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Chapter 1 

Introduction 

 Acceleration in increasing of computer power has enabled us to witness 

tremendous achievements in theoretical and computational research.  As having 

predicted by Moore in 1965,1,2 CPU power has been increased roughly twice per year, 

known as Moore’s law, and this fact has opened many new fields of computational 

research up.  The concept of the modern computer was first introduced by Turing in 

1936,3 and Zuse build a set of first computers called Z1 to Z4 between 1936 and 1945.4  

After about 70 years from the birth of the working tool, almost all human beings are 

blessed with very powerful and efficient, and yet small and cheap, equipment, and it is 

very common that researcher has their own personal computers and work with it in 

processing obtained data and writing papers.  As a result of wide spreading of amazingly 

useful tool, theoretical investigation particularly with computer is no longer an exclusive 

means for theoreticians but is now routinely available approach even for experimentalists.  

Of course, a plenty of computational resources is helpful for theoreticians too, in that they 

have strengthened the power of cutting-edge methodologies such as, for instance, linear-

scaling methods5-7 and highly parallel computing programs.8-10 

 However, theoreticians’ pursue of truly useful computational method for many 

possible practical applications is still on the endless way.  Although it is generally 

known that full configuration interaction (FCI)11 gives the exact solution of considered 

system under the non-relativistic time-independent particles with Born-Oppenheimer 

approximation, its computational cost is out of question in terms of application.12,13  

Theoreticians have imported many appropriate approximations and have developed so 

called wave function methods such as Hartree-Fock (HF),11 perturbation theory such as 

MP2,14-17 configuration interaction (CI), and coupled cluster (CC)11,18 methods, and as 

another stream of development, the well-known density functional theory (DFT),19,20 

which originally comes from electron-gas theory founded by Thomas and Fermi in 

1927.21,22  The development of DFT enriched many tools which are easily handled by 

chemists who engages themselves experiments on work station machines.  The most 

representative term is the “Gaussian” as a package of quantum mechanics (QM) 

calculation.  It is now very common that theoretical investigation occupies a part of 

discussion in many experiment papers. 

 As some simple calculations are now done by experimentalists, theoreticians 

have to consider how they help experimentalists.  Although there have been many 
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studies using QM calculations particularly utilizing the efficiency and accuracy of DFT 

recently, they have one pitfall: the computational cost of QM calculations scales formally 

at least cubic (O(N3)) to system size N.  The reason of the cubic scaling is attributed to 

the diagonalization step of Fock matrix which describes electron-electron and electron-

nuclear interaction in the system of interest.  Post Hartree-Fock calculations, what is 

worse, scales as O(N7) in the case of CC with single and double excitations and 

perturbative triples.  This means that doubling a system results in being required more 

than hundred times more expensive computation.  One possible solution is adding 

further approximations so as to omit the diagonalization and the calculation of electron 

correlation steps.  This primitive idea generated molecular mechanics (MM) method 

based on Newton’s laws of motion with classical force field, which describes the 

interaction between a pair of atom using a kind of harmonic potential.  One-million-

atom molecular dynamics (MD) simulation of the complete satellite tobacco mosaic virus 

has been reported in 200623 using one of the most powerful, massive parallel 

supercomputers.  Since force field parameters are usually optimized for specific systems 

such as proteins and DNAs,24-26 we can perform long simulations in a good accuracy, in 

terms of energy and geometry, for these systems.  However, unfortunately, force field 

calculations have some limitations.  For example, it is well-known that force field 

calculation is particularly poor at describing bond formation and cleavage during 

simulation, because one has to assign atom type before simulation.  This deficiency is 

critical when MM method is applied for chemical reactions.  In the view of material 

science and enzymes, it is important to consider chemical reactions and charge transfer 

effect and even excited state, therefore force field calculation is not generally be warmly 

welcomed in these regions. 

 Another possible solution is dividing a target molecule into pieces.  Since the 

behavior of steep scaling becomes significant only when the target system is bigger, the 

computational cost of small piece of large molecule must be very low.  The idea of 

fragmentation is that summation of energies of small fragments up recovers the total 

energy of the whole large molecule.  Such a fragmentation method is nowadays famous 

for the names of fragment molecular orbital (FMO)27-31 or divide-and-conquer (DC)7,32,33 

for example.  The concept of FMO method is very close to our intuition: large molecule 

is divided into fragments (monomers) and obtain the density of each monomer self-

consistently.  Total energy of the system is recovered by arithmetically manipulating the 

energies of monomers and dimers/trimers.  The latter, DC, method recovers density 

matrix by summing that of each subsystem up, and therefore this method is more oriented 

to physics.  Although the scaling of these methods is generally close to linear, 
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applications have been limited to a few hundred thousand atoms,34 which is still not 

sufficient for full simulation of proteins.  Calculation of each fragment is much faster 

than the calculation of a full system, however the pre-factor of ab initio methods is not 

negligibly small.  One motivation in this thesis is to develop a method with low pre-

factor.  Chapter 3 discusses such method utilizing a semi-empirical method based on 

DFT and demonstrates that the method beats the barrier of one-million-atom calculation 

with QM method. 

 Although structure and its stability, which are determined by the zeroth- and 

first-order geometrical derivatives of the total energy, are of significantly importance in 

understanding structural properties, the second-order derivative also tells much 

information in identifying and predicting vibrational properties such as infrared (IR) and 

Raman spectroscopy, for instance.  There are a number of spectroscopic research of 

nanomaterials,35-37 however that of GNRs is rather limited.38,39  It can be attributed to 

the fact that the synthesis of high-quality GNRs with smooth edges and narrow and 

constant widths is of great difficulty, even with many possible experimental methods for 

GNR synthesis.40  In terms of theoretically work, on the other hand, extended systems 

exhibit open-shell character which is very hard for ordinary DFT and even DFTB to tackle 

with.  Not only methodological difficulty, computational cost is also an embarrassing 

problem.  The motivation here is to develop a method which is applicable for large open-

shell molecular systems with low computational cost.  Because of economic 

computational cost of DFTB, the development of such a method along with DFTB must 

be one of the best approaches.  This work focuses on the derivation and the application 

of second-order geometrical derivatives to open-shell GNRs with DFTB wave function 

in Chapter 4. 

 Development of a new method certainly helps the activity of theoreticians, 

however scientists’, including theoreticians, goal should be to contribute to the 

improvement of our lives.  In this sense, development of method is only a start point of 

the theoreticians’ contribution to our lives.  Apart from this approach, how can a 

theoretician contribute to society?  The role of theoreticians is not to produce a visible 

entity but rather to support the activity of experimentalists, such as giving a strategy and 

an insight for a better molecule/material and uncovering a hidden physical background of 

observed phenomenon.  Although experimentalists lately do theoretical works to 

support their ideas by themselves, some difficulties remain in many fields of science.  

One difficult and yet important field of science for both experimental and theoretical work 

is the development of rechargeable battery,41-43 whose importance is growing because of 

rapid spread of portable devices.  Strong demanding of stable battery with high 
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efficiency and large capacity stirs up both experimentalists and theoreticians to develop 

better materials.  In spite of a number of experimental efforts, atom-resolved properties 

are not very well understood due to the limit of current experimental technique.  Recent 

experimental findings of molecular cluster batteries (MCBs)44-48 have accelerated its 

possibility of applications as a cathode active material of rechargeable battery.  

Experimental observations have revealed the high discharging capacity and fast 

discharging property.  These advantages of MCBs are attributed to the multi-step 

reduction of metal complex which is easily reduced and oxidized repeatedly and to their 

large surface are to contact with lithium atoms.  The highest capacity reached 320 Ah/kg 

as a hybrid with carbon nanotube.46  In spite of promising high capacity, atom-resolved 

properties of cathode active material in MCBs are almost unknown yet.  Molecule 

consisting of cathode active material exhibits a “super-reduced state” in the discharging 

process.  As can be guessed, molecules at super-reduced state is so unstable that only 

partial information is experimentally available.47,48  The present work focuses on the 

theoretical prediction of structural and electronic properties of the super-reduced 

polyoxometalate (POM27-)46,48 cluster through fast DFT calculation.  This work, 

including suggestions of strategies for improved material, is explained in Chapter 5 in 

detail. 

 The rest of the thesis is organized as follows.  In Chapter 2, important 

theoretical aspects of DFT and DFTB methods and FMO approach are briefly presented.  

In Chapter 3, the combination of FMO approach with DFTB method is founded and its 

applicability is investigated.  In Chapter 4, the derivation of second-order geometrical 

derivatives for open-shell molecular systems and the application of for GNRs are briefly 

presented.  In Chapter 5, the details of the computation, results, and possible future 

design strategy of POM are discussed.  Finally, conclusions and future prospects of 

these works are shown in Chapter 6. 
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Chapter 2 

Theoretical Backgrounds 

 In this chapter, basic theoretical backgrounds to describe the electronic and 

molecular structures and properties are introduced so as to enlighten the subsequent 

chapters.  Good materials are referred as refs. 1 to 6. 

 

2.1 Many-Electron Problems to Hartree-Fock Approximation 

 As described in Chapter 1, classical force field methods have pitfalls because of 

poor description of electrons.  Beyond classical force field methods, we need quantum 

mechanics (QM) methods,1,3,4,6 which complicates many electron problems.  As for QM, 

one of the most important and well-known equation is the Schrödinger equation, 

ℋΨ = ℇΨ.  (2.1) 

where ℋ is the Hamiltonian operator for a system consisting of nuclei and electrons.  

Although the equation looks very simple, no one has yet found the general analytical 

solution of this equation, therefore the history of QM has been the history of finding good 

approximate solutions of it from the birth of QM.  It should also be noted that this 

equation is restricted for non-relativistic and time-independent.  The Hamiltonian 

operator ℋ can simply and analytically be written as 

ℋ =  −
1

2
∑ ∇𝑖

2 −
1

2
∑

1

𝑀𝐴
∇𝐴

2

𝑀

A=1

𝑁

𝑖=1

−  ∑ ∑
𝑍𝐴

𝑟𝑖𝐴

𝑀

𝐴=1

+ ∑ ∑
1

𝑟𝑖𝑗
+  ∑ ∑

𝑍𝐴𝑍𝐵

𝑅𝐴𝐵

𝑀

𝐵>𝐴

𝑀

𝐴=1

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑁

𝑖=1

  , (2.2)   

where N and M represent numbers of electrons and nuclei, MA is the ratio of the mass of 

nucleus A to the mass of an electron, and ZA is the atomic number of nucleus A, and riA, 

rij, and RAB represent the distance between the ith electronc and Ath nucleus, the ith and 

jth electrons, and Ath and Bth nucleus respectively.  The Laplacian operator involves 

differentiation with respect to the coordinates of either electron of nucleus, giving the 

kinetic energy of particles.  Although this Hamiltonian exactly depicts the behavior of 

non-relativistic time-independent particles, one cannot again solve the Schrödinger 

equation with the exact Hamiltonian analytically, therefore an approximation, called 

Born-Oppenheimer approximation, is introduced.  The approximation neglects the 

movement of nuclei accompanying the movement of electrons.  It is justified by the fact 

that nuclei are much heavier than electrons, and therefore they move more slowly.  The 

remaining Hamiltonian operator, called electronic Hamiltonian, becomes 
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ℋelectron ≈ −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

−  ∑ ∑
𝑍A

𝑟𝑖A

𝑀

A=1

+  ∑ ∑
1

𝑟𝑖𝑗

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑁

𝑖=1

  .   (2.3) 

This expression simplifies eq. (2.1) as if it is free from the motions of nuclei.  Since we 

assume that nuclei are fixed, we can treat the contribution of nuclear potential to electrons, 

nuclear-nuclear repulsion, and total energy as if it is a parameter. 

 It must be mentioned that we additionally have to consider spin of electrons so 

that our electronic Hamiltonian is applicable for chemical problems.  However, our 

Hamiltonian does not have any information of spin from its appearance, and thus simple 

addition of spin coordinate  does not improve the description.  Considering the basic 

principle of QM, as electrons being fermion with 1/2 spin, the wave function of electrons 

have to obey what we call Pauli exclusion principle.  This states that “two identical 

fermions cannot occupy the same quantum state simultaneously”, and it requires our wave 

function to be antisymmetrized, 

Ψ(𝐱1, … , 𝐱𝑖 , … , 𝐱𝑗 , … , 𝐱𝑁) =  −Ψ(𝐱1, … , 𝐱𝑗 , … , 𝐱𝑖, … , 𝐱𝑁), (2.4) 

where x collectively represents three spatial coordinates r and one spin coordinate .  

Exact wave function has to satisfy both the Schrödinger equation and the antisymmetry 

principle.  Before thinking about the antisymmetry principle, it will be convenient to 

define Hartree product, as a many-electron wave function, 

ΨHP(𝐱1, 𝐱2, … , 𝐱𝑁) = 𝜒𝑖(𝐱1)𝜒𝑗(𝐱2) ⋯ 𝜒𝑘(𝐱𝑁), (2.5) 

where 𝜒𝑖 represents the i-th spin orbital, product of spatial orbital 𝜓𝑖 and spin function, 

either 𝛼 or 𝛽.  The physical description of Hartree product come from the fact that 

Hartree-Fock (HF) approximation assumes that electrons are uncorrelated (or 

independent).  However, Hartree product does not satisfy the antisymmetry principle.  

It is easily satisfied by introducing the concept of Slater determinant, which can be written 

as following in a general form, 

Ψ(𝐱1, 𝐱2, … , 𝐱𝑁) =
1

√𝑁!
||

𝜒𝑖(𝐱1) 𝜒𝑗(𝐱1) ⋯ 𝜒𝑘(𝐱1)

𝜒𝑖(𝐱2) 𝜒𝑗(𝐱2) ⋯ 𝜒𝑘(𝐱2)

⋮ ⋮ ⋮
𝜒𝑖(𝐱𝑁) 𝜒𝑗(𝐱𝑁) ⋯ 𝜒𝑘(𝐱𝑁)

||

= |𝜒𝑖(𝐱1)𝜒𝑗(𝐱1) ⋯ 𝜒𝑘(𝐱𝑁)〉. (2.6)  

Interestingly, Slater determinant simultaneously satisfies the antisymmetry principle and 

another important property QM: indistinguishability of electrons, which is not taken into 

account with the simple Hartree product (eq. (2.5)) which inherently assigns the 

occupation of the spin orbital 𝜒𝑖 with the electron 1 (𝐱1), etc. 
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 Now, the most difficult part is how to evaluate the last term which stands for 

electron-electron interactions, raising an N-body problem.  As an approximate approach 

for solving such a problem, the Hartree-Fock approximation is introduced as a primitive 

way.  Although this approximation is hardly used for practical applications nowadays, 

its solution is still widely used as a starting point of electron correlation problems.  To 

tackle with the N-body problem, the variational principle which states that the best wave 

function gives the lowest expectation value (energy) is a very powerful tool.  

Mathematically speaking, the lowest expectation value 𝐸0  achieved only when the 

orthonormalized wave function |Ψ〉 becomes exact, 

𝐸0 ≤ 〈Ψ|ℋ|Ψ〉, (2.7) 

where the equal sign holds only when the orthonormalized wave function is exact: |Ψ〉 =

|Ψ0〉 .  The constraint of wave function normalization requires to introduce the 

Lagrangian’s method of undetermined multiplier, however in practice, this eigenvalue 

problem directly derived in this line is not suited for being solved, therefore it is benefit 

to introduce “basis functions” and to write spatial orbitals by the linear combination of 

basis functions (atomic orbitals; LCAO) 𝜙𝑖 : 𝜓𝑖 =  ∑ 𝑐𝜇𝑖𝜙𝑖𝜇 .  With the modified 

spatial orbital expression, we arrive an expression of Lagrangian’s method, 

ℒ = 𝐸 − ∑ 𝜀𝑖𝑗

𝑖𝑗

(∑ 𝑐𝜇𝑖𝑐𝜈𝑖𝑆𝜇𝜈 − 1 

𝜇𝜈

) , (2.8) 

where 𝜀𝑖𝑗 is the undetermined Lagrange multiplier and 𝑆𝜇𝜈 = 〈𝜙𝜇|𝜙𝜈〉, corresponding 

to the overlap between atomic orbitals 𝜙𝜇  and 𝜙𝜈 .  ℒ  has to be minimized with 

respect to molecular orbital (MO) coefficient (𝑐𝜇𝑖), and as a result, we obtain a set of 

(pseudo-)eigenvalue problem, 

∑ 𝑐𝜇𝑖𝐹𝜇𝜈 = 𝜀𝑖

𝜈

∑ 𝑐𝜈𝑖𝑆𝜇𝜈

𝜈

, (2.9) 

where 𝐹𝜇𝜈 = 〈𝜙𝜇|𝑓|𝜙𝜈〉, and 

𝑓(𝑖) =  −
1

2
 ∇𝑖

2 −  ∑
𝑍𝐴

𝑟𝑖𝐴
+ 𝑣HF(𝑖)

𝑀

𝐴=1

, (2.10) 

where 𝑣HF(𝑖) represents a sort of averaged potential experienced by the i-th electron in 

the presence of the other N-1 electrons.  The essence of the Hartree-Fock approximation 

is to replace the complicated and sometimes complex many-electron problem by a one-

electron problem in which electron-electron repulsion is treated in an average way.1  

Since Hartree-Fock potential (eq. (2.10)) depends on the electronic structure of the system 

through 𝑣HF(𝑖), the solution of the Hatree-Fock equation cannot be obtained by a simple 
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(non-iterative) eigenvalue problem.  The procedure in obtaining a set of solution is 

called self-consistent field (SCF) procedure, and it is continued until certain threshold is 

satisfied.  The criteria differ by programs, but usually the difference of density matrix 

and/or energy of consecutive SCF cycles are compared with pre-defined thresholds. 

 

2.2 Density Functional Theory 

 Hartree-Fock approximation has been historically important, however it is 

critical that the correlation between electrons (in other words, concerted movement of 

electrons) is completely neglected by definition.  In order to take electron correlation 

into account, many MO based methods have been proposed such as configuration 

interaction (CI),1 Møller-Plesset perturbation,7-10 coupled cluster1,11 theories.  Apart 

from these methods, density functional theory (DFT)2,5,12,13 has been developed from 

1960’s.  The root of DFT can be originated from Thomas-Fermi electron gas model,14,15 

where they expressed the kinetic energy of electrons as a functional form of electron 

density, 

𝑇TF[𝜌(𝐫)] =
3

10
(3𝜋2)2/3  ∫ 𝜌5/3(𝐫)d𝐫 . (2.11) 

If we use a classical expression of electron-nuclear and electron-electron interaction, we 

can write the electronic energy of a system as a functional of electron density, 

𝐸TF[𝜌(𝑟)] =  
3

10
(3𝜋2)2/3  ∫ 𝜌5/3(𝐫)d𝐫 − 𝑍 ∫

𝜌(𝐫)

𝑟
d𝐫

+
1

2
∬

𝜌(𝐫1)𝜌(𝐫2)

𝑟12
d𝐫1d𝐫2 . (2.12) 

The novelty of the modified energy expression looks nothing, however their work showed 

that the electronic energy is completely given only with electron density 𝜌(𝐫), and 

therefore this is the very first DFT calculation. 

 DFT we call nowadays was greatly developed by Hohenberg and Kohn in 1964 

by their two theorems.12  Quoting the their original first theorem with modified notations 

for consistency, the first Hohenberg-Kohn theorem states that 

𝑣(𝐫) is (to within a constant) a unique functional of 𝜌(𝐫); since, in turn 

𝑣(𝐫) fixes ℋ we see that the full many particle ground state is a unique 

functional of 𝜌(𝐫) 

where 𝑣(𝐫) is an external potential.  The theorem states that a given ground state 

density, 𝜌0, uniquely defines an external potential, and the ground state energy 𝐸0 is 

uniquely defined as 
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𝐸0[𝜌0(𝐫)] =  ∫ 𝜌0(𝐫)𝑉Ned𝐫 + 𝑇[𝜌0(𝐫)] + 𝐸ee[𝜌0(𝐫)].  (2.13) 

The first term, which represents nuclear-electron interaction energy, depends on the 

coordinates of nuclei, on the other hand remaining two terms, kinetic and electron-

electron interaction energies, are a kind of universal functional in the sense that these 

interactions do not depend on system, i.e. positions of nuclei.  It should be noted that we 

can partially explicitly write the 𝐸ee[𝜌(𝐫)] term, 

𝐸ee[𝜌(𝐫)] = 𝐸ncl[𝜌(𝐫)] +
1

2
 ∬

𝜌(𝐫1)𝜌(𝐫2)

𝑟12
d𝐫1d𝐫2 , (2.14) 

where the first term represents the non-classical electron-electron interactions, and the 

second term is classically defined, Coulomb interaction. 

 Hohenberg and Kohn proved another important theorem (second Hohenberg-

Kohn theorem), stating that the lowest energy is achieved only when the input density is 

the ground state density.  This theorem is tightly connected to the well-known 

variational principle.  Applicability of DFT to chemical problems has been shown with 

two Hohenberg-Kohn theorems without any approximations, however the form of 

equation is not very well suited for computational approach. 

 In 1965, Kohn and Sham suggested a practical procedure for computer 

algorithms using orbital-based approach, and fundamental applications for computational 

chemistry were established.13  They proposed to start with the approximation to use non-

interacting system as a reference and to use Kohn-Sham orbitals in a self-consistent 

interactions procedure.  This approximation introduces the concept that the movement 

of an electron does not depend on that of other electrons, therefore in a sense this 

treatment is close to the Hartree-Fock approximation.  The true kinetic energy  𝑇[𝜌(𝐫)] 

is divided into two terms without any approximations: kinetic energies of non-interacting 

system 𝑇s[𝜌(𝐫)] and the residual contribution 𝑇C[𝜌(𝐫)].  No one yet found the exact 

expression of the residual contribution again, neverthtless, this is an important and useful 

approximation, because the non-interacting kinetic energy 𝑇s[𝜌(𝐫)] is simply written 

with the interacting density as 

𝑇S[𝜌(𝐫)] =  −
1

2
∑〈𝜓𝑖|∇𝑖

2|𝜓𝑖〉

𝑁

𝑖

.  (2.15) 

Finally, the total energy functional of non-interacting system is written with only one 

unknown term in orbital-based formulation, 

𝐸[𝜌(𝐫)] =  𝑇S[𝜌(𝐫)] +
1

2
 ∬

𝜌(𝐫1)𝜌(𝐫2)

𝑟12
d𝐫1d𝐫2 + ∫ 𝜌(𝐫)𝑉Ned𝐫 + 𝐸XC[𝜌(𝐫)] , (2.16)  
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where 𝐸XC[𝜌(𝐫)] is called exchange-correlation energy, which includes the difference 

between interacting and non-interacting kinetic energies 𝑇C[𝜌(𝐫)], and non-classical 

electron-electron interaction terms 𝐸ncl[𝜌(𝐫)] .  Unfortunately, the exact form of 

exchange-correlation energy has not been uncovered, and the exchange-correlation term 

contains everything which are unknown, so it is like “a kind of junkyard where everything 

is stowed away which we do not know how to handle exactly.”5  Eve in such a situation, 

many approximate exchange-correlation functionals have been proposed, and among 

them BP8616,17 and B3LYP18,19 functionals are briefly reviewed. 

