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Abstract

Due to the development of multiple automotive sensors, such as drive recorders,

cameras, LASER scanners and even in-vehicle networks, large volumes of vari-

ous real-world driving data can now be accurately recorded. These raw driving

data contain valuable information about driver’s behavior and situations, and by

analyzing and understanding them, we can help make driving safer and more

comfortable. However, these raw driving data cannot be easily interpreted di-

rectly. One of the key steps to utilizing them effectively is data abstraction. Data

abstraction can be defined as the process of extracting useful features and then

integrating these features to interpret a certain driving behavior or situation, such

as an evaluation of driver’s behavior, or recognition of a driving event. The

volume of various driving data recorded by multiple sensors can be quite large,

and in order to empirically select meaningful segments for further analysis, they

have to be manually reviewed, which can be an unintentionally subjective pro-

cess. Manual selection of data segments is very time consuming and may lead to

biased research results, therefore the development of an automated data selection

and abstraction process would be desirable. In this dissertation, we present two

studies focusing on the following two abstraction processes:

I. Extraction of useful features from various types of driving signals recorded
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by multiple sensors.

II. Integration of these features in order to interpret driving behavior.

In the first study, the aggressiveness of driving behavior is evaluated using three

kinds of driving data recorded by drive recorders. In order to score driver aggres-

siveness, seven different feature variables are extracted and then integrated. The

assumption here is that vehicle motion is mainly controlled by the driver’s oper-

ation of the steering wheel and the gas and brake pedals, and the aggressiveness

of driving behavior is evaluated by focusing on four operational sub-behaviors;

steering behavior, acceleration behavior, deceleration behavior, and alternation

between acceleration and deceleration behaviors. After assigning aggressiveness

scores to each of these sub-behaviors, the overall aggressiveness of a driver’s be-

havior is estimated by integrating the aggressiveness scores of the sub-behaviors,

using multiple regression.

In the second study, six types of driving data are used to measure the similarity

of driving behaviors and to retrieve driving data for similar types of behaviors.

Three features are extracted and integrated to measure the similarity of driving

behavior. Driving is a complex decision-making process due to the dynamic

relationships between the three major entities involved, which are the driver, the

driver’s vehicle, and the environment. Information about driving behavior can be

obtained from intra-vehicle driving data, as well as from the positions and motion

of surrounding vehicles and from road information. Dynamic features of these

three entities are used to extract data representing similar driving behaviors.

The performance of the proposed methods is integrated in both studies with eval-

uation experiments, using various combinations of feature variables, and then the
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results are compared with the ground truth and with conventional data analysis

methods. According to the evaluation experiment in the first study, the proposed

multiple linear regression model achieved a correlation coefficient of 0.64 in re-

lation to the empirical evaluations of the risk consulting experts. By applying

principal component analysis to the feature sets, prediction performance was im-

proved and a correlation coefficient of 0.74 was obtained. Experimental results

in the second study showed that the additional use of environmental informa-

tion significantly improved the precision of retrieval of similar driving scenes

compared with a conventional method. According to the results, different people

were found to focus on different elements when comparing driving scenes, which

may indicate that different drivers focus on different phenomena while driving.

Thus, the effectiveness of the proposed driving data abstraction methods were

confirmed through the two studies.
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Chapter 1

Introduction

Ever since the first automobile accident in 1771, and the first recorded automo-

bile fatality, in 1869, human error has been cited as the primary cause of auto-

mobile accidents [1]. Indeed, human error has even been cited as the cause of

one of the first railway fatalities in 1831 [2]. Two centuries later, human error is

still responsible for many accidents, in various modes of transportation such as

motor vehicles, trains, and airplanes. But as technology has evolved, safety sys-

tems have been developed to help mitigate these errors and help operators avoid

dangerous situations. In the case of automobiles, safety was improved simply

by requiring brakes to be installed on automobiles, and these improvements have

evolved into the much more advanced technologies used in modern driver assis-

tance systems. Despite these safety measures, there are still a huge number of

deaths and injuries every year on roadways around the world, and studies have

shown that driver error is still the major cause, cited in more than 93% of traf-

fic accidents [3]. Thus it is clear that drivers, as well as their driving behavior,

should be carefully studied as important factors contributing to traffic accidents.

However, prior to the development of modern information technology, it was
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difficult for researchers to collect data on real-world driving behavior.

Many types of sensors have now been developed, which make it increasingly

easy for researchers to collect large volumes of a wide variety of real-world driv-

ing data [4–8]. Older sensors, such as speedometer sensors, calculate vehicle

velocity using tire rotation, while others can be mounted inside or outside of ve-

hicles, such as omni-directional cameras [9, 10] and LASER-scanners [11, 12].

Data can also be obtained directly from a vehicle’s onboard computer system.

The use of multiple sensors allows us to collect not only intra-vehicle driving

data, such as velocity, acceleration, and steering angle, but also information

about the surrounding environment, e.g., the type of road the driver is travel-

ing on and the locations of surrounding vehicles. There are currently hundreds

of instrument-equipped vehicles in operation around the world collecting real-

world driving data [13, 15, 54]. Vehicle sensor suites include video cameras,

controller area networks (CAN), GPS and laser scanners, which allow us to mon-

itor almost all of the driving process. In the future, it will be possible to connect

vehicles to Internet data collection centers, allowing a wider range of driving

data to be easily acquired.

Some researchers from Japan, Europe, and the USA are working together to col-

lect these data and are building a large, international driving data corpora for

research on driver behavior [16]. A project, called European Field Operational

Test (euroFOT), was lead by Ford with 28 partners, including most European

vehicle manufacturers [17]. This project involves test on 1,000 vehicles during

a one-year period and 30 TB of data that are gathered for future analysis and

research. In order to make the driving safer, the United States Congress created

18
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Figure 1.1: Three levels of data abstraction.

the second Strategic Highway Research Program (SHRP 2) [18]. It is a natural-

istic driving study that investigates ordinary driving under real-world conditions.

In the SHRP 2 study, about 3,000 volunteer drivers agreed to have their cars

equipped with cameras, RADAR, and other sensors to capture data as they go

about their usual driving tasks.

Analysis of these data will not only help researchers understand the causes of

traffic accidents, but may also aid in the development of new driver assistance

systems, which will make driving safer and more comfortable [19, 20]. The

various sensors of instrumented vehicles collect raw, unprocessed data which is

not immediately useful or understandable without data analysis. So, in order
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to utilize these data, data abstraction is necessary. As shown in Fig. 1.1, data

abstraction in this context is the process of extracting features which provide

information regarding a certain driving behavior or event, and then combining

the extracted features for the purpose of representing driving behavior. This

data abstraction process consists of three levels. The bottom level is the sensor

level, which represents the raw sensor data that is collected from various sensors

mounted on the vehicle. The median level is the feature level, which consists of

various features extracted from raw sensor data, such as traffic density, maximum

velocity, lane position, velocity and position of surrounding vehicle, distribution

of surrounding vehicles, average velocity, etc. The uppermost level is the driving

behavior or event level, at which feature level data is combined to detect driving

events, to evaluate driving behavior, and to infer a driver’s awareness status,

etc. The data abstraction process is necessary in order to better understand the

collected data. Generally, researchers have to manually review all of the data that

has been collected and then select meaningful segments out for further analysis,

which is a time-consuming task that can be quite subjective.

In this dissertation, I will discuss data abstraction techniques, explain how useful

features can be extracted from raw sensor data, and describe how these features

can be combined to measure and evaluate driving behavior. In the first study, the

aggressiveness of driver behavior is evaluated using three kinds of driving data

recorded by a drive recorder. Seven features from the raw sensor data are ex-

tracted and integrated to find suitable representations of driver aggressiveness. In

the second study, six kinds of driving data are recorded by laser-scanner and sev-

eral intra-vehicle sensors. Three features are extracted to represent intra-vehicle

information, road information, and surrounding vehicles information. They are

20



used as an integration to retrieve similar driving scenes.

This dissertation is structured as follows. In Chapter 2, related research and

general background information regarding data abstraction is discussed. The

driving aggressiveness evaluation study is described in Chapter 3, followed by a

description of measure for similarity of driving behavior study in Chapter 4. In

Chapter 5, I discuss the conclusions of this dissertation and future directions for

related research.
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Chapter 2

Related Studies

In this chapter, we survey recent driving data abstraction techniques employed by

other researchers. Since these techniques form the basis of driving behavior anal-

ysis, many articles have been written on this topic [21–23]. Eye movement data

has been used to evaluate driver distraction [24–27]. Lane change events have

been used to estimate driving behavior characteristics which may lead to acci-

dents [28–30]. McLaughlin et al. [31] and Lemelson and Pedersen [32] studied

vehicle location within driving lanes was studied to investigate its relationship to

collision avoidance. Variability in lane position has been used to identify levels

of driver fatigue and drowsiness [33–35]. Information on traffic conditions, e.g.

traffic density, has been used to evaluate cognitive capability and attentiveness

of drivers [36–38]. In all of these studies, raw recorded data were converted into

meaningful feature variables, and the extracted feature variables were then used

to represent driving behavior and to indicate behavioral patterns. Some of these

studies are closely related to the work presented in this dissertation, and will be

discussed further in the following two sections.
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2.1 An overview of driving behavior evaluation

Because drivers drive more safely when being monitored, auto insurance com-

panies have begun placing sensors such as drive recorders in commercial vehi-

cles to monitor driver behavior. The data is then manually interpreted by ex-

perts [39, 40]. However, this approach is very costly and time-consuming [41].

