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Chapter 1

Introduction

1.1 Background

In 1906, F. Hartogs observed that in C2 there exists such kind of domains:
across their boundaries, every holomorphic functions can extend. In other
words, not every domain in Cn with n ≥ 2 is a domain of holomorphy, in
contrary to the one dimensional case. This is the so-called Hartogs’ extension
theorem, which can be seen as one of the symbols of the independent develop-
ment of several complex variables (henceforth, SCV).

Later H. Cartan and P. Thullen introduced the notion of holomorphic con-
vexity and showed its equivalence to being a domain of holomorphy. In the
theory of complex manifolds, holomorphic convexity leads naturally to the no-
tion of Stein manifolds (introduced by K. Stein [40] in 1951). Immediately
the characterization of holomorphic convexity / Steinness became an important
topic in SCV and around it various theories have been developed.

For example, E. E. Levi tried to find equivalent conditions of being domains
of holomorphy via the description of their boundaries, i.e., Levi pseudoconvexity.
This is the well-known Levi problem, which was solved in the affirmative first
by K. Oka in 1940s. Following from that, many powerful and influential results
were obtained in this direction.

Another way to describe Stein manifolds is to use complete Kähler metrics,
which was first considered by H. Grauert [20].

A complete Kähler manifold (M, ds2) is a complex manifold M together with
a complete Kähler metric ds2. It is known that every Stein manifold carries a
complete Kähler metric, i.e., it is a complete Kähler domain. A natural question
is whether or not the converse holds, i.e., if M is non-compact and complete
Kähler, is M necessarily Stein?

It was observed by Grauert that the answer is negative. Instead, for any
closed analytic subvariety A of a Stein manifold M , he constructed a complete
Kähler metric on M \ A (Satz A in [20]). In other words, in order to guaran-
tee holomorphic convexity, besides existence of complete Kähler metrics, some
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6 CHAPTER 1. INTRODUCTION

additional assumptions are necessary , which generally divide into two kinds of
approaches:

• Curvature assumptions on the complete Kähler metrics;

• Boundary regularity assumptions on the domains under consideration.

In the same paper, Grauert showed that if Ω ⊂M carries a complete Kähler
metric and has a Cω boundary, then Ω is Stein (Satz C in [20]). Later the
regularity assumption was reduced from Cω to C1 by T. Ohsawa [30].

In this article, we mainly follow the second line and study complete Kähler
manifolds from the viewpoint of function theory. To be more precise, we study
complete Kähler metrics by means of their potentials which are plurisubhar-
monic functions.

In SCV, plurisubharmonic functions form the natural counterpart of subhar-
monic functions in C. They are invariant under biholomorphic mappings and
possess many other good properties. Especially, in comparison with holomor-
phic functions, which are in some sense rigid, plurisubharmonic functions admit
flexibility for modifications so that it is convenient to construct new functions
as we desire.

At the same time, many notions in the classical potential theory can be
generalized to several complex variables with subharmonic functions replaced
by plurisubharmonic functions, e.g., pluripolar set, negligible sets, thin sets,
etc. They are the important objects of study in the so-called pluripotential
theory and play great roles in removable singularities and extension problems
of analytic objects, etc.

We will focus on these small sets. First it is not difficult to see the following
propositions:

(A) Except the trivial case (the whole domain), analytic varieties are complete
pluripolar.

(B) Outside closed complete pluripolar sets one can construct complete Kähler
metrics. In other words, closed complete pluripolar sets are contained in
the complements of complete Kähler domains.

Their relations can be shown in the following graph:

{closed analytic varieties}
∩

{closed complete pluripolar sets} ⊂ {pluripolar sets}
∩ q

{complements of complete Kähler domains} {negligible sets}

The converse of the inclusions in the left column is of great interest.
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On complex-analyticity of real submanifolds as complements of complete
Kähler domains, Ohsawa [29] showed that for the two real codimensional case,
merely C1-regularity is sufficient. As a corollary, he also gave a partial answer
to Nishino’s problem [28], which can be seen as a partial converse to (A). It
conjectured that if the graph of a continuous function is pluripolar, then the
function is holomorphic. This problem was finally solved by N. Shcherbina [38].

However, K. Diederich and J. E. Fornæss later considered the higher codi-
mensional case and showed that Cω-regularity is necessary. As counterexamples,
they constructed a closed C∞ submanifold A of any real codimension k ≥ 3 in a
ball B, such that A is not complex-analytic and B \A admits a complete Kähler
metric [15].

1.2 Main Results

As our first new result, we generalize Diederich–Fornæss’ examples on open
manifolds to the compact case. More precisely, for any k ∈ N, k ≥ 3, we
construct a compact C∞ submanifold A of real codimension k in Pn, such that
A is not complex-analytic and Pn\A admits a complete Kähler metric (Theorem
4.1.5).

In light of the results in the classical potential theory, similar problems
were posed for pluripotential theory, e.g., the equivalence between locally and
globally pluripolar or complete pluripolar sets. However, different techniques
were developed.

In 1978, B. Josefson first showed the equivalence between local and global
pluripolarity in Stein manifolds [23]. Later E. Bedford and B. A. Taylor defined
a new capacity with the help of complex Monge–Ampère operators and gave
an alternative proof [6, 7]. At the same time, they got the equivalence between
pluripolarity and negligibility (the right column in the graph above). The similar
problem for closed complete pluripolar sets was solved by M. Colţoiu in 1990,
i.e., in Stein manifolds, a closed locally complete pluripolar set is also globally
complete pluripolar [11, 12].

Inspired by the fact (B) and Colţoiu’s result, we consider the following prob-
lem:

Main Question. Is it possible to patch up the potentials of complete Kähler
metrics to obtain a global one?

In other words, if a set is locally the complement of complete Kähler domains,
is it globally the complement of some complete Kähler domain?

For a precise setting, we start with the potentials instead of complete Kähler
metrics themselves. Otherwise, we need to extend the definition of the funda-
mental forms induced by these metrics so that we can solve the ∂∂-equations to
obtain the potentials. The extension usually requires strong assumptions on the
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sets across which it is done. The known result is that the sets should be com-
plete pluripolar [39, 19]. However, as the fact (B) mentioned above has shown,
the existence of complete Kähler metrics outside closed complete pluripolar sets
implies that the question has been solved in this case. So we choose a more
general assumption and prove the following:

Theorem 1.2.1. Assume M is a Stein manifold and A ⊂M is a closed subset.
If M \A locally admits complete Kähler metrics in the following sense:

• {Ui}i∈N is a locally finite open covering of M with Ui bM, i ∈ N;

• on each Ui, there exists ϕi ∈ PSH(Ui) ∩C∞(Ui \A) such that ∂∂ϕi gives
a complete Kähler metric on Ui \A along A ∩ Ui,

then there exists a complete Kähler metric on M \A induced by a globally defined
plurisubharmonic function on M . Moreover, this potential can be chosen to be
bounded from below and smooth outside A. In particular, if every local potential
is continuous, the global potential is also continuous.

The idea of the proof is as follows: we divide the problem into two cases
depending on whether the potentials are bounded. For the first case, if all
potentials are bounded, we use cut-off functions to extend their domains of def-
inition to the whole of M . However, some negativities may be brought in this
process. In order to remove them, we need to compose the strictly plurisub-
harmonic exhaustion function of M with a suitably chosen increasing convex
function. By adding this term to the sum of extended potentials, we can find
a global potential. For the second case, if on some open subset there exists a
potential unbounded from below, we modify it to be bounded and reduce this
case to the first one.

