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ABSTRACT

Topology optimization is one of the structural optimizations and is a mathemat-

ical approach to find the optimal material layout within the given design domain.

The objective function appropriately defined reaches its optimum value after opti-

mization under given constraints by using a certain numerical method to solve this

optimization problem. It is the most flexible structural optimization compared with

other sizing and shape optimizations since it allows appearances of holes in the

optimum material layout. Topology optimization has received wide attention and

has been implemented through the use of finite element methods based on plenty

of optimization techniques, such as homogenization method (HM), solid isotropic

material with penalization (SIMP), evolutionary structural optimization (ESO) and

level set method (LSM). Based on these popular techniques, topology optimization

has been applied to many physical problems and engineering applications such as

mechanics, vibration, acoustic, thermal and electromagnetic problems. However,

most of the approaches suffered some drawbacks such as checkerboard patterns,

intermediate density material and dependency on initial configurations. Moreover,

these approaches take much computational time and result in non-smooth bound-

aries.

This dissertation aims at constructing a level set-based topology optimization

method using the boundary element method for heat conduction problems to find

the optimal material configuration. The boundary element method is used for the

heat conduction analyses by meshing the boundary of the material for each iterative

step of optimization to avoid the intermediate density problems.

This dissertation is organized as follows: Chapter 1 includes a classification

of structural optimizations and the development of the popular optimization tech-

niques, and reviews starting from their appearance to working principles, applied

problems, and advantages and disadvantages. Chapter 2 introduces the concept

of the level set method to represent the property (material or void) of design do-

main, combining the boundary element method which is used to solve heat con-
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duction problems, then constructs an time evolution equation for updating the level

set function. In the evolution equation, topological derivative or sensitivity con-

cept is introduced and a regularization term is used to control the complexity of the

configurations; Chapter 3 provides a topology optimization algorithm and gives a

discretization of the time evolution equation for updating level set function. Chapter

4 presents a treatment of the newly generated boundaries as insulating boundaries

and derives the topological derivative under the insulating boundary condition for

heat conduction problems using boundary element method. The correctness of the

topological derivative and its dependency on mesh and initial configuration of the

material are validated. Chapter 5 derives the topological derivative under the heat

transfer boundary condition using the boundary element method and demonstrates

its validation through a numerical example. Also, a topology optimization for two

dimensional heat conduction problems under heat transfer boundary condition is de-

veloped. Chapter 6, while basing on the topology optimization scheme under heat

transfer condition in preceding chapter, considers the cases in which the objective

functions for the temperature and heat flux are defined on design-dependent bound-

aries, which are newly generated ones but evaluated in objective function in this

chapter. The topological derivatives of the objective functions both for the temper-

ature and the heat flux are verified through numerical examples. The chapter also

presents the topology optimization examples using the corresponding topological

derivatives. Finally, Chapter 7 reaches the conclusions of this dissertation.

In conclusion, the level set-based topology optimization for two-dimensional

heat conduction problems using the boundary element method under insulating

boundary condition, heat transfer boundary condition, as well as morphing bound-

ary considered in the objective functions of temperatures and the heat flux, are pro-

posed. The use of the boundary element method and re-meshing of the boundaries

through every iterative step of optimization computation enables this novel charac-

teristic. The proposed method does not suffer checkerboard patterns, intermediate

density and zigzag boundaries of the optimum layout of the material. Moreover, it
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can provide designers with various optimal configurations with smooth boundaries

by adjusting the regularization parameter value. It possesses the advantage of easy

meshing compared with the finite element method. Also, the boundary element

method is especially convenient and accurate when objective function is defined

on boundaries of the configurations. The level set method works well in obtaining

boundary element information for solving heat conduction problems using bound-

ary element method. Hereto, the significance of this work lies in the combination

of the level set method and the boundary element method in topology optimiza-

tion for heat conduction problems. Thus, the proposed method will have a great

contribution in the designs of thermal devices in engineering applications. Mean-

while, it is suggested that the level set-based topology optimization combining with

the boundary element method can be used in other physical problems, such as me-

chanics, acoustics, and electromagnetic problems, especially in the problems with

objective functions defined on boundaries of the new material configurations.
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Chapter 1

Introduction

Design optimization is to find a structural configuration to make an objective

function reach its maximum or minimum, by which to achieve the best perfor-

mances of devices, under certain constraints.

1.1 Classification of structural optimization

“Structure” refers how the parts of a thing relate to each other or how a thing is

composed of parts. This word is used widely in different branches of research sub-

jects, social, economic, architectural, chemical and physical structures, for example.

“Structure”, in this dissertation, refers to the physical structure, that is, the state of

material layout. Then the structure optimizations can be thought as the process of

material redistribution. It is subdivided into Sizing [1, 2, 3, 4, 5], Shape [6, 7, 8, 9]

and Topology optimization [10, 11, 12, 13, 14], which are to be introduced in the

following paragraphs.

Sizing Optimization: It is to find the optimal size that makes the objective function

defined reach to its maximum or minimum under certain constraints. It takes the

size of the structure to be optimized as the design variable. Therefore, only the size

can be changed in the optimization process. A general view of sizing optimization
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is shown as Figure 1.1, in which the obtained configuration is also rectangle, but its

length and height have changed.

Figure 1.1: Sizing optimization

Shape Optimization: It is to find the optimal shape that makes the objective func-

tion defined reach to its maximum or minimum under certain constraints. It takes

the boundary shape of the structure to be optimized as the design variable, and al-

lows the boundary shape to change freely under given constrains. This, comparing

with sizing optimization, provides designers with more design freedom. The Figure

1.2 gives a general view of shape optimization, in which one can see that the shape

has change from rectangle to circle .

Figure 1.2: Shape optimization

Topology Optimization: It is a mathematical approach by which to find the optimal

material layout, such that the objective function reaches its optimum value after

optimization under given constraints, within the given design domain. The most

important characteristic that differs from the former two is that this method allows
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holes to appear in the process of optimization, which, to the max, provides design-

ers with the most design room among the three kinds of optimization. Accordingly,

it is the most flexible structural optimization. A general view of topology op-

timization is provided as Figure 1.3, in which one can find there are holes created

after optimization.

Figure 1.3: Topology optimization

It may be difficult to tell which optimization method is used just by looking at

optimized structure. This is because topology optimization allows for appearance

of holes and in the process of optimization holes may dissolve boundaries accord-

ingly result the boundary change, which may be mistaken for the result of shape

optimization. To avoid these misunderstandings, researchers usually identify what

method is used by the practical techniques implemented in the theoretical derivation

and its numerical implementation process.

1.2 Development of structural optimization

When it refers to structural optimization, it always dates back to truss layout op-

timization [15, 16, 17], in which Michell derived analytically the optimality criteria

[18] for least weight trusses under the constraint of stress in the year of 1904. This

was seen as the milestone contribution to truss layout optimization. However, inter-

ests of truss layout optimization was not active until 1950s. Michell’s criteria [19]

was applied by Cox to some simple layout problems; extended by Prager to other

design conditions, say, natural frequency and stationary creep; developed by Hemp
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into some other optimality criteria. In 1970s, Michell’s optimality criteria was ex-

tended to grillages and formulated as the basic principles of optimal layout theory by

Prager and Rozvany. In the following 30 years, the research of structural optimiza-

tion made a great progress and many well-known methods appeared in shape and

topology optimization, since sizing optimization is at the lowest level in optimiza-

tion, which maybe the reason why there is few publications of sizing optimization

on Google scholar except the just mentioned optimization of truss, where the length

of frames and size of cross sections are variables to be optimized. These methods

are named respectively as Homogenization Method [10], Solid Isotropic Material

with Penalization, Evolutionary Structural Optimization [20], and Level Set Method

[21] . Based on these methods, structural optimization, especially the topology op-

timization, shows a great potential in exploring ideal and optimized structure. They

have been widely applied to many physical problems, such as compliant mecha-

nisms [13, 14, 22], stiffness maximization problems [10, 23, 24], vibration prob-

lems [25, 26, 27], acoustic problems [28, 29], thermal problems [30, 31, 32] and

electromagnetic design problems [33, 34, 35, 36].

Homogenization Method (HM): It is proposed by Bendsœ and Kikuchi [10] in

1988. Suzuki and Kikuchi have proposed a homogenization method for shape and

topology optimization in 1991 [24] in which the mean compliance is considered.

Dı́aaz presented the solutions to shape and topology eigenvalue optimization prob-

lems using a homogenization method in 1992 [37] to maximize a single eigenvalue.

The homogenization method is also employed in a shape optimization of structures

for multiple loading conditions in 1992 [38]. Nishiwaki has proposed topology opti-

mization of compliant mechanisms using the homogenization method in 1998 [14].

Silva and Nishiwaki published a paper on optimization methods applied to material

and flextensional actuator design using the homogenization method in 1999 [39].

Tartar has an introduction of the homogenization method in optimal design in 2000

[40]. Allaire has written an book on shape optimization by the homogenization
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method in 2002 [41]. The homogenization method acts by representing a finite de-

sign space as a cellular body with a periodic microstructure. It has a material prop-

erty that, in the optimization, the space with cells represents empty space; while the

space with cells that holes disappeared represents material space. Based on such a

material property, Homogenization Design Method (HDM) [42] appeared and ap-

plied to elasticity problems [43, 44], where it extends a finite design domain to a

fixed design domain, and replaces the optimization problem with material distribu-

tion problem, using the characteristic function. However, it was noted by Campelo

[45] that this approach does not need to make finite element again in the next it-

eration, only needed is to work on the fixed mesh; While, the bad is that a great

number of variables comes out during the optimization. Besides, this approach

was found to be a checkerboard-suffering and mesh-dependent method. An

example of checkerboard problem shown in Figure 1.4 can be found in Sigmund’s

work in 1998 [46], which consists alternating material and void checker. From this

figure, one can find that the apparent disadvantage is the boundary of the configura-

tion is not smooth. This can be alleviated, even still not smooth microscopically, by

using finer mesh, but will at the expense of increasing in data amount and computa-

tional time theoretically, as well as the numerical instabilities of resulting different

optimal configuration, which can be in (c) and (d) of the same figure just referred.

The instabilities have been studied by discussing the reason for the formation of

checkerboard patterns [47]. The similar checkerboard patterns affecting the finite

element solution of mixed variational problems have been studied extensively by

Brezzi and Fortin [48] in 1991, where the formation of checkerboards is attributed

to the relation to the violation of the so-called Babuska-brezzi [49] or LBB con-

dition. Jog and Haber [50] also attributed the patterns in the layout problem to

LBB type instability. To ease such instability, different function were suggested in

a fashion similar to that suggested by the LBB condition to interpolate the displace-

ment field and density variable, which were two variables in layout optimization

problems. Yet the standard Babuska-Brezzi argument that were applied to mixed
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variational problems are not met by the layout optimization problem.

Figure 1.4: Example of checkerboards (Cited from [46])

Solid Isotropic Material with Penalization (SIMP): It is also named the density

method. It was originally considered by Bendsøe [51] in 1989. Later in 1991 Zhou

and Rozvany has developed this method and the term “SIMP” was in fact proposed

by Rozvany et al. [52] in 1992. This method is quite attractive in the engineering

field. It assumes some explicit relationships between the normalized density and the

actual material property in each cell, where the material property can be controlled

simultaneously in every iterative step and updated by corresponding mathemati-

cal algorithm to reach final design [53]. This approach precludes anisotropic mi-

crostructures in problems formulation because it considers just isotropic microstruc-

ture, which can result in intermediate density which is shown in Figure 1.5 [54]

to form the so-called “gray” area, whose density is less than 1.0 and results in

blurred boundaries . Although the material with intermediate density is physically

realizable, this method is useful for engineers who are interested in solid-void de-

signs [55]. Some interpolation functions [56] and other restriction method, such as

perimeter control [57], explicit density slop constraints [58], adaptive density [59]

and regularized density control [60], were used to penalize the intermediate density

to “black and white” patterns [52]. Nevertheless, this problem still arise such as in

the compliance minimization of thermoelastic structures. Another problem is this

method often results local optimal results while using big penalty to avoid the in-

termediate density as much as possible [61]. Moreover, some penalization on the

intermediate material problem is at the expense of increase in finite element mesh.

This can be found in an example given in Borrvall and Petersson’s work [62]. In
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a word, it is not only a method suffering intermediate density that does not

enable us to have a clear boundary, but also a mesh-dependent one.

Figure 1.5: Example of Intermediate Density (Cited from [54])

Evolutionary Structural Optimization (ESO): It is introduced by Xie and Steven

[20] in 1990s. It is based on the concept of gradually removing unnecessary or inef-

ficient material from a structure to achieve an optimal design, in which correspond-

ing constraints may be imposed on the structure, say, stiffness and frequency. Of

course, corresponding criteria for removing material is needed to carry out the opti-

mization under their constraints. In 1993, Xie and Steven proposed a simple evolu-

tionary procedure for structural optimization, which can be seen as the foreshadow

of the arise of the ESO concept. In 1996, they applied the evolutionary structural

optimization to static problems [64] in which to minimize weight of structure to

satisfy stiffness requirements and dynamics problems [63] in which the material is

removed at the end of each eigenvalue analysis to realize the aim of maximizing

or minimizing a chosen frequency of a structure. Later, this method has been also

applied to the shape and topology design for heat conduction [31] in 1999, topology

optimization of continuum structures [68] in 2010 and to architecture and urban de-
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sign [69] in 2011. However, this method does not allow the deleted elements to be

restored. To solve this, another method bi-directional ESO (BESO) [65] came out

later, which allows material to be added and removed simultaneously, consequently

leads to a more efficient optimization process and has been applied to multiple load

case [66], and continuum structures with one or multiple materials [67].

The ESO method is a simple method for structural shape and topology optimiza-

tion, as stated that the significance of such an evolutionary structural optimization

(ESO) method lies in its simplicity in achieving shape and topology optimization

in [63]. Meanwhile, since it is based on the simple idea of removing material,

its solidness of theoretic basis maybe suspected. Yet, it was proved to have distinct

theoretical basis and has potential to become a tool for design engineers [70]. Mean-

while, it is indicated that ESO seems to be producing truss-like topologies, thus it

should be applied to structural problems with pin-jointed connections. For other

types of structures ESO should be studied further in [70]. Beside, the checkerboard

patterns can be also noticed in structural optimization using evolutionary structural

optimization method, as observed in some other finite element based optimization

problems. Li, Steven and Xie proposed a simple algorithm to suppress this prob-

lem rose in evolutionary structural optimization and demonstrated the capabilities

of proposed algorithm with a lot of examples [71]. However, people can find the

optimal configurations are always with zigzag boundaries, which is an inevitable

result of using finite element based method. One way to relieve this problem may

be by increasing the number of discrete finite elements, but will be definitely at

the expense of handling large amount data.

