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Abstract

By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality

for the case of chiral molecules as well) can be converted, and the cause of the phenomenon

is attributed to crystal growth with chiral clusters. We show that the recently found chirality

conversion with a periodic change of temperature can also be explained by crystal growth with

chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective

incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and

the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out

the minority species to the majority, and the exponential amplification of the enantiomeric excess

found in the experiment is reproduced in the numerical calculation.
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I. INTRODUCTION

Several years after Viedma’s discovery of chirality conversion of NaClO3 crystals by grind-

ing in a solution [1], Noorduin et al. successfully applied the grinding method to organic

crystals, where the chirality conversion of crystals simultaneously implies conversion of the

molecular chirality [2]. In these experiments, the crystal enantiomeric excess (CEE: relative

excess of one of the crystal chiral species) grows exponentially in time [1–12], although some

exceptions have been found [11, 13]. Steendam et al. attributed the exceptional linear be-

havior to the existence of impurities [11]. The common exponential behavior suggests that

a nonlinear autocatalytic process is involved.

In order to find the mechanism of chirality conversion, several theoretical models have

been proposed. Uwaha [14, 15] used reaction equation type models by assuming a steady

distribution of crystal sizes and showed the exponential growth of CEE. The essential idea

of the model is that chiral growth units (small chiral clusters) contribute to the growth of

crystals of the same chirality [16]. Grinding helps to produce such chiral clusters and keeps

the steady size distribution. The assumption of a steady size distribution was confirmed [17]

with the use of a generalized Becker-Döring(BD) model (classical nucleation model) [18].

Dissociation into monomers and nonlinear effect due to the cluster incorporation to crystals

correspond to Saito and Hyuga’s general conditions for realizing homochirality [19]. The

time-evolution of cluster size distribution was studied from different view points [20–24] and

all proved the role of chiral clusters to provide the exponential amplification of CEE.

Several other mechanisms have been proposed. One of the famous mechanisms in chiral

symmetry breaking is a mutual inhibition. Its specific case by a geometrical shadowing effect

in crystal growth[25–27] can be a cause of autocatalysis. Catalytic conversion of molecular

chirality at the crystalline surface[28] is also the candidate. These models that reproduce

the exponential increase of CEE are based on the idea of competition between nonlinearly

growing chiral modes. The idea goes back to the Frank model[29], and has been applied to the

experiment of spontaneous chiral symmetry breaking in NaClO3 crystallization[30, 31]. (See

Refs. [32, 33] for subsequent generalization of Frank’s idea.) Ostwald ripening is an important

factor[34], but it is not capable of producing autocatalytic evolution[17, 35, 36]. Fluctuation

of the system may also play a role, but it cannot give the exponential amplification and is

effective only in very small systems[35–38].
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Despite that experimental identification of the key mechanism is very difficult, ingenious

experiments have revealed several features that may be significant to the chirality conver-

sion. For a system of chiral molecules that racemize in a solution, Noorduin et al. indirectly

showed that the enantiomeric excess in the solution is opposite to that in the solids [39].

The experiment supports enantioselective incorporation of clusters although other models

are not totally excluded. Hein et al. [8] reported that during the period of the exponential

amplification of CEE the size distribution of powder crystals becomes wider than that in

other period of the grinding experiment. It was also noted that the initiation time of the

exponential amplification is very diverse in this system. The authors suggested that an

incidental formation and preservation of large crystals instigates the accelerated chirality

conversion. It is not clear whether the change of the size distribution is a necessary con-

dition for the chirality conversion because a steady size distribution is maintained during

the amplification period in the generalized BD model [17]. Using NaBrO3, Viedma et al.

demonstrated that even macroscopic crystals of the same chirality may coagulate and form

a large crystal[40]. It is also not clear how large clusters (or crystals) can coalesce to form

a larger single crystal in real systems.