1.3 Notes

The article is organized as follows: In Chapter 2, we introduce some notions
and recall basic properties. In Chapter 3, we discuss various kinds of small sets,
such as pluripolar and complete pluripolar sets, negligible sets, the complements
of complete Kähler domains, etc. In Chapter 4, an example of compact smooth,
but not complex-analytic complements of complete Kähler domains is given.
This generalizes an example given by Diederich–Fornæss. In Chapter 5, we
prove the Main Theorem and pose some further questions.

The result in Chapter 4 has been accepted for publication and will appear
in Complex Analysis and Geometry, Springer Proceedings in Mathematics and
Statistics.



Chapter 2

Preliminaries

2.1 Plurisubharmonic functions

The main objects of this article are plurisubharmonic functions. First we
recall the definition and some basic properties which will be used in the later
part.

Definition 2.1.1 (plurisubharmonic function). Assume M is a complex man-
ifold of dimension n and u : M → [−∞,+∞). u is said to be plurisubharmonic
if

• u is upper semicontinuous.

• its restriction u|C to any complex curve C ↪→M is subharmonic.

Suppose u : M → R is twice continuously differentiable (henceforth, C2). u is
said to be strictly plurisubharmonic if its complex Hessian, which is an Hermi-
tian form on TM defined by

Hu(z) =
∑ ∂2u

∂zi∂zj
(z)dzi ⊗ dzj ,

is positive definite everywhere.

The set of all plurisubharmonic functions on an open subset U ⊂ M is
usually denoted by PSH(U).

Like subharmonicity, plurisubharmonicity is also a local property.

Obviously, it is convenient to use complex Hessians to characterize smooth
plurisubharmonic functions. For general plurisubharmonic functions, the fol-
lowing smoothing technique by convolution provides a useful approximation.

Let χ ∈ C∞(Cn, [0,+∞)) with support in the closed unit ball in Cn such
that

∫
Cn χ(z)dλ(z) = 1, where λ denotes the Lebesgue measure in Cn. For

ε > 0, define χε(z) = 1
ε2nχ( zε ).

9
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Theorem 2.1.2. Assume u is plurisubharmonic on an open subset U ⊂ Cn. If
ε > 0 is such that Uε := {z ∈ U

∣∣ dist(z, ∂U) > ε} 6= ∅, then

u ∗ χε(z) =

∫
Cn
χε(z − w)u(w)dλ(w)

is smooth and plurisubharmonic on Uε. Moreover, u∗χε monotonically decreases
as ε→ 0, and limε→0 u ∗ χε(z) = u(z) for any z ∈ U .

Proposition 2.1.3. The set of plurisubharmonic functions forms a convex cone
in the vector space of semicontinuous functions, i.e.,

• if f is plurisubharmonic and c > 0, then c · f is plurisubharmonic;

• if f1, f2 are plurisubharmonic, then the sum f1 + f2 is plurisubharmonic.

It is known that plurisubharmonicity is preserved by holomorphic substitu-
tions.

Proposition 2.1.4. Assume U and U ′ are open sets in Cn and Cm, respectively.
If u is a plurisubharmonic function on U ′ and f : U → U ′ is a holomorphic
mapping, then u ◦ f is plurisubharmonic on U .

Proposition 2.1.5. Assume {ui}i∈N is a family of plurisubharmonic functions
on an open set U ⊂ Cn, which are locally uniformly bounded from above. Define
the upper envelope u(z) = supi ui(z). Then its upper semicontinuous regular-
ization

u∗(z) = lim sup
ζ→z

u(ζ)

is plurisubharmonic on U .

Remark. For an uncountable family of plurisubharmonic functions {uα}α∈Λ,
Choquet’s lemma guarantees that there exists a countable subfamily {vi =
uα(i)} such that its upper envelope v satisfies v ≤ u ≤ u∗ = v∗.

A related notion is the negligible set, which exactly locates in the part modi-
fied in the process of upper semicontinuous regularization. The precise definition
is as follows:

Definition 2.1.6 (negligible set). E ⊂ Cn is said to be negligible if there exists a
family of plurisubharmonic functions {ui}i∈N which is locally uniformly bounded
from above, such that

E ⊂ {z ∈ Cn
∣∣ u(z) < u∗(z)},

where u(z) = supi ui(z) and u∗ is its upper semicontinuous regularization.

The following technique is often used to modify plurisubharmonic functions.

Theorem 2.1.7. Assume f : R→ R is an increasing convex function and u is
plurisubharmonic on an open subset U ⊂ Cn. Then f ◦ u is also plurisubhar-
monic on U .
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An important notion is the polar set of a plurisubharmonic function.

Definition 2.1.8 (pluripolar set). A ⊂ Cn is said to be pluripolar if for any
z ∈ Cn, there exists a neighbourhood U of z and a plurisubharmonic function u
on U , such that u 6≡ −∞ and A ∩ U ⊂ {z ∈ U

∣∣ u(z) = −∞}.
A is said to be complete pluripolar if the last “ ⊂”is replaced by “ =”.

Example 2.1.9. Analytic varieties are complete pluripolar.

For a system of local defining functions {fi} of an analytic subset A, consider
ϕ := log

∑
i|fi|2.

Pluripolar sets are small sets, in the sense that they have zero Lebesgue
measure, which follows easily from that they are local integrable, and they are
of Hausdorff dimension at most 2n − 2 [1]. Their properties and relation with
complete Kähler metrics will be studied in more details in Chapter 3.

2.2 Global regularization

In order to obtain global properties from local properties, the following
patching and regularization procedure for continuous plurisubharmonic func-
tions is efficient and important in different proofs.

Theorem 2.2.1 (Richberg’s regularization [34], cf. [14]). Assume M is a com-
plex manifold and u is a continuous plurisubharmonic function on M . If u is
strictly plurisubharmonic on an open subset U ⊂ M with Hu ≥ γ for some
continuous positive Hermitian form γ on U , then for any continuous function µ
on U , µ > 0, there exists a continuous plurisubharmonic function ũ on M such
that

• ũ is C∞ strictly plurisubharmonic on U with u ≤ ũ ≤ u+ µ;

• Hũ ≥ (1− µ)γ on U ;

• ũ = u on M \ U .

In particular, if u is strictly plurisubharmonic on M , then ũ can be chosen to
be strictly plurisubharmonic on M as well.

For the proof, the following regularized max is the central ingredient in order
to obtain a smooth patching function from merely continuous ones, which is also
of independent interest.

Let θ ∈ C∞(R, [0,+∞)) with support in [−1, 1] such that
∫
R θ(h)dh =

1,
∫
R hθ(h)dh = 0. Set θη(h) := 1

η θ(
h
η ) for η > 0.

Lemma 2.2.2. For η = (η1, . . . , ηp) ∈ (0,+∞)p, let

Mη(t1, . . . , tp) :=

∫
Rp

max
i
{ti + hi}

p∏
j=1

θηj (hj)dh1 . . . dhp.

Then it satisfies the following properties:
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• Mη(t) is nondecreasing in all variables, smooth and convex;

• max{t1, . . . , tp} ≤Mη(t1, . . . , tp) ≤ max{t1 + η1, . . . , tp + ηp};

• Mη(t1, . . . , tp) = M(η1,...,η̂j ,...,ηp)(t1, . . . , t̂j , . . . , tp) if tj+ηj ≤ maxk 6=j{tk−
ηk};

• Mη(t1 + a, . . . , tp + a) = Mη(t1, . . . , tp) + a,∀a ∈ R;

• if u1, . . . , up are plurisubharmonic functions and satisfy Huj ≥ γ for a con-
tinuous Hermitian form γ, then u := Mη(u1, . . . , up) is plurisubharmonic
and satisfies Hu ≥ γ.

