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Abstract

We study properties of effective temperature of non-equilibrium steady
states by using the anti-de Sitter spacetime/conformal field theory (AdS/CFT)
correspondence. We consider non-equilibrium systems with a constant flow
of current along an electric field, in which the current is carried by both the
doped charges and those pair-created by the electric field. We find that the
effect of pair-creation raise the effective temperature whereas the current by
the doped charges contributes to lower the effective temperature in a wide
range of the holographic models. We find that the effective temperature
agrees with that of the Langevin systems if we take the limit where the pair
creation is negligible.



1. INTRODUCTION

1 Introduction

Non-equilibrium physics is one of the frontiers of moder physics, and con-
struction of non-equilibrium statistical mechanics is still a great challenge.
The difficulty comes from the fact we cannot a priori rely on the guiding
principle, such as the principle of detailed balance held in equilibrium sys-
tem. However, we desire to find a fundamental law that governs a wide range
of non-equilibrium systems. More precisely, we wish to know if such a fun-
damental low exists of not. A good place to study for this purpose may be
non-equilibrium steady states (NESS). NESS is a system which is driven by
a constant external force and out of equilibrium with dissipation while the
macroscopic variables do not evolve in time.

Recently, the anti-de Sitter spacetime/conformal field theory (AdS/CFT)
correspondence, which is a computational method developed in superstring
theory, has been applied to studies of physics of non-equilibrium (see, for
example, [1]). In the framework of AdS/CFT#1, a physical problem in study
can be re-formulated into that in gravity theory, and one finds that original
problem can be much more easily analyzed in the gravity dual. For exam-
ple, transport coefficients in NESS have been computed beyond the linear
response regime [2, 3, 4]. The typical systems in study are the system of a
test particle dragged at a constant velocity in a medium [2, 3] (which we call
Langevin systems in this paper) and systems of charged particles with con-
stant flow of current along the external electric field acting on the charge [4]
(which we call conductor systems).

It has also been found that the notion of the effective temperature of NESS
in these systems naturally appears in the gravity dual picture in terms of the
Hawking temperature of analogue black hole [5, 6, 7, 8, 9, 10]. The effective
temperature agrees with the ratio between the fluctuation and the dissipation
at NESS [7, 10] and it characterizes the correlation functions of fluctuations
in NESS#2. Therefore, the effective temperature is quite important in the
research into non-equilibrium statistical physics.

In this paper, we further study the nature of the effective temperature
in holographic models. One of the problems we shall study in this paper is
the relationship between the effective temperature of the conductor systems
and that in the Langevin systems. Since the conductor systems consist of
many charged particles, their effective temperature may be related to that
in the Langevin systems where a single (but the same) charged particle is
dragged. In general, the effective temperatures of these two systems are

#1That is also called holography.
#2For the definition of the effective temperature in the literature on non-equilibrium

statistical physics, see, for example, [11] for a review.
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1. INTRODUCTION

different from each other. However, as we shall see, if we take the large-
mass limit or the large-density limit of the charge carriers in the conductor
systems, the effective temperature agrees with that in the Langevin systems.
In order to reach the forementioned results, we introduce the mass of the
charged particles and the charge density to the analysis of [10], where the
zero-mass and zero-density limits have been taken. In [10], it has been found
that the effective temperature of NESS can be either higher or lower than the
temperature of the heat bath depending on the models and the parameters of
the systems. At finite densities, we shall find that the effective temperature
can be lower than the temperature of the heat bath even for the models that
had the higher effective temperatures at zero density in [10]. Our results
imply that the effect of pair creation of charge carriers by the external force is
responsible for raising the effective temperature whereas the effect of dragging
of the already-existing doped charge carriers is responsible for lowering the
effective temperature, at least for our systems.

The organization of the paper is as follows. In Section 2, we briefly re-
view the non-equilibrium steady states and see a example. In Section 3, we
overview the AdS/CFT correspondence. In Section 4, we review previous
works on computation of an effective temperature of the Langevin system in
holographic models. In Section 5, we overview previous works on computa-
tion of non-linear conductivity in holographic models. The setup of our model
is also explained. One representative of the holographic models of conductor
is so-called the D3-D7 model [4]. Therefore, we mainly focus on the D3-D7
model in this paper. In Section 6, the derivation of effective temperature is
presented. However, the computations are straightforwardly generalized into
other models which we can see in Section 7. Our main results shall be given
in Section 6, Section 7.2 [12]. We conclude in Section 8.
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2. NON-EQUILIBRIUM STEADY STATES (NESS)

2 Non-equilibrium steady states (NESS)

Non-equilibrium steady state (NESS) is a non-equilibrium system where
the macroscopic variables are time independent although the energy is dissi-
pated into a heat bath. In order to construct a NESS, we prepare the heat
bath made of a large degree of freedom at a temperature T . Then we put a
subsystem which has smaller degrees of freedom than that of the heat bath.
Turning on a constant external force, it is driven out of equilibrium. After
enough time, the subsystem reach a steady state where the in-coming energy
and the dissipation are in balance.

In this section, we review the Langevin system within linear-response
regime#3 as an example of NESS. Analysis beyond the linear-response regime
is a quite a challenge. Fortunately, however, we can go beyond the linear
response theory by using the AdS/CFT correspondence in some cases, which
will be discussed in later sections.

2.1 Example of NESS: Brownian motion

We consider the Langevin system of the Brownian motion as an example
of NESS, and find possible definition of an effective temperature T∗.

Langevin equation

We consider translational diffusion of a test particle in one dimensional
space. The particle is diffused by the heat bath at the temperature T . Since
the position of the particle x(t) takes a random vale, its ensemble average
vanishes: ⟨x(t)⟩ = 0. Here we have assumed x(t = 0) = 0. The mean-square
displacement, which characterize the amplitude of the fluctuation, is always
non-negative: ⟨x2(t)⟩ ≥ 0. This is a monotonically increasing function of
time.

Without an external force, the system is described by the Langevin equa-
tion as

m
dv

dt
= −ζv + f ′(t), (2.1)

where m and v are the mass and the velocity of the particle, respectively, ζ is
the friction coefficient, and f ′(t) stands for the random force. Here we have
assumed ζ is a constant value. Then multiplying the position x, we have

m

(
d

dt
(xv)− v2

)
= −ζvx+ xf ′(t). (2.2)

#3For example, see also [13].
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2. NON-EQUILIBRIUM STEADY STATES (NESS)

Taking the ensemble average, it goes as

m

(
d

dt
⟨xv⟩ −

⟨
v2
⟩)

= −ζ ⟨vx⟩+ ⟨xf ′(t)⟩ . (2.3)

Then we employ the principle of equipartition of energy m ⟨v2⟩ = kBT , and
⟨xf ′⟩ = ⟨x⟩ ⟨f ′⟩ = 0 since there is no correlation between x and f ′. Then we
obtain

m
d

dt
⟨xv⟩ = kBT − ζ ⟨vx⟩ . (2.4)

Hence

⟨xv⟩ = 1

2

d

dt

⟨
x2
⟩
=
kBT

ζ
(1− e−t/τ ), (2.5)

where τ ≡ m/ζ stands for the relaxation time. The solution under the initial
condition ⟨x2(0)⟩ = 0 can be given as

⟨
x2
⟩
=

2kBT

ζ
(t− τ(1− e−t/τ )). (2.6)

In two limits t≪ τ and t≫ τ , it becomes as√
⟨x2⟩ = vth t ∝ t (t≪ τ),√
⟨x2⟩ =

√
2kBT

ζ
t ∝

√
t (t≫ τ),

(2.7)

where vth ≡
√

⟨v2⟩ =
√
kBT/m is called thermal velocity, and this implies

the particle behaves as the free particle in the short time limit. While, in
the large time limit, the behavior implies it does the random walk. In other
wards, the particle remembers the the information of the velocity only for
the dulation of τ . Thus we can use the relaxation time τ to distinguish the
deterministic dynamics and stochastic behavior.

Brownian motion as Random walk

Let us model the Brownian motion. We assume that the particle moves
at the constant velocity vth within the mean free time τf ∼ O(τ), then it
changes the direction of the velocity suddenly at every interval τf . Then
the mean free path is given by ℓf ≡ vthτf . This diffusion phenomenon is
well-known as the random walk. Then total displacement x in N steps is
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2. NON-EQUILIBRIUM STEADY STATES (NESS)

given as x =
∑N

i=1 xi, where |xi| = ℓf . Hence the mean-square displacement
is obtained as⟨

x2
⟩
=

N∑
i=1

⟨
x2i
⟩
+
∑
i,j ̸=i

⟨xi · xj⟩ = Nℓ2f =
ℓ2f
τf
t = v2thτf t ∝ t, (2.8)

where ⟨xi · xj⟩ = 0 since xi is independent of xj, and t = Nτf has been used.
Then, comparing the result to the first equation in (2.7), we have

τf =
2kBT

v2thζ
=

2m

ζ
= 2τ. (2.9)

This relation is consistent with the fact that the particle forgets the infor-
mation of the velocity in 2τ .

Derivation from diffusion equation

Here we consider another description of the Brownian motion. We locate
the particle at x = 0 when t = 0. Then the probability ρ(x, t) that the
particle is located at x when t ≥ 0 obeys the following diffusion equation:

∂ρ

∂t
= D

∂2ρ

∂x2
, (2.10)

with the normalization condition∫ ∞

−∞
ρ(x, t)dx = 1, (2.11)

where D stands for the diffusion constant. We impose an initial condition
ρ(x, 0) = δ(x). Then the solution of (2.10) is given by a Gaussian distribu-
tion:

ρ(x, t) =
1√
4πDt

exp

(
− x2

4Dt

)
. (2.12)

Hence the mean-square displacement is obtained as⟨
x2
⟩
=

∫ ∞

−∞
dxx2ρ(x, t) = 2Dt ∝ t, (2.13)

which agrees with the previous result ⟨x2⟩ ∝ t #4.
#4Another way to get the result (2.13) is as follows. By multiplying x2 to (2.10) and

integrating out, we have

∂
⟨
x2
⟩

∂t
= 2D,

and then
⟨
x2
⟩
= 2Dt by setting

⟨
x2(0)

⟩
= 0.
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2. NON-EQUILIBRIUM STEADY STATES (NESS)

Fluctuation-dissipation theorem

Putting (2.7), (2.8) and (2.13) together, we obtain a relation between the
diffusion constant D and the friction coefficient ζ as

D =
kBT

ζ
. (2.14)

This is called the Einstein’s relation and is an example of the fluctuation-
dissipation theorem. In other words, the friction force −ζv is related to the
random force f ′, both of them are the effect of the heat bath.

Furthermore, if the particle has a unit charge, the mobility is defined as
µ = v/F , and the relation is written as

D

µ
= kBT. (2.15)

Beyond the linear response regime, in general, µ may be defined by the
differential mobility as discussed in [14]

D

µ
= kBT∗, µ ≡ ∂v

∂F
, (2.16)

where F is an external force, and T∗ is the effective temperature which can
be different from the heat-bath temperature T in general. Since D and µ are
observables, we can measure T∗.

In Section 4, 5, 6 and 7, we investigate into T∗ in the framework of the
AdS/CFT correspondence in detail.
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3 AdS/CFT correspondence, gravity and ther-

modynamics

We overview the AdS/CFT correspondence#5 and the basics of black
hole physics in this section.

3.1 Analogy between the large-Nc gauge theory and
the weakly-coupled string tyeory

It has been known that there is an analogy between a large-Nc gauge
theory and a string theory, before the discovery of the AdS/CFT correspon-
dence. We go over this old analogy briefly.

Large-Nc gauge theory

Here we consider the SU(Nc) pure Yang-Mills theory at large Nc limit.
This theory has only two parameters Nc and the gauge coupling gYM . The
Lagrangian density is given by

L = − 1

2g2YM

Tr
[
F 2
µν

]
,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν ,

(3.1)

where the field strength is defined as Fµν ≡ F a
µνt

a, and the gauge field is
defined as Aµ ≡ Aa

µt
a (that is, Ai

µ,j = Aa
µ(t

a)i j). The generator ta and
the structure constant fabc of the gauge group satisfy Tr(tatb) = δab/2 and[
ta, tb

]
= ifabctc. Then we introduce the double-line notation, by replacing

the twisted line in the Feynman diagram to “strip” with arrow, as shown in
Fig 1. The arrow denotes the charge flow (let us call it “color”), and they
never hit each other. The propagator is proportional to g2YM . The Feynman
rules for the strip vertices is given by 1/g2YM multiplied by some constants
which are independent of gYM or Nc. The color-line loop supplies Nc.

From here we pay attention to bubble diagrams since the partition func-
tion is given by them. We introduce the ’t Hooft coupling λ ≡ g2YMNc

#6

which plays a role of effective coupling constant as shown below. The bubble
diagrams constructed by V vertices, P propagators and L loops is propor-
tional to (

1

g2YM

)V (
g2YM

)P
NL

c = g
2(P−V )
YM NL

c = λP−VNV−P+L
c . (3.2)

#5For example, see also [15, 16].
#6We will use another definition, which is twice larger than that, from Section 4.
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3. ADS/CFT CORRESPONDENCE, GRAVITY AND THERMODYNAMICS

Figure 1: Double line notation

Figure 2: Planar and non-planar diagrams

The diagrams are divided into two types: planar diagrams, which do not
include crossing lines as (a) and (b) in Fig. 2, and non-planar diagrams,
which include crossing lines as (c) in Fig. 2. In other wards, the planar (non-
planar) diagram can (cannot) be drawn on a planar surface. For example,
we put a strip into the diagram (a) in Fig. 2, and then (b) or (c) appears.
From (a) to (b), an additional loop appears, and then an additional factor
λ appears. On the other hand, from (a) to (c), the number of the loops
decreases, and then a factor λ/N2

c is multiplied. In general, adding a strip
increases or decreases a loop with a factor λ or λ/N2

c , respectively. Thus
summation of planar diagrams is written as

∑
(planar diagram) = f0(λ)N

2
c , f0(λ) ≡

∞∑
n=0

cnλ
n, (3.3)

where cn does not include λ and Nc. By including non-planar diagrams, the
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3. ADS/CFT CORRESPONDENCE, GRAVITY AND THERMODYNAMICS

summation of the bubble diagrams is given by∑
(bubble) = f0(λ)N

2
c + f2(λ)N

0
c + f4(λ)

1

N2
c

+ · · · , (3.4)

where fi(λ) is the polynomial function of λ which does not include Nc. Note
that, at large Nc, the contribution from the planar diagrams becomes domi-
nant.