In the meanwhile new experiments that show the exponential behavior without grinding

appeared. Inspired by the experiment of El-Hachemi et al. [41], which showed a chiral sym-

metry breaking in the NaClO3 crystallization in a boiling solution, Viedma and Cintas [42]

found that a homochiral solid phase can be realized by simply boiling a solution containing

a racemic mixture of crystals [43]. The complexity of the experimental system hindered

developing a theoretical model to study mechanism of the amazing phenomenon. Recently,

Suwannasang et al. have performed a controlled experiment using an organic substance [44],

and showed that periodic change of temperature of a solution with racemic powder crystals

produces a homochiral state of crystals. Characteristic features of the experiment are: 1)

the system was kept uniform by gentle stirring without grinding, 2) an exponential increase

in CEE similar to that in Viedma ripening was observed, 3) the rate of the exponential

increase was not sensitive to the period of the temperature cycle, and the increase almost

stopped during a long period of constant temperature. It is a challenge for all existing

physical models to explain the chirality conversion by the periodic change of temperature.

The purpose of the present paper is to study the possibility that the mechanism of

enantioselective incorporation of clusters into chiral crystals can reproduce the chirality
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conversion without grinding and the above experimental features.

II. MODELS FOR CLUSTER GROWTH

In this section we briefly review several proposed models for chirality conversion. Most

models that can reproduce the exponential autocatalytic behavior relies on nonlinear pro-

cesses like enantioselective incorporation of chiral clusters (or agglomeration of chiral crys-

tals) [14, 15, 17, 20–24, 35, 36], catalytic conversion of molecular chirality at the surface[28],

geometrical mutual inhibition [25–27] if models are correctly interpreted [45]. Since we are

interested in the role of chiral clusters in the present paper, we restrict ourselves to the first

ones.

The simple reaction equation type models [11, 14, 15, 37, 39] are easy to treat and

interpret. Mathematically, a product term of the masses of chiral clusters and crystals,

which represents incorporation of chiral clusters to solids of the same chirality, is the source

of nonlinearity. The incorporation of chiral clusters accelerates the growth of major chirality

and results in the exponential amplification of CEE. The simple models use only five or

six component(monomers, chiral clusters, chiral solids), and the relative size distribution of

crystals is assumed to be steady thanks to grinding [17]. Since intense grinding is necessary to

keep the distribution steady, the reaction equation type models cannot be used for explaining

the process of periodic change of temperature, in which the crystal size distribution changes

with temperature (and time).

To study the size distribution of crystals, two different mean field approaches have been

adopted. One is generalization of the BD model (classical nucleation model), which takes

account of the detailed balance condition for elementary processes to guarantee correct equi-

librium states [17, 18, 21, 23, 46]. The other is generalization of a population balance(PB)

model, which is more versatile and commonly used in chemical engineering [22, 24, 47]. Tak-

ing the continuum limit of the BD equation, one obtains a Fokker-Plank equation, which has

a drift term and a diffusion term in the size space [48]. The PB model corresponds to the

Fokker-Planck equation without the diffusion term that is essential to study nucleation phe-

nomena [18, 49]. The PB model is useful when (macroscopic) breakage and agglomeration

of crystals are important. For the use of such models care should be taken to use physically

acceptable form of the terms in the PB equation. In any case, these models reproduce the

4



exponential behavior, and at the moment we do not know the relevant size of clusters in

real systems.

Another approach to study the size distribution is to follow the size change of each cluster

using Monte Carlo(MC) dynamics [35, 36]. These models can take the effect of fluctuations

into account, and demonstrated the role of fluctuation and that of clusters successfully.

To obtain good statistics with changing conditions, however, the computational load is

extremely heavy. MC lattice models developed by Saito and Huga [26–28] automatically

include the cluster growth, but have the same computational problem. Also separating the

effect of cluster growth seems not easy in the lattice models. Therefore, in the present paper,

we adopt the generalized BD model to study the possibility of chirality conversion by the

periodic change of temperature.

