be a normal Q-Fano complete intersection in CPN defined by the
homogeneous polynomials F1, . . . , Fs of degree d1, . . . , ds respectively and suppose
that mω ∈ c1(M) for some constant m > 0. Let W be a holomorphic vector fields
on CPN such that

WFi = βiFi

for some constants βi (i = 1, . . . , s). The process to obtain an explicit expression of
Futaki invariant is divided to two steps.
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Step1. We compute the moment map defined by the canonical lift to −KMreg .
Let G be the Lie group generated byW . Then G acts on O(1) and the normal bundle
NMreg in a natural manner, which we denote by σ and σN respectively. Using the
adjunction formula, we know that m = N + 1− d1 − · · · − ds and

−KMreg ≃ O(m)|Mreg , (5.4)

where we remark that this isomorphism is not G-equivariant. But the isomorphism

−KMreg ≃ O(N + 1)|Mreg ⊗ (detNMreg)
−1 (5.5)

is G-equivalent if G acts on the RHS by σN+1 ⊗ (detσN )−1. Hence we can compute
the moment map by studying the G-action on NMreg . We first consider the case of

hypersurfaces in CPN .

Lemma 5.1 ([Hou08], Proposition 3.2). LetM be a hypersurface of degree d defined
by F ∈ H0(CPN ,O(d)) such that g ·F = ρ(g)F , where ρ : G → C∗ is a character of
G. Then we have a G-equivariant isomorphism

NMreg ≃ Cρ−1 |Mreg ⊗O(d)|Mreg (5.6)

where Cρ−1 is a trivial bundle on CPN with linearization ρ−1.

Proof. Over Mreg, dF gives a non-vanishing section of O(d)|Mreg ⊗ N∗
Mreg

, which
gives an isomorphism

Cρ|Mreg ≃ O(d)|Mreg ⊗N∗
Mreg

.

Since g ·F = ρ(g)F for g ∈ G, we have g · dF = ρ(g)dF over Mreg, which yields that
this isomorphism is G-equivariant.

Lemma 5.2 ([Hou08], Section 3). Let h be the Hermitian metric on O(1) such that

ω = −
√
−1
2π ∂∂̄ log h is the Fubini-Study metric of CPN . Then we have

µhm,W =

s∑
i=1

βi +mθW , (5.7)

where hm is the Hermitian metric on −KMreg defined via the isomorphism (5.4).

Proof. Since M is complete, the normal bundle NMreg splits over Mreg as

NMreg ≃ O(d1)⊕ · · · ⊕ O(ds).

Let ρi be the character of the G-action on Fi, then by Lemma 5.1, the G-action on
detNMreg is

ρ−1
1 ⊗ · · · ⊗ ρ−1

s ⊗ σd1+···+ds .

Therefore the G-action on −KMreg is

ρ1 ⊗ · · · ⊗ ρs ⊗ σm.
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Thus the moment map µhm,W is given by

µhm,W =

s∑
i=1

βi +mθW .

Step2. We compute the integral invariant Ik defined as follows: we set Ni :=
{Fi = 0} ⊂ CPN (i = 1, . . . s), and Mi := N1 ∩ · · · ∩Ni (i = 1, . . . s). Thus we have
an increasing sequence of subvariety in CPN :

M = Ms ⊂ Ms−1 ⊂ · · · ⊂ M1 ⊂ M0 := CPN .

For k = 0, . . . , s, we define an integral invariant Ik = Ik(W ) by

Ik :=

∫
Mk

(θW + ω)N−k+1. (5.8)

Lemma 5.3 ([Lu99], Lemma 5.1). We have{
Ik = dkIk−1 − βk

∏k−1
i=1 di (1 ≤ k ≤ s)

I0 = 0,
(5.9)

where we put
∏0

i=1 di = 1 in the case of k = 1.

Proof. Define a smooth function ξi (i = 1, . . . , s) on CPN by

ξi =
|Fi|2(∑N

i=0 |zi|2
)di .

Using the Poincare-Lelong formula, we obtain

√
−1

2π
∂∂̄ log ξk = [Nk]− dkω,

where [Nk] is the divisor of the zero locus of Fk. Then we have

Ik = (N − k + 1)

∫
Mk

θWωN−k

= (N − k + 1)

∫
Mk−1

(√
−1

2π
∂∂̄ log ξk + dkω

)
∧ θWωN−k

= (N − k + 1)

∫
Mk−1

√
−1

2π
∂∂̄ log ξk ∧ θWωN−k +

N − k + 1

N − k + 2
dkIk−1.