 The BP86 is one of generalized gradient approximation (GGA) functionals and 

uses the representation by Becke in 1988 for non-local exchange contribution16 and by 

Perdew in 1986 for correlation contribution.17  The exchange contribution of GGA is 

usually written as 

𝐸X
GGA = 𝐸X

LDA  −  ∑ ∫ 𝐹(𝑠𝜎)𝜌𝜎

4
3(𝐫) d𝐫

𝜎

, (2.17) 

where 𝐸X
LDA  is the exchange contribution derived from the formula of local density 

approximation (LDA) proposed sometimes referred Dirac-Slater functional,20,21 and 𝑠𝜎 

is 

𝑠𝜎 =
|∇𝜌𝜎(𝐫)|

𝜌𝜎
4/3

(𝐫)
. (2.18) 

The representation by Becke in 198816 is 

𝐹(𝑠𝜎) =
𝛽𝑠𝜎

2

1 + 6𝛽𝑠𝜎 sinh−1 𝑠𝜎
  , (2.19) 

where β = 0.0042 is an empirical parameter, determined by least square fits.  LDA 

functional only depends on the electron density around 𝐫, however this apparently fails 

to cover detailed description of electrons where electron density fluctuates steeply.  

GGA improves the description by taking account the reduced density gradient (eq. (2.19)). 

 The representation for correlation contribution by Perdew in 198617 is much 

more complicated formalism 

𝐸C = ∫ 𝑛 𝜖𝐶(𝑛↑, 𝑛↓)d𝐫 +  ∫
𝑑−1e−Φ𝐶(𝑛)|∇𝑛|2

𝑛4/3
 d𝐫, (2.20) 

where n indicates the sum of the density of alpha and beta electrons, 𝑛↑  and 𝑛↓ , 

respectively, and 𝜖𝐶(𝑛↑, 𝑛↓) is the correlation energy per particle of the uniform electron 

gas.22 
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 The B3LYP is a little bit different from the BP86 functional in that it uses exact 

Hartree-Fock exchange for exchange contribution.  Such a functional is called hybrid 

functional.  The B3LYP formula19 is 

𝐸XC
B3LYP = (1 − 𝑎0)𝐸X

LSD + 𝑎0𝐸X
HF + 𝑎XΔ𝐸X

B88 + 𝐸C
LYP + (1 − 𝑎C)Δ𝐸C

VWN, (2.21) 

where 𝑎0, 𝑎X and 𝑎C are the semi-empirical coefficients determined by an appropriate 

fit to experimental data, 𝐸X
HF is the exact exchange contribution based on Hartree-Fock 

theory, Δ𝐸X
B88  is the non-local exchange contribution represented by Becke (Eq. 

(24)~(26)), and 𝐸C
LYP andΔ𝐸C

VWN are the local and non-local correlation contribution 

represented by Lee, Yang and Parr in 198818 and by Vosko, Wilk and Nusair in 1980.22  

Since the functional uses three semi-empirical coefficients, it is referred as “B3LYP”.  

The performance of B3LYP functional is usually better than BP86 functional,5 however 

due to the requirement of exact Hartree-Fock exchange evaluation, the computational cost 

is more expensive than pure-GGA functionals, such as BP86 mentioned above. 

 It should be mentioned that there is no assurance that orbitals obtained by DFT 

is true MOs, because the there is no proof that the ground state density is uniquely defined 

by only one wave function.5  These orbitals are often distinguished by calling Kohn-

Sham orbitals, nevertheless Kohn-Sham orbitals are known to describe MOs qualitatively 

and are used as if they are MOs (sometimes equivalently). 

 In the end of theoretical background of DFT, one approximate method is being 

reviewed.  One of the most time consuming steps in DFT calculation is the evaluation 

of Coulomb interaction, the second term of eq (2.16).  Because the term depends on four 

MO indices, the scaling of its computational cost grows as quartic (O(L4)) with respect to 

the number of basis functions L, which can be more expensive than solving 

(pseudo-)eigenvalue problems whose cost scales as cubic formally.  The RI 

approximation23 is the technique to expand spatial electron density, 𝜌(𝐫) , by atom 

centered auxiliary basis sets, denoted  (and ), 

𝜌(𝐫) ≈ ∑ 𝑐𝛼𝛼(𝐫) = 𝜌̃(𝐫)

𝛼

.  (2.17) 

The coefficient 𝑐𝛼 of atom centered auxiliary basis set after expansion of spatial electron 

density is determined to minimize the difference between expanded and real density.  

This manipulation is mathematically equivalent to the replacement 

(𝑖𝑗|𝑘𝑙) ≈ ∑(𝑖𝑗|𝛼)(𝛼|𝛽)−1(𝛽|𝑘𝑙)

𝛼𝛽

. (2.18) 

This approximation formally resembles the resolution of the identity in Hilbert space 

theory for nonorthogonal basis functions: hence using the acronym, we call this method 
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RI approximation.24  The Coulomb energy after expansion the electron density using 

auxiliary basis sets is expressed as 

𝐽 ≈ 𝐽 =
1

2
(𝜌| 𝜌̃) ≈

1

2
(𝜌̃| 𝜌̃) =

1

2
∑ ∑ 𝑐𝛼𝑐𝛽(𝛼|𝛽)

𝛽𝛼

  (2.19) 

and matrix elements of the Coulomb operator are 

𝐽𝑖𝑗 ≈ 𝐽𝑖𝑗 = ∑ 𝑐𝛼(𝑖𝑗|𝛼)

𝛼

   .      (2.20) 

As the four-center integral is approximately expressed by the products of two- and three-

center integrals, the approximation reduces the computational cost for evaluating 

Coulomb integrals from O(L4) to O(L2K), where K is the number of auxiliary basis 

functions.5  The RI approximation is sometimes referred as “density fitting”, and it is 

recently extended to exchange integrals for hybrid functionals in a similar way.25,26 

 

2.3 Density-Functional Tight-Binding Method 

 Although there have been many techniques to achieve efficient and/or linear 

scaling MO-based and DFT methods, theirs computational cost remains marginally 

expensive.  For instance, famous linear scaling method is referred as the fragment 

molecular orbital (FMO)27-31 and divide-and-conquer32-34 methods.  The details of the 

first method will be reviewed briefly in the following section.  The expensive 

computational cost is mainly because (1) large dimension of (pseudo-)eigenvalues 

problem and (2) a large number of integral calculations, have to be considered.  The first 

problem should be related to the fact that functions of higher angular momentum must be 

included in variational space to obtain accurate result.  The dependence of accuracy 

upon basis set size becomes more critical for MO-based method.6  The second problem 

can partly be solved by introducing the RI approximation, nevertheless a large number of 

integrals has to be still considered, and unfortunately calculations of integral are not very 

cheap. 

 One can of course use molecular mechanics (MM) methods using force field 

model, however as mentioned in the previous chapter, the QM description is no longer 

taken account.  As an alternative approach, efficient calculation, leaving QM description 

remain, can be attained by semi-empirical methods such as AM1,35 PM6,36,37 and the 

density-functional tight-binding (DFTB) method38-43 which introduces tight-binding 

approach over DFT.  As a difference between these methods, while AM1 and PM6 use 

atom-dependent parameters, DFTB uses atom-pair-dependent parameters.  This is the 
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central reason that DFTB attains better accuracy compared to other semi-empirical 

methods.  As a matter of fact, DFTB is comparable to a low-level DFT calculation.44-46 

 Since DFTB method is of great importance in latter Chapters, it is in detail 

explained dividing into several subsections.  The first subsection briefly reviews the 

central concept of DFTB method, and the second develops to self-consistent-charge 

(SCC) model.  As the third subsection, some extensions of DFTB are to be presented. 

 

2.3.1 Tight-Binding Theory and Nonself-Consistent-Charge (NCC) 

DFTB 

 The central concept of DFTB method is, obvious from its name, the tight-binding 

theory.  It is originated from Bloch’s work in 192847 and Slater and Koster’s work in 

1954,48 and can be simply stated that “electrons are tightly bound to atom” and cannot 

move (freely) between atoms.  Therefore it is pretty reasonable that the space where 

electrons can move around an atom is expanded with the atom-centered localized orbitals, 

like LCAO, as already introduced in Hartree-Fock method. 

 In the derivation of DFTB method, the starting point is the electronic energy of 

DFT (eq. (2.16)), and additionally electron density is expanded by a small fluctuation 

δ𝜌(𝐫) of density from reference density 𝜌0(𝐫), that is 

𝜌(𝐫) = 𝜌0(𝐫) + δ𝜌(𝐫). (2.21) 

With this approximation for DFTB, electronic energy is in generally transformed as 

𝐸[𝜌(𝐫)] =  𝐸[𝜌0(𝐫)] +
1

2
∬

𝛿2𝐸

𝛿𝜌(𝐫𝟏)𝛿𝜌(𝐫𝟐)
|𝜌0(𝐫) 𝛿𝜌(𝐫1)𝛿𝜌(𝐫2) d𝐫1d𝐫2

+ 𝒪(𝛿𝜌(𝐫)2). (2.22) 

Applying it for the total energy (electronic energy + nuclear repulsion energy) of DFT, 

𝐸[𝜌(𝐫)] =  ∑〈𝜓𝑖|ℋ0|𝜓𝑖〉 −
1

2
∬

𝜌0(𝐫1)𝜌0(𝐫2)

𝑟12
d𝐫1d𝐫2

occ

𝑖

+ 𝐸XC[𝜌0(𝐫)]

− ∫ 𝜌0(𝐫)𝑉XC[𝜌0(𝐫)] d𝜌(𝐫) + 𝐸nuc + 𝒪(𝛿𝜌(𝐫)2), (2.23) 

where ℋ0 represents the Hamiltonian which is generated with the reference density as 

input, and 𝐸nuc is the nuclear repulsion term.  The terms linear in δ𝜌(𝐫) cancel each 

other at any arbitrary input density.  In NCC-DFTB,38 first five terms of eq. (2.23) are 

considered, and the second-order fluctuation terms are neglected, leading to a simple 

equation, 
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𝐸NCC =  ∑〈𝜓𝑖|ℋ0|𝜓𝑖〉

occ

𝑖

+ 𝐸rep. (2.24) 

The second, third, and fourth terms of eq. (2.23) now only depends the reference density, 

we can therefore put these energies into a term Erep which is independent from the 

electronic structure (or fluctuation of electron density).  Applying the variational 

principle to Eq. (2.24), we obtain an eigenvalue problem, 

∑ 𝑐𝜈𝑖(𝐻𝜇𝜈
0 − 𝜀𝑖𝑆𝜇𝜈) = 0

AO

𝜈

, (2.25) 

where 𝐻𝜇𝜈
0 = 〈𝜙𝜇|ℋ0|𝜙𝜈〉 and 𝑆𝜇𝜈 = 〈𝜙𝜇|𝜙𝜈〉 called Hamiltonian and overlap matrix 

elements.  Although these matrix elements at a glance require an integral calculation, it 

is not the case for DFTB, because these integral terms are pre-computed for each atomic 

pair and tabulated in a file discretely.  During production calculations, the interpolation 

of tabulated values returns these integral values immediately.  The Hamiltonian matrix 

element 𝐻𝜇𝜈
0  is defined as 

𝐻𝜇𝜈
0 =  {

𝜀𝜇
neutral free atom if 𝜇 = 𝜈

〈𝜙𝜇
𝐴| 𝑇̂ + 𝑉0

𝐴 + 𝑉0
𝐵| 𝜙𝜈

𝐵〉 if 𝐴 ≠ 𝐵

0 otherwise

, (2.26) 

where A and B are the indices of atoms.  Since the Hamiltonian matrix element does not 

depend on the electronic structure (i.e., electron density or density matrix), NCC-DFTB 

is a simple eigenvalue problem, thus iterative SCF procedure is not needed. 

 

2.3.2 Self-Consistent-Charge (SCC) DFTB 

 NCC-DFTB is a good approximation for homogeneous systems with little charge 

polarization and has been successfully applied for some systems.38,39  However, it is 

unfortunately not a good approximation when it comes to the application for charged 

systems such as proteins and DNAs.  The most sensible and effective extension is to 

include the truncated second-order charge fluctuation term, 

𝐸2nd =
1

2
∬

𝛿𝜌(𝐫1)𝛿𝜌(𝐫2)

𝑟12
d𝐫1d𝐫2

+
1

2
∬

𝛿2𝐸XC

𝛿𝜌(𝐫𝟏)𝛿𝜌(𝐫𝟐)
|𝜌0(𝐫) 𝛿𝜌(𝐫1)𝛿𝜌(𝐫2) d𝐫1d𝐫2 (2.27) 

After some transformations applying approximations, the E2nd term is written simply as 
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𝐸2nd ≈  
1

2
∑ 𝛾𝐴𝐵Δ𝑞𝐴Δ𝑞𝐵

𝑀

𝐴,𝐵

, (2.28) 

where 𝛾𝐴𝐵 depends on the distance between atom A and B and their chemical hardness, 

and Δ𝑞𝐴 is the deviation of the Mulliken population on atom A from that in the neutral 

atom 𝑞𝐴
0 that is Δ𝑞𝐴 = 𝑞𝐴 − 𝑞𝐴

0, where 

𝑞𝐴 =
1

2
∑ 𝑛𝑖

𝑖

∑ ∑(𝑐𝜇𝑖𝑐𝜈𝑖𝑆𝜇𝜈 + 𝑐𝜈𝑖𝑐𝜇𝑖𝑆𝜈𝜇)

𝜈𝜇∈𝐴

, (2.29) 

where 𝑛𝑖 is the number of electrons that occupy i-th MO.  We now can define the total 

energy of SCC-DFTB39 as 

𝐸SCC =  ∑〈𝜓𝑖|ℋ0|𝜓𝑖〉

occ

𝑖

+  
1

2
∑ 𝛾𝐴𝐵Δ𝑞𝐴Δ𝑞𝐵

𝑀

𝐴,𝐵

+ 𝐸rep. (2.30) 

Applying the variational principle to eq. (2.30) again, we obtain an eigenvalue problem, 

however now Hamiltonian matrix element is 

𝐻μν = 𝐻𝜇𝜈
0 +

1

2
𝑆𝜇𝜈 ∑(𝛾𝐴𝐶 + 𝛾𝐵𝐶)Δ𝑞𝐶

𝑀

𝐶

. (2.31) 

The second term of eq. (2.31) depends on Δ𝑞𝐶, which depends on MO coefficients we 

can obtain as a solution of an eigenvalue problem.  Since 𝐻μν cannot be determined 

uniquely, SCC-DFTB requires to perform iterative SCF cycles.  For this reason, SCC-

DFTB is usually 5 to 20 times more expensive, however the extension opened DFTB to 

wider range of applications. 

 Energy represents only the zeroth order property of electronic structure.  It is 

certainly enough to discuss the energy difference, however in practical application, the 

analytical first- and second-order geometrical derivatives, usually called gradient and 

Hessian respectively, are important as well.  Both derivatives can be evaluated 

numerically, however this needs at least 3M and 9M2 times energy evaluations without 

symmetry constraint, and it is certainly computationally demanding for large systems.  

Therefore the analytic derivatives are certainly very important items.  Many details of 

both derivatives are discussed in Appendix A, so only final gradient 𝐹𝑎
39 and Hessian 

𝐺𝑎𝑏
49 of SCC-DFTB are presented here, 

𝐹𝑎 =  ∑ 𝑛𝑖

MO

𝑖

∑ 𝑐𝜇𝑖𝑐𝜈𝑖 {
𝜕𝐻𝜇𝜈

0

𝜕𝑎
+ (Ω𝐴𝐵 − 𝜀𝑖)

𝜕𝑆𝜇𝜈

𝜕𝑎
 }

AO

𝜇𝜈

+ ∑
𝜕𝛾𝐶𝐷

𝜕𝑎
Δ𝑞𝐶Δ𝑞𝐷 +

𝜕𝐸𝑟𝑒𝑝

𝜕𝑎

𝑀

𝐶𝐷

 (2.32) 

and 
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𝐺𝑎𝑏 =  ∑ 𝑛𝑖

MO

𝑖

∑ 𝑐𝜇𝑖𝑐𝜈𝑖 {
𝜕2𝐻𝜇𝜈

0

𝜕𝑎𝜕𝑏
+ (Ω𝐴𝐵 − 𝜀𝑖)

𝜕2𝑆𝜇𝜈

𝜕𝑎𝜕𝑏
+ (

𝜕Ω𝐴𝐵

𝜕𝑏
−

𝜕𝜀𝑖

𝜕𝑏
)

𝜕𝑆𝜇𝜈

𝜕𝑎
 }

AO

𝜇𝜈

+ ∑ 𝑛𝑖

MO

𝑖

∑ ∑ 𝑈𝑚𝑖
𝑏 𝑐𝜇𝑖𝑐𝜈𝑖 {

𝜕𝐻𝜇𝜈
0

𝜕𝑎
+ (Ω𝐴𝐵 − 𝜀𝑖)

𝜕𝑆𝜇𝜈

𝜕𝑎
 }

𝑀𝑂

𝑚

AO

𝜇𝜈

+ ∑ (Δ𝑞𝐶Δ𝑞𝐷

𝜕2𝛾𝐶𝐷

𝜕𝑎𝜕𝑏
+

𝜕𝛾𝐶𝐷

𝜕𝑎

𝜕𝑞𝐷

𝜕𝑏
Δ𝑞𝐷 +

𝜕𝛾𝐶𝐷

𝜕𝑎
Δ𝑞𝐶

𝜕𝑞𝐷

𝜕𝑏
 )  

𝑀

𝐶𝐷

+  
𝜕2𝐸𝑟𝑒𝑝

𝜕𝑎𝜕𝑏
 (2.33) 

where 

Ω𝐴𝐵 =  
1

2
𝑆𝜇𝜈 ∑(𝛾𝐴𝐶 + 𝛾𝐵𝐶)Δ𝑞𝐶

𝑀

𝐶

 (2.34) 

and 

∂𝑐𝜇𝑖

𝜕𝑎
=  ∑ 𝑈𝑚𝑖

𝑎 𝑐𝜇𝑚

MO

𝑚

 (2.35) 

 

2.3.3 Further Extensions of DFTB 

 As further extensions of DFTB method, (1) dispersion correction (DC), (2) 

unrestricted formalism, and (3) third-order DFTB are briefly overviewed in this 

subsection. 

 

(1) Dispersion correction (DC) 

 It is well-known that DFT with LDA, GGA, and some of hybrid functionals 

cannot describe dispersion interactions, such as van der Waals or London forces.  Since 

parameters for DFTB rely on DFT electronic and molecular structures, DFTB takes over 

this unfavorable character.  In DFTB community, two flavors of DC are widely used, 

universal force-field (UFF)50 and Slater-Kirkwood51 type DCs.  Both DCs are 

independent from electronic structure.  The UFF type DC for long-range interaction, 

where the distance between two atoms A and B is longer than a threshold (𝑟𝐴𝐵 >

2−1/6 𝑅𝐴𝐵), has the form of 

𝐸𝐴𝐵
disp

= 𝑑𝐴𝐵 {−2 (
𝑅𝐴𝐵

𝑟𝐴𝐵
)

6

+ (
𝑅𝐴𝐵

𝑟𝐴𝐵
)

12

} (2.36) 
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where 𝑑𝐴𝐵 and 𝑅𝐴𝐵 are well depth and van der Waals distance respectively, whereas 

short-range interaction is 

𝐸𝐴𝐵
disp

= 𝑈0 − 𝑈1𝑟𝑛 − 𝑈2𝑟2𝑛 (2.37) 

where 𝑈0 =
395

25
𝑑𝐴𝐵 , 𝑈1 = 25/6 672

25

𝑑𝐴𝐵

𝑟𝐴𝐵
5  , and 𝑈2 = −22/3 552

25

𝑑𝐴𝐵

𝑟𝐴𝐵
10 .  Another flavor, 

Slater-Kirkwood type DC51 is somewhat more complicated, 

𝐸𝐴𝐵
disp

=  −𝑓(𝑟𝐴𝐵)𝐶6
𝐴𝐵(𝑟𝐴𝐵)−6 

where 

𝑓(𝑟𝐴𝐵) = (1 − exp (−𝑑 (
𝑟𝐴𝐵

𝑅0
𝐴𝐵)

𝑛

))

𝑚

 (2.38) 

and 

𝑅0
𝐴𝐵 =

(𝑅0
𝐴)3 + (𝑅0

𝐵)3

(𝑅0
𝐴)2 + (𝑅0

𝐵)2
  (2.39) 

where 𝑅0
𝐴 is the cutoff radius of atom A.  The 𝐶6

𝐴𝐵(𝑟𝐴𝐵) is defined as 

𝐶6
𝐴𝐵 =

2𝐶6
𝐴𝐶6

𝐵𝑝𝐴𝑝𝐵

𝑝𝐴
2𝐶6

𝐵 + 𝑝𝐵
2𝐶6

𝐴  (2.40) 

where 𝐶6
𝐴 = 0.75√𝑁𝐴𝑝𝐴

3, and 𝑁𝐴 and 𝑝𝐴 are the effective number of electrons and the 

static polarizability of atom A. 