III. GENERALIZED BECKER-DÖRING(BD) MODEL

The model we use in the present paper is a generalization of our previous model for

Viedma ripening [17, 18, 46]. The following features are added to the standard BD model:

1) Monomers and clusters are distinguished by molecular chirality, and monomers can be

transformed to the opposite chirality molecules. 2) Not only monomers but also small

clusters up to a certain size, jmax-mers, can be incorporated to large clusters of the same

chirality. The rates of incorporation and dissociation satisfy the detailed balance condition.

The following reactions of clusters are considered:

R1 ⇌ L1,

Ri +Rj ⇋ Ri+j, Li + Lj ⇋ Li+j, (for 1 ≤ j ≤ jmax), (1)

where Ri and Li represent an i-mer of the right-handed and left-handed molecule,

respectively[50]. The reaction in the first line is spontaneous and at a constant proba-

bility for a molecule. The reactions to the right in the second line are proportional to the

collision rate, and those to the left are such that they produce the canonical equilibrium

distribution.

Thus we divide the molecules and the clusters into six groups according to their chirality

and the size (monomers, small clusters and large clusters). We will derive, in Sec. V, the

mass flow between these groups during low and high temperature periods. The result is
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(a)

R solidsL solids

L clusters R clusters
L monomers R monomers

Low temperature

(b)

R solidsL solids

L clusters R clusters
L monomers R monomers

High temperature

FIG. 1: (Color online) Schematic mass flow at (a) low and (b) high temperatures.

schematically depicted in Fig. 1. As explained in Sec. V, accelerated crystallization of the

majority clusters causes surplus of the minority monomers, which leads to the chirality

conversion from the minority to the majority species. The detail of the generalized BD

model is as follows.

The number of right(R) or left(L)-handed(denoted as α =R or L) large clusters of size i

(> jmax) obeys the equation

ṅα
i =

min{jmax,[(i+1)/2]}∑
j=1

σi−j,jn
α
i−jn

α
j −

jmax∑
j=1

σi,jn
α
i n

α
j

+

jmax∑
j=1

λi+j,jn
α
i+j −

min{jmax,[(i+1)/2]}∑
j=1

λi,jn
α
i , (2)

where [· · · ] in the upper limit of the summation is the floor function. The coefficient σi,j

represents the collision and coalescence of an i-mer and a j-mer, and is proportional to the

collision cross-section. It is determined by the molecular cross sections and assumed to have

the form

σi,j = a i2/3j2/3, (3)

where a is a constant proportional to the thermal velocity and the cross section of a monomer.

The decay rate λi+j,j of an (i+j)-mer to an i-mer and a j-mer is determined from the detailed

balance condition

λi+j,j n
α eq
i+j = σi,j n

α eq
i nα eq

j , (4)
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where nα eq
i is the equilibrium number of (chiral) i-mers. Note that nReq

i = nL eq
i ≡ neq

i with

racemization. The equilibrium number of i-mers is related to that of monomers as

nα eq
i = neq

1 e−ᾱ(i2/3−1). (5)

where ᾱ = (4π)1/3Ω2/3α/kBT is an effective surface tension(Ω: molecular volume, α: surface

tension). Therefore we have

λi+j,j = σi,j n
eq
1 eᾱ((i+j)2/3−i2/3−j2/3+1). (6)

For small clusters, 2 ≤ i ≤ jmax, incorporation to any clusters is possible, and (2) is modified

to

ṅα
i =

[(i+1)/2]∑
j=1

σi−j,jn
α
i−jn

α
j −

∞∑
j=1

(σi,j + δi,jσi,i)n
α
i n

α
j

+
∞∑
j=1

(λi+j,j + δi,jλ2i,i)n
α
i+j −

[(i+1)/2]∑
j=1

λi,jn
α
i . (7)

For monomers, i = 1, Eq. (7) applies with the additional racemization term

ṅR,L
1 = −2σ1,1(n

R,L
1 )2 −

∞∑
j=2

σ1,jn
R,L
1 nR,L

j + 2λ2,1n
R,L
2 +

∞∑
j=2

λj+1,jn
R,L
j+1 + r(nL,R

1 − nR,L
1 ). (8)

Note that our system in the present paper satisfies the detailed balance condition and there

is no process, such as grinding, that breaks the detailed balance.

