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Preface

Combinatorial optimization is one of the most active areas in operations research, com-

puter science and discrete mathematics. It appears in various fields such as operations

research, applied mathematics and theoretical computer science. Combinatorial optimiza-

tion problems involve various applications, such as airline crew scheduling, VLSI design

and network design. A variety of real-life problems can be abstracted as combinatorial

optimization problems. Some of the classical problems in combinatorial optimization such

as minimum spanning trees, shortest paths, network flows, matchings, etc., have polyno-

mial time algorithms. However, there are numerous combinatorial optimization problems

such as the knapsack problem, traveling salesman problem, scheduling problem, packing

problem, which are proved to be NP-hard. Under the widely believed conjecture that

P 6= NP, finding their exact solutions is prohibitively time consuming in the worst case.

This negative aspect is not caused by missing more clever approaches to the problems but

is indeed a general property of the NP-hard problems. Consequently, we have to look for

other ways to deal with this situation. In particular, in many practical applications, it is

not really necessary to find exact optimal solutions, and sufficiently good solutions would

be enough. Hence, the approximation and heuristic algorithms that compute sufficiently

good solutions in reasonable time become very important.

There are several techniques for designing approximation algorithms and heuristics

such as greedy algorithms and local search algorithms. These ideas are useful when de-

vising approximation or heuristic algorithms for NP-hard problems. Algorithms derived

from these techniques are often easy to implement and run in short times in practice. Re-

cently, there have been an enormous number of studies on various types of heuristics and

metaheuristics such as simulated annealing, genetic algorithms, tabu search, evolutionary

computation and greedy randomized adaptive search procedures (GRASP). When more

quality is needed and more computation time is available, these techniques are often very

effective and yield good results in practice.

In this thesis, we focus on the two-dimensional packing problem. It is among the

classical packing problems and a series of approaches have been developed. There are
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three major types of two-dimensional packing problems: the bin packing problem, the

strip packing problem and the area minimization problem. In a two-dimensional packing

problem, we are usually given items (rectangles, circles, or arbitrarily shaped polygons) and

containers. We focus on the rectilinear block strip packing problem, where a rectilinear

block is a polygonal block whose interior angle is either 90◦ or 270◦. Given a set of

rectilinear blocks and a rectangular container with fixed width and infinite height (called

a strip), the task is to pack all the rectilinear blocks into the container so as to minimize

the height of the container.

Rectilinear blocks have similar properties with rectangles since they can be represented

by sets of rectangles whose relative positions are fixed. However, rectilinear blocks are more

flexible. Any arbitrarily shaped polygon can be approximately represented by a rectilinear

block. Consequently, the methods developed for the rectilinear block packing problem may

also work for a large variety of other variants of the strip packing problem.

There are some papers for the rectilinear block packing problem in the literature.

Most of them only deal with small-scale instances. However, for industrial application

purposes, good solutions for large-scale instances are often necessary. We observe that

construction heuristics tend to perform well on large-scale instances and it is possible to

design efficient implementations to make their running time very short. Hence, in this

research, we develop construction heuristics for the rectilinear block packing problem.

We first generalize two representative construction heuristics for the rectangle packing

problem to solve the rectilinear block packing problem and propose efficient implemen-

tations for them. Algorithms with different implementations devised to solve the same

problem often differ dramatically in their efficiency. The design and analysis of efficient

data structures have long been recognized as important subjects in implementation. We

then design more efficient implementations utilizing sophisticated data structures to keep

the necessary information dynamically so that the running time is significantly reduced.

We perform analysis of the running time of our algorithms based on different implemen-

tations from both sides of theory and practice. We also analyze the performance of the

developed heuristic algorithms and propose a new construction heuristic as a bridge be-

tween the two algorithms.

We hope that our algorithms are useful in practical applications and the developed im-

plementations and techniques can provide insight to help improve the design of algorithms

for solving combinatorial optimization problems.

February, 2016
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Chapter 1

Introduction

Combinatorial optimization [63] is one of the most active areas in operations research, theo-

retical computer science and discrete mathematics. Combinatorial optimization problems

involve various applications, such as airline crew scheduling, VLSI design and network

design. Many real-life problems can be abstracted mathematically as minimization or

maximization problems.