2.3 Convexity conditions

We will solve the main problem in the setting of Stein manifolds. They can
be seen as the counterpart of domains of holomorphy in the category of com-
plex manifolds and satisfy one geometric convexity condition - pseudoconvexity,
which plays an important role in the proof.

Definition 2.3.1 (Stein manifold). Assume M is a complex manifold. M is
said to be Stein if

• M is holomorphically convex, i.e., for any K bM ,

K̂O(M) := {z ∈M
∣∣ |f(z)| ≤ sup

K
|f |,∀f ∈ O(M)} bM.

• M is holomorphically separable, i.e., for any x, y ∈M,x 6= y, there exists
f ∈ O(M) such that f(x) 6= f(y).

• For every p ∈M there exist functions f1, . . . , fn ∈ O(M), whose differen-
tials dfj are C-linearly independent at p.

K̂O(M) is called the holomorphically convex hull of K (with respect to M).

The third condition means that global holomorphic functions provide local
charts at each point.

Remark. The holomorphically convex hull K̂O(M) of K can be seen as an

analogue of the geometrically convex hull K̂ of K, where in the place of the
class of all holomorphic functions in the definition above, it is restricted to the
class of all linear functions in Cn. Similarly, the polynomial convex hull K̂p and

plurisubharmonically convex hull K̂PSH(M) can be defined in Cn, respectively.
They have the following inclusion relation:

K̂ ⊃ K̂p ⊃ K̂O(M) ⊃ K̂PSH(M).

Example 2.3.2. An open set in Cn is Stein if and only if it is a domain of
holomorphy.
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Definition 2.3.3 (exhaustion function). Assume X is a topological space. ψ :
X → [−∞,+∞) is said to be an exhaustion function if all of its sublevel sets
are relatively compact in X, i.e.,

{z ∈ X
∣∣ ψ(z) < c} b X,∀c ∈ R.

Definition 2.3.4 (pseudoconvexity). Assume M is a complex manifold. M is
said to be

• pseudoconvex if there exists a smooth plurisubharmonic exhaustion func-
tion ψ on M .

• strongly pseudoconvex if there exists a smooth strictly plurisubharmonic
exhaustion function ψ on M .

Theorem 2.3.5. Every holomorphically convex manifold is pseudoconvex.
Every Stein manifold is strongly pseudoconvex.

In fact, it is easy to see that for a holomorphically convex manifold M ,
there exists a sequence of holomorphically convex compact subsets {Ki}i∈N
exhausting M , i.e., ∪iKi = M, K̂iO(M) = Ki,Ki ( Ki+1.

For any a ∈ Li := Ki+2 \ ˚Ki+1, there exists gi,a ∈ O(M) such that
supKi |gi,a(z)| < 1, |gi,a(a)| > 1. Hence, |gi,a(z)| > 1 in a neighbourhood of
a. We can select finitely many {gi,a}a∈Λi such that

hi(z) := max
a∈Λi
{|gi,a(z)|} > 1 on Li, hi(z) < 1 on Ki.

By choosing a large enough exponent pi, we have

fi(z) :=
∑
a∈Λi

|gi,a(z)|2pi ≥ i on Li, fi(z) ≤ 2−i on Ki.

It follows that

ψ(z) :=
∑
i∈N

fi(z)

converges uniformly to a Cω plurisubharmonic function and exhausts M .
If M is Stein, then one can use the condition of holomorphically separation

in Definition 2.3.1 to construct a smooth nonnegative strictly plurisubharmonic
function u on M . Hence, ψ′ = ψ+u serves as a smooth strictly plurisubharmonic
exhaustion function for M .

2.4 Complete Kähler manifolds

Assume (M, g) is a complex manifold together with an Hermitian metric
given by

g = ds2 =
∑

gijdzi ⊗ dzj .
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The length of a differential curve γ : [a, b]→M is defined by

`(γ) =

∫ b

a

|γ′(t)|g =

∫ b

a

√∑
gij(γ(t))γ′i(t)γ

′
j(t)dt.

The distance of two points p, q in M is defined by

d(p, q) = inf `(γpq),

where γpq runs over all piecewise differential curves joining p and q, if they are
in the same connected component of M , otherwise d(p, q) = +∞.

This induced distance turns M to a metric space.

Definition 2.4.1 (complete metric). (M, g) is said to be complete if it is com-
plete as a metric space with respect to the induced distance d, i.e., every Cauchy
sequence in M converges to a point in M .

To verify completeness, the following theorem is useful as a criterion.

Theorem 2.4.2 (Hopf–Rinow). Assume (M, g) is a connected Riemannian
manifold. The following are equivalent:

(A) Any closed and bounded subset of M is compact.

(B) M is complete as a metric space.

(C) M is geodesically complete, i.e., for any p in M , the exponential map expp
is defined on the entire tangent space TpM .

Furthermore, any one of the above implies that for any p, q ∈M , there exists a
length minimizing geodesic connecting p and q.

Remark. Condition (A) above is topologically equivalent to the following two
conditions, which are sometimes easier for applications.

(D) If {Ki}i∈N is a sequence of compact subsets of M which exhausts M , and
{qi}i∈N is a sequence of points in M such that qi 6∈ Ki for all i ∈ N, then
d(p, qi)→ +∞ for any p in M .

(E) If γ is a non relatively compact differential curve, i.e., γ cannot be con-
tained in any compact subset of M , then γ has +∞ length with respect
to g.

For every Hermitian metric as above, there exists an associate (1, 1)-form

ω =

√
−1

2

∑
gijdzi ∧ dzj .

Definition 2.4.3 (Kähler metric). An Hermitian metric ds2 is said to be Kähler
if its associate form ω is d-closed, i.e., dω = 0.
A complex manifold admitting a Kähler metric is said to be a Kähler manifold.
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It is easy to see that if ϕ is a strictly plurisubharmonic function on M , then
∂∂ϕ is a Kähler metric on M . ϕ is called the Kähler potential of this metric.

Remark. The coefficient
√
−1/2 before ∂∂g is to make the form ω real. But

in this article, it is usually omitted for simplicity, since there is no difficulty to
tell Hermitian forms or matrices from (1, 1)-forms.

Another approach is to define

dc =
√
−1(∂ − ∂),

which is also a real operator like d. Therefore, ddc = 2
√
−1∂∂. This is the

conventional notation for defining complex Monge–Ampère operators, which
will be discussed later.

Example 2.4.4. The Euclidean metric in Cn is complete Kähler.

Example 2.4.5. The Fubini–Study metric in Pn is complete Kähler.

Example 2.4.6. The Poincaré metric on the punctured unit disc D∗ is complete
Kähler. Its potential is given by

− log(− log|z|).

Example 2.4.7. One important kind of Kähler metrics is the Bergman metric,
which can be defined for any bounded domain.

Assume Ω is a bounded domain in Cn and KΩ(z, w) is the Bergman kernel
for Ω. Then the potential of the Bergman metric is

logKΩ(z, z).

S. Kobayashi [26] posed a question: Which bounded pseudoconvex domains
in Cn are complete with respect to the Bergman metric? So far, it is known
that various additional assumptions can make the Bergman metric complete.
For example, Ohsawa proved that the Bergman metric of any pseudoconvex
domain with C1-boundary is complete [31]. Any bounded hyperconvex domain
(i.e., it admits a bounded continuous plurisubharmonic exhaustion function) is
Bergman complete [5, 9].



16 CHAPTER 2. PRELIMINARIES



Chapter 3

Small sets

3.1 Pluripolar sets

The structure of pluripolar sets may be very complicated, even in C, which
can be seen from the following example contained in [33].

Example 3.1.1. Assume K b C has no isolated points and {zn} is a countable
dense subset of K. Take {an} a sequence of positive numbers such that

∑
n an <

+∞. Then
u(z) :=

∑
n

an log|z − zn|, z ∈ C

is subharmonic on C and u 6≡ −∞.