From now on we call clusters of the size 2 ≤ i ≤ jmax small clusters or simply clusters,

and clusters of the size jmax < i large clusters or solids. Then the masses of monomers,

clusters and solids are defined by

Mα
1 = nα

1 ,

Mα
c =

jmax∑
j=2

j nα
j ,

Mα
s =

∞∑
j=jmax+1

j nα
j , (9)

respectively. It should be remembered that the present nomenclature is only provisional.

We define the order parameter of the system by

ϕ =
MR

s −ML
s

MR
s +ML

s

. (10)

In the present paper we assume that the majority species is always R, then the definition of

CEE is also given by Eq. (10).
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IV. NUMERICAL CALCULATION

A. Setup of numerical calculation

The basic setup of the numerical calculation is similar to our previous study of the

chirality conversion with grinding [17], and the following features are added. We assume,

for simplicity, that the change of temperature T is stepwise and cyclic with a period P :

T = Tl for lP ≤ t ≤
(
l +

1

2

)
P,

T = Th for

(
l +

1

2

)
P ≤ t ≤ (l + 1)P, (11)

where the cycle number l is zero or a positive integer. We assume the incorporation rate

σi,j does not change and set a = 1 to fix the unit of time. Temperature dependent physical

parameters are the equilibrium monomer density neq
1 , the effective surface tension ᾱ and the

racemization rate r. In the present paper, the values for low and high temperatures are as

follows: 1) neq l
1 = 10−3, neq h

1 = 10−2 (high solubility at high T ), 2) ᾱl = 10, ᾱh = 10−2 (low

effective surface tension at high T ), 3) rl = 1, rh = 10 (high racemization rate at high T ).

These values are chosen for easiness of the simulation and not necessarily correspondent to

the real system.

The number of clusters is normalized to make the total mass(total number of molecules)

unity ∑
α

∞∑
i=1

i nα
i = 1, (12)

except in Sec. VIC. The initial system consists of racemic solid powder and the saturated

solution. We have tried several different initial distributions, and have confirmed that the

results are not too sensitive to the form of initial distributions. We adopt the following

initial condition in the most of our calculations:

nR,L
i (0) = neq l

i + δi,is

1− 2
∞∑
i=1

i neq l
i

is

1± ϕ(0)

2
, (13)

where the superscripts R and L correspond to the signs + and −, respectively: the initial

system consists of large clusters of the size is with the initial CEE ϕ(0) and a racemic solution

saturated at Tl.
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FIG. 2: (Color online) (a) Change of masses of monomers, clusters and solids by temperature

cycling in the generalized BD model with ϕ(0) = 0.1 at t =
(
l + 1

2

)
P . (b) Enlargement of the

small mass part. (c) Enlargement at t = lP . Red(dark) squares are hidden by green(light) squares.

(d) Semi-log plot of CEE calculated from Eq. (10).

In the numerical calculation, the maximum cluster size of calculation is limited to imax,

and the reaction which includes clusters larger than imax is neglected: formation of clusters

larger than imax is forbidden. Since the number of clusters of this size in the most calculated

time is so small that the resultant error is negligible. The maximum size is imax = 200 in

the calculations of Sec. V, and imax = 1000 in the calculations of Sec. VI. With the above

parameter values, the equilibrium mass in solution at Tl is
∑

i in
eq l
i = 2.01× 10−3, and most

of the molecules are initially in the solid clusters of i = is. Values of other parameters are

the period of cycle P = 10, the maximum size of solidifying small clusters jmax = 5 and the

initial size of the solid cluster is = imax unless mentioned otherwise.

