

Curriculum Vitae

1949 Born in Yamanashi Prefecture 1949 Osaka 1954 Tokyo (5 year old) 1958 Osaka (9 year old) 1968-1978 Osaka University Tohoku University 1978 1984-1985 Arizona State University 1990 Tonomura Wave Front Project (JRDC ERATO) Nagoya University, CIRSE (理工科学総合研究センター) 1995 2002 Nagoya University, Department of electrical Engineering and **Communication Science** 2007 Nagoya University, EcoTopia Science Institute

With Prof. Hatsujiro Hashimoto at IMC 2006 (85 year old)

Prof. Keiji Yada at 77 year old party

Young Prof. John Cowley

With Prof. John M. Cowley at 80 year old party

Dr. Akira Tanomura

With Akira Tonomura, Sumio Iijima & ••••

With Dr. Akira Tonomura & •••

History of Studies

- 1971-1972 Osaka Univ. BS: Measurements of work functions by photoemission
- 1972-1978 Osaka Univ. MS & PhD: Optical image processing of high resolution electron microscopic images
- 1978-1984 Tohoku Univ. Assistant Prof. : High resolution observation of asbestos
- 1984-1985 ASU: High resolution observation of the surface profile of MgO
- 1985-1990 Tohoku Univ. Assistant Prof. & Associate Prof. :
 - •X-ray diffraction effects on quantitative analysis by EDX
 - Scanning image detection system for TEM
 - •Simulation of electron holography •••••Start of surfing
- 1990-1995 Tonomura Project, Group Leader:
 - •High resolution electron holography and observation of magnetics

History of Studies

- 1995- Nagoya University:
 - Precise electron holography (phase shifting EH)
 - •Differential electron holography 科研費基盤(B)
 - •Observations of magnetics by EH and Lorentz microscopy 経済産業省 「次世代自動車向け高効率モーター用磁性材料技術開発」

Magnetic nano particles, Magnetic multi layers 科研費基盤(B)、 特定A(公募·計画)

- •Field emission gun of carbon nano tubes 科研費基盤(B)
- •Stereoscopic TEM with TV rate 科研費基盤(A)
- *In situ* observation of SOFC 科研費特定領域(計画)、基盤(A)、文科省
 「ナノテクノロジーを活用した環境技術開発プログラム」ナノ材料科学
 環境拠点(GREEN)
- •Phase plate using A-B effect 科研費基盤(A)

Contents

- **1**. Introduction
- 2. Interference of waves
- 3. Electron holography
 - High resolution imaging
 - Observation of Magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

Contents

1. Introduction

- 2. Interference of waves
- **3**. Electron holography
 - High resolution imaging
 - Observation of Magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

What's This ?

Equipotential Lines

What's This ?

Magnetic Line of Force

Magnetic Structure of Ferromagnetic

Single Magnetic Domain Particle of Ba-Ferrite

Development of Electron Microscope

1858	J. Plücker	陰極線の発見
1869	J. W. Hittorf	陰極線の電磁偏向
1874	E. Abbe	顕微鏡の分解能限界
1897	J. J. Thomson	電子の存在を確認
1899	E. Wiechert	軸方向磁界によるスポット径縮小
1924	L. de Broglie	電子の波動性(物質波)
1927	C.J.Davison & L.H.Germer	Ni表面での電子線回折実験
	H. Busch	回転対称磁界のレンズ作用
1931.5.5	R. Rüdenberg	電子顕微鏡の特許申請
6.4	M. Knoll & E. Ruska	電子顕微鏡(磁界型)で最初の像(x17)を発表
1933	B. von Borries & E. Ruska	2段磁界型電顕で光顕を超える(75kV, x12,000, 50nm)
1934	L. Marton	Os染色による生物試料の撮影(x3,900)
	E.Sugata	大阪大学
1935	M. Knoll	走査電子顕微鏡(SEM)
1936	Metropolitan-Vickers社	商用第1号機 EM-1 (20kV,>1µm)
	J.Okubo & T.Hibi	東北大学

1939	H. Mahl & H. Boersch	静電型電子顕微鏡 AGE社 (8nm)
	Ruska & Borries, Siemens社	UM-100 (100kV, x30,000, 7nm)
	(JSTS) 第37小委員会	(Shoji Seto)
1940	M. V. Ardenne	分解能3nm
	H. Rusk	バクテリアファージの電顕像
	H. Boersch	フレネル縞
	浅尾荘一郎	x100(東芝)
1941	Seimens	UM-220 (220kV, 2nm)
1943	Hitachi	HU-2(名古屋大学)
1946	J. Hillier & E. G. Ramberg	非点収差補正で1.1nm
1948	D. Gabor	ホログラフィ
1949	Japanese Electron Microsocpy Society 日本電子顕微鏡学会設立	
1954	Seimens	Elmiskop I (100kV, <1nm)
1956	J. W. Menter	白金フタロシアニン (1.19nm)
	G. Möllenstedt & H. Düker	電子線バイプリズムの開発
1960	T. H. Maiman	レーザーの発明(ルビーレーザー)
1962	E.N.Leith & J. Upatnieks	二光束(off-axis)ホログラフィーの考案
1968	A. V. Crew et al.	FE-SEM, 単原子像
1979	A. Tonomura et al.	FE-TEM, 電子線ホログラフィ

Dennis Gabor (1900 - 1979)

D. John

Contents

- **1**. Introduction
- 2. Interference of waves
- 3. Electron holography
 - High resolution imaging
 - Observation of Magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

Interference of Light

Interference of Light

Fresnel's Biprism (Augustin J. Fresnel:Fr.1788-1827)

Diffraction with a pin hole is not essential for Young's experiment

Interference experiment with electrons

The core of quantum mechanics (R.P.Feynman)

Electron Biprism G. Möllenstedt and H. Düker, Z. Phys. **145** (1956) 377.