In fact, if we take µ as a finite measure on N with µ({n}) = an and define

v : C× N → [−∞,+∞)

(z, n) 7→ log|z − zn|,

then ∫
N
v(z, n)dµ(n) =

∑
n

an log|z − zn| = u(z), z ∈ C.

It is easy to check that v is measurable on C×N and z 7→ supn v(z, n) is locally
bounded from above. It suffices to prove u is subharmonic on any D b C. By
subtracting a constant, we can assume v ≤ 0 on D. Consider a sequence z′i → z
in D. According to reverse Fatou’s lemma,

lim sup
i→∞

u(z′i) ≤
∫
N

lim sup
i→∞

v(z′i, n)dµ(n)

≤
∫
N
v(z, n)dµ(n) = u(z).

The second inequality follows because v(·, n) is subharmonic and upper semi-
continuous for fixed n. This shows the upper semicontinuity of u on D.

17
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Next, consider D(z, r) ⊂ D for r > 0 small enough. It follows that

1

2π

∫ 2π

0

u(z + reiθ)dθ =

∫
N

1

2π

∫ 2π

0

v(z + reiθ, n)dθdµ(n)

≥
∫
N
v(z, n)dµ(n) = u(z).

This means u satisfies the submean inequality. u(z) > −∞ for z ∈ C\K implies
u 6≡ −∞.

Furthermore, set E := {u(z) = −∞}. Since zn ∈ E,∀n ∈ N, E is a dense
subset of K. It follows that

K \ E =
⋃
n≥1

{u ∈ K
∣∣ u(z) ≥ −n},

the right hand side of which is a countable union of closed nowhere dense sets,
i.e., a meagre set (of Baire 1st category). If E is countable, then K must be
meagre as well, which is a contradiction. Therefore, E is uncountable.

In this article, and also in many other papers, for simplicity, the pluripolar
sets under consideration are always assumed to be closed.

3.2 Bounded potentials

It is known that outside a closed complete pluripolar set of Cn, one can
construct a complete Kähler metric in the following way.

Example 3.2.1. If A ⊂ Cn is a closed complete pluripolar set of the form

A = {ϕ = −∞},

where ϕ is a plurisubharmonic function and smooth outside A, then there exists
a complete Kähler metric on Cn \A.

In fact, its potential can be written as

ψ = h(ϕ),

where h(t) := − log(−t)χ(t + 3) + Kα(t), χ(t) ∈ C∞(R, [0, 1]) with χ = 1 on
(−∞, 0] and χ = 0 on [1,+∞), α(t) ∈ C∞(R, [0,+∞)) with α = 0 on (−∞,−4]
and α′′(t) > 0 on (−4,+∞), K > 0 is chosen large enough such that h(t) is
increasing and convex.

In other words, this means every closed complete pluripolar set is the com-
plement of some complete Kähler domain.

Remark. The construction above is suggested by Example 2.4.6. What we
need for the completeness near the polar set A is the behavior of the function
− log(−t) as t → −∞, so a cut-off function is used to extend its domain of
definition to R.

Note that the potential ψ is not bounded from below near A.
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Sometimes bounded potentials (plurisubharmonic functions are always lo-
cally bounded from above, here boundedness means they are also bounded from
below) are more convenient for applications. A detailed and skillful construc-
tive proof of a bounded Kähler potential for the punctured complex plane C∗ is
contained in [15], the idea of which may trace back to Grauert [20].

Lemma 3.2.2. There exists a continuous subharmonic function φ on C such
that

• φ is radially symmetric, i.e., φ(z) = φ(|z|);

• φ is smooth on C∗;

• ∂∂φ gives a complete Kähler metric on C∗.

In fact, an alternative construction can be easily given by using 1
log(−t) in-

stead of − log(−t) in the representation of h in Example 3.2.1 and extending

1

log(− log|z|)

in a similar way . The same idea will be used in the proof of Main Theorem in
Chapter 5.

3.3 Extension theorems and removable singular-
ities

We have shown how to construct complete Kähler metrics outside closed
complete pluripolar sets. Another close relation between these two notions is
that pluripolar sets play important roles in the study of extensions and re-
movable singularities of analytic objects, e.g., holomorphic functions, plurisub-
harmonic functions and closed positive forms or more general, currents. For
example,

Theorem 3.3.1. Assume M is a complex manifold and A ⊂ M is a closed
pluripolar set. If u is a plurisubharmonic function on M \ A which is locally
bounded from above near A, then it can extend uniquely into a plurisubharmonic
function ũ on M .

It is important to study the special kind of functions satisfying some desired
growth rate.

For an open subset D ⊂ Cn, let

A2(D) := O(D) ∩ L2(D).

Here L2(D) is the space of all square integrable functions in D, i.e.,
∫
D
|f |2dλ <

+∞, where λ is the Lebesgue measure in Cn.
A classical result in the potential theory in C is the following
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Theorem 3.3.2 ([8, 37], cf. [13]). If E ⊂ C is closed, then the following are
equivalent:

(A) E is polar;

(B) A2(C \ E) = {0};

(C) for any open set D ⊃ E, A2(D \ E) = A2(D).

Later, J. Siciak proved the higher dimensional version:

Theorem 3.3.3 (Siciak [37]). Assume M is a complex manifold and A ⊂M is
a closed pluripolar set. Then every L2 holomorphic function can extend across
A.

Remark. In the higher dimensional case, according to Hartogs’ extension the-
orem, the converse does not hold any more.

For (A) ⇒ (C) of Theorem 3.3.2, the original proof used an equivalent con-
dition of polarity: a subset E of C is polar if and only if c(E) = 0, where c(E) is
the logarithmic capacity of E (see e.g., [8, 13, 33]). Recently, Chen–Wu–Wang
[10] gave an alternative proof based on the gradient estimate for subharmonic
functions, which also leads to an Ohsawa–Takegoshi type extension theorem
for a single point in a bounded complete Kähler domain. Note that the origi-
nal Ohsawa–Takegoshi extension occurs in pseudoconvex domains. And similar
techniques are used to show the following

Theorem 3.3.4 (Chen–Wu–Wang [10]). Assume Ω ⊂ Cn is a domain and
E ⊂ Ω is a closed pluripolar subset. Then every ϕ ∈W 1,2

loc (Ω)∩PSH(Ω \E) can
extend to a plurisubharmonic function on Ω.

For our problem, if we want to obtain the potential of a complete Kähler
metric by solving ∂∂-equations, the first step is to extend the domain of defini-
tion of the Kähler form. The following theorem on currents (roughly speaking,
forms with distribution coefficients) will be needed:

Theorem 3.3.5 (Skoda–El Mir [39, 19, 36]). Assume M is a complex manifold
and A ⊂ M is a closed complete pluripolar set. If a closed positive current Θ
on M \A is locally integrable around A, then the trivial extension of Θ to M is
closed.

Since the assumption of complete pluripolarity of A is very strong, we choose
to start with Kähler potentials instead.

3.4 Equivalence between local and global prop-
erties

In the classical potential theory in Rn, the equivalences between local and
global polar / complete polar sets of subharmonic functions are well known.
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The similar problem on pluripolar sets was posed for the pluripotential theory,
namely, Problem I of Lelong (due to A. Sadullaev [35] and E. Bedford [4]). It
remained open for a long time until it was first solved by Josefson in 1978 [23]:

Theorem 3.4.1 (Josefson [23], cf. [22]). Assume M is a Stein manifold. If
A ⊂M is locally pluripolar, then A is globally pluripolar.

Later Bedford and Taylor defined a new capacity by means of complex
Monge–Ampère operators and gave an alternative and concise proof [6, 7].