9



B. Time change of the masses

Change of the masses calculated from a solution of the generalized BD equations, (2)-

(8), are shown in Fig. 2 with the initial EE ϕ(0) = 0.1. The mass of each component is

monitored at the end of the low temperature period in the cycle: t = (l+ 1
2
)P [Fig. 2(a) and

(b)], and at the end of the high temperature: t = lP [Fig. 2(c)]. The masses of solids, MR
s

and ML
s , show an exponential amplification of EE as shown in Fig. 2(d). The mass of the

minority L monomers, ML
1 , is appreciably more than that of the majority R, MR

1 , during

the strong amplification period. This is a necessary condition for conversion of chirality [15],

and observed (though indirectly) in the experiment of chirality conversion with grinding [39].

The mass of L clusters, ML
c , increases and much more than MR

c during the amplification.

At the end of the high temperature period in the cycle t = lP , the mass of R monomers is

almost the same as that of L, and the mass of R clusters is more than that of L[Fig. 2(c)].

Such features seem characteristic of chirality conversion by temperature cycling, and this is

the important key to understand the mechanism as discussed in the following section.

V. ANALYSIS OF MASS FLOW AND THE ROLE OF CLUSTER GROWTH

By looking at the solution of the generalized BD model in more detail, we now study

the role of cluster growth behind the scenes. In A we analyze the size distribution and

mass flows between clusters during a typical temperature cycle in the period of exponential

change of CEE, and discuss the role of small clusters. In B the size of clusters relevant to

the chirality conversion is identified.

A. Role of small clusters

In Fig. 3, the change of CEE and the size distribution in the 40th temperature cycle are

plotted. The CEE decreases in the low temperature period, 400 < t ≤ 405, and increases in

the high temperature period, 405 < t ≤ 410 [Fig. 3(a)]. The amount of the latter exceeds the

former, and the CEE is amplified in one cycle. In Figs. 3(b)-(f), the right side of the abscissa

represents the cluster size of the majority type(R), and the left side represents that of the

minority(L). The ordinate is the logarithm of the number of clusters. It is evident that the

distribution of small clusters changes remarkably during the cycle: dips in the logarithmic
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FIG. 3: (Color online) (a) Change of CEE in the period 400 ≤ t ≤ 410 (40th cycle). Size

distribution of clusters at (b) t = 401, (c) t = 403, (d) t = 405, (e) t = 407, (f) t = 409. The right

side and the left side on abscissa represent cluster size of R and L, respectively.

plot at low temperatures and shoulders at high temperatures.

In order to see the change of each component more quantitatively, the masses of chiral

monomers(i = 1), small clusters(2 ≤ i ≤ 5) and solids(5 < i) are plotted in Fig. 4, and to

find the origin of the change, the mass flow between these components is shown in Fig. 5.

The key feature of the chirality conversion is that the mass of the majority R clusters MR
c

is much more than ML
c in the high temperature period but less in the low temperature

period[Fig. 4(b)]. The mass flow between small clusters and solids is in accordance with our

common sense[Fig. 5(c)]: small clusters incorporate to large ones in the low temperature
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FIG. 4: (Color online) Change of masses in one cycle: (a) R and L monomers, (b) R and L clusters,

(c) R and L solids.

period, and large ones melt to become small clusters in the high temperature period. Since

such mass flow with small clusters is much more effective than that of monomers [note that

the magnitude in Fig. 5(c) is one order larger than in Fig. 5(a) and in Fig. 5(b)], the behavior

of small clusters controls the whole flow. In the beginning of low temperature period, R

clusters solidify twice as fast as L clusters[Fig. 5(c)] since R solid is twice as much as L solid

[Fig. 4(c)]: the mass of R clusters decrease very rapidly to become less than ML
c [Fig. 4(b)].