Level Set Method (LSM): It was introduced by S. Osher and J. A. Sethian [21]

relying in part on the theory of curve and evolution given in [72] , as a versatile

method to implicitly represent evolutional interfaces in an Eulerian coordinate sys-

tem. It is an useful approach to gain the contour of topological change by using the

iso-surface of the level set function. It has been applied to many fields, such as hy-
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dromechanics [73, 74, 75], picture processing [76, 77, 78], and CAD [79]. The level

set method (LSM) has been seen as an effective numerical technique for tracking

interfaces and shapes. It has been widely used in structural optimization.

Sethian and Wiegmann [80] firstly proposed a level set-based structural opti-

mization method where an narrow band level set method [81] is used to represent

the design structure through an embedded implicit function in the structural opti-

mization of linear elastostatic structures under user-supplied constraints. Osher and

Santosa constructed a numeral approach for optimization problems involving ge-

ometry and constraints using level set method which is updated its velocity which

is calculated by using the functional gradients [82].

Belytschko et al. proposed a topology optimization with implicit functions,

which is thought as the basis of level set methods, but is updated by the integration

of hyperbolic conservation equations [83]. This method was applied to problems

of optimizing single material and multi-material configurations. And it is linked to

the extended finite element method (X-FEM) [84, 85], which enables the design to

include features such as interfaces between materials that are not coincident with

the mesh arbitrarily positioned cracks, holes, etc. The authors have applied this

method in the optimization of cantilever beam structures, where this method was

found to be mesh-independent (the results converge to the same configuration), free

of the so-called grayscale and checkerboard phenomenon. However, this method

is mentioned by the authors to undoubtedly has limitation in the geometries, since

implicit surface definitions can result in difficulties at corners.

Wang et al. proposed a structural topology optimization method based on level

set models for optimizing linearly elastic structures [86]. In this method, the authors

obtained the so-called “Hamilton-Jacobi-type” equation, which defines an initial

value problem for the time dependent function. Then “Hamilton-Jocobi-type” equa-

tion is used to update the level set function. Later, Wang et al. stretched this method

to the optimization problems with multi-materials [87]. In the multi-materials op-

timizations, m level set functions are employed to represent a structure of n = 2m
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different material phases, in a manner as combining colors from three primary col-

ors. Also for this reason, the multi-phase level set method is referred as a “color”

level-set method. However, the method they proposed used an implicit, moving

boundaries for topology optimization where boundaries (or holes) can emerge with

each other to form new boundaries (or holes). For this reason, This method can

be thought as a shape optimization method. Moreover, the numerical efficiency is

restricted due to the numerical stability condition for discreting level set equation.

Xia et al. [88] propose an semi-lagrange method for level set-base topology and

shape optimization, in which the total time of optimization process is much less

that using simple explicit upwind scheme. Later, Wang and Lim [89] proposed an

extended level set method for shape and topology optimization. In this method, a

radial basis function (RBF) is introduced construct the implicit level set function

with a high level of accuracy and smoothness and to discretize the original initial

value problem into an interpolation problem, for which a rapid convergence can be

obtained.

Allaire, Jouve, and Toader has proposed a numerical method of shape optimiza-

tion based on the level set function and on shape differentiation [90, 91], but indi-

cated that the level set method does not solve the inherent problem of ill-posedness

of shape optimization that shows itself in the frequent existence of local minima.

It is explained that the level set method can easily remove holes but can not make

new holes in the middle of a shape. Later, Allaire et al. proposed a structural op-

timization using topological and shape sensitivity via a level set method where the

authors indicated that even the level set method can easily handle boundary propa-

gation with topological changes, it does not allow nucleation of new holes at least

in two dimensional case [92, 93]. Thus, the authors introduced the bubble method

[94] or topological gradient method [95, 96], which is effective to introduce new

holes in the optimization process. Then they coupled it with the level set method

and formed an effective algorithm that can escape from local minima problem. To

be mentioned, in the optimization algorithm, it is suggested that more level set step
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should performed than topological gradients steps, which is implemented with an

introduced coupling parameter. This parameter will result irregular shape with too

small values and will not nucleate a new hole with too large values.

Yamada et al. [97, 98] proposed a topology optimization method using a level

set model incorporating a fictitious interface energy derived from the phase field

concept [99, 100]. The authors embedded the level set function in a fixed design

domain and added a fictions interface energy term to objective function to regularize

the optimization problem. This method is fundamentally different from the tradi-

tional level set-based optimization methods proposed by Wang et al. and Allaire et

al. It is not a boundary-moving method, thus it can be truly classified as a topology

optimization method. Moreover, the fictitious interface energy term acts as a reg-

ularization term that enables designers to obtain versatile configurations according

to engineering needs. The authors have applied their method to internal heat gener-

ation problem where different configurations were obtained with different regular-

ization value, which shows this method is an design-dependent one. Moreover, it is

a method that initial configuration does not affect final optimal configuration. In the

following, Yamada et al. have this method applied to mean compliance, compliant

mechanism [101], vibration, and heat transfer problems.

Topology optimization has been research widely but most research just men-

tioned are based on finite element method. Besides, Nima Bakhtiary for the first

time presented a new interface between CAOSS and MSC/NASTRAN. CAOSS

(Computer Aided Optimization System Sauter) is an optional finite element module

for the efficient sizing, shape and topology optimization [102]. Zhou et. al. pre-

sented a topology optimization for negative permeability metamaterials using level-

set algorithm, where the authors used the finite-difference time-domain method to

solve both the vector wave equation and its adjoint system [103].

There is no doubt that topology optimization based on finite element method

will have disadvantages in computational time, especially for large scale engineer-

ing problems. For this reason, some authors started the research of topology op-
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timization with boundary element method, which is seen as a boundary-treatment

method. Cisilino presented a numerical approach for the topological optimization

of 2D potential problems minimizing the total potential energy, where boundary

element method is used to solve the potential problems [104]. Xing and Wang pre-

sented a topology optimization with level set method based on streamline diffusion

finite element method [105]. Matsumoto[106] proposed a level set-based topology

optimization for acoustic design problem, in which the topology sensitivity expres-

sion are derived combining with the boundary element method. Later, he started

a study on topology optimization using level-set function and boundary element

method for potential problem [107]. The use of boundary element method gener-

ates only elements on boundaries or surfaces and thus makes it easy in handling the

mesh compared with FEM.

1.3 Boundary element method

In all optimization methods described in the previous sections, numerical meth-

ods are required to solve boundary value problems involved in the process of op-

timization. The finite element method is usually used but at the expense of mass

discrete the whole object. This thesis uses the boundary element method, since it

just needs to discrete the boundary of the object.

The boundary element method is a numerical method for the solution of integral

equations. It has emerged in the early 19th, then been researched a lot, and by now it

already has become an important technique in computational solutions of all kinds

of physical problems.

The boundary element method is derived through discretizing the integral equa-

tions, which are originally expressed as but equivalent to the partial differential

equation. Fredholm [108] discretized the integral equation in potential problems

and formed the boundary element approach, which is seen as the indirect boundary

element method because of using fictitious density functions that have no physical
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meaning. The direct boundary element method was founded by Somigliana [109]

in 1886. It is named ”direct” because it formed as boundary values problem.

There was no big breakthrough in the boundary element method until the 1960’s

when the computers came out. In 1963, Jaswon and Symm [110] took their step into

numerical discretization. They discretized the integral equations of two dimensional

potential problems governed by Laplace’s equation with straight line elements. The

elements were described in terms of nodal points and the integrations performed

using Simpson’s rule, which is a method for numerical approximation of definite

integrals. This method is seen as ”semi-direct” method because the functions used

to formulate the problems are not fictitious and can be differentiated or integrated

to calculated physical quantities. In the late sixties, Rizzo [111] originally devel-

oped a numerical method of solving the classical elasticity using the experience of

boundary element discretization of potential problem. He also extends it his work

into three dimensional one with the surface discretized as flat constant triangular

elements. in the early seventies, Cruse [112] widened Rizzo’s work and employed

more sophisticated elements by allowing the variables to vary linearly over each el-

ement. Later, higher-order elements were developed and used by many researchers,

say, Lachat, Fenner and Tan [113], in many fields like elastodynamics and mechan-

ics.

The discretization of boundary integral equations has received a fast develop-

ment. And until 1975, it was coined the name Boundary element method. This

method is a boundary discretisation method. It is an expensive method since

it has more interactions to calculate, especially for large scale problems. Some

accelerating techniques, say the fast multipole accelerated boundary integral

equation methods [114] and the hierarchical matrices methods [115], are de-

veloped to resolve this problem. However, it is a convenient method since it

is based on the discretisation of the boundary of a domain, while FEM of the

interior of a domain. Therefore, it has smaller element data and the mesh can

be easily handled. Considering this thesis is to develop topology optimization
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method and does not touch upon large scale problems, the accelerating tech-

niques are not used.

1.4 Motivation, objective and significance

The purpose of this dissertation is to construct level set-based topology opti-

mization algorithms for heat conduction problems using boundary element method.

This work’s originality lies in the use of boundary element method in the level set-

based topology optimization for heat conduction problems. The use of boundary

element method is more convenient to generate fewer elements than finite element

method. Therefore it can easily handle the mesh than FEM does.

The topology optimization works as a process of material redistribution (holes

generate or holes filled with material in a fixed design domain) based on topolog-

ical derivative under certain given constraint. The difficulty of this work is the

derivation of topological derivative or sensitivity. To overcome this, the derivation

of topological derivative starts with defining a boundary condition value problem

with a certain objective function; then construct a similar boundary condition value

problem that is the same as previous defined one but with an infinitesimal hole in-

side the physical region, which results in a change of the defined objective function.

With such two boundary value problems, topological derivative can be obtained by

approaching the limit of objective function change, in which an adjoint system is

introduced to cancel some unknown quantities. In this work, topological derivatives

for insulating boundary condition, heat transfer boundary condition and topological

derivatives for heat transfer boundary condition with objective function defined on

morphing boundaries are derived. The derived topological derivatives are verified

by comparing with the ones obtained by finite difference method. With the veri-

fied topological derivative expressions, the thesis forms the topology optimization

for heat conduction problems using boundary element method and level set method

and applied to many numerical examples to show the availability of the proposed
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method.

This work will in large facilitate the development of topology optimization theo-

retically. It is a flexible (holes can appear or disappear) and convenient method espe-

cially when objective function defined on boundaries. Meanwhile, the checkerboard

and intermediate material problems do not appear since the use of level set method

in the topology optimization process. It is believed that the proposed method will

have a great contribution on the structural design of heat conduction devices in en-

gineering field.

1.5 Thesis organization

Since topology optimization belongs to the category of structural optimization,

this dissertation starts the first chapter with the classification of structural optimiza-

tion, in which, three kinds of structural optimization are introduced and compared

with each other. Then the development of structural optimization is recalled, where

topology optimization as the most prevalent method are described in detail accord-

ing to the branches. Each branch is processed with its appearing, working principle,

applied problems, and in-between followed corresponding advantage and disadvan-

tage and comments to keep consistency. Following the structural optimization, the

development of boundary element method is narrated and commented. After the

development, the purpose, and objective and significance of this dissertation are

stated and the thesis constitution is given as the end of the first chapter.

In the second chapter, a topology optimization is formulated based on the level

set method. The distribution of level set function is supposed to have a relationship

with the objective function and the change of level set function will change the ob-

jective function. Thus a fictitious time is introduced and a time evolution equation

for updating the level set function is constructed. In the evolution equation, a topol-

ogy derivative or sensitivity that needs to be derived combining boundary element

method is needed; besides, regularization is introduced to control the complexity of
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the topology.

In the third chapter, a topology optimization algorithm flowchart is given and

the evolution equation of level set function is numerically discretized.

In chapter four, a topological derivative for heat conduction problem under in-

sulating boundary condition combining with boundary element method is derived.

The derived topological derivative correctness, mesh-dependency and initial con-

figuration dependency are checked.

In chapter five, the topological derivative for heat conduction problem under

heat transfer boundary condition combining with boundary element method is de-

rived. The derived topological derivative is verified by comparing with the one

obtained using finite difference method. Then topology optimization is using this

topological derivative is constructed and several numerical examples are provide to

show the effectiveness of the proposed method.

In chapter six, while basing on the topology optimization scheme under heat

transfer condition in preceding chapter, the cases with the objective functions for

the temperature and heat flux defined on the morphing boundaries generated through

the iterative steps of the optimization computation are considered. The topological

derivatives of the objective functions both for the temperature and the heat flux are

derived and verified through numerical examples. The chapter also presents the

topology optimization examples using the corresponding topological derivatives.

Chapter 7 reaches the conclusions of this dissertation.
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Chapter 2

Level Set-based Topology

Optimization Method using BEM

2.1 Introduction

This chapter presents a level set-based topology optimization using boundary

element method. In this method, the level set function is supposed to change with

respect to fictitious time. The level set function is updated using a reaction-diffusion

equation, which is free of re-initialization [117, 118]. This is different from the

conferential methods where the level set function is based on the Hamilton-Jacobi

equation [119, 120], which is seen as a boundary moving method. The boundary

condition value problems with objective function defined on boundary is described.

The boundary element method is used to solve the boundary condition value

problem for it generates less elements and its ease to handle the mesh. Besides, the

regularization term, which is derived from the concept of the phase field method,

works as a reaction-diffusion [121, 122] term but enable designers to obtain various

configurations with different complexity.

This chapter firstly described how the level set function defines a material or

void property in a fixed design domain, then the optimization problem with an

objective function and corresponding constraints are considered. Next, the opti-
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mization problem is augmented as an unconstrained problem. In the following, the

relationship between level set function and objective function is constructed and

formed the reaction-diffusion like time evolution equation [123], in which the regu-

larization term is introduced to control the complexity of the topologies. Secondly,

the optimization algorithms for numerical implementation is built up.

2.2 Level set-based topology optimization

The level set method is an approach to represent material shapes by using level

set function that is a scalar function of point, ϕ(x), defined as follows:
0 < ϕ(x)≤ 1, x ∈ Ω\Γ0,

ϕ(x) = 0, x ∈ Γ0,

−1 ≤ ϕ(x)< 0, x ∈ D\Ω,

(2.1)

where D, Ω denote the fixed design domain and the material domain, and D\Ω

denotes the void domain, and Γ0 denotes the boundary between material Ω and

void domain D\Ω, as shown in Figure 2.1.
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Figure 2.1: Level set function and the fixed design domain D

The following optimization problem is considered with the objective function is
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defined on the boundary Γ.

infF =
∫

Γ
f (u,q) dΓ+

∫
D

g(u,q) dΩ, (2.2)

subject to

P.D.E.: ∇ · (−k∇u) = 0 in Ω, (2.3)

B.C.: u = u on Γu, (2.4)

q =−k
∂u
∂n

= q on Γq, (2.5)

q = h(u−u∞) on Γh. (2.6)

and

G =
∫

D
H(ϕ(x)) dΩ−Gmax ≤ 0, (2.7)

where PDE is short for Partial Differential Equation and B.C. is for Boundary Con-

dition. F is an objective function. f (u,q) is a function of u and q defined on Γ or

part of Γ and g(u,q) is a function of u and q defined in the fixed design domain. u

and q =−k ∂u
∂n are the temperature on the boundary of Direchlet boundary condition

Γu and heat flux on the boundary of Neumman boundary condition Γq or Robin

boundary condition Γh, respectively, n is the outward normal direction to Γ, u∞ is

the ambient temperature, k is the thermal conductivity, h is the heat transfer coef-

ficient, and H is the Heaviside function. G is a constraint used to control the area

of the material region no more than Gmax. Gmax is the admissible upper limit of the

area of the material region Ω.