On the other hand, the direct computation shows that

W log ξk = βk − dkθW .
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Hence integrating by parts, we obtain

(N − k + 1)

∫
Mk−1

√
−1

2π
∂∂̄ log ξk ∧ θWωN−k = −

∫
Mk−1

W log ξkω
N−k+1

= −βk

k−1∏
i=1

di +
1

N − k + 2
dkIk−1.

Thus we obtain

Ik = −βk

k−1∏
i=1

di +
1

N − k + 2
dkIk−1 +

N − k + 1

N − k + 2
dkIk−1

= dkIk−1 −
k−1∏
i=1

di.

The integral I0 = (N + 1)
∫
CPN θWωN is exatly the Futaki invariant Fut(W ) of

CPN (up to a multiple constant). Since CPN admits a Kähler-Einstein metric, the
integral I0 must be zero.

The equation (5.9) can be written as

Ik
d1 · · · dk

=
Ik−1

d1 · · · dk−1
− βk

dk
.

Therefore we have:

Lemma 5.4 ([Lu99], Theorem 5.1). For k = 1, . . . , s, we have

Ik = −
k∏

i=1

di ·
k∑

i=1

βi
di
.

Theorem 5.5 ([Lu99], Theorem 1.1). Let M be a normal Q-Fano complete inter-
section in CPN defined by homogeneous polynomials F1, . . . , Fs of degree d1, . . . , ds
respectively. Let W ∈ sl(N +1,C) be a holomorphic vector field on CPN such that

WFi = βiFi

for some constants αi (i = 1, . . . , s). Then the Futaki invariant Fut(W ) can be
written as

Fut(W ) = −
s∑

i=1

βi +
m

N − s+ 1

s∑
i=1

βi
di
, (5.10)

where m = N + 1− d1 − · · · − ds.
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Proof. By Lemma 5.2, we have

Fut(W ) = − 1

mN−s
∏s

i=1 di

∫
M

(
s∑

i=1

βi +mθW

)
(mω)N−s

= − 1∏s
i=1 di

(
s∑

i=1

βi

∫
M

ωN−s +m

∫
M

θWωN−s

)

= − 1∏s
i=1 di

(
s∏

i=1

di ·
s∑

i=1

βi +
m

N − s+ 1
Is

)
.

Combining with Lemma 5.4, we have the desired result.

As a corollary, we have:

Corollary 5.6 ([Lu99], Corollary 1.1). Let M be a hypersurface in CPN defined
by the homogeneous polynomial F of degree d and W ∈ sl(N +1,C) a holomorphic
vector field on CPN satisfying

WF = βF

for some constant β. Then the Futaki invariant Fut(W ) can be written as

Fut(W ) = −(N + 1)(d− 1)

Nd
β.

In particular, Re(Fut(W )) and −Re(β) have the same signature.

5.2 The modified Futaki invariant of complete intersections

5.2.1 Calculations of the function F

Let M be an n-dimensional normal Q-Fano variety. We assume the same condition
as in Section 4.1.2. Let h be an admissible Hermitian metric on −KMreg with positive

curvature ω := −
√
−1
2π ∂∂̄ log h. We define a function F on h := Lie(H) by

F(V ) = − 1

c1(M)n

∫
M

eµh,V ωn (5.11)

and the modified Futaki invariant FutV by

FutV (W ) =
d

dt
F(V + tW )

∣∣∣∣
t=0

= − 1

c1(M)n

∫
M

µh,W eµh,V ωn, (5.12)

Then,

Lemma 5.7. The function F and FutV are independent of the embedding M ↪→ N
and a choice of admissible Hermitian metric h on −KMreg .
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This was shown in [Hou08, Section 2.3] using the equivariant Chern-Weil theo-
rem. When M has log-terminal singularities, the modified Futaki invariant (5.12)
coincides with the one defined in quantized settings (Section 4.2.3). We will show
this in Proposition 5.12.