Their method is very powerful, but one problem is that it is difficult to
distinguish complete pluripolar sets from the others. The similar problem on
complete pluripolar sets was solved by Colţoiu in 1990:

Theorem 3.4.2 (Colţoiu [11, 12]). Assume M is a Stein manifold. If A ⊂M
is closed and locally complete pluripolar, then A is globally complete pluripolar.

The idea of his proof is: by composition with a well chosen increasing con-
vex function, the plurisubharmonic functions for complete pluripolar sets can
be modified to be of bounded differences between each other on common parts,
then a corresponding series of continuous functions can be taken to add to
these plurisubharmonic functions to make their maximum continuous. The
strictly plurisubharmonic exhaustion function is modified to remove the nega-
tivity brought by these continuous functions, so that Richberg’s regularization
is applicable.

If we want to follow Bedford–Taylor’s approach for the complete pluripolar
case, a criterion for complete pluripolarity is necessary. The following notion
which was first introduced by A. Zeriahi [42], is found to be useful.

Definition 3.4.3 (pluripolar hull). Assume Ω ⊂ Cn is a domain and E ⊂ Ω is
pluripolar. Then

E∗Ω := {z ∈ Ω
∣∣ u(z) = −∞,∀u ∈ PSH(Ω), u|E = −∞}

is called the pluripolar hull of E with respect to Ω.

It is easy to prove the following proposition for complete pluripolar sets.

Proposition 3.4.4. Assume E ⊂ Ω is complete pluripolar. Then E = E∗Ω and
E is of type Gδ.

It was conjectured that the converse holds as well, but it still remains open.
So far, the best result is given by Zeriahi [42] with an additional assumption on
E.

Theorem 3.4.5 (Zeriahi [42]). Assume Ω is a pseudoconvex domain and E is
a pluripolar subset of Ω. If there exists F of type Fσ and G of type Gδ such that
F ⊂ E ⊂ E∗Ω ⊂ G, then there exists Ẽ ⊂ Ω such that Ẽ is complete pluripolar

and F ⊂ Ẽ ⊂ G.
In particular, if E is of type Fσ and Gδ and E = E∗Ω, then E is complete
pluripolar.
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Chapter 4

Examples of complements
of complete Kähler domains

4.1 History

Grauert first considered to connect complete Kähler metrics with Stein man-
ifolds. One direction is easy.

Theorem 4.1.1. Every Stein manifold admits complete Kähler metrics.

Assume ϕ is the strictly plurisubharmonic exhaustion function for a Stein
manifold M . Without loss of generality, we can assume ϕ ≥ 0. (Otherwise
consider expϕ instead of ϕ. ) One can check that ∂∂ϕ2 gives a complete
Kähler metric on M .

For the converse, Grauert found that not every complex manifold M ,
dimCM ≥ 2, carrying a complete Kähler metric is Stein. Instead, for any closed
analytic subvariety A of M , there exists a complete Kähler metric on M \ A
(Satz A in [20]).

One question arises from the above observation: what kind of condition can
force the complement of a complete Kähler manifold to be complex-analytic?

The two real codimensional case was considered by Ohsawa:

Theorem 4.1.2 (Ohsawa [29]). Assume M is a complex manifold, and A ⊂M
is a closed C1 submanifold of real codimension 2. If M \ A admits a complete
Kähler metric, then A is complex-analytic.

Later Diederich and Fornæss considered the higher codimensional case and
showed:

Theorem 4.1.3 (Diederich–Fornæss [15]). Assume M is a complex manifold,
and A ⊂ M is a closed real-analytic submanifold of real codimension ≥ 3. If
M \A admits a complete Kähler metric, then A is complex-analytic.

23
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Notice that in Ohsawa’s result, the C1-regularity condition is sufficient. In
the contrary, in higher codimensional case, even smoothness is not able to guar-
antee the analyticity. In other words, real-analyticity is necessary, due to the
following:

Theorem 4.1.4 (Diederich–Fornæss [15]). For any k ∈ N, k ≥ 3, there exists a
closed C∞ submanifold A of real codimension k in a ball B, such that A is not
complex-analytic and B \A admits a complete Kähler metric.

The above examples were constructed on open manifolds. After some modifi-
cations, we generalize their example to the compact case and obtain the following
result:

Theorem 4.1.5. For any k ∈ N, k ≥ 3, there exists a compact C∞ submanifold
A of real codimension k in Pn, such that A is not complex-analytic and Pn \ A
admits a complete Kähler metric.

4.2 Constructive proof of compact examples

Here we are going to directly construct compact examples of non-complex
submanifolds of arbitrary real codimension ≥ 3 in the complements of complete
Kähler domains.

Firstly, we construct a two real dimensional submanifold A ⊂ C3 as a graph
over S1 × S1 (instead of a graph over R2 cf. [15]) together with a complete
Kähler metric near A.

The proof is based on the following key lemma.

Lemma 4.2.1. Assume f = F |S1×S1 where F (z1, z2) is a polynomial on C2.
Γf is the graph of f . Fix a point p /∈ Γf with dist(p,Γf ) ≥ 1. For given
n ∈ N, ε > 0, there exists a C∞ strictly plurisubharmonic function φ on C3 and
h = H(z1, z2)|S1×S1 where H is a polynomial on C2 such that

(A) |Dα(h− f)| < ε on S1 × S1, |α| ≤ n;

(B) |φ| < ε on B2n := {z
∣∣ |z| ≤ 2n};

(C) |Dαφ| < ε on B2n ∩ {z
∣∣ dist(z,Γf ) ≥ ε}, |α| ≤ n;

(D) the distance from p to Γh ∩B2n measured in B2n with respect to the metric
induced by ∂∂φ is no less than n.

Proof. Assume φ is a continuous subharmonic function on C as constructed in
Lemma 3.2.2.

Let ZF be the graph of F and φF := φ(z3−F (z1, z2)). Then φF is continuous
plurisubharmonic on C3. One term |z|2 can be added to φF to make it strictly
plurisubharmonic. Then we can use Richberg’s regularization to φF + |z|2 to

get a continuous strictly plurisubharmonic function φ̃F on C3 such that
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• φ̃F is smooth in an open neighbourhood of B2n ∩ {z
∣∣ dist(z,Γf ) ≥ ε

2};

• φ̃F = φF + |z|2 on B2n ∩ {z
∣∣ dist(z,Γf ) ≤ ε

4}.

We can scale φ̃F to satisfy the following properties:

• |φ̃F | < ε
16 on B2n;

• |Dαφ̃F | < ε
16 on B2n ∩ {z

∣∣ dist(z,Γf ) ≥ ε
2} for all |α| ≤ n.

Then we use Richberg’s regularization once more to φ̃F to get a C∞ strictly

plurisubharmonic function φ1 such that the last two properties hold with φ̃F
replaced by φ1 and furthermore,

• for any curve γ : [0, 1] → B2n going from p to q ∈ Γf with γ((0, 1)) ⊂
B2n\Γf , γ has length at least n+ 1 with respect to ∂∂φ1 unless it satisfies
the following condition (?):

γ(τ) /∈ A := {z
∣∣ |z3 − F (x1, x2)| ≥ ε

16
, 1− η ≤ |zj | ≤ 1 + η, j = 1, 2}

for all τ ≥ t := sup{τ ∈ [0, 1]
∣∣ dist(γ(τ),Γf ) ≥ ε

8
},

where η is independent of γ and small enough such that ZF ∩A∩B2n = ∅.

The condition (?) means that γ approaches Γf along ZF . It makes sense
because due to the construction of φ, any curve going into ZF transversely in
B2n has +∞ length with respect to the metric induced by ∂∂φF and therefore
∂∂φ1.