Finally we have the partition function as given by

lnZSU(Nc) =
∞∑
h=0

Nχ
c f2h(λ), (3.5)

where the topological invariant χ = V − P + L = 2 − 2h is the Euler char-
acteristic, and the genus h is the number of the handle.

Figure 3: String interactions

Figure 4: 1-loop diagram of closed string and open string
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Figure 5: the open-string 1-loop diagram is the same as the closed-string tree
diagram.

Figure 6: gs expansion of the partition function

String interaction

Here we overview the interaction of strings briefly. The superstring theory
is described in (9+1)-dimensional spacetime. There are two types of strings,
open string and closed string, and they interact with each other. The closed
string includes the graviton, and the open string contains the gauge fields, as
their lowest oscillation modes. As the point-like particle sweeps the worldline,
the string sweeps the worldsheet.

Typical string interactions are shown in Fig. 3. We define gs (go) as
the closed (open) string coupling. When an additional loop appears, the
square of the coupling constant is multiplied additionally, as shown in Fig. 4.
In other wards, putting a handle corresponds to multiplying g2s . Thus the
diagrams are characterized by the genus h. For example, a diagram which
has h closed-string handles is proportional to g2hs = g2−χ

s , where χ = 2− 2h.
Then the partition function is given by

lnZstring =
∞∑
h=0

(
1

gs

)χ

f̃2h(ℓs), (3.6)

where ℓs is the string length, and f̃2h(ℓs) does not contain gs. The h = 0
term gives the classical gravity effect.

Note also that the coupling constants are related as gs ∼ g2o , since the
1-loop diagram of the open string is topologically same as the diagram of
emission of the closed string as shown in Fig. 5. In addition, since the

10



3. ADS/CFT CORRESPONDENCE, GRAVITY AND THERMODYNAMICS

amplitude of emission of the open string is proportional to go, we can see
gYM ∝ go ∼ g

1/2
s .#7

Comparing (3.5) with (3.6), we find an analogy between them if we iden-
tify gs ∼ 1/Nc. (3.5) and (3.6) also imply that λ may be related to ℓs.
We realize that this analogy is promoted to an explicit relationship in the
AdS/CFT correspondence, which we describe in the next subsection.

3.2 Example of AdS/CFT correspondence: D3-brane
case

The AdS/CFT correspondence is a conjecture proposed by J. Malda-
cena [17]. Originally, it is a duality between a supergravity on a five-dimensional
anti-deSitter spacetime (AdS5) and anN = 4 SU(Nc) super Yang-Mills (SYM)
theory in a four-dimensional spacetime, where N denotes the number of the
supersymmetry. In this case, the SYM theory is a conformal field theory
(CFT). However, many other models of the correspondence, including those
without conformal invariance, have also been proposed#8.

D3-brane: N = 4 SYM theory

Here we introduce a D-brane, which is a hypersurface where the open
strings can end. The end point carries the quantum number of the gauge
group on the brane, and hence Nc overlapping D-branes describe a U(Nc)
gauge theory. We call a D-brane which extends into p spacial dimensions a
Dp-brane.

We consider the D3-brane in type IIB superstring theory. The open
strings are localized on the D-brane. If we put Nc D3-branes on top of
each other, then the end point of the string carries the quantum number of
the U(Nc) gauge theory. The oscillations are separated into the transverse
modes and longitudinal modes to the D3-brane. The transverse and longi-
tudinal modes are identified as the scalar fields and the U(Nc) gauge fields,

#7In the viewpoint of the gauge theory in p + 1 dimensional spacetime, the action is
given by

S =
1

g2YM

∫
dp+1x

(
∂A∂A+A2∂A+A4

)
,

where p ≤ 9. Then the amplitude of emission of the gauge field is proportional to gYM ,
which corresponds to the amplitude of emission of the open string. Hence we can see

gYM ∝ go ∼ g
1/2
s . Since only ℓs is the dimensionful parameter in the superstring theory,

we can see g2YM ∝ gsℓ
p−3
s by the dimensional analysis [A] =

[
ℓ−1
s

]
and

[
g2YM

]
=
[
ℓp−3
s

]
.

#8Hence the correspondence is also called holographic theory, gauge/gravity correspon-
dence, and so on.
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3. ADS/CFT CORRESPONDENCE, GRAVITY AND THERMODYNAMICS

respectively. The scalar fields are the Nambu-Goldstone bosons associated
with the translational symmetry breaking of the six longitudinal directions.
These six scalars and the gauge field are a part of the vector multiplet#9 of
N = 4 SYM theory. This theory has a global SO(6) symmetry related to in-
terchange of the six scalar fields, and it is called R-symmetry. Furthermore,
N = 4 SYM theory has conformal symmetry#10 which is SO(2,4). Thus
N = 4 SYM theory has the global SO(2,4)×SO(6)R symmetry.

At λ ≫ 1 limit, we cannot use perturbation. However we can analyze
the gauge theory by using another description that is called the AdS/CFT
correspondence.

Another description of D3-brane: AdS5×S5

The D3-brane in superstring theory has another description in super-
gravity. Here we consider the theory at the limit gs ≪ 1. We consider the
low-enrgy effective theory of type IIB superstring theory. When the string
length ℓs is small enough, the low-energy effective action of the superstring
theory is given by

S =
1

16πG10

∫
dx10

√
−g
[
R + · · ·+O(ℓ2sR

2)
]
, (3.7)

where G10 ∝ g2sℓ
8
s is the Newton constant#11 in (9+1)-dimensional spacetime,

R stands for the scalar curvature, and (· · · ) includes other terms of the
supergravity. The terms which include ℓ2s denote the string corrections for
the supergravity, and we can neglect them at ℓ2sR ≪ 1.

A solution, which corresponds to Nc D3-branes, is obtained as the black
3-brane geometry:

ds210 =H
−1/2

(
−dt2 + dx⃗2

)
+H1/2

(
dr2 + r2dΩ2

5

)
, (3.8)

#9The vector multiplet includes fermion fields on the D3-branes. The fermion fields are
the adjoint representation but not the fundamental representation. Hence they do not
correspond to quarks.
#10See the detail in Appendix A.
#11By considering the perturbation of the metric as gµν = ηµν +hµν , formally the action
becomes

S =
1

16πG10

∫
dx10

(
∂h∂h+ h∂h∂h+ h2∂h∂h+ · · ·

)
.

Then we can read the amplitude of emission of the graviton is proportional to G
1/2
10 . In

the string picture, the amplitude of closed string emission is proportional to gs. Hence we
conclude G10 ∝ g2sℓ

8
s by the dimensional analysis [G10] =

[
ℓ8s
]
.

12
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where

H = 1 +
L4

r4
, L4 ≃ gsNcℓ

4
s, (3.9)

where the typical length L fixes the curvature of the spacetime and is defined
by using ℓs and gsNc.

Then we take the near-horizon limit#12:

r

L
→ 0

(
r

ℓs
→ 0

)
,

r

ℓ2s
≡ u = fixed, (3.10)

where u represents the energy scale of the open string theory. The tension of
the open string is proportional to 1/ℓ2s, hence the open string which extends
from the D-brane to the distance r should have the energy proportional to u.
Thus, the operation (3.10) corresponds to that we pay attention to the near
horizon r ≪ L without changing the physical quantity of the gauge theory.

At the near-horizon limit, we obtain

ds210
ℓ2s

r/ℓs→0−−−−→
u=fixed

u2

u20

(
−dt2 + dx⃗2

)
+
u20
u2
du2 + u20dΩ

2
5, (3.11)

where we define u0 ≡ L/ℓs ≃ gsNc = λ = fixed. The scale ℓs defines the unit
of the length, while the right-hand side is independent on ℓs. Multiplying
(3.11) by ℓ2s, we obtain

ds210
r/L→0−−−−→
u=fixed

( r
L

)2 (
−dt2 + dx⃗2

)
+ L2dr

2

r2
+ L2dΩ2

5, (3.12)

This is AdS5×S5 geometry. The AdS5 and S5 have the SO(2,4) and SO(6)
symmetry#13, respectively.

Note that, the symmetry of this geometry coincides with that of N = 4
SYM theory by virtue of the near-horizon limit. Another important point is
that we fix λ = gsNc when we take the near-horizon limit, and hence gs ≪ 1
corresponds to the large-Nc limit. Furthermore, we obtain R ∼ L−2 from
(3.12), and hence ℓ2sR ∼ u−2

0 ∼ λ−2. Thus the supergravity limit ℓ2sR ≪ 1
corresponds to the large ’t Hooft coupling limit λ≫ 1.

As a result, we have the correspondence as

ZN=4SYM = ZAdS5×S5 , (3.13)

#12The decoupling limit is ℓs ≪ ℓobs. Here the typical mass scale of the gauge theory is
1/ℓobs ∼ r/ℓ2s, hence the limit corresponds to r ≪ ℓs.
#13See also Appendix A.
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3. ADS/CFT CORRESPONDENCE, GRAVITY AND THERMODYNAMICS

or more explicitly ⟨
ei

∫
ϕ0O
⟩
= eiS[ϕ0=ϕ(r=∞)], (3.14)

where ϕ denotes the arbitrary field in the AdS5×S5 geometry, and O is
the operator conjugate to the source ϕ0. The relation (3.14) is called the
GKP-Witten relation [18, 19]. Furthermore, it is known that the gauge
group U(Nc) is reduced to SU(Nc) at the near-horizon limit. Hence the
classical supergravity theory in AdS5×S5 corresponds to N = 4 SU(Nc)
SYM theory#14.

3.3 Finite temperature system

Finite temperature solution at gsNc ≫ 1: AdS5 black hole × S5

Near-extremal D3-branes provide a gravitational representation of SU(Nc)
N = 4 SYM theory at finite temperature T [19], at large Nc, and at strong
’t Hooft coupling λ ≡ g2YMNc ≫ 1. The bulk metric described by the near-
extremal D3-brane is

ds210 =H
−1/2

(
−hdt2 + dx⃗2

)
+H1/2

(
h−1dr2 + r2dΩ2

5

)
r/L→0−−−−→
u=fixed

( r
L

)2 (
−hdt2 + dx⃗2

)
+ L2 dr

2

hr2
+ L2dΩ2

5,

h = 1−
(r0
r

)4
,

(3.15)

where we have fixed the Hawking temperature when we take the near-horizon
limit: r0/r = fixed. This is the black hole solution which has the horizon, and
hence the system corresponds to the gauge theory at the finite temperature.
This solution is called AdS5-Schwarzschild black hole, and this reproduces
(3.12) when r0/r → 0.

Through this thesis, we employ the probe approximation such that the
background geometry does not affected by a test string and flavor Nf D-
branes. The approximation are realized by setting Nc ≫ Nf since the bulk
action, the D-brane action, and the string action are O(N2

c ), O(NfNc), and
O(1), respectively.

In the context of statistical physics, the heat capacity of the bulk sector
becomes infinitely large at Nc ≫ 1. The fact that the bulk sector is not
affected by the probe sector means that the bulk remains at thermal equilib-
rium at temperature T regardless of the probe sector. Hence the bulk plays
a role of heat bath.

#14See for a review [20].
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3. ADS/CFT CORRESPONDENCE, GRAVITY AND THERMODYNAMICS

Hawking temperature of black hole

Here we consider the Hawking temperature of a black hole described by
the following metric:

ds2 = gttdt
2 + grrdr

2 + · · · , (3.16)

where t and r denote the time and the radial coordinate of the AdS. Here we
assume the horizon is located at r = rH . Then near the horizon, the metric
approaches to

ds2 ∼ −a(r − rH)dt
2 +

b

r − rH
dr2 + · · ·

= aρdτ 2 +
b

ρ
dρ2 + · · · ,

(3.17)

where ρ = r−rH , and we have switched to the Euclidean signature as t = iτ .
Furthermore, we change the variable ρ as dR = dρ/

√
ρ, that is, R = 2

√
ρ.

Then the metric is written as

ds2 = a
R2

4
dτ 2 + bdR2 + · · ·

= b(dR2 +R2dθ2) + · · · ,
(3.18)

where θ =
√

a
4b
τ . We find that the θ-direction has to be compactified with

the period 2π to avoid the conical singularity:

△θ = 2π ⇐⇒
√

a

4b
△τ = 2π,

and then we have

△τ = 4π

√
b

a

= 4π
1√

−g′tt(g−1
rr )

′
∣∣∣
rH

 , (3.19)

where the prime stands for ∂r.
We regard (3.19) as the inverse of the temperature, △τ = β = 1/T , and

then T is obtained as

T =
1

4π

√
a

b

(
=

1

4π

√
−g′tt(g−1

rr )
′
∣∣∣
rH

)
. (3.20)

This T is the Hawking temperature. In the AdS/CFT correspondence, we
regard this Hawking temperature as the temperature in the gauge-theory
side.

15



4. LANGEVIN SYSTEM AND EFFECTIVE TEMPERATURE IN HOLOGRAPHY

4 Langevin system and effective temperature

in holography

In this section, we review [3, 5] where an infinitely massive particle moving
in a heat bath is considered in a holographic way. A finite temperature
system of N = 4 SYM plasma, which plays a role of a heat bath in the
present setup, is dual to the AdS5-Schwarzschild geometry. An infinitely
massive quark is dual to a infinitely-long fundamental string inserted from
the boundary. When we drive the end point at a constant velocity v, we need
to apply a constant external force to the string that is equal to the frictional
force [3].

4.1 Setup, classical solution, and drag force

Bulk metric

At the near-horizon limit, The Nc D3-branes provide a gravitational
representation of SU(Nc) N = 4 super Yang-Mills (SYM) theory at finite
temperature T [19], large Nc, and strong ’t Hooft coupling λ ≡ 2g2YMNc ≫
1.#15 Here gYM denotes the gauge coupling. The gravitational representation
is given by AdS5-Schwarzschild metric ĝµν :

ds25 = ĝµνdx
µdxν =

r2

L2

(
−hdt2 + dx⃗2

)
+
L2

r2
dr2

h
, (4.1)

times the metric for an S5 of constant radius L. Here x⃗ = (x, y, z) are the
spatial coordinates along the boundary and dΩ5 is the volume element of the
unit five-sphere S5. The boundary and horizon are located at r = ∞ and
r = rH respectively.