Some of the classical problems in combinatorial optimization such as minimum span-

ning trees, shortest paths, network flows, matchings, etc., have polynomial time algo-

rithms. However, there are numerous combinatorial optimization problems such as the

knapsack problem, traveling salesman problem, scheduling problem, packing problem,

which are proved to be NP-hard. Under the widely believed conjecture that P 6= NP, find-

ing their exact solutions are prohibitively time consuming in the worst case. Consequently,

we have to look for other ways to deal with this situation. In particular, in many practi-

cal applications, it is not really necessary to find exact optimal solutions, and sufficiently

good solutions would be satisfactory. Hence, the approximation or heuristic algorithms

that compute sufficiently good solutions in reasonable time become very important.

Packing problems are classic combinatorial optimization problems and known to be

NP-hard. Many packing problems are related to real-world applications and they have

been studied for a long time from both theoretical and practical points of view. In this

thesis, we focus on the rectilinear block strip packing problem, where a rectilinear block is a

polygonal block whose interior angle is either 90◦ or 270◦. Given a set of rectilinear blocks,

each with a deterministic shape and size, and a rectangular container (also called a strip)

with fixed width and unrestricted height, the task is to pack all the items orthogonally

without overlap into the container so as to minimize height of the container. Figure 1.1

shows an example of the rectilinear block packing problem. The layout on the right is an

example packing layout after packing all seven rectilinear blocks into the container given
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Figure 1.1: An instance of the rectilinear block packing problem and a solution

on the left of the figure. The objective is to minimize the height of the container.

According to the improved typology of Wäscher et al. [92], strip packing problems

are categorized into the two dimensional open dimension problem (2D ODP) with a single

variable dimension. The rectilinear block strip packing problem is among classical packing

problems and is known to be NP-hard [9]. It involves many industrial applications, such

as VLSI design, timber/glass cutting, and newspaper layout.

Rectilinear blocks have similar properties to rectangles since they can be represented

by sets of rectangles whose relative positions are fixed. However, rectilinear blocks are

more flexible. A rectangle can be treated as a special case of a rectilinear block and any

arbitrarily shaped polygon can be approximately represented by a rectilinear block. In

computer graphics, a bitmap image is a dot matrix data structure representing a grid

of pixels. An arbitrarily shaped polygon, no matter how complex it is in shape, can be

approximately represented as a bitmap image. The resulting layout of a bitmap image can

be treated as a rectilinear block by considering each dot of a bitmap image as a square.

Figure 1.2 shows an example of representing an arbitrarily shaped polygon by a rectilinear

block. Consequently, methods developed for the rectilinear block packing problem will

also work for a large variety of other variants of the strip packing problem. We restrict

the target of this thesis to the rectilinear block packing problem.

It is difficult to represent the relationships among rectilinear blocks than those among

rectangles. Several structures have been designed to represent the relationships among

rectilinear blocks such as the bounded-sliceline grid (BSG) [78, 87], sequence-pairs [32, 33,

56, 94], O-tree [82], B∗-tree [93], transitive closure graph (TCG) [67] and corner block

list (CBL) [69]. Several heuristics have been proposed for the rectilinear block packing

problem based on these structures. Most of those methods perform well for small-scale

instances with up to 100 items in reasonable running time, and they are especially effective

for instances consisting of rectilinear blocks that have simple shapes (e.g., L- or T-shape).

However, in many industrial applications such as VLSI design, good solutions are often
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arbitrarily shaped polygon bitmap image rectilinear block

(a) (b) (c)

Figure 1.2: An arbitrarily shaped object represented as a bitmap shape

necessary for large-scale instances or instances with rectilinear blocks having complicated

shapes. In this thesis, we focus on dealing with large-scale instances of the rectilinear

block packing problem.

Many efficient algorithms have been proposed for the rectangle strip packing prob-

lem. The bottom-left algorithm [9] and the best-fit algorithm [19] are known as the most

remarkable works among existing construction heuristics for the rectangle packing prob-

lem. We study these two construction heuristics and observe that construction algorithms

tend to obtain better performance when the sizes of instances increase, and it is possible

to design efficient implementations for construction algorithms to reduce their running

time. Inspired by these construction algorithms, we develop construction heuristics for

the rectilinear block packing problem.