The Heaviside function is defined as follows:

H(ϕ(x))

 0, (ϕ(x)≤ 0),

1, (ϕ(x)> 0),
(2.8)

Using Lagrange’s method, the optimization problem described by Eqs. (2.2)-

(2.7) is turned to be the following unconstrained optimization problem:

F(ϕ) = F(ϕ)+ I +λG, (2.9)
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where λ is the Lagrange’s multiplier for Eq.(4.3) and I is a function defined as

follows:

I =
∫

D
µ∇ · (−k∇u) dΩ = 0, (2.10)

where µ is Lagrange’s multiplier that is called here an adjoint variable.

The above optimisation problem has to satisfy the Krush-Kuhn-Tucker (KKT)

conditions [98] as follows:

F ′+ I′+λ = 0, λG = 0, λ ≥ 0, G ≤ 0, (2.11)

where a prime symbol (′) denotes a topological derivative, which characterizes a

sensitivity of the objective function (3) when a small circular hole is created.

Since it is difficult to solve equations (2.11) in this form for the optimum topol-

ogy, a fictitious time t [98] is introduced and assumed that the derivative of the

distribution of the level set function ϕ with respect to t is proportional to the topo-

logical derivative of F and the mean curvature of ϕ , can be written like a reaction

diffusion equation as follows:

∂ϕ
∂ t

= αF ′
+β∇2ϕ , (2.12)

where α and β are the proportional constants of reaction diffusion equation.

Equation (2.12) can be rewritten as an evolution equation:

∂ϕ
∂ t

= K(T −λ + τ∇2ϕ) in D, (2.13)

where t is the introduced fictitious time and K is a constant. t and K are combined to

control the updating speed in optimization process. τ is a regularization parameter

that can control the curvature distribution of ϕ . Both K and τ are positive constants,

and T is the topological derivative of F + I, i.e.,

T = F ′+ I′ (2.14)

Equation (2.13) is a diffusion equation determining the distribution of the level set

function. Equation (2.13) can be solved under certain boundary conditions and the
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initial condition corresponding the the initially assumed distribution of the material

in the fixed design domain D. On some part of the boundary, ΓN, noted as non-

design boundary for ϕ can not be changed, the value of ϕ can be set as positive,

whereas on the other part, although its value can be positive or negative, the nor-

mal slope of ϕ can be set to take a constant value. Hence, in this dissertation, the

following boundary conditions are considered to solve Eq.(2.13).

∂ϕ
∂n

= 0 on ∂D\ΓN, (2.15)

ϕ = 1 on ΓN. (2.16)

The initial condition of ϕ can be determined so that the boundary of the material

becomes the iso-surface corresponding to ϕ = 0.

2.3 Optimization algorithms

Since the shape of the optimal configuration is obtained by the distribution of

the level set function, firstly, the level set function needs to be initialized; Secondly,

the boundary of the configuration inputs will be generated based on the level set

function; Thirdly, Combining with the prescribed boundary conditions and values,

the temperature field can be constructed and solved using BEM; Fourthly, the ad-

joint filed of the temperate field is calculated using BEM; Fifth, using the quantities

obtained from the calculation of temperature and adjoint field, topological deriva-

tive (sensitivity) can be calculated; Sixth, the level set function can be updated with

the obtained topological derivative; Seventh, the convergence will be estimated, ac-

cording to which to repeat or end the optimization process.
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Figure 2.2: Flowchart of topology optimization algorithm

2.4 Conclusions

This chapter firstly introduced the level set function together with characteristic

function, then built the topology optimization problem by writing it as an uncon-

strained problem with regularization parameter introduced to control the complexity

of the topology, and last attributed the optimization problem to the form of a time

evolution equation. After that, the optimization algorithm for topology optimization

for heat conduction problems using boundary element method is built up.
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Chapter 3

Numerical Implementations

3.1 Introduction

In this chapter, a numerical implementation method of updating the level-set

function is established. After that, the basic formulation of the boundary element

method, which is used to solve heat problems in the topology optimization process,

is described

3.2 Numerical discretization of evolution equation

The evolution equation in Eq. (2.13) is

∂ϕ
∂ t

= K(T −λ + τ∇2ϕ), (3.1)

where T is the topological derivative (sensitivity). Applying Galerkin weighting

residual method [130] to Eq. (3.1) over integral domain, the evolution equation

becomes as ∫
Ω

∂ϕ
∂ t

ω dΩ =
∫

Ω
K(T −λ + τ∇2ϕ)ω dΩ, (3.2)

where ω is weight residual function. Eq. (3.2) can be rearranged as:∫
Ω

∂ϕ
∂ t

ω dΩ =
∫

Ω
K(T −λ ) dΩ+Kτ

∫
Ω

ω∇2ϕ dΩ, (3.3)
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In Eq. (3.3), the second term in RHS can be Integrated by parts as:

Kτ
∫

Ω
ω∇2ϕ dΩ = Kτ

∫
Γ

ω∇ϕ ·n dΓ−Kτ
∫

Ω
∇ϕ ·∇ω dΩ, (3.4)

Considering ϕ is restricted so as to satisfy the forced boundary condition, the first

term in the RHS of Eq. (3.4), the integral taken along the boundary Γ, becomes 0.

Then Eq. (3.2) becomes as:∫
Ω
(
∂ϕ
∂ t

ω +Kτ∇ϕ∇ω) dΩ =
∫

Ω
K(T −λ )ω dΩ. (3.5)

Using interpolation method,ϕ and ω can be expressed in Einstein summation shown

as

ϕ = ϕ pN p (3.6)

ω = ωqNq. (3.7)

Then Eq. (3.5) can be discretized as

∑
e

∫
Ωe

(
∂ϕ p

∂ t
N pNq +Kτϕ p∇N p∇Nq) dΩ = ∑

e

∫
Ωe

K(T −λ )Nq dΩ. (3.8)

It can be simplified to write as

Meϕ̇e +Keϕe = Fe, (3.9)

in which

Me =
∫

Ωe

N pNqdΩ (3.10)

Ke =
∫

Ωe

Kτ∇N p∇NqdΩ (3.11)

Fe =
∫

Ωe

K(T −λ )Nq dΩ, (3.12)

where N p are function of x and y, and ∇N p are derivatives to x and y, as well as Nq

and ∇Nq. It is not easy to directly get the shape function of x,y, but it is noted that

the usual method is mapping it to normalized coordinates, then translate it back into

actual coordinates when needed.
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The whole domain is discretized using 4-node quadrilateral element, shown as

Figure 3.1. Each node has two components of displacement, node position and

displacement are denoted as (xi,yi) and (ui,vi) respectively, with i = 1,2,3,4.

Node 2

Node 3

Node 4

Node 1

Figure 3.1: 4-node isoparametric element

The components of the displacement at (x,y) can be expressed, with the method

of indetermined coefficients, as,

u(x,y) = a0 +a1x+a2y+a3xy (3.13)

v(x,y) = b0 +b1x+b2y+b3xy. (3.14)

The coefficients a0,a1,a2,a3 and b0,b1,b2,b3 can be obtained by solving the equa-

tions. Then by substituting them back into the relative equations, the following

equations can be obtained:

u(x,y) = N1(x,y)u1 +N2(x,y)u2 +N3(x,y)u3 +N4(x,y)u4 (3.15)

v(x,y) = N1(x,y)v1 +N2(x,y)v2 +N3(x,y)v3 +N4(x,y)v4, (3.16)

in which

N1(x,y) =
1
4
(1+

x
a
)(1+

y
b
) (3.17)

N2(x,y) =
1
4
(1− x

a
)(1+

y
b
) (3.18)

N3(x,y) =
1
4
(1− x

a
)(1− y

b
) (3.19)

N4(x,y) =
1
4
(1+

x
a
)(1− y

b
). (3.20)
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Their derivatives is derived as:

∂N1

∂x
=

b+ y
4ab

,
∂N1

∂y
=

a+ x
4ab

(3.21)

∂N2

∂x
=

−(b+ y)
4ab

,
∂N2

∂y
=

a− x
4ab

(3.22)

∂N3

∂x
=

−(b− y)
4ab

,
∂N3

∂y
=

−(a− x)
4ab

(3.23)

∂N4

∂x
=

b− y
4ab

,
∂N4

∂y
=

−(a+ x)
4ab

(3.24)

To translate to the dimensionless coordinates with (ξ ,η) given (−1,−1),(1,−1),

(1,1),(−1,1) at the nodes 1, 2, 3 and 4, individually, it is supposed that

ξ =−x
a
, η =−y

b
. (3.25)

Then the shape function is obtained as

N1(ξ ,η) =
1
4
(1−ξ )(1−η) (3.26)

N2(ξ ,η) =
1
4
(1+ξ )(1−η) (3.27)

N3(ξ ,η) =
1
4
(1+ξ )(1+η) (3.28)

N4(ξ ,η) =
1
4
(1−ξ )(1+η). (3.29)

Also the derivative of these shape function is put on here for later use.

∂N1

∂ξ
=

η −1
4

,
∂N1

∂η
=

ξ −1
4

(3.30)

∂N2

∂ξ
=

1−η
4

,
∂N2

∂η
=

−ξ −1
4

(3.31)

∂N3

∂ξ
=

1+η
4

,
∂N3

∂η
=

ξ +1
4

(3.32)

∂N4

∂ξ
=

−1−η
4

,
∂N4

∂η
=

1−ξ
4

(3.33)

For isoparametric element, one can also use shape function to make interpolation of

coordinates as

x =
4

∑
p

N pxp, y =
4

∑
p

N pyp (3.34)
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The term ∇N p has x and y components. It can be written as Eq. (3.35).

∇N p = (
∂N p

∂x
,
∂N p

∂y
) (3.35)

Usually, the term above cannot be directly calculated, but we note there are such

relationships below, which would let us calculate it indirectly.

∂N p

∂ξ
=

∂N p

∂x
∂x
∂ξ

+
∂N p

∂y
∂y
∂ξ

∂N p

∂η
=

∂N p

∂x
∂x
∂η

+
∂N p

∂y
∂y
∂η

(3.36)

The Eq. (3.36) can be written into Matrix as
∂N p

∂ξ
∂N p

∂η

=


∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η




∂N p

∂x
∂N p

∂y

 (3.37)

which can be written as 
∂N p

∂ξ
∂N p

∂η

=
[
J
]

∂N p

∂x
∂N p

∂y

 . (3.38)

Knowing Eq. (3.25), Jacobi Matrix
[
J
]

can be calculated easily as

[
J
]
=

−a 0

0 −b

 . (3.39)

Then Me,Ke and Fe can be translated to integrals on dimensionless coordinates

with Eq. (3.25) and (3.39), shown as

Me(p,q) =
∫

Ωe

N pNq dΩe =
∫ 1

−1

∫ 1

−1
NpNq|[J]| dξ dη (3.40)

Ke(p,q) =
∫

Ωe

Kτ∇N p∇Nq dΩe =
∫ 1

−1

∫ 1

−1
Kτ∇Np∇Nq|[J]| dξ dη (3.41)

Fe(q) =
∫

Ωe

−K(2∇u∇µ +λ )Nq dΩe =
∫ 1

−1

∫ 1

−1
K(T −λ )Nq|[J]| dξ dη .

(3.42)

27



Then it substitutes Eqs. (3.13)-(3.16), (3.35)-(3.39) into Eqs. (3.40)-(3.42) to cal-

culate each term of Me(p,q), Ke(p,q), and Fe(q), the same time, assembles them

into corresponding element matrices. Below is the results:

Me = ab


1/9 1/18 1/36 1/18

1/18 1/9 1/18 1/36

1/36 1/18 1/9 1/18

1/18 1/36 1/18 1/9

 (3.43)

Ke = abKτ


2/3 −1/6 −1/3 −1/6

−1/6 2/3 −1/6 −1/3

−1/3 −1/6 2/3 −1/6

−1/6 −1/3 −1/6 2/3

 (3.44)

Fe = abK(T −λ )


1/4

1/4

1/4

1/4

 (3.45)

Using receding difference, Eq. (3.9) can be sorted as

(
1
δ t

Me +Ke)ϕt+δ t =
1
δ t

Meϕt +Fe. (3.46)

Assemble all the element matrix, the global matrix can obtained as

(
1
δ t

Ma +K)ϕt+δ t =
1
δ t

Maϕt +Fa, (3.47)

In which,

Ma = ∑
e

Me (3.48)

Ka = ∑
e

Ke (3.49)

Fa = ∑
e

Fe. (3.50)

Let T = ( 1
δ t Ma +Ka), B = 1

δ t Maϕt +Fa, ϕ = ϕt+δ t Eq. (3.47) becomes as

T ϕ = B. (3.51)
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Considering ϕ on fixed boundary cannot be changed. Eq. (3.51) can be extended

as  T1 T2

T1 T2

 ϕ1

ϕ2

=

 B1

B2

 . (3.52)

In Eq. (3.52), ϕ2 is known. ϕ1 is on the non-fixed boundary, and is what to be

gotten, so it needs to rewrite Eq. (3.52) as[
T1

][
ϕ1

]
=
[

B1

]
−
[

T2

][
ϕ2

]
, (3.53)

which can be solved to get ϕ1, the level-set function value on non-fixed boundary.

3.3 Boundary element method

Since boundary element method is a boundary discretization method and has

many advantages over finite element method, referred in last chapter, it is used as

the solver of heat conduction problems to be solved. Consider that the boundary

value problem governed as:
−k∇2u(x) = 0 in Ω

u(x) = u on Γu

q(x) = q on Γq

(3.54)

where ∇2 is laplacian operator. Ω is a closed domain with boundary Γ. u is the

temperature, q is the heat flux, Γu is the temperature boundary and Γq is the heat

flux boundary. Γ is composed of Γu and Γq. k is the thermal conductivity. The

boundary integral equation is written as follows [130]:

c(y)u(y) =
∫

Γ
u∗(x,y)q(x)dΓ(x)−

∫
Γ

q∗(x,y)u(x)dΓ(x), y ∈ Γ, (3.55)

where

c(y) =

 1 y ∈ Ω
1
2 y ∈ Γ

(3.56)
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with boundary Γ supposed to be smooth; And u∗(x,y) and q∗(x,y) are the fun-

damental solution of Laplace’s equation and its normal derivative, respectively.

u∗(x,y) and q∗(x,y) are given as follows [137]:

u∗(x,y) =
1

2π
ln

1
r
, (3.57)

q∗(x,y) =−k
−1
2πr

∂ r
∂n

, (3.58)

where r denotes the distance between x and y. n is the outward normal vector to the

boundary at x.