As a result, some automated techniques have been developed to evaluate driv-

ing behavior, but most studies focus on some special driving operations, such as

brake pedal operation, or the driving behaviors involved in some special driv-

ing events, such as turning and lane change. Thus, a comprehensive, automated

driver evaluation system which can produce an overall evaluation of driver be-

havior has not been discussed yet.

2.1.1 Classification of rapid deceleration patterns

Naito et al. used a clustering method to identify the characteristics of driver’s

braking behavior [42]. Their proposed method tracks how drivers depress and

release the brake pedal while driving and then evaluates the danger of each brak-

ing operation. All of the braking behavior evaluated in their study was considered

risky, i.e., causing rapid longitudinal deceleration of more than 0.3 G. Each brak-

ing operation was recorded by a drive recorder as an event of one minute in length

at first. They then extracted 6.4 second segments of acceleration signals match-

ing the intervals of depressing and releasing the brake pedal, as shown in Fig. 2.1.

By examining how drivers adjusted their braking behavior to various traffic sit-

uations, these segments were classified into one of four typical braking patterns

using the Linde-Buzo-Gray (LBG) algorithm [43]. The four typical braking pat-

23



-0.3

0

0.3

Lo
ng

itu
di

na
l 

ac
ce

le
ra

tio
n 

[G
]

0 10 20 30 40

Time [sec.]

Threshold
[-0.3 G]

6.4 sec. segments

Figure 2.1: Example of a 6.4 sec. acceleration signal segment recorded by a
drive recorder, which is extracted from a one-minute piece of data recorded when
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terns included emergent braking, intensive and long braking, situationally-aware

braking, and moderate braking. Utilizing these braking patterns as feature vari-

ables, the risk level of a driver’s braking behavior was scored on a scale from one

to five, based on three proposed criterion; danger, uniqueness, and unsteadiness.

However, only driver’s brake pedal operation was discussed in their research. In

the following Chapter 3, we will discuss about integrating more driving opera-

tions, such as steering and gas pedal operations, to achieve an overall evaluation

of driving behavior.

Data segments

In their research, a “segment” is a 6.4 sec acceleration signal extracted from an

event, as shown in Fig. 2.1. It is extracted from a one-minute piece of data

recorded when a strong (above 0.3 G) acceleration or deceleration is detected.

The length of a segment was designed to match the approximate interval required

24



for a driver to depress and release the brake pedal.

2.1.2 Driving style recognition

Johnson et al. [44] proposed a novel system that uses a dynamic time warp-

ing (DTW) algorithm [45] and smartphone-based sensor-fusion (accelerometer,

gyroscope, magnetometer, GPS, and video) to detect, recognize and record ag-

gressive driving behavior. Nearly all (97%) of aggressive driving events were

reportedly correctly identified using the proposed method. Their study divided

each driver’s driving style into one of two categories; non-aggressive and aggres-

sive. The following driving events were examined to evaluate the drivers:

• Right turn (90◦)

• Left turn (90◦)

• U-turn (180◦)

• Acceleration

• Braking

• Lane change

To detect these driving events, driving data were recorded using an smart phone

containing accelerometer and gyroscope sensors. The proposed detection and

recognition system continuously collects motion data from the accelerometer

and gyroscope in order to detect specific maneuvers. The timing of the start or

the end of a maneuver is determined by using endpoint detection, and then cal-

culated by a simple moving average. The length of an event is set to be less than

15 seconds. Once a signal representing a maneuver is detected, it is compared

to stored maneuvers (templates) to determine whether or not it matches an ag-
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gressive event, using a dynamic time warping (DTW) algorithm. The template

with the lowest warping path cost is considered to be the closest match. Their

proposed method for driving behavior evaluation is based on individual different

driving events. In each driving event, driving style is divided into non-aggressive

or aggressive. In Chapter 3 of this dissertation, we will discuss how to evaluate

driving behavior in normal driving.

2.2 An overview of driving behavior recognition and
retrieval

For some applications, it would be very helpful if similar driving behavior pat-

terns or driving events could be automatically retrieved from a database.

2.2.1 Driving event recognition

In order to achieve driving event recognition, Mitrovic trained a discrete hidden

Markov model (HMM) using data collected with an acceleration sensor [46].

He confirmed with an experiment that a recognition accuracy of almost 100%

can be achieved for some simple driving events. However, this method requires

manual annotation hundreds of events in order to train the discrete HMM, which

is very time-consuming. In the following Chapter 4, we will propose a method

to retrieve the same type of driving events automatically.

2.2.2 Driving behavior retrieval

An automated driving behavior retrieval technique was also proposed by Naito

et al. [47]. Using the technique proposed in their study, they achieved a retrieval
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Figure 2.2: Process of driving scene retrieval by Naito et al. [47].

performance of more than 97% for scenes of left or right turns, and for scenes of

driving on curves, using a combination of steering angle and lateral acceleration

data. Their system calculated the similarity between an input scene and scenes

stored in the database by shifting the stored scenes forward in time. A time-

series active search algorithm was then used to detect scenes whose similarity

exceeded a threshold value [48]. To calculate the similarity between scenes,

they employed driving data from the NUDrive Project [49], which included ve-
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hicle velocity, following distance, steering angle, pedal pressures, and lateral

and longitudinal acceleration of the vehicle. As shown in Fig. 2.2, driving data

was concatenated at each sample point into a vector using an LBG algorithm,

and then quantized as index sequences. The distance between histograms was

then used as a representation of the distance between two scenes. The authors

suggested that retrieval performance could be further improved using feature ex-

traction methods as well as a wider variety of driving data. Their findings were

the primary motivation for the research described in Chapter 4. Since only intra-

vehicle driving data was employed in their study, some situations such as lane

change and driving on curve might be hard to be differentiated. In Chapter 4 of

this dissertation, internal and surrounding driving data will be employed as an

integration for similar driving behavior retrieval.
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Chapter 3

Integrated Measure for
Aggressiveness of Driving Behavior

Keywords in this chapter:

- Driving behavior evaluation

- Drive recorders

- Aggressive driving

- Multiple linear regression

- Principal component analysis

3.1 Summary of the chapter

In this chapter, we propose an automated method for measuring the aggressive-

ness of driving behavior by using driving signals from drive recorders. Currently,

some risk consulting companies have experts review recorded driving behavior

and then rate the aggressiveness of drivers empirically. This approach is time-

consuming and expensive, however, so an effective automated driver evaluation

method is desired. We assumed that the aggressiveness of a driver’s behavior can
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be determined by focusing on four types of vehicle operation behavior; steering,

acceleration, deceleration, and alternation behavior between acceleration and de-

celeration. In the proposed method, an aggressiveness scores is assigned to each

of these behaviors, and a driver’s overall aggressiveness score is then estimated

by integrating these behaviors using multiple linear regression. The aggressive-

ness of 78 drivers were assessed by the proposed method, and compared with the

aggressiveness scores given empirically by the risk consulting experts. The pro-

posed method achieved a rank correlation coefficient of 0.74 with the evaluations

of the risk consulting experts.

3.2 Introduction

Between 2003 and 2007, up to 56% of fatal automobile crashes involved un-

safe driving behavior, especially behavior associated with aggressive driving,

according to a report by the American Automobile Association Foundation for

Traffic Safety [50], and similar findings have also been reported in publications

of the U.S. National Highway Traffic Safety Administration (NHTSA) [51]. Ac-

cording to a report released by the Japanese Ministry of Land, Infrastructure,

Transport and Tourism in 2012, 31.7% of serious traffic accidents involving tax-

ies, trucks, and buses were caused by improper vehicle operation [52], such as

driving at excessive speeds, running stop signs and red lights, making improper

turns, and tailgating behaviors which are associated with aggressive driving. Ag-

gressive driving also results in increased fuel consumption, as a result of rapid

acceleration and deceleration; approximately 33% higher fuel consumption at

highway speeds, and 5% higher when driving in town [53]. Aggressive driving,
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therefore, creates both safety and resource use issues for automobile-based soci-

eties. On the other hand, it has been reported that by monitoring driving behavior

with drive recorders mounted on vehicles and sharing the evaluation results with

drivers, driver safety awareness can be increased and aggressive driving behavior

can be reduced [40]. It has also been reported that the number of traffic accidents

could be reduced by 30 to 80% using this method. However, the current method

of driving behavior evaluation, which involves the use of risk consulting experts

to empirically evaluate drivers, is time-consuming and costly, and so an auto-

mated method of evaluating driver behavior is needed.

Thanks to the proliferation of small devices such as drive recorders and smart-

phones in recent years, many kinds of driving behavior signals, such as vehi-

cle velocity and acceleration, have become easier to record, and these recorded

signals can be very useful for automatic analysis of driving behavior. Naito et

al. evaluated risk levels of driving behavior, focusing on deceleration patterns

while braking [42]. Miyajima et al. identified risky driving behavior by inde-

pendently evaluating steering behavior, acceleration behavior, and deceleration

behavior [54]. However, no unified driving behavior evaluation method was de-

veloped in their research. Johnson et al. developed a method of evaluating driv-

ing behavior using driving behavior signals collected with a smartphone. Driving

styles were divided into two categories, non-aggressive and aggressive, based on

a driving event recognition technique [44]. In contrast to previous methods of

driving behavior evaluation, I propose a quantitative method of evaluating the

overall aggressiveness of driving behavior in this chapter.