Now let M be a normal Q-Fano complete intersection in CPN defined by the
homogeneous polynomials F1, . . . , Fs of degree d1, . . . , ds respectively. We adopt the
same notations as in Section 5.1. Let V be a holomorphic vector field on CPN such
that

V Fi = αiFi

for some constants αi (i = 1, . . . , s). We define the integrals Ik,l = Ik,l(V ) (k =
0, 1, . . . , s; l ≥ 0) by

Ik,l = ml

∫
Mk

(θV )
lemθV ωN−k. (5.13)

Lemma 5.8. For k = 1, . . . , s, Ik,0 satisfies

Ik,0 =

(
dk −

mαk

N − k + 1

)
Ik−1,0 +

dk
N − k + 1

Ik−1,1. (5.14)

Proof. We can prove (5.14) in the same way as Lemma 5.3. Define a smooth function
ξi (i = 1, . . . , s) on CPN by

ξi =
|Fi|2(∑N

i=0 |zi|2
)di .

Using the Poincare-Lelong formula, we obtain
√
−1

2π
∂∂̄ log ξk = [Nk]− dkω,

where [Nk] is the divisor of the zero locus of Fk. Then we have

Ik,0 =

∫
Mk

emθV ωN−k

=

∫
Mk−1

(√
−1

2π
∂∂̄ log ξk + dkω

)
∧ emθV ωN−k

=

∫
Mk−1

√
−1

2π
∂∂̄ log ξk ∧ emθV ωN−k + dkIk−1,0.

On the other hand, using the relation

V log ξk = αk − dkθV

and integrating by parts, we obtain∫
Mk−1

√
−1

2π
∂∂̄ log ξk ∧ emθV ωN−k

= − m

N − k + 1

∫
Mk−1

V (log ξk)e
mθV ωN−k+1

= − mαk

N − k + 1
Ik−1,0 +

dk
N − k + 1

Ik−1,1.
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Thus we get the desired result.

Corollary 5.9.

c1(M)N−s

(
= mN−s

∫
M

ωN−s

)
= mN−s

s∏
i=1

di. (5.15)

Proof. If we set V ≡ 0 in Lemma 5.8, then we have αk = 0, Ik,1 = 0 and hence
Ik,0 = dkIk−1,0. Hence we have

c1(M)N−s = mN−s

∫
M

ωN−s = mN−sIs,0

= mN−s
s∏

i=1

di · I0,0 = mN−s
s∏

i=1

di.

In order to get the explicit expression of Ik,0, we show the next lemma.

Lemma 5.10. For k = 1, . . . , s, the equation

(N − k)!

mN−k

∫
CPN

k∏
i=1

(diω + diθV − αi)e
mθV · emω

+
(N − k − 1)!

mN−k

k∑
i=1

∫
CPN

(diθV − αi) ·
∏

p∈{1,...,k}−{i}

(dpω + dpθV − αp)e
mθV · emω

=
(N − k − 1)!

mN−k−1

∫
CPN

k∏
i=1

(diω + diθV − αi) · ω · emθV · emω

(5.16)

holds.

Proof. For i = 0, . . . , k, put

Ji :=
∑

1≤p1<···<pi≤k

dp1 · · · dpi
∫
CPN

(dq1θV − αq1) · · · (dqk−i
θV − αqk−i

)emθV ωN ,

where q1 < · · · < qk−i and {q1, . . . , qk−i} = {1, . . . , k}−{p1, . . . , pi}. Then the direct
computation shows that

(N − k)!

mN−k

∫
CPN

k∏
i=1

(diω+diθV −αi)e
mθV ·emω = J0+

k∑
i=1

mi

(N − k + 1) · · · (N − k + i)
Ji

and

(N − k − 1)!

mN−k

k∑
i=1

∫
CPN

(diθV − αi) ·
∏

p∈{1,...,k}−{i}

(dpω + dpθV − αp)e
mθV · emω

=

k∑
i=1

imi

(N − k) · · · (N − k + i)
Ji.
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Hence the LHS of (5.16) is

J0 +

k∑
i=1

mi

(N − k) · · · (N − k + i− 1)
Ji,

which is equal to the RHS of (5.16).

Lemma 5.11. For k = 1, . . . , s, Ik,0 can be written as

Ik,0 =
(N − k)!

mN−k

∫
CPN

k∏
i=1

(diω + diθV − αi)e
mθV · emω. (5.17)

Proof. We will prove (5.17) by induction for k. When k = 1, the equation (5.17)
coincides exactly with (5.14), so the statement holds.