The Eq. (3.55), can be discretized as follows [131, 132]:

c(y)u(y) =
N

∑
j=1

∫
Γ j

u∗(x,y)q(x)dΓ(x)−
N

∑
j=1

∫
Γ j

q∗(x,y)u(x)dΓ(x), y ∈ Γ, (3.59)

where Γ j is the jth boundary element. u and q inside an boundary element can be

expressed using quadratic Interpolation function ϕ(ξ ) as:

u(ξ ) =
3

∑
k=1

ϕ k(ξ )uk
j (3.60)

q(ξ ) =
3

∑
k=1

ϕ k(ξ )qk
j, (3.61)

where

ϕ 1(ξ ) =
1
2

ξ (ξ −1), (3.62)

ϕ 2(ξ ) = (1−ξ )(1+ξ ), (3.63)

ϕ 3(ξ ) =
1
2

ξ (ξ +1), (3.64)

and x inside the element can be expressed as [133]:

x(ξ ) = ϕ 1(ξ )x1 +ϕ 2(ξ )x2 +ϕ 3(ξ ) =
3

∑
k=1

ϕ k(ξ )xk. (3.65)
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Thus, it has:∫
Γ j

u∗(x,y)q(x)dΓ(x) =
∫ 1

−1
u∗(ξ )

3

∑
k=1

ϕ k(ξ )qkG(ξ ) dξ (3.66)

=
3

∑
k=1

{∫ 1

−1
u∗(ξ )ϕ k(ξ )G(ξ ) dξ

}
qk (3.67)

=
3

∑
k=1

gk
i jq

k
j, (3.68)

∫
Γ j

q∗(x,y)u(x)dΓ(x) =
∫ 1

−1
q∗(ξ )

3

∑
k=1

ϕ k(ξ )ukG(ξ ) dξ (3.69)

=
3

∑
k=1

{∫ 1

−1
q∗(ξ )ϕ k(ξ )G(ξ ) dξ

}
uk (3.70)

=
3

∑
k=1

hk
i ju

k
j, (3.71)

where

gk
i j =

∫ 1

−1
u∗(ξ )ϕ k(ξ )G(ξ ) dξ , (3.72)

hi j =
∫ 1

−1
q∗(ξ )ϕ k(ξ )G(ξ ) dξ . (3.73)

Finally, the boundary integral equation can be discretized as:

ciui +
[

Hi1Hi2 · · ·Hin

]


u1

u2
...

un


=
[

Gi1Gi2 · · ·Gin

]


q1

q2
...

qn


, (3.74)

where n is the total number of nodes. The Eq. (3.74) can be written as:

[H]{u}= [G]{q}. (3.75)

After moving the unknowns to the left-hand side and the knowns to the right-hand

side, it becomes

[A]{x}= {y}, (3.76)
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where {x} is the vector consisting of only unknown nodal values and {y} is the

vector obtained by multiplying the known nodal values with corresponding parts of

the coefficient matrices [H] and [G]. Once the temperature and heat flux quantities

are obtained, the temperature field u inside the domain Ω can be calculated by the

following integral representation [137]::

u(y) =
∫

Γ
u∗(x,y)q(x)dΓ(x)−

∫
Γ

q∗(x,y)u(x)dΓ(x), y ∈ Ω, (3.77)

as well as the heat flux can be obtained by

∂u(y)
∂yi

=
∫

Γ

u∗(x,y)
∂yi

q(x)dΓ(x)−
∫

Γ

q∗(x,y)
∂yi

u(x)dΓ(x), y ∈ Ω, (3.78)

where i = 1,2, for two dimensional case.

Note that adjoint problems are also solved using boundary element method in

this way.

3.4 Conclusions

In this chapter, the time evolution equation used to update the level set function

is numerically discretized. Later, the boundary element method, which is used in

each chapter of this thesis, is described.
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Chapter 4

Topology Optimization with

Insulating Boundary Condition for

Heat Conduction Problems using

BEM

4.1 Introduction

Heat, in physics, as a kind of energy, can transfer between two bodies of dif-

ferent temperatures. The heat transfer [134] happens at every minute everywhere

around our life, in the form of conduction, convection, and radiation. The research

on how heat transfer is of great importance, which has an instructive effect on devel-

oping devices of all kinds for our society. Therefore, engineers pay much attention

on heat transfer and attempt to control the flow of heat through the use of thermal

insulation [135], heat exchanges [136].

This chapter presents a level set-based topology optimization under insulating

boundary condition for heat conduction problems using boundary element method

[137]. That is, the newly generated boundaries are designated as insulating bound-

ary conditions, which can be found as in Figure 4.1. The topological derivative
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(sensitivity) under insulating boundary condition, as the core part of the topology

optimization in this chapter, is derived. The topological derivative is verified though

comparing with the one calculated using finite difference method. The proposed

method has been proved efficient with different mesh, different initial configura-

tions.

4.2 Topological derivative

The objective function is defined as:

F =
∫

Γ f

f (u,q) dΓ, (4.1)

subject to

−k∇2u = 0 in Ω (4.2)

and

G =
∫

D
H(ϕ(x)) dΩ−Gmax ≤ 0, (4.3)

where f (u,q)= f (u(x),q(x)) is a function defined on Γ, and Γ f denotes f ’s support,

i.e., f (x) = 0 for Γ\Γ f , which is introduced to describe the following formulation

minutely. Note that Γ f intersects with Γu and/or Γq. H is the Heaviside function.

Gmax is the admissible upper limit of the area of the material region Ω.

To derive the topological derivative, a boundary value problem for a heat con-

duction problem is defined, then another boundary value problem with an infinites-

imal hole created based on the defined boundary value problem is constructed. By

comparing the objective function values of two boundary value problems, the topo-

logical derivative at the place that the infinitesimal hole is created can be obtained.

In a optimization problem, the design domain is meshed and generates many nodes.

At each node, there is one topological derivative value needed to be calculated.

Before the hole is created, the boundary value problem [137] (Figure 4.1 (left))
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is defined as follows: 
−k∇2u = 0 in Ω

u = u on Γu

q =−k
∂u
∂n

= q on Γq

(4.4)

where u and q = −k ∂u
∂n are the temperature and heat flux, respectively, n is the

outward normal direction to Γ, k is the thermal conductivity.

After the hole is created, the temperature and heat flux in Eq. 4.4 subject to a

small change defined as δu and δq. Then the boundary value problem (Figure 4.1

(right)) is defined as follows:

−k∇2(u+δu) = 0 in Ω\Ωε

u+δu = u on Γu

q+δq =−k
∂ (u+δu)

∂n
= q on Γq

q+δq =−k
∂ (u+δu)

∂n
= 0 on Γε

(4.5)

Figure 4.1: (left:) Configuration before a hole is created; (right:) Configuration

after a hole is created

By subtracting Eq. (4.4) from Eq. (4.5), one can get the following expression,

which will be used later:

−k∇2δu = 0 in Ω\Ωε

δu = 0 on Γu

δq =−k
∂δu
∂n

= 0 on Γq

δq =−k
∂δu
∂n

=−q on Γε

(4.6)
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The objective function above can be written as an augmented one as:

J =
∫

Γ f

f (u,q) dΓ+
∫

Ω
µ∇ · (−k∇u) dΩ

=
∫

Γ f

f (u,q) dΓ+
∫

Γ
µ(−k

∂u
∂n

) dΩ−
∫

Ω
∇µ · (−k∇u) dΩ

=
∫

Γ f

f (u,q) dΓ+
∫

Γ
µq dΩ−

∫
Ω
(−k∇µ) ·∇u dΩ.

(4.7)

When a small hole created in the domain, there is an increment to the objective

function:

J+δJ =
∫

Γ f

( f (u,q)+
∂ f
∂u

δu+
∂ f
∂q

δq) dΓ+
∫

Γ
µ(q+δq) dΓ

+
∫

Γε
µ(q+δq) dΓ−

∫
Ω\Ωε

(−k∇µ) ·∇(u+δu) dΩ.

(4.8)

By subtracting Eq. (4.7) from Eq. (4.8), one gets:

δJ =
∫

Γ f

(
∂ f
∂u

δu+
∂ f
∂q

δq) dΓ+
∫

Γ
µδq dΓ+

∫
Γε

µ(q+δq) dΓ

−
∫

Ω\Ωε
(−k∇µ) ·∇(δu) dΩ+

∫
Ωε
(−k∇µ) ·∇u dΩ

=
∫

Γ\Γ f

µδq dΓ+
∫

Γ f

(µ +
∂ f
∂q

)δq dΓ+
∫

Γ f

∂ f
∂u

δu dΓ+
∫

Γε
µ(q+δq) dΓ

−
∫

Γ
(−k

∂ µ
∂n

)δu dΓ−
∫

Γε
(−k

∂ µ
∂n

)δu dΓ+
∫

Ω\Ωε
∇ · (−k∇µ)δu dΩ

+
∫

Ωε
∇µ · (−k∇u) dΩ

=
∫

Γ\Γ f

µδq dΓ+
∫

Γ f

(µ +
∂ f
∂q

)δq dΓ+
∫

Γε
µ(q+δq) dΓ

−
∫

Γ f

(−k
∂ µ
∂n

− ∂ f
∂u

)δu dΓ−
∫

Γ\Γ f

(−k
∂ µ
∂n

)δu dΓ−
∫

Γε
(−k

∂ µ
∂n

)δu dΓ

+
∫

Ω\Ωε
∇ · (−k∇µ)δu dΩ+

∫
Ωε

∇µ · (−k∇u) dΩ

(4.9)

According to the boundary value on Γε of Eq. (4.5), the third term of Eq. (4.9) is

obtained as: ∫
Γε

µ(q+δq) dΓ = 0 (4.10)
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For the 6th term, Taylor expansion is applied to express δu as follows:

δu(x) = δu(x0 + εξ ) = ∇u(x0) · (εξ )+o(ε), (4.11)

where, x0 is the center of the infinitesimal hole, ε is the radius of the hole and ξ̄ is

outward normal vector to the circle of the hole at x. The Eq. (4.11) is applied to the

sixth term and turn the integral path to the unit circle:

−
∫

Γε
(−k

∂ µ
∂n

)δu dΓ =−
∫

Γc

(−k
∂ µ
∂n

)(∇u(x0) · (εξ ))ε dΓc

=−
∫

Γc

(−k
∂ µ
∂n

)(∇u(x0) ·ξ )ε2 dΓc

=−
∫

Γc

(−k
∂ µ
∂n

)(∇u(x0) · (−n))ε2 dΓc

=(πε2)(−k∇u ·∇µ)

(4.12)

where n is the inward normal vector the infinitesimal hole, which is opposite to ε

By substituting Eq. (4.10) and (4.12) into Eq. (4.9), one can finally obtain that:

δJ =
∫
(Γ\Γ f )∩Γq

µδ q̄ dΓ+
∫
(Γ\Γ f )∩Γu

µδq dΓ

+
∫

Γ f∩Γq

(µ +
∂ f
∂q

)δ q̄ dΓ+
∫

Γ f∩Γu

(µ +
∂ f
∂q

)δq dΓ

−
∫

Γ f∩Γu

(−k
∂ µ
∂n

− ∂ f
∂u

)δ ū dΓ−
∫

Γ f∩Γq

(−k
∂ µ
∂n

− ∂ f
∂u

)δu dΓ

−
∫
(Γ\Γ f )∩Γu

(−k
∂ µ
∂n

)δ ū dΓ−
∫
(Γ\Γ f )∩Γq

(−k
∂ µ
∂n

)δu dΓ

+
∫

Ω\Ωε
∇ · (−k∇µ)δu dΓ+2(πε2)(−k∇u ·∇µ)

(4.13)

Here, by using the fact Γ f = Γ f ∩Γu+Γ f ∩Γq and Γ\Γ f = (Γ\Γ f )∩Γu+(Γ\

Γ f )∩Γq, each integral in Eq. (4.9) is split to two parts. Because the variation of

known variables is 0, then δu = 0 and δq = 0. To eliminate the remaining unknown

quantity, the adjoint field µ is determined so that it satisfies the following boundary

value problem:

∇ · (−k∇µ) = 0 in Ω\Ωε (4.14)
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µ =


0 on (Γ\Γ f )∩Γu

−∂ f
∂q

on Γ f ∩Γq

. (4.15)

−k
∂ µ
∂n

=


0 on (Γ\Γ f )∩Γq

∂ f
∂u

on Γ f ∩Γq

. (4.16)

Finally the topological derivative [142, 144] is obtained as:

T # = lim
ε→0

δJ
δΩε

=−2k ∇µ ·∇u (4.17)

Note: # is added to T to mark the topological derivative is obtained under insulating

boundary condition. It is used for distinguishing with the topological derivatives

obtained in other chapters.

4.3 Numerical examples

4.3.1 Numerical example 1

In this section, several numerical examples are presented to confirm the effec-

tiveness and usefulness of the proposed method. In this example, a steady-state heat

conduction problem is considered, shown as Figure 4.2.

The size of fixed design domain Ω is set to be 0.5[m]× 0.5[m]. As an initial

configuration, the fixed design domain is filled with steel whose thermal conduc-

tivity is k = 17.0[W/(m·K)]. The prescribed temperature and heat flux are given as

ū = 100[K] on Γu and q̄ = 1000[W/m2] on Γq, respectively, where Γu and Γq are

defined as shown in Figure 4.2. The length of Γu and Γq are 0.05[m]. The rest of

the boundaries are insulating boundaries.
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Figure 4.2: Fixed design domain for numerical example 1

The objective is to minimize the objective function defined on Γq. The objective

function is given as follows:

F =
∫

Γ f

(u− û)2 dΓ, (4.18)

where Γ f = Γq and û is the target temperature, which is set to be 60 [K].

Verification of topological derivative

It needs to verify the topological derivative expression before starting the topol-

ogy optimization. According to the definition of topological derivative, the tem-

perature field is calculated to obtain the objective function Fb. Next, material is

removed to shape a hole small enough at the position x and calculate the tempera-

ture field again to obtain the objective function Fa, then the finite difference method

is used to obtain the sensitivity S:

S =
Fb −Fa

A(x)
, (4.19)
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where, A(x) is the area of the small hole at position x. A comparison of the values of

the topological derivative calculated by the proposed method with the ones obtained

by the finite difference method is made, shown as Figure 4.3. It can be confirmed

by the comparison that the topological derivative expression derived in the proposed

method is available.

Toplogical derivative
Finite difference
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Figure 4.3: Comparison of the topological derivatives calculated by the proposed

method with the approximated one by the finite difference

Next, a numerical example is shown with the area constraint set as 20% of the

fixed design domain. The regularization parameter is set as τ = 3.0× 10−3. The

coefficient K of the time evolution equation is set as 5.0. The fictitious time incre-

ment ∆t is set as 0.1. The fixed design domain is divided into 40 × 40 cells. The

boundary element meshes to solve the boundary value problems of heat field and its

adjoint field are created by tracking the zeros of the value of the level set function

which is evaluated on the finite element nodes.The obtained optimal distributions

of material are shown as Figure 4.4.