Action and classical solution

A test string, in the back ground metric (4.1), is described by the Nambu-
Goto action:

S = − 1

2πα′

∫
d2σ
√
− det gαβ,

gαβ ≡ ĝµν∂αX
µ∂βX

ν ,

(4.2)

where gαβ is an induced metric , σα are the worldsheet coordinates of the
string, and Xµ(σ) is the embedding of the string worldsheet in the spacetime.

#15From here to the end of this paper, we use the definition λ ≡ 2g2YMNc and the relation
L4 = 2g2YMNcα

′2, which are different from the original work [3] by the factor two.
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4. LANGEVIN SYSTEM AND EFFECTIVE TEMPERATURE IN HOLOGRAPHY

From here, we study this system in the static gauge σα = (t, r), and define
x as x = X1(t, r). Then the induced metric are written as

gtt = ĝ00 + ĝ11ẋ
2 = H−1/2

(
ẋ2 − h

)
,

gtr = H−1/2ẋx′,

grr = ĝ11x
′2 + ĝrr = H−1/2

(
x′

2
+H

)
,

(4.3)

where H = L4/r4, ẋ = ∂tx and x′ = ∂zx. By substituting them, the string
action (4.2) becomes

S =
1

2πα′

∫
dtdrL, L = −

√
1 +

h

H
x′2 − ẋ2

h
. (4.4)

Then the equation of motion is given as

∂α
∂L

∂∂αXµ
= −∂α

[√
−ggαβ∂βXµĝµν

]
= 0, (4.5)

or

∇αP
α
µ = 0, Pα

µ ≡ − 1

2πα′ ĝµν∂
αXν , (4.6)

where ∇α is the covariant derivative with respect to gαβ:
√
−g∇αP

α
µ =

∂α
(√

−gPα
µ

)
. Pα

µ is a worldsheet current of spacetime energy-momentum
which is carried by the string.

Here we assume that steady state behavior is achieved at late times.
Hence we take a suitable ansatz:

x(t, r) = vt+ ξ(r), (4.7)

The justification of the ansatz (4.7), the time-independence of ξ(r), is given
as follows. In general, the equation of motion (4.6) under the boundary
condition ẋ|r=∞ = v can give time-dependent solution ξ(r, t). However, we
can show ξ̇ = 0 if the bulk metric dose not depend on time and we impose
∂r (

√
−gP r

x ) = 0. The condition ∂r (
√
−gP r

x ) = 0 means that the momentum
coming from the external force at the boundary and the momentum deposited
to the heat bath at the horizon are in balance. This is requested by the
realization of NESS.

Substituting the ansatz into (4.4), we have the following Lagrangian den-
sity as

L = −
√
1 +

h

H
ξ′2 − v2

h
, πξ ≡

∂L

∂ξ′
. (4.8)
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4. LANGEVIN SYSTEM AND EFFECTIVE TEMPERATURE IN HOLOGRAPHY

Then the equation of motion can be written as πξ = const. The solution of
this equation is obtained as

ξ′ = ±πξ
H

h

√
h− v2

h− π2
ξH

. (4.9)

We assume that v points in the direction of x, and then a string should
expand behind the external quark: ξ′ should be positive. If we choose the
sign of πξ as positive, then the sign in (4.9) should be +.

Note that we must require that ξ(r) is everywhere real. Since h = 0 at
r = rH and h = 1 when r → ∞, h− v2 switches the signature at h = v2. We
define r = r∗ as the location h = 1− r4H/r

4
∗ = v2, that is, r∗ = rH/

4
√
1− v2.

In order to make the right-hand side real in (4.9), we require h − π2
ξH also

switch its sign at h = v2 (r = r∗):

0 = h∗ − π2
ξH∗ = v2 − π2

ξ (L
4/r4∗)

⇐⇒ π2
ξ =

v2r4∗
L4

⇐⇒ πξ = ±vr
2
∗

L2
= ± vr2H

L2
√
1− v2

.

As we mentioned that before, πξ should be + here, hence finally

πξ =
vr2∗
L2

=
vr2H

L2
√
1− v2

. (4.10)

This is the only way to avoid the appearance of imaginary part in the right-
hand side of (4.9).

Then the equation of motion becomes the following form:

ξ′ = v
r2H
L2

H

h
= v

r2HL
2

r2 − r2H
, (4.11)

hence the solution is

ξ = − L2

2rH
v

(
tan−1 r

rH
+ log

√
r + rH
r − rH

)
, (4.12)

where we have put ξ = 0 at v = 0 as a boundary condition.

Drag force

As is mentioned around (4.6), Pα
µ is the conserved worldsheet current

of spacetime energy-momentum. The flow of momentum dp1/dt goes down

18



4. LANGEVIN SYSTEM AND EFFECTIVE TEMPERATURE IN HOLOGRAPHY

Figure 7: This is a picture of the solution
(4.12) at a given time t in which we take
the ansatz x = vt + ξ and choose sign(ξ′) =
sign(πξ) = +. r∗ is also illustrated which is
given by imposing reality of the action.

along the string, which corresponds to the flow from the external quark into
the horizon. The momentum flow is obtained from the worldsheet current as

∆P1 =

∫
I
dt
√
−gP r

x =
dp1
dt

∆t, (4.13)

where I is some time interval ∆t. Since Pα
µ is conserved, it should not matter

to evaluate the integral at any radius r. We choose the direction of p1 to
be negative: it is the drag force, which points opposite the motion. Then the
flow is calculated as

dp1
dt

=
√
−gP r

x = −
√
1− v2

2πα′ ĝxνg
rα∂αX

ν

= −r
2
H/L

2

2πα′
v√

1− v2

= −
π
√

2g2YMNc

2
T 2 v√

1− v2
,

(4.14)

where the Hawking temperature T = rH/(πL
2), which is dual to the tem-

perature of the plasma, and L4 = 2g2YMNcα
′2. This is the final result of the

drag force for the infinitely massive particle driven by the constant velocity
in the heat bath.

19



4. LANGEVIN SYSTEM AND EFFECTIVE TEMPERATURE IN HOLOGRAPHY

4.2 Fluctuations and effective temperature

If we consider fluctuation modes of the string, then they feel an effective
metric, rather than the background metric. A diagonalized effective metric
gives the effective temperature, which is observed by the fluctuation modes,
as T∗ =

4
√
1− v2T [5].

Fluctuation

Here we consider the effective temperature as is discussed in [5]. We
expand the equation of motion (4.5) by fluctuation modes of Xµ. In other
words, the scalar field Xµ is replaced by X

µ
+ X̃µ, where we regard X̃µ as

small fluctuations:

gαβ ≡ ĝµν∂α

(
X

µ
+ X̃µ

)
∂β

(
X

ν
+ X̃ν

)
= gαβ + g̃αβ,

gαβ ≡ ĝµν∂αX
µ
∂βX

ν
,

g̃αβ ≡ ĝµν

(
∂αX

µ
∂βX̃

ν + ∂αX̃
µ∂βX

ν
)
+ ĝµν∂αX̃

µ∂βX̃
ν .

(4.15)

where X̃ t = X̃r = 0 is imposed by the static gauge. Furthermore, ĝµν(X) =
ĝµν(X̄) in this gauge#16. ḡαβ and g̃αβ satisfy

ḡασḡσβ = δαβ, g̃αβ = −ḡαγ ḡβσg̃γσ. (4.16)

Then we consider the equation of motion, and (4.5) is expanded perturba-
tively as follows. An equation of motion at the zeroth order of the fluctuation
is merely the same as (4.5):

∂α
[√

−ḡḡαβ∂βX
µ
ĝµµ′(X̄)

]
= 0. (4.17)

At the first order of the fluctuation, the equation of motion of X̃ is given by

∂α

[√
−g
(
gαβ∂βX̃

µ + g̃αβ∂βX
µ
+

1

2
gγσg̃σγg

αβ∂βX
µ
)
ĝµµ′(X̄)

]
= 0. (4.18)

Here, we separate (4.18) into a symmetric and anti-symmetric part:

∂α

[√
−ḡ
(
ḡαβSµν + Aαβ

µν

)
∂βX̃

ν
]
= 0,

Sµν = ĝµν − gρσP̄
ρ
µ P̄

σ
ν , Aαβ

µν = P̄α
µ P̄

β
ν − P̄α

ν P̄
β
µ ,

(4.19)

where Sµν denotes the symmetric part, Sµν = Sνµ, and A represents the
anti-symmetric part, Aαβ

µν = −Aβα
µν = −Aαβ

νµ = Aβα
νµ . P̄

α
µ′ is defined by P̄α

µ′ ≡
gαβ∂βX

µ
ĝµµ′ .

#16See also Appendix C.

20
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Effective metric

From here, we consider an effective metric observed by the fluctuation

modes X̃ i=1,2,3. In the static gauge, X
µ
’s are X

0
= t, X

r
= r and X

1
=

x(t, r), and we imposed ∂αX
2
= ∂αX

3
= 0 by the translational invariance.

Then P̄α
µ=1,2 = 0.

The inverse of the induced metric is given as

gαβ =
1

det gαβ

(
grr −grt
−gtr gtt

)
=

1

gttgrr − g2tr

(
grr −grt
−gtr gtt

)
. (4.20)

Hence P̄ t
µ, P̄

r
µ are obtained as follows:

P̄ r
0 = − 1

det gαβ
gtrĝ00 =

1

det gαβ

hẋx′

H
,

P̄ r
1 =

1

det gαβ
(−gtrẋ+ gttx

′) ĝ11 = − 1

det gαβ

hx′

H
,

P̄ r
r =

1

det gαβ
gttĝrr =

1

det gαβ

(
ẋ2

h
− 1

)
.

(4.21)

Here we define Ĝαβ
µν as follows:

Ĝαβ
µν ≡

√
−ḡ
(
ḡαβSµν + Aαβ

µν

)
. (4.22)

For the partial matrix Ĝαβ, we know that the diagonal elements Ĝαβ
µµ (µ = ν)

can be written as

Ĝαβ
µµ = Ĝβα

µµ =
√
−ḡḡαβSµµ =

√
−ḡḡαβ

(
ĝµµ − gρσP̄

ρ
µ P̄

σ
µ

)
for µ = 0, 1, r,

Ĝαβ
22 = Ĝαβ

33 = Ĝβα
22 = Ĝβα

33 =
√
−ḡḡαβ ĝ11.

(4.23)

Here, we demonstrate that Aαβ
µν = 0 in the static gague. The off-diagonal

elements of Ĝαβ
µν (µ ̸= ν) are

Ĝαβ
µν =

{
0 for µ = 2, 3 or ν = 2, 3,
√
−ḡḡαβ

(
−gρσP̄ ρ

µ P̄
σ
ν + Aαβ

µν

)
for others.

(4.24)

Hence we need only Ĝαβ
11 and Ĝαβ

22 = Ĝαβ
33 : Ĝαβ

0ν and Ĝαβ
rν for any ν are no

matter since X̃0 = X̃r = 0, and the off-diagonal components for (µ,ν) satisfy
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Ĝαβ
2ν = Ĝαβ

3ν = 0. That is, Ĝαβ
1ν (ν ̸= 1) does not affect in our calculation. Thus

we define Ĝαβ
L and Ĝαβ

T which we need as

Ĝαβ
L ≡ Ĝαβ

11 =
1

2πα′

√
−ḡḡαβ

(
ĝ11 − gρσP̄

ρ
1 P̄

σ
1

)
,

Ĝαβ
T ≡ Ĝαβ

22 = Ĝαβ
33 =

1

2πα′

√
−ḡḡαβ ĝ11.

(4.25)

Note that Aαβ
µν does not affect in the gauge, and hence the effective metrics

ĜL and ĜT are symmetric matrices: Ĝαβ
L = Ĝβα

L and Ĝαβ
T = Ĝβα

T .
Futhermore, within the ansatz (4.7) based on the time invariance of the

Lagrangian, the effective metric for the fluctuation can be written as

Ĝαβ
T = (−ḡ) Ĝαβ

L =
1

2πα′
1

(−ḡ)1/2H

(
−ξ′2 − H

h
vξ′

vξ′ h− v2

)
, (4.26)

where ẋ = v, x′ = ξ′ and hence ḡ = −
(
1 + h

H
x′2 − ẋ2

h

)
= −

(
1 + h

H
ξ′2 − v2

h

)
.

Substituting the solution of equation of motion (4.12), Ĝαβ
T,L can be written

as

Ĝαβ
T =

(
1− v2

)
Ĝαβ
L =

r4

2πα′
√
1− v2

 − r4−(1−v2)r4H
(r4−r4H)

2

v2r2H
L2(r4−r4H)

v2r2H
L2(r4−r4H)

(1−v2)r4−r4H
L4r4

 ,

(4.27)

where we have used
√
−g =

√
1− v2 . Then we obtain inverse of (4.27) as

ĜT
αβ =

1

1− v2
ĜL
αβ =

2πα′
√
1− v2

 r4H
r4

− (1− v2)
L2v2r2H
r4−r4H

L2v2r2H
r4−r4H

L4(r4−(1−v2)r4H)
(r4−r4H)

2

 , (4.28)

and then we have√
−ĜT =

1

1− v2

√
−ĜL =

√
−
(
−(2πα′)2L4

r4

)
=

2πα′L2

r2
. (4.29)

The effective metrics are diagonalized as follows:

ds̃2 = ĜT,L
tt dt2 + ĜT,L

tr dtdr + ĜT,L
rt drdt+ ĜT,L

rr dr2

= GT,L
ττ dτ

2 + GT,L
rr dr2,

(4.30)

22



4. LANGEVIN SYSTEM AND EFFECTIVE TEMPERATURE IN HOLOGRAPHY

where dτ ≡ dt+
ĜT,L
tr

ĜT,L
tt

dr and hence

GT,L
ττ ≡ ĜT,L

tt , GT,L
rr ≡ ĜT,L

rr − ĜT,L
tr

ĜT,L
tt

. (4.31)

Then we have the diagonalized effective metric GT,L
αβ as follows:

GT
αβ =

1

1− v2
GL
αβ =

ĜT
tt 0

0 ĜT
rr −

(ĜT
tr)

2

ĜT
tt


=

2πα′
√
1− v2

(
(1− v2)

(
r4∗
r4

− 1
)

0

0 L4

r4−r4∗

)
,

(4.32)

where r∗ ≡ rH/
4
√
1− v2 plays a role of an effective horizon for the fluctuation

X̃µ=1,2,3. Note that the location of the effective horizon is given as r = r∗
that has been defined by the reality condition of the action.