Although researchers have defined aggressive driving behavior in various ways
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[55–57], here we assume that by observing a driver’s operation of the steering

wheel, gas pedal, and brake pedal, driving behavior can be evaluated. Four vehi-

cle operation behaviors, namely, steering behavior, acceleration behavior, decel-

eration behavior, and alternation behavior between acceleration and deceleration,

are used to quantify the aggressiveness of a driver’s behavior. Thus, we can de-

scribe driving behavior by simply using three driving signals; vehicle velocity,

longitudinal acceleration, and lateral acceleration.

In order to determine the overall aggressiveness of a driver’s behavior, the ag-

gressiveness scores of the four vehicle operation behaviors mentioned above are

used. The aggressiveness of steering behavior is measured using vehicle speed

and the minimum radius of road curvature as specified by a road construction

ordinance [58]. In order to measure the aggressiveness of acceleration behavior,

a two-dimensional plane is used to compare the maximum longitudinal vehicle

acceleration and vehicle velocity when the maximum acceleration is observed.

The aggressiveness of deceleration behavior is measured by observing the fre-

quency of rapid braking. To measure alternation behavior between acceleration

and deceleration, vehicle velocity, longitudinal acceleration, and jerk are used.

These four quantitative measures of aggressiveness are then used to estimate the

overall aggressiveness of a driver’s behavior. Using recorded driving data from

78 drivers of corporate vehicles, the proposed method is then evaluated exper-

imentally by comparing the results obtained by the proposed method to those

by risk consulting experts, who empirically evaluated the aggressiveness of the

same drivers using the same recorded data.

In the following section, the proposed method to measure aggressiveness of driv-
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ing is introduced. An experiment of driving behavior aggressiveness prediction

is presented in Section 3.4. Conclusions and suggestions for future work are

presented in Section 3.5.

3.3 Evaluation of driving behavior

To evaluate the aggressiveness of a driver’s behavior, three kinds of driving sig-

nals, i.e., vehicle velocity, longitudinal acceleration, and lateral acceleration, are

used. The assumption here is that these signals can then be used to represent four

vehicle operation behaviors; steering behavior, acceleration behavior, decelera-

tion behavior, and alternation behavior between acceleration and deceleration.

Driving data related to each of these driving behaviors is collected and used to

estimate the aggressiveness scores of each behavior. Then, the aggressiveness

scores of these behaviors are integrated to estimate a driver’s overall driving ag-

gressiveness score. The method of obtaining an aggressiveness score for each

operation behavior is discussed in Sections 3.3.1 through 3.3.4. The overall ag-

gressiveness of a driver’s behavior is then calculated by applying multiple re-

gression to the aggressiveness scores for the four operation behaviors.

It should be noted, however, that the vehicle operation behaviors may not be

completely independent of each other. Alternation behavior between acceler-

ation and braking, for example, may be associated with acceleration behavior

and deceleration behavior. Associations may also exist among other features

of aggressiveness, which may cause multi-collinearity during multiple regres-

sion [59]. In addition, feature correlation may reduce the prediction performance

of the regression model. Therefore, principal component regression (PCR) [60],
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Table 3.1: Features of driving behaviors used to measure aggressiveness.

Sub-behavior Symbol Feature

Steering
behavior

fs Proportion of abrupt steering operations

Acceleration
behavior

fa Acceleration from stop
fv Driver’s preferred speed

Deceleration
behavior

fb Frequency of rapid braking operations

Alternation
behavior

fcv Standard deviation of velocity
fca Standard deviation of acceleration
fcj Standard deviation of jerk

which applies principal component analysis (PCA) to the features of each driv-

ing behavior is applied prior to linear regression. A driving aggressiveness score

(S) is assumed that it can be represented as a regression model, which is defined

as:

S = α0 + α1p1 + α2p2 + ... + αnpn, (3.1)

whereαi is the regression coefficient, andpi is the explanatory variable of thei-th

feature or principal component. The driving behavior features listed in Table 3.1

are used to measure aggressiveness in this study.

The following sub-sections explain the meaning of each feature and how these

features are extracted from the corresponding driving signals.

3.3.1 Steering behavior

A steering behavior is assumed to be aggressive if it results in a smaller radius of

curvature than the minimum radius considered to be safe at that speed, according

to Japanese road construction ordinance No. 15 [58]. Exact values for maximum
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Table 3.2: Relationship between road design speed and minimum radius of cur-
vature as defined in Japanese road construction ordinance No. 15.

Speed limit corresponding to
the minimum radius of road curvature

[km/h]

Minimum radius of road curvature
[m]

20 15
30 30
40 60
50 100
60 150
80 280

100 460
120 710

safe speeds at different radii of curvature are shown in Table 3.2. As this table

shows, larger minimum radii of road curvature are required to safely accommo-

date vehicles traveling at higher speeds.

The proportion of abrupt steering operations in relation to overall steering op-

erations is used as a feature to indicate the aggressiveness of steering behavior

( fs). Here, vehicle motion while steering is approximated as a circular motion,

and the radius of the curvature of vehicle trajectory (R) is estimated based on the

following circular motion equation:

R=
v2

a
, (3.2)

wherea is the maximum right or left lateral acceleration, andv is the vehicle’s

velocity when the maximum lateral acceleration was observed. Maximum lateral

acceleration is observed at a time interval of everyT seconds of continuously

recorded lateral acceleration.

Figure 3.1 illustrates the relationship between vehicle velocity (v) and estimated
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radius of curvature (R) for two different drivers. The upper and lower halves

of each graph indicate the radii of curvature to the right and left, respectively,

and the solid lines represent the minimum safe radii of road curvature, i.e., the

maximum safe speed for that degree of road curvature. Each dot represents (v,R)

at time intervals ofT. The dots outside the solid lines indicate abrupt steering,

whereas the dots inside the solid lines indicate safe steering operation. Therefore,

the aggressiveness of the steering behavior (fs) of each driver can be determined

by calculating the proportion of dots outside the solid lines in relation to the

overall number of dots. The proportion of abrupt steering operations (6.1%) is

smaller for the driver on the left in comparison to the driver on the right (26.5%),

so we assume that the steering behavior of the driver on the left is less aggressive.
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Figure 3.1: Examples of vehicle velocity (v) and estimated radius of curvature
(R) for two different drivers (T = 45). Upper and lower halves of each graph
represent radii of curvature to the right and left, respectively.
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3.3.2 Acceleration behavior

Both rapid acceleration and excessive speed are assumed to be indicators of ag-

gressive acceleration behavior. The feature used to measure rapid acceleration,

fa, is defined as the initial acceleration when the driver begins moving from a

complete stop. The feature used to measure excessive speed,fv, is defined as the

preferred velocity of the driver when cruising (stable velocity without additional

acceleration). Initial acceleration and preferred velocity are used as features to

indicate the aggressiveness of acceleration behavior.

To evaluate values for initial acceleration and velocity without additional acceler-

ation, a two-dimensional plane is used, whose axes represent the maximum lon-

gitudinal vehicle acceleration and vehicle velocity when the maximum accelera-

tion was observed. The maximum longitudinal vehicle acceleration is selected at

time intervalT, which is determined by a preliminary experiment. Here, the as-

sumption is that each driver has preferred cruising speeds and that the maximum

acceleration is almost inversely proportional to velocity; as velocity increases,

acceleration decreases. The distribution of driving data in the two-dimensional

plane is approximated with a line, and orthogonal linear regression [61] is used

to obtain two intercepts, one for each axis. As shown in Fig. 3.2, the intercept of

the vertical axis (y-intercept) corresponds to initial acceleration when the driver

accelerates from a stop, which is the acceleration rate the driver prefers when

he or she begins moving. The intercept of the horizontal axis (x-intercept) cor-

responds to preferred velocity, which is the cruising velocity the driver prefers.

Figure 3.2 shows the two-dimensional planes for two drivers. We can see that

the driver on the left has a higher preferred cruising velocity, whereas the driver
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on the right accelerates more rapidly from a stop.
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Figure 3.2: Examples of two-dimensional planes for different drivers, showing
the maximum longitudinal vehicle acceleration and vehicle velocity when the
maximum acceleration was observed (T = 50).

39



3.3.3 Deceleration behavior

Deceleration behavior is assumed to be aggressive if a driver brakes rapidly while

driving. Rapid braking can be defined as braking which causes sharper decel-

eration than is considered to be comfortable for the occupants of the vehicle.

According to research done by the American Association of State Highway and

Transportation Officials (AASHTO), in most cases a comfortable deceleration

is less than 2.5 m/s2 (0.26 G) [62]. Here, if deceleration exceeds 0.3 G, it is

assumed to be caused by rapid braking, and the frequency of such rapid braking

operations is used as the feature indicating aggressive deceleration behavior (fb).