The above property involving (?) can also be stated as:

• there exists δ1 > 0, δ1 � ε, such that any curve γ : [0, 1]→ B2n \Γf going
from p to q with dist(q,Γf ) ≤ δ1 has length at least n with respect to the
metric induced by ∂∂φ1 unless γ satisfies (?).

Next we will make some modifications on z1 and z2 directions. We can
choose a polynomial P (z1) and let G(z1, z2) := F (z1, z2) + P (z1) such that

• |P (z1)| < δ1
2 for all |z1| = 1;

• |P (k)(z1)| < ε
3 for all |z1| = 1, k ≤ n;

• dist((z1, z2, G(z1, z2)),Γf ) > ε for |z1| = 1± η
2 .

Let g := G|S1×S1 and repeat the above process to φG + |z|2 to obtain a
smooth strictly plurisubharmonic function φ2 such that

• |φ2| < ε
16 on B2n;

• |Dαφ2| < ε
16 on B2n ∩ {z

∣∣ dist(z,Γf ) ≥ ε
2} for all |α| ≤ n;
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• there exists δ2 > 0, 0 < δ2 � δ1, δ2 <
η
2 such that any curve γ : [0, 1] →

B2n \ Γg going from p to any q with dist(q,Γg) ≤ δ2 has length at least
n with respect to the metric induced by ∂∂(φ1 + φ2) unless γ satisfies (?)
and 1− η

2 ≤ |z1| ≤ 1 + η
2 for all τ ≥ t.

Similarly, we can choose a polynomial Q(z2) and let H(z1, z2) := G(z1, z2)+
Q(z2) such that

• |Q(z2)| < δ2 for all |z2| = 1;

• |Q(k)(z2)| < ε
3 for all |z2| = 1, k ≤ n;

• dist((z1, z2, H(z1, z2)),Γf ) > ε for |z2| = 1± η
2 .

Let h := H|S1×S1 and repeat the same process to φH + |z|2 to get a smooth
strictly plurisubharmonic function φ3 such that

• |φ3| < ε
16 on B2n;

• |Dαφ3| < ε
16 on B2n ∩ {z

∣∣ dist(z,Γf ) ≥ ε
2} for all |α| ≤ n;

• any curve γ : [0, 1]→ B2n \Γh going from p to any q with dist(q,Γh) ≤ δ2
has length at least n with respect to the metric induced by ∂∂(φ1+φ2+φ3)
unless it satisfies (?) and 1− η

2 ≤ |zj | ≤ 1 + η
2 , j = 1, 2 for all τ ≥ t.

However, the last property is impossible since A defined in (?) and {|zj | <
1− η

2 or |zj | > 1 + η
2}, j = 1, 2 wrap up Γh, which means any curve going to Γh

has to intersect either of these three sets.

Remark. In fact, since any periodic function on R can be considered as a
function defined on S1, if we allow the variable to take complex values, we get
C∗ as the complexification of S1 and a function defined on C∗. Therefore, in
the statement of the lemma, we can take F as such extension of f from S1×S1

to C∗2 conversely, where f can be chosen to be rational functions on C2 with a
permissible pole at the origin.

Proposition 4.2.2. There exists A ⊂ P3 given by the graph of a C∞ function
over S1 × S1 such that P3 \A admits a complete Kähler metric.

Proof. Let f1 ≡ 0, p = ( 3
2 i, 0, 0) ∈ C3. By Lemma 4.2.1 there exists a smooth

strictly plurisubharmonic φ1 and a polynomial f2 such that |Dα(f2 − f1)| < 1
2

on S1 × S1, |α| ≤ 1; |φ1| < 1
2 on B2; |Dαφ1| < 1

2 on B2 ∩ {z
∣∣ dist(z,Γf1) ≥

1
4}, |α| ≤ 1; the distance from p to Γf2 ∩B2 with respect to ∂∂φ1 ≥ 1.

Assume that smooth strictly plurisubharmonic functions φ1, ..., φk−1 and
polynomials f1, ..., fk have been chosen satisfying the following conditions:

(A) |Dα(fj − fj−1)| < 1
2j−1 on S1 × S1, |α| ≤ j − 1, j = 2, ..., k;

(B) |φj | < 1
2j on B2j , j = 1, ..., k − 1;

(C) |Dαφj | < 1
2j on B2j ∩ {z

∣∣ dist(z,Γfj ) ≥ 1
2j+1 }, |α| ≤ j, j = 1, ..., k − 1;
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(D) the distance from p to Γfk ∩ B2α(j,k) in B2α(j,k) with respect to ∂∂φj ≥
α(j, k) := j − 1 + 1

2k−1 , j = 1, ..., k − 1.

According to Lemma 4.2.1, one can take a polynomial fk+1 and a smooth strictly
plurisubharmonic function φk such that

(A’) |Dα(fk+1 − fk)| < δk on S1 × S1, |α| ≤ j − 1, j = 1, ..., k where δk will be
determined later;

(B’) |φk| < 1
2k

on B2k ;

(C’) |Dαφk| < 1
2k

on B2k ∩ {z
∣∣ dist(z,Γfk) ≥ 1

2k+1 }, |α| ≤ k;

(D’) the distance from p to Γfk+1
in B2k+1 with respect to ∂∂φk ≥ k.

The number δk in (A’) should be chosen small enough such that the distance
of p to Γfk+1

in B2α(j,k+1) with respect to ∂∂φj ≥ α(j, k + 1), j = 1, ..., k.
Therefore, the conditions (A-D) hold for the new set of f1, ..., fk+1 and φ1, ..., φk.

It follows from (A) that fk → f∞ in the C∞-topology on S1 × S1 and from

(B) that |z|2 +
∑k
j=1 φj → φ uniformly on every compact subset such that φ is

continuous on C3 and C∞ on C3 \ Γf∞ where ∂∂φ induces a complete Kähler
metric. Combining with a Fubini–Study metric, we get the desired complete
Kähler metric on P3 \ Γf∞ .

Proof of Theorem 4.1.5. In the above construction, by restricting the function
f∞ to C × {0}, we get its graph as a smooth curve in C × {0} × C ∼= C2 (the
three real codimensional case). It is also easily seen that Lemma 4.2.1 and
Proposition 4.2.2 can be generalized to higher dimensions, i.e., we can construct
the graph Γf ⊂ Cn of a smooth function f over S1 × ...× S1︸ ︷︷ ︸

n−1

and a continuous

plurisubharmonic function φ, smooth outside Γf . In every case, ∂∂φ combined
with a Fubini–Study metric will give complete Kähler metrics on Pn \ Γf∞ .

4.3 Remarks

Sometimes, curvature conditions are considered when one studies the com-
plements of complete Kähler domains. For example, Anchouche [2] used ad-
ditional curvature conditions to reduce the compact complements of complete
Kähler manifolds into finite point sets. It is shown here that in general there
exist nontrivial examples.

In Chapter 3, we have shown that complete pluripolar sets are complements
of some complete Kähler domains. Using similar techniques in [15], Diederich–
Fornæss proved that complete pluripolar sets are not necessarily complex, even
when they are closed C∞ real submanifolds [16]. In C2, they gave a closed
smooth curve, which is complete pluripolar, as the graph of a function over R
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This provides another approach to Theorem 4.1.5, if one can prove the ex-
istence of such compact pluripolar sets firstly. The problem was studied by
Edlund and answered affirmatively.

Theorem 4.3.1 (Edlund [18]). For any k ∈ N, k ≥ 3, there exists a com-
pact C∞ submanifold A of real codimension k in Cn, such that A is complete
pluripolar but not complex-analytic.