To obtain an effective metric at arbitrary r, we should multiply GT,L
αβ by

a constant factor as discussed in [10]. For the 2 × 2 matrix, unfortunately,
we can not do that operation. In order to read the effective temperature,
however, we need only GT,L

αβ at the vicinity of the horizon.

Effective temperature

In the region of r ∼ r∗, (4.32) is approximated as follows:

GT
αβ =

1

1− v2
GL
αβ ∼ 2πα′

√
1− v2

(
−4(1−v2)

r∗
( r − r∗) 0

0 L4

4r3∗(r−r∗)

)
. (4.33)

Now we can compute the effective temperature as is given in Section 3.3.
The effective metric closed to r∗ gives

ds̃2T,L ∼ CT,L
2πα′

√
1− v2

(
−4 (1− v2)

r∗
( r − r∗)dτ

2 +
L4

4r3∗(r − r∗)
dr2
)
,

CT ≡ 1, CL ≡ 1− v2.

(4.34)

The effective temperature is given by

T∗ =
1

4π

√
a

b
, (4.35)
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where a and b are given by ds2 = −a(r− r∗)+ b/(r− r∗)+ · · · in the vicinity
of r∗. Thus T∗ is obtained as

T∗ =
1

4π

√√√√CT,L
2πα′√
1−v2

CT,L
2πα′√
1−v2

4(1− v2)/r∗
L4/4r3∗

=
4
√
1− v2 rH
πL2

, (4.36)

for the fluctuations X̃1,2,3. We stress that the effective temperature T∗ can
be different from the heat-bath temperature T = rH

πL2 by the factor 4
√
1− v2:

T∗ =
4
√
1− v2 T. (4.37)

As a result, the effective temperature T∗ observed by the fluctuations is
lower than the temperature of the heat bath, and its dependence on v is
highly non-linear. The result (4.37) cannot be explained by using Lorentz
boost as discussed in [10]. It reflects non-trivial dynamics of the system.
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5. HOLOGRAPHIC CONDUCTOR

5 Holographic conductor

In this section we consider the holographic conductor given in [4], which
is described by the D3-D7 system.

5.1 Setup and classical solutions

In order to prepare NESS, we need a subsystem coupled to a heat bath.
We apply an external force which drives the subsystem into non-equilibrium,
and the heat bath absorbs the dissipation. When the work given by the
external force and the dissipation into the heat bath are in balance, the
subsystem can be realized as NESS. For the conductor systems in this study,
the external force is the external electric field E, the subsystem in study is
a many-body system of charge carriers, and the heat bath is a system of
particles that are neutral in E and are interacting with the subsystem.

One typical realization of the foregoing conductor system in holography
is the D3-D7 system with electric field [4]. Since the analysis can be straight-
forwardly generalized into the cases of other models, we mainly focus on the
D3-D7 system in this paper. Let us briefly review the model of [4] to explain
our setup and notations.

The field theory realized on the D3-D7 system is a supersymmetric QCD,
that consists of a (3 + 1)-dimensional SU(Nc) N = 4 supersymmetric Yang-
Mills (SYM) theory for adjoint representations (which we call “gluons”) and
a N = 2 hypermultiplet as a sector of fundamental representations (which
we call “quarks” or “anti-quarks”). We apply an external force electrically
acting on the quark charge (which we call “electric field”), and then the
current of the quark charge (which we call “current”) appears. The gluon
sector plays a role of heat bath since it absorbs the dissipation produced in
the quark sector. The picture of the heat bath is established since we take the
large-Nc limit where the degrees of freedom of the gluon sector is infinitely
large comparing to that of the quark sector. We also take the large ’t Hooft
coupling limit so that the typical interaction scale of the microscopic process
is short enough comparing to that of the macroscopic physics.

In the gravity dual picture, the heat bath of the gluon sector is mapped to
the geometry of a direct product of an AdS-Schwarzschild black hole (AdS-
BH) and an S5, whose metric is given by

ds2 = ĝµνdx
µdxν = − 1

z2
(1− z4/z4H)

2

1 + z4/z4H
dt2 +

1

z2
(
1 + z4/z4H

)
dx⃗2 +

dz2

z2
+ dΩ2

5,

(5.1)

where we have set the AdS radius to be 1. z is the radial coordinate on
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5. HOLOGRAPHIC CONDUCTOR

which the horizon is located at z = zH , and the boundary is at z = 0. The
Hawking temperature is given by T =

√
2

πzH
. The boundary extends along

(t, x⃗) directions, and dΩ5 stands for the volume element of the S5. The first
equality in (5.1) just shows our notation that ĝµν denotes the metric of the
background geometry. The metric of the S5 is given by

dΩ2
5 = dθ2 + sin2 θdψ2 + cos2 θdΩ2

3, (5.2)

where θ runs from 0 to π/2, and ψ varies between 0 and 2π. dΩ3 denotes the
volume element of unit S3.

The quark sector is mapped to D7-branes on the above geometry. In our
study, we consider the case of single flavor, and we introduce only a single
D7-brane. We employ the probe approximation since we are taking the large-
Nc limit. The D7-brane wraps the S3 part of the S5 in such a way that the
radius of the S3 part depends on the radial coordinate z in general. For the
original proposal and the details on the D3-D7 system, see [22].

Table 1: The brane configurations in this model

0 1 2 3 4 5 6 7 8 9

Nc D3
√ √ √ √

Nf D7
√ √ √ √ √ √ √ √

Let us exhibit the Dirac-Born-Infeld (DBI) action of the D7-brane for the
purpose of defining our notations:

SD7 = −TD7

∫
d8ξ
√

− det (gab + 2πα′Fab),

gab = ∂aX
µ∂bX

ν ĝµν , ∂a ≡
∂

∂ξa
,

(5.3)

where α′−2 = 4πgsNc = 2g2YMNc = λ, and λ is ’t Hooft coupling. ĝµν is the
bulk metric given in (5.1). TD7 is the D7-brane tension, ξ

a are the D7-brane’s
worldvolume coordinates, Xµ represents the location of the D7-brane, gab is
the induced metric and Fab is the field strength of the worldvolume U(1)
gauge field (a, b are worldvolume indices). The Wess-Zumino term will not
affect in our analysis. In this paper, we employ the static gauge where
ξa = (t, x⃗, z, Ω⃗3).

We assume the translational invariance along the x⃗ directions and the
rotational invariance on the S3. Furthermore, we assume the configuration
of the D7-brane is time-independent. We introduce the chemical potential for
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the quark charge, that corresponds to the boundary value of At given at (5.9),
into this system [23, 24]. We apply the external electric field E along the x1

direction, which is encoded in the vector potential as Ax(t, z) = −Et+ h(z)
within our gauge choice and ansatz [4]. We also employ an ansatz ψ = const.
(∂zψ = 0) which is consistent with the equation of motion of ψ.

Then the action density, which is divided by
∫
d3x⃗ and we redefine this

as SD7, can be written as follows:

SD7 = −N
∫
dtdz cos3 θgxxK,

K ≡
√

|gtt| gxxgzz − (2πα′)2
(
gxxAt

′(z)2 + gzzȦx(z, t)2 − |gtt|A′
x(z, t)

2
)
,

(5.4)

where x denotes x1, the dot and the prime stand for ∂t and ∂z, respectively.
We have integrated over the S3 directions in the derivation of (5.4), and
N = 2π2TD7 =

λ
(2π)4

Nc in our convention. Within our ansatz and gauge, the
induced metric is the same as the bulk metric except for gzz component:

gtt = − 1

z2
(1− z4/z4H)

2

1 + z4/z4H
, gxx =

1

z2

(
1 +

z4

z4H

)
, gzz =

1

z2
+ θ′

2
. (5.5)

Gauge field

Let us remind ourselves of the analysis given in [4]. The equations of
motion for the gauge field are integrated to be

∂L
∂A′

t(z)
= − cos3 θgxx

N (2πα′)2gxxA
′
t(z)

K
≡ D,

∂L
∂A′

x(t, z)
= cos3 θgxx

N (2πα′)2 |gtt|h′(z)
K

≡ J,

(5.6)

where D and J stand for integral constants. From this result, we can imme-
diately see D |gtt|h′(z) = −JgxxA′

t(z). From (5.6), we obtain

gxxA
′
t(z)

2 =
1

(2πα′)2
|gtt|D2 gzz (|gtt| gxx − (2πα′)2E2)

N 2(2πα′)2 |gtt| g3xx cos6 θ + |gtt|D2 − gxxJ2
,

|gtt|h′(z)2 =
1

(2πα′)2
gxxJ

2 gzz (|gtt| gxx − (2πα′)2E2)

N 2(2πα′)2 |gtt| g3xx cos6 θ + |gtt|D2 − gxxJ2
.

(5.7)

At the vicinity of the horizon z = zH , we can see

gxxA
′
t
2 ∼ |gtt|

z→zH−−−→ 0,

gzzȦ
2
x − |gtt|A′

x
2 = gzzE

2 − |gtt|h′2
z→zH−−−→ gzzE

2 − gzzE
2 = 0,

(5.8)
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then the Lagrangian density becomes zero at z = zH .
At the vicinity of the boundary, the gauge fields can be expanded as

At(z) = µ− 1

2

D

N (2πα′)2
z2 +O(z4),

h(z) = b+
1

2

J

N (2πα′)2
z2 +O(z4).

(5.9)

Their leading (non-normalizable) terms give the sources for the dual opera-
tors. At is dual to the charge density Jt, hence µ is interpreted as the chemical
potential. As is discussed in [24] we require At(zH) = 0 which determine D
as a function of µ. For h(z) we demand simply b = 0 since there is no source
term corresponding to it at the boundary gauge theory. The sub-leading
(normalizable) terms of the asymptotic solution should give expectation val-
ues of the dual operators: ⟨J t⟩ = D, ⟨Jx⟩ = J by the GKP-Witten relation.

The on-shell DBI action is now given by

SD7 = −N
∫
dzdt cos6 θg5/2xx |gtt|1/2

√√√√ gzz (|gtt| gxx − (2πα′)2E2)

|gtt| g3xx cos6 θ +
|gtt|D2−gxxJ2

N 2(2πα′)2

, (5.10)

which can be complex in general. However, we are studying the steady states,
and we request the DBI action to be real. This requires the term in the square
root to be positive semi-definite for all region of 0 ≤ z ≤ zH :

gzz (|gtt| gxx − (2πα′)2E2)

|gtt| g3xx cos6 θ +
|gtt|D2−gxxJ2

N 2(2πα′)2

≥ 0, (5.11)

which is achieved by setting both the numerator and the denominator flip
the signs at the same point, say z = z∗, between z = 0 and zH [4]. Then the
reality condition is reduced to

|gtt| gxx − (2πα′)2E2
∣∣∣
z=z∗

= 0, (5.12)

|gtt| g3xx cos6 θ +
|gtt|D2 − gxxJ

2

N 2(2πα′)2

∣∣∣∣∣
z=z∗

= 0. (5.13)

From (5.12), we have

z2∗ =
(√

e2 + 1− e
)
z2H , e ≡ |E|

π
2

√
λT 2

, (5.14)
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where e is a dimensionless quantity. Then (5.13) gives

J2 =

(
N2

c T
2

16π2

√
e2 + 1 cos6 θ(z∗) +

d2

e2 + 1

)
E2, (5.15)

where the dimensionless quantity d has been defined as

d ≡ D
π
2

√
λT 2

=
⟨J t⟩

π
2

√
λT 2

. (5.16)

From (5.15) we obtain the non-linear conductivity σ as [4]

J = σE, σ ≡
√
N2

c T
2

16π2

√
e2 + 1 cos6 θ(z∗) +

d2

e2 + 1
. (5.17)

Scalar field

The Euler-Lagrange equation for θ from (5.4) is coupled to the gauge
field. Substituting (5.7) into the equation of motion, it is given by

∂z

[
θ′(z)

(2πα′)
√
−g11gttgzz

√
f(z)k(z)

]
− 3(2πα′)N 2g

5/2
11 (−gttgzz)1/2 sin θ cos5 θ

√
f(z)

k(z)
= 0,

(5.18)

and f(z) and k(z) are defined by

f(z) ≡ (2πα′)2E2 + g11gtt,

k(z) ≡ (2πα′)2N 2g311gtt cos
6 θ + J2g11 +D2gtt,

(5.19)

for notational simplification. At z = zH , the potential term vanishes. Hence
∂L/∂∂zθ is constant at z = zH :

θ′(z)

(2πα′)
√
−g11gttgzz

√
f(z)k(z)

∣∣∣∣∣
z=zH

= const. (5.20)

The denominator goes to zero at z = zH since gtt(zH) = 0, and hence the
numerator should be zero at z = zH . This implies θ′(zH) = 0.

The asymptotic solution at the boundary is

θ = θ0z + θ2z
3 + · · · , (5.21)
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where θ0 is related to the current quark mass Mq of the fundamental rep-

resentation, the mass of the charge carrier, as Mq = 1
2

√
λTθ0. θ2 gives the

quark condensate as
⟨
ψ̄ψ
⟩
= −1

8

√
λNcT

3θ2 [24].
Here, we proceed further than [4], by investigating into the relationship

between θ(z∗) andMq in detail for later use. The reason why we are interested
in the relationship betweenMq and θ

′(z∗) but not θ
′(zH), is that z = z∗ turns

out to be the location of “effective horizon” in Section 6.2. The equation of
motion for θ(z) at z = z∗ is given by

∂z
∂L

∂∂zθ(z)
∼ ∂z

[
θ′(z)f ′(z∗)(z − z∗)

(2πα′)
√
−g11gttgzz

√
k′(z∗)

f ′(z∗)

]
,

∂L
∂θ(z)

∼ 3(2πα′)N 2g
5/2
11 (−gttgzz)1/2 sin θ cos5 θ

√
f ′(z∗)

k′(z∗)
.

(5.22)

Here we have used f(z∗) = k(z∗) = 0. Finally we obtain the equation of
motion for θ(z) at z = z∗ as

θ′(z)k′(z∗)− 3(2πα′)2N 2g311 (−gtt) gzz sin θ cos5 θ = 0. (5.23)

We have θ′(z∗) =
(
C2 ∓

√
C2

2 + C2
3

)
/ (C3z) by solving the quadratic

equation of θ′∗. Here we consider θ′(z∗) as a positive value θ′(z∗) > 0. Since
C2 ≥ 0 and C3 ≤ 0, we take the minus sign in the numerator#17:

θ′(z∗) =
C2 −

√
C2

2 + C2
3

C3z∗
, (5.24)

where

C1 = −J2
(
z4H + z4∗

)2
+D2

(
z8H + 6z4Hz

4
∗ + z8∗

)
,

C2 = 4(2πα′)2N 2(z4H + z4∗)
3
(
z8H + z8∗

)
cos6 θ∗ + C1z

12
H z

6
∗

= (2πα′)2N 2
(
z4H + z4∗

)3 (
3z8H + 2z4Hz

4
∗ + 3z8∗

)
cos6 θ∗ + 8D2z16H z

10
∗ ,

C3 = 3(2πα′)2N 2
(
z4∗ − z4H

) (
z4H + z4∗

)4
sin θ∗ cos

5 θ∗.