 Not depending on electronic structure, DCs are conceptually classified into a 

classical interaction, therefore the implementation into a program is relatively easy and 

the computational requirement is fractional.  DCs nevertheless improve stacking energy 

of DNA base pairs and give good agreement with more accurate MP2 calculations.51 

 

(2) Unrestricted formalism 

 DFTB equations above assume restricted wave function, which uses same set of 

orbitals for both alpha and beta electrons (Figure 2.1A).  Not all molecular and 

electronic structures can be well described by same set of orbitals in real.  In contrast, 

unrestricted wave function uses different sets of orbitals for alpha and beta electrons 

(Figure 2.1B).  The unrestricted formalism realizes to include spin-polarization effects 

either in a collinear or a non-collinear fashion as in the work by Köhler et al.52-54  In a 

collinear approach,52,53 the spin-spin interaction is described by first defining shell-

resolved Mulliken spin density, 𝑝𝐴𝑙 = 𝑞𝐴𝑙
𝛼 − 𝑞𝐴𝑙

𝛽
, where 𝑞𝐴𝑙

𝛼  and 𝑞𝐴𝑙
𝛽

 are the shell-

resolved Mulliken populations of alpha and beta electrons (𝑙 ∈ 𝐴), defined as Eq. (2.29) 

but  runs over the AOs of shell l, not atom A.  Within restricted wave function where 

a pair of alpha and beta electrons occupy single orbital, all spin density results in zero.  
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On the other hand, unrestricted wave function arises spin density, therefore spin-spin 

interaction, defined as 

𝐸spin =
1

2
∑ ∑ ∑ 𝑝𝐴𝑙𝑝𝐴𝑙′𝑊𝐴𝑙𝑙′

𝑙′∈𝐴𝑙∈𝐴𝐴

, (2.41) 

where 𝑊𝐴𝑙𝑙′ is the atomic spin constant calculated as 

𝑊𝐴𝑙𝑙′ =
1

2
(

𝜕𝜀𝑙
𝛼

𝜕𝑛𝑙′
𝛼 −

𝜕𝜀𝑙
𝛼

𝜕𝑛
𝑙′
𝛽

) , (2.42) 

have to be included.  The atomic spin constant values are calculated beforehand using 

DFT.  It is known that DFTB has the capability of generating open-shell singlet wave 

function, where the sum of spin quantum number yields zero but at least one pair of alpha 

and beta electrons occupy different orbitals.  Open-shell singlet state sometimes results 

in lower energy than triplet or restricted singlet state. 

 

 

 The Hamiltonian matrix element of unrestricted wave function needs one 

additional term which represents the spin-spin interaction, 

 

Figure 2.1 Schematic occupation of MOs for an imaginary system with 4 electrons 

by integer electrons for (A) restricted and (B) unrestricted formalisms, and (C) by 

fractional electrons.  Number next to each orbital represents occupation number. 
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𝐻𝜇𝜈
𝜎 = 𝐻𝜇𝜈

0 +
1

2
𝑆𝜇𝜈 ∑(𝛾𝐴𝐶 + 𝛾𝐵𝐶)Δ𝑞𝐶

𝑀

𝐶

+
1

2
𝑆𝜇𝜈𝛿𝜎 ( ∑ 𝑊𝐴𝑙𝑙′′𝑝𝐴𝑙′′ +

𝑙′′∈𝐴

∑ 𝑊𝐵𝑙𝑙′′𝑝𝐵𝑙′′

𝑙′′∈𝐵

) , (2.43) 

where 𝛿𝜎 = ±1  depending on the spin index or.  Since alpha and beta 

orbitals have to be treated separately, one has to solve the eigenvalue problem Eq. (2.25) 

twice per SCF iteration.  For this reason, the computational cost of unrestricted wave 

function is estimated to be about twice, compared with the restricted case.  Using a 

different set of orbitals for alpha and beta electrons causes the spin contamination problem, 

since alpha and beta eigenvectors are independently obtained by solving a different 

eigenvalue problem, and therefore alpha eigenvectors are not orthonormalized against 

beta and vice versa.  The mismatch between alpha and beta orbitals gives a bigger 

expectation value of 𝒮2 value than the expectation value without any spin contamination 

〈𝒮2〉Exact, defined as1 

〈𝒮2〉 = 〈𝒮2〉Exact + 𝑁𝛽 − ∑ ∑ |〈𝜓𝑖
𝛼|𝜓𝑗

𝛽〉|
2

𝑁

𝑗

𝑁

𝑖

. (2.44) 

Because of this spin contamination problem, unrestricted wave function is nothing but an 

approximate wave function.  As a solution, restricted-open shell wave function has been 

proposed for ab initio calculations,55 however there is no similar theory for DFTB. 

 

(3) Third-order DFTB 

 A possible further extension of SCC-DFTB is to include the third-order charge 

fluctuation term,56 

𝐸3rd =
1

6
∭

𝛿3𝐸XC

𝛿𝜌(𝐫𝟏)𝛿𝜌(𝐫𝟐)𝛿𝜌(𝐫𝟑)
|𝜌0(𝐫)𝛿𝜌(𝐫1)𝛿𝜌(𝐫2)𝛿𝜌(𝐫3) d𝐫1d𝐫2 d𝐫3. (2.45) 

The simplification of the E3rd term results in 

𝐸3rd ≈  
1

3
∑ Γ𝐴𝐵(Δ𝑞𝐴)2Δ𝑞𝐵

𝑀

𝐴,𝐵

 (2.46) 

where Γ𝐴𝐵 is a newly introduced variable which depends on the distance between atom 

A and B, their chemical hardness, and the derivative of A’s chemical hardness.  

Physically, the chemical hardness of an atom has been constant with the second-order 

expansion (SCC-DFTB), however the third-order expansion allows different chemical 
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hardness value depending on charge state.  This expansion improves the description of 

charged systems.56 

 

2.3.4 Electronic temperature 

 Our (pseudo-)eigenvalue problem sometimes cannot find a stable SCF solution.  

The instability most likely comes from the nearly-degenerated frontier orbitals.  In such 

situation, integer occupation of orbitals creates so strong potential that the electronic 

structure determined previously is upset by the potential newly generated.  A cheap 

solution applicable for DFTB is to utilize fractional occupation numbers for orbital 

occupation.  The concept is to use a smooth function (Figure 2.) in determining 

occupation numbers of orbitals allowing fractionally occupied orbitals (Figure 2.1C), 

while the number of electrons in the system is kept constant.  This prevents orbitals from 

inter-conversion during SCF calculation.  As a smooth function, one of the functions 

that are widely used is the Fermi-Dirac distribution function.57,58  As a parameter of the 

function, electronic temperature Te is defined, mimicking the degree of excitation of 

electrons. 

 Generally, in non-metallic system with a wide band gap, the electronic structure 

is well described as 0 K, and the orbital occupation numbers are represented as a step 

function switching from 1 to 0 at the Fermi energy, approximately shown by the red line 

in Figure 2.2.  However, when Te is set to a non-zero value, the occupation numbers in 

a system are no longer integer numbers, because the electrons are excited obeying the 

Fermi-Dirac distribution function, 

𝑓𝑖 = ( 1 + exp (
𝜀𝑖 − 𝜀F

𝑘𝑇e
))

−1

 (2.47) 
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where 𝑓𝑖 is the fractional occupation number of the i-th molecular orbital, and 𝜀F is the 

chemical potential (or Fermi level), which is numerically determined so that the sum of 

all the functional number of electrons is equal to the total number of electrons N.  This 

occupation smearing technique is especially useful, or sometimes necessary, for metal 

containing systems or insulators59,60 in which orbitals around Fermi level are degenerated. 

 

2.4 Fragment Molecular Orbital (FMO) Approach 

 FMO method27-31 is a method which aims at linear scaling.  While traditional 

QM approaches treat whole system as it is, FMO method first fragments a large molecule 

into a sets of small fragments.  Properties, i.e. energies,61 gradients,62,63 and so on, of the 

system are recovered by summing up those of fragments.  For instance, the total energy 

of the whole system in the two-body FMO expansion61 is 

𝐸 =  ∑ 𝐸𝐼

𝐿

𝐼

+  ∑(𝐸𝐼𝐽 − 𝐸𝐼 − 𝐸𝐽)

𝐿

𝐼>𝐽

, (2.48) 

where L is the number of fragments, and the EX terms are the energies of fragments (X = 

I) and their pairs (X = IJ).  Obvious from the equation that we need calculations of 

monomers and dimers that include one or two fragments.  Although eq. (2.48) truncates 

higher order terms than two-body, the inclusions of three-64 and four-body65 terms are 

proposed and are known to improve the accuracy of approximation.  Each fragment 

calculation has to be done under the presence of electrostatic potential (ESP) which 

mimics the environmental effects.  It should be noted that the evaluation of ESP requires 

a number of integral calculations.  Although the first problem of bottleneck which comes 

 

Figure 2.2 Fermi-Dirac distribution function for /kT = 10000, 10, and 5. 
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from diagonalization of Fock matrix seems to be solved by fragmenting large molecule 

into fragments, the evaluation of ESP needs a number of integral calculations, because 

the number of environmental atoms remains same as the pristine molecule.  Some 

approximations have already been proposed to decrease the integral calculations of ESP 

based on Mulliken AO or point charge (ESP-AOC and ESP-PTC).66 

 Since the number of dimer calculations scales as quadratic (L(L+1)/2), the 

computational time also scales as quadratic.  To achieve linear-scaling, the electrostatic 

dimer (ES-DIM) approximation66 is usually used for far separated dimers, because there 

is almost negligible amount of charge transfer between such pairs.  QM effect is taken 

account into consideration through charge transfer between two fragments, but if it is 

negligibly small, the energy of the dimer can easily be evaluated classically.  The 

classical evaluation is far more economic than QM, and most dimers calculations are 

approximated in this way, therefore the computational cost of dimer eventually scales as 

linear.28 

 For a system with covalent bonds, fragmentation is not very straightforward, 

because electrons and orbitals are usually delocalized between atoms and therefore we 

cannot define uniquely the assignment of numbers of electrons and orbitals per atom or 

spatially.  In FMO framework, hybrid orbital projection (HOP)61,67,68 is used for 

fragmentation of covalent bonds.  Suppose that there is a bond between two sp3 atoms, 

which we call bond detached or bond attached atom (BDA or BAA).  BDA presents in 

two fragments, so the orbitals of BDA have to be divided into two sets; the first set 

contains one hybrid orbital which is supposed to point BAA, and the second set contains 

other three hybrid orbitals on BDA.  This procedure is accomplished with defining 

projection operators based on the pre-defined hybrid orbitals of BDAs.  The projection 

operator for the X-th fragment is mathematically expressed as61 

𝑃̂𝑋 = ∑ 𝐵𝑘|𝜃𝑘〉〈𝜃𝑘|

𝑘∈𝑋

 

where |𝜃𝑘〉 is a pre-defined hybrid orbital and the universal constant 𝐵𝑘 is usually set 

to 106.  Later, adaptive frozen orbital (AFO) scheme was proposed and applied for solids 

and wire-like systems.69,70   
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Chapter 3 

Density-Functional Tight-Binding Combined with 

the Fragment Molecular Orbital Method 

 

3.1 Introduction 

 In biochemistry, nanoelectronics and many other areas of molecular science it is 

often necessary to deal with systems containing a large number of atoms, typically 

between 103 to 107.  Simulations of chemical reactions, electron transfer, electronically 

excited states, and even accurate structure predictions for polar or hydrogen-bonded 

systems, require an accurate treatment of the electronic structure, which can in principle 

be accomplished with quantum chemical methods based on quantum mechanics (QM 

methods).  However, traditional QM methods scale very steeply with the system size.  

For instance, even the fastest ab initio Hartree-Fock (HF) method scales as N2−3, where N 

is the number of atoms, and for coupled cluster (CC) theory the scaling can be as high as 

N7.  This means that, although QM calculations of small and medium size systems can 

be routinely conducted, increasing the system size by a factor of 100 results in a HF 

calculation that is up to a million time more expensive, and 100 trillion times more 

expensive in the case of CC.  Such huge computational effort is accompanied by a 

similarly huge increase in required computer memory and disk storage. 

 At present, only classical molecular mechanics (MM) is capable of treating 

systems consisting of millions of atoms at the full atomistic level, yet molecular dynamics 

(MD) simulations using molecular mechanics force fields for such tremendously large 

systems require the most powerful, massively parallel supercomputers available today.1  

At the same time, there is an ongoing effort to develop efficient traditional QM methods2–

4 with linear scaling5–7 and linear scaling semi-empirical approaches, partially designed 

to replace MM-MD simulations in the future by QM-MD.8,9  Alternatively, methods 

using fragmentation are also becoming increasingly popular.10–26 

 Although these methods do succeed in enabling much larger calculations than 

traditional QM approaches, the reported maximum system sizes are still only on the order 

of 30,000 atoms27–32 for full QM applications.  We note that, using a piecewise approach, 

a geometry optimization of a 150,000 atomic system has been reported.33  Even though 
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fragment-based approaches have been successfully applied to QM calculations at 0 K, 

MD simulations with full QM fragment-based methods of large systems are rather 

limited.34,35  The density-functional tight-binding (DFTB) method is a semi-empirical 

QM approach applicable towards large systems.  It has its origin in the computational 

materials sciences,36 and recently it has found broad applications in organic and biological 

systems.37  The method itself has been described in the literature on several occasions, 

and we therefore suffice to only briefly describe the main features and options related to 

our work in Section 3.2, and refer the interested reader to recent reviews.37–40  

Essentially, DFTB is an approximate density functional theory (DFT)41,42 method 

utilizing the tight binding approach within the framework of an optimized minimal Slater-

type all-valence basis set and a two-center approximation for Hamiltonian matrix 

elements.  There are several options available.  One is the self-consistent-charge (SCC) 

formalism, in which the interaction between atomic charges is included in the energy 

expression, and the atomic charges are determined iteratively until self-consistency is 

reached.43  This option is sometimes called “DFTB2”,37 as it is a secondorder expansion 

of the DFT energy around a reference density.  Higher-order expansions, such as third 

order corrections (“DFTB3”), have been recently developed and shown to be important 

in polar and hydrogen-bonded systems.44  The SCC-DFTB method is similar in spirit to 

other DFTB-based self-consistent charge transfer tight-binding models.45,46  These 

iterative SCC methods are all related to the ideas of density expansion in tight-binding, 

proposed in 1989 by Foulkes and Haydock.47  The earliest, and methodologically most 

simple approach of DFTB is the non-self-consistent-charge (NCC) option, in which the 

atomic charge-atomic charge interaction is neglected.48  This option, nowadays 

sometimes called “DFTB1”,37 is approximately five to twenty times faster than the SCC 

option since it is non-iterative, and may not be a bad approximation for homogeneous 

systems with little charge polarization.  Although DFTB is fast, its scaling with system 

size is unfavorable with O(N3) because even though no integrals are calculated, it is still 

necessary to diagonalize the DFTB Hamiltonian.  Its memory requirement is N2, and 

combined with the cubic scaling of the computational efforts, these limitations prevent 

the use of DFTB for calculations of truly large systems (loosely defined as systems 

containing more than 10 000 atoms).  Recently, however, advances have been made to 

reduce the cubic scaling required for full Hamiltonian matrix diagonalization: for instance, 

an O(NlogN)-scaling divide-and-conquer5 formulation49 of DFTB (mDC-DFTB) has 

been developed by the York group.  Using their code, they were able to obtain a 

converged electronic density for a 1 million atom containing water cluster in around 5 

minutes on 8 Intel Xeon E5520 cores.50  Using density matrix purification methods, true 
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O(N) linear scaling with low prefactor was demonstrated for a similar density functional 

based tight binding method in energy conserving Born-Oppenheimer MD simulations of 

systems containing less than 1,000 atoms.51 

 An a posteriori treatment for dispersion interaction within the framework of 

DFTB was first proposed by Elstner et al. to describe base pair stacking in DNA.52  It 

employs lists of “van der Waals-active” interatomic contacts and a switching function to 

turn off the van der Waals potential at short distances.  Similar corrections are nowadays 

added routinely in DFT calculations and have widely become known as ”Grimme 

dispersion”.53  In 2005, Zhechkov et al. developed an alternative dispersion interaction 

model based on the parameterization by Rappé et al.54 which is available for all elements 

of the periodic table and does not require interatomic contact lists. In both approaches, 

the van der Waals interactions are evaluated as a sum over pair potentials between all 

atoms, and hence the dispersion term is a constant for a given nuclear geometry.  It is 

independent of the electronic structure calculation and hence easy to implement, yet has 

been recognized as important in computational biological and materials sciences. 

 The fragment molecular orbital (FMO) method55–59 is one of the fragment-based 

approaches.10  In FMO, the system is divided into fragments (also called monomers), 

which are calculated in the embedding electrostatic potential (ESP), obtained from the 

density of all fragments.  These monomer calculations are repeated iteratively until 

convergence is reached, followed by the calculation of fragment pairs (dimers) in the 

presence of the embedding ESP.  FMO has been applied to a variety of molecular 

systems including proteins,60,61 DNA,62–64 polymers65 and inorganic systems.66–70 

 The accuracy and scaling of FMO based on regular DFT has been discussed.71–

74  FMO-DFT has been used for a geometry optimization75 of chignolin, containing 138 

atoms.  The total energy in FMO is expanded in the many-body series.76,77 In this work, 

we use only the two-body expansion (FMO2), often reliable enough for energetics and 

gradients, and develop the energy and gradient of FMO-based DFTB (FMO2-DFTB). We 

employ both non-self-consistent-charge (first-order, DFTB1, here called NCC-

DFTB)48,78 and self-consistent charge (second-order, DFTB2, here called SCC-DFTB)43 

DFTB. The accuracy of FMO-DFTB is tested on a variety of representative molecules in 

terms of energy and optimized geometry, and the computational efficiency as well as 

scaling behavior with respect to system size and parallelism are discussed in detail. 

 

3.2 Methodology 

3.2.1 Density-Functional Tight-Binding (DFTB) 
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The DFTB method has been described in detail elsewhere,37–40,43,44 therefore we only 

provide a brief summary here. The total energy of NCC-DFTB, ENCC, is written as 

 (3.1) 

where µ and ν denote atomic orbitals (AO), A and B label atoms, and ni is the occupation 

number of the i-th molecular orbital (MO). The cµi are the expansion coefficients of the 

i-th MO in an AO basis.  Hµν
0 is the non-perturbed (i.e., atomic- and diatomic-based) 

Hamiltonian in the basis of optimized AOs, precomputed for atoms and diatomic systems 

over a range of bond lengths in reference DFT calculations.  EAB
rep is the two-body 

repulsive energy term, which is precomputed and tabulated as a function of interatomic 

distance RAB from DFT calculations of model systems containing the chemical elements 

of the A and B atoms.  As a result of this approach, EAB
rep is independent of the electronic 

structure and only a function of the interatomic distances.  It is normally short-ranged 

and extends usually only up to maximally 1.5 times the equilibrium bond lengths. 

 The MO coefficients c in eq 3.1 are variationally determined by solving the 

equation, Hc = Scϵ, where S is the overlap matrix, readily precomputed and tabulated for 

the optimized AOs used in the construction of as a function of RAB.  Because does not 

depend on c, NCC-DFTB is a non-iterative method and hence computationally very 

economical.  This method has been successfully applied to a number of systems,48,79–82 

mostly for homopolar systems such as carbon-based nanostructures, although the 

bandstructure of heteropolar systems can also be described reasonably well.40,80,83 

 In many polar systems one has to consider self-consistent, second-order terms of 

charge fluctuations.43 In this case, the calculation of the charge density becomes iterative. 

Using routine density matrix update algorithms, typically between 5 and 20 SCC iteration 

cycles are required to achieve convergence. The total energy of SCC-DFTB, ESCC, is 

written as 

(2) 

where γAB depends on the distance RAB between two atoms A and B and their chemical 

hardness.84  γAB in the limit of long distances behaves as 1/RAB and at short distances 

accounts for the chemical hardness of the chemical element in question, expressed by a 

Hubbard parameter UA that is computed using DFT as a numerical derivative of the DFT 

atomic orbital energy (normally the highest occupied AO) with respect to its orbital 

occupation.  The Hubbard UA values are related to atomic ionization potentials and 
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electron affinities.  Charge fluctuations δρ around the reference electron density ρ0 in 

SCC-DFTB are expressed by a spherical point charge model with partial atomic charges 

∆qA. It is the deviation of the Mulliken population on atom A from that in the neutral atom 

qA
0, that is ∆qA = qA − qA

0 , where 

(3.3) 

Clearly, the last term in eq 3.2 requires an iterative calculation since atomic populations 

depend on the MO coefficients c.  We note that other charge partitioning schemes have 

been applied and reported for SCC-DFTB,85 but Mulliken population analysis remains 

the most widely used method for determining atomic charges. 

 The derivative of eq 3.2 with respect to MO coefficients defines the SCC-DFTB 

Hamiltonian matrix in the AO basis, 

(3.4) 

The derivative of the SCC-DFTB energy with respect to the x coordinate of atom α (note 

that throughout this paper x in the derivatives can be replaced by y or z) is 

(3.5) 

 

3.2.2 Formulation of FMO-DFTB 

 The total energy E in the two-body FMO expansion (FMO2)55 is 

(3.6) 

where N is the number of fragments, and the EX terms are the energies of fragments (X = 

I) and their pairs (X = IJ). For SCC-DFTB, they are defined as 

(3.7) 

whereas for NCC-DFTB, the expression is 
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(3.8) 

The internal energy of X is defined as 

(3.9) 

and the embedding energy is 

(3.10) 

∆qA
X is the charge on atom A in fragment X.  Note that A and C can be the same atom, if 

fragments X and K are connected via a covalent bond.  The internal energy of fragment 

X includes the Coulomb interaction of charges within X, while the embedding energy is 

the interaction between charges in X and those outside of X (in all other fragments). 

 Using these definitions, in a same way as in other FMO methods,86 it is possible 

to rewrite eq 3.6 for SCC-DFTB as follows, 

(3.11) 

For NCC-DFTB the expression is (compare eqs 3.6 and 3.8) 

(3.12) 

In SCC-DFTB, the coupling of the charge transfer to the embedding potential is 

(3.13) 

and the charge transfer between fragments I and J for atom A is 

(3.14) 

where δA∈I = 1 when atom A belongs to fragment I, otherwise it is zero. 

 In NCC-DFTB the charge interaction is not considered, and thus EIJ′ ≈ EI′ + EJ′.  

On the other hand, in SCC-DFTB one has to evaluate the fragment interactions for 

separated pairs, which scales in principle quadratic with system size N.  However, the 

interfragment charge transfer is short-ranged and can be neglected if the interfragment 
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distance RIJ is larger than a certain threshold.  In this case, a self-consistent field (SCF) 

calculation of the far separated dimer is not required, and the interfragment interaction is 

evaluated using the electrostatic dimer (ES-DIM) approximation instead.86  Thus, for 

dimers IJ calculated with this approximation, ∆∆qA
IJ = ∆EIJ

V = 0.  Different from 

quantum-effects such as charge transfer and exchange-repulsion, the electrostatic 

interaction decays with distance R slowly as 1/R and has to be evaluated for all separated 

dimers. 