Next, we assume that (5.17) holds for a fixed k. Then by Lemma 5.8, we have

Ik+1,0 =

(
dk+1 −

mαk+1

N − k

)
Ik,0 +

dk+1

N − k
Ik,1.

Using the induction hypothesis, we have

mαk+1

N − k
Ik,0 =

(N − k − 1)!

mN−k−1

∫
CPN

αk+1

k∏
i=1

(diω + diθV − αi)e
mθV · emω

and

dk+1

N − k
Ik,1

=
dk+1

N − k
· d

dt
Ik,0(V + tV )

∣∣∣∣
t=0

= dk+1
(N − k − 1)!

mN−k

k∑
i=1

∫
CPN

(diθV − αi) ·
∏

p∈{1,...,k}−{i}

(dpω + dpθV − αp)e
mθV · emω

+
(N − k − 1)!

mN−k−1

∫
CPN

dk+1θV

k∏
i=1

(diω + diθV − αi)e
mθV · emω

Hence combining with Lemma 5.10, we obtain

Ik+1,0 = dk+1(the LHS of (5.16))

+
(N − k − 1)!

mN−k−1

∫
CPN

(dk+1θV − αk+1)

k∏
i=1

(diω + diθV − αi)e
mθV · emω

=
(N − k − 1)!

mN−k−1

∫
CPN

k+1∏
i=1

(diω + diθV − αi)e
mθV · emω.

Therefore the statement holds for k + 1.
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Proof of Theorem 1.2. By Lemma 5.2 and Corollary 5.9, F can by written as

F(V ) = − 1

mN−s
∏s

i=1 di

∫
M

exp

(
s∑

i=1

αi +mθV

)
(mω)N−s

= − 1∏s
i=1 di

· exp

(
s∑

i=1

αi

)
Is,0.

Thus, combining with Lemma 5.11, we get the desired formula for F .

5.2.2 Another proof of Theorem 1.2

Let M be a normal Q-Fano variety with log-terminal singularities. Let V be a
holomorphic vector field onM generating a torus action andW a holomorphic vector
field on M generating a C∗-action commuting with V . We remark that Theorem 1.2
holds even if the singularities of M are not log-terminal and V is any holomorphic
vector field. But we need these assumptions in order to prove Theorem 1.2 from the
view point of the quantization of the function F .

Set
Nk := dimH0(M,−kKM ).

We define the quantization of the function F at level k as

Fk(V ) := −kTrace(eV/k)H0(M,−kKM ) = −k

Nk∑
i=1

exp(v
(k)
i /k), (5.18)

where (v
(k)
i ) are the joint eigenvalues for the action of Re(V ) on H0(M,−kKM )

defined by the canonical lift of V to −KM . Then the quantized modified Futaki
invariant at level k (see Section 4.2.3) is given by the Gâteaux differential of Fk at
V in the direction W :

FutV,k(W ) =
d

dt
Fk(V + tW )

∣∣∣∣
t=0

= −
Nk∑
i=1

exp(v
(k)
i /k)w

(k)
i , (5.19)

where (v
(k)
i , w

(k)
i ) are the joint eigenvalues for the commuting action of Re(V ) and

Re(W ). Then we have:

Proposition 5.12. In the case when M is smooth,
(1) We have the asymptotic expansion of Fk(V ) as k → ∞:

Fk(V ) = F (0)(V ) · kn+1 + F (1)(V ) · kn + · · · ,

where F (0)(V ) is proportional to F(V ).
(2) We have the asymptotic expansion of FutV,k(W ) as k → ∞:

FutV,k(W ) = Fut
(0)
V (W ) · kn+1 + Fut

(1)
V (W ) · kn + · · · ,
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where Fut
(i)
V (W ) is the i th order modified Futaki invariant defined in [BN14, Section

4.4], and Fut
(0)
V (W ) is proportional to FutV (W ).

(3) the i th order modified Futaki invariant Fut
(i)
V (W ) is the Gâteaux differential

of F (i) at V in the direction W , i.e.,

d

dt
F (i)
k (V + tW )

∣∣∣∣
t=0

= Fut
(i)
V (W ).

In general, when M is a (possibly singular) Fano variety, we have
(4)

F(V ) = lim
k→∞

1

kNk
Fk(V ).

(5)

FutV (W ) = lim
k→∞

1

kNk
FutV,k(W ),

where the LHS is the modified Futaki invariant defined as an integral invariant
(5.12). Thus two definitions of the modified Futaki invariant are equivalent when
M has log-terminal singularities.