We adopt the bottom-left strategy as the main strategy of our construction algorithms.

In this strategy, starting from an empty layout, items are packed into the container one by

one, and whenever a new item is packed into the container, it is placed at the bottom-left

(BL) position relative to the current layout. The BL position of a new item relative to

a packing layout is defined as the leftmost location among the lowest bottom-left stable

feasible positions, where a bottom-left stable feasible position is a location where the new

item can be placed without overlap and cannot be moved leftward or downward. The

technique of no-fit polygon [7] is very useful when determining whether two polygons

overlap each other in two-dimensional space. We take the concept of no-fit polygons as a

crucial technique for packing rectilinear blocks into container without overlap and design

methods of searching for the BL position of a rectilinear block.

We first generalize the bottom-left and the best-fit algorithms for the rectangle packing

problem to solve the rectilinear block packing problem and propose efficient implemen-

tations for these two generalized algorithms, using an efficient method for finding BL

positions that was originally proposed for rectangle packing. Different implementations
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devised to solve the same problem often differ dramatically in their efficiency. The design

and analysis of efficient data structures have long been recognized as important subjects

in implementation. We consider some sophisticated data structures, specially tailored for

our problem, and design more efficient implementations of the bottom-left and the best-fit

algorithms. We use sophisticated data structures that keep the information dynamically

so that the BL position of each item can be found in sub-linear amortized time. We also

analyze time complexities of these algorithms with the new implementations.

A series of experiments on a set of instances that are generated from nine benchmark

instances are performed to analyze the performance of our algorithms from both sides of

occupation rate and running time. Our algorithms often perform well for large instances.

We compare the running time of our algorithms with the different implementations from

both sides of theory and practice. The computational results show that the efficient

implementations significantly reduced the running time of the bottom-left and the best-

fit algorithms, and our algorithms are especially efficient for instances having repeated

shapes. We also create large-scale instances with up to 10,000 distinct shapes to test our

efficient algorithms and observe that the running time increases almost linearly with the

number of distinct shapes.

We then analyze the strength and weakness of the bottom-left and the best-fit algo-

rithms from the viewpoint of the quality of packing results. We investigate the reasons why

the best-fit algorithm outperforms the bottom-left algorithm for many instances and situ-

ations when the bottom-left algorithm performs better for some kinds of instances. Based

on these observations, we propose a new construction heuristic called the partition-based

best-fit heuristic (PBF) as a bridge between the bottom-left and the best-fit algorithms.

The basic idea of the PBF algorithm is that all the items to be packed are partitioned into

groups, and then items are packed into the container in a group-by-group manner. The

best-fit algorithm is taken as the internal tactics to pack items of each group. We show

that the PBF algorithm has the same time complexity as the best-fit algorithm with simi-

lar implementations. We perform a series of experiments to compare the performance with

respect to the occupation rates of the packing layouts obtained by the PBF algorithm and

those obtained by the bottom-left and the best-fit algorithms. The computational results

show that the PBF algorithm significantly improves the occupation rate of the packing

layouts, and it is especially effective for instances with many different sizes of shapes.

As explained before, our algorithms may also be used to obtain good solutions in

reasonable time for the problem of packing arbitrarily shaped polygons by representing

each arbitrarily shaped polygon as a bitmap image. The techniques used in our algorithms

may give insight to help design efficient implementations of algorithms for large-scale

instances of combinatorial optimization problems.
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This thesis is organized as follows. In Chapter 2, we survey some background of

combinatorial optimization problems and packing problems. Then, in Chapter 3, we give

the formulation of the rectilinear block strip packing problem considered in this thesis

and several important definitions and techniques used in our algorithms. We explain our

construction heuristics for the rectilinear block packing problem and their implementations

from Chapter 4 to Chapter 6. In Chapter 7, we briefly explain how we can apply the

efficient implementation to the rectilinear block packing problem with rotation. We show

that the time complexity of the case with rotation is the same as that without rotation.