(5.25)

One finds k′(z∗) is non-zero at θ∗ = 0 and π/2, θ′∗ = 0 is realized at θ∗ = 0
and π/2, that means 0 < θ∗ < π/2 if θ′∗ ̸= 0.

(5.24) relates θ′(z∗) to θ(z∗): the boundary condition at z = z∗ is given
once we specify θ(z∗). Then we can solve the equation of motion numerically

#17Otherwise, if we choose the plus sign in the numerator, θ′(z∗) diverges at θ(z∗) = 0
and π/2.
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to findMq from the boundary value of θ. Fig. 8 demonstrates the behaviors of
θ(z∗) (we may write θ∗ as an abbreviation of θ(z∗)) and ∂zθ(z∗) as functions
of Mq at T = 0.1, E = 0.1 and D2 = 0.1.#18 We find that θ(z∗) is a
monotonically increasing function of Mq starting from zero at Mq = 0 and
approaching to π/2 when Mq → ∞. We also find θ′(z∗) = 0 at Mq = 0, ∞.
One finds that θ′(z∗) = 0 at |D| = ∞ from (5.23) as well.

1 2 3 4
Mq

0.5

1.0

1.5

Θ*

1 2 3 4
Mq

0.0005

0.0010

0.0015

0.0020

0.0025

¶zΘ*

Figure 8: θ(z∗) and ∂zθ(z∗) as functions of Mq. The curves are computed at
T = 0.1, E = 0.1 and D2 = 0.1. The straight line in the left figure indicates
the asymptotic value θ(z∗) = π/2.

#18In the numerical computations, we set 2πα′ = N = 1 for simplicity.

31



6. FLUCTUATIONS AND EFFECTIVE TEMPERATURE

6 Fluctuations and effective temperature

This section is the main part of this thesis, which is based on our original
work [12].

The main purpose of the present work is to investigate the properties of
the effective temperature of NESS. Of course, the notion of temperature in
non-equilibrium systems is debatable. In our paper, we define the effective
temperature from the relationship between the small fluctuations of physical
quantities and the corresponding dissipations [7, 10, 11]. Therefore, analysis
of small fluctuations is essential in defining the effective temperature in our
study.

The fluctuations of physical quantities correspond to the fluctuations of
normalizable modes in the gravity dual. Hence we are most interested in
the equations of motion of fluctuations on the probe brane around the back-
ground configuration corresponding to NESS.

6.1 Effective metric

Let us consider the fluctuations of Xµ and Aa (which we write X̃µ and Ãa,
respectively) around the solutions obtained in Section 5.1 (which we write
X̄µ and Āa, respectively). The equations of motion of X̃µ and Ãa are given
by perturbing the equations of motion of Xµ and Aa with the replacement
Xµ → X̄µ + X̃µ and Aa → Āa + Ãa.

It is worth while mentioning for arbitrary setups, and let us begin with
the DBI action of a Dp-brane on an arbitrary background geometry whose
metric is ĝµν :

S = −Tp
∫
dp+1ξ e−Φ

√
− det(gab + 2πα′Fab), (6.1)

where Tp is the tension of the Dp-brane, ξa are the worldvoulme coordinates,
Φ is the dilaton field, gab = ∂aX

µ∂bX
ν ĝµν is the induced metric, and Fab =

∂aAb − ∂bAa is the field-strength of the worldvolume U(1) gauge field. The
equations of motion of Xµ and Aa are#19

−∂b
(
e−Φω

√
−GĝµνGab∂aX

µ
)
+

1

2
e−Φω

√
−GGab∂ν ĝαβ∂aX

α∂bX
β = 0, (6.2)

∂a

(
e−Φω

√
−GGabFbcg

cd
)
= 0, (6.3)

#19See Appendix B.
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where

Gab = gab − (2πα′)2(Fg−1F )ab (6.4)

is the open-string metric [25, 26] and ω = (g/G)1/4. Note that Φ and ĝµν
contain Xµ; gab contains Xµ and ∂aX

µ; ω and Gab contain Xµ, ∂aX
µ and

Fab in general. They may provide non-trivial interactions.
Now, we substitute Xµ = X̄µ + X̃µ and Aa = Āa + Ãa into (6.2) and

(6.3), and consider the equations of motion for X̃µ and Ãa to the linear
order in fluctuations. The equations of motion can be divided into groups
of i) the terms with second derivative of fluctuations and ii) the terms with
first derivative or without derivative of fluctuations. In Section 6.2, we find
that z = z∗ plays a role of a horizon of the geometry whose metric is Gab.
At the horizon, the terms of i) become dominant because of the redshift and
the terms of ii) are negligible. Therefore, if we are interested in the behavior
of the fluctuations at the vicinity of z = z∗, we need only the terms of i) [27].
The reason why we focus on the vicinity of z = z∗ shall be explained shortly.

Of course, the foregoing argument can be justified only when the fluctu-
ations indeed obey the equations of motion on a curved spacetime given by
the metric Gab. We show it is indeed the case, at least for some special cases.
The terms of i) above in the static gauge can be written as follows#20:

e−Φω∂b

(√
−GGab∂aX̃

⊥
)
+ (terms which contain ∂aX̄

⊥) = 0, (6.5)

e−Φωgcd∂a

(√
−GGabF̃bc

)
+ (terms which contain ∂aX̄

⊥) = 0, (6.6)

where F̃ab = ∂aÃb − ∂bÃa. The dilaton, the induced metric and the open-
string metric contain only the background solutions here. X⊥ denotes Xµ

in the directions perpendicular to the worldvolume directions, which are the
physical degrees of freedom in the static gauge. Therefore, for the cases with
∂aX̄

⊥ = 0,#21 (6.5) and (6.6) reduce to

∂b

(√
−GGab∂aX̃

⊥
)

= 0, (6.7)

∂a

(√
−GGabF̃bc

)
= 0, (6.8)

which are the Klein-Gordon equation and the Maxwell equation, respectively,
on a geometry whose metric is Gab.

The reason why we are interested in the equations of motion at the vicinity
of z = z∗ is that the computations of correlation functions of the fluctuations

#20Explicit forms of (6.5) and (6.6) are shown in Appendix C.
#21For more general situations, we postpone the analysis in future work [28].
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are governed by them in the following sense. Since z = z∗ turns out to be a
horizon (which we call effective horizon) of the geometry given by the metric
Gab, the ingoing-wave boundary condition for fluctuations has to be imposed
at z = z∗. This means that the correlation functions are parametrized by the
Hawking temperature associated with the effective horizon rather than that
at the bulk horizon z = zH . Since both the fluctuations and the dissipations
are evaluated through the correlation functions, the effective temperature
defined by (a generalization of) the fluctuation-dissipation relation at NESS
is given by the Hawking temperature of the effective horizon, but not the
temperature of the heat bath. Now, (6.7) and (6.8) show that the effective
temperature can be read from Gab [5, 6, 7, 8, 9, 10].

6.2 Diagonalization of effective metric

In our setup of D3-D7 model, Gab is given by

Gab = gab + (2πα′)2


F 2
tz

gzz
+ E2

gxx
FtzFxz

gzz
0 0 EFxz

gxx
FtzFxz

gzz

F 2
xz

gzz
+ E2

gtt
0 0 EFtz

−gtt

0 0 0 0 0
0 0 0 0 0

EFxz

gxx
EFtz

−gtt
0 0

F 2
tz

gtt
+ F 2

xz

gxx

 , (6.9)

which has off-diagonal components owing to the non-vanishing field-strength
of the worldvoulme gauge field. In order to diagonalize this effective metric,
we consider the following transformation for t, x and z:dtdx

dz

 −→

dτdη
dρ

 =

 dt+ GxtGxz−GxxGtz

(Gxt)
2−GxxGtt

dz

dx+ Gxt

Gxx
dt+ Gxz

Gxx
dz

dz

 , (6.10)

and then the diagonalized metric Gab is

Gττ = −(2πα′)2N 2g2xx cos
6 θ̄ (gxx |gtt| − (2πα′)2E2)

(2πα′)2N 2g3xx cos
6 θ̄ +D2

,

Gρρ =
(2πα′)2N 2g3xx |gtt| gzz cos6 θ̄

(2πα′)2N 2g3xx |gtt| cos6 θ̄ +D2 |gtt| − J2gxx
,

Gηη =

(
(2πα′)2N 2g3xx cos

6 θ̄ +D2
)
(gxx |gtt| − (2πα′)2E2)

(2πα′)2N 2g3xx |gtt| cos6 θ̄ +D2 |gtt| − J2gxx
,

G22 = G33 = gxx.

(6.11)

Note that the numerator of Gττ and the denominator of Gρρ contain (5.12)
and (5.13), respectively, which go to zero at z = z∗. One can check that Gηη
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has non-zero and finite value at z = z∗. Hence, near z∗, the effective metric
behaves as follows:

Gττ ∼ −a(z − z∗), Gρρ ∼ b/(z − z∗), (6.12)

where

a =
(2πα′)2N 2g2xx cos

6 θ̄ (gxx |gtt|)′

(2πα′)2N 2g3xx cos
6 θ̄ +D2

∣∣∣∣∣
z=z∗

,

b =
(2πα′)2N 2g3xx |gtt| gzz cos6 θ̄(
(2πα′)2N 2g3xx|gtt| cos6 θ̄+D2|gtt|

gxx

)′
gxx

∣∣∣∣∣
z=z∗

.

(6.13)

This means that z = z∗ plays the role of the horizon (effective horizon) for
the small fluctuations of the normalizable modes on the probe D-brane when
(6.7) and (6.8) hold. Then the Hawking temperature associated with the
effective horizon, which we call effective temperature T∗, can be read from
the ratio of a to b as follows:

T∗ =
1

4π

√
a

b
. (6.14)

6.3 Results

In this section, we present the results of our analysis on the effective
temperature. First, we show two limiting cases where the results are obtained
analytically, and then we present numerical results for more general cases.

In our setup, X⊥ corresponds to θ and ψ. We have employed the ansatz
(which is consistent with the equation of motion) ∂aψ̄ = 0, and (6.7) always
holds for ψ̃. We can also show that ψ̃ decouples from the other modes
within the consideration of Section 6.1. Therefore, the notion of the effective
temperature for ψ̃ is valid for all the cases presented in this section. For θ, we
have found in Section 5.1 that ∂aθ̄ at z = z∗ vanishes when Mq = 0, Mq = ∞
and when |D| = ∞. At these limits, (6.7) for θ̃ holds, and F̃ab obeys to (6.8).
Therefore, the results for these three limits given in Section 6.3 are valid for
all the physical fluctuations ψ̃, θ̃ and F̃ab.

Infinite-mass limit and high-density limit

T∗ depends on θ̄(z∗) as we can see in (6.13) and (6.14). The relationship
between θ̄(z∗) and physical parameters, such as Mq, is obtained from the
nonlinear equation of motion which is solvable only numerically in general.
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However, we find that the large mass limitMq → ∞ corresponds to the limit
of θ̄(z∗) → π/2 in Fig. 8, and T∗ at this limit can be computed analytically
by using this property. We find that the effective temperature behaves as

T∗ =
1

4π

√
64

z2H
√
4 + (2πα′)2E2z4H

+O (θ∗ − π/2) −→ T
4
√
1 + e2

, (6.15)

at the large-mass limit. Note that the effective temperature is lower than
the heat-bath temperature at finite E.

Let us compare the effective temperature (6.15) to that of the Langevin
system given in [5]. In [5], the effective temperature is given as T∗ =
4
√
1− v2 T, where v stands for the velocity of the test quark. In our sys-

tem, the average velocity of the charge carriers is given by the following
relationship:

v2 =

(
J

D

)2

=
e2

1 + e2
. (6.16)

The evaluation of the average velocity is justified since the contribution of
the pair creation is absent at the large-mass limit. In the presence of the pair
creation, the positively charged particles and the negatively charged particles
are moving in the opposite directions, and J does not necessarily reflect the
average velocity of the charge carriers. Then we obtain from (6.15) and (6.16)

T∗ =
4
√
1− v2 T, (6.17)

which completely agrees with the result of the Langevin system of infinitely
heavy single test particle [5].

One finds that we can also take the high-density limit, D2 → ∞, in (6.13)
and (6.14) analytically. We obtain

T∗ =
1

4π

√
64

z2H
√

4 + (2πα′)2E2z4H
+O

(
1

D2

)
−→ T

4
√
1 + e2

, (6.18)

which coincides with (6.15). At the large-density limit, the contribution of
the doped carriers dominates over that of the pair creation, and we can again
justify the estimation (6.16). Although we obtain (6.18) for arbitrary mass,
it coincides with (6.17) at the large-density limit.

Numerical results

Numerical computation is necessary for the cases of arbitrary density and
arbitrary mass. We show the results from the numerical analysis. We set
2πα′ = N = 1 for simplicity in the numerical computations.
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6. FLUCTUATIONS AND EFFECTIVE TEMPERATURE

Fig. 9 shows the effective temperature at the massless limit but for various
densities. Here we set the heat-bath temperature to be T = 0.1 which is
indicated by the straight line for reference. We have checked that the result
at D = 0 agrees with that in [10] where T∗ > T at finite E. However, we
find that a region of T∗ < T appears for D ̸= 0 when E is small but nonzero.
The condition for T∗ < T shall be found to be D2/T 6 > λN2

c /32 at (6.19).
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Figure 9: T∗ vs. E for massless case
at T = 0.1. The straight line in-
dicates the temperature of the heat
bath. The other curves correspond
to different D’s from the upper curve
(D2 = 0) to the lower curve (D2 = 5)
in increments of 1.

The results for finite mass are given in Fig. 10. We present the relationship
between T∗ and Mq In Fig. 10, we have set T = 0.1 and E = 0.2. The curves
correspond to different D’s from the upper line (D2 = 0.1) to the lower one
(D2 = 1) in increments of 0.1. One can check the consistency, that T∗ at Mq

is the same as that at E = 0.2 in Fig. 9, and the curves degenerates into the
value given by (6.15) in the large Mq region.