Effect of finite element mesh size

The fixed design domain of the present numerical example is divided into 40 × 40

quadrilateral elements. However, as a numerical method, the finite element mesh
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Figure 4.4: Optimal configuration for the numerical example 1

Figure 4.5: (left:) Case A (center:) Case B (right:) Case C for numerical example 1

should not effect the obtained optimal result. To confirm this, three cases of initial,

intermediate and obtained optimal configurations of different finite element mesh

size are emploied. The three cases are denoted as follows: A (mesh: 20 × 20

cells), B (mesh: 40 × 40 cells) and C (mesh: 60 × 60 cells). Case A and C have

the same parameters setting with Case B (the one being discussed) except for the

mesh size. The results of three cases are shown as Figure 4.5. From these results,

It can be found that same optimal configuration can be obtained regardless of initial

configurations. In other words, the finite element mesh does not effect the obtained

optimal result.

Effect of initial configuration
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Next, whether a numerical method works or not is up to whether it can converge

to the same optimal configuration using different initial configurations. To check

this, the influence of the initial configuration to the optimal results is investigated.

The following 3 initial configurations are considered; (1) the whole fixed design

domain is filled with Ω, (2) Ω has 4 holes and (3) Ω has 9 holes. Henceforth

the above initial configurations are denoted as “without hole”, “with 4 holes” and

“with 9 holes”, respectively. Figures 4.6–4.8 show initial, intermediate and optimal

configurations. For these 3 cases, the regularization parameter is set as τ = 5.0×

10−3, the coefficient K of the time evolution equation is set as 5.0, and the fictitious

time increment ∆t is set as 0.1. From these figures it can be found that the initial

configuration has almost no influences on the obtained optimal configuration. This

has confirmed that the optimal configuration’s obtainment does not depend on the

initial configuration.

Figure 4.6: (left:) Initial (center:) intermediate (right:) an optimal configuration

“without hole” for the numerical example 1

The history of objective function

Because It is not hoped the objective function converge to different value with

different finite mesh or initial configurations. Here the objective function history

(Figure 4.9) is shown with different initial configurations to show the effect of the

initial configuration to objective function.

Figure 4.9 shows the objective function history normalised by its initial value

for each initial configuration.
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Figure 4.7: (left:) Initial (center:) intermediate (right:) an optimal configuration

“with 4 holes” for the numerical example 1

Figure 4.8: (left:) Initial (center:) intermediate (right:) an optimal configuration

“with 9 holes” for the numerical example 1

Readers must find that, at the first several step, the objective function drops

sharply. This is because holes are generated and the material is removed more

that a presupposed mount from the fixed design domain. The objective function

has a bounce-back. This is controlled so that the area of material domain changes

stalely. Finally, the objective function becomes flat for all initial configurations and

converged to similar values.

4.3.2 Numerical example 2

In this numerical example, a problem with boundary conditions different from

the previous one is considered to show its availability under diverse boundary con-

ditions. The figure for this example is shown as Figure 4.10. The prescribed tem-
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Figure 4.9: Normalized objective function value history for numerical example 1

perature ū = 100[K] on Γu, and the prescribed heat flux q̄ = 1000[W/m2] on Γq.

The rest of the boundaries are insulating boundaries.
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Figure 4.10: Fixed design domain for the numerical example 2

The objective function for this example is same as that for the previous one in

Eq. (4.18) with target temperature as û = 60[K]. The area constraint is set to 20%

of the fixed design domain. The regularization parameter is set as τ = 5.0×10−3.

The coefficient K of time evolution equation is set as 5.0 and time increment ∆t is

44



set as 0.1.

The boundary elements are generated by searching 0-value level-set function

based on the mesh of 40×40 cells. The obtained topology distributions of different

initial configurations are shown as Figures 4.11, 4.12 and 4.13. Also, the objective

function values of this example with different initial configurations are shown as

Figure 4.14. From these figures, it can be concluded the following:

• The objective function decreased enough.

• The obtained configurations have smooth boundaries.

• When the initial configuration is different, the proposed method could give

the similar optimal configuration.

Figure 4.11: (left:) Initial (center:) intermediate (right:) an optimal configuration

“without hole” for numerical example 2

Figure 4.12: (left:) Initial (center:) intermediate (right:) an optimal configuration

“with 4 holes” for numerical example 2
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Figure 4.13: (left:) Initial (center:) intermediate (right:) an optimal configuration

“with 9 holes” for numerical example 2
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Figure 4.14: Normalized objective function value history for numerical example 2

In Figure 4.14, readers must find that, at the first several step, the objective

function drops sharply. This is because holes are generated and the material is re-

moved more that a presupposed mount from the fixed design domain. The objective

function has a bounce-back. This is controlled so that the area of material domain

changes stalely. While, for the objective functions with 4 and 9 holes initially, the

reason that objective functions increase shapely is some void domain is removed or

area of holes are decreased. Later, as the updating proceeds, the objective function

decrease steady. Finally, the objective function becomes flat for all initial configu-

rations and converged to similar values.
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4.4 Conclusions

In this chapter, the topological derivative (sensitivity) under insulating boundary

condition using BEM is derived. With the derived topological derivative, a topology

optimization method combining with the level set method and the boundary element

method for 2D steady-state heat conduction problem is built. Through the numerical

examples, the correctness of the topological derivative and the effectiveness of the

proposed method has been verified. Besides, It can be concluded that cases of

different initial configurations have the same converging tendency, and converged

to similar shapes. In particular, A few material shapes with specified temperatures

on part of the material boundary are obtained. it is also noted that the obtained

shapes are smooth.
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Chapter 5

Topology Optimization with Heat

Transfer Boundary Condition for

Heat Conduction Problems using

BEM

5.1 Introduction

Last chapter presented a level set-based topology optimization under insulat-

ing boundary condition. It is proved effective through several numerical examples,

in one of which the topological derivative or sensitivity derived combining with

boundary element method is verified and in others the mesh-dependency and initial

configuration dependency are checked, as well as the smoothness of the boundaries

of the configuration.

Note that all those in last chapter are based on the assumption that new bound-

aries are under insulating boundary condition.In this chapter, a topology optimiza-

tion method for two-dimensional heat conduction problem with heat transfer bound-

ary condition based on the level set method and the boundary element method

(BEM) is presented. The newly generated boundary of hole are given as heat trans-
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fer boundary shown as Figure 5.1. In this chapter, the objective function is written

into an unconstrained problem combining the governing equation of heat transfer

boundary value problem. Then The variation of the objective function is obtained

when it suffers a change that resulted from removing an infinitesimal circular area.

After that, an adjoint system is introduced, which is also a boundary value prob-

lem but with the boundary condition and value that can be calculated using the

obtained quantities from forward problem, to cancel some unknown quantities so as

to write the variation of objective function as an approximation which is so-called

topological derivative or sensitivity. The topological sensitivities under heat trans-

fer boundary condition is derived. The topological derivative expression is verified

though a numerical example, then applied to a few topology optimization for two

dimensional heat conduction problems.

5.2 Topological derivative

Figure 5.1: (left:) Configuration before a hole is created; (right:) Configuration

after a hole is created

A problem is considered the same as the one in Chapter 2 with the newly gener-

ated boundary given as heat transfer boundary condition. The augmented objective

function J can be rewritten as follows:

J =
∫

Γ
f (u,q)dΓ+

∫
Ω

g(u)dΩ+
∫

Ω
µ∇ · (−k∇u)dΩ

=
∫

Γ
f dΓ+

∫
Ω

gdΩ+
∫

Γ
µqdΓ−

∫
Ω

∇µ · (−k∇u)dΩ, (5.1)
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where µ is the adjoint variable considered as the Lagrange multiplier. Γ is the

boundary of material domain Ω, and Γ = Γu∪Γq∪Γh. Note that Γ f , which denotes

the support of f and used in the last chapter, is not considered below to simplify the

following expressions.

The objective function suffers from a change when an infinitesimal region Ωε is

removed from Ω, thus one has

J+δJ =
∫

Γ

(
f +

∂ f
∂u

δu+
∂ f
∂q

δq
)

dΓ+
∫

Ω

(
g+

∂g
∂u

δu
)

dΩ+
∫

Γ
µ(q+δq)dΓ

−
∫

Ω\Ωε
∇µ · (−k∇u)dΩ−

∫
Ω\Ωε

∇µ · (−k∇δu)dΩ+
∫

Γε
µ(q+δq)dΓ.

(5.2)

Therefore, one has

δJ =
∫

Γu∪Γq∪Γh

(
∂ f
∂u

δu+
∂ f
∂q

δq
)

dΓ+
∫

Ω

∂g
∂u

δudΩ+
∫

Γu∪Γq∪Γh

µδqdΓ

−
∫

Ω\Ωε
∇µ · (−k∇δu)dΩ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ

=
∫

Γq

∂ f
∂u

δudΓ+
∫

Γu

∂ f
∂q

δqdΓ+
∫

Γh

(
∂ f
∂u

δu+
∂ f
∂q

δq
)

dΓ

+
∫

Γu

µδqdΓ+
∫

Γh

µδqdΓ−
∫

Γq

ηδudΓ−
∫

Γh

ηδudΓ

−
∫

Ω\Ωε

[
∇ · (−k∇µ)− ∂g

∂u

]
δudΩ

−
∫

Γε
ηδudΓ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ, (5.3)

where δJ is the variation of the augmented objective function, Γu, Γq and Γh denote

the temperature boundary, heat flux boundary and heat transfer boundary, respec-

tively; And

η =−k
∂ µ
∂n

=−k∇µ ·n. (5.4)

and Γh is heat transfer boundary.

From the heat transfer boundary condition on Γh, one finds

δq = hδu on Γh. (5.5)
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Thus, one has

δJ =
∫

Γu

(
µ +

∂ f
∂q

)
δqdΓ−

∫
Γq

(
η − ∂ f

∂u

)
δudΓ

+
∫

Γh

(
∂ f
∂u

+h
∂ f
∂q

+hµ −η
)

δudΓ−
∫

Ω\Ωε

[
∇ · (−k∇µ)− ∂g

∂u

]
δudΩ

−
∫

Γε
ηδudΓ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ

=
∫

Γu

(
µ +

∂ f
∂q

)
δqdΓ−

∫
Γq

(
η − ∂ f

∂u

)
δudΓ

−
∫

Γh

[
η −h

(
µ +

1
h

∂ f
∂u

+
∂ f
∂q

)]
δudΓ−

∫
Ω\Ωε

[
∇ · (−k∇µ)− ∂g

∂u

]
δudΓ

−
∫

Γε
ηδudΓ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ. (5.6)

Let us define the adjoint system, as follows:

D.E.: ∇ · (−k∇µ)− ∂g
∂u

= 0 in Ω, (5.7)

B.C.: µ =−∂ f
∂q

on Γu, (5.8)

η =
∂ f
∂u

on Γq, (5.9)

η = h
(

µ +
1
h

∂ f
∂u

+
∂ f
∂q

)
on Γh. (5.10)

Then, δJ results in

δJ =−
∫

Γε
ηδudΓ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ. (5.11)

In the neighborhood of infinitesimal Ωε , u and µ can be expanded about the center

of Ωε , as follows:

u = u0 +∇u0 · r+O(r2)≈ u0 + r(u0
,1 cosθ +u0

,2 sinθ), (5.12)

µ = µ0 +∇µ0 · r+O(r2)≈ µ0 + r(µ0
,1 cosθ +µ0

,2 sinθ), (5.13)

q ≈−k∇u0 ·n = k
∂u
∂ r

∣∣∣∣
r=0

= k(u0
,1 cosθ +u0

,2 sinθ), (5.14)

η ≈−k∇µ0 ·n = k
∂ µ
∂ r

∣∣∣∣
r=0

= k(µ0
,1 cosθ +µ0

,2 sinθ), (5.15)

where r is the position vector of the point in the neighborhood of the center of Ωε ,

and r = |r|, as shown in Figure 5.2. A superscript ‘0’ denotes the value at the center
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of Ωε . u0
,1 and u0

,2 are the gradients of u at the center of Ωε in x and y directions,

respectively, and µ0
,1 and µ0

,2 are defined in the same way. θ is the counter clockwise

angle from x-axis. n is the outward normal vector to Γε , in opposite direction of r.

Figure 5.2: The neighborhood of the infinitesimal circular domain removed from

the material.

The heat transfer boundary condition is considered on Γε as

q+δq = h(u+δu−u∞), (5.16)

where h is the heat transfer coefficient and u∞ is the ambient temperature.

For sufficiently small Ωε , δu behaves as the main part of the solution of Laplace’s

equation in the neighborhood of the center of Ωε , as follows:

δu = a lnr+
b
r

cosθ +
c
r

sinθ +O
( d

r3

)
. (5.17)

where a, b, c, and d are coefficient constants. Since δu vanishes when r → 0,

δu cannot contain a constant term in the general solution, and d should behave as

O(r3). The term proportional to lnr can exist if the coefficient a vanishes as Γε → 0.

Thus, the following term can be obtained:

δq =−k
∂δu
∂n

= k
∂δu
∂ r

=
ka
r
− kb

r2 cosθ − kc
r2 sinθ +O

( d
r4

)
. (5.18)

53



Therefore, for r = ε , Eq. (5.16) becomes as:

ku0
,1 cosθ + ku0

,2 sinθ +
ka
ε
− kb

ε2 cosθ − kc
ε2 sinθ

= hu0 +hεu0
,1 cosθ +hεu0

,2 sinθ +ha lnε +
h
ε

bcosθ +
h
ε

csinθ −hu∞. (5.19)

By rearranging the above equation, one has(
k
ε
−h lnε

)
a−
(

k
ε2 +

h
ε

)
bcosθ −

(
k
ε2 +

h
ε

)
ccosθ

= h(u0 −u∞)+(hε − k)u0
,1 cosθ +(hε − k)u0

,2 sinθ . (5.20)

By comparing the coefficients, the followings are obtained as

a = ε
h(u0 −u∞)

k−hε lnε
, (5.21)

b = ε2 k− εh
k+ εh

u0
,1, (5.22)

c = ε2 k− εh
k+ εh

u0
,2. (5.23)

Finally, the variation of δu and δq on Γε is obtained as

δu = ε
h(u0 −u∞)

k−hε lnε
lnr+

ε2

r
k− εh
k+ εh

u0
,1 cosθ +

ε2

r
k− εh
k+ εh

u0
,2 sinθ , (5.24)

δq =
ε
r

kh(u0 −u∞)

k−hε lnε
− ε2

r2
k(k− εh)

k+ εh
u0
,1 cosθ − ε2

r2
k(k− εh)

k+ εh
u0
,2 sinθ . (5.25)

Let us evaluate the variation δJ next.