Proof. The statements (2) and (5) were shown in [BN14, Section 4.4]. (3) is trivial
from the definition of FutV,k(W ).

(1) As with the proof of (2) (cf. [BN14, Section 4.4]) or [WZZ14, Lemma 1.2],
Fk(V ) can be calculated by the equivariant Riemann-Roch formula as

Fk(V ) = −kTrace(eV/k)H0(M,−kKM )

= −k

∫
M

chg(−kKM )tdg(M)

= −k

∫
M

eµh,V · ekωtdg(M)

= − 1

n!

∫
M

eµh,V ωn · kn+1 +O(kn),

where chg (resp. tdg) denotes the equivariant Chern character (resp. the equivariant

Todd class). Thus F (0)(V ) = c1(M)n

n! · F(V ).
(4) By definition, F(V ) can be written as

F(V ) = − 1

c1(M)n

∫
M

eµh,V ωn = −
∫
R
evνV ,

where νV is the push forward measure of the Monge-Ampère measure ωn

c1(M)n under

µh,V . Let νVk be the spectral measure on R attached to the infinitesimal action of
Re(V ) on H0(M,−kKM ):

νVk =
1

Nk

Nk∑
i=1

δ
v
(k)
i /k

.
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Then by [BN14, Proposition 4.1], νVk converges to νV as k → ∞ in a weak topology.
Hence we have

1

kNk
Fk(V ) = − 1

Nk

Nk∑
i=1

exp(v
(k)
i /k) = −

∫
M

evνVk → −
∫
R
evνV = F(V )

as k → ∞.

Remark 5.13. When M is smooth, by the equivariant Riemann-Roch formula, we
have an asymptotic expansion as k → ∞:

Nk =
1

n!
c1(M)n · kn +O(kn−1). (5.20)

Combining with Proposition 5.12 (1), we have

1

kNk
Fk(V ) = F(V ) +O(k−1) (5.21)

as k → ∞. In general, when M is a (possibly singular) Fano variety, we do not know
whether we can obtain the expansion (5.21). However, Proposition 5.12 (4) allows
us to use the equivariant Riemann-Roch formula formally to compute the leading
term of (5.21) (i.e., the limit limk→∞

1
kNk

Fk(V )) even if M has singularities.

Now we give another proof of the main theorem using this algebraic formula for
F .

Lemma 5.14 ([AV11], Lemma 5.1). Let B be a holomorphic vector bundle of rank
b on a manifold M , then

b∑
i=0

(−1)ich(∧iB) = cb(B)td(B)−1.

Proof. Let r1, . . . , rb be the Chern roots of B. Since

ch(∧iB∗) =
∑

1≤p1<···<pi≤b

e−(rp1+···+rpi ),

we obtain

b∑
i=0

(−1)ich(∧iB∗) =

b∑
i=0

(−1)i
∑

1≤p1<···<pi≤b

e−(rp1+···+rpi )

=

b∏
p=1

(1− e−rp)

=
b∏

p=1

rp

b∏
p=1

1− e−rp

rp

= cb(B)td(B)−1.
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Now let M be a Fano complete intersection in CPN . We will adopt the notation
in Section 5.2.1. We further assume that V ∈ sl(N + 1,C) is a Hermitian matrix.
Then Im(V ) is Killing with respect to the Fubini-Study metric ω.

Lemma 5.15 ([AV11], Lemma 5.2). We have the following asymptotic expansion
of Nk as k → ∞:

Nk =
d1 · · · dsmN−s

(N − s)!
· kN−s +O(kN−s−1). (5.22)

Lemma 5.16. We have the following asymptotic expansion of Fk(V ) as k → ∞:

Fk(V ) = − exp

(
s∑

i=1

αi

)∫
CPN

s∏
i=1

(diω + diθV − αi)e
mθV · emω · kN−s+1 +O(kN−s).

(5.23)

Proof. This proof is essentially based on the argument in [AV11, Lemma 5.3]. The
only difference between Lemma 5.16 and [AV11, Lemma 5.3] is the linearization of
−KM , to which we only have to pay attention. In order to avoid confusion, let
L(≃ O(m)) be a linearized line bundle on CPN such that L|M is isomorphic to
−KM as a linearized line bundle whose linearization is determined by the canonical
lift of V to −KM . Let G be the Lie group generated by V and ρi be the character
of the G-action on Fi. Let Cρ−1

i
be a trivial bundle on CPN with linearization ρ−1

i .