Fig. 11 shows T∗ vs. D2 at T = 0.1 and E = 0.8. The curves correspond
to different θ̄(z∗)’s from the upper curve (θ̄(z∗) = 0) to the lower one (θ̄(z∗) =
0.9×π/2) in increments of 0.1×π/2. We present the relationship between T∗
and θ̄(z∗) rather than that for T∗ and Mq, but we can read the dependence
of T∗ on Mq qualitatively since Mq is a monotonically increasing function of
θ̄(z∗) as is demonstrated in Fig. 8#22. In this figure, the curves reach the
same value given in (6.18) at high densities. Independence of T∗ on Mq at
high densities can also be seen in Fig. 10 where the dependence of T∗ on θ̄(z∗)

#22We use θ̄(z∗) rather than Mq in Fig. 11 and Fig. 13 since θ̄(z∗) = π/2 corresponds to
Mq = ∞, and θ̄(z∗) is a useful parameter at the large Mq region.
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6. FLUCTUATIONS AND EFFECTIVE TEMPERATURE

becomes weaker as D goes large.

0.1 0.2 0.3 0.4 0.5 0.6
Mq0.070

0.075

0.080

T*

Figure 10: T∗ vs. Mq at T = 0.1
and E = 0.2. The curves corre-
spond to differentD’s from the upper
curve (D2 = 0.1) to the lower curve
(D2 = 1) in increments of 0.1.
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Figure 11: T∗ vs. D
2 for various mass

at T = 0.1 and E = 0.8. The curves
correspond to different θ̄(z∗)’s from
the upper curve (θ̄(z∗) = 0) to the
lower curve (θ̄(z∗) = 0.9 × π/2) in
increments of 0.1× π/2.
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Figure 12: T∗ vs. Mq at T = 0.3 and
D2 = 0.2. The curves correspond to
different E’s. It varies from E = 0.1
to E = 0.8 in increments of 0.1 when
we follow the intercept on the T∗ axis
from up to down.
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Figure 13: A diagram for behavior
of the effective temperature. The
boundary line is D2/T 6 = I. The
region under the line (filled by gray
color) corresponds to the region for
D2/T 6 < I and hence T∗ > T ,
whereas the region above the line
(the white region) is for D2/T 6 > I
where T∗ < T .

Fig. 12 shows T∗ vs. Mq at T = 0.3 and D2 = 0.2. The curves correspond
to different E’s. It varies from E = 0.1 to E = 0.8 in increments of 0.1 when
we follow the intercept on the T∗ axis from up to down. The figure shows
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6. FLUCTUATIONS AND EFFECTIVE TEMPERATURE

that T∗ of the system of light carriers increases along E #23, whereas T∗ for
the system of heavy carriers decreases along E.

This implies that the pair creation, which is dominant at small Mq, has
an effect of raising the effective temperature, whereas the drag effect, which
is dominant at large Mq, lowers the effective temperature.

Small E analysis

So far we have found that the effective temperature becomes lower when
the density and the mass of the carriers are large. In order to highlight this
property, let us examine the effective temperature T∗ in the small E region
but for arbitrary density and mass. Expanding T∗ with respect to E to the
order of E2, we find that T∗ < T is realized when the following condition is
satisfied:

D2

T 6
> I(θ̄H),

I(θ̄H) ≡
λN2

c

29
cos11/2 θ̄H

×
[
4
√
cos θ̄H + 3

√
2
√
4 + 7 cos θ̄H − 4 cos(2θ̄H) + cos(3θ̄H)

]
,

(6.19)

where θ̄(zH) is abbreviated as θ̄H .
Fig. 13 shows the behavior of the effective temperature at small but

nonzero E for various densities and masses. The region under the line (filled
by gray color) corresponds to D2/T 6 < I(θ̄H) and hence T∗ > T , whereas the
region above the line (the white region) is for D2/T 6 > I(θ̄H) where T∗ < T .

#23Precisely speaking, this statement is correct when |D| satisfies (6.19).
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7. EFFECTIVE TEMPERATURE IN GENERAL MODELS

7 Effective temperature in general models

In this thesis, this section is also the main part [12].
In this section we present the effective temperature in the large mass

and/or large density limit in general models#24. We consider a quantum
field theory in (p + 1)-dimensions at temperature T . Then we introduce a
probe D(q+1+n)-brane, which expands in the (q+2)-dimensional spacetime

(t, x1, · · · , xq, r,) and wraps the n-dimensional subspace Ω⃗n of S8−p.

7.1 Setup

To generalize the study in the D3-D7 system, we consider the heat bath
to be Nc Dp branes (with p < 7) at temperature T . Its holographic dual has
the following background metric [29]:

ds2 = ĝttdt
2 + ĝxxdx⃗

2 + ĝzzdz
2 + ĝΩΩdΩ

2, (7.1)

where ĝΩΩ is the metric on the unit S8−p. The conponents of the bulk metric
are given as#25

ĝtt = −
(
L2

z2

(
1 +

z4

z4H

)) 7−p
4

1−
2

7−p
2

(
z
zH

)7−p

(
1 + z4

z4H

) 7−p
2


= −ĝxx

(
1− (

√
2L/zH)

7−p

ĝ2xx

)
,

ĝxx =

(
L2

z2

(
1 +

z4

z4H

)) 7−p
4

, ĝzz =
1

|ĝtt|
L4

z4

(
1− z4

z4H

)2(
1 + z4

z4H

) ,
ĝΩΩ =

1

ĝxx

L4

z2

(
1 +

z4

z4H

)
,

(7.2)

where zH denotes the location of the horizon. The parameter L, which we
set to 1 later, has the dimension of length. Our S8−p metric is

dΩ2 = dθ2 + sin2 θdΩ2
7−p−n + cos2 θdΩ2

n,

dΩ2
7−p−n = dψ2

1 + sin2 ψ1dψ
2
2 + (sinψ1 sinψ2)

2 dψ2
3

+ · · ·+ (sinψ1 sinψ2 · · · sinψ7−p−n)
2 dψ2

7−p−n,

(7.3)

#24See for the massless cases [10].
#25See also Appendix D.
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7. EFFECTIVE TEMPERATURE IN GENERAL MODELS

where 0 ≤ θ ≤ π/2, 0 ≤ ψj ≤ π (j = 1, 2, · · · , 6− p− n) and 0 ≤ ψ7−p−n ≤
2π#26. The Hawking temperature T is obtained as

T =
7− p

2
p+3
4 π

z
p−5
2

H

L
p−3
2

. (7.4)

We consider a probe D(q + 1 + n) brane which fills AdS5 and wraps the

Sn ⊂ S8−p. Employing the static gauge ξa = (t, x⃗, r, Ω⃗n), the DBI action of
the D(q + 1 + n) brane is

SD(q+1+n) = −TD(q+1+n)

∫
dtdx⃗dzdΩ⃗ne

−ϕ
√

− detGab,

Gab = ∂aX
µ∂bX

ν ĝµν + 2πα′Fab,

TD(q+1+n) =
1

(2π)q+1+nα′ (q+1+n)+1
2 gs

,

(7.5)

where TD(q+1+n) is the D(q + 1 + n) brane tension, and the dilaton factor e−ϕ

is given as the inverse of the following:

eϕ = eϕ0

(
1

z2

(
1 +

z4

z4H

))(p−3)(7−p)/8

. (7.6)

Here we assume the system does not depend on the location on the com-
pact Sn space: Xµ and Fab do not depend on Ω⃗n. In addition, we assume
the system is time independent and spatially homogeneous, and hence Xµ

and Fab depend only on z. We also assume that ∂tψk = ∂zψk = 0 which
is consistent with the equations of motion. We take Az = 0 gauge, and
Ax2 = · · · = Axq = 0 by the rotational invariance. Hence only At and
Ax ≡ Ax1 become nonzero functions. Then we take ansatz Ax = −Et+h(z).

Then the action per unit volume, which we redefine as SD(q+1+n), is now
given as follows:

SD(q+1+n) = −VSnTD(q+1+n)

∫
dtdze−ϕĝ

n/2
ΩΩ cosn θĝ(q−1)/2

xx K

= −N
∫
dtdzw(z) cosn θĝ(q−1)/2

xx K,

K ≡
√

|gtt| gxxgzz − (2πα′)2
(
gxxAt

′(z)2 + gzzȦx(z, t)2 − |gtt|A′
x(z, t)

2
)
,

N =TD(q+1+n)VSnLn =
VSnLn

(2π)pα′ p+1
2 gs

, w(z) ≡ e−ϕ
(
ĝ
1/2
ΩΩ/L

)n
,

(7.7)
#26See also Appendix F for more detail of ψk.
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where we have defined λ = 2g2YMNc, g
2
YM = (2π)p−2gsα

′(p−3)/2, and VSn is
the volume of the unit Sn.

Equations of motion of the U(1) gauge fields are given as

∂z
∂L

∂A′
t(z)

= ∂z

[
−N (2πα′)2w(z) cosn θg

(q+1)/2
xx A′

t(z)

K

]
= 0,

∂z
∂L

∂A′
x(t, z)

= ∂z

[
N (2πα′)2w(z) cosn θg

(q−1)/2
xx |gtt|A′

x(t, z)

K

]
= 0.

(7.8)

By substituting the ansatzes, these equations are written as

− N (2πα′)2w(z) cosn θg
(q+1)/2
xx A′

t(z)√
|gtt| gxxgzz − (2πα′)2

(
gxxA′

t(z)
2 + gzzȦx(t, z)2 − |gtt|A′

x(t, z)
2
) ≡ D,

N (2πα′)2w(z) cosn θg
(q−1)/2
xx |gtt|h′(z)√

|gtt| gxxgzz − (2πα′)2
(
gxxA′

t(z)
2 + gzzȦx(t, z)2 − |gtt|A′

x(t, z)
2
) ≡ J,

(7.9)

where D and J are charge density and current density as is discussed in the
D3-D7 system, and they satisfy D |gtt|h′(z) = −JgxxA′

t(z). Hence we can
rewrite (7.9) as follows:

gxxA
′
t(z)

2 =
1

(2πα′)2
|gtt|D2 gzz (|gtt| gxx − (2πα′)2E2)

N 2(2πα′)2w2 |gtt| gqxx cos2n θ + |gtt|D2 − gxxB2
,

|gtt|h′(z)2 =
1

(2πα′)2
gxxB

2 gzz (|gtt| gxx − (2πα′)2E2)

N 2(2πα′)2w2 |gtt| gqxx cos2n θ + |gtt|D2 − gxxB2
.

(7.10)

Substituting the geuge solutions, the action becomes as follows:

SD(q+1+n) = −N
∫
dtdz w2 cos2n θgq−1/2

xx

×

√
(2πα′)2N 2 |ḡtt| ḡzz (|ḡtt| ḡxx − (2πα′)2E2)

(2πα′)2N 2w2 |ḡtt| ḡqxx cos2n θ +D2 |ḡtt| −B2ḡxx
.

(7.11)

We then impose the reality condition on the action as we have did in the
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case of the D3-D7 system. Hence the following should be satisfied:

|ḡtt| ḡxx − (2πα′)2E2
∣∣∣
z=z∗

= 0,

(2πα′)2N 2w2 |ḡtt| ḡqxx cos2n θ +D2 |ḡtt| −B2ḡxx

∣∣∣∣∣
z=z∗

= 0,
(7.12)

at some point z = z∗ which is between z = 0 and zH . From the first relation,
we can see z∗ as follows:

z∗ =

√
C −

√
C2 − 1zH ,

C ≡

(
1 + (2πα′)2E2

(
zH√
2L

)7−p
) 2

7−p

=
(
1 + e2

) 2
7−p ,

e ≡ (2πα′)E

(
zH√
2L

) 7−p
2

= (2πα′)E

(
7− p

4πLT

)− 7−p
p−5

.

(7.13)

From the second equation in (7.12), we obtain the conductivity σ as

B2 = σ2E2, σ2 ≡ |ḡtt|
ḡxxE2

[
(2πα′)2N 2w2ḡqxx cos

2n θ +D2
] ∣∣∣∣∣

z=z∗

. (7.14)

Note that only the pair-creation term, the first term in the parenthesis in
(7.14), depends on q and n.

For n ̸= 0 case, the equation of motion of θ is ∂z
∂L

∂∂zθ(z)
− ∂L

∂θ(z)
= 0, where

∂z
∂L

∂∂zθ(z)
= ∂z

−Nw(z) cosn θg
(q−1)/2
xx

(
|gtt| gxx − (2πα′)2 Ȧx(t, z)

2
)
ĝΩΩθ

′

K

 ,
∂L
∂θ(z)

= nNw tan θ cosn θg(q−1)/2
xx K,

(7.15)

where K is defined at (7.7). Thus the equation of motion for θ(z) near z∗ is
obtained as follows

∂z
∂L

∂∂zθ(z)
= ∂z

[
ĝθθθ

′(z)f ′(z∗)(z − z∗)

(2πα′)
√
−g11gttgzz

√
k′(z∗)

f ′(z∗)

]
,

∂L
∂θ(z)

= n(2πα′)N 2w2g
q−1/2
11 (−gttgzz)1/2 sin θ cos2n−1 θ

√
f ′(z∗)

k′(z∗)
,

(7.16)
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where

f(z) ≡ (2πα′)2E2 + g11gtt,

k(z) ≡ (2πα′)2N 2w2gttg
q
xx cos

2n +B2gxx +D2gtt.
(7.17)

Then the equation of motion is reduced to

ĝΩΩθ
′(z)k′(z∗)− n(2πα′)2N 2w2gq11 |gtt| gzz sin θ cos2n−1 θ = 0. (7.18)

Here we can see that θ′(z∗) = 0 when θ(z∗) = 0 or π/2.