3.3.4 Alternation behavior between acceleration and deceler-
ation

Aggressive alternation behavior between acceleration and deceleration is as-

sumed that it can be represented by frequent alternation behavior between de-

pressing the gas and brake pedals, which may lead to unstable traveling veloci-

ties, acceleration, and jerk. Jerk at time pointt, ȧ(t), is calculated as a dynamic

feature of acceleration signals using linear regression:

ȧ(t) =

∑K
k=1 k
{
a(t + k) − a(t − k)

}
2
∑K

k=1 k2
, (3.3)

wherea(t) is longitudinal acceleration andK is the parameter for controlling

window length of the regression. Instability in traveling velocity, acceleration,

and jerk can be described by their standard deviations. The standard deviations

of velocity (fcv), acceleration (fca), and jerk (fcj), are used as features to indicate

alternation behavior between acceleration and deceleration.
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3.4 Experiment

An experiment was conducted to evaluate the effectiveness of the proposed method

at predicting aggressive driving behavior. The experiment consists of two parts:

1. Evaluation of the extracted features representing aggressiveness for the four

sub-behaviors; 2. Evaluation of the prediction of the overall aggressiveness of a

driver’s behavior using Eq. (1), by multiple linear regression (MLR) or principal

component regression (PCR).

3.4.1 Driving data used for evaluation

The driving behavior signals used for the evaluation were provided by a risk

consulting company, and were collected using drive recorders mounted on cor-

porate vehicles, with a sampling rate of 10 Hz. All of the vehicles used for data

collection were equipped with the same type of drive recorder, which had been

in use by the risk consulting company for several years. The recorded signals

included longitudinal and lateral acceleration, GPS data, and video to the front.

Vehicle velocity was also calculated using GPS. Acceleration sensors were set

on the floors of the vehicles to ensure they were level. However, the GPS data

and video were not provided for privacy reasons. The driving data were collected

from 78 drivers as they drove on city streets and highways from 2005 to 2006,

for an average duration of approximately 105 minutes per driver. However, these

data are not continuous. They are segment data lasting 10 to 30 seconds in aver-

age, and recorded by drive recorder only if some special driving event occurred.

Therefore, the actual time for data recording could be much longer than 105

minutes for each driver. The driving behavior of each of the same 78 drivers was
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Table 3.3: Distribution of empirical scores given by risk consulting experts, from
1 (least aggressive) to 5 (most aggressive).

Empirical score 1 2 3 4 5

Frequency
(# of drivers)

5 10 23 20 20

Total
(# of drivers)

78

also evaluated by the risk consultants based on empirical criteria formulated by

an expert who had been working for a risk consulting company for more than ten

years. Although details of the consultant’s evaluation criteria are not available

to the public, aggressiveness scores based on empirical criteria have some cor-

relation to the actual number of traffic accidents, according to the records of the

risk consulting company. These empirical scores ranged from 1 to 5, with 1 indi-

cating the least aggressive driving behavior, and 5 indicating the most aggressive

driving behavior. The distribution of the risk consultants’ empirical scores for the

78 drivers are shown in Table 3.3. Drivers were evaluated once by one expert.

The proposed method was evaluated by comparing the aggressiveness score for

each driver obtained by the proposed method, with the empirical aggressiveness

score given to that driver by the risk consultant.

3.4.2 Evaluation of features used to measure aggressiveness

Spearman’s rank correlation coefficients [63] was calculated between the aggres-

siveness features of the vehicle operation behaviors and the empirical aggressive-

ness scores. Features of aggressiveness for steering and acceleration behavior

were calculated at time intervalT, which was set to be from 5 to 55 seconds
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Table 3.4: Correlation coefficients between aggressiveness featuresfs, fa, fv,
and empirical scores given by risk consulting experts at various time intervals.

T [sec.] fs fa fv
5 0.18 0.34 0.27

10 0.18 0.30 0.29
15 0.18 0.28 0.34
20 0.19 0.28 0.34
25 0.20 0.35 0.32
30 0.16 0.44 0.33
35 0.19 0.33 0.38
40 0.19 0.31 0.36
45 0.23 0.36 0.31
50 0.20 0.43 0.30
55 0.20 0.49 0.24

independently. The results of a preliminary experiment using different values of

T, and the correlation coefficients for fs, fa and fv, with a significance level of

less than 0.05, are shown in Table 3.4.

T, which is listed in Table 3.4, was not used for calculatingfb, fcv, fca , or fcj ,

because all of the data was used to calculate these features. The correlation co-

efficients for fb, fcv, fca, and fcj were 0.26, 0.33, 0.43, and 0.46, respectively.

These features are then used to predict the aggressiveness of driving behavior

using multiple linear regression. Forfs, fa, and fv, the features withT, which re-

sults in the maximum correlation coefficients, were employed. The relationship

between the empirical scores of the risk consultants and each of our extracted

aggressiveness features are shown in Figs. 3.3–3.9.

From the results, compared with the features of other driving behaviors, abrupt

steering (fs) had a relatively low correlation coefficient (about 0.2) in relation

to the empirical aggressiveness scores of the risk consulting experts. This may
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be because not much driving around curves was captured in the recorded data.

However this is difficult to confirm since access was restricted to the recorded

video data. On the other hand, the features of acceleration behavior (fa), i.e.,

acceleration from a stop, and alternation behavior (fcj) i.e., standard deviation of

jerk, showed relatively high correlation coefficients (about 0.5) in relation to the

consultants’ aggressiveness scores.
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3.4.3 PCA of features

Correlation coefficients of the relationships among features of the various driv-

ing behaviors is shown in Table 3.5. We can see that these features are not com-

pletely independent of each other, and that in fact some of the features even have

relatively strong correlations. The correlation coefficient betweenfs (proportion

of abrupt steering operations) andfv (driver’s preferred speed) is 0.57, which can

be understood if we assume that driving at higher speeds results in more abrupt

steering behavior.fa (acceleration from a stop) is strongly associated with both

fca (standard deviation of longitudinal acceleration) andfcj (standard deviation

of jerk), with correlation coefficients of 0.67 and 0.55, respectively. This seems

reasonable, because rapid acceleration may result in unstable acceleration and

jerk. For the same possible reason,fb (frequency of rapid braking) is strongly

associated withfcv, fca, and fcj , with covariances of 0.50, 0.79, and 0.57, re-

spectively. Furthermore, it is not difficult to understand the strong correlations

that also exist betweenfcv , fca , and fcj , e.g., the correlation coefficient between

fca and fcj is 0.76. All three of these features represent characteristics of alterna-

tion behavior between acceleration and deceleration. These correlations between

specific driving behaviors, i.e., steering behavior, acceleration behavior, deceler-

ation behavior, and alternation behavior, indicate that it is difficult to separate

driving behavior into independent sub-behaviors. Therefore, PCA has been de-

cided to be applied to the features of each behavior prior to performing linear

regression.
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Table 3.5: Correlations between driving behavior features.

Feature fs fa fv fb fcv fca fcj
fs 1.00 − − − − − −
fa −0.29 1.00 − − − − −
fv 0.57 −0.16 1.00 − − − −
fb −0.34 0.35 0.10 1.00 − − −
fcv −0.34 0.31 0.29 0.50 1.00 − −
fca −0.52 0.67 −0.08 0.79 0.58 1.00 −
fcj −0.45 0.55 −0.02 0.57 0.31 0.76 1.00
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Figure 3.10: Contribution ratio of each principal component and their cumulative
curve.

Contribution ratios of each principal component and their cumulative curves are

shown in Fig. 3.10. These principal components are ordered according to their

contribution ratios, i.e., the principal component with the maximum contribution

ratio corresponds to the first principal component. After analyzing the principal

components, the first principal component was found to be mainly related to
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the riskiness of acceleration and deceleration behavior, and the second principal

component was found to represent the driver’s preferred velocity as well as the

riskiness of steering behavior. However, further study is needed to interpret the

precise meaning of each principal component.

3.4.4 Aggressiveness prediction using MLR and PCR

The aggressiveness of each driver’s behavior was predicted using Eq. (3.1), em-

ploying both multiple linear regression (MLR) and principal component regres-

sion (PCR). The leave-one-out method was employed, i.e., the driving data from

77 drivers were used to estimate the regression coefficients for the remaining

(target) driver. An hundred twenty and eight kinds of feature sets (one for MLR

and 127 combinations for PCR) were used to estimate the aggressiveness of the

drivers’ behavior. To evaluate the results of each feature set, Spearman’s rank

correlation coefficient and root mean square error (RMSE) between the empir-

ical scores given by the risk consulting experts and the aggressiveness scores

assigned using the proposed method, were calculated.

Correlation coefficient

Table 3.6 shows feature sets used for driving aggressiveness prediction and their

rank correlation coefficients between the predicted aggressiveness scores using

the proposed method and the empirical scores given by risk consulting experts.

ALL used all of the features extracted from the driving behaviors to estimate

regression coefficients directly using MLR.Pi indicates the feature sets for PCR

which employed combinations ofi principal components to estimate regression
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Table 3.6: Feature sets used for driving aggressiveness prediction and their cor-
relation coefficients, with a significance level less than 0.01.