δJ =−
∫

Γε
ηδudΓ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ

≡ A+B+C, (5.26)

where

A =−
∫

Γε
ηδudΓ, (5.27)

B =
∫

Γε
µ(q+δq)dΓ, (5.28)

C =
∫

Ωε
∇µ · (−k∇u)dΩ, (5.29)
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and

A =−
∫ 2π

0
(kµ0

,1 cosθ + kµ0
,2 sinθ)

×
[

ε
h(u0 −u∞)

k−hε lnε
lnε + ε

k− εh
k+ εh

u0
,1 cosθ + ε

k− εh
k+ εh

u0
,2 sinθ

]
ε dθ

=−πkε2 k− εh
k+ εh

(
µ0
,1u0

,1 +µ0
,2u0

,2
)
. (5.30)

B = ε
∫ 2π

0

(
µ0 + εµ0

,1 cosθ + εµ0
,2 sinθ

)
×
(
ku0

,1 cosθ + ku0
,2 sinθ

+
kh(u0 −u∞)

k− εh lnε
− k(k− εh)

k+ εh
u0
,1 cosθ − k(k− εh)

k+ εh
u0
,2 sinθ)dθ

= 2πεµ0h(u0 −u∞)
k

k− εh lnε
+πε3 2kh

k+ εh

(
µ0
,1u0

,1 +µ0
,2u0

,2
)
. (5.31)

Also, one has

C =
∫

Ωε
∇µ · (−k∇u)dΩ ≈−πε2k

(
µ0
,1u0

,1 +µ0
,2u0

,2
)
. (5.32)

Therefore, δJ becomes as

δJ =−πkε2 k− εh
k+ εh

∇µ0 ·∇u0 +2πεµ0h(u0 −u∞)
k

k− εh lnε

+πε3 2kh
k+ εh

∇µ0 ·∇u0 −πε2k∇µ0 ·∇u0. (5.33)

Thus, it is able to define the topological derivative with heat transfer boundary con-

dition [140, 146] as follows:

T ◦ = lim
ε→0

δJ
2πε

= µ0h(u0 −u∞). (5.34)

Note that we have used the fact that k
k−εh lnε behaves as

k
k− εh lnε

= ε +
h lnε

k
ε2 +O(ε3) (5.35)

in the limit ε → 0.

Note: ◦ is added to T to mark the topological derivative is obtained under

heat transfer boundary condition. It is used for distinguishing with the topological

derivatives obtained in other chapters.
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5.3 Numerical examples for verifying the topological

derivative

In this example, we demonstrate the correctness of the topological derivative.

Let us consider a design domain initially filled with the material entirely in the

area of 4.0[m]× 4.0[m] as shown in Figure 5.3. Temperature boundary condition

is given for the left and top edges of the design domain, with prescribed temper-

ature ū = 100[K], while heat flux boundary condition is given for the bottom and

right edges with prescribed heat flux q̄ = 50[W/m2]. The thermal conductivity of

the domain is assumed as k = 1.0[W/(m·K)]. We compare the topological deriva-

tive value calculated by Eq. (5.34) with the approximate one calculated by a fi-

nite difference of the values of objective function for the original domain and the

domain from which a small circular hole is removed. Heat transfer boundary con-

dition with the ambient temperature u∞ = 30[K] and the heat transfer coefficient

h = 0.001[W/(m2·K)] is considered on the circular hole.

Figure 5.3: Fixed design domain for example 1
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The objective function for this example is defined as

F =
∫

Γq

(u− û)2 dΓ, (5.36)

where û = 40[K] is the target temperature.

The boundary of the square domain is discretized with 40×40 uniformly with

quadratic continuous elements. Also, 40×40 grids are generated in the fixed design

domain, the topological derivative values are calculated at the sample internal grid

points shown in Figure 5.4. The approximate values of the topological derivative is

calculated by the following formula:

F ′
approx =

Foriginal −Fhole

2πε
, (5.37)

where, Foriginal and Fhole denote the values of the objective function before and after

the hole is created. ε = 0.0001[m] is the radius of the hole, and the boundary of the

hole is divided into 32 quadratic elements when Fhole is calculated using the bound-

ary element method. As shown in Figure 5.5, the topological derivative values ob-

tained using the proposed approach are in good agreement with those obtained with

the finite difference formula, thus the present formulae of the topological derivative

is verified.
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Figure 5.4: Sample points for verifying the topological derivative
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Figure 5.5: Comparison of the topological derivatives obtained by the proposed

approach with the one by the finite difference

5.4 Numerical examples for the topology optimiza-

tions

5.4.1 Numerical Example 1

In this example a topology optimization based on the present topological deriva-

tive is demonstrated. We consider a fixed design domain of 4.0[m]×4.0[m]. The

thermal conductivity of the domain is k = 1.0[W/(m·K)]. We arrange the bound-

ary conditions as shown in Figure 5.6. The length of each Γu is 0.8[m]. On Γu,

temperature is given as ū = 100[K], while on Γh, heat transfer boundary condition

with h = 1.0[W/(m · K)] and u∞ = 0[K] is specified. The objective function for this

example is defined as

F =
∫

Γh

(u− û)2 dΓ, (5.38)

which is defined on the fixed heat transfer boundary Γh. û is the target temperature

prescribed as ū = 10[K].

The area constraint Gmax is set to be 70% of the fixed design domain. The

regularization parameter is set as τ = 5.0×10−1. The proportional coefficient and
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Figure 5.6: Fixed design domain for example 2

the fictitious time interval are given as K = 10.0 and ∆t = 0.2, respectively. The

boundary element is generated automatically by searching isosurface of zero-value

of the level set function. The initial configuration of the domain and the obtained

intermediate and optimum configurations are shown in Figure 5.7.

Figure 5.7: Initial (left), intermediate (middle) and optimal (right) configurations

for example 2

From the obtained intermediate and optimum configurations, we find that cav-

ities emerge in the are close to the edges of the fixed design domain, extend to the

central area of the domain, then join together to be like a crisscross pattern.
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The area constraint 70% is satisfied as found in Figure 5.8. Corresponding his-

tory of the value of the objective function, normalized by the initial value of the

function, is shown in Figure 5.9. It is observed that the objective function value

decreases step by step to 75.0% of its initial value.
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Figure 5.8: Area for example 2
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Figure 5.9: Normalized objective func-

tion for example 2

Readers must find that, at the first several step, the objective function does not

change. This is because no holes appear during these steps. However, the distri-

bution of the level set function changes also during these steps, just not enough to

produce a hole. After that, the objective function does decrease sharply, where the

fixed design domain suffers a rapid topology change. At the 22nd step, the objective

function reaches its lowermost value, but the area constraint 70% is not yet satisfied.

Thus, more material should be removed in the later steps. Later the area constraint

is satisfied and objective function converged.

Next the effects of regularization parameter τ to the results are demonstrated.

In Figure 5.10, the optimum configurations obtained with different values of the

regularization parameter, τ = 2.5×10−1, 5.0×10−1 and 7.5×10−1 are shown.

As the regularization parameter increases, the configuration of the obtained op-

timum result becomes simpler. This gives more suggestion to application for man-

ufacture.
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Figure 5.10: Various optimal results for the regularization parameters: τ = 2.5×

10−1 (left), 5.0×10−1(middle) and 7.5×10−1 (right) for example 2

Certainly, attention should be paid to the histories of the objective function,

because the minimum value of objective function under corresponding constraints

is pursued. Meanwhile, it is noticed that the complexity of optimal configuration

has some effect on the objective function. In Figure 5.11 are compared the profiles

of the objective function for τ = 2.5 × 10−1, 5.0 × 10−1, and 7.5 × 10−1. The

corresponding achieved normalized objective function values are 74.1%, 75.0% and

76.3% of the initial value, respectively.
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Figure 5.11: Comparison of the histories of the objective function values for exam-

ple 2 with τ = 2.5×10−1 (left), 5.0×10−1 (middle) and 7.5×10−1 (right)

5.4.2 Numerical Example 2

In last example, optimal configurations are obtained with temperature and heat

transfer boundary. For generality, this example considers the optimization under

heat flux and heat transfer boundary. This will further manifest the availability of
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the proposed method under other boundary conditions.

In this example, the fixed design domain is set as 4.0m×4.0m, whose thermal

conductivity is k = 1.0[W/(m·K)], as those of the previous examples, but heat flux

boundary conditions on Γq and heat transfer boundary conditions on Γh are pre-

scribed as shown in Figure 5.12. Γq is centred at each corresponding edge of the

square domain and its length is set as 1.6[m].

Figure 5.12: Fixed design domain for example 3

The heat flux on Γq is given as q̄ = 100.0[W/m2], and on Γh the heat transfer

coefficient and ambient temperature are given h = 1.0[W/(m2·K)] and u∞ = 80[K],

respectively. The heat conductivity and heat transfer coefficient are given as k =

1.0[W/(m ·K)].

The objective function assumed for this example is the same as that given by

Eq. (5.38), but the target temperature is now assumed as ū = 30[K], and the area

constraint Gmax is set as 60% of the area of the fixed design domain. Also, K = 10.0

and ∆t = 0.8 are used. The level set function whose values are calculated on a 40

40 mesh.

The initial, intermediate and optimum configurations of the result are shown
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Figure 5.13 as for τ = 5.0×10−1.

Figure 5.13: Initial (left), intermediate (middle) and optimal (right) configurations

for example 3

In Figures 5.14 and 5.15 are shown the history of the normalized area and ob-

jective function. The area constraint is satisfied. It can be found that the objective

function coverages to 20.0% where it’s history curve becomes flat.
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Figure 5.14: Area for example 3
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Figure 5.15: Normalized objective func-

tion for example 3

In Figure 5.16, the optimal configurations obtained for various regularization

parameter values: τ = 1.0×10−1, 5.0×10−1 and 10.0×10−1, are compared. The

various optimal configurations can satisfy more requirement for manufacture.
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Figure 5.16: Various optimal results for the regularization parameters: τ = 1.0×

10−1 (left), 5.0×10−1(middle) and 10.0×10−1 (right) for example 3

In Figure 5.17 are compared the profiles of the objective function for τ = 1.0×

10−1, 5.0× 10−1, and 10.0× 10−1. All the cases give almost 80% reduction of

the initial value. The objective functions’ value are almost the same, because their

configurations are almost the same. This is different from the previous example, in

which the objective functions are different with much difference in obtained config-

urations.
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Figure 5.17: Comparison of the histories of the objective function values for exam-

ple 3 with τ = 1.0× 10−1 (left), 5.0× 10−1 (middle) and 10.0× 10−1 (right) for

example 3

5.5 Conclusions

This chapter presented a new level-set based topology optimization method for

two-dimensional heat conduction problems using the boundary element method.

Analytically the topological derivative (sensitivity) expression is derived for the heat
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transfer boundary condition on the boundary corresponding to a topology change.

The topological derivative expressions are verified through corresponding numeri-

cal examples. The same time, topology optimizations using the topological deriva-

tive has been built and applied in many numerical examples for various bound-

ary conditions. It is emphasized that, with the present approach, the heat transfer

boundary condition can be precisely considered without any approximation on the

newly generated boundaries of the optimal shape of the material, because the exact

expression of the topological derivative considering the heat transfer boundary con-

dition is used and also the newly generated boundary is actually discretized and this

boundary condition is given in the analysis.
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Chapter 6

Topology Optimization with

Objective Function Defined on

Design-dependent Boundary with

Heat Transfer Boundary Condition

using BEM

6.1 Introduction

In last chapter, we presented a level set-based topology optimization under heat

transfer boundary condition. It is proved effective through several numerical ex-

amples, in one of which the topological derivative or sensitivity derived combining

with boundary element method is verified.

However, the morphing heat transfer boundaries are not included in the evalua-

tion of objective function. Since the evaluation with newly generated heat transfer

boundaries included can express the trend of the objective function as a whole, this

chapter, on the basis of last chapter, presents a topology optimization method un-

der heat transfer boundary condition with the newly generated boundaries included
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in the estimation of objective function. Here the newly generated boundary eval-

uated in objective function is named as design-dependent boundary. The design-

dependent boundary can be described that the boundary may changes but still eval-

uated in objective function as shown in Figure 6.1. Then we extended to the case

that the objective function as of heat flux. For both cases, the topological derivative

or sensitivity is different from the one derived in last chapter, since the definitions

of the objective functions are changed. Also we verified each topological sensitiv-

ity expression though a numerical example, then applied to a few two dimensional

topology optimization for heat conduction problems.

6.2 Topological derivatives

Figure 6.1: (left:) Configuration before a hole is created; (right:) Configuration

after a hole is created

We consider a problem the same as the one in Chapter 2 with the newly gener-

ated boundary evaluated in objective function with heat transfer boundary condition.

The augmented objective function J can be rewritten, after integrating by parts, as

follows:

J =
∫

Γ
f dΓ+

∫
Ω

∇µ · (−k∇u)dΩ. (6.1)

The objective function suffers from a change, denoted by δJ, when an infinites-
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imal region Ωε is removed from Ω. After some manipulations, we obtain as

δJ =
∫

Γu

(
µ +

∂ f
∂q

)
δqdΓ−

∫
Γq

(
η − ∂ f

∂u

)
δudΓ

−
∫

Γh

[
η −h

(
µ +

1
h

∂ f
∂u

+
∂ f
∂q

)]
δudΓ

+
∫

Γε

(
f +

∂ f
∂u

δu+
∂ f
∂q

δq
)

dΓ−
∫

Ω\Ωε
[∇ · (−k∇µ)]δudΓ

−
∫

Γε
ηδudΓ+

∫
Γε

µ(q+δq)dΓ+
∫

Ωε
∇µ · (−k∇u)dΩ, (6.2)

where

η =−k
∂ µ
∂n

=−k∇µ ·n, (6.3)

It is assumed that the adjoint variable µ is the solution of the following boundary

value problem:

∇ · (−k∇µ) = 0 in Ω, (6.4)

µ =−∂ f
∂q

on Γu, (6.5)

η =
∂ f
∂u

on Γq, (6.6)

η = h
(

µ +
1
h

∂ f
∂u

+
∂ f
∂q

)
on Γh. (6.7)

In the following, the derivation is the same as that carried on in last chapter is

omitted for simplicity. Here directly use the equation of δJ obtained in last chapter:

δJ =−πkε2 k− εh
k+ εh

∇µ0 ·∇u0 +2πεµ0h(u0 −u∞)
k

k− εh lnε

+πε3 2kh
k+ εh

∇µ0 ·∇u0 −πε2k∇µ0 ·∇u0. (6.8)

Next, f (u,q) is considered to be evaluated also on Γε . Let the variation of J in
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this case be written as δJ∗. Then, we have

δJ∗ = δJ+
∫

Γε
f (u,q)dΓ

≈ 2πεµ0h(u0 −u∞)+
∫

Γε

(
f +

∂ f
∂u

δu+
∂ f
∂q

δq
)

dΓ

= 2πεµ0h(u0 −u∞)+ ε
∫ 2π

0
f dθ

+ ε
∫ 2π

0

∂ f
∂u

[h(u0 −u∞)ε lnε
k−hε lnε

+
k− εh
k+ εh

(u0
,1 cosθ +u0

,2 sinθ)
]

dθ

+
∫ 2π

0

∂ f
∂q

[kh(u0 −u∞)

k−hε lnε
− k(k− εh)

k+ εh
(u0

,1 cosθ +u0
,2 sinθ)