 The energy of a separated dimer in FMO-DFTB should in principle be given by 

(3.15) 

However, the repulsion energy EAB
rep quickly decays with the interatomic distance and 

with the typical value of the ES-DIM threshold, and therefore can be neglected.  

Therefore, the energy of far separated dimers in FMO-based SCC-DFTB is evaluated as 

(3.16) 

For the energy gradient, one needs to define the Hamiltonian matrix of fragment X, which 

for SCC-DFTB is 

(3.17) 

where Hµν
SCC,X is the Hamiltonian matrix of fragment X according to eq 3.4, which 

includes the Coulomb interaction for charges within X. For NCC-DFTB one has 

(3.18) 

where Hµν
0,X corresponds to Hµν

0 of fragment X in eq 3.4. The ESP acting on X is given 

by 

(3.19) 

is the hybrid orbital projection (HOP) operator,87 which is introduced in FMO for 

fragments connected by detached covalent bonds (HOP is not used in molecular clusters). 

The HOP representation in AO basis is 

(3.20) 
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where 𝐷̃𝜇𝜈
𝑋  is the density matrix of the hybrid orbitals88 and B is a universal constant, 

usually set to 106 hartree.  The hybrid orbitals are precomputed for each atom type using 

a suitable model compound, e.g. CH4 when detaching bonds at sp3 carbons). 

 

3.2.3 Gradient of FMO-DFTB 

 Below, we derive the gradient for a closed shell singlet, that is ni = 2 for all 

occupied MOs, which simplifies the formulation of FMO-DFTB with the ES-DIM 

approximation.  By taking the derivative of eq 3.9, one obtains 

(3.21) 

The derivative of the HOP matrix 𝑃μν
𝑋  in FMO-DFTB is the same as in regular FMO.88 

In the SCC-DFTB energy gradient for FMO, we did not include the derivatives of MO 

coefficients with respect to nuclear coordinates. The internal Lagranian 𝑊′μν
𝑋  in eq 3.21 

is defined by subtracting the ESP contribution from the usual Lagrangian 𝑊μν
𝑋 

(3.22) 

and 

(3.23) 

where 𝐷μν
𝑋  is the density matrix of fragment X. 

 Second, we need to calculate the derivative of the embedding energy in eq 3.13. 

For atom α in dimer IJ (α ∈ IJ) one obtains 

(3.24) 

and for α ∈ (K ≠ I,J), 
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(3.25) 

where 

(3.26) 

(3.27) 

and 

 

The density difference matrix ∆D
IJ is 

(3.28) 

The gradient of the ES-DIM approximation is obtained by differenciating eq 3.16. For 

the derivative with respect to the x coordinate of atom α ∈ I, 

(3.29) 

and for α ∈ J, 

(3.30) 

Eqs 3.29 and 3.30 describe the gradients of the electrostatic (charge-charge) interaction 

between two fragments. 

 

3.2.4 Dispersion Interaction for FMO-DFTB 

 We implemented the dispersion interaction model based on the formulation by 

Zhechkov et al.89 The dispersion interaction Edisp is independent of the electronic 
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structure, and is given as a sum of all atomic pairwise contributions EAB
disp for atoms A 

and B,89 

(3.31) 

In FMO, the above equation becomes for the dispersion energy of fragment X, 

(3.32) 

EX
disp is added to the internal energy in eq 3.9. Also, in the separated dimer approximation, 

we add the dispersion contribution to EIJ′ − EI′ − EJ′, 

(3.33) 

Parameters for the dispersion interaction are taken from the work by Rappé et al.54 We 

denote the dispersion interaction with the suffix of “-D” hereafter. Although we 

implemented also the dispersion interaction formulated by Elstner et al.,52 we use in the 

present work the formulation by Zhechkov et al. for actual calculations. We verified by 

numeric tests that the dispersion energy in FMO-DFTB-D is identical to that in DFTB-D, 

as should be because it is a parametrized ad hoc correction independent of fragmentation. 

 

3.2.5 Computational Details 

 The DFTB and FMO-DFTB methods were implemented in GAMESS-US.90  In 

the DFTB implementation, the Broyden charge mixing91 was used to accelerate the 

convergence of SCF calculations with the same type of thresholds as in the rest of 

GAMESS.  In both FMO-DFTB and full DFTB gradient calculations, the derivatives of 

the Hamiltonian and overlap matrix elements were calculated numerically, whereas other 

derivatives were computed analytically. 

 FMO-DFTB was parallelized with the generalized distributed data interface 

(GDDI)92 by assigning one monomer or dimer calculation per GDDI group.  The main 

cost of a DFTB calculation is the matrix diagonalization, which is hard to efficiently 

parallelize for the matrix sizes we encounter in typical FMO fragments.  Therefore, we 

always used the group size of 1 CPU core, i.e., individual monomer and dimer 

calculations in FMO-DFTB were executed sequentially on different CPU cores, whereas 

the load balancing of distributing these calculations was dynamic, as implemented in 

GAMESS/GDDI.92 
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 All computations of accuracy and scaling tests were performed using a PC 

cluster consisting of several nodes equipped with dual E5-2650 Xeon CPUs (2.0 GHz, 8 

cores each), 64 GB of DDR3-1600 memory and a SATA hard disk. The nodes were 

connected with Infiniband (used in the IP mode). For the parallel efficiency tests we used 

1 to 8 nodes (16-128 CPU cores). 

 We used the mio43 set of DFTB parameters, except when performing calculations 

on DNA sequences, for which we used the matsci93 set.  Both parameter sets are freely 

available from the DFTB web site.94 The ES-DIM approximation was used with the 

threshold value of 2.0 (unitless86) applied to the interfragment distance, defined as the 

separation between two closest atoms in the two fragments divided by the sum of the 

atomic van der Waals radii.86  For a typical case of the contact atoms being O and H, the 

distance of 2.0 corresponds to 9.83 bohr. The DFTB parameters are such that the 

interaction for distances exceeding 10 bohr are usually zero, which justifies the neglect 

of the repulsive energy term in the ES-DIM approximation (see eqs 3.15 and 3.16). 

 Geometry optimizations were performed until the root mean square (rms) and 

maximum gradient values became smaller than 1/3×10-4 and 10-4 hartree/bohr, 

respectively (OPTTOL=10-4 in GAMESS).  Hybrid orbitals for HOP operators for sp3 

carbons were generated by performing the Pipek-Mezey localization95 of SCC-DFTB 

MOs using the mio parameters for methane in its equilibrium geometry at the same level 

of theory.  The fragmentation of polypeptides was performed at the Cα atoms, as usual 

in FMO.  For DNA segments we compared two fragmentation schemes as described 

below. 

 The accuracy of single point energy calculations was evaluated for extended 

polyalanine (COMe-(Ala)n-NHMe, n = 10, 20, ..., 200) partitioned into fragments 

containing 1, 2, 4 and 5 amino acid residues.  The accuracy of optimized geometries is 

discussed for (a) the α-helix, β-turn, and extended form of polyalanine 

COMe−(Ala)20−NHMe, (b) a short double stranded DNA segment of CGATCG 

nucleotides (PDB: 1AGL), (C115P10N46H136O78) and (c) a small Trp-cage protein (PDB: 

1L2Y) with all residues neutralized using GaussView 5.0.96 

 For Trp-cage we used the PDB structure as the initial geometry, whereas for all 

other systems the initial structures were constructed using the “protein” and the “nucleic” 

programs implemented in TINKER 6.0,97 and they were subsequently optimized using 

the “minimize” program with the AMBER99 force field parameters.98 Geometry 

optimizations99 at full SCC-DFTB and FMO-DFTB were then performed using 

RUNTYP=OPTIMIZE in GAMESS, except for the optimization of the ˜1 million atoms 
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system, for which we used RUNTYP=OPTFMO, and LBFGS when dispersion 

interaction is included. 

 For the evaluation of the FMO-DFTB scaling in terms of the system size, we 

used a series of globular water clusters ((H2O)n, n = 256, 512, 1024, 2048, 3072, 4096, 

5120, and 6144), the α-helix of polyalanine (COMe-(Ala)n-NHMe, n = 100, 200, ..., 1900, 

and 1998), and a quadratic slab of C60 fullerite with the square slabs containing from 1×1 

to 7×7 unit cells of face centered cubic (fcc) fullerite with the fixed thickness of 3 layers 

of fullerenes (only its square length was varied, not the thickness).  Water clusters were 

produced and optimized using the “addxyz” and the “minimize” modules in TINKER.  

For modeling the fullerite slab, a single C60 was first optimized with SCC-DFTB, then 

the optimized C60 molecules were aligned according to the fcc symmetry of fullerite with 

the unit cell length100 of 14.04 Å. 

 The parallel efficiency was evaluated on a 40×40 lattice of fullerite, containing 

590 520 atoms.  Finally, we performed a full geometry optimization of a 53×53 unit 

cells of fullerite, containing 1 030 440 atoms, using 128 CPU cores (8 nodes).  We 

performed this optimization with and without the dispersion interaction.  This fullerite 

slab has the size of 74.4 nm × 74.4 nm.  For comparison, the only inorganic system of 

comparable size fully optimized with FMO-DFT is the boron nitride (BN) nanoribbon 

ring with a diameter of 105 nm,68 which contains a much smaller number of atoms (7878). 

 

3.3 Results and Discussions 

3.3.1 Accuracy of FMO-DFTB 

 The accuracy of FMO-DFTB compared to full SCC-DFTB was evaluated for the 

extended form of polyalanine (Figure 3.1) using SCC-DFTB. We note that throughout 

this section, all numerical results for FMO-DFTB were obtained with SCC-DFTB 

combined with FMO, so we use FMO-DFTB as a short-hand notation instead of FMO-

SCC-DFTB. The number of atoms ranges from 112 to 2012, and we compared five 

fragmentations of n residues per fragment (n = 1, ..., 5). The error decreases with the 

fragment size, as expected. 
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(A)                                (B) 

 

Figure 3.1. (A) Deviations of the total energy of FMO-DFTB from full SCC-DFTB for 

the extended polyalanine (COMe−(Ala)n−NHMe, n = 10, 20, ..., 200).  To show the 

deviations better, the same set of errors is plotted in (B) with a magnified scale. 

 

 The largest error is observed for the fragmentation of 1 residue per fragment: for 

2012 atoms the error in total energy is about 10.6 kcal/mol. When the fragment size is 

doubled, this error is dramatically reduced to only 0.72 kcal/mol for the largest system, 

and by using a fragmentation of 3 (the edge fragments contain 4 residues), 4 and 5 

residues per fragment, the errors become 0.21, 0.07 and 0.03 kcal/mol, respectively.  

The error is affected by the semantic periodicity (i.e., not a strict geometric periodicity) 

of the extended form, with the period of two residues. The CO groups face up and down 

alternatively, resulting in the two adjacent fragments having an opposite dipole moment. 

To test the accuracy of the ES-DIM approximation (eq 3.16), we performed a full 

calculation of the interfragment Coulombic interactions for comparison.  The difference 

of the total energy computed with and without the approximation was negligibly small, 

1.02 × 10−3 kcal/mol for COMe−(Ala)200−NHMe of the extended form with 1 residue 

per fragment.  Thus we see that the ES-DIM approximation is very accurate in FMO-

DFTB, in agreement with other FMO studies.72  It is also very efficient computationally, 

reducing the timing for the extended form of COMe−(Ala)200−NHMe with 1 residue per 

fragment from 171 to 10 seconds on 1 CPU core. 

 We note that the error of FMO in general and FMO-DFT in particular is known 

to increase with the basis size, which is related to the increased importance of 

interfragment quantum effects (such as charge transfer).72,75,101 On the other hand, FMO 

errors for minimum basis sets such as STO-3G are known to be very small.72  DFTB 

also uses a minimum basis set, hence the accuracy of FMO-DFTB is high. 

 To demonstrate that the dispersion in FMO-DFTB-D is exact, we performed a 

single point calculation with FMO-DFTB-D and full DFTB-D for 
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COMe−(Ala)200−NHMe of the extended form with n residues per fragment (n = 1, ..., 5). 

The dispersion energy in full DFTB-D and FMO-DFTB-D was exactly identical, 

8.894040160 Hartree. The gradient of our dispersion implementaion is also exact. 

 Next, to check the accuracy of optimized structures, we performed geometry 

optimizations with FMO-DFTB and full SCC-DFTB using fragments containing 1, 2, 4, 

and 5 residues and dividing COMe−(Ala)20−NHMe into 20, 10, 5, and 4 fragments, 

respectively. Table 3.1 shows the relative energies and root-mean-square deviation (rmsd) 

for the optimized structures of the α-helix, β-turn, and extended form. Hydrogen atoms 

are included and massweighting is not used when rmsd values are calculated. 
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Table 3.1. FMO-DFTB and full SCC-DFTB total energies (Hartree) and rmsd (Å) for COMe-(Ala)20-NHMe between geometries 

optimized with the two methods 

 

 Conformer 1 res./fragm. 2 res./fragm. 4 res./fragm. 5 res./fragm. Full SCC-DFTB 

Energy 

-helix -268.521608 -268.521370 -268.521072 -268.521342 -268.521568 

-turn -268.489373 (+20.2) -268.490882 (+19.1) -268.491555 (+18.7) -268.491621 (+18.7) -268.491889 (+18.6) 

extended -268.445252 (+47.9) -268.445374 (+47.7) -268.445371 (+47.7) -268.445394 (+47.7) -268.445325 (+47.8) 

rnsd 

-helix 0.031 (0.025) 0.044 (0.039) 0.028 (0.020) 0.008 (0.008) 0.000 

-turn 0.118 (0.119) 0.082 (0.032) 0.081 (0.033) 0.031 (0.021) 0.000 

extended 0.148 (0.055) 0.124 (0.050) 0.099 (0.000) 0.175 (0.000) 0.000 

 

a The values in parentheses are the energies relative to the -helix (kcal/mol). 
b rmsd values are shown for structures optimized with FMO-DFTB and full SCC-DFTB, starting from the same initial 

geometry.  The values in parentheses almost always correspond to different local minima, obtained by taking FMO-DFTB 

structures as initial structures and reoptimizing them with full SCC-DFTB.
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 Full SCC-DFTB predicts the α-helix to be the most stable isomer, with the β-

turn and extended form being less stable by 18.6 and 47.8 kcal/mol, respectively.  This 

trend is in qualitative agreement with FMO-MP2 results102 for COMe−(Ala)10−NHMe.  

To QM contributions one can add solvent102 and finite temperature103 corrections.  The 

relative energies of the three isomers of polyalanine obtained with FMO-DFTB are in 

good agreement with full SCC-DFTB: the largest deviation for relative energies of the β-

turn is 1.6 kcal/mol for 1 residue per fragment and it is 0.1 kcal/mol for 5 residues per 

fragment. The relative energies of the extended form have errors of only 0.1 kcal/mol. 

With the partitioning of 2 residues per fragment, an accuracy of 1 kcal/mol with respect 

to the full SCC-DFTB calculation is achieved for all relative energies. 

 The optimized structures are also quite accurate with rmsd values not exceeding 

0.175 Å, as shown in Table 1.  The presence of many local minima complicates a 

systematic comparison, because the minimum search may converge to different minima 

in FMO-DFTB and full SCC-DFTB.  Although the difference of gradient elements 

between these two methods is small, the geometry optimization pathway becomes notably 

different for the case of flat PESs.  In order to eliminate the problem associated with the 

existence of many local minima, in addition to the optimization using FMO-DFTB and 

full SCC-DFTB using the same initial geometry, we reoptimized the structures at the full 

SCC-DFTB level starting from FMO-DFTB minima.  The rmsd values obtained in this 

way gives the true deviation in the quality of optimized geometry between FMO-DFTB 

and full SCC-DFTB.  These values, given in parentheses in Table 1, becomes much 

smaller than those outside parentheses for the fragmentations of 2 residues per fragment 

or more, whereas for 1 residue per fragment the improvement is not uniform.  This 

shows that for 1 residue-fragmentation the error is not always related to the fact that the 

local minima are different, consistent with the larger error in total energies for this 

particular choice of fragment size.  For the partitioning of 2 residues per fragment the 

rmsd values for the same local minima are 0.050 Å or smaller.  This improvement is 

especially pronounced for the extended form, which is particularly flexible: the rmsd 

values of 0.124, 0.099, and 0.175 (Å) for 2, 4, and 5 residues per fragment when a 

different set of minima is compared become 0.050, 0.000, and 0.000 (Å) when the 

optimized FMO-DFTB structure is used as initial geometry in full SCC-DFTB geometry 

optimizations. 

 Table 2 shows a comparison of bond lengths and angles computed at the minima 

obtained with FMO-DFTB and full SCC-DFTB. The accuracy in reproducing bond 

lengths and bond angles is satisfactory, whereas some dihedral peptide angles vary by as 

much as 10.6 degrees for the fragmentation of 1 residue per fragment, reduced to 3.7 
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degrees by doubling the fragment size. The accuracy of FMO-DFTB in terms of rmsd, 

bond lengths and angles is similar or better compared to FMO-RHF/3-21G,99 although 

we note that we use a polypeptide with twice as many residues, so the results are not 

directly comparable. 
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Table 3.2. rmsd between FMO-DFTB and full SCC-DFTB optimized geometrical parameters for COMe-(Ala)20-NHMe.  N indicates 

the number of fragments per residue, and the values in parentheses are maximum deviations.  ϕ,  , and  define the dihedral angles of 

C'(i-1)-N(i)-C(i)-C'(i), N(i)-C(i)-C'(i)-N(i+1), and C(i)-C'(i)-N(i+1)-C(i+1), respectively, where i is the residue number. 

 

Conformer n Bond length (Å) Bond angle (deg)  (deg) (deg)  (deg) 

-helix 1 0.0004 (0.0014) 0.065 (0.398) 0.80 (2.50) 0.47 (0.95) 0.22 (0.74) 

 2 0.0003 (0.0010) 0.045 (0.178) 0.86 (2.53) 0.49 (1.36) 0.31 (0.69) 

 4 0.0002 (0.0005) 0.017 (0.056) 0.33 (0.84) 0.20 (0.51) 0.13 (0.30) 

 5 0.0001 (0.0003) 0.009 (0.030) 0.19 (0.46) 0.09 (0.21) 0.05 (0.08) 

-turn 1 0.0004 (0.0018) 0.124 (0.880) 2.83 (10.57) 1.52 (4.56) 0.73 (1.70) 

 2 0.0002 (0.0009) 0.075 (0.336) 0.92 (2.05) 1.03 (3.71) 0.40 (1.08) 

 4 0.0002 (0.0010) 0.065 (0.414) 0.90 (2.79) 1.01 (3.39) 0.39 (0.99) 

 5 0.0001 (0.0006) 0.036 (0.216) 0.52 (1.76) 0.35 (0.87) 0.18 (0.33) 

extended 1 0.0002 (0.0008) 0.055 (0.231) 0.35 (0.68) 0.27 (0.56) 0.21 (0.36) 

 2 0.0001 (0.0004) 0.028 (0.121) 0.21 (0.48) 0.35 (0.63) 0.15 (0.29) 

 4 0.0001 (0.0002) 0.022 (0.101) 0.21 (0.49) 0.30 (0.58) 0.13 (0.27) 

 5 0.0001 (0.0004) 0.037 (0.154) 0.32 (0.62) 0.34 (0.65) 0.21 (0.58) 
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 For the DNA benchmark system, a CGATCG double-stranded helix segment was 

optimized with both full SCC-DFTB and FMO-DFTB methods.  We investigated two 

alternative fragmentation schemes by detaching bonds C-C bonds at the 4’ and 5’ carbon atoms 

as schematically shown in Figure 3.2A.  The two resulting optimized structures are 

superimposed on the full SCC-DFTB geometry in Figure 3.2B.  Compared to full SCC-DFTB, 

the difference of the total energy and the rmsd for optimized FMO-DFTB structures with the 

fragmentation at 5’ carbon atoms was +2.12 kcal/mol and 0.071 Å, respectively.  On the other 

hand, for the fragmentation at 4’ carbon atoms the energy difference and rmsd of the optimized 

structures was -2.22 kcal/mol and 0.402 Å, respectively.  The full SCC-DFTB single point 

calculation at the FMO-DFTB optimized geometry (with the fragmentation at 4’ carbon atoms) 

shows that FMO-DFTB found a more stable local minimum by 3.92 kcal/mol than full SCC-

DFTB.  The geometry optimization with full SCC-DFTB starting with the FMO-DFTB 

optimized structure (with the fragmentation at 4’ carbon atoms) resulted in a different local 

minimum, for which the rmsd between FMO-DFTB and full SCC-DFTB was 0.041 Å.  The 

larger rmsd value obtained above (0.402 Å) stems from the difference in the local minima. 

 We also performed geometry optimizations for the neutralized Trp-cage (PDB: 1L2Y) 

0.067 and 0.044 Å, for the fragmentation of 1 and 2 residues per fragment, respectively, 

whereas the errors in the total energy were +1.20 and +0.82 kcal/mol, respectively. The small 

rmsd values imply that the character of the minima found by FMO-DFTB is similar to those 

found using full SCC-DFTB (see Figure 3.3). The deviation of the optimized structures at 

FMO-DFTB is very small as demonstrated by their small rmsd values. Most importantly, the 

positions of backbone atoms and hydrogen bonds are well reproduced by FMO-DFTB. 
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Figure 3.2. (A) Two alternative fragmentation schemes detaching C-C bonds at 4’ and 5’ 

carbon atoms, where red dots and curves show the fragment to which the detached covalent 

bond is assigned.  (B) Overlay of the optimized structures of the CGATCG DNA. The blue, 

red and green lines represent the optimized structures obtained with full SCC-DFTB and FMO-

DFTB with the fragmentation at 4’ and 5’ carbon atoms, respectively. 
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Figure 3.3. Superposition of the optimized structures of the neutralized Trp-cage protein.  

The blue, red and green lines are used to plot the optimized structures obtained with full SCC-

DFTB and FMO-DFTB with 1 and 2 residues per fragment, respectively.  The rmsd between 

FMO-DFTB and full SCC-DFTB was 0.067 and 0.044 Å for 1 and 2 residues per fragment, 

respectively. Dotted lines show hydrogen bonds. 