Feature set

Contribution ratio
in

total variance [%]

Correlation
coefficient

MLR ALL fs, fa, fv, fb, fcv, fca , fcj 100 0.64

PCR

P1 2nd principal component 21.7 0.38

P2
2nd and 3rd

principal components
32.9 0.54

P3
1st–3rd

principal components
83.3 0.67

P4
1st–4th

principal components
91.5 0.74

P5
1st–4th, 6th

principal components
93.4 0.67

P6
1st–4th, 6th, 7th

principal components
94.5 0.66

P7
1st-7th

principal components
100 0.64

coefficients. For those feature sets using the same number of principal compo-

nents, only the one with highest correlation coefficient is listed in Table 3.6.

We can see in Table 3.6 that correlation coefficients vary from 0.38 to 0.74, and

that the highest correlation coefficient was obtained using feature setP4, which

employed the first four principal components. All seven principal components

were employed inP7, with a resulting correlation coefficient of 0.64, which

was the same asALL . Results usingALL (MCR) andP4 (PCR) are shown

in Figs. 3.11 and 3.12, respectively.
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Figure 3.11: Correlation between empirical scores given by risk consultants and
automated aggressiveness scores, using MLR with all features (ALL ). Correla-
tion coefficient wasr = 0.64.
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Figure 3.12: Correlation between empirical scores given by risk consultants and
automated aggressiveness scores, using PCR with first four principal components
(P4). Correlation coefficient wasr = 0.74.
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Table 3.7: Regression coefficients forALL andP4.

Feature set α0 α1 α2 α3 α4 α5 α6 α7

ALL 3.51 0.50 0.25 0.21 −0.35 0.19 0.48 0.33
P4 3.51 0.23 0.37 0.49 0.20 − − −

In both of these figures, correlations between the experts’ scores and the pre-

dicted aggressiveness scores can be observed, with correlation coefficients of

0.64 (ALL ) and 0.74 (P4), respectively. However, a more obvious descending

ladder-like shape from left to right was obtained by PCR showing higher corre-

lation than MLR. Regression coefficients forALL andP4 are shown in Table 3.7.

Since the aggressiveness scores of 78 drivers was predicted using the leave-one-

out method, there were 78 sets of regression coefficients{αi}, and it is difficult to

show them all. Instead, Table 3.7 shows{αi} calculated using the data of all 78

drivers. WhenALL was employed, regression coefficientα4, which corresponds

to risky frequency of braking operations, became negative. This is difficult to

understand, but it may have been caused by multi-collinearity [64].

Prediction error

Figure 3.13 shows the root-mean-square error (RMSE) of the predicted aggres-

siveness scores by the proposed method in comparison to the risk consultants’

scores.RANDOM represents the RMSE for randomly selected scores from 1 to

5. The smallest RMSE of 0.82 was obtained forP4, with RMSE increasing to

0.99 forALL andP7, and 1.92 forRANDOM .
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3.5 Conclusion of the chapter

A technique for measuring the aggressiveness of driving behavior was proposed

in this chapter, based on the use of driving behavior signals and principal com-

ponent regression. Aggressiveness was assumed that it could be measured by

analyzing four types of driving behavior; steering behavior, acceleration behav-

ior, deceleration behavior, and alternation behavior between acceleration and de-

celeration. The overall aggressiveness of a driver’s behavior was measured by

extracting the aggressiveness features from these behaviors and then integrating

these features using MLR or PCR. The proposed method was used to measure

the aggressiveness of 78 drivers of corporate vehicles, using driving data col-

lected with drive recorders during real-world driving. Its performance was then

evaluated by comparing the proposed aggressiveness scores with the aggressive-
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ness scores given to the same 78 drivers by risk consulting experts. Experimental

results showed that the proposed multiple linear regression model achieved a per-

formance correlation coefficient of 0.64 in relation to the empirical evaluations

of the risk consulting experts. By applying PCA to the feature sets, the prediction

performance was improved and a correlation coefficient of 0.74 was obtained.

The next step in this work is to investigate more effective features for detect-

ing abrupt steering operation. Additional aggressiveness features based on other

driving behaviors should also be developed and employed, in order to better de-

tect aggressive driving behavior. According to research done by the NHTSA,

aggressive drivers are more likely to tailgate, to make improper and unsafe lane

changes, and to make emotional hand and facial gestures [65]. The increased

presence of various types of sensors, such as cameras and distance sensors, may

make it easier to capture these types of driving behaviors in recorded data, which

could assist in improving automated detection of aggressive driving behavior.

Aggressive driving behavior has also been the focus of research in the field of

psychology for several decades, and many significant findings have been re-

ported [66–68], so we may be able to improve the ability to detect aggressive

driving behavior by combining the observation of driving signals with psycho-

logical models.
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Chapter 4

Integrated Measure for Similarity
of Driving Behavior

Keywords in this chapter:

- Driving scene retrieval

- Integrated similarity measure

- Driving behavior

- Driving environment

4.1 Summary of the chapter

This chapter proposes a similarity measurement technique for retrieving similar

driving scenes, using driving behavior signals and features of the driving envi-

ronment. A previous work by Naito et al. proposed a similarity-based retrieval

system for finding driving data, which retrieved driving scenes by measuring

similarity between scenes using driving behavior signals, such as steering angle

and vehicle velocity [47]. However, driving scenes can also be characterized by

the surrounding driving environment. Here, driving scenes are assumed to con-

56



sist of three major entities; the driver, the (driver’s) vehicle, and the (driving)

environment. The similarity between driving scenes are measured using road

features as well as the position and motion of surrounding vehicles (i.e., the sur-

rounding driving environment), in addition to driving behavior signals obtained

from the driver and his/her vehicle. A driving scene retrieval experiment is con-

ducted to evaluate the proposed similarity measurement method, using driving

data collected on an expressway. Experimental results show that the additional

use of environmental information significantly improves the precision of the re-

trieval of driving scenes that contain certain events compared with a conventional

method. According to the results, different people were found to focus on differ-

ent elements when comparing driving scenes, which may indicate that different

drivers would focus on different things when driving.

4.2 Introduction

With the increased presence and recent advances of drive recorders, rich driving

data that include video, vehicle acceleration signals, driver speech, GPS data,

and several sensor signals can be continuously recorded and stored. These ad-

vances enable researchers to study driving behavior more extensively for traffic

safety. However, increasing the variety and the amount of driving data compli-

cates finding desired data, e.g. driving scenes that contain similar driving events

and behaviors, from large database. To solve these problems, we developed a

retrieval system for driving scenes that provides similarity-based retrieval func-

tions. In this research, driving scenes are defined as several specific driving

events, which consist of various driving data recorded from both intra-vehicle
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and surrounding environment synchronously.

Researchers have tried various approaches, such as driving event recognition

using stochastic probability methods, to search for desired data. Pentland et

al. proposed a method of modeling human behavior using dynamic models

with a Markov chain [69]. Using proposed method, an average driving event

recognition accuracy rate of 95% was achieved using driving data collected with

a driving simulator. Oliver et al. further expanded driving behavior recogni-

tion research by using graphical models with data collected from a real driving

environment [70]. In some situations, such as passing, their models showed

a 100% event recognition accuracy. Mitrovic et al. also proposed a reliable

method using Hidden Markov Models for driving event recognition [46]. They

reported that their method correctly recognized about 98% of driving events.

Using the stochastic probability models described above, previous researchers

have achieved very high event recognition performance. However, in all of these

studies, models corresponding to various driving events needed to be trained in

advance.

Instead of using a probabilistic method, while developing a driving data retrieval

system, Naito et al. employed a time-series active search to retrieve driving

events [47, 48]. In contrast with the time-cost of model training when using

probabilistic event recognition methods, their method directly measured the sim-

ilarity between driving data. In their work, driving behavior signals, which can

also be called intra-vehicle driving signals (e.g., velocity and steering angle),

were employed as feature vectors. Similar driving data was then retrieved by

comparing differences in the histograms of the quantized vectors. According
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Intra-vehicle information

Vehicle Driver

Environment

Representation

DRIVING

Environmental information
(Position and motion of Surrounding 

vehicles, Road configuration)

DRIVING

Figure 4.1: Three major entities of driving. Driving can be described as the in-
teraction of three major entities; the driver, the vehicle, and the environment. In
this chapter, driving is represented by intra-vehicle information and environmen-
tal information.

to experimental results, a retrieval accuracy of more than 97% was achieved for

scenes of driving on curves. However, driving signals from the surrounding envi-

ronment, such as features of the road or information about surrounding vehicles,

were not employed, which meant that some driving events could not be retrieved

accurately. For example, without information about driving lane position and the

relative positions of surrounding vehicles, lane changes cannot be easily differ-

entiated from driving on curves.

59



Driving is actually a complex decision-making process due to the relationships

between the three major entities involved, which include the driver, the vehicle,

and the environment, as shown in Fig. 4.1. Information about these entities

can be obtained from driving data, such as the driver’s behavior, the vehicle’s

motion, as well as the position and motion of surrounding vehicles and road

information. In this chapter, the three major entities are represented by intra-

vehicle and environmental information. Based on these two information, a dis-

tance measurement technique to retrieve driving events by measuring similarity

between driving scenes is proposed. Here, the assumption is that the driver and

his/her vehicle are represented as the integration of the driver’s behavior and the

vehicle’s motion, and the environment can be represented by the road and the

surrounding vehicle conditions, respectively.