7.2 Effective temperature at large mass limit

The effective temperature of the conductor system is given by

T∗ =
1

4π

√
a

b
,

a =
wgq−1

xx cos2n θ (|gxx| gtt)′

wgqxx cos2n θ +D2

∣∣∣∣∣
z∗

, b =
w |gtt| gzzgqxx cos2n θ(

w|gtt|gqxx cos2n θ+D2|gtt|
gxx

)′
gxx

∣∣∣∣∣
z∗

,

(7.19)

where w is a model-dependent factor that includes the contributions of the
dilaton, the tension of the probe brane and the volume of the compact di-
rections. gab is the induced metric in the given setup. Note that T∗ depends
on q and n in general. However, we find that T∗ becomes independent of q
and n if we take the limit of D → ∞ or Mq → ∞ (θ∗ = π/2). Furthermore,
the effective temperature coincides with each other at both limits, as is the
case of the D3-D7 system. The effective temperature at these limits is

T∗ =
1

4π

√
(|gtt| gxx)′
|gtt| gzz

(
|gtt|
gxx

)′

=
T

(1 + e2)
1

7−p

=
(
1− v2

) 1
7−p T, (7.20)

where e = (2πα′)E
(
7−p
4πT

) 7−p
5−p , and the average velocity of the charge carrier is

given as (6.16). The result, which is the generalization of (6.15) and (6.18),
agrees with the effective temperature of the corresponding Langevin system
(dragged string system) shown in [10].
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8 Summary and discussions

We have analyzed the properties of the effective temperature of NESS in
holographic models. Our systems are many-body systems of charge carriers
driven by the electric field. We find that at the large-density limit and at the
large-mass limit of the charge carriers, the effective temperature agrees with
that for the corresponding Langevin system. Let us find possible interpreta-
tions of our result.

In the conductor systems, the charge carriers have two origins: those who
have doped and those who have pair created. The pair creation is suppressed
at the large-mass limit, and the effect of the doped carriers dominates at the
large-density limit. This means that the effective temperature of the con-
ductor systems and that of the Langevin systems agree when the role of the
doped charge is dominant. This is natural in the sense that the systems of
the doped carriers are the many-body systems of the single dragged parti-
cle in the same medium. However, our analysis shows more: the effective
temperature of the doped charges are not affected by the interaction among
them at the large-mass limit, since it is independent of the density at this
limit. We also found that the effective temperature of the doped charges is
not affected by the mass at the high-density limit, either. The reason why we
have emphasized doped charges is that the effect of the pair creation becomes
un-important at these limits. For the mutual consistency of these limits, the
effective temperatures at these two limits have to agree with each other. We
found it is indeed the case. Note that these properties are owing to neither
the supersymmetry of the microscopic theory nor the conformal invariance,
since we have observed the same properties in general models that do not
necessarily have supersymmetry nor conformal invariance#27.

We have also found that the effective temperature can be lower than the
temperature of the heat bath even for the systems which show the higher
effective temperature in the neutral case. For example, we found that the ef-
fective temperature of the D3-D7 system at finite densities can be lower than
the heat-bath temperature in the region of small electric field. These obser-
vations lead us to the conclusion that the pair creation of charge carriers has
an effect to raise the effective temperature whereas dragging of the doped car-
riers lowers the effective temperature, in a wide range of holographic models
of NESS we have studied.

It has been found that the systems we have studied show non-linear
conductivity, and some of them shows even interesting characteristics such

#27Note that the supersymmetry is broken in our setup because of the temperature and
the density even if the original microscopic theory is supersymmetric.
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as negative differential conductivity [30] and non-equilibrium phase transi-
tions [31]. It is interesting to see how the properties of the effective temper-
ature contribute to these phenomena. We leave this for future study.

46



8. SUMMARY AND DISCUSSIONS

Acknowledgments

I would like to express my special appreciation and thanks to my adviser
Professor Masayasu Harada. You have been a tremendous mentor for me.
I would like to thank you for introducing me to research field of QCD and
for encouraging my research of hadron physics. You always gave me fruitful
suggestions. I would also like to thank my collaborator, Professor Yong-
Liang Ma. Your advice about hadron physics was really helpful for me. I
appreciate Professor Chiho Nonaka for giving me opportunity to know hot
topics in heavy-ion collision physics. I am grateful to everyone of H-lab,
E-lab, and QG-lab.

I am thankful to my collaborator, Professor Shin Nakamura. I would
like to thank you for introducing me to research field of gauge/gravity cor-
respondence and for discussing my research at large. Without your support,
I would not be able to accomplish this thesis.

My work has been supported in part by Global COE Program“ Quest
for Fundamental Principles in the Universe”of Nagoya University (G07).

A special thanks to my family. Words cannot express how grateful I
am to my mother-in-law, father-in-law, my mother, and father for all of the
sacrifices that you ’ve made on my behalf. Your prayer for me was what
sustained me thus far. I would also like to thank all of my friends who
supported me in writing, and motivated me to strive towards my goal. At
the end I would like express appreciation to my beloved wife Yukiko who
spent sleepless nights with me and always supported me.

47



A. SCALE INVARIANCE IN N = 4 SU(NC) SYM AND ADS5

A Scale invariance in N = 4 SU(Nc) SYM and

AdS5

Here we comment on the scale-invariance of the N = 4 SU(Nc) SYM
theory and the AdS5 spacetime.

N = 4 supersymmetry (SUSY) has four supercharges. The theory in-
cludes gauge fields Aµ, scalar fields ϕi (i = 1, · · · , 6) and Weyl fermions λI
(I = 1, · · · , 4). The Lagrangian density is given by

L =
1

g2YM

Tr

[
−1

2
F 2
µν − (Dµϕi)

2 − λ̄Iγ
µDµλ

I +O(ϕ4) +O(λλϕ)

]
, (A.1)

where Fµν ≡ F a
µνt

a, and the generator of the gauge group ta satisfies Tr(tatb) =
δab/2. γµ is the usual gamma matrix, and D denotes the covariant derivative.
Note that the N = 4 super Yang-Mills theory does not have any parameter
having dimensions, and hence that is conformal theory at the classical level.

At the 1-loop level, the β-function is obtained as

β = − g3YM

48π2
Nc

(
11− 2nf −

1

2
ns

)
= 0, (A.2)

where nf = 4, ns = 6 are number of Weyl fermion and real scalar fields,
respectively. This theory is scale invariant and is known as a conformal filed
theory (CFT). The four-dimensional conformal group is known to be SO(2,4)
group.

The metric of AdS5 is given by

ds25 =
( r
L

)2
(−dt2 + dx⃗2) + L2dr

2

r2
, (A.3)

where the parameter L is called the AdS radius. This spacetime has the
SO(2,4) invariance. As a part of the invariance, it has the scale invariance
under xµ → axµ and r → r/a. Note that, the energy which is conjugate
variable of t has the same transformation property as r. Hence, r will be
interpreted as the energy scale of the gauge theory.

B General forms of equations of motion

Here we derive (6.2) and (6.3) from the DBI action (5.3) [26, 32]. In
this appendix, we suppress the indices of ĝab, gab, Fab and Gab. G and its
transposition are defined as

G = g + F, GT = g − F, (B.1)
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where g and F are symmetric and anti-symmetric matrix respectively. For
simplicity, we set 2πα′ = 1 temporarily. Then its inverse Gab ≡ (G−1)

ab
is

defined as

G−1 = (g + F )−1 =
[
ĝ
(
1 + g−1F

)]−1
=
(
1 + g−1F

)−1
g−1

=
(
1− g−1F +

(
−g−1F

)2
+ · · ·

)
g−1,(

G−1
)T

=
(
1 + g−1F +

(
g−1F

)2
+ · · ·

)
g−1.

(B.2)

We define symmetric part Gab
(S) as

G−1
(S) ≡

G−1 + (G−1)
T

2
=
(
1 +

(
g−1F

)2
+
(
g−1F

)4
+ · · ·

)
g−1

=
(
1−

(
g−1F

)2)−1

g−1 =
(
g − Fg−1F

)−1
,

(B.3)

and hence its inverse matrix is defined#28 as G(S) = g − Fg−1F . The anti-
symmetric part Gab

(A) of G
ab is

G−1
(A) ≡

G−1 − (G−1)
T

2
= −

(
g−1F +

(
g−1F

)3
+
(
g−1F

)5
+ · · ·

)
g−1

= −g−1F
(
1 +

(
g−1F

)2
+
(
g−1F

)4
+ · · ·

)
g−1 = −g−1F

(
g − Fg−1F

)−1

= −g−1FG(S) = −G(S)Fg
−1.

(B.4)

The determinant of G and G(S) can be written as

detG = det g det
(
1 + g−1F

)
= det g det

(
1− g−1F

)
,

detG(S) = det g det
(
1− (g−1F )2

)
= det g

[
det
(
1 + g−1F

)]2
.

(B.5)

The lower relation have been obtained by using the upper one. As as result,
we have the following relation between detG and detG(S) as

detG = detG(S)

[
det
(
1 + g−1F

)]−1
. (B.6)

Then we derive the equation of motion as follows:

δ
√
− detG =

1

2

√
− detG GbaδGab =

1

2

√
− detG Gba (δgab + δFab) , (B.7)

#28Notice that G(S) is not a symmetric part of G: G(S) ̸=
(
G+GT

)
/2.
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where the variation of g times G−1 is

δgabG
ba = δgabG

ab
(S) = δ (ĝµν(X)∂aX

µ∂bX
ν) ·Gab

(S)

= [2ĝµν∂aX
µ∂bδX

ν + ∂ηĝµν∂aX
µ∂bX

νδXη]Gab
(S),

(B.8)

and the variation of F times G−1 is

δFabG
ba = δFabG

ba
(A) = −2∂aδAbG

ab
(A). (B.9)

Hence δ
√
− detG can be written as

δ
√
− detG =

1

2
ω
√

− detG(S)

×
[
[2ĝµν(X)∂aX

µ∂bδX
ν + ∂ηĝµν(X)∂aX

µ∂bX
νδXη]Gab

(S)

− 2∂aδAbG
ab
(A)

]
,

(B.10)

where ω ≡ [det (1 + g−1F )]
−1/2

and hence detG = detG(S)ω
2 by using (B.6).

Thus the equations of motion are obtained as follows:

−∂b
(
ω
√
− detG(S)G

ab
(S)ĝµν(X)∂aX

µ
)

+
1

2
ω
√
− detG(S)G

ab
(S)∂ν ĝση(X)∂aX

σ∂bX
η = 0,

∂a

(
ω
√

− detG(S)G
ab
(S)Fbcg

cd
)
= 0.

(B.11)

These equations are (6.2) and (6.3). Finally we have the following EOMs
written by the covariant derivatives:

∇2Xµ +Gab
(S)Γ

µ
ση(ĝ)∇aX

σ∇bX
η +Gab

(S)∇aX
µ∇b lnω = 0,

∇a
(
ωFabg

bc
)
= 0,

(B.12)

where ∇a is the covariant derivative with respect to G(S), and Γσ
µη(ĝ) is

written by the back ground metric ĝ:

∂a

(√
− detG(S)G

ab
(S)Φb

)
=
√
− detG(S)∇aΦb

(Φb = ∂bX
µ, ∂bω, ∂bĝµν(X)),

Γµ
ση =

1

2
ĝµν(X)

[
∂σĝην(X) + ∂ηĝσν(X)− ∂ν ĝση(X)

]
.

(B.13)

Here note that, the derivative in Γµ
ση is ∂σ/∂X

σ but not ∂/∂ξ.
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C Equations of motion for fluctuations

Here, we obtain the explicit forms of (6.5) and (6.6). To achieve them,
we expand (B.11) and obtain explicit forms of the equations of motion for
fluctuations in the D3-D7 system. The back ground metric is given in (5.1).
We employ the static gauge as in the main body of text.

We expand Xµ and Aa as

Xµ → X̄µ + X̃µ, Aa → Āa + Ãa, (C.1)

where X̃µ and Ãa stand for the fluctuations around the classical solutions X̄µ

and Āa. Here we consider expansions to the first order of the fluctuations.
In this section, we need to consider only expansions of ∂aX̃

µ but not
X̃µ since the terms vanish. For example, we consider the back ground metric
ĝµν(X). Generally it is expanded as ĝµν(X) = ĝµν(X̄)+∂ηĝµν(X̄)X̃η, however
here we consider the case in which the second term vanishes. For example,
∂ηĝµν(X̄)X̃η does not contribute when ĝµν depends only on the non dynamical
variable r. As the same way, the second term of upper equation in (B.11)
vanishes. Then the equations of motion can be written as

−∂b
(√

− detGGab
(S)ĝµν(X̄)∂aX

µ
)
= 0,

−∂a
(√

− detGGab
(A)

)
= 0.

(C.2)

Here we have used
√
− detG = ω

√
− detG(S).

Neglecting the second order of fluctuations, the parts of the equations of
motion are expanded as follows:

Gab = Gab + G̃ab,

Gab ≡ ĝµν∂aX
µ
∂bX

ν
+ F ab,

G̃ab ≡ ĝµν

(
∂aX

µ
∂bX̃

ν + ∂aX̃
µ∂bX

ν
)
+ F̃ab,

(C.3)

√
− detG =

√
− det Ḡ+

∂
√
− detG

∂∂aXµ

∣∣∣∣∣
X=X̄
A=Ā

∂aX̃
µ +

∂
√
− detG

∂∂aAb

∣∣∣∣∣
X=X̄
A=Ā

∂aÃb

=
√

− det Ḡ+
√

− det ḠḠab
(S)∂bX̄

ν ĝµν(X̄)∂aX̃
µ

+
√

− det ḠḠab
(A)∂aÃb,

(C.4)
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Gab
(S) = Ḡab

(S) +
∂Gab

(S)

∂∂cXµ

∣∣∣∣∣
X=X̄
A=Ā

∂cX̃
µ +

∂Gab
(S)

∂∂cAd

∣∣∣∣∣
X=X̄
A=Ā

∂cÃd

= Ḡab
(S) −

(
Ḡca

(S)Ḡ
bd
(S) + Ḡca

(A)Ḡ
bd
(A) + Ḡcb

(S)Ḡ
ad
(S) + Ḡcb

(A)Ḡ
ad
(A)

)
× ∂dX̄

σĝµσ(X̄)∂cX̃
µ

+
(
Ḡac

(S)Ḡ
bd
(A) − Ḡac

(A)Ḡ
bd
(S) + Ḡbc

(S)Ḡ
ad
(A) − Ḡbc

(A)Ḡ
ad
(S)

)
∂cÃd,

(C.5)

Gab
(A) = Ḡab

(A) +
∂Gab

(A)

∂∂cXµ

∣∣∣∣∣
X=X̄
A=Ā

∂cX̃
µ +

∂Gab
(A)

∂∂cAd

∣∣∣∣∣
X=X̄
A=Ā

∂cÃd

= Ḡab
(A) +

(
Ḡac

(S)Ḡ
bd
(A) − Ḡac

(A)Ḡ
bd
(S) + Ḡad

(S)Ḡ
bc
(A) − Ḡad

(A)Ḡ
bc
(S)

)
× ∂dX̄

σĝµσ(X̄)∂cX̃
µ

−
(
Ḡac

(S)Ḡ
bd
(S) − Ḡac

(A)Ḡ
bd
(A) − Ḡbc

(S)Ḡ
ad
(S) + Ḡbc

(A)Ḡ
ad
(A)

)
∂cÃd.