 

 

3.3.2 Scaling of FMO-DFTB 

For a comparison of timings, we performed FMO-DFTB and full SCC-DFTB calculations of 

water clusters, and the corresponding data is shown in Table 3. The calculation for a water 

cluster containing 12 288 atoms took 5.9 days for full SCC-DFTB, while FMO-DFTB took 

109.7 seconds, with a speed-up factor of 4646. An extrapolation suggests that full SCCDFTB 

calculation will take about three weeks to finish the single point energy calculation of 18 432 

atoms, whereas FMO-DFTB took only about 3 minutes. 

 

Table 3.3. Comparison of wall-clock timings (seconds) for (H2O)n clusters calculated with full 

and FMO-based SCC-DFTB on 1 Xeon CPU core. The values in parentheses are extrapolated 

estimates. 

 

n Full SCC-DFTB FMO-DFTB 

256 74.2 4.6 

512 865.4 9.8 

1024 7725.2 20.8 

3072 63075.0 48.6 

2048 221243.4 78.5 
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4096 509745.0 109.7 

5120 (1030224.1) 154.1 

6144 (1810687.4) 198.8 

Scaling O(N3.09) O(N1.21) 

 

 The scaling of FMO-DFTB was evaluated for the α-helix of polyalanine, fullerite slabs, 

and water clusters containing up to about 20 000 atoms. The fragmentation was 1 residue per 

fragment for polyalanine, and 1 molecule per fragment otherwise.  The total wall-clock 

timings are shown in Figure 3.4, divided for the purpose of analysis into four steps: preparation 

(reading input file, processing fragmentation, etc), SCF1 (monomer SCF), SCF2 (dimer SCF), 

and ES2 (ES-DIM approximation). 

 The scaling based on the total wall-clock time of the α-helix, fullerite slab, and water 

cluster are O(N1.10), O(N1.14), and O(N1.21), respectively.  The preparation and ES2 steps do 

not require much time, thus the main time-consuming steps of FMO-DFTB are the calculations 

of monomers (SCF1) and dimers (SCF2), as in other FMO implementations.  The number of 

monomers is N and the number of SCF dimers is proportional to N within the ES-DIM 

approximation.  However, although the number of SCF calculations scales linearly with 

system size, in each of them we have to consider the ESP of the whole system.  It is the 

inclusion of the embedding ESP that causes the increase in FMO-DFTB scaling from linear 

O(N1.0) to the observed behavior of O(N1.1−1.2).  The computational bottleneck for all three 

examples given above was the SCF2 dimer calculation step. 
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(A) α-helix of polyalanine 

 

(B) fullerite slabs 

 

(C) water cluster 

 

Figure 3.4. Timing of FMO-DFTB for (A) α-helices of polyalanine, (B) fullerite slabs, and (C) 

water cluster (in left), as measured on 1 Xeon CPU core. The representative structures of 

COMe−(Ala)20−NHMe, 3×3 unit cells of fullerite, and (H2O)256 are shown on the right. 
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3.3.3 Parallelization of FMO-DFTB and its application to a fullerite geometry 

optimization 

 As described above, we parallelized FMO-DFTB in a fashion similar to other FMO 

methods, with each group of CPU cores doing a monomer or dimer calculation. In FMO-DFTB 

we chose to assign 1 CPU core per group.  To test the parallelization efficiency, we used a 

fullerite slab with 40 × 40 unit cells, (C60)9842, containing 590 520 atoms.  As in the above 

described three benchmark systems, the computational bottleneck for the fullerite calculations 

was again the SCF2 dimer calculation step, and the required time for this step even more 

significant since each dimer contained 120 atoms.  The SCF2 step took 92-95% of the total 

time, whereas the preparation and ES2 steps are almost negligible.  We performed a single 

point energy calculation using 16, 32, 64, 96, and 128 CPU cores (1-8 nodes).  The speed-up 

measured by the wall-clock time with a 1 node (16 CPU cores) calculation as reference is 

shown in Figure 5. 

 

 

Figure 3.5. Speed-up of parallel FMO-DFTB calculations for the (C60)9842 fullerite model 

system with respect to the number of cores are shown as red filled circles. The solid black line 

represents the ideal scaling with 100 % parallel efficiency. 

 

 We achieved a 7.5 time speed-up on 128 CPU cores (the parallel efficiency of 

93.8 %). There is some loss of efficiency because of the load balancing and because a few 

steps remain sequential. In addition, there are no intergroup communications, so the deviation 

of the observed speed-up from the perfect results is mainly due to of the data exchange 

between groups, because of the large number of atoms and fragments. The data 

communication took 68.1 seconds for the total amount of 2.35 gigabytes of data. Table 3.4 

shows the the timings for the geometry optimizations of some representative systems using 

our parallelized FMO-DFTB. 
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Table 3.4. The numbers of atom NAT, fragments N, geometry steps Nsteps and wall-clock 

timings T (min) for FMO-DFTB geometry optimizations, performed on 1 Xeon node (16 

CPU cores) using RUNTYP=OPTFMO 

 

 NAT N Nsteps T (min) 

COMe-(Ala)20-NHMe (-helix) 212 20 431 2.8 

COMe-(Ala)20-NHMe (-turn) 212 20 265 1.7 

COMe-(Ala)20-NHMe (extended) 212 20 191 1.0 

CGATCG DNA (fragmentation at 4’ carbon) 385 12 1788 41.1 

CGATCG DNA (fragmentation at 5’ carbon) 385 12 2659 58.4 

Trp-cage protein 303 10 675 6.98 

Trp-cage protein 303 20 674 11.9 

 

 For demonstration purposes, we calculate the fullerite cluster consisting of 53 × 53 

unit cells and containing 1 030 440 atoms.  A single point calculation on 128 cores (8 nodes) 

took 4993 seconds (83.2 minutes).  This relatively long wall-clock time is related to the fact 

that the fragment size is big: 60 atoms per fragment (one fullerene molecule per fragment).  

The equilibrium geometry of the fullerite containing over one million atoms was found in 16 

steps, which took 99.4 hours on 8 Xeon nodes (128 cores).  C60 is a nonpolar system and the 

interaction between fullerene molecules is governed by van der Waals forces.  Thus, we 

repeated the geometry optimization of the fullerite system with a posteriori dispersion using 

FMO-DFTB-D.  To accelerate geometry optimization, we constructed a new initial structure 

using the optimized cell length of 4 × 4 fullerite slab.  Inclusion of dispersion interaction 

increased the wall-clock time by approximately 1.5 percent per geometry optimization cycle, 

and a minimum geometry with shorter cell length was found after 60 iterations. We found that 

the experimental cell length100 of 14.04 Å became 13.91 and 14.02 Å with and without 

dispersion, respectively. 

 

3.4 Conclusions 

 We have derived and implemented the combination of the density-functional tight-

binding method (DFTB) with the fragment molecular orbital (FMO) method, for both SCC and 

NCC versions of DFTB, including a posteriori dispersion interaction.  Full DFTB and FMO-

DFTB methods have been implemented in GAMESS-US.  We have parallelized FMO-DFTB 

with GDDI and demonstrated its reasonable parallel efficiency. 
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 We have shown that the total energy of full SCC-DFTB calculations is reproduced in 

FMO-DFTB within 1 kcal/mol for a 2000 atom polypeptide, when the system is partitioned 

with fragment sizes of two or more residues.  The structures optimized with FMO-DFTB had 

rmsd values of 0.1 Å or less, compared to the minima obtained with full SCC-DFTB.  The 

comparison was somewhat complicated by the existence of many local minima on the 

corresponding potential energy surfaces, allowing FMO-DFTB and SCC-DFTB to converge to 

different stationary points when starting geometry optimizations from the same initial 

geometries.  FMO-DFTB-D exactly reproduces the dispersion interaction of full DFTB-D 

calculations. 

 The computational scaling of FMO-DFTB with the number of atoms N was shown to 

be O(N1.1−1.2) for 1D, 2D, as well as 3D systems, a little bit higher than the linear scaling.  This 

is a huge improvement over the scaling of full SCC-DFTB, which is approximately cubic.  

The energy of a water cluster with 18 432 atoms was calculated with FMO-DFTB in about 3 

minutes, whereas the corresponding full SCC-DFTB calculation is estimated to require about 

3 weeks, which is about 4 orders of magnitude longer. 

 We have demonstrated the efficiency of FMO-DFTB by optimizing the structure of 

fullerite containing more than 1 million of atoms.  Clearly, although purely periodic systems 

can be computed with periodic boundary conditions, the cluster approach is very useful for the 

structures with defects, doping and adsorption on the surface as well as for amorphous and 

other nonperiodic systems, which are very frequent in material science. In future, we plan to 

implement and develop the third-order DFTB,44,104 important for practical applications in 

particular in relation to biosystems.  FMO has been applied to a number of biochemical105 and 

inorganic66–70 systems,59 although these simulations required considerable computational 

resources, sometimes top-class supercomputers.27  With the introduction of FMO-DFTB, 

these simulations can be performed on small scale PC clusters or even single desktop 

computers, greatly increasing the accessibility of FMO to the end users. 
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Chapter 4 

Simulation of Vibrational Spectra of Large Molecular 

Systems with Radical or Metallic Electronic Structure 

 

4.1 Introduction 

 Spectroscopic measurement, such as infrared (IR) and Raman spectroscopy,1-3 is of 

particular importance in identifying structures and properties of nanostructures.4,5  In the 

history of nanostructures for example, the IR spectra of graphitic soot by Krätschmer et al.6 

delivered strong experimental evidence for the presence of buckminsterfullerene C60 in 1990.  

One of the first quantum chemical IR and Raman simulations for C60 was performed by 

Giannozzi et al.7 using density-functional perturbation theory (DFPT)8 in 1994.  On the other 

hand, graphene and certain carbon nanotubes are semi-metallic and metallic systems, 

respectively,4 complicating the theoretical simulation of their vibrational spectra. 

 It is a general difficulty for quantum chemical methods utilizing atomic orbital (AO) 

basis sets to tackle multiradical or metallic systems, because standard self-consistent-field 

(SCF) calculations cannot converge a stable electron configuration.  Unstable SCF calculation 

for nearly-degenerated system is attributed to the fact that integer occupation of orbitals creates 

so strong potential that the electronic structure determined previously is upset by the potential 

newly generated.  Although multi-reference methods, such as the density-matrix 

renormalization group (DMRG) method,9 are very powerful, they are computationally highly 

demanding.  A more practical solution for extended molecular systems is to utilize fractional 

occupation numbers (FONs)10-12 for the open-shell molecular orbitals (MOs).  The concept of 

FONs was originally introduced by Mermin13 in 1965 to extend density functional theory 

(DFT) to an inhomogensous electron gas at nonzero temperatures, and pictorially corresponds  

to using a smooth function in determining occupation numbers of MOs allowing fractionally 

occupied orbitals, while keeping the number of electrons in the system constant.  This 

prevents orbitals from inter-conversion during SCF calculation and furthermore accelerates 

SCF convergence in ab initio calculations.14  One application study15 showed that DFT 

calculation with FONs improved the description of restricted DFT for multi-reference systems 

such as linear acenes, agreeing with an expensive multi-reference method.16  In spite of 

potentially useful features of FONs, the second-order geometrical derivative with FONs has 

not been developed yet, therefore spectroscopic investigations of large open-shell molecular 

systems in this line has been stayed clear of up to date. 
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4.2 Methodology 

 Here, we derive analytical second-order geometrical derivatives of free energy 

function for self-consistent charge density-functional tight-binding (DFTB2) method17-22 with 

FONs.  Although the previous second-order derivative implementation by Witek et al.23 

limited their study to closed shell systems, our extension is in principle applicable for any 

restricted wave functions.  The second-order derivative of free energy (ℰ) with respect to the 

displacement of nuclei a and b with FONs needs only one additional term to that of internal 

energy (E) with integer occupation numbers: 

∂2ℰ

𝜕𝑎𝜕𝑏
=  

∂2𝐸

𝜕𝑎𝜕𝑏
+ 2 ∑

𝜕𝑓𝑖

𝜕𝑏
∑ 𝑐𝜇𝑖𝑐𝜈𝑖  {

𝜕𝐻𝜇𝜈
0

𝜕𝑎
+ (Ω𝐴𝐵 − 𝜀𝑖)

𝜕𝑆𝜇𝜈

𝜕𝑎
}  (4.1)

AO

𝜇𝜈

MO

𝑖

 

where fi (0 < fi < 1) represents FON of i-th MO which consists of linear combination of AOs 

multiplied by 𝑐𝜇𝑖.  𝐻𝜇𝜈
0  and 𝑆𝜇𝜈 is the zeroth order Hamiltonian and overlap matrix element 

in AO basis, and ΩAB  is the shift contribution of Coulomb interaction in the system.  fi is 

determined by the orbital energies (𝜀𝑖) and electronic temperature (Te) following the Fermi-

Dirac distribution function,24,25 

𝑓𝑖 = ( 1 + exp (
𝜀𝑖 − 𝜀F

𝑘𝑇e
))

−1

, (4.2) 

where 𝜀F is the Fermi level, determined to keep the number of electrons in the system constant, 

and k is the Boltzmann constant.  As shown for density functional theory (DFT) with localized 

Gaussian-type orbitals,26 the derivative of FONs disappears in the first-order derivative of free 

energy, therefore only the first-order derivative of FONs is needed in the second-order 

derivative, as in eq (4.1).  As this fact is true for DFT, we believe that our concept is applicable 

for other methods easily by small modifications.  We restrict ourselves in the case with the 

Fermi-Dirac distribution function, which makes the free energy function variational and the 

first-order derivative simple.  We summarize all the details in Appendix A. 

 Our implementation uses as many analytically differentiated expressions as possible, 

therefore calculated Hessian matrix is more robust than the previous implementation which 

uses many numerically differentiated expressions. 23  Besides FONs, restricted spin-polarized 

calculation with certain singly occupied MOs can be mimicked at zero electronic temperature.  

In that case, since the occupation numbers of doubly and singly occupied MOs are fixed, the 

additional term of eq. (4.1) is no longer needed.  It should be noted that the wave function 

derived in this way is different from the restricted open-shell (RO) wave function.27  The RO 

wave function allows different numbers of electrons for each  and  orbital space, however 

our restricted wave function forces the number of electrons for both orbital space same. 
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 Our methodology requires the diagonalization of Hamiltonian matrix with incomplete 

Slater-type orbitals.  This is different from previous first-order derivative research with plane 

wave28,29 or recursive update algorithm of Fock matrix.30  Although it has been pointed out 

that a method with diagonalization is computationally demanding,30 our methodology is well 

suited for studies of large systems since DFTB itself is computationally very efficient,21-23 and 

therefore our development will be a powerful tool for the simulation of vibrational spectra of 

large systems. 

 

4.3 Results and Discussions 

4.3.1 Benchmark Calculation with Nitronyl Nitroxide Radicals 

 We next investigate the applicability of DFTB for nitronyl nitroxide (N-O) radical 

systems.  Conceptually, the orbital occupation of singly occupied molecular orbital (SOMO) 

is be one, regardless of geometry.  Since we requires the SOMO to be always singly occupied, 

the contribution of the second term in eq (4.1) is zero, therefore underlying theory remains 

same to the one for closed shell system.23  Nevertheless, our calculation is the first simulation 

of IR spectra of radical system with analytical second-order derivative of DFTB as far as our 

knowledge reaches, and is worth challenging.  We selected 21 N-O radical stretching modes 

listed in ref 31 where experimental frequencies are available and compared them with those 

calculated at unrestricted B3LYP/6-311++G(d,p) (UB3LYP) and DFTB using mio and 

slkoopt32 parameter sets.  Since B3LYP overestimates vibrational frequencies,33 we scaled all 

wavenumbers by a factor of 0.976, following the previous computational work by Rintoul et 

al.31  In the case of DFTB, we also scaled them by a factor of 0.952 and 0.959 determined so 

as to minimize each root mean square (RMS) deviation.  We show the unscaled and scaled 

RMS and maximum deviations in Table 4.1. 

 

Table 4.1. Comparison of root mean square (RMS) and maximum deviations (unit in cm-1) 

from experimental N-O radical stretching modes at scaled and unscaled UB3LYP/6-

311++G(d,p) and DFTB with mio and slkoopt parameter sets. 

 

method scaling factor RMS deviation max deviation 

B3LYP 1.000 49.35 102.84 

 0.976 28.10 67.56 

mio 1.000 79.45 134.60 

 0.952 38.43 125.21 

slkoopt 1.000 68.85 129.19 
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 0.959 34.15 105.44 

 

 Table 4.1 shows that the UB3LYP calculation predicts in a better accuracy than DFTB 

using both parameter sets.  The RMS deviation of scaled UB3LYP result is similar as the 

previous work at B3LYP/6-31G(d) by Scott et al.34 (34 cm-1) and is 28.10 cm-1.  Maximum 

deviation of 67.56 cm-1 is also satisfactory small, compared to the previous work.34  On the 

other hand, unscaled DFTB gives larger deviation, and RMS deviations of mio and slkoopt are 

as high as 79.45 and 68.85 cm-1.  However, unlike DFT, DFTB is a semi-empirical method 

whose accuracy largely depends on the quality of parameters, therefore our numerical results 

strongly indicate that there is a plenty of room for parameterization.  Scaling vibrational 

frequency is one of parameterization techniques, although the previous work focusing on 

typical molecules35 concluded that scaling of SCC-DFTB frequencies does not improve much.  

In our case, however, scaling of DFTB wavenumbers by a factor of 0.952 (mio) and 0.959 

(slkoopt) reduced the RMS deviations by 50 %, whereas UB3LYP by 0.976 does by 40 %.  

The RMS deviation of 34.15 cm-1 using slkoopt parameter set with a scaling factor of 0.959 

differs from B3LYP value by only 6.07 cm-1.  This result is an encouraging result, considering 

that our slkoopt parameter set does not include improved parameters for N-O interaction.32  

We conclude our comparison here by mentioning that inclusion of spin-spin interaction does 

not dramatically improve DFTB frequencies.  Numerical derivative with unrestricted DFTB 

for selected molecules improves only a few cm-1.  All structures and vibrational frequencies 

of N-O radical stretching mode are given in Appendix B. 

 

5.3.2 Theoretical IR and Raman Spectra of Polyanulene 

 As a practical application for extended open-shell molecular system, we tested our 

method for the evolution of IR and Raman spectra of zigzag-type graphene nanoribbon 

(ZGNR)4,36,37 which consists of three rows of benzene ring with increasing the number of units 

(Figure 4.1).  We changed the number of units from one (22 atoms) to twenty (212 atoms) 

systematically and set Te = 100 K.  The work by Luo et al.38 changed the height of GNR while 

the width of GNR was infinite with periodic boundary condition, however we treated GNR as 

a molecular cluster and changed the width while keeping the height constant.  The IR intensity 

spectra (Figure 4.2 (A)) show that there is a characteristic evolution of the strong IR intensity 

at around 3030 and 3040 cm-1.  These peaks correspond to the symmetric and antisymmetric 

C-H stretching at the terminals of elongating direction.  This is clearly an artificial edge-effect 

because of our finite length model, and therefore such a strong peak has not been predicted in 

the previous work by Luo et al. 38  If we compare the relative intensity of these C-H stretching 

modes against the second highest peak at 750 to 800 cm-1 which comes from synchronous out-
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of-plane C-H wagging mode at zigzag edge, it increases gradually from 2.07 (n = 2) to 4.39 (n 

= 20).  The IR intensity is calculated by the projection of derivatives of dipole moment onto 

each normal mode.  Because the vibrational vectors of the terminal C-H stretching hardly 

change, the growth of relative intensity of C-H stretching should come from the growth of 

derivatives of dipole moment.  As calculations of vibrational frequency require immense 

computational effort with QM methods,39 discussions about the relation between relative 

intensity and derivatives of dipole moment for large open-shell systems are limited.  As a 

qualitative explanation, small displacement of edge hydrogen atom induces gradient of 

potential along the elongating direction of ZGNR.  Although the gradient may be small, the 

length of potential becomes longer as the number of units increases.  Furthermore, the 

contribution of each atom to dipole moment increases as the distance from the arbitrary center 

increases, therefore derivatives of dipole moment of extended systems tends to be high. 

 

Figure 4.1. Definition of zigzag-type graphene nanoribbon (n = 4) and single unit boxed by 

red line.  Gray spheres represent hydrogen atoms. 
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Figure 4.2. Evolution of (A) IR intensity and (B) Raman activity spectra of ZGNR at DFTB 

with slkoopt parameter set with increasing the number of units. 

 

The Raman activity spectra (Figure 4.2 (B)) show that our strongest D and G band-like peak 

appears at 1213.46 and 1574.37 cm-1 (n = 20; see Supporting Information).  The experimental 

D and G band of mono-layer graphene40 is observed at around 1350 and 1580 cm-1, so our 

result well agrees with the experimental G band.  On the other hand, there is a large 

discrepancy of the position of D band and its relative intensity.  Our vibrational mode of the 

highest peak of D band localizes at the terminals of elongating direction, therefore this is again 

an edge-effect.  Our model system is too small to compare experiment, so follow-up study is 

now in progress. 

 

4.3.3 Computational Timings of Numerical and Analytical Second Derivatives 

 We finally compare the wall-clock time of analytical and numerical (step size = 1.0 × 

10-4 a.u.) second-order derivatives with increasing the size of ZGNR discussed in the previous 

paragraph, as shown in Figure 4.3.  Our scaling behavior indicates that analytical second-
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order derivative is marginally faster than numerical one.  The trend lines fitted with t = a×nb 

function corresponds to t = 0.022n3.88 and 0.220n3.60 for analytical and numerical differentiation 

at Te = 100 K respectively, therefore our analytical differentiation is around ten times more 

efficient than the numerical one.  Once the electronic temperature is raised to 5,000 K, wall-

clock time of analytical and numerical derivatives increased and decreased respectively, 

because the dimension of coupled perturbed DFTB becomes bigger with higher electronic 

temperature in analytical derivative, while SCF convergence is accelerated14 in numerical 

differentiation.  The trend line now corresponds to t = 0.041n3.78 and 0.136n3.89 for analytical 

and numerical differentiation at Te = 5,000 K respectively.  Even at higher electronic 

temperature, analytical derivative is certainly computationally less demanding. 

 

 

Figure 4.3. Scaling of wall-clock time for analytical and numerical second-order derivatives 

at Te = 100 and 5,000 K for ZGNRs against the number of units. 