Finally, in Chapter 8, we summarize our results in this thesis.





Chapter 2

Background

In this Chapter, we survey some background of combinatorial optimization problems and

packing problems. We first give some representative combinatorial optimization problems

and their complexities in Sections 2.1 and 2.2. Then, we explain the concept and some

techniques of approximation and heuristic algorithms in Section 2.3. We survey some

background of packing problems in Section 2.4 and then explain some previous works for

rectilinear block packing problems in Section 2.5.

2.1 Combinatorial optimization problems

Combinatorial optimization [63] is one of the most active areas in operations research, com-

puter science and discrete mathematics. It appears in various fields such as operations

research, applied mathematics and theoretical computer science. Combinatorial optimiza-

tion problems involves various applications, such as airline crew scheduling, VLSI design

and network design. A variety of real-life problems can be abstracted as combinatorial

optimization problems.

In general, combinatorial optimization is a problem that involves finding an optimal

object from a finite set of objects. The job assignment problem that usually appears in real-

world applications is given as a simple example of combinatorial optimization problems.

Given a set of jobs to be done and a set of employees, we are asked to assign employees

to jobs and the objective is to make all jobs done as early as possible. Each job j has a

processing time tj and can be done by a subset of the employees. We assume that every

processing time tj is in Z+, where Z+ is the set of nonnegative integers {0, 1, 2, . . .}, and

all employees are equally efficient, i.e., it takes the same amount of time to complete a job

for any employee who can do the job. We can assign several employees to the same job

at the same time, and one employee to several jobs (not at the same time). This problem
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can be formally described as follows:

Job Assignment Problem

Instance:

A set of processing times t1, t2, . . . , tn ∈ Z+ for n jobs, m ∈ Z+ employees,

and a nonempty subset Sj ⊆ {1, 2, . . . ,m} for each job j ∈ {1, 2, . . . , n}.

Task:

Find a solution xij ∈ Z+ for all i ∈ Sj and j = 1, . . . , n such that∑
i∈Sj

xij = tj for every j and maxi∈{1,2,...,m}
∑

j:i∈Sj
xij is minimum.

There will be many feasible solutions for this problem, where a solution is called fea-

sible if it satisfies all constraints. A solution x for this problem is feasible if it satisfies∑
i∈Sj

xij = tj for every j, i.e., the total amount of work time assigned to job j equals the

processing time tj of the job. Because no employee can contribute to different jobs at the

same time, the time when all jobs are done equals the maximum total working time as-

signed to an employee, i.e., maxi∈{1,2,...,m}
∑

j:i∈Sj
xij . Hence the objective of this problem

is in fact to minimize the maximum total working time of employees. A feasible solution

that minimizes this value is called an optimal solution, and its objective value is called the

optimal value. Theoretically, an optimal solution can be found by completely enumerating

all feasible solutions. However, in most cases, such enumeration is impractical even when

the input size of the problem is not large because the number of all feasible solutions may

increase exponentially with the input size.

An algorithm is regarded as “good” or “efficient” if it runs in polynomial time. This

concept was introduced by Edmonds [30]. Some of the classical problems in combinatorial

optimization have polynomial time algorithms. Two examples of such problems are given

in the following.

Minimum Spanning Tree Problem

Instance:

An undirected graph G = (V,E) and weights on the edges w : E → R,

where R is the set of real numbers.

Task:

Find a spanning tree in G having the minimum total edge weight.

There are two famous polynomial time algorithms for the minimum spanning tree

problem, Kruskal’s algorithm [64] and Prim’s algorithm [85]. Kruskal’s algorithm works in

O(|E| log |V |) time using a disjoint-set data structure (Union and Find). Prim’s algorithm



2.2 NP-hardness 9

implemented with a balanced search tree or a binary heap runs in O(|E| log |V |) time in

the worst case. Implementations for Prim’s algorithm with Fibonacci heap can improve

its running time to O(|E|+ |V | log |V |).

Shortest Path Problem

Instance:

A graph G = (V,E), two vertices s, t ∈ V , and weights on the edges

w : E → R, where R is the set of real numbers.