Experiments of driving scene retrieval was conducted to evaluate the proposed

method. As an objective evaluation, first, driving event retrieval performance was

investigated by comparing the proposed method with other retrieval methods. As

a subjective evaluation, correlations between the subjective similarity measures

and the measured similarities using several different retrieval methods, including

the proposed method, were examined.

The rest of this chapter is organized as follows. Section 4.3 introduces the

recorded driving data used in this research. In Section 4.4, a technique to mea-

sure the similarity between driving scenes is proposed. A driving scene retrieval

experiment is presented in Section 4.5. The experimental results are discussed

in Section 4.6, and conclusions and future work are presented in Section 4.7.
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4.3 Driving data recording

Driving data was collected on a real expressway, and was recorded using the

instrumented vehicle shown in Fig. 4.2. It was a subset of a driving database [16]

Inter-vehicle data

Velocity

Pedal pressure

Steering angle

3D acceleration

Surrounding 
environment

data

(Front) (Back)
LASER scanner data

Instrumented
vehicle

Figure 4.2: Instrumented vehicle used for driving data collection, which allows
synchronous recording of all driving data.
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recorded from six drivers. For each driver, he/she drives a route with a length of

34.1 [km], with a total duration of approximate one hour. The collected driving

behavior signals included velocity [km/h], longitudinal and lateral acceleration

[G], gas and brake pedal pressures [N], and steering wheel angle [deg]. To detect

surrounding objects in the driving environment, data from two LASER scanners

that were mounted on the front and back of the vehicle were employed. Although

LASER scanners are currently still expensive, they are expected to be cheaper

and easier to be installed in vehicles in the future. Discrete LASER dots from

the surrounding objects were clustered using Euclidean distance. According to

the geometric features of each cluster, they could be identified as the road or sur-

rounding vehicles [71]. The curvature of each road was calculated in advance.

The relative position and velocity of each surrounding vehicle were calculated

in relation to the driver’s vehicle. The LASER scanners covered 80-degree arcs

at both the front and the back of the vehicle, to an effective range of approxi-

mately 100 meters to the front and 55 meters to the rear. A Kalman filter [72]

was employed to track the motion of vehicles in blind areas [73]. Four cameras

recorded video of the road to the front and the side, as well as the driver’s feet

while driving. All of the driving data were recorded synchronously.

4.4 Similarity measurement between driving scenes

In this section, similarity measurement between driving scenes is proposed. To

represent the three major entities of a driving event, driving behavior signals were

employed to depict features of the driver and his/her vehicle, and information

about the road and surrounding vehicles to depict the most common features of
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the driving environment. Three similarity measures are prepared, one for each

entity. The similarityD is defined as their linear combination as follows.

D = αdb + βdr + (1− α − β)ds. (4.1)

wheredb indicates the similarity between driving behavior signals,dr indicates

the similarity between road features, andds indicates the similarity between sur-

rounding vehicles. Each of the three distances was normalized to zero mean and

unit variance, andα, β, and 1− α − β are their weights, respectively. The three

similarity measures (db,dr, andds) and their combinationD can be used to mea-

sure the similarity between frames at each point in time of driving scenes. To

measure the similarity between scenes with different lengths, a Dynamic Time

Warping (DTW) algorithm [45] was employed. Conventional Euclidean distance

is used for measuring driving behavior signals and road information, and an orig-

inal distance measure is used to evaluate the similarity of surrounding vehicle

information.

4.4.1 Driving behavior signals

The six most common driving signals were employed to represent information

about the driver and his/her vehicle (intra-vehicle information), and at each point

in time they were used to calculate a feature vector:ob = (v, s, pb, pg,ay, lx)T,

wherev indicates vehicle velocity,s indicates steering angle,pb indicates brake

pedal pressure,pg indicates gas pedal pressure,ay indicates longitudinal acceler-

ation, andlx indicates lateral acceleration, respectively. The Euclidean distance

between the feature vectors was used as similaritydb for measuring the distance

between the driving scene frames.
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4.4.2 Road features

Road features acquired from LASER scanner data were employed to represent

part of the driving environment information. Road curvature and relative position

of the driver’s vehicle on the roadway, as the most obvious road features, were

selected. A feature vector at each point in time consists of six features:or =

(cf, cb, fr, fl,br,bl)T, wherecf andcb indicate the curvature of the road, in front

of and in back of the driver’s vehicle, respectively.fr, fl, br, andbl indicate

the relative positions of roadside barriers, on the front right, front left, back right

and back left of the driver’s vehicle, respectively. Again, the Euclidean distance

between the road feature vectors was used as similaritydr between driving scene

frames.

4.4.3 Surrounding vehicle information

Features of surrounding vehicles were employed to provide additional environ-

mental information about driving scenes. The distance between these features is

defined as:

ds =

∑
(V1,V2)∈M

∣∣∣wV1 − wV2

∣∣∣ + ∑
V1∈U1

wV1 +
∑

V2∈U2

wV2∑
V1∈F1

wV1 +
∑

V2∈F2

wV2

, (4.2)

where F1 and F2 represent sets of frames in which surrounding vehicles are

detected by LASER scanners,V1 and V2 indicate surrounding vehicles which

belong toF1 andF2, respectively. (V1,V2) indicates thatV1 andV2 are a matched

pair of vehicles, andM is a set of matched pairs of vehicles betweenF1 and

F2. U1 andU2 are sets of vehicles inF1 and F2, respectively, which have no

matching vehicles. The matched pairs of vehicles were found using Euclidean
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distance and Weber’s Law [74].
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Figure 4.3: Process for vehicle matching. Whether two vehicles match or not
is based onL1 similarity between them (top) and their error ranges in driver’s
visual perception (bottom).
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The process for vehicle matching is shown in Fig. 4.3. Each surrounding vehicle

was represented as a feature vector:os = (x, y, vx, vy)T, wherex andvx indicate

the relative position of a surrounding vehicle and its velocity in relation to the

driver’s vehicle in a lateral direction, respectively, andy andvy indicate the rel-

ative position of a surrounding vehicle and its velocity in relation to the driver’s

vehicle in a longitudinal direction, respectively. For each surrounding vehicle in

F1, e.g.V(1)
1 , the Euclidean distance was calculated between the feature vector of

V(1)
1 and the feature vector of every surrounding vehicle inF2. The vehicle inF2

with smallest distance toV(1)
1 was selected asV(1)

2 . Then, as shown on the right of

Fig. 4.3, error ranges forV(1)
1 andV(1)

2 , respectively, were used to represent error

in the driver’s visual perception. According to Weber’s law, as a vehicle moves

further from the driver’s vehicle, the error range becomes larger. Only ifV(1)
1 is

inside the range ofV(1)
2 , andV(1)

2 is also inside the range ofV(1)
1 , are these two

vehicles considered to be matched.

In Equation (4.3),wV is the weight of surrounding vehicleV, to indicate its im-

portance to the driver. Here, the assumption is that surrounding vehicles closer

to the driver’s vehicle are more important than those further away. Moreover,

at point t in time, the importance of vehiclew(t)
V depends on whether it is just

being noticed or if it was previously noticed by the driver. In the case where it

was previously noticed, its importance also depends on its relative velocity and

position in the longitudinal direction, in relation to the driver’s vehicle at pointt
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in time.w(t)
V is defined as:

w(t)
V =



1

|x|(t) + |y|(t)
, if

 t−1∑
i=1

δ(m,1)(i) > 0

 ∧ {(v(t)y > 0)∨ (y(t) > 0)
}

δ(m,1)(t)

|x|(t) + |y|(t)
, otherwise

(4.3)

whereδ(m,1) is Kronecker’s delta, wherem = 1 (i.e. δ(1,1) = 1), which indi-

cates that a surrounding vehicle was of concern to the driver. The assumption

is that vehicles were of concern to the driver as long as they were located in the

direction of the driver’s gaze. In the following experiment, an annotator man-

ually labeled the driver’s gaze direction frame by frame, by watching recorded

video of the driver’s face. Since research on driver gaze tracking has been widely

reported [75, 76], an automatic gaze tracker could be used for labeling driver’s

gaze direction in future work, but it is out of scope of this study.

4.5 Experiment

A driving scene retrieval experiment was calculated to evaluate the proposed dis-

tance measurement technique. In this experiment, driving scenes were divided

manually into five kinds of driving events; driving straight ahead, driving on

curves to the left and the right, and lane changes to the left and the right. The ex-

periment itself consists of two parts: 1. Weights for the three distance measures

(α andβ) were estimated for each subject, 2. Retrieval performance of various

retrieval methods with different similarity measures was compared objectively

and subjectively.
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4.5.1 Weight estimation for the three similarity measures

In Section 4.5.2 subjective similarity scores rated by eleven subjects (three males

and eight females) will be used to evaluate the similarity of the retrieved driving

scenes. Before this the best weight values (α, β, and 1− α − β) for each of the

eleven subjects are estimated in this section. On average, the eleven subjects had

held a driver’s license for 27 years, and drove 11 hours per week.