 

4.4 Conclusions 

 In summary, we derived and implemented the second-order geometrical derivative of 

free energy function for DFTB2 with FONs, which is readily applicable for large open-shell 

molecular systems.  Our benchmark calculation for N-O radical stretching modes indicates 

that the prediction by DFTB with an appropriate scaling factor is almost compatible with the 

moderately high level DFT calculation (B3LYP/6-311++G(d,p)).  Our application for 

ZGNRs indicates that it is need to work on larger GNRs in future.  We are investigating the 

evolution of IR and Raman spectra with increasing the number of units and with widening the 

width of GNRs utilizing our analytical second-order derivative, showing that our program is 

manageable more than 3,000 basis functions.  Our approach is also promising for non-

periodic large delocalized or open-shell molecular systems, such as fullerene and defected 

nanomaterials,41 too. 
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Computational Details 

 We implemented DFTB with energy and analytical first- and second-order 

geometrical derivatives into the development version of GAMESS software package.42  SCF 

density convergence criterion was 10-9 for numerical derivatives and 10-12 for any other 

computations, and all structures were optimized with maximum and RMS gradient elements of 

less than 10-9 and 10-9/3.  We defined two parameter sets: “mio” (mio-0-1)20 parameter set 

which was available from the DFTB web site, and another set, called “slkoopt” here, contains 

the optimized parameters by Małolepsza et al.32 for C-C, C-H, H-C, and H-H element pairs, 

although other pairs remain same to the mio set.  “halorg-0-1” parameters43 are used for two 

N-O radical molecules which contain either F or Br.  In analytical second-order derivative 

calculations, 10-10 < 2fi < 2 - 10-10 was defined as fractionally occupied orbitals.  The 

convergence of coupled-perturbed DFTB equations was reached when the maximum 

difference of the derivatives of Mulliken population between two consecutive cycles became 

less than 10-6.  Tightening these thresholds did not change results qualitatively.  Raman 

activities were computed by calculating the second-order derivative of atomic forces with 

respect to finite electric field44 of 0.002 a.u.  Each IR and Raman peak was convoluted with 

the Lorentzian function with a 20 cm-1 line width.  See Supporting Information for the details 

of DFT calculations. 

 We used Gaussian 09 Revision C.0145 for all DFT calculations.  Structures are first 

optimized at B3LYP46/6-311+G(d) using unrestricted wave function, and successively re-

optimized at U-B3LYP/6-311++G(d,p), to save computational cost.  Default parameters are 

used for self-consistent-field (SCF) convergence, geometry optimization, and integral accuracy.  

Calculated vibrational frequencies at U-B3LYP/6-311++G(d,p) are scaled by a factor of 0.976 

as in ref 31. 
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Chapter 5 

Super-Reduced Polyoxometalates: Excellent Molecular 

Cluster Battery Components and Semipermeable 

Molecular Capacitors 

 

5.1 Introduction 

 Polyoxometalate (POM) was first reported by Jöns Jacob Berzelius in 1826,1,2 and it 

was later found that this substance contains the [PMo12O40]
3- anion.  However, its precise 

molecular structure remained unknown for more than 100 years, until James F. Keggin resolved 

the structure of a related heteropoly acid species, H3[PW12O40]nH2O, using X-ray 

spectroscopy in 1933.3  His data indicated that a central PO4
3- tetrahedral group is surrounded 

by twelve fused WO6 octahedrons sharing oxygens at their edges or vertices, and that the 

trianion adopts Td symmetry.  It later was confirmed that virtually all [XM12O40]
x- type POMs 

feature this same structure, referred to as -Keggin (X = P, Si, Al etc., M = Mo, W, V, etc.).  

Other relevant POM structures, for instance, the smaller homopoly Lindqvist4 ([M6O19]
2-), and 

larger heteropoly structures, such as Anderson-Evans5,6 ([XM6O24]
x-) and Dawson7 

([X2M18O62]
x-), have been reported as well.  With only few exceptions, almost all chemical 

elements have been incorporated either in the POM structures themselves, or were encapsulated 

within.8 

 In recent years, the number of experimental9-12 as well as theoretical13-18 investigations 

of various POM clusters has increased, due to their fascinating molecular and electronic 

structures and properties.  However, the presence of a minimum of six transition metal atoms 

in even the smallest possible POM anions represents a challenge for substantive quantum 

chemical studies.8  Fortunately, in recent years, reasonably accurate density functional theory 

(DFT) has become applicable to such large and complicated molecular systems.  Thus, thanks 

to combined experimental and theoretical efforts, a variety of POM properties such as catalytic 

activity,9,10,16 single molecular magnetism,11 and electrochemical redox potentials12,18-20 are 

now fairly well understood. 

 One of the most intriguing properties of POM clusters is the highly unusual capability 

to accept a large number of electrons,21-24 a property which finds its expression in the term 

“electron reservoir” 2 or “electron sponge” 25 that is sometimes applied to them.  This means 

for instance that POM clusters have the potential to play an important role as a cathode-active 
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material.  Jean Pierre Launay24 had already reported in the mid 1970’s the preparation and 

characterization of electrochemically highly reduced metatungstate anions.2  Based on the 

observation of irreversible electrode reactions, and simple molecular orbital considerations, he 

and his coworkers proposed that three joint octahedra comprising each of the four corners of 

the POM cluster would be reduced by up to six electrons, and that this locally reduced structure 

would feature WIV-WIV bonds arranged in the form of triangles.24  However, these suggestions 

were mere speculation and lacked any direct evidence.  More recently, our team reported that 

in high-capacity lithium batteries,23,25-27 a Keggin POM anion containing 12 Mo atoms may 

indeed hold 24 excess electrons, as determined by in situ observed changes of the Mo ion 

average valences, derived from Mo K-edge X-ray absorption near-edge structure (XANES) 

absorption edge energies.25  This high uptake of excess electrons (termed “super-reduction” 

in ref. 25) is the current confirmed record for a single molecular cluster, and certainly 

remarkable since usually highly charged anions are prone to break covalent bonds and 

decompose spontaneously.  Other chemical compounds exhibiting the features of super-

reduction are Mnx
26,27 and iron-sulfur28,29 clusters, although these compounds can only 

accommodate up to 8 and 4 excess electrons per cluster, respectively.  Thus, to achieve super-

reduction, it is necessary to use molecular clusters with a large number of transition metal 

atoms.  Since POMs are famous for their capability to form supramolecular condensates of 

well-defined structures,2 they possess tremendous potential for the design of molecular clusters 

capable of super-reduction, possibly even exceeding the current record of 24 electron “super-

reduction”. 

 

 

 

Figure 5.1. BP86-D-optimized structure of [PMo12O40]
3- and definitions of characteristic bond 

lengths.  The green, red and olive colored spheres correspond to molybdenum, oxygen and 

phosphorous atoms, respectively. 
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 In the present work, we focus on the question as to how the Keggin type POM cluster 

can reach a super-reduced state in a molecular cluster battery (MCB) without being ripped apart 

by the repulsive Coulombic forces from the large number of excess electrons.  In the extended 

X-ray absorption fine structure (EXAFS) spectrum reported by Wang et al.,25 three unique 

structural changes were reported during reduction by up to 24 electrons: i) Most notably, 

overall Mo-Mo distances shrank from about 3.6 Å in the “native” Keggin [PMo12O40]
3- cluster 

trianion30 to about 2.6 Å; ii) the Mo-O bonds pointing outward, away from the cluster, 

increased in length from 1.7 (Mo-O (out) bonds, see Figure 5.1) to about 1.9 Å; and iii) the 

inner Mo-O bonds (Mo-O (in)) were shortened from 2.4 to about 2.0 Å.   

 To better understand these structural changes recorded in situ by EXAFS, we 

performed our study theoretically by means of DFT calculations, using both static as well as 

first principles molecular dynamics (FPMD) approaches.  For the discussion of molecular and 

electronic state structure changes during reduction, we combined available experimental and 

theoretical data, and employed molecular orbital (MO) analyses in combination with ligand 

field theory.31  Our approach models the super-reduced state of POM by supplying explicit 

alkali metal atoms around the POM cluster in the DFT calculations. 

 

5.2 Computational Details 

 The present study mainly employs the heteropoly molybdate -Keggin ([XMo12O40]
3-, 

X=P) polyoxometalate cluster as model system, and we refer to this particular Keggin cage as 

“POM” in the remainder of the paper.  Several calculations were also carried out for its 

tungsten analog [XW12O40]
3- (X=P), and in these cases we will refer to the Keggin cage as “W-

POM”.  All molecular and electronic structure calculations, as well as on-the-fly direct FPMD 

simulations, were carried out using DFT32,33 as implemented in the TURBOMOLE code.34  

We selected the BP86 exchange-correlation35,36 and B3LYP37 hybrid functionals with the all-

electron, polarized split-valence-type def-SV(P) basis set38 for Li, O, Na and P atoms (def-

SV(P) will be abbreviated as SV(P) hereafter), and for Mo and W we employed the 

TURBOMOLE standard effective core potentials (ECP).39  The semi-empirical dispersion 

correction as formulated by Grimme40 was introduced in order to describe long-range van der 

Waals interactions, and the functionals are suffixed with “–D” for the correction.  A geometry 

optimization using a larger valence triple- quality basis set (TZVPP)41 for all elements was 

also performed for the “native” POM3- cluster.  For all BP86 DFT calculations, we introduced 

the resolution of the identity (RI) approximation42 in combination with optimized auxiliary 

basis sets,38,39,41,43 which significantly enhanced the speed of calculation with negligible loss 

of accuracy.  No symmetry constraints were applied in the calculations if not explicitly 

mentioned otherwise.  In all calculations we assumed a closed-shell singlet state using spin-



 75 

restricted MOs.  For few selected cases, we computed triplet energies and found that they 

were always higher in energy, indicating that the system tries to adopt a low-spin electronic 

ground state. 

 The calculations on the POM3- cluster were carried out in the absence of explicit 

counterions, i.e. assuming three negative charges on this cluster, unless indicated otherwise.  

In order to model the reduced POM(3+n)- clusters, we added 3+n neutral alkali metal atoms, 

either lithium or sodium, around a neutral POM cluster, and set the total charge state of the 

system in the DFT calculation to zero.  For the FPMD simulations in the canonical NVT 

ensemble, the environmental target temperature was controlled by the Nose-Hoover chain 

thermostat44-46 as implemented in the TURBOMOLE code (program ‘frog’), and the target 

temperature was set to 500 K.  The thermostat relaxation time was 12.094 fs and the time 

integration interval was 1.935 fs, since no light hydrogen atoms are included in the system.   

 For MO-based population analyses, we employed the AOMix47,48 code, and analysis 

of the charge densities was carried out based on natural population analysis (NPA)49 as well as 

Wiberg bond orders.50  For visualization of molecular and electronic structures, the VMD51 

and gOpenMol52,53 software was used. 

 

5.3 Results and Discussions 

5.3.1 Molecular structure of the native Keggin POM3- 

 The initial geometry of the heteropoly molybdate POM3- (X=P) cluster was taken from 

the X-ray structure of Liu et al.30  We subjected this geometry to structural optimization at 

the BP86-D/SV(P) and B3LYP-D/SV(P) levels of theory in vacuum without explicit 

counterions, assuming a total charge of 3-.  Table 5.1 displays key structural parameters for 

the crystal structure as well as BP86-D- and B3LYP-D-optimized geometries, along with root 

mean square deviations (RMSDs) of the theoretical geometries from the crystal structure.  

Although experimentally metal-oxygen bond lengths for the -Keggin POMs are typically 

divided into three categories, we identified four different types, consistent with a previous 

theoretical study by the Poblet group.17  Six types of Mo-O bonds are distinguished, namely 

Mo-O (out), Mo-O (in), Mo-O (frameA1), Mo-O (frameA2), Mo-O (frameB1), and Mo-O 

(frameB2), where the pairs of Mo-O (frameA1) – Mo-O (frameA2) and Mo-O (frameB1) – 

Mo-O (frameB2) are identical in Td symmetry but are in fact nonequivalent in lower symmetry 

calculations, as will be discussed below.  The RMSD of the Cartesian coordinates was defined 

as usual without mass weighting, and measures deviations for maximally overlapping 

structures.  It can be seen that the DFT bond lengths do not deviate from the X-ray structure 

by more than 0.1 Å.  The largest deviation can be seen for the Mo-O (frame) bond lengths. 
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Table 5.1. Comparison of key structural parameters for POM3- between X-ray30 and DFT-

optimized structures.  All values are given in units of Å.  The location of the bond types is 

given in Figure 5.1. 

 

 X-ray BP86-D B3LYP-D 

Mo-Mo 3.563 3.606 3.609 

Mo-O (out) 1.684 1.719 1.703 

Mo-O (in) 2.442 2.452 2.461 

Mo-O (frameA1) 
1.920 

1.882 1.855 

Mo-O (frameA2) 2.011 2.031 

Mo-O (frameB1) 
1.915 

1.867 1.843 

Mo-O (frameB2) 1.995 2.016 

RMSDa 0.000 0.127 0.152 

 

a RMSD values of BP86-D and B3LYP-D are calculated with respect to the X-ray structure as 

reference. 

 

 The existence of four different Mo-O (frame) bond lengths in POMs was already 

reported in the theoretical study by Yan et al.17  They observed alternating bond length (ABL) 

distortions for the ring framework Mo-O bonds of POMs, and found that the origin of these 

distortions, lowering the point group symmetry from Td to chiral T, is a pseudo Jahn-Teller 

vibronic instability.  In Table 5.1, the ABL distortions are clearly visible in our computed 

geometries, obtained without symmetry restrictions.  The averages over these four Mo-O 

types are 1.939 Å and 1.936 Å at BP86-D and B3LYP-D respectively, in good agreement with 

the X-ray structure.  In fact, the BP86-D- and B3LYP-D-optimized geometries are 

remarkably similar, even though B3LYP itself is typically more suitable for systems containing 

main group elements.54  Indeed, the RMSD values indicate that the BP86-D is slightly better 

in agreement with the X-ray data than B3LYP-D, confirming a general trend in the performance 

of various DFT functions for transition metal-containing systems.55  We additionally 

performed a BP86-D calculation with a larger basis set (TZVPP) to validate our general use of 

the double- quality SV(P) basis set.  The geometry was similar to the SV(P)-optimized result, 

and the corresponding RMSD value of this structure with respect to the X-ray geometry was 

0.134 Å, indicating that our results did not have significant basis set dependence in the 

prediction of geometries.  Overall, the trend of DFT gas phase optimizations towards larger 

cage structures is indicative of the important role of crystal field effects on POM3- molecular 
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cluster geometries.  Based on these results, we therefore decided to employ the BP86-D 

method for the study of POM redox processes, due to its reasonable performance and low 

computational cost. 

 

5.3.2 Strategies for modeling the molecular and electronic structures of reduced POMs 

 The quantum chemical study of anions is notoriously difficult, and to make matters 

worse, even though multiply charged anions in gas phase, such as SO4
2-, CO3

2-, and PO4
3- are 

ubiquitous in chemistry, they are not stable with respect to autodetachment as isolated species 

in the gas phase.56  Clearly, to accurately describe polyanionic species theoretically, it would 

be required to a) accurately account for electron correlation, b) use sufficiently large-enough 

basis sets to accommodate the diffuse electron density of negatively charged species, and c) 

include the environment of the molecular polyanion in the quantum chemical calculation.  

Presently none of the available quantum chemical methodologies are capable to “precisely” 

take into account any of these three important theoretical requirements, let alone all three of 

them together.  Thus, any attempt to model a super-reduced POM molecular cluster has to be 

conducted within the current limits of computational feasibility, and methodological 

deficiencies have to be compensated by comparison with solid experimental observations. 

 Since Keggin POM contains 12 transition metal atoms plus 40 oxygen atoms, ab initio 

methods such as second-order Møller–Plesset perturbation57 or configuration interaction58 are 

out of the question for the treatment of electron correlation effects.  DFT is presently the only 

computationally feasible method here, and we have to accept its predictions without a thorough 

check by more accurate methods, with only limited complimentary information from EXAFS 

spectra.  In terms of the basis set, as we have already indicated above, the split-valence 

polarized basis set plus ECP for transition metals is sufficiently accurate to describe the 

geometry of the POM3- cluster.  Since our approach of modeling the super-reduced state 

involves the calculation of charge neutral species by way of inclusion of explicit counterions, 

the use of larger basis sets is not expected to qualitatively change the BP86-D/SV(P) results of 

our investigations, in particular since the large number of diffuse basis functions from the alkali 

metal atoms provides additional flexibility in the description of the MOs of the super-reduced 

POMs. 

 Finally, the atomistic structure of the POM cluster environment in the MCB during 

charging and discharging is presently unknown, and we are thus relying on the assumption that 

close contacts between the reduced POMs and the countercations (Li+) and the dielectric field 

of the graphitic solid, surrounded by the ethylene carbonate solvent, stabilize the super-reduced 

species.25  The influence of the countercations is dominant among the interactions with the 

cluster environment, and for this reason we explicitly included them in all calculations of the 
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super-reduced POM.  However, an estimate of their number or positions is not available from 

experiment, and it can be expected that in MCBs large ion density fluctuations can easily occur.  

Our approach for adding Li or Na counterions in the DFT calculations followed therefore a 

somewhat heuristic approach.  We note in passing that Fleming et al. theoretically 

investigated the effect of absorption of a cluster anion onto a gold surface using polarization-

induced mirror charges,59 but the explicit use of alkali counterions is more accurate for 

modeling of a Li-ion battery component than a mirror charge model.  Since no detailed 

structural information for solid and liquid environmental compounds is available from the 

experiment, we resorted to neglect their influence entirely. 

 

5.3.3 Geometry optimizations of super-reduced POMs 

 At first we attempted to perform calculations with 27 Li atoms surrounding a neutral 

POM cluster starting from the POM3- Keggin trianion X-ray structure.30  The Li atoms were 

initially positioned randomly around the cage, sufficiently close for interaction.  After a full 

geometry optimization of this system, we obtained the structure shown in Figure 5.2.  We 

noticed substantial rearrangement of the positions of Li atoms during the relaxation of the 

structure.  The final POM structure contained four significantly shortened Mo-Mo distances 

(less than 3.0 Å), three of which formed a triangular Mo site consisting of Mo-Mo bonds in the 

range from 2.65 to 2.77 Å, their average being 2.73 Å (see Figure 5.2A).  These bond lengths 

are only slightly longer than the previously reported experimental bond length of 2.6 Å for the 

super-reduced POM from EXAFS,25 and confirm that super-reduction induces Mo-Mo bond 

formation.  In addition, we found that Mo-O (out) bonds for Mo atoms involved in Mo-Mo 

bonding had significantly stretched by ~0.2 Å to 1.97 Å, while the Mo-O (in) bonds were 

compressed by a similar amount to 2.18 to 2.20 Å (see Figure 5.2B).  These changes in Mo-

O bond distances are also in agreement with experimental findings.  The ABL related to Mo-

O (frame1) and Mo-O (frame2) bonds vanished, and the Mo-O (frame) bonds in this geometry 

exhibited values between 2.13 to 2.23 Å.  This makes the Mo-O (frame) bonds difficult to 

distinguish from significantly shortened Mo-O (in) bonds in the super-reduced species. 
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Figure 5.2. Optimized structure of POM with 27 Li labeled structure 4 in Appendix C (alkali 

metal atoms are omitted for clarity): (A) side view showing Mo-Mo distances, and (B) top view 

of the triangular Mo site showing Mo-O (in), Mo-O (out), and Mo-O (frame) distances.  See 

Figure 5.1 for the definition of colors. 

 

NPA49 carried out for this ad hoc optimized POM + 27 Li structure indicated that the POM 

cluster had only taken up 21.2 electrons from the Li atoms, estimated from the NPA point 

charge distribution.  We performed similar calculations with modified initial geometries of Li 

atoms, and obtained varying structures, sometimes with, sometimes without Mo triangles.  

The corresponding total energies of these POM + 27 Li isomers varied on a hundred kcal/mol 

energy scale, due to the strong Coulombic interaction between countercations and the 

negatively charged POM cluster.  These explorative studies demonstrated that the potential 

energy surface (PES) of the POM + 27 Li system is very rough, featuring high barriers 

separating minimum energy structures associated with Li migration and associated POM 

structural changes.   

 Clearly, ad hoc geometry optimizations become trapped in local minima, structurally 

related to the initial choice of Li atom placement.  In order to investigate the PES more 

broadly, and avoid entrapment close to initial geometries, we decided to perform on-the-fly 

FPMD simulations with subsequent structure optimization (“quenching”) on the basis of BP86-

D/SV(P) energies and gradients. 

 

5.3.4 Molecular dynamics simulations of super-reduced POMs 

 We adopted a relatively high temperature of 500 K for the FPMD simulations in order 

to more fully explore the associated PES.  We note that, although the MCB experiments had 

been carried out at room temperature,25 the local temperature close to the POM clusters might 

actually be closer to the target temperature of our MD simulation. 

 At first, we subjected the previously described POM + 27 Li system to FPMD 

simulations (trajectory A), starting from the POM3- X-ray geometry.  Figure 5.3A displays 

structural changes during the entire length of the MD simulation, traced by the bond lengths 

for Mo-Mo in pink, Mo-O (out) in red, Mo-O (in) in green, and Mo-O (frame) in blue color.  

The FPMD simulation was performed for 1,000 time integration steps, i.e. for a total of 1.935 

ps.  Three to four short Mo-Mo distances around 2.5 Å ~ 2.8 Å quickly appear in this FPMD 

simulation, starting around 390 fs.  When a bond is formed between two Mo centers, it follows 

that their distances to other Mo centers has to increase, therefore a large variation in Mo-Mo 

distances can be observed.  Mo-O (out) bonds significantly stretch immediately in FPMD 

simulations from 1.7 Å, characteristic for the optimized POM3- structure, to an average of 1.85 
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Å.  Mo-O (in) and Mo-O (frame) bond lengths fluctuate with larger amplitudes around 

average values of 2.47 and 2.06 Å, respectively, indicating that the structural integrity of the 

POM cluster is compromised.  The averages and amplitudes of these particular bond length 

fluctuations appear converged after around 1 ps simulation time. 

 

 

 

Figure 5.3.  Histograms of the bond length fluctuations during the MD simulations of the 

POM cluster with explicit (A) 27 Li and (B) 35 Li atoms.  Bond types are color-coded as 

follows: Mo-Mo – pink, Mo-O (out) – red, Mo-O (in) – green, Mo-O (frame) – blue, as 

illustrated in the right-hand side figure.  The vertical dotted line in panel (B) indicates the 

snapshot geometry we selected at 1.113 ps for subsequent geometry optimization of the POM 

+ 35 Li system. 