Set Li := O(di) ⊗ Cρ−1
i

and B := L1 ⊕ · · · ⊕ Ls. Then rankB = s and the section

F := (F1, . . . , Fs) ∈ H0(CPN , B) is invariant. Since M is complete, the Koszul
complex:

0 → ∧sB∗ → ∧s−1B∗ → · · · → B∗ → OCPN → OM → 0

is exact and equivariant, where OM denotes the structure sheaf of M . Tensoring by
Lk preserves the exactness and equivariance, so we obtain

χg(M,Lk|M ) =
s∑

i=0

(−1)iχg(CPN , Lk ⊗ ∧iB∗),

where χg denotes the Lefschetz number. By the equivariant Riemann-Roch formula
and Lemma 5.14, we get

Fk(V ) = −k
s∑

i=0

(−1)iχg(CPN , Lk ⊗ ∧iB∗)

= −k

s∑
i=0

(−1)i
∫
CPN

chg(∧iB∗)ekc
g
1(L)tdg(CPN )

= −k

∫
CPN

(
s∑

i=0

(−1)ichg(∧iB∗)

)
ekc

g
1(L)tdg(CPN )

= −k

∫
CPN

cgs(B)tdg(B)−1ekc
g
1(L)tdg(CPN )

= −k

∫
CPN

s∏
i=1

(
dic

g
1(O(1))− αi

k

)
· tdg(B)−1ekc

g
1(L)tdg(CPN ).
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Let h be a Hermitian metric on O(1) such that ω = −
√
−1
2π ∂∂̄ log h is the Fubini-

Study metric of the CPN . Then by Lemma 5.2, the equivariant 1st Chern form for
(h, V/k) and (hm, V/k) are written as

ω +
1

k
θV ∈ cg1(O(1)) and mω +

m

k
θV +

1

k

s∑
i=1

αi ∈ cg1(L)

respectively. Both tdg(B)−1 and tdg(CPN ) can be written as the form

1 +A+
∑
i≥1

1

ki
Bi,

where A (resp. Bi) denotes 2l-forms (l ≥ 1 (resp. l ≥ 0)) not depending on k. Hence
we have

Fk(V ) = −k exp

(
s∑

i=1

αi

)∫
CPN

s∏
i=1

(
diω +

1

k
(diθV − αi)

)
tdg(B)−1emθV · ekmωtdg(CPN )

= − exp

(
s∑

i=1

αi

)∫
CPN

s∏
i=1

(diω + diθV − αi)e
mθV · emω · kN−s+1 +O(kN−s).

Proof of Theorem 1.2. By Lemma 5.15 and Lemma 5.16, we have an asymptotic
expansion as k → ∞:

1

kNk
Fk(V ) = − (N − s)!

d1 · · · dsmN−s
exp

(
s∑

i=1

αi

)∫
CPN

s∏
i=1

(diω+diθV −αi)e
mθV ·emω+O(k−1).

On the other hand, by Proposition 5.12 (4), 1
kNk

Fk(V ) converges to F(V ) as k → ∞.
Hence we have the desired formula.

5.2.3 Examples of computing F

In this section, we compute F for several examples (cf. [Lu99, Section 6]). Let M
be a Fano complete intersection in CPN . We will adopt the notation in Section
5.2.1. First, we will mention some results obtained as a corollary of the localization
formula in holomorphic equivariant cohomology theory (cf. [Liu95, Theorem 1.6]).

Lemma 5.17. If V = diag(λ0, . . . , λN ) is a diagonal matrix with different eigenval-
ues λ0, . . . , λN . Then we have

I0,0 = N !
N∑
i=0

emλi∏
p∈{0,...,N}−{i}(λi − λp)

. (5.24)
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Since I0,l are given by the derivatives of I0,0, we can calculate I0,l for any integer
l. On the other hand, by Theorem 1.2, F(V ) can be written as a linear combination
of I0,s (0 ≤ l ≤ s). Hence we can express F(V ) in terms of the eigenvalues of V .