(C.6)

Finally we have the following form of the equations of motion:

∂a

[√
−Ḡγ(XX)

ab
µν
∂bX̃

ν

]
+ ∂c

[√
−Ḡγ(XA)

abc
µ
∂aÃb

]
= 0,

∂a

[√
−Ḡγ(AA)

abcd∂cÃd

]
+ ∂a

[√
−Ḡγ(XA)

abc
µ
∂cX̃

µ
]
= 0,

(C.7)

The first terms in (C.7) contain the first terms of (6.5) and (6.6).
where γ’s are defined by using P̄ a

µ ≡ Ḡab
(S)∂bX̄

σĝσµ(X̄) as

γ(XX)
ab
µν

≡ Ḡab
(S)ĝµν +

[
−Ḡab

(S)Ḡ
cd
(S) + Ḡac

(S)Ḡ
bd
(S) − Ḡad

(S)Ḡ
bc
(S)

+ Ḡab
(A)Ḡ

cd
(A) − Ḡad

(A)Ḡ
bc
(A)

]
P̄cµP̄dν ,

γ(XA)
abc
µ

≡
(
Ḡab

(A)Ḡ
cd
(S) − Ḡac

(A)Ḡ
bd
(S) + Ḡad

(S)Ḡ
bc
(A) + Ḡac

(S)Ḡ
bd
(A) − Ḡad

(A)Ḡ
bc
(S)

)
P̄dµ,

γ(AA)
abcd ≡ Ḡab

(A)Ḡ
cd
(A) −

(
Ḡac

(S)Ḡ
bd
(S) − Ḡac

(A)Ḡ
bd
(A) − Ḡbc

(S)Ḡ
ad
(S) + Ḡbc

(A)Ḡ
ad
(A)

)
.

(C.8)
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D Change of coordinate from r to z in general

models

Here we consider the AdSp+2-Schwarzschild times S8−p where p < 7, and
change the variable r into z. As discussed in [29], the metric is given by

ds2 =
r(7−p)/2

L(7−p)/2

[
−
(
1− r7−p

H

r7−p

)
dt2 + dx⃗2

]
+
L(7−p)/2

r(7−p)/2

dr2(
1− r7−p

H

r7−p

) +
L(7−p)/2

r(7−p)/2
r2dΩ2,

(D.1)

where the superscription of xi runs from i = 1 to p, and r is the radial
coordinate. dΩ denotes the volume element of unit S8−p. rH is the location
of the horizon, and the parameter L has a dimension of length. The Hawking
temperature is given by

T = c−1
0

r
(5−p)/2
H

L(7−p)/2
, c0 =

4π

7− p
. (D.2)

First, we change the variable r into r̃ as

r̃2 = r2 +
√
r4 − r4H , (r̃H = rH), (D.3)

and inversely r is written as

r =

√
r̃4 + r4H
2r̃2

=

√
r̃4 + r̃4H
2r̃2

. (D.4)

Then we change the variable r̃ into z as

r̃ =
√
2/z, (r̃H =

√
2/zH). (D.5)

In terms of z, the radial coordinate r can be written as

r =
L2

z

√
1 +

z4

z4H
, (D.6)

and then

dr = dr/dz · dz = −L
2

z2

(
1− z4

z4H

)/√
1 +

z4

z4H
dz. (D.7)
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Hence the metric of r changes as follows:

ĝrrdr
2 =

L(7−p)/2

r(7−p)/2

dr2(
1− r7−p

H

r7−p

) =
dr2

|ĝtt|
=

1

|ĝtt|
L4

z4

(
1− z4

z4H

)2(
1 + z4

z4H

) dz2. (D.8)

Finally, we have the metric as

ds2 = ĝttdt
2 + ĝxxdx⃗

2 + ĝzzdz
2 + ĝΩΩdΩ

2, (D.9)

ĝtt = − r
7−p
2

L
7−p
2

(
1− r7−p

H

r7−p

)
= −

(
L2

z2

(
1 +

z4

z4H

)) 7−p
4

1−
2

7−p
2

(
z
zH

)7−p

(
1 + z4

z4H

) 7−p
2


= −ĝxx

(
1− (

√
2L/zH)

7−p

ĝ2xx

)
,

ĝxx =
r

7−p
2

L
7−p
2

=

(
L2

z2

(
1 +

z4

z4H

)) 7−p
4

,

ĝzz =
1

|ĝtt|
L4

z4

(
1− z4

z4H

)2(
1 + z4

z4H

) ,
ĝΩΩ =

L(7−p)/2

r(7−p)/2
r2 = L(7−p)/2r(p−3)/2 =

r2

ĝxx
=

1

ĝxx

L4

z2

(
1 +

z4

z4H

)
,

(D.10)

The Hawking temperature T can be written as

T =
7− p

2
p+3
4 π

· z
p−5
2

H

L
p−3
2

⇐⇒ zH = 2
p+3

2(p−5)L
3−p
5−p

(
7− p

πT

)− 2
p−5

. (D.11)

The dilaton factor e−ϕ is the inverse of the following:

eϕ = eϕ0r(p−3)(7−p)/4 = eϕ0g(p−3)/2
xx = eϕ0

(
1

z2

(
1 +

z4

z4H

))(p−3)(7−p)/8

.

(D.12)

E Diagonalization of open string metric in

general models

Here we show the diagonalization of the effective metric in the general
dimension case as in the main body of text. We consider the probe D(q+1+n)
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brane, which expands in the (q + 2) spacetime (t, x1, · · · , xq, r,) and wraps

up the n compacted subspace Ω⃗n of the S8−p. We assume the open string
metric is as follows:

Ḡ(S) = ḡ + (2πα′)2


F̄ 2
1t

ḡ11
+

F̄ 2
zt

ḡzz
F̄z1F̄zt

ḡzz
0 − F̄1tF̄z1

ḡ11
F̄z1F̄zt

ḡzz

F̄ 2
1t

ḡtt
+

F̄ 2
z1

ḡzz
0 F̄1tF̄zt

ḡtt

0 0 D 0

− F̄1tF̄z1

ḡ11

F̄1tF̄zt

ḡtt
0

F̄ 2
z1

ḡ11
+

F̄ 2
zt

gtt

 , (E.1)

where D ≡ diag(ḡ22, · · · , ḡqq), and ḡ11 = ḡ22 = · · · = ḡqq.

Leaving G
(S)
xx and dz unchanged, we employ the following diagonalization

for t, x1 and z component as discussed in the case of D3-D7 system in the
main text:

dtdx
dz

 −→

dτdη
dρ

 =


dt+

Ḡ
(S)
xt Ḡ

(S)
xz −Ḡ

(S)
xx Ḡ

(S)
tz(

Ḡ
(S)
xt

)2
−Ḡ

(S)
xx Ḡ

(S)
tt

dz

dx+
Ḡ

(S)
xt

Ḡ
(S)
xx

dt+ Ḡ
(S)
xz

Ḡ
(S)
xx

dz

dz

 , (E.2)

and then the diagonalized metric go as

Ḡ
(S)
ab −→ G = diag (Gττ ,G11,G22, · · · ,Gqq,Gρρ) , (E.3)

where

Gττ =

(
(2πα′)2F̄ 2

1t + ḡ11ḡtt
) (

(2πα′)2
(
F̄ 2
1tḡzz + F̄ 2

z1ḡtt + F̄ 2
ztḡ11

)
+ ḡ11ḡttḡzz

)
ḡ11
(
(2πα′)2

(
F̄ 2
1tḡzz + F̄ 2

z1ḡtt
)
+ ḡ11ḡttḡzz

)
= −(2πα′)2N 2w2ḡq−1

11 (|ḡ11| ḡtt − (2πα′)2E2) cos2n θ

(2πα′)2N 2w2ḡq11 cos
2n θ +D2

,

Gρρ =
(2πα′)2

(
F̄ 2
1tḡzz + F̄ 2

z1ḡtt + F̄ 2
ztḡ11

)
+ ḡ11ḡttḡzz

(2πα′)2F̄ 2
1t + ḡ11ḡtt

=
(2πα′)2N 2w2 |ḡtt| ḡzz ḡq11 cos2n θ

(2πα′)2N 2w2 |ḡtt| ḡq11 cos2n θ +D2 |ḡtt| − B2ḡ11
,

Gyy = (2πα′)2
(
F̄ 2
1t

ḡtt
+
F̄ 2
z1

ḡzz

)
+ ḡ11

=
(ḡ11 |ḡtt| − (2πα′)2E2) ((2πα′)2N 2w2ḡq11 cos

2n θ +D2)

(2πα′)2N 2w2 |ḡtt| ḡq11 cos2n θ +D2 |ḡtt| −B2ḡ11
,

G22 = · · · = Gqq = ḡ11.

(E.4)
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When we put p = 3, q = 3, n = 3 and w = 1, then the matrix goes back to
the effective metric of the D3-D7 system.

In addition, the effective temperature is obtained as

T∗ =
1

4π

√
a

b
,

a =
(2πα′)2N 2w2ḡq−1

11 cos2n θ (|ḡ11| ḡtt)′

(2πα′)2N 2w2ḡq11 cos
2n θ +D2

∣∣∣∣∣
z∗

,

b =
(2πα′)2N 2w2 |ḡtt| ḡzzḡq11 cos2n θ(
(2πα′)2N 2w2|ḡtt|ḡq11 cos2n θ+D2|ḡtt|

ḡ11

)′
ḡ11

∣∣∣∣∣
z∗

.

(E.5)

F Example of polar coordinates on Sd−1

F.1 Separating S5 into S1 and S3

Here we show an example of the polar coordinate on S5 (5.2). For our aim,
it is enough to consider flat space case. The polar coordinate is represented
as follows:

x4 = r sin θ cosψ,

x5 = r sin θ sinψ,

x6 = r cos θ cosϕ1,

x7 = r cos θ sinϕ1 cosϕ2,

x8 = r cos θ sinϕ1 sinϕ2 cosϕ3,

x9 = r cos θ sinϕ1 sinϕ2 sinϕ3,


0 ≤ r <∞
0 ≤ θ ≤ π/2
0 ≤ ψ < 2π
0 ≤ ϕ1,2 ≤ π
0 ≤ ϕ3 < 2π



where ψ is an angle of S1 and ϕi (i = 1, 2, 3) denotes angles of S3, and r
satisfies

∑9
k=4 x

2
k = r2 . The metric is given by

ds2 = dr2 + r2dθ2 + r2 sin2 θdψ2

+ r2 cos2 θ

[
dϕ2

1 + sin2 ϕ1dϕ
2
2 + (sinϕ1 sinϕ2)

2 dϕ2
3

]
= dr2 + r2dθ2 + r2 sin2 θdψ2 + r2 cos2 θdΩ2

3 = dr2 + r2dΩ2
5,

(F.1)

where dΩ2
5 and dΩ2

3 are defined as

dΩ2
5 = dθ2 + sin2 θ dψ2︸︷︷︸

S1

+cos2 θ dΩ2
3︸︷︷︸

S3

,

dΩ2
3 = dϕ2

1 + sin2 ϕ1dϕ
2
2 + (sinϕ1 sinϕ2)

2 dϕ2
3.

(F.2)
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These are metrics of S5 and S3 in this coordinate.
In the holographic case, we should replace the components of the metric

in front of dr2 and dΩ2
5 as in (5.2), however the definition of dΩ2

5 is the same
as in (F.2).

Then the part of the integral in (5.2) goes as follows:∫
dϕ1dϕ2dϕ3

√
det g3 =

∫
dϕ1dϕ2dϕ3 cos

3 θ sin2 ϕ1 sinϕ2 = VS3 cos3 θ,

(F.3)

where the metric of S3 as g3 = diag(cos θ, cos θ sinϕ1, cos θ sinϕ1 sinϕ2) by
setting r = 1, and the volume of S3 is VS3 = 2π2.

F.2 Separating Sd−1 into Sk−1 and S(d−1)−k

Here we consider more general case. We separate Sd−1 into Sk−1 and
S(d−1)−k as follows:

x1 = r sin θ cosψ1,

x2 = r sin θ sinψ1 cosψ2,
...

xk−1 = r sin θ sinψ1 · · · sinψk−2 cosψk−1,

xk = r sin θ sinψ1 · · · sinψk−2 sinψk−1,

xk+1 = r cos θ cosϕ1,

xk+2 = r cos θ sinϕ1 cosϕ2,
...

xd−1 = r cos θ sinϕ1 · · · sinϕd−k−2 cosϕd−k−1,

xd = r cos θ sinϕ1 · · · sinϕd−k−2 sinϕd−k−1,


0 ≤ r <∞
0 ≤ θ ≤ π/2
0 ≤ ψi ≤ π

0 ≤ ψk−1 < 2π
0 ≤ ϕi ≤ π

0 ≤ ϕd−k−1 < 2π



where ψi and ϕj are angles of Sk−1 and S(d−1)−k respectively. r is radius of
Sd−1. Then the metric is given by

ds2 = dr2 + r2dΩ2
d−1,

dΩ2
d−1 = dθ2 + sin2 θ dΩ2

k−1︸ ︷︷ ︸
Sk−1

+cos2 θ dΩ2
(d−1)−k︸ ︷︷ ︸

S(d−1)−k

,

dΩ2
k−1 = dψ2

1 + sin2 ψ1dψ
2
2 + (sinψ1 sinψ2)

2 dψ2
3

+ · · ·+ (sinψ1 sinψ2 · · · sinψk−1)
2 dψ2

(k−1),

dΩ2
(d−1)−k = dϕ2

1 + sin2 ϕ1dϕ
2
2 + (sinϕ1 sinϕ2)

2 dϕ2
3

+ · · ·+
(
sinϕ1 sinϕ2 · · · sinϕ(d−k−1)

)2
dϕ2

(d−k−1).

(F.4)
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F. EXAMPLE OF POLAR COORDINATES ON SD−1

Hence the following integral is employed:∫ (d−1−k∏
j=1

dψj

)√
det g(d−1−k) = VSd−1−k cosn θ, (F.5)

where g(d−1)−k, given by setting r = 1, stands for the metric of S(d−1)−k, and
V(d−1)−k is the volume of S(d−1)−k.
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