A remaining problem is whether or not one can follow Diederich–Fornæss’
method in [16] to provide an alternative (and simpler) proof of Theorem 4.3.1.

4.4 Nishino’s problem

It is mentioned that analytic varieties are complete pluripolar in Example
2.1.9. For the converse, T. Nishino [28] posed the following question in 1962:

Question. Assume f : D → C is a continuous function whose graph Γf is
pluripolar in C2. Does it follow that f is holomorphic?

As a corollary of Theorem 4.1.2, Ohsawa gave a partial solution under the ad-
ditional assumption that the graph Γf is complete pluripolar and of C1 smooth-
ness [29]. It was Shcherbina who finally solved the problem affirmatively in 2005.

Theorem 4.4.1 (Shcherbina [38]). Assume Ω ⊂ Cn is a domain and f : Ω→ C
is a continuous function. The graph Γf of f is a pluripolar set if and only if f
is holomorphic.

The proof used polynomial convex hulls mentioned in the remark after Def-
inition 2.3.1. Besides methods from the potential theory, it contained deep
results from algebraic topology.

Compared with Edlund’s result, it is known that Theorem 4.3.1 does not
follow for k = 2 by constructing such pluripolar set as the graph of a continuous
function over a domain in Cn. Again, the two real codimensional case is proved
to be special.



Chapter 5

Conclusion

5.1 Proof of Main Theorem

Now we are in the position to prove the main theorem of this article. It
is divided into two parts: First we consider the case all Kähler potentials are
bounded from below. Next we show that if there is one potential unbounded
from below, then after some steps, it can be modified to be bounded.

Proposition 5.1.1. Assume M is a Stein manifold and A ⊂ M is a closed
subset. If M \ A locally admits complete Kähler metrics induced by bounded
plurisubharmonic functions, i.e.,

• {Ui}i∈N is a locally finite open covering of M with Ui bM, i ∈ N;

• on each Ui, there exists ϕi ∈ PSH(Ui)∩C∞(Ui \A) such that ϕi ≥ 0 and
∂∂ϕi gives a complete Kähler metric on Ui \A along A ∩ Ui,

then there exists a complete Kähler metric on M \A induced by a globally defined
plurisubharmonic function on M . Moreover, this potential can be constructed
to be bounded from below. In particular, if every ϕi is continuous, a continuous
global potential can be chosen so that it is smooth outside A.

Proof. It is known that plurisubharmonic function is always locally bounded
from above. Since for each i ∈ N, ϕi is bounded, a linear transformation t 7→
ait+ bi with ai > 0 can be used to modify each ϕi such that 1 ≤ ϕi ≤ 2. Note
that such modifications keep the completeness of the metrics.

Set ui := ϕ2
i . It follows that

∂∂ui = 2(∂ϕi ∧ ∂ϕi + ϕi∂∂ϕi).

So we know that ui ∈ PSH(Ui) also induces a complete Kähler metric on Ui \A
along A ∩ Ui. Moreover, we have the following estimate:

∂∂ui ≥ 2∂ϕi ∧ ∂ϕi ≥
1

8
∂ϕ2

i ∧ ∂ϕ2
i =

1

8
∂ui ∧ ∂ui.
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Note that on A, ∂∂ui should be understood in the sense of current. Since ui
is bounded, we can choose a decreasing sequence of smooth plurisubharmonic
functions vj which tends to ui and define ∂∂ui = lim ∂∂vj . ∂∂ϕi is defined in
the same way. Then ∂ϕi ∧ ∂ϕi and ∂ui ∧ ∂ui are also defined and the same
estimates hold.

Take U ′i b Ui such that {U ′i} still forms an open covering of M . Choose
ρi ∈ C∞(M) such that ρi ≥ 0,Supp ρi ⊂ Ui, ρi ≡ 1 on U ′i . Then ρiui extends
to a function defined on M and is smooth outside A. If ρi 6= 0, consider ∂∂ρiui
on Ui \A:

∂∂ρiui = ui∂∂ρi + ∂ρi ∧ ∂ui + ∂ui ∧ ∂ρi + ρi∂∂ui.

Since

0 ≤ (
4
√
ρi
∂ρi +

√
ρi

4
∂ui) ∧ (

4
√
ρi
∂ρi +

√
ρi

4
∂ui)

=
16

ρi
∂ρi ∧ ∂ρi + ∂ρi ∧ ∂ui + ∂ui ∧ ∂ρi +

ρi
16
∂ui ∧ ∂ui,

it follows that

∂ρi ∧ ∂ui + ∂ui ∧ ∂ρi ≥ −16

ρi
∂ρi ∧ ∂ρi −

ρi
16
∂ui ∧ ∂ui

≥ −16

ρi
∂ρi ∧ ∂ρi −

ρi
2
∂∂ui.

Therefore,

∂∂ρiui ≥ ui∂∂ρi −
16

ρi
∂ρi ∧ ∂ρi +

ρi
2
∂∂ui.

Note that
16

ρi
∂ρi ∧ ∂ρi → 0 as ρi → 0.

Since M is Stein, there exists a smooth strictly plurisubharmonic exhaustion
function ψ on M . Let

ϕ := r(ψ(z)) +
∑
i

ρiui(z),

where r : R→ R is an increasing convex function. Locally there are only finite
non-zero terms in the sum, so ϕ is well defined.

It is known that for each c ∈ R, {ψ < c} b X. Therefore, a large enough
coefficient Cc can be chosen such that Cc∂∂ψ removes the negativity brought
by
∑
i ui∂∂ρi−

16
ρi
∂ρi∧∂ρi in {ψ < c}. If r is chosen to increase rapidly enough

at +∞, then ϕ is plurisubharmonic on M such that Hϕ ≥ 1
2Hϕi on U ′i \ A.

Therefore, ϕ induces a complete Kähler metric on M \A.
If every ϕi is continuous, ϕ constructed as above is also continuous. By

setting µ a small positive constant and γ = Hϕ, Richberg’s regularization can
be applied to ϕ on M \A to obtain a smooth strictly plurisubharmonic function
ϕ̃. The estimate Hϕ̃ ≥ (1 − µ)Hϕ implies that ϕ̃ induces a complete Kähler
metric on M \A.
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For the case not every ϕi is bounded from below, we need the following
lemma to reduce it into the previous case.

Lemma 5.1.2. Under the same hypothesis as above, if on some open U ⊂M ,
ϕ ∈ PSH(U)∩C∞(U \A) is unbounded and ∂∂ϕ gives a complete Kähler metric
on U\A along A∩U , then there exists another potential ϕ̃ ∈ PSH(U)∩C∞(U\A)
such that ϕ̃ is bounded from below and ∂∂ϕ̃ gives a complete Kähler metric on
U \A along A.

Proof. Consider
Φ1 := eϕ,Φ2 := h(ϕ)

where h(t) := 1
log(−t)χ(t + 3) + Kα(t), χ(t) ∈ C∞(R, [0, 1]) with χ ≡ 1 on

(−∞, 0] and χ ≡ 0 on [1,+∞), α(t) ∈ C∞(R, [0,+∞)) with α ≡ 0 on (−∞,−4]
and α′′(t) > 0 on (−4,+∞), K > 0 is chosen large enough such that h(t) is
increasing and convex. It is clear that Φ1,Φ2 are plurisubharmonic on U and
nonnegative.

Choose any differential curve γ : [0, 1) → U \ A which is non relatively
compact with respect to M \ A. If ϕ ◦ γ([0, 1)) > C for some constant C, then
the computation

∂∂Φ1 = eϕ(∂ϕ ∧ ∂ϕ+ ∂∂ϕ) ≥ eC∂∂ϕ

implies that

`∂∂Φ1
(γ) ≥ eC2 `∂∂ϕ(γ),

where `∂∂· stands for the length with respect to ∂∂·. Since ∂∂ϕ is a complete
Kähler metric on U \A along A, which means the latter is +∞, it follows that
the former is also +∞.