]
dθ . (6.9)

Therefore, the topological derivative becomes as

T = lim
ε→0

δJ∗

2πε

= µ0h(u0 −u∞)+ lim
ε→0

1
2π

∫ 2π

0
f dθ

+ lim
ε→0

1
2π

∫ 2π

0

∂ f
∂u

[h(u0 −u∞)ε lnε
k−hε lnε

+
k− εh
k+ εh

(u0
,1 cosθ +u0

,2 sinθ)
]

dθ

+ lim
ε→0

1
2πε

∫ 2π

0

∂ f
∂q

[kh(u0 −u∞)

k−hε lnε
− k(k− εh)

k+ εh
(u0

,1 cosθ +u0
,2 sinθ)

]
dθ

= A+B+C+D, (6.10)

where

A = µ0h(u0 −u∞) (6.11)

For the case that the objective function is defined as of temperature:

f = (u− û)2 =
[
u0 − û+ ε(u0

,1 cosθ +u0
,2 sinθ)

]2
on Γε , (6.12)

where û is the target temperature. Then, we have

∂ f
∂u

= 2(u− û) = 2
[
u0 − û+ ε(u0

,1 cosθ +u0
,2 sinθ)

]
on Γε (6.13)

∂ f
∂q

= 0 on Γε (6.14)
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and

B = lim
ε→0

1
2π

∫ 2π

0
f dθ = lim

ε→0

1
2π

∫ 2π

0

[
u0 − û+ ε(u0

,1 cosθ +u0
,2 sinθ)

]2
dθ

= (u0 − û)2 (6.15)

C = lim
ε→0

1
2π

∫ 2π

0

∂ f
∂u

[h(u0 −u∞)ε lnε
k−hε lnε

+
k− εh
k+ εh

(u0
,1 cosθ +u0

,2 sinθ)
]

dθ = 0

(6.16)

D = lim
ε→0

1
2πε

∫ 2π

0

∂ f
∂q

[kh(u0 −u∞)

k−hε lnε
− k(k− εh)

k+ εh
(u0

,1 cosθ +u0
,2 sinθ)

]
= 0dθ

(6.17)

Therefore, we obtain the following derivative (sensitivity) [138, 139]:

T ∗ = µ0h(u0 −u∞)+(u0 − û)2 (6.18)

Note: ∗ is added to T to mark the topological derivative is obtained with objec-

tive function of temperature defined on design-dependent boundary with heat trans-

fer boundary condition. It is used for distinguishing with the topological derivatives

obtained in other places.

For the case that the objective function is defined as of heat flux:

f = (q− q̂)2 =
[
k(u0

,1 cosθ +u0
,2 sinθ)− q̂

]2

= k2 [(u0
,1)

2 cos2 θ +(u0
,2)

2 sin2 θ
]
+ q̂2

+2k2u0
,1u0

,2 cosθ sinθ −2kq̂(u0
,1 cosθ +u0

,2 sinθ) on Γε . (6.19)

∂ f
∂u

= 0 on Γε . (6.20)

∂ f
∂q

= 2(q− q̂) = 2
[
k(u0

,1 cosθ +u0
,2 sinθ)− q̂

]
on Γε . (6.21)

Therefore, we have

B = lim
ε→0

1
2π

∫ 2π

0
f dθ = lim

ε→0

1
2π

∫ 2π

0

{
k2 [(u0

,1)
2 cos2 θ +(u0

,2)
2 sin2 θ

]
+ q̂2} dθ

= k2 ∣∣∇u0∣∣2 + q̂2. (6.22)
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and

C = lim
ε→0

1
2π

∫ 2π

0

∂ f
∂u

[h(u0 −u∞)ε lnε
k−hε lnε

+
k− εh
k+ εh

(u0
,1 cosθ +u0

,2 sinθ)
]

dθ = 0.

(6.23)

Also, using Eq. (6.21), D can be obtained as:

D = lim
ε→0

1
2π

∫ 2π

0

∂ f
∂q

[
h(u0 −u∞)− k(u0

,1 cosθ +u0
,2 sinθ)

]
dθ

=−2q̂h(u0 −u∞)− k2 ∣∣∇u0∣∣2 . (6.24)

Then the topological derivative with objective function defeined as of heat flux

[141] is obtained as:

T ⋆ = h(u0 −u∞)(µ0 −2q̂)+ q̂2. (6.25)

Note: ⋆ is added to T to mark the topological derivative is obtained with objec-

tive function of heat flux defined on design-dependent boundary with heat transfer

boundary condition. It is used for distinguishing with the topological derivatives

obtained in other places.

6.3 Numerical examples for verifying the topological

derivatives

6.3.1 Numerical Example 1

This example is used to verify the correctness of the derived topological deriva-

tive of heat conduction problems with objective function of temperature defined on

design-dependent boundary with heat transfer boundary condition in Eq. (6.18).

Let us consider a design domain initially filled with the material entirely in the

area of 4.0[m]× 4.0[m] as shown in Figure 6.2. Temperature boundary condition

is given for the left and top edges of the design domain, with prescribed temper-

ature ū = 50[K], while heat flux boundary condition is given for the bottom and
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right edges with prescribed heat flux q̄ = 50[W/m2]. The thermal conductivity of

the domain is assumed as k = 1.0[W/(m·K)]. We compare the topological deriva-

tive value calculated by Eq. (6.18) with the approximate one calculated by a fi-

nite difference of the values of objective function for the original domain and the

domain from which a small circular hole is removed. Heat transfer boundary con-

dition with the ambient temperature u∞ = 45[K] and the heat transfer coefficient

h = 0.001[W/(m2·K)] is considered on the circular hole.

0.5m

0
.5

m

Fixed design domain

4.0m

4
.0
m

Figure 6.2: Fixed design domain for example 1

The objective function for this example is defined as

F =
∫

Γh∪Γε
(u− û)2 dΓ, (6.26)

where û = 15[K] is the target temperature.

The boundary of the square domain is discretized with 40×40 uniformly with

quadratic continuous elements. Also, 40×40 grids are generated in the fixed design

domain, the topological derivative values are calculated at the sample internal grid

points shown in Figure 6.3. The approximate values of the topological derivative is

calculated by the following formula:

F ′
approx =

Foriginal −Fhole

2πε
, (6.27)
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where, Foriginal and Fhole denote the values of the objective function before and after

the hole is created. ε = 0.0001[m] is the radius of the hole, and the boundary

of the hole is divided into 32 quadratic elements when Fhole is calculated using

the boundary element method. As shown in Figure 6.4, the topological derivative

values obtained using the proposed approach are in very good agreement with those

obtained with the finite difference formula, of which the maximum error is less than

1%, thus the present formula of the topological derivative is verified.
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Figure 6.3: Sample points for verifying the topological derivative
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Figure 6.4: Comparison of the topological derivatives obtained by the proposed

approach with the one by the finite difference

6.3.2 Numerical Example 2

This example is used to verify the correctness of the derived topological deriva-

tive of heat conduction problems with objective function of heat flux defined on

design-dependent boundary with heat transfer boundary condition in Eq. (6.25).

The topological derivative (sensitivity) given by Eq. (6.25) is verified by com-

paring with the one obtained by finite difference method.

We consider a fixed design domain initially filled with material entirely in the

region of 2.0[m]×2.0[m] as shown in Figure 6.5. Temperature boundary condition

is given for the boundaries of the top-left and bottom-right corners of the design do-

main with a prescribed temperature ū = 60[K], the heat transfer boundary condition

is given on boundaries of the top-right and bottom-left corners as well as the newly

generated ones, with the ambient temperature u∞ = 40[K] and the heat transfer co-

efficient h = 0.002[W/(m2·K)]. The thermal conductivity of the domain is assumed

as k = 1.0[W/(m·K)].

We compare the topological derivative values calculated by Eq. (6.25) with

the approximate values calculated by finite difference of the values of the objective
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2.0m

2
.0

m

Fixed design domain

Figure 6.5: Fixed design domain used to verify the topological derivative expres-

sion.

functions both for the original domain and the domain from which a small circular

hole is actually deleted.

The objective function is defined as

F =
∫

Γh∪Γε
(q− q̂)2 dΓ, (6.28)

where Γε denotes the boundary of the deleted area and q̂ = 15.0[W/(m2·K)] is the

target heat flux.

The boundary of the square domain is discretized uniformly with 40×4 = 160

quadratic conforming elements. Also, 40× 40 = 1600 grids are generated in the

fixed design domain. The topological derivative values are calculated at the two

rows of internal grid points shown in Figure 6.6.
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Figure 6.6: Sample points for verifying the topological derivative expression.

The approximate values of the topological derivative is calculated by the fol-

lowing formula:

F ′
approx =

Foriginal −Fhole

2πε∗
, (6.29)

where Foriginal and Fhole denote the values of the objective function before and after

the hole is created. ε∗ = 0.0001[m] is the radius of the hole, and the boundary

of the hole is divided into 32 quadratic elements when Fhole is calculated using the

boundary element method. The topological derivative obtained using the expression

in Eq. (6.25) and those obtained by the finite difference method at the sample points

of Y = 12 and Y = 24 are plotted as Figure 6.7 and Figure 6.8, individually. From

these two figures we can find that the topological sensitivity values obtained using

the proposed approach are in very good agreement with those obtained with the

finite difference formula, thus the present formula of the topological derivative is

verified.
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Figure 6.7: Comparison of the topological derivatives obtained by its present ex-

plicit expression with those obtained by the finite difference scheme at the sample

points of Y = 12.
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Figure 6.8: Comparison of the topological derivatives obtained by its present ex-

plicit expression with those obtained by the finite difference scheme at the sample

points of Y = 24.
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6.4 Numerical examples for the topological

optimizations

6.4.1 Numerical Example 1

In this example a topology optimization based on the present topological deriva-

tive is presented in Eq. (6.18).. We consider a fixed design domain of 4.0[m]×

4.0[m]. The thermal conductivity of the domain is k = 1.0[W/(m·K)]. This can

be realised by setting the level set function as 1 in the fixed design domain. The

boundary condition is set as shown in Figure 6.9. Each edge of the square has a

temperature prescribed boundary Γu of length 0.8[m] and the rest of the boundaries

are the heat transfer boundaries. The temperature is given as ū = 100[K] on Γu and

the heat transfer coefficient and the ambient temperature on the heat transfer bound-

aries are set as h = 1.0[W/(m2·K)] and u∞ = 0[K], respectively. These boundaries

are set as non-design boundaries which does not move in the optimisation process.

4.0m

4
.0

m

Fixed design domain

Figure 6.9: Fixed design domain for example 2
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The objective function for this example is defined as

F =
∫

Γh
∪

Γε
(u− û)2 dΓ, (6.30)

where û is the target temperature prescribed as û = 10[K]. In this example, we

explore the number and the shape of holes inside the fixed design domain which

minimise the objective function 6.30. We assume that the boundary condition on

the holes is given as the heat transfer one with the same h and u∞ as ones on Γh

(Figure 6.9). The area constraint Gmax is set to be 80% of the fixed design domain.

The regularization parameter is set as τ = 5.0×10−1. The proportional coefficient

and the fictitious time interval are given as K = 10.0 and ∆t = 0.2, respectively. The

boundary element for the computations of the topological derivative are generated

automatically at every step of the optimisation by searching iso-surface of zero-

value of the level set function.

Figure 6.10 shows the history of the objective function and the area fraction of

the material. One observes that the value of the objective function does not change

during the first several steps. This is because no holes appear during these steps. The

distribution of the level set function is, however, changing during these steps. Once

the holes are created, the value of the objective function decreased sharply. One also

observes a sharp increase of the objective function at 6th step of the optimization,

which is caused by the area constraint. The objective function starts to decrease

shortly before the area constraint is satisfied. The value of the objective function

finally converges to 78.1897% of its initial value and the area fraction filled with

materials is lower than its prescribed value (Gmax =80% of the initial value). Figure

6.10 shows that the convergence of the objective function is slow after the 40th

step. The convergence can be improved by adjusting the parameters: the parameter

K in the reaction diffusion equation and the time increment ∆t. The parameters

are, for now, determined by numerical experiments. We may address, in our future

publications, an efficient criteria for the parameters.
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Figure 6.10: History of the objective function (normalized by the initial value) and

the area fraction.

Figure 6.11 shows material configurations at some steps of the optimization. 4

holes are created at the 6 steps and the holes become larger step by step. The holes

are considered to work as heat absorbers since the boundary condition on the holes

are set as the heat transfer one, which can also be confirmed by the fact that the heat

flux vectors cross the holes (Figures 6.12).

Figure 6.11: Material configurations at steps 0, 6, 7 and 100.
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Figure 6.12: Heat flux for (left:) the initial configuration and (right:) the optimized

configuration.

Figure 6.13 shows temperature distributions at some steps of the optimization.

Since the objective function is defined also on the hole boundaries, the temperature

in the entire domain is decreased to near the target temperature û.

Figure 6.13: Temperature distributions at steps 0, 6, 7 and 100.

Let us discuss now the effect of the regularization parameter τ to the optimal

configurations. In Figure 6.14, the optimal configurations obtained with different

values of the regularization parameter, τ = 7.5×10−2, 1.25×10−1, 2.5×10−1 and

1.0 are shown.

As the regularization parameter increases, the boundary of the holes become

smooth. Thus, the regularization parameter can be set according to the manufactur-

ing requirement. Also, the holes are allocated near the boundary of the fixed design

domain when the regularization parameter is small, which is caused by the bound-

ary condition for the level set function. Note that in the limit of τ → ∞, the optimal

distribution of the level set function is equal to a constant in the whole fixed design
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domain. Since the Dirichlet boundary condition ϕ = 1 is given on the non-design

boundary, the constant will be 1, which gives no hole in the fixed design domain.

In the case of τ → 0, the optimal distribution of the level set function depends

only on the topological derivative and the penalty term for the volume constraint

λ . Since the topological derivative is known to be smooth for thermal problems

and λ = const. is used in this study, it is reasonable for the optimal configurations

to have smooth boundaries even in the case of τ → 0. We have confirmed that the

numerical test with τ = 1.0×10−12 gives almost the same configuration as the one

obtained by the test with τ = 7.5×10−2. The choice of the regularization parameter

value, of course, affects the minimized value of the objective function Fmin, which

is summarized in Table 6.1. In this example, a smaller τ gives smaller objective

function, which is not consistent with our previous result [137]. This is, however,

reasonable since the smaller τ gives holes with more complexed boundary, which

results in a large perimeter of the holes. Indeed, the objective function normalized

by the perimeter of holes seems to be comparable regardless of the choice of τ .

Also, readers may find that the minimum value of the objective function Fmin is

great than 1.0. This is because with the generation of holes, the evaluated length of

boundary increased. This can be normalized by the length of the boundary.