To estimate the weights (α, β, and 1− α − β) for each subject, 200 pairs of

driving scenes were randomly selected from the recorded data. To collect the

subjective similarity scores for each pair of driving scenes, an evaluation system

was developed, which is shown in Fig. 4.4. This interface allowed the subjects to

simultaneously display synchronously recorded video of the road to the front and

the side, as well as the video of the driver’s face and feet. They were instructed

to imagine that they were driving under the same conditions as driving scenes

shown in the system. Each subject was asked to offer his/her subjective score

to indicate the similarity level of the contents of each pair of driving scenes,

based on four criteria; behavior of the driver and the driver’s vehicle (sb), type

of road (sr), surrounding vehicles (sv), and overall similarity (S). The subjective

similarity scores ranged from 1 to 5, with 1 indicating complete dissimilarity

and 5 indicating high similarity. Using these subjective scores, the following

equation was minimized with regard toα andβ:

E(α, β) =
N∑

n=1

{
αs(n)
b
+ βs(n)

r + (1− α − β)s(n)
v − S(n)

}2
, (4.4)

with an interval of 0.01. Here,N = 200 is the total number of scene pairs. Val-

ues forα andβ which corresponded to the minimumE were selected for each

subject, and are shown in Table 4.1. From this table, it is clear that the weights
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Figure 4.4: Interface for evaluating the retrieved driving scenes. The query and
retrieved scenes are simultaneously displayed. Each pair of query and retrieved
scenes is shown in the list to the right. The subjects can use buttons (below right)
to review any evaluated pair.

(α, β, and 1−α−β) vary widely among subjects. To test whether the variation of

weights for the three distance measures is significant, at-test of the weight values

for each two groupings of the three entities was performed. The results did not

show a significant difference at a significance level of 0.05, which may indicate

that, on average, the three driving entities share the same importance. However,

individual subjects may have focused on different elements of the driving scenes.

Some of the subjects may have thought that objects in the surrounding environ-

ment were much more important, such as subject L0008M, for example, while

other subjects, such as L0010F, may have thought the driver, the vehicle and the

driving environment had almost equal importance.
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Table 4.1: Driving situation weights for each subject.

Subject ID α β 1− α − β
L0002F 0.42 0.29 0.29
L0003M 0.32 0.51 0.17
L0004F 0.35 0.37 0.28
L0005M 0.36 0.29 0.35
L0006F 0.33 0.42 0.25
L0008M 0.27 0.13 0.60
L0010F 0.26 0.44 0.30
L0011F 0.35 0.35 0.30
L0012F 0.22 0.66 0.12
L0013F 0.27 0.52 0.21
L0014F 0.26 0.45 0.29

Mean 0.31 0.40 0.29

4.5.2 Driving scene retrieval

Eight retrieval methods with different similarity measures (A–H) were employed,

which included the proposed methods (F andG) and also a conventional method

A [42]. The type of information used by each method is shown in Table 4.2. The

difference between methodsF andG is that, methodF uses equal weights for

the three measures (driver’s behavior, road, and surrounding vehicles), whereas

methodG uses subject-dependent weights for the three measures, as shown in

Table 4.1, which was determined in a subjective evaluation experiment in Sec-

tion 4.5.1. In the latter section, we will show that methodG can be employed

to retrieve similar scenes of driving behavior for individual drivers’ personality.

However, the retrieval cannot be fully automated, because parametersα, β, and

1 − α − β have to be estimated subjectively in this method. The eight meth-

ods were used to retrieve driving scenes with of four kinds of common driving

events; driving on curves to the left and the right, and changing lanes to the left
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Table 4.2: Methods employed for driving scenes retrieval.

Retrieval method Information used for similarity measurement

A
Histogram of driving behavior signals

(Conventional method [42])
B Driving behavior signals
C Road information
D Surrounding vehicle information

E
Surrounding vehicle information

(Weight of each surrounding vehicle
depends on the direction of the driver’s gaze)

F
Information for each of the three major driving entities

(α andβ both equal to 1/3)

G
Information for each of the three major driving entities

(α andβ vary subjectively)
H Random selection of retrieval results

and the right. There were five, randomly-selected queries for each kind of driving

event. For each query, the top five retrieved driving scenes with highest similari-

ties were used for the retrieval performance evaluation. To evaluate the retrieval

performance, objective and subjective evaluation experiments were conducted.

Objective evaluation

First, as an objective evaluation, the retrieval precision for the four kinds of driv-

ing events was examined, where the retrieval was assumed to be successful if the

query and a retrieved scene were of the same type of driving event.

The result of the driving event retrieval experiment is shown in Fig. 4.5. Assum-

ing that the rank of the retrieved events indicates the objective retrieval perfor-

mance, mean reciprocal rank (MRR) [77] was employed to evaluate the retrieval

precision of the top five scenes for each retrieval method. It was shown that
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Figure 4.5: Driving event retrieval precision for each retrieval method. Mean
reciprocal rank (MRR) was employed for evaluation.

methodF achieved better performance than the other retrieval methods.
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Figure 4.7: Cumulative distribution curves for retrieval methodsG, A, andH.
For each method, the AUC was 2.96 (A), 3.05 (B), 3.12 (C), 3.01 (D), 3.04 (E),
3.14 (F), 3.36 (G), and 2.65 (H).

Subjective evaluation

Then, as a subjective evaluation, retrieval performance was evaluated based on

subjective similarity scores. Each subject evaluated the similarity of contents of

each retrieved scene with the query, and assigned a score of 1−5. After they

finished, they were asked to reconfirm their evaluations. The results of the sub-

jective evaluation are shown in Fig. 4.6. To illustrate the precision of each

retrieval method in retrieving the top five similar driving scenes, cumulative dis-

tribution curves (CDC) was employed, which are shown in Fig. 4.7. Area under

the curve (AUC) was also calculated (a higher AUC corresponds to better per-

formance). Results of retrieval performance based on subjective evaluation are

shown in Fig. 4.8, where accurate retrieval is defined as retrievals whose subjec-

tive similarity scores were 4 or 5. From Figs. 4.6, 4.7, and 4.8, we can see that

methodG with different weights for each subject achieved the best performance.
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similarity scores was 4 or 5.

4.6 Discussion

In this section, the experimental results in Section 4.5 is discussed in regards to

the retrieval performance and the individual characteristics of drivers.

4.6.1 Retrieval performance for different methods

First, the retrieval performance of conventional methodA and the proposed

methodsF andG are compared. In both the objective and subjective evalua-

tions, random selection methodH achieved the lowest retrieval precision. In

the objective evaluation (Fig. 4.5), the proposed integrated similaritiesF and

G achieved significantly higher retrieval precision than conventional methodA,

or methodsB–E, with a significance level of 0.05. MethodB showed almost
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the same retrieval performance as conventional methodA, because both of them

employed exactly the same driving behavior signals. In the subjective evalua-

tion (Fig. 4.8), methodsB–E, which used a single driving element, did not show

a significant difference in retrieval performance from conventional methodA.

However, the proposed methodsF andG, which focused on all three elements

of driving, achieved significantly improved retrieval performance compared to

methodsA–E, with a significance level of 0.05.

4.6.2 Retrieval performance for different events

Next, retrieval performance for different driving events is discussed. We can

easily see in Fig. 4.9 that retrieval performance for lane change events is much

higher than for instances of driving on curves when using retrieval methodsD, E,

F or G. However, retrieval performance was not greatly improved when methods

A, B or C were employed. We believe the reason for lower retrieval performance

for events involving driving on curves is that lane changes almost always occur

on straight roads where there are many surrounding vehicles, and that this ad-

ditional information about the position and motion of surrounding vehicles pro-

vides additional data which benefits retrieval. Information on the position and

motion of surrounding vehicles is taken into consideration by retrieval methods

D, E, F andG. Proposed methodsF andG performed better than the other meth-

ods for all types of driving events, because both intra-vehicle and environmental

factors are considered when employing these methods. In subjective evaluation,

Fig. 4.10 shows similar results with Fig. 4.9. To the eleven subjects, similar lane

changes were also more easily to be retrieved than similar driving on curves.
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4.6.3 Individual characteristics

In the third part, two pairs of retrieval methods are discussed: 1.D andE, the

difference between them being whether or not the weight of each surrounding

vehicle depends on the direction of the driver’s gaze; and 2.F andG, where the

parameters forα andβ were decided by the subjects inG, and were set to be

equal empirically inF. Comparing the precision of the retrieval of driving events

(Fig. 4.5) with the precision of the retrieval of similar driving scenes (Fig. 4.8),

an interesting phenomena was observed. Although retrieval methodsD andF

achieved better driving event retrieval performance thanE andG, respectively,

according to subjective confirmation, bothE andG were better at finding similar

driving scenes thanD andF, respectively. To clarify the reason for this, Spear-

man’s rank correlation coefficients [63] were calculated for methodsD, E, F,

andG. The correlation coefficients between the subjective scores and the aver-

age objective similarities for each method was estimated. The results are shown

in Table 4.3, and all results are significant with a significance level of 0.05 [78].

Examples of the relationship between the subjective scores and the objective

similarities from the same subjects, using methodsD, E, F, andG, are shown in

Figs. 4.11, 4.12, 4.13, and 4.14, respectively. A descending ladder-like shape,

from left to right, indicates a better correlation. According to the results, on

average, bothE and G had a higher correlation coefficient thanD and F. To

clarify the significance of this differences, at-test forE andD, and forF andG

was performed. This revealed that the correlation coefficients ofE andG were

significantly different with those ofD andF, respectively, when the significance

level is 0.05. These results indicate that retrieval methodsE andG are closer to
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Table 4.3: Spearman’s rank correlation coefficient for methodsD, E, F, andG
for each subject.