 

 We then proceeded to perform geometry optimization of the final trajectory snapshot 

at 1.935 ps, which resulted in a structure that features three short Mo-Mo bonds (< 3.0 Å) with 

bond lengths around 2.68 to 2.69 Å, creating one Mo triangle.  The NPA of the charge 

distribution in this POM + 27 Li cluster shows that 22.7 electrons were transferred to the POM, 

indicating once again that charge transfer from Li is only partial in nature, at least within the 

limitations of an atomic point charge analysis.  Replacing 27 Li atoms with the more 

electropositive Na resulted to the counterintuitive result of reduced charge transfer to the POM.   
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This simulation, the resulting POM + 27 Na structure, and the origin of the ineffectiveness of 

the larger sodium atoms60 to reduce the POM cluster, is discussed in Appendix C.  We note 

that such a counterintuitive result also has been reported for instance in the difference of the 

solvent stabilization potential between small, polar water molecules and larger, purely ionic 

liquid cations.61 

 To summarize, the simulations we had performed thus far hinted at a qualitative 

relationship between the numbers of excess electrons on POM and the appearance of short Mo-

Mo bonds.  Since Li was apparently more effective to afford POM reduction, we decided to 

add up to 8 more Li atoms to the POM + 27 Li system.  Geometry optimizations, starting from 

the initial structure after adding 8 more Li atoms in random initial positions around the cluster 

resulted in a structure that featured a total of six short Mo-Mo bonds, one complete and one 

partial triangular Mo site, and one Mo-Mo single bond with a Wiberg bond order50 of 0.936.  

We then proceeded with FPMD simulations of the POM + 35 Li system, following the same 

“recipe” as before, i.e. starting from the X-ray POM3- geometry, and supplying randomly 35 

Li atoms around this cluster.  As before, we employed a target temperature of 500 K and ran 

the simulation for 1.935 ps, generating trajectory B.  Figure 5.4 displays selected snapshot 

geometries representing the structural changes occurring in this trajectory.  In this case, we 

observed that during the FPMD simulation the POM + 35 Li cluster gradually disintegrated 

after around 1.26 ps, as can be seen in the rotated view of the final geometry in Figure 5.4D, 

which shows completely dissociated oxygen binding to nearby Li.  The tendency towards 

disintegration can also be seen in the time evolution of Mo-O (frame) bond lengths in Figure 

5.3B, which start to exceed distances around 3.0 Å starting from 1.2 ps. 
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Figure 5.4.  Selected snapshots of trajectory B, (A) initial structure at 0.000 ps, (B) snapshot 

after 1.113 ps, (C) after 1.258 ps, and (D) at the end of the MD simulation after 1.935 ps.  See 

Figure 5.1 for the definition of P, O, and Mo colors; white spheres represent Li atoms.  

 

 Figure 5.5 displays the RMSD of the POM cluster atomic coordinates in trajectory B, 

except for Li atoms, with respect to the initial geometry (POM3-) X-ray geometry.  At first, 

the RMSD value steeply increases as a sign of POM molecular structural changes, then 

relatively quickly stabilizes around 0.5 Å up to 1.3 ps, just after the snapshot (C) in Figure 5.4.  

Afterwards, gradual disintegration of the cluster is visible by a continuous increase of the 

RMSD.  We conclude that 35 Li atoms are difficult to accommodate around the Keggin POM 

cluster, at least at the high temperature of our MD simulation. 

 

 

Figure 5.5.  RMSD of the POM cluster with respect to the POM3- X-ray geometry during 

trajectory B as function of the simulation time.  The alphabetic letters in the plot identify the 

snapshots displayed in Figure 5.4. 

 

 For further geometry analysis, in this case we decided to extract a snapshot geometry 

before cage disintegration, in this case at 1.113 ps (see Figure 5.4B corresponding to the 

structure at the vertical dotted line in Figure 5.3B), and subjected it to geometry optimization.  

The resulting POM + 35 Li molecular structure featured two triangular Mo sites, two single 
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Mo-Mo bonds, and even one Mo=Mo double bond.  The NPA indicates a charge transfer of 

28.3 from Li to POM.  The bond orders were estimated by Wiberg bond order analysis:50 the 

Wiberg Mo-Mo bond order sums for each triangular Mo site were 2.32 and 2.51, the bond 

orders of Mo-Mo single bonds were 0.97 and 1.15, and the Mo=Mo double bond had a Wiberg 

bond order of 2.20, consistent with a very short distance of only 2.33 Å.  Similar results were 

obtained for W-POM + 35 Li systems, only here the number of W-W bonds was typically 

smaller with about one metal triangle plus an addition metal-metal bond.  The POM + 35 Li 

structure obtained by MD quenching is substantially more stable than the initially optimized 

structure by 2.95 eV (67.9 kcal/mol), although it is difficult to clarify whether this difference 

originates from the difference in the number of Mo triangles and Mo-Mo interactions, or from 

the difference in the positions of Li atoms. 

 

5.3.5 Four metal atom triangles in super-reduced Keggin POMs 

 The quenched POM + 35 Li structure from trajectory B was the lowest energy 

structure we could identify thus far, and had the largest number of Mo-Mo bonds (8 single 

bonds and 1 double bond) and Mo triangles (2).  However, the reported experimental 

structural data supports the notion that all Mo-Mo distances in super-reduced POM are 

converted to short (< 3.0 Å) Mo-Mo single bonds, suggesting that each Keggin cage contains 

four triangular Mo sites. 25  One possible reason for this discrepancy is that, despite the 

relatively high temperature of 500 K, the MD simulation became still entrapped in a local 

minimum. 

 

 

 

Figure 5.6. (A) Constructed structure, which has four triangular Mo sites, and (B) its optimized 

structure with 35 Li atoms.  The bond threshold for Mo-Mo is 3.0 Å.  See Figure 5.1 for the 

definition of colors, and the white spheres correspond to Li atoms.  

 

 In order to theoretically investigate the hypothesis of a super-reduced POM cage with 

the maximum number of four Mo triangles, we “constructed” a super-reduced POM geometry 

in Td symmetry by combining four subunits of three octahedrons to create four Mo-Mo 

triangles, similar to the proposed structure by Launay24 and others.2  In this “constructed” 
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structure, shown in Figure 5.6A, where all Mo-O (out) distances were set to 1.90 Å and the 

Mo-O (frame) and Mo-O (in) were set to 2.00 Å following the experimental observation,25 

while Mo-Mo distances were assumed to be 2.65 Å on the basis of our previous geometry 

optimizations of super-reduced POM models.  After adorning this cluster with 35 Li atoms in 

random positions around this constructed structure, we performed a geometry optimization 

without symmetry constraint.  As a result, we obtained a less symmetric cluster as shown in 

Figure 5.6B, which however now featured the maximum number of four triangular units with 

12 Mo-Mo bonds in the range from 2.61 Å to 2.84 Å, indicating the existence of such a 

minimum energy structure with the maximum number of Mo-Mo triangles.  Mo-O (in) and 

Mo-O (out) bonds were optimized to values ranging from 2.06 Å to 2.15 Å and from 1.93 Å to 

2.15 Å, respectively.  We note that Mo-O (frame) bonds now split into two groups, termed 

Mo-O (frameA) and Mo-O (frameB).  Their bond lengths are similar, within a range from 2.0 

to 2.1 Å.  However, while the distance of O (frameA) atoms from the central phosphorous 

atom does not change significantly during super-reduction with about 3.2 Å, the O (frameB) 

atoms are “squeezed out” of the cage due to the formation of the underlying Mo-Mo bond, and 

their distance to the P atom is greatly elongated during the reduction by up to 4.7 Å.  

Consequently, Mo-O(frameA)-Mo and Mo-O(frameB)-Mo angles are very different with 

values around 133° and 77°, respectively.  Thus, the structural change of the POM cage during 

super-reduction causes a greater presence of oxygen atoms on its outer surface. 

 The “constructed” and subsequently optimized POM + 35 Li structure agrees well 

with our previously reported EXAFS data.  NPA shows that the cluster has 28.3 excess 

electrons.  Its energy is 1.44 eV (33.2 kcal/mol) higher than the quenched POM + 35 Li 

structure, which may be due to an unfavorable arrangement of the Li atoms in the initial 

geometry.  The frontier MO patterns for the W-analog of the previously described Mo-based 

POM27- super-reduced cluster are identical.  Thus, we conclude that the occurrence of metal 

triangles during super-reduction of Keggin POM clusters is not limited to only 

heteropolyoxomolybdate but also applies to W-POM. 

 

5.3.6 Molecular orbital analysis of POM super-reduction 

 For the detailed electronic structure analysis of the super-reduced species, we did not 

include explicitly alkali metal atoms, since their atomic orbitals strongly mix with the 

molecular orbitals of the cluster anions, complicating the orbital analysis.  Instead, at least to 

partially stabilize the excessive negative charges, we employed the conductor-like screening 

model (COSMO)62 with a dielectric constant of  = 46.3.63  This particular value of  

corresponds to the average value64 of the two polar solvents, ethylene carbonate ( = 2.8) and 

diethyl carbonate ( = 89.8),65 used in the experimental MCB setup.25  In order to analyze the 

super-reduced POM cluster with maximum number of Mo triangles, we firstly examined a 

molecular substructure fragment [Mo3O13H7]
7- containing a single metal triangle, as shown in 
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Figure 5.7, created from the “constructed” structure by saturating edge oxygen atoms by 

hydrogen atoms where necessary.  Since there are four such substructures in the -Keggin 

POM, and the super-reduction involves 24 excess electrons, one such substructure formally 

gains six electrons.  The substructure fragment possesses C3v symmetry, and BP86-D/SV(P) 

calculations including the COSMO dielectric continuum solvation model were performed 

using this point group symmetry.   

 

 

Figure 5.7.  Top and side views of the constructed Mo triangle substructure.  The gray 

spheres indicate hydrogen atoms, other colors are consistent with the caption of Figure 5.1. 

 

 The Kohn-Sham frontier MOs of the [Mo3O13H7]
7- subunit, shown in Figure 5.8, 

indicate that the irreducible representations of the newly occupied three doubly-occupied 

orbitals are e and a1 (center column of Figure 5.8).  These 3 MOs arise from the hybridization 

of the 3 Mo 4d orbitals, and with the decreased Mo-Mo distances in the Mo triangle, the overlap 

of these orbitals has been enhanced and their relative orbital energies lowered.  Especially, in 

the lowest occupied orbital containing two excess electrons, which have a1 irreducible 

representation, all three Mo atoms interact via a three-center two-electron bonding orbital.  

The degenerate e MOs correspond to Mo-Mo bonds, and simultaneously exhibit a strong 

antibonding character between Mo atoms participating in the metal-metal bond, and the 

attached outer oxygen atoms, which correspond to the Mo-O (out) bonds of the POM cluster.  

On the other hand, the LUMO of the reduced substructure possesses anti-bonding character 

between the three-center bond and the sp3 hybrid orbitals on the central oxygen atom.  

Occupation of this MO by additional excess electrons would result in severe weakening of the 

cage structure, thus a maximum of six excess electrons seems very reasonable for this 

substructure.  As a matter of fact, the existence of triangular metal oxide sites, including the 

above described orbital patterns, has been predicted previously24,66,67 experimentally and 

theoretically.  Our MOs here agree quite well with those predicted by Cotton66 in the 1960’s.
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Figure 5.8. MO diagram for one partial structure (center) and POM27- (right).  Arrows 

indicate excess electrons during reduction (6 and 24 electrons for the partial substructure 

and POM27-, respectively).  The MO isovalue surface corresponds to ±0.05 (e/a0)
1/2. 

 

 In order to extend the MO analysis to the complete POM27- cluster, we used the 

constructed POM27- structure (Figure 5.6A) with Td symmetry.  As with the partial 

substructure MO calculation, the symmetry constraint was used in the BP86-D/SV(P) 

calculation including the COSMO dielectric continuum solvation method.  Once four 

partial substructures are connected and assembled into POM27-, the four a1 and eight e 

frontier orbitals containing the excess electrons split into groups of 3 t2 + 1 a1 (the four 

a1) and 2 e + 3 t1 + 3 t2 (the eight e) MOs (see the right column of Figure 5.8).  We 

verified the irreducible representations of the POM27- orbitals and their correspondence 

to the substructure MOs visually.  The LUMO of POM27- is mainly composed of 

Rydberg 3p orbitals on oxygen atoms (see for instance the visualization of the a1 LUMO 

of POM27- in Figure 5.8), indicating that it is impossible to further reduce the -Keggin 

POM beyond adding 24 electrons.  

 The Kohn-Sham occupied frontier MOs of the constructed structure can further 

be analyzed towards an even more detailed understanding of the origin of the structural 

changes of the POM cluster upon super-reduction.  In Figure 5.9, five MOs representing 
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the five different irreducible representations of the 12 MOs containing the 24 excess 

electrons are visualized (only one MO for each degenerate MO level was selected).  

Three-center orbitals are clearly visible, along with Mo-Mo bonding orbitals.  In 

addition, we find MOs with Mo-O (out) anti-bonding character. The frontier orbital 

features are consistent with the existence of Mo triangles and the elongation of Mo-O 

(out) bonds observed in the experiment.25   

 

 

Figure 5.9.  Occupied MOs of the constructed structure with 27 negative charges.  The 

MO isovalue surface corresponds to ±0.05 (e/a0)
1/2.  The captions denote irreducible 

representations / orbital energies 

 

 All calculations described above were performed for closed-shell singlet 

electronic states.  The formal charge of all Mo atoms on POM3- is +6, which means that 

there are no occupied 4d levels on the quasi-octahedrally coordinated Mo atoms (see 

Figure 5.10, left), therefore the ground state of POM3- is famously a singlet,68,69 denoted 

as 1POM3-.  However, it is not immediately clear that this is the ground state of the super-

reduced POM cluster as well.  Thus, we computed low- and high-spin energy gap at the 

native X-ray (POM3-, symmetrized to Td) as well as at the “constructed” (POM27-) Td 

geometry.  We found that the ground state of POM27- at the POM3- geometry (no Mo-

Mo bonds) is actually a state with multiplicity M=2S+1=25 (25POM27-).  In terms of 

ligand field theory, in this state, two electrons occupy the triply degenerate t2 atomic 4d 
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levels of each octahedrally coordinated Mo center. The closed-shell singlet M=1 state is 

2.63 eV higher in energy.  The occupation of the triply degenerate t2 Mo 4d level (Figure 

5.10, middle) by only two electrons in this geometry triggers a first-order Jahn-Teller 

effect, reducing the local symmetry of each sixfold coordinated Mo site from quasi-Oh to 

quasi-C4v, resulting in largely elongated Mo-O(out) bonds and the formation of Mo-Mo 

bonds.  Correspondingly, the large, local Jahn-Teller effects associated with each Mo 

site hugely stabilizes the closed-shell singlet state (Figure 5.10, right).  The gap between 

closed-shell ground and high-spin M=25 state in the distorted structure is 9.76 eV!  The 

local Jahn-Teller effect is the driving force for the molecular and electronic structure 

changes during super-reduction of the -Keggin POM cluster. 

 

 

Figure 5.10. Electronic state change during super-reduction of POM3- by 24 excess 

electrons.  The top panel indicates geometries used to compute the 1POM3- as well as 
25POM27- and 1POM27- geometries, while the bottom panel illustrates the ligand field 

orbital occupation patterns for a single Mo site, coordinated by six oxygen atoms.  A 

Jahn-Teller distortion to a local C4v environment (with the outward-pointing, axial Mo-O 

bond becoming elongated) lifts the local orbital degeneracy in the doubly-occupied t2 

level, resulting in a more stable closed-shell singlet electronic state 1POM27-. 

 

5.3.7 Super-reduced POM27- as a semipermeable molecular capacitor 
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 Analysis of NPA point charges on the atoms of the constructed and subsequently 

optimized structure including 35 Li atoms, depicted in Figure 5.6B, shows that the outer 

Li shell is strongly positively charged, whereas oxygen atoms “sticking out” from the 

POM cluster, namely O(out) and, to a lesser degree, O(frameB) are strongly negatively 

charged, Figure 5.11A depicts NPA atomic charges integrated around spherical shells 

around the central phosphorous atom.  Roughly speaking, there are three “solvation 

shells” created by the Li atoms: the innermost layer interacting with O(frameA) type 

oxygen atoms, the second solvation shell interacting with O(frameB) and O(out) type 

atoms, and the outermost layer, interacting mostly with O(out).  Second and third 

solvation shells are close enough to nearly overlap, so can be classified as a single outer 

Li shell.  The charge-charge interaction between oxygen and Li atoms is difficult to 

evaluate in this plot, due to the presence of the still strongly positively charged, albeit 

reduced Mo atoms.  Therefore, the changes in NPA atomic charges upon super-

reduction, defined as the difference between charges of the optimized structure with four 

metal triangle sites and POM3- structure are shown in Figure 5.11B.  The molecular 

orientation conforms to that of Figure 5.6B.  The electron uptake on Mo is clearly visible, 

indicated by the red color, as well as slight and stronger electron uptake on frame- and 

the outward-pointing oxygen atoms, respectively.  Li atoms are nearly uniformly 

positively charged, independent of their position.  The situation is schematically 

depicted in Figure 5.11C, where it becomes clear that interspersing of outer negatively 

charged oxygen atoms with a large number of positively charged Li atoms in inner and 

outer shells clearly plays an important role to overcome the huge Coulombic repulsive 

force due to excess charge on the POM cluster by converting it into attractive Li+-O- 

Coulombic interactions, with Li penetrating deep into the negatively charged outer 

oxygen layer.  Thus, super-reduced POM27- can be viewed as a “semipermeable 

molecular capacitor” with possible future applications in molecular electronics, in 

addition to its proven effectiveness as cathode material in MCBs. 
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Figure 5.11.  Charge distribution in the constructed and subsequently optimized 

structure including 35 Li atoms, depicted in Figure 5.6B.  (A) visualizes integrated NPA 

atomic charges in shells around the phosphorous center, (B) shows charge changes during 

the super-reduction of the POM3- cluster by neutral Li atoms, and (C) schematically 

illustrates the notion of a “semipermeable molecular capacitor”. 

 

5.3.8 Reversibility of the structural changes 

 Thus far, we have discussed structural changes during reduction of the cluster 

(POM3-  POM27-).  In this subsection, we focus on the reverse structural changes for 

POM27-  POM3-, as observed in experiment: even after ten charging and discharging 

cycles, the decrease in the battery capacity was insignificant.25  Therefore, the structural 

changes during reduction and oxidation processes must be reversible.  To mimic the 

“oxidation” of the super-reduced POM27- back to POM3-, we performed geometry 

optimizations starting from the neutral “constructed” and optimized structure with 35 Li 
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atoms, and removed two Li atoms from random positions at the time, and re-optimized 

the resulting structure, again with 0 charge.  This procedure was continued until only 3 

Li atoms remained in the system, formally corresponding to POM3-.  The procedure is 

schematically depicted in Figure 5.12.  Indeed, the final structure is very similar to the 

original BP86-D/SV(P) optimized POM3-.  The average discrepancy of bond distances 

is actually only 0.002 Å, therefore we are confident to say that the reversible reduction 

and oxidation process of the POM cluster is supported by theory. 

 

 
 

Figure 5.12. Charging of the super-reduced POM27-.  Two Li atoms were removed 

randomly, and the geometry was re-optimized at the BP86-D/SV(P) level of theory until 

only three Li atoms remained.  The total charge of the system was always set to 0. 

 

 Since our study indicates the clear correlation between the number of excess 

electrons and the number of Mo-Mo bonds, it is interesting to follow this trend during our 

artificial oxidation of POM27-.  In Figure 5.13, we plot the number of Mo-Mo bonds that 

are shorter than 3.0 Å as a function of the NPA-calculated number of excess electrons on 

the cluster.  Interestingly, the number of Mo-Mo bonds is nearly linearly dependent on 

the number of excess electrons!  Our analysis indicates that the first Mo-Mo bond 

formation may start around the 12th to 14th excess electron, suggesting that local Jahn-

Teller distortions due to partially filled t2 4d levels of all Mo atoms of the POM cluster 

are required for stable metal-metal bond formation. 
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Figure 5.13.  Correlation between the number of electrons on the cluster and the number 

of Mo-Mo bonds (less than 3.0 Å). 

 

5.3.9 Design principles for improved MCB cathode materials 

 In this work, we have theoretically discussed the structural changes in POMs 

during discharging in a MCB setup, and the origin of its excellent performance via 

electronic structure analysis. We noted the importance of metal-metal bonding within the 

POM cluster, and its ability of charge compensation by counterions surrounding it.  In 

order to design even better MCB cathode materials in the future, we conclude from our 

study that the following structural and electronic features need to be present: 

1) high density of oxygen atoms on the outside of the cluster,  

2) transition metal atoms with empty degenerate d levels, 

3) geometrical proximity of these metal atoms such that metal-metal bonds can be 

formed, 

4) ability of Li counterions to at least partially migrate into the negatively charged 

outer oxygen shell to counterbalance repulsive Coulomb forces due to the presence 

of excess charges. 

In preliminary explorations, we already carried out analogous calculations on a Dawson 

POM cluster, [P2Mo18O62]
6-, and its super-reduced analog, [P2Mo18O62]

42-.  Similar to α-

Keggin POM, we observed the formation of Mo-Mo bonds, but in this case Li atoms 

migrated into the hollow central site and ripped the cluster apart.  Further attempts to 

design enhanced MCB components are currently ongoing in our labs. 

 

5.4 Summary 
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 We theoretically investigated the molecular and electronic structures of the 

heteropoly molybdate -Keggin ([XMo12O40]
3-, X=P) polyoxometalate cluster and its 

super-reduced state ([PMo12O40]
27-) as well as its tungsten analogue, [PW12O40]

3- and 

[PW12O40]
27-.  DFT geometry optimizations and FPMD simulations of neutral aggregate 

species with explicit inclusion of Li atoms around the POM cluster as counterions showed 

that metal-metal bonds and triangular metal sites are formed due to increasing uptake of 

excess electrons on the molecular cage.  The formation of Mo-Mo bonds during 

discharging in a MCB is in agreement with previous EXAFS structural data.25  At that 

time, elongation of Mo-O bonds was also observed, which we attribute to the conversion 

of Mo=O double bonds pointing outwards of the individual Mo octahedral to Mo-O single 

bonds, where the oxygen atom becomes negatively charged and favorably interacts with 

the surrounding Li countercations.  At the same time, during the formation of the Mo 

triangles, O atoms (frameB) bridging the participant Mo atoms become “squeezed out” 

and form another attraction point for favorable interaction with the Li countercations, 

which were found to form an inner and an outer shell around the POM cluster.  The 

interspersing of positive and negative charges on the outside of the cluster core 

contributes to overcoming the huge repulsive Coulombic forces due to the presence of 27 

negative charges on the POM.  The super-reduced POM can be viewed as a 

“semiporous molecular capacitor” with possibly broader applications in molecular 

electronics. 