If ϕ ◦ γ([0, 1)) is unbounded from below, when ϕ ◦ γ(t) < −1, the following
computation

∂∂(
1

log(−ϕ)
)

=
2

log3(−ϕ)

1

ϕ2
∂ϕ ∧ ∂ϕ+

1

log2(−ϕ)

1

ϕ2
∂ϕ ∧ ∂ϕ− 1

log2(−ϕ)

1

ϕ
∂∂ϕ

≥ 1

log2(−ϕ)

1

ϕ2
∂ϕ ∧ ∂ϕ

implies that if t0 ∈ (0, 1) is chosen such that ϕ ◦ γ(t0) < −3, then `∂∂Φ2
(γ) has

the estimate

`∂∂Φ2
(γ) ≥

∫ 1

t0

√∑ 1

log2(−ϕ)

1

ϕ2

∂ϕ

∂zi

dzi
dt

∂ϕ

∂zj

dzj
dt

dt

=

∫ 1

t0

1

|ϕ log(−ϕ)|
|dϕ ◦ γ(t)

dt
|dt

≥ lim inf
t→1

∫ t

t0

1

−ϕ log(−ϕ)
d(−ϕ ◦ γ(t))

= +∞.
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Therefore, ϕ̃ := Φ1 + Φ2 ≥ 0 serves as the potential of a complete Kähler
metric on U \A along A.

The main theorem follows immediately from Proposition 5.1.1 and Lemma
5.1.2.

5.2 Further questions

Complete pluripolar sets serve as important examples of complements of
complete Kähler domains. We want to consider what kind of set satisfies this
condition and give more examples.

And at the same time, we plan to consider what kind of set contains comple-
ments of complete Kähler domains as a subclass and whether or not the similar
local and global equivalence holds there.

Comparing the results of Ohsawa and Shcherbina, one natural question is
whether or not the C1-regularity assumption in Theorem 4.1.2 can be weakened
to C0 as in Theorem 4.4.1, to obtain a strong version of Nishino’s problem.

Among the related topics in pluripotential theory, we are interested in the
conjecture pluripolar hulls of type Gδ must be complete pluripolar. This will
lead the powerful tools developed by complex Monge–Ampère operators to the
study of complete pluripolar sets.



Appendix A

A.1 Proof of Colţoiu’s theorem

Here we will summarize the proof of Theorem 3.4.2. Following the same
assumption, first we show that A can be written as follows:

Proposition A.1.1. If M and A are defined as in Theorem 3.4.2, then there
exists {(Ui, ϕi)}i∈N such that {Ui} is a locally finite open covering of M with
Ui b M , ϕi ∈ PSH(Ui) with A ∩ Ui = {ϕi = −∞}, expϕi is continuous, ϕi is
C∞ outside A (cf. [19], p.19), ϕi − ϕj is bounded on Ui ∩ Uj \A,∀i, j ∈ N.

In order to get the boundedness of differences between ϕi, we need to com-
pose them with a suitably chosen increasing convex function.

Lemma A.1.2. Assume {ai}i∈N is a sequence of negative numbers such that
ai decreases to −∞ as i → ∞. Then there exists a smooth increasing convex
function τ : (−∞, 0)→ (−∞, 0) such that

lim
i→∞

τ(ai) = −∞, τ(ai)− τ(ai+1) < 1,∀i ∈ N.

Proof. Let

τ(t) :=

{
(a1a2 + · · · ai

ai+1
)− i− t

ai+1
ai+1 ≤ t ≤ ai, i ≥ 1

a1
a2
− t

a2
− 1 a1 ≤ t < 0

.

Then we can check that τ(ai)− τ(ai+1) = − ai
ai+1

+ 1 < 1 and

τ(ai)− τ(ai+p) =
ai+1 − ai
ai+1

+ · · ·+ ai+p − ai+p−1

ai+p
≥ ai+p − ai

ai+p
.

p can be chosen large enough (depending on i) such that τ(ai) − τ(ai+p) ≥ 1
2 ,

therefore, limi→∞ τ(ai) = −∞. At last, τ can be made smooth easily.

Lemma A.1.3. Assume {fn}n∈N is a sequence of increasing function with
fn : (−∞, 0) → (−∞, 0) satisfying limt→−∞ fn(t) = −∞,∀n ∈ N. Then there
exists a smooth increasing convex function τ : (−∞, 0) → (−∞, 0) such that
limt→−∞ τ(t) = −∞, τ ◦ fn − τ ◦ fm is bounded for ∀n,m ∈ N.
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Proof. We can take {λi}i∈N a sequence of negative numbers with λi → −∞ as
i→∞ and

min{fn(λi)
∣∣ n ≤ i} > max{fn(λi+1)

∣∣ n ≤ i+ 1},∀i ∈ N.

Let

a2i−1 := min{fn(λi)
∣∣ n ≤ i},

a2i := max{fn(λi+1)
∣∣ n ≤ i+ 1}.

We can check that {ai}i∈N satisfies the assumption of Lemma A.1.2. Since
a2i−1 ≤ min{fn(t)

∣∣ n ≤ i} ≤ max{fn(t)
∣∣ n ≤ i + 1} ≤ a2i+2, we can find τ

satisfying our requires and moreover,

τ ◦ fn − τ ◦ fm < 3.

Proof of Proposition A.1.1. We can assume that {Ui}i∈N, {Vi}i∈N are locally
finite open coverings of M with Ui b Vi bM and ϕi : Vi → [−∞, 0) is plurisub-
harmonic with A ∩ Vi = {ϕi = −∞}, expϕi is continuous and ϕi is smooth
outside A.

For ∀i, j such that Ui ∩ Uj 6= ∅, let

Bij(t) := sup{ϕi(x)
∣∣ x ∈ Ui ∩ Uj , ϕ(x) ≤ t}.

It is easy to see that Bij is increasing and satisfies limt→−∞Bij(t) = −∞.
According to Lemma A.1.3, there exists a smooth increasing convex function

τ such that limt→−∞ τ(t) = −∞, τ ◦Bij − τ is bounded for ∀i, j ∈ N.
If x ∈ Ui ∩ Uj \A, then Bij(ϕj(x)) ≥ ϕi(x) and

τ(ϕi(x))− τ(ϕj(x)) ≤ τ(Bij(ϕj(x))− τ(ϕj(x)) < +∞.

Proof of Theorem 3.4.2. Take U ′′i b U ′i b Ui such that {U ′′i } still forms an
open covering of M . Since ϕi − ϕj is bounded on U ′i ∩ U ′j \ A, we can choose
pi ∈ C∞0 (M) such that pi ≥ 0, Supp pi ⊂ U ′i and

ϕi + pi < ϕj + pj on ∂U ′i ∩ U ′′j \A.

Since M is Stein, there exists a strictly plurisubharmonic exhaustion function
ψ. Let

ϕ0 := r(ψ(z)) + max{ϕi(z) + pi(z)
∣∣ z ∈ U ′i}.

ϕ0 is well-defined and continuous on M \ A. Note that ϕ0(z) → −∞ as z →
z′ ∈ A. r is an increasing convex function and should be chosen to increase
rapidly enough at +∞ such that ϕ0 is strictly plurisubharmonic on M \A.

Then Richberg’s regularization can be applied to ϕ0 on M \ A to obtain a
smooth strictly plurisubharmonic function ϕ on M \A. Moreover, the fact ϕ can
be chosen arbitrarily close to ϕ0 implies that ϕ(z)→ −∞ as z → z′ ∈ A.
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