Note that, strictly speaking, Fmin/
∫

Γh
dΓ is not minimized in this case because

the length of boundary is not considered in the topological derivatives at the be-

ginning. Minimization of the normalized objective function Fmin/
∫

Γh
dΓ can be

achieved using the modified topological derivative Tmod. as follows:

Tmod. =

(
F∫

Γh
dΓ

)′

=
T∫

Γh
dΓ

− F(∫
Γh

dΓ
)2 . (6.31)

Numerical examples with Eq. (6.31) will be addressed in our future publications.

Certainly, the use of Fmin/
∫

Γh
dΓ here is enough to examine the history of objective

function.

Let us consider now the case that the ambient temperature outside the fixed

design domain is higher than that in the holes. We here consider the same settings
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Figure 6.14: Various optimal configurations for the regularization parameters: τ =

7.5×10−2, τ = 1.25×10−1, τ = 2.5×10−1 and τ = 1.0.

Table 6.1: The minimum values of the objective functions for different regulariza-

tion parameters τ .

τ min. value of the objective func Fmin. Fmin/
∫

Γh
dΓ

7.5×10−2 104.765 % 48.8%

1.25×10−1 100.688 % 46.9%

2.5×10−1 94.7702 % 44.8%

1.0 78.1897 % 37.1%

as the previous one except that the ambient temperature outside the fixed design

domain Γh is increased to 30[K].

Figure 6.15 shows the history of the material configurations at the optimization

steps 5, 27, 29 and 100. Comparing these results with the ones in Figure 6.11,

one finds that the cavities are connected each other and the perimeter of the cavity

becomes larger. This is reasonable since the cavity is more capable to relieve heat

than the boundary of the fixed design domain. This can also be confirmed from

Figure 6.16 where the heat flux for the optimized configuration in this settings.
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Figure 6.15: Material configurations at steps 5, 27, 29 and 100 in the case that the

ambient temperature outside the fixed design domain is higher than that inside the

“hole”.
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Figure 6.16: Heat flux for the optimized configuration for the case that the ambient

temperature outside the fixed design domain is higher than that inside the cavity.

The objective function normalized by its initial value in this case is shown in

Figure 6.18. Readers may find that the objective function dropped sharply at the

fist several steps. It is because large area is removed. Also, at step 29, it reached

the lowermost value, but its area is not satisfied. Thus, the optimization continued

and last converged with area 52% shown in Figure 6.17 being satisfied. Figure 6.19

shows the temperature fields for this case. One can confirm that the temperature

around the boundary of the cavity is reduced to the target temperature û = 20[K].
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Figure 6.17: Area percentage for topology optimization example

Figure 6.18: Normalised objective function for topology optimization example.
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Figure 6.19: Temperature distribution for the optimized configuration for the case

that the ambient temperature outside the fixed design domain is higher than that

inside the cavity.
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Thus, the proposed method can also deal with the the case that ambient temper-

ature in the hole is different from that outside the fixed design domain.

6.4.2 Numerical Example 2

In this example we consider a topology optimization using the derived topolog-

ical sensitivity as presented in Eq. (6.25). The fixed design domain is a material-

filled square region of 2.0[m]×2.0[m] shown as Figure 6.20. The thermal conduc-

tivity is k = 1.0[W/(m·K)].

2.0m

2
.0

m

0.75m

0
.7

5
m

Fixed design domain

Figure 6.20: Fixed design domain for topology optimization example.

Temperature boundary condition is given for the boundaries of four corners of

the fixed design domain with the same prescribed temperature ū = 50[K]. The heat

transfer boundary condition is given on the middle part of each edge of the design

domain and the newly generated ones in optimization process, with the ambient

temperature u∞ = 45[K] and the heat transfer coefficient h = 5.0[W/(m2·K)].

This example concerns an objective function defined as

F =
∫

Γall

(q− q̂)2 dΓ, (6.32)
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where Γall denotes all the boundary of the design domain and the target heat flux is

given as q̂ = 5.0[W/(m2·K)].

The boundary of the square domain is discretized uniformly with 40×4 = 160

quadratic conforming elements. the area constraint Gmax is set as 80% of the area of

the fixed design domain. Also, K = 10 and ∆t = 0.22 are used. The regularization

term is set as τ = 5.0×10−1.

(a) (b)

(c) (d)

Figure 6.21: The obtained configurations: (a) Initial configuration, (b) Configura-

tion at step 20, (c) Configuration at step 40, (d) Optimal configuration
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The initial configuration, intermediate configurations and optimal configuration

are obtained and shown in Figure 6.21. We can find that the material on the corners

are removed and new boundaries are generated, later the boundaries are generated

more closer to the center of the fixed design domain. This indicates the heat flux

gets closer to the target heat flux in unit length. We show in Figure 6.23 the history

of the objective function normalize by the length of the defined boundaries to find

the value when the optimal configuration is obtained, as well as in Figure 6.22 the

history of the area to check if it is less than the area constraint.
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Figure 6.22: Area percentage for topology optimization example
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Figure 6.23: Normalised objective function for topology optimization example.
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The area constraint is satisfied shown in Figure 6.22. And corresponding nor-

malized objective function finally converged to 76.5% of its initial value shown in

Figure 6.23.

6.5 Conclusions

In this chapter, we presented a new level set-based topology optimization method

for two-dimensional heat conduction problems using the boundary element method.

Analytically the topological derivative (sensitivity) expressions are derived under

the heat transfer boundary condition for the objective function as of temperature

and the objective function as of heat flux, both with the morphing boundary es-

timated. Both topological derivative (sensitivity) expressions are verified through

corresponding numerical examples. The correctness of the derived topological

derivative (sensitivity) expressions are demonstrated by calculating those values at

the internal points in comparison with those obtained by finite difference scheme.

The same time, topology optimizations using the topological sensitivities have been

built and applied in many numerical examples for various boundary conditions and

objective functions. It is emphasized that, with the present approach, the morphing

heat transfer boundary can be considered in the estimation of objective functions.
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Chapter 7

Conclusions

This dissertation proposed a level set-based topology optimization for two di-

mensional heat conduction problems using boundary element method. Basically,

three topological derivatives (sensitivities) are newly derived for heat conduction

problems with topology of insulating boundary and heat transfer boundary. The

achievement are listed as follows:

1. Topological sensitivity for the topology of insulating boundary combining

with boundary element method in two-dimensional heat problems is derived.

The topological sensitivity expression has been verified and the level set-

based topology optimization using this topological sensitivity has been pro-

posed and applied to some numerical examples, through which it has been

proved an effective method. Besides, the proposed method is not a mesh-

dependent method and initial configuration does not influence the optimal

configuration.

2. Topological derivative (sensitivity) for the topology of heat transfer boundary

combing with boundary element method in two-dimensional heat problems

is derived. The topological sensitivity has been proved correct by compar-

ing with the values obtained by finite difference method. The topology op-

timization with this topological sensitivity has been built and applied to a

few numerical examples. Topology optimization for two-dimensional heat
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problems with various boundary condition and values are implemented and

various optimal configurations are obtained. Beside, various configurations

are obtained for different regularization parameter values, by which, the role

of regularization parameter has been tested.

3. Topological sensitivities for the topology of heat transfer boundary with the

morphing boundaries of topology defined in the objective function of tem-

perature and the objective function of heat flux are derived. The morphing

boundaries are included in the definition as the newly generated boundaries

can be also evaluated as a whole. The topological sensitivities have also been

verified through the comparison with the ones obtained using finite difference

scheme. The topology optimization with two sensitivities individually has

been built and a few numerical results are obtained and the diverse optimal

configurations are obtained with different regularization parameter values.

In conclusion, the level set-based topology optimization for two-dimensional

heat problems using boundary element method for topology under insulating bound-

ary, heat transfer boundary, as well as morphing boundary considered in the objec-

tive function of temperature and the objective function of heat flux, are proposed and

proved available. This proposed method avoided the checkerboard and intermedi-

ate density problem and the zigzag boundaries when using finite element method.

Moreover, This method can obtain various configurations by adjusting the regular-

ization term. Consequently, This method will definitely help in structural design of

heat conduction devices. However, it is limited to two-dimensional case. Thus, we

suggeste extend the topology optimization to three-dimensional case. Nevertheless,

as the topology optimization using boundary element has an advantage of easily

handling the mesh comparing with using finite element method, it is suggested not

just for heat conduction problems, but also for other physical problems, such as

mechanics, acoustics and some multiphysical problems. Moreover, it is especially

adoptable for the objective function defined on boundaries, since boundary element

method is boundary-treatment method.
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test: an example, Computer methods in applied mechanics and engineering

140.1 (1997): 183-199.

[50] C. S. Jog and R. B. Haber, Stability of finite element models for distributed-

parameter optimization and topology design, Computer methods in applied

mechanics and engineering 130.3 (1996): 203-226.

[51] M. P. Bendsøe, Optimal shape design as a material distribution problem,

97



Structural optimization 1.4 (1989): 193-202.

[52] G. I. N. Rozvany, Aims, scope, methods, history and unified terminology of

computer-aided topology optimization in structural mechanics, Structural and

Multidisciplinary Optimization 21.2 (2001): 90-108.

[53] G. Kiziltas, D. Psychoudakis, J. L. Volakis and N. Kikuchi, Topology de-

sign optimization of dielectric substrates for bandwidth improvement of a

patch antenna, IEEE Transactions on Antennas and Propagation 51.10 (2003):

2732-2743.

[54] C. G. Pedersen, J. J. Lund, L. Damkilde and A. S. A. Kristensen, Topology

optimization-Improved checker-board filtering with sharp contours, Nordic

Seminar on Computational Mechanics (2006).

[55] T. E. Bruns, A reevaluation of the SIMP method with filtering and an alter-

native formulation for solid-void topology optimization, Structural and Mul-

tidisciplinary Optimization 30.6 (2005): 428-436.

[56] M. P. Bendsøe and O. Sigmund, Material interpolation schemes in topology

optimization, Archive of applied mechanics 69.9-10 (1999): 635-654.

[57] R. B. Haber, C. S. Jog and M. P. Bendsøe, A new approach to variable-

topology shape design using a constraint on perimeter, Structural Optimiza-

tion 11.1-2 (1996): 1-12.

[58] J. Petersson and O. Sigmund, Slope constrained topology optimization, Inter-

national Journal for Numerical Methods in Engineering 41.8 (1998): 1417-

1434.

[59] M. Zhou, Y. K. Shyy and H. L. Thomas, Checkerboard and minimum member

size control in topology optimization, Structural and Multidisciplinary Opti-

mization 21.2 (2001): 152-158.

[60] T. Borrvall, Topology optimization of elastic continua using restriction,

Archives of Computational Methods in Engineering 8.4 (2001): 351-385.

[61] Q. Xia and M. Y. Wang, Topology optimization of thermoelastic structures

using level set method, Computational Mechanics 42.6 (2008): 837-857.

98



[62] T. Borrvall and J. Petersson, Topology optimization using regularized inter-

mediate density control, Computer Methods in Applied Mechanics and Engi-

neering 190.37 (2001): 4911-4928.

[63] Y. M. Xie and G. P. Steven, Evolutionary structural optimization for dynamic

problems, Computers & Structures 58.6 (1996): 1067-1073.

[64] D. N. Chu, Y. M. Xie, A. Hira and G. P. Steven, Evolutionary structural opti-

mization for problems with stiffness constraints, Finite Elements in Analysis

and Design 21.4 (1996): 239-251.

[65] O. M. Querin, G. P. Steven and Y. M. Xie, Evolutionary structural optimisa-

tion (ESO) using a bidirectional algorithm, Engineering Computations 15.8

(1998): 1031-1048.

[66] V. Young, O. M. Querin, G. P. Steven and Y. M. Xie, 3D and multiple load case

bi-directional evolutionary structural optimization (BESO), Structural opti-

mization 18.2-3 (1999): 183-192.

[67] X. Huang and Y. M. Xie, Bi-directional evolutionary topology optimization

of continuum structures with one or multiple materials, Computational Me-

chanics 43.3 (2009): 393-401.

[68] X. Huang and M. Xie, Evolutionary topology optimization of continuum

structures: methods and applications, John Wiley & Sons (2010).

[69] Y. M. Xie, Z. H. Zuo, X. Huang, J. W. Tang, B. Zhao and P. Felicetti, Archi-

tecture and urban design through evolutionary structural optimisation algo-

rithms, Proceedings of the International Symposium on Algorithmic Design

for Architecture and Urban Design 22 (2011).

[70] P. Tanskanen, The evolutionary structural optimization method: theoretical

aspects, Computer methods in applied mechanics and engineering 191.47

(2002): 5485-5498.

[71] Q. Li, G. P. Steven and Y. M. Xie, A simple checkerboard suppression al-

gorithm for evolutionary structural optimization, Structural and Multidisci-

plinary Optimization 22.3 (2001): 230-239.

99



[72] J. A. Sethian, Curvature and the evolution of fronts, Communications in Math-

ematical Physics 101.4 (1985): 487-499.

[73] Y. C. Chang, T. Y. Hou, B. Merriman and S. Osher, A level set formulation of

Eulerian interface capturing methods for incompressible fluid flows, Journal

of computational Physics 124.2 (1996): 449-464.

[74] M. Sussman, P. Smereka and S. Osher, A level set approach for computing

solutions to incompressible two-phase flow, Journal of Computational physics

114.1 (1994): 146-159.

[75] M. Sussman and E. G. Puckett, A coupled level set and volume-of-fluid

method for computing 3D and axisymmetric incompressible two-phase flows,

Journal of Computational Physics 162.2 (2000): 301-337.

[76] J. C. Ye, Y. Bresler and P. Moulin, A self-referencing level-set method for

image reconstruction from sparse Fourier samples, International Journal of

Computer Vision 50.3 (2002): 253-270.

[77] K. Van Den Doel and U. M. Ascher, On level set regularization for highly ill-

posed distributed parameter estimation problems, Journal of Computational

Physics 216.2 (2006): 707-723.

[78] R. Tsai and S. Osher, Review article: Level set methods and their applications

in image science, Communications in Mathematical Sciences 1.4 (2003): 1-

20.

[79] J. A. Sethian, Level set methods and fast marching methods, Journal of Com-

puting and Information Technology 11.1 (2003): 1-2.

[80] J. A. Sethian and A. Wiegmann, Structural boundary design via level set and

immersed interface methods, Journal of computational physics 163.2 (2000):

489-528.

[81] D. Adalsteinsson and J. A. Sethian, A fast level set method for propagating

interfaces, Journal of computational physics 118.2 (1995): 269-277.

[82] S. J. Osher and F. Santosa, Level set methods for optimization problems in-

volving geometry and constraints: I. Frequencies of a two-density inhomoge-

100



neous drum, Journal of Computational Physics 171.1 (2001): 272-288.

[83] T. Belytschko, S. P. Xiao and C. Parimi, Topology optimization with implicit

functions and regularization, International Journal for Numerical Methods in

Engineering 57.8 (2003): 1177-1196.

[84] J. Dolbow and T. Belytschko, A finite element method for crack growth with-

out remeshing, International Journal for Numerical Methods in Engineering

46.1 (1999): 131-150.
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