 Electronic structure analysis for a “constructed” structure with Td symmetry, 

possessing the maximum number of four Mo triangles in the -Keggin POM, was carried 

out in order to understand the origin of the structural changes during super-reduction.  

The existence of three-center-two-electron bonds at the center of each triangular Mo site 

was confirmed, and it was found that Mo-Mo bonds are strongly mixed with Mo-O 

antibonds, shuffling electrons partially away from the Mo sites to the increasingly 

negatively charged oxygen atoms, which then favorably interaction with positive Li 

counterions.  The driving force for the formation of Mo-Mo bonds was found to be local 

Jahn-Teller distortion at individual Mo octahedral sites, where the triply degenerate t2 4d 

orbitals become partially filled during reduction. 

 Finally, we verified that the reversible structural change of oxidation is plausible 

theoretically, and indirectly indicate that Mo-Mo bond formation is a stepwise process.  

Our calculation implies that the first Mo-Mo bond formation may occur after reduction 

by 12 to 14 electrons.  Calculations on the W analogs indicate that the same molecular 

and electronic structure changes in W-POM can be expected, however, due to the heavier 

mass of W in comparison to Mo, its capacity in MCBs is expected to be much smaller.  
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From the above findings, we derived design principles for future, improved MCB cathode 

materials on the basis of POMs. 
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Chapter 6 

Conclusions and Future Perspectives 

 In this thesis, the two developments of the self-consisten-charge density-

functional tight-binding (SCC-DFTB) based methods and a clarification of molecular and 

electronic structures of super-reduced polyoxometalate (POM27-) cluster have been 

summarized. 

 In Chapter 3, the new almost linear scaling method, FMO-DFTB, is introduced 

by combining DFTB and the fragment molecular orbital (FMO) approach.  The scaling 

of FMO-DFTB is O(N1.1-1.2), and the demonstration with a one-million-system is shown.  

FMO-DFTB calculation for a water cluster with 18 432 atoms is estimated to be around 

4 orders of magnitude faster than the corresponding full SCC-DFTB calculation (Figure 

6.1).  The present method is promising for future application studies for such as proteins, 

enzymes, DNA, and some nanostructures, due to its advantage of lower computational 

cost, despite of accurate prediction of energy and geometrical properties (Figure 6.2).  

However, FMO-DFTB method is still the right after its birth, and many further 

developments such as including third-order energy expansion of density functional theory 

(DFT) energy, three-body energy correction, fully analytical gradient, etc., are under 

progress. 

 

 

Figure 6.1.  Correlation between the number of electrons on the cluster and the number 

of Mo-Mo bonds (less than 3.0 Å). 
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Figure 6.2. Superposition of the optimized structures of the neutralized Trp-cage protein.  

The blue, red and green lines are used to plot the optimized structures obtained with full 

SCC-DFTB and FMO-DFTB with 1 and 2 residues per fragment, respectively. 

 

 In Chapter 4, the implementation and an application of the second-order 

geometrical derivative of energy functional of SCC-DFTB with fractional occupation 

numbers have been discussed.  The method developed in this study let us widen the 

scope of investigation of infrared (IR) and Raman spectroscopy.  In this thesis, only a 

short application for small graphene nanoribbons (GNRs) is reviewed and briefly 

reviewed IR and Raman spectra (Figure 6.3), however the present methodology is readily 

applicable for most nanostructures, such as graphene and carbon nanotubes in principle.  

As DFTB itself is a computationally less demanding method, applications for about a 

thousand atoms are not very difficult.  The spectroscopic information with non-trivial 

magnetic moment is also important, therefore the extension along this direction is under 

progress.  All implementations in Chapter 3 and 4 will be appeared as a part of the well-

known general atomic and molecular electronic structure system (GAMESS) package in 

near future. 
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Figure 6.3.  Simulated Raman activity spectra of zigzag-GNRs at DFTB with fractional 

occupation numbers with increasing the number of GNR units. 

 

 In addition to the method development, the investigation of the molecular and 

electronic structures of the super-reduced polyoxometalate (POM27-) cluster with DFT is 

discussed in detail in Chapter 5.  The present study theoretically predicts that metal-

metal (Mo and W) bonds and triangular metal sites are formed as a result of increasing 

uptake of excess electrons on the molecular cluster, overcoming the huge repulsive 

Coulombic forces due to the presence of 27 negative charges.  It must be remarked that 

there are no former research of such a highly reduced state, and therefore this is the first 

example in this area.  The author hopes that the strategy given in the study helps 

experimental work aiming at higher capacity. 
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Appendix 

A. Derivation of Second-Order Geometrical Derivative of Free 

Energy for Density-Functional Tight-Binding (DFTB) Method 

with Fractional Occupation Numbers (FONs) 

 

 In this Appendix, i, j, and m are the indices of molecular orbitals (MOs), and 

Greek letters (, , , and ) are the indices of atomic orbitals (AOs).  A, B, C, and D 

denote the indices of atoms.  a and b for derivatives denote 3N Cartesian coordinates 

(along x, y, and z) of the system of N atoms.  The total energy of internal energy is written 

with the ordinary italic letters (E, F, and G), whereas the total free energy with FONs will 

be displayed with calligraphic letters, , , and .  Complete insights can be 

accessible with previous literature.1-6 

 

Energy and gradient of nonself-consistent-charge (NCC) DFTB method 

without FONs 

 For simplicity, we first discuss the NCC-DFTB energy without FONs. The total 

energy of first-order DFTB (DFTB1), also called as NCC-DFTB, is written as 

, (A.1) 

where and fi is the occupation number in the i-th MO.  In this subsection, we consider 

the case for the electronic temperature is zero, and thus electronic configuration obeys the 

Aufbau principle exactly.  The ci are the expansion coefficients of the i-the MO in an 

AO basis.  H
0 and S is the non-perturbed diatomic-based Hamiltonian and overlap 

matrix element in the basis of optimized AOs, precomputed for atoms and diatomic 

systems over a range of bond lenghts in reference density-functional theory (DFT) 

calculations.  VAB
rep is the two-body repulsive energy term, which is also precomputed 

and tabulated as a function of interatomic distance from DFT calculations of model 

systems containing the chemical elements of the A and B atoms.  As a result of this 

approach, VAB
rep is independent of the electronic structure and only a function of the 

interatomic distances.  Because of this character and for simplicity, therefore we will 

abbreviate the second term of eq A.1 as Erep.  Because H
0 does not depend on c, NCC-
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DFTB is a non-iterative method and hence computationally very economical.  When Te 

= 0, fi can be classified into only three cases: fi = 1 for doubly occupied orbitals, fi = 0:5 

for singly occupied orbitals, and fi = 0 for unoccupied orbitals.  Note that our wave 

function is restricted, so 2fi electrons occupy one spatial orbital.  In any cases, the 

derivative of fi results in zero.  The gradient of energy is then derived as follows: 

. (A.2) 

In eq (A.2), we have Umi
a which is defined by the following relation, 

.  (A.3) 

To obtain Umi
a coefficients, we usually have to solve the coupled-perturbed (CP) DFTB 

equation, however we can omit it for first-order derivative case by using the 

orthonormality of orbitals, 

.  (A.4) 

The right hand side of eq (A.4) is the Kronecker’s delta and is a constant for every i and 

j, so the derivative of eq (A.4) will be 

.  (A.5) 

Eq (A.5) can be made simpler using eq (A.4), 

  (A.6) 
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In order to use eq (A.6), we need to transform the first term of eq (A.2) slightly.  The 

Hamiltonian, which is equivalent to Fock matrix of Hartree-Fock, in MO space of NCC-

DFTB is simply 

.  (A.7) 

Therefore, the first term of eq (A.2) can be transformed as following, 

  (A.8) 

Here we used the relation of eq (A.7) for i = j.  With eq (A.8), eq (A.2) becomes the final 

form, 

  (A.9) 

This is the one we usually see in literature.1 

 In our implementation, the derivative of Hamiltonian and overlap matrix 

(  and ) are analytically differentiated.  We implemented first- and second-

order symbolically differentiated terms up to p shells.  The analytical differentiation is 

advantageous for small wave numbers of rotational and translational modes by 

comparison with numerical differentiation. 

 

Energy and gradient of NCC-DFTB with FONs. 

 We define DFTB free energy for the case with FONs.  Suppose that NCC-

DFTB Mermin free energy  is given as  

,  (A.10) 

where EM is the correction term for free energy, defined as 
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The FON, fi, is governed by the Fermi-Dirac distribution function, and it is a function of 

the electronic temperature, orbital energies, and Fermi-level.  The denominator of two 

comes from the fact that we assume that we use restricted wave function. Among three 

parameters, orbital energies and Fermi-level vary against the displacement of nuclear 

coordinate, so we first note that the derivative of FON solution has to include the 

derivatives of orbital energies and Fermi-level.  Omitting the explicit dependency of 

temperature for simpler notation, the occupation number of i-th MO is written as 

,  (A.12) 

where i is the eigenvalue (or orbital energy) of i-th MO, and F is the Fermi-level.  In 

our derivation, Fermi-level is numerically decided to satisfy the following equation, 

, (A.13) 

where Ne is the number of electrons in the system. 

 For gradient, we need an additional term of the derivative of occupation number, 

and the derivative of Mermin free energy, therefore what we need to calculate is 

  (A.14) 

The second term becomes simpler expression with eq (A.7), 

.  (A.15) 

We can verify that the derivative of free energy correction term is cancelled out with eq 

(A.15) from the following transformation, 
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  (A.16) 

The Fermi-level term has disappeared because the sum of the derivative of occupation 

number disappears with eq (A.13).  Since eqs (A.15) and (A.16) are now identical, two 

terms are cancelled out, giving the final simple result, 

  (A.17) 

This implies that the first-order derivative of free energy is identical to that of internal 

energy.  The derivation above is discussed in the work by Warren et al.7  Their work 

indicated that another broadening function (i.e., Gaussian broadening function) does not 

cancel itself out in the first derivative formula. 

 

Variational Principle of DFTB with FONs 

 The general proof for DFT is given in the work by Weinert el al.8 and Warren et 

al.7  Since DFTB is derived from the DFT total energy functional, the derivation in the 

literature above is valid for DFTB, too. 

 For the case with fixed occupation numbers, the Lagrangian function is given by 

  (A.18) 

The stationary condition =0 yields the well-known one-electron equations of NCC- 

DFTB, 

  (A.19) 
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When we use FONs, we need to consider the occupation numbers as an additional 

variational parameter in the total energy.  As a constraint parameter, we use eq (A.13), 

and the new Lagrangian function is given by 

  (A.20) 

where  is the Lagrangian multiplier for the constraint.  If the broadening function for 

FON is the Fermi-Dirac distribution function (eq (A.12)) and the additional free energy 

correction term is in the form of eq (A.11) the stationary condition =0 is fulfilled 

when  = F.  At the same time, the new Lagrangian function, , is stationary with 

respect to the molecular orbital coefficients ci, when eq (A.19) is satisfied for each i 

which runs over all occupied MOs. 

 

Second-Order Geometrical Derivative of NCC-DFTB without and with 

FONs 

 For the case with Te = 0, the second-order geometrical derivative of energy is 

written as 

  (A.21) 

This is derived by Henryk et al.9 (see eq (27) in ref 9). We need Umi
b terms, however for 

NCC-DFTB, we do not have to calculate CP-DFTB equation.  Since off-diagonal 

elements of Fock matrix in MO basis is zero (eq (A.7)), its derivative will also be zero, 

  (A.22) 

With eq (A.7), the equation above will be 

  (A.23) 

and then, with the diagonal character of Fock matrix, 

  (A.24) 
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Finally, with eq (6), we get 

  (A.25) 

This procedure is general and valid for self-consistent charge (SCC) DFTB (DFTB2) too.  

The derivative of eigenvalues can also be obtained with a procedure already shown above, 

and it will be 

  (A.26) 

 The second-order derivative of NCC-DFTB free energy can also be derived from 

eq (A.9), however of course we need the derivative of occupation number, 

  (A.27) 

Regarding the derivative of occupation number, if we differentiate with respect to the dis 

placement of a, 

  (A.28) 

The exponential of eq (A.28) can be substituted by the following relation. It should be 

derived from eq (A.12). 

  (A.29) 

Eq (A.28) is then simplified with eq (A.29) as 

  (A.30) 

In actual calculation, term is directly computed at NCC-DFTB from eq (A.26).  For 
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higher order DFTB (SCC-DFTB and DFTB3), it is obtained during coupled-perturbed 

(CP) DFTB iteration, so the term we have to consider is the unknown term of .  If 

we differentiate both sides of eq (A.13), since the number of electrons in a system is fixed, 

we get the relation, 

.  (A.31) 

Substituting  in eq (A.31) with eq (A.30), 

.  (A.32) 

After some transformations, we will get 

 (A.33) 

Once we obtain  with eq (A.33), we can then compute  with eq (A.30) because 

there are no unknown terms any more. 

 

Energy and gradient of SCC-DFTB without and with FONs 

 We have discussed NCC-DFTB zeroth-, first-, and second-order geometrical 

derivative of energy and free energy (without and with FONs). Now, we are going to 

discuss these derivatives with SCC-DFTB formalism.1  Because SCC-DFTB is more or 

less similar as we have done for NCC-DFTB, we will not repeat all the details. The SCC-

DFTB free energy is given as 

,  (A.34) 

where 

.  (A.35) 

In SCC-DFTB, we usually calculate Mulliken charges, defined by ΔqA = qA - qA
0, where 
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, (A.36) 

and qA
0 is the Mulliken population on atom A in the neutral form.  The Hamiltonian 

becomes now 

  (A.37) 

where  and , and 

  (A.38) 

As the Hamiltonian depends on ΩAB contribution, which depends on Mulliken populations, 

that depends on c, the solution of SCC-DFTB requires an iterative procedure. 

 The gradient of SCC-DFTB is written as follows, 

(A.39) 

The derivative of SCC-DFTB free energy is also identical to the derivative of SCC-DFTB 

internal energy (Eq. (A.17)). 

 

Second-Order Geometrical Derivative of SCC-DFTB without and with 

FONs 

We are going to discuss the second derivative of SCC-DFTB. First when Te = 0, the 

second- 

order geometrical derivative of SCC-DFTB is 

  (A.40) 

where 

  (A.41) 
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  (A.42) 

  (A.43) 

  (A.44) 

and 

.  (A.45) 

The set of equations indicates that we need to solve the CP-DFTB equation, because in 

order to obtain Uij
a, we need , which depends on the derivative of Mulliken charges 

,which depends on Uij
a matrix. The CP equation sometimes behaves 

divergently as pointed out in ref 9.  We used the modified Broyden charge mixing10 to 

control the convergence of CP-DFTB equation. Instead of explicitly control U matrix, we 

controlled the vector because the dimension is smaller. 

 The second derivative of SCC-DFTB with FONs requires an additional term of 

derivative of occupation numbers, 

  (A.46) 

However, there is one more complexation. The derivative of Mulliken charge needs one 

more 

term of the derivative of occupation number. For the case with FON, we use the notation 

of , giving that 

  (A.47) 
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Now that, we have obtained all information to solve the CP-DFTB equation and to get 

. 
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B. Structures and Vibrational Frequencies of Nitroxyl Radicals 

 

 

 

Figure B1. Structures containing N-O radical stretching mode, corresponding to Table 

S2. 

 

Table B1. Experimental (Exp.) vibrational frequencies (unit in cm-1) of N-O radical 

stretching mode, and calculated frequencies at B3LYP/6-311++G(d,p) and at DFTB with 

mio and slkoopt parameter sets.  Calculated frequencies are scaled by each scaling factor 

(SF).  See Figure B1 for schematic structures. 

 

 Exp. B3LYP DFTB (mio) DFTB (slkoopt) 

SF  1.000 0.976 1.000 0.952 1.000 0.959 

I 1344 1380.05 1346.93 1430.64 1361.97 1382.28 1325.61 

II 1342 1384.59 1351.36 1435.06 1366.18 1387.82 1330.92 
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III 1370 1390.74 1357.36 1307.55 1244.79 1318.62 1264.56 

IV 1342 1368.39 1335.55 1430.27 1361.62 1408.67 1350.91 

Va 1397 1415.55 1381.58 1444.62 1375.28  1385.39 

VI 1339 1371.90 1338.97 1422.10 1353.84 1427.71 1369.17 

VII 1380 1381.03 1347.89 1430.33 1361.67 1439.98 1380.94 

VIII 1371 1376.17 1343.14 1424.31 1355.94 1430.28 1371.64 

IX 1362 1380.25 1347.12 1431.41 1362.70 1439.90 1380.86 

X 1350 1381.80 1348.64 1418.60 1350.51 1425.90 1367.44 

XI 1438 1465.56 1430.39 1509.36 1436.91 1502.64 1441.03 

XII 1435 1468.04 1432.81 1509.20 1436.76 1501.45 1439.89 

XIII 1366 1457.30 1422.32 1485.89 1414.57 1470.49 1410.20 

XIV 1367 1469.84 1434.56 1501.60 1429.52 1496.19 1434.85 

XV 1428 1465.95 1430.77 1501.80 1429.71 1497.38 1435.99 

XVI 1438 1464.35 1429.21 1499.37 1427.40 1504.01 1442.35 

XVII b 1467.88 1432.65 1515.86 1443.10 1501.04 1439.50 

XVIII b 1454.08 1419.18 1485.71 1414.40 1501.33 1439.78 

XIX 1436 1469.20 1433.94 1491.11 1419.54 1499.63 1438.15 

XXa 1436 1469.73 1434.46 1489.99 1418.47  1428.90 

XXI 1370 1461.31 1426.24 1387.71 1321.10 1360.98 1305.18 

XXII b 1459.05 1424.03 1434.71 1365.84 1383.40 1326.68 

XXIIIc 2457 / 

2695 

1485.02 

/ 

1474.35 

1485.02 

/ 

1474.35 

1675.84 

/ 

1505.40 

1595.40 

/ 

1433.14 

1671.49 

/ 

1448.10 

1602.96 

/ 

1388.73 

XXIV 1367 1445.11 1445.11 1437.66 1368.65 1416.50 1358.42 

XXV 1371 1438.23 1438.23 1501.61 1429.53 1441.30 1382.21 

RMS  49.35 28.10 79.45 38.43 68.85 34.15 

MAX  102.84 67.56 134.60 125.21 129.19 105.44 

a Pure “halorg-0-1” parameters are used for both mio and slkoopt sets 
b Experimental data are not available. 
c Experimental values are so different from all calculated vibrational frequencies that 

these data are excluded as an exception. 
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C. Molecular Dynamics Simulations of Supre-Reduced POM 

with Sodium Atoms 

 

 To further enhance charge transfer, we substituted lithium atoms in the POM + 

27 Li system by the more electropositive sodium to create a POM + 27 Na system and 

performed a similar FPMD simulation as described in the manuscript for the POM + 27 

Li system.  Figure S1 displays the corresponding time evolution of the characteristic 

Mo-Mo and Mo-O bonds for this trajectory.  Contrary to our expectation, only one short 

Mo-Mo was obtained during the entire length of the simulation, and the fluctuations of 

Mo-O (in) and (frame) bonds showed smaller amplitudes relative to the POM + 27 Li 

simulation.  After geometry optimization of the final MD snapshot (structure 6 in 

Appendix C), only one short Mo-Mo bond survived, and the NPA indicated that the 

number of transferred electrons to the POM cluster was only 16.0.  Surprisingly, the 

more electropositive Na proved less efficient for simulating electron transfer to POM than 

Li. 

 

 

 

Figure S1.  Histogram of the bond length fluctuations during the MD simulations of the 

POM cluster with explicit 27 Na atoms.  Bond types are color-coded as follows: Mo-

Mo – pink, Mo-O (out) – red, Mo-O (in) – green, Mo-O (frame) – blue. 

 

 Understanding the molecular structure of the counterion-“solvated” POM cluster 

is important to understand why the more electropositive Na is less effective than Li in 

inducing the metal oxide cluster reduction.  Figure S2 displays the radial distribution 

functions for the distances between oxygen atoms belonging to the POM frame, and the 
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alkali metal atoms.  The distribution is sampled over the entire 1.935 ps simulation time 

span in case of 27 Li (red) and Na (green), and over the first 1.113 ps in case of the 35 Li 

(blue) simulation.  The approximate sizes of the first “solvation” shell are notably 

different: Li-O (frame) distances are about 0.4 Å shorter than corresponding Na-O (frame) 

distances.  This finding can be rationalized by the fact that the ionic radius of 

tetracoordinated Li+ is significantly smaller with 0.59 Å than that of tetracoordinated Na+ 

with 0.99 Å.1  Since the Coulomb potential is proportional to the inverse of the distance 

between two point charges, the electrostatic potential by Li would be about 1.68 times 

stronger than that by Na, if charge transfer from each type of alkali metal was identical.  

Even if this cannot be assumed, there clearly is a delicate interplay between charge 

transfer and the distance of metal countercations to the cluster, in particular to the 

negatively charged oxygen atoms of the POM cluster which “stick out” more in the 

compressed, super-reduced species.  It is clear that, since the Li ion is already smaller 

by around 0.40 Å compared to the Na ion,1 it is able to achieve a potentially stronger 

attractive Coulombic interaction during its movement around POM, compared to Na.  

Consequently, charge transfer from Li to POM is enhanced in comparison to Na, with 

22.7/27=0.84 excess charge per Li atom for the quenched POM + 27 Li structure 

(structure 5), compared to 16.0/27=0.59 excess charge per Na atom for the corresponding 

POM + 27 Na structure (structure 6).  Such counterintuitive result has been reported for 

instance also in the difference of the solvent stabilization potential between small water 

molecules and larger ionic liquid ions.2  

 

 
Figure S2.  Radial distribution functions for the distances between oxygen (frame) and 

alkali metal cations, sampled over the entire timespan of trajectories A and POM + 27 Na, 

and up to 1.113 ps in case of the trajectory B (see Figure 5.3 for trajectories A and B). 
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