The mass flow from monomers to small clusters is positive in the high temperature period

and negative in the low temperature period [Fig. 5(a)]. At the high temperature, monomers

form small clusters because of the small effective surface tension (see Eq. (5)). The mass of L

monomers ML
1 (= nL

1 ) is appreciably higher than MR
1 (= nR

1 ) in most of the low temperature

period [Fig. 4(a)] because the fast solidification of R clusters leaves more L clusters, which

dissociate to L monomers. Therefore the chirality conversion at the molecular level from L

to R takes place mainly in the low temperature period[Fig. 5(d)] when the CEE decreases

[Fig. 3(a)]. It is noteworthy that monomers are always supersaturated[Fig. 4(a)]: monomers
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FIG. 5: (Color online) Change of mass flow in one cycle: (a) from monomers to small clusters, (b)

from monomers to solids, (c) from small clusters to solids, (d) from L monomers to R monomers.

of both chiralities increase in the low temperature period high above the equilibrium value

neq
1

l = 10−3, and decrease in the high temperature period toward the equilibrium value,

neq
1

h = 10−2. Then the mass flow from monomers to solids is positive for most of the

temperature cycle [Fig. 5(b)]: monomers solidify even at the high temperature when solids

melt into small clusters. Such excess of monomers at high temperature prohibits an increase

in nR
1 (M

R
1 ) which would have induced chirality conversion from R to L.

The whole process is depicted schematically in Fig. 1. In the low temperature period, R

clusters solidify much faster than L clusters since there are more R solids. Large numbers

of R clusters are consumed by the solidification, and soon the mass of L clusters exceeds

that of R (ML
c > MR

c ). The clusters dissociate into monomers, resulting in the surplus of L

monomers (ML
1 > MR

1 ). The considerable excess of L monomers is maintained in the most of

the period, and it is the origin of the molecular chirality conversion. In the high temperature

period, rapid solid melting to small clusters takes place, and R clusters are formed more
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than L (MR
c > ML

c ) while the number of monomers of both chiralities are roughly the

same[Fig. 4(a)] because of the fast racemization. The increase of the CEE occurs in high

temperature melting, but the molecular chirality conversion takes place mainly in the low

temperature period.

B. Maximum size of clusters that contribute to growth

To find the size of clusters that promote the chirality conversion we performed numerical

calculation with various values of jmax, which is the maximum size that contribute to growth.

The change of CEE with various jmax is shown in Fig. 6(a), and the exponential amplification

rates of these data are plotted in Fig. 6(b). The amplification rate ω is defined as

ϕ(t) = ϕ(0)eωt, (14)

and determined from the slopes in Fig. 6(a). Without cluster incorporation, jmax = 1, no

change of CEE is seen. With jmax = 2 and 3, the very weak amplification occurs. In

contrast, the amplification is remarkable with jmax = 4 and 5. The amplification rate ω

increases with jmax but becomes saturated above jmax = 5. In the chirality conversion by

grinding, the exponential amplification of CEE is possible merely with the chiral dimer

incorporation [17]. (The effect of larger clusters, jmax > 2, is not studied in Ref. [17].)

Without grinding, incorporation of larger clusters to solids seems necessary, but clusters

larger than j = 5 do not accelerate the process much. Note that we have assumed the

detailed balance condition Eq. (6).

VI. CHARACTERISTIC FEATURES IN THE EXPERIMENT

In the temperature cycling experiment [44] several interesting features were observed. In

this section, we test whether our model can reproduce these experimental features.

A. Interruption of temperature cycling

In the experiment [44] the exponential amplification of CEE is suspended when the cycling

is interrupted for a considerable duration. To test if our model shows such a behavior, the

temperature cycling was interrupted in the period 400 < t < 800. The result is shown in
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FIG. 6: (Color online) (a) Change of CEE with various maximum size, jmax, of clusters that

contribute to growth. (b) Amplification rate of CEE with various jmax.
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tFIG. 7: (Color online) Change of CEE with an interruption of temperature cycling in 400 < t < 800.

Fig. 7. The amplification is suspended during the interruption period. Only a very slow

increase in the CEE is observed, which is in accordance with the experiment [Fig. 4 of

Ref. [44]]. Interruptions of other durations show similar behaviors.