However, we can calculate F(V ) without using Theorem 1.2 in a special case:
we assume that M has at worst orbifold singularities and V satisfies the condition

1. V has isolated zero points {pi}.

2. V is nondegenerate at each zero point pi, i.e., for each local uniformization π :
U → U/Γi ⊂ M with π(U)∩pi ̸= ∅, π∗V vanishes along π−1(pi) and the matrix

Bi =

(
− ∂vij

∂zk

)
1≤j,k≤N−s

is nondegenerate near π−1(pi), where (z1, . . . , zN−s)

is local holomorphic coordinates around π−1(pi) and V =
∑N−s

j=1 vij
∂

∂zj
.

In the same way as [DT92, Proposition 1.2], we have:

Lemma 5.18. Let M and V be as above. Then we have

F(V ) = −(N − s)!

d1 · · · ds
exp

(
s∑

i=1

αi

)
·
∑
i

1

|Γi|
· e

mθV (pi)

detBi
, (5.25)

where |Γi| is the order of the local uniformization group Γi at a point pi.

Remark 5.19. One can extend Lemma 5.17 and Lemma 5.18 to the case when the
zero set of V is the sum of nondegenerate submanifolds, where the word “nondegen-
erate” means that the induced actions of V to the normal bundle of submanifolds
are nondegenerate. However, since I0,0(V ) and F(V ) are clearly continuous with
respect to V , we may think that the equations (5.24) and (5.25) hold in the sense
of limit Vϵ → V of any expression. For instance,

Lemma 5.20. Let m = 1 and V = diag(λ0, λ1, λ2, λ2) ∈ sl(4,C) a holomorphic
vector field on CP 3, where λ0, λ1 and λ2 are different numbers. Then we have

I0,0 = 6

[
eλ0

(λ0 − λ1)(λ0 − λ2)2
+

eλ1

(λ1 − λ0)(λ1 − λ2)2

+
{λ0 + λ1 − 2λ2 + (λ2 − λ0)(λ2 − λ1)}eλ2

(λ2 − λ0)2(λ2 − λ1)2

]
. (5.26)

Proof. Let ϵ ̸= 0 be a small number. If we set Vϵ := diag(λ0, λ1, λ2 + ϵ, λ2 − ϵ),
then Vϵ has different eigenvalues. Hence we can compute I0,0(V ) = limϵ→0 I0,0(Vϵ)
directly using (5.24).

Example 5.21. Let M ⊂ CP 3 be the zero set of a cubic polynomial F := z0z
2
1 +

z2z3(z2 − z3), where (z0, z1, z2, z3) are homogeneous coordinates of CP 3 and V =
diag(−7t, 5t, t, t) (t ̸= 0) a holomorphic vector field tangent to M . We compute F
in two methods:

(1) The variety M has a unique quotient singularity at p0 := [1, 0, 0, 0]. If we
restricts V to M , V has five zeros p0 = [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] and
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[0, 0, 1, 1]. Let ζi :=
zi
z0

(i = 1, 2, 3) be Euclidean coordinates defined near p0. Then
we can rewrite F near p0 in the standard form

f =
F

z30
= ζ21 − ζ3(ζ

2
2 − 4ζ23 ).

According to [Liu95, Example 1], we see that there is a uniformization ϕ : C2 →
C2/Γ ⊂ M defined by

ϕ :


ζ1 = uv(u4 − v4)

ζ2 = u4 + v4

ζ3 = u2v2,

where Γ is the dihedral subgroup in SU(2) of type D4. Thus we have ϕ∗(V ) =
2tu ∂

∂u + 2tv ∂
∂v . Since the order of the group D4 is 8, applying Lemma 5.18, we

obtain

F(V ) = −2

3
e3t
(
1

8
· e

−7t

4t2
+

e5t

16t2
+ 3 · et

−32t2

)
= −e−4t

48t2
− e8t

24t2
+

e4t

16t2
.

(2) By Theorem 1.2, we obtain

F(V ) = −2

3
e3t
∫
CP 3

(3ω + 3θV − 3t)eθV eω

= −e3t
{(

1− t

3

)
I0,0 +

1

3
I0,1

}
.

By Lemma 5.17, we have

I0,0 = − e−7t

128t3
+

e5t

32t3
− 3(1 + 8t)et

128t3

and

I0,1 =
(7t+ 3)e−7t

128t3
+

(5t− 3)e5t

32t3
− 3(8t2 − 15t− 3)et

128t3
.

Hence we have

F(V ) = −e−4t

48t2
− e8t

24t2
+

e4t

16t2
.