Electron Biprism

Hitachi

Making Filaments of Biprism

Interference of the Electron Wave

Contents

- **1**. Introduction
- 2. Interference of waves
- **3**. Electron holography
 - High resolution imaging
 - Observation of Magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

Holography

Interference Microscopy

(Machzender Interferometer)

33

Digital Reconstruction

Phase Shift of Electrons by the Electromagnetic Field

Schrödinger Eq.
$$\left(\frac{\hbar}{i}grad + e\mathbf{A}\right)^2 \Psi - 2m(E - eV)\Psi = 0$$

•WKB applrox. & $E \le eV$

if
$$\Psi(\mathbf{r}) = a(\mathbf{r}) \exp\{i\phi(\mathbf{r})\} \exp\{i(\omega t - \mathbf{k} \cdot \mathbf{r})\}$$

Phase shift by an electrostatic potential

$$\Delta \phi = \frac{\pi}{\lambda E} \int_{z} V(x, y, z) dz$$

Phase shift by a magnetic field

$$\Delta \phi = -\frac{e}{\hbar} \int_{S} \boldsymbol{B}(x, y, z) \cdot d\boldsymbol{S}$$

Latex Particle Charged Up

38

Single Magnetic Domain Particle of Ba-Ferrite

TEM Image

Hologram

Interference image

Contents

- **1**. Introduction
- 2. Interference of waves
- **3**. Electron holography
 - High resolution imaging
 - •In situ observation of SOFC
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

Electron Hologram of MgO

MgOホログラムのFourier変換像

MgO [110] 表面の電子線ホログラ フィー

MgO (001) 表面

Simulation t=10nm

Reconstructed Phase

Contents

- **1**. Introduction
- 2. Interference of waves
- **3**. Electron holography
 - High resolution imaging
 - Observation of magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

Low-Magnetic-Field Objective Lens

Magnetic Domain in a Permalloy Thin Film

Real-Time electron Holography

Rea-time Observation of Magnetic Domain

Rea-time Observation of Magnetic Domain

Magnetic Structure in a Permalloy Thin Film

Contents

- **1**. Introduction
- 2. Interference of waves
- 3. Electron holography
 - High resolution imaging
 - Observation of Magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

Development of a Real-Time Stereo Transmission Electron Microscope

- Real-Time Observation: Deformation, Crystal growth, Dislocation
- 3D Observation: Defect, Radiation damage, Cell
 - Stereoscopy, Computer Tomography

Recording time, Computation time for RT

D.Typke et al. Proc. 6th EUREM (1976) 334.

- J.M.Pawley Proc. 6ht Int. Conf. on HVEM 4 (1980) 58.
 P.F.M.Teunis et al. J. Microscopy, 168 (1992) 275.
 G.Fan and M.H.Ellisman Ultramicroscopy 55 (1994) 155.

Real-Time Stereo TEM

Real-Time Stereo TEM (HF-2000)

Video Signal and Deflector Potential

Illumination System

Use condenser lenses in a reduction mode.

 $\pm 2.3^{\circ}$

Deflector and Specimen plane

should be conjugate.

Stereo Pair of Au Particles

Right Image

Left Image

Lateral Resolution: ~1 nm Depth Resolution: ~13 nm

Real-Time Stereo Observation of ZnO

Real-Time Stereo TEM (HF-2000)

Depth Measurement

Detection of corresponding points

Right Image (standard)

Left Image

Detection of corresponding points

3-D Reconstruction and Plot

Continuous Observation by 3D Plot

Summary of the Real-Time 3D-TEM

- Developed a real-time stereo TEM
 - Introduced electrostatic deflectors and a 3D-Monitor
 - Spatial resolution:
 - Temporal resolution
- ~ 1 nm lateral
 ~ 13 nm longitudinal
 33 msec (TV rate)
 <5ms expectable
- Developed an on-line 3D plot application
 - Extract characteristics and find corresponding points
 - Temporal resolution 2-8 sec TV
 - Spatial resolution: ~18 px
- TV frame longitudinal (estimation)

Contents

- **1**. Introduction
- **2**. Interference of waves
- **3**. Electron holography
 - High resolution imaging
 - Observation of Magnetic field
- 5. Stereoscopic TEM
- 6. Phase plate using A-B effect

A-B Effect Phase Plate

Vector potential appearing with the magnetic flux inside the filament causes the phase shift of the electron wave pass through the both sides of the filament

Phase Plate

- Damage
- Short life time
- Degradation of image quality

- Clean
- Iong life time
- Keeping image quality
- Cannot centered

Phase Plate

Phase Shift by A-B Effect

Reconstructed phase

phase shift of ~ 1.5 rad

Differential Image of Holly C Film

Obtain in-focus \rightarrow Higher resolution

Differential Effect

under-focused

differential image

Observation of Bio-specimen

Colon bacillus (Pb stained)

Under-focused image

Differential image in focus

Observation of Bio-specimen

Colon bacillus (Pb stained)

Thank you for your attention !!