B. Dependence on the period

Another feature of the experiment [44] is that the amplification rate of CEE is not sensitive

to the period P . In Fig. 8 the changes of CEE for P = 10, P = 20 and P = 30 are shown.

They roughly collapse to a single exponential curve as a function of time whereas they show
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FIG. 8: (Color online) Change of CEE for different period of temperature cycling P . (a) as a

function of cycles and (b) as a function of time.
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FIG. 9: (Color online) (a) Change of CEE and (b) the amplification rate ω for different amount of

crystals. Mass ratio R is the amount of the initial solid mass to that in the previous calculation.

In (b), the solid line represents R−1.

a large difference if plotted as a function of the cycle number. Fig. 8 corresponds to the

experimental result [Fig. 5 of Ref. [44]] although the temperature profiles are not identical

and the comparison is only qualitative.

C. Dependence on the mass of crystals

When the total mass of crystals is increased in the experiment [44], the time necessary

for complete conversion is increased accordingly. We performed several simulations with

different mass of crystals by changing the initial amount of large clusters of the size is in

Eq. (13), and the result is shown in Fig. 9(a) for the mass ratio 0.5, 1, 1.5 with P = 25. The

mass ratio R is defined as the ratio of the initial solid mass to that in the previous numerical
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l + 1

2

)
P . (b) Enlargement of

the small mass part.

calculations. The amplification rate decreases when the mass is increased. As shown in

Fig. 9(b), the time necessary for the complete chirality conversion is roughly proportional

to the mass of crystals in accordance with the experiment [Fig. 6 in Ref. [44]].

VII. SYSTEM OF ACHIRAL MOLECULES

So far, we have studied the model system that corresponds to the experiment with chiral

molecules [44]. Similar effects have been observed for the case of NaClO3 [41, 42]. Since

systems of achiral molecules such as NaClO3 and NaBrO3 can be considered as systems

of chiral molecules with extremely fast racemization, the same mechanism should work to

realize nonlinear chirality conversion. We modify our model to have one type of achiral

molecules and two types of small chiral clusters and chiral solid clusters, and the result is

shown in Fig. 10. Masses of each component changes similarly to those in Fig. 2 as expected.

VIII. SUMMARY

The chirality conversion with the periodic change of temperature [44] can be explained

by the same processes that explain Viedma ripening [14, 17]: incorporation of small chiral

clusters to solids of the same chirality and the dissociation of chiral clusters into monomers.
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We demonstrated the exponential amplification of an initial small CEE with the use of the

generalized BD model [17, 23], in which all elementary processes satisfy the detailed balance

condition. The analysis in Sec. V shows that the small clusters work as a reservoir, which

induces the chirality conversion. Solidification of the majority species is accelerated by the

small clusters. The majority small clusters are consumed rapidly, and the minority small

clusters, whose number soon exceeds the majority, dissociate into monomers (because of

the large effective surface tension at low temperature) to produce more minority monomers.

Then the surplus minority monomers are transformed into the majority monomers. As a

whole, the temperature cycling transforms the minority species to the majority by using the

chiral cluster state as a pump.

There are two theoretical explanations [23, 51] relating the chirality amplification with

temperature change. The first one considers mass exchange between high and low temper-

ature systems, which may explain the experiment of steady circulation [42], but not the

experiment of temperature cycling [44]. The second one [51] introduces an arbitrary as-

sumption that the majority species crystallizes faster than the minority, which, we think, is

not justifiable. Thus the present scheme is the first reasonable explanation of the experiment

with periodic change of temperature [44]. The choice of the parameter values adopted in the

numerical calculation is rather arbitrary and sometimes a little extreme. The reason may

be that the system size in the calculation is very limited. The maximum cluster size in the

calculation is 103, and the simulation result should not be taken as quantitatively real but

only as qualitative. It is important that both chirality conversions with grinding and with

temperature cycling are explained by the same mechanism: incorporation of chiral clusters

to solids and dissociation of clusters to monomers.
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