Subject ID D E F G
L0002F −0.23 −0.68 −0.22 −0.68
L0003M −0.46 −0.47 −0.23 −0.38
L0004F −0.27 −0.44 −0.39 −0.36
L0005M −0.25 −0.57 −0.61 −0.66
L0006F −0.22 −0.40 −0.17 −0.36
L0008M −0.11 −0.19 −0.25 −0.75
L0010F −0.43 −0.55 −0.17 −0.51
L0011F −0.44 −0.43 −0.34 −0.37
L0012F −0.35 −0.68 −0.35 −0.62
L0013F −0.34 −0.33 −0.39 −0.64
L0014F −0.32 −0.54 −0.33 −0.39

Mean −0.31 −0.48 −0.31 −0.52

the measured subjective driving similarity values.
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Figure 4.11: Relationship between subjective score and objective similarity for
methodD. Correlation coefficient was−0.23 (subject: L0002F).
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Figure 4.12: Relationship between subjective score and objective similarity for
methodE. Correlation coefficient was−0.46 (subject: L0002F).

0000 0.10.10.10.1 0.20.20.20.2 0.30.30.30.3 0.40.40.40.4 0.50.50.50.5
1111

2222

3333

4444

5555

0.1 0.2 0.3 0.4 0.50.0

5

4

3

2

1

S
ub

je
ct

iv
e 

sc
or

e

Objective similarity

Figure 4.13: Relationship between subjective score and objective similarity for
methodF. Correlation coefficient was−0.25 (subject: L0008M).
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Figure 4.14: Relationship between subjective score and objective similarity for
methodG. Correlation coefficient was−0.75 (subject: L0008M).

In methodE, it was assumed that only vehicles in the direction of the driver’s

gaze were being paid attention to by the driver, whereas methodD supposed that

every surrounding vehicle is being equally paid attention to by the driver. The

correlation coefficient of methodE confirmed this assumption that vehicles in

the direction of the driver’s gaze are considered to be more important. However,

less information about surrounding vehicles, as employed in methodE, may also

have led to lower driving event retrieval precision during the objective evalua-

tion, compared with methodD. Higher correlation coefficients, as in methodE,

indicate that the subjects have similar gaze focus with the drivers in the scenes.

On the other hand, even for methodE, some correlation coefficients were not

so high, especially those from L0008M. The reason for this might be that those

two subjects had different gaze foci than the drivers in the scenes. A similar

conclusion was also mentioned by Mori et al. [79]. In their research, they found

that there are individual differences among drivers in gaze direction during driv-
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changes. Positions of drivers A and B are indicated by the cross at the center of
each box. The surrounding boxes represent eight gaze directions during driving.
Darker colored boxes represent areas of frequent driver attention, whereas lighter
colored boxes indicate directions in which the driver paid little or no attention.

ing. An example of gaze distribution during right lane changes is illustrated in

Fig. 4.15. These gaze distributions were calculated using driving data from two

drivers among the six drivers in the driving scene retrieval experiment in Section

4.5. It can be seen from this figure that drivers might have had different gaze foci

during lane changing.

In methodG, the weighting of the driver’s behavior, road, and surrounding ve-

hicles in driving situations were decided by the subjects who participated in the

subjective evaluation experiment. By comparing methodsF andG, it seems that

each person compares driving scenes based on their own unique focus. Thus,

when we retrieve similar driving scenes for a specific driver, it would be better

to use that driver’s own similarity evaluations. Moreover, since all of the sub-

jects have been driving for years, they may have developed different foci when
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observing driver behavior, the position and motion of surrounding vehicles, and

road information (all of the three major entities of driving). However, this is a

topic which requires further study.

4.7 Conclusion of the chapter

In this chapter, an integrated similarity measurement technique for driving scene

retrieval, based on driving behavior, vehicle motion, road type, and the presence

of surrounding vehicles, was proposed. Compared with a previous work [42],

both the objective and subjective precision of driving scene retrieval were sig-

nificantly improved. Since there are few studies about driving scene retrieval

using driving signals, unfortunately we could not compare the proposed method

with more international standard criterion. However, Naito et al. [42] compared

their method to a conventional image-based retrieval method that was proposed

by Kashino et al. [48] and considered to be an international standard criterion in

their experiment. According to the experimental results in [42], retrieval preci-

sion for driving behavior improved when driving signals were employed than the

image-based method. It was also found that different people focus on different

elements of driving scenes when comparing them. Based on the experimental

results, driver focus may vary among drivers with regards to his/her vehicle, the

road, and surrounding vehicles.

In future work, further experiments need to be conducted to investigate the re-

lationship between these weights and retrieval performance. The subjects were

not categorized according to their driving skills in this study. However, if we

compare the data from the questionnaires, which includes the subjects’ driving
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experience and skills, with the weights of the subjects’ foci while driving, some

tendencies might become apparent. This needs to be investigated further. Other

future work includes investigation of how driving data collected with cameras

can be used to further improve driving scene retrieval performance, and to test the

proposed method using a much larger database, including more kinds of driving

scenes, such as scenes involving traffic accidents. The retrieval performance for

more driving events, including driving straight ahead and traffic accidents, need

to be evaluated objectively and subjectively. Retrieval speed should also be eval-

uated. Furthermore, it is necessary to compare the proposed method with some

of the other stochastic models which have been proposed by other researchers.
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Chapter 5

Conclusion

In this dissertation, I have described how data abstraction can be realized for the

purposes of driving behavior evaluation and similarity measurement for driv-

ing behavior. Since raw data cannot be employed directly for data analysis,

traditionally researchers have had to manually select data, which is a tedious

and possibly subjective process. The two studies described in this dissertation

proposed methods for extracting features from raw driving data and integrating

them. These variables were then used to evaluate and measure driving behavior.

The aggressiveness of driving behavior was evaluated in the first study, and sim-

ilar driving behavior patterns were automatically retrieved in the second study,

using the proposed methods.

To evaluate the aggressiveness of a driver’s behavior, seven features were ex-

tracted as indicators of aggressive driving from drive recorder data and inte-

grated. Principle component regression (PCR) was more effective for measur-

ing aggressiveness than simple multiple linear regression (MLR), because the

evaluated aggressiveness scores obtained using PCR were closer to the empirical

scores given by driving safety assessment experts’, which were the ground truth
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used in the experiment. In addition, increasing the number of feature variables

did not always increase the accuracy.

In the second study, which measured the similarity of driving behavior in order to

retrieve recorded data containing similar driving scenes, additional types of data

recorded by multiple sensors were used. Employing six kinds of driving signals

recorded by vehicle sensors, three features to measure the similarity of driving

behavior were extracted. Since driving behavior can be better represented by

combining features extracted from various sensor signals, similar driving scenes

were retrieved more accurately. Furthermore, driver focus varied among drivers,

depending on the driver’s vehicle, the type of road, and the presence of surround-

ing vehicles. The proposed method in the first study could be applied to real-time

evaluation of driver behavior, and would make it much easier to identify overly-

aggressive drivers and provide them with feedback about their driving behavior.

In addition, the method could be used for driver education, allowing driving

instructors to retrieve examples of behaviors similar to those of driving school

students, in order to provide additional counseling and instruction. The proposed

method in the second study, could also be employed to train driver models with

the retrieved data representing various driving behaviors, which could be used in

the prediction of driver behavior.

These studies are only the first steps towards automating the data abstraction

process, which is made possible through the collection of various types of driv-

ing data recorded with multiple sensors. Abstraction using data of interest to a

specific driving behavior study is something we hope to address in future work.

Although the features employed were selected empirically in these studies, the
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introduction of factorized information criteria (FIC) for automated feature selec-

tion, which has been successfully used in the field of data mining [80–82], could

also prove to be of benefit to the field of driving data abstraction.

Additional types of sensors should also be considered in future studies in this

field, since advanced driver assistance systems aim to not only improving traf-

fic safety, but to also enhance comfort and driving pleasure. This will require

the simultaneous collection of additional information using multiple sensors, to

achieve a more holistic analysis of driving behavior. In such a system, sensor

data fusion algorithms will be necessary to allow efficient combination of driv-

ing data recorded by the various different sensors. Although the technology for

multi-sensor data fusion has been widely discussed in various fields [83–85],

there are still many challenges to be overcome in order to effectively apply these

technologies in intelligent transport systems [86].

Another big challenge is developing methods of predicting driving behavior by

retrieving similar driving scenes, using the method proposed in the second study

described in this dissertation. We believe that there are a number of frequent

behavior patterns which occur when driving. For example, people may pass the

same locations, such as the company where they work or their favorite shops,

using the same routes day after day. The proposed driving behavior retrieval

method could be employed to pick out similar patterns which occur along the

same route, by integrating driving data with GPS data. As a result of modeling

a sufficient variety of driving patterns, useful information could be provided to

help the driver to perform various driving navigation tasks. Moreover, careful ob-

servation may reveal other general patterns, such as driver behavior during lane
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changes and when making turns. There are many potential benefits from such

research, such as improving driving safety, reducing fuel usage and improving

traffic planning.
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