The next example is a new example of computing F for a normal Q-Fano variety
whose singurarity is not log-terminal.

Example 5.22. Let M ⊂ CP 3 be the zero locus of the cubic polynomial F :=
z30 + z31 + z32 = 0 and V = diag(t, t, t,−3t) (t ̸= 0) a holomorphic vector field tangent

to M . Then M has a unique singularity at [0, 0, 0, 1]. Let π : M̃ → M a resolution
of M . By the adjunction formula, we have

K
M̃

= π∗KM − E,
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where E is an exceptional divisor (an elliptic curve). Hence the singularity of M is
not log-terminal9. By Theorem 1.2, we get

F(V ) = −e3t
{(

1− t

3

)
I0,0 +

1

3
I0,1

}
,

I0,0 =
3(8t2 − 4t+ 1)et

32t3
− 3e−3t

32t3
,

I0,1 =
3(8t3 − 12t2 + 9t− 3)et

32t3
+

9(t+ 1)e−3t

32t3

and

F(V ) =
(1− 4t)e4t

8t2
− 1

8t2
.

Example 5.23. Let M ⊂ CP 4 be the zero locus defined by{
F1 = z0z1 + z22
F2 = z21 + z3z4

and V = diag(−7t, 3t,−2t, 5t, t) (t ̸= 0) a holomorphic vector field tangent to M .
Then M has a unique quotient singularity at [1, 0, 0, 0, 0]. By Theorem 1.2, we have

F(V ) = −e2t
{(

1− t

3
− t2

2

)
I0,0 +

(
2

3
− t

12

)
I0,1 +

1

12
I0,2

}
,

I0,0 =
e−7t

200t4
− 3e3t

25t4
− 24e−2t

525t4
+

e5t

28t4
+

et

8t4
,

I0,1 = −(7t+ 4)e−7t

200t4
+

3(4− 3t)e3t

25t4
+

48(t+ 2)e−2t

525t4
+

(5t− 4)e5t

28t4
+

(t− 4)et

8t4

and

I0,2 =
(49t2 + 56t+ 20)e−7t

200t4
− 3(9t2 − 24t+ 20)e3t

25t4
− 96(t2 + 4t+ 5)e−2t

525t4

+
5(5t2 − 8t+ 4)e5t

28t4
+

(t2 − 8t+ 20)et

8t4
.

Hence we have

F(V ) = −e−5t

48t2
− e7t

24t2
+

e3t

16t2
.

Here we remark that V has only three zero points p1 = [1, 0, 0, 0, 0], p2 = [0, 0, 0, 1, 0],
p3 = [0, 0, 0, 0, 1] in M . Actually, the exponents appeared in the above expression of
F(V ) are −5t = θV (p1) + 2t, 7t = θV (p2) + 2t, 3t = θV (p3) + 2t, so correspond to
the three zero points of V .

9Generally, a log-terminal singularity is not a quotient singularity (e.g., an ordinary double point
of a variety in Cn (n ≥ 3)).
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[Szèk06] G. Szèkelyhidi, Extremal metrics and K-stability, Ph.D. thesis.,
arXiv:math/0611002.

[Tak14] R. Takahashi, Modified Kähler-Ricci flow on projectve bundles,
arXiv:1403.0985, to appear in Math. Zeit.

[Tak14-2] R. Takahashi, On the modified Futaki invariant of complete intersections
in projective spaces, arXiv:1410.4891, submitted.

[Tian97] G. Tian, Kähler-einstein metrics with positive scalar curvature, Invent.
Math., 130 (1997), 1–37.

[Tian12] G. Tian, K-stability and Kähler-Einstein metrics, arXiv:1211.4669.

[TZ02] G. Tian and X. H. Zhu, A new holomorphic invariant and uniqueness of
Kähler-Ricci solitons, Comm. Math. Helv., 77 (2002), 297–325.

[TZ07] G. Tian and X. H. Zhu, Convergence of Kähler-Ricci flow, J. Amer. Math.
Soc., 20 (2007), 675–699.

[WZZ14] F. Wang, B. Zhou and X. Zhu, Modified Futaki invariant and equivariant
Riemann-Roch formula, arXiv:1408.3784.

[WZ04] X. J. Wang and X. H. Zhu, Kähler-Ricci solitons on toric Fano manifolds
with positive first Chern class, Adv. Math., 188 (2004), 87–103.

[Yau78] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the
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