Task:

Find a shortest s-t path P having the minimum total edge weight.

There are also two famous polynomial time algorithms for the shortest path problem,

the Bellman-Ford algorithm [13] and Dijkstra’s algorithm [26]. The Bellman-Ford algo-

rithm can solve this problem and find shortest paths from s to all v ∈ V in O(|V ||E|) time.

Dijkstra’s algorithm works in O(|E| log |V |) time when the weights on edges are nonneg-

ative, i.e., w : E → R+ where R+ is the set of nonnegative real numbers. This running

time can be improved to O(|E|+ |V | log |V |) if implemented with Fibonacci heap [31].

2.2 NP-hardness

Most of complexity theory is based on decision problems that asks to answer “yes” or

“no” [34]. We can derive decision problems from minimization (resp., maximization)

problems by adding a bound B as a parameter and asking whether there exists a solution

with value not more than (resp., at least) B. For example, a decision problem derived

from the shortest path problem can be described as follows:

Shortest Path Decision Problem

Instance:

A graphG = (V,E), two vertices s, t ∈ V , weights on the edges w : E → R,

where R is the set of real numbers, and a bound B.

Task:

Does G contain an s-t path P whose total edge weight is not more than

B.

The class P consists of all decision problems solvable in polynomial time. The decision

problems derived from the minimum spanning tree problem and the shortest path problem

are in P.
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The class NP is defined to be the class of all decision problems that can be solved

by polynomial time nondeterministic algorithms. Suppose for an instance of a decision

problem in NP, one claims that the answer of the instance is “yes” by providing a certificate

such as a solution. Then we can verify the certificate in polynomial time. Let us consider

the following 3-satisfiability problem (3SAT) as a simple example.

3-Satisfiability Problem

Instance:

A set X of variables and a collection Z of clauses over X, each consisting

of exactly three distinct literals.

Task:

Decide whether Z is satisfiable.

This problem belongs to NP. It is not known whether there exists a polynomial time

algorithm for solving this problem. However, if we are given an assignment of X for an

instance of this problem as a certificate, it is obviously possible to verify a “yes” answer

for the instance in polynomial time by checking whether the assignment is in fact a truth

assignment satisfying Z.

The class NP includes (the decision problem versions of) most combinatorial optimiza-

tion problems, and it also contains all the problems in P, i.e., P ⊆ NP. It is not known

whether P = NP, which is one of the most important open problems in complexity theory.

A decision problem in NP is defined to be NP-complete if all other decision problems in

NP can be reduced to it in polynomial time. This implies that if an NP-complete problem

can be solved in polynomial time, then every problem in NP can be solved in polynomial

time, i.e., P = NP. The 3SAT problem is known to be NP-complete and it is very useful

when we prove another problem is also NP-complete: all we have to do is to prove that

the 3SAT polynomially transforms to that problem.

The definition of NP-hard applies to a more general class of problems called search

problems. For a search problem, we are given a subset of solutions, which is defined, e.g.,

by a set of constraints, and are asked to search for a solution in the subset or to return the

answer “no” if such a solution does not exist. Such a subset can be the set of all optimal

solutions of an instance, and hence all optimization problems belong to the class of search

problems.

A search problem that is at least as hard as an NP-complete problem (i.e., all problems

in NP can be polynomially reduced to it) is called NP-hard. NP-hard problems are not

necessarily in NP, since they may not be decision problems.
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We can say that a search problem is NP-hard if the corresponding decision problem is

known to be NP-complete. The NP-completeness result for a decision problem can thus

be translated into an NP-hardness result for its corresponding search problem. The fol-

lowing maximum 3-satisfiability problem (MAX-3SAT) is a search problem corresponding

to 3SAT.

Maximum 3-Satisfiability Problem

Instance:

A set X of variables and a collection Z of clauses over X, each consisting

of exactly three distinct literals.

Task:

Find a truth assignment that satisfies the largest number of clauses in Z.

The MAX-3SAT is NP-hard, because 3SAT is NP-complete. Given an instance of a

collection Z for 3SAT, which is also an instance for MAX-3SAT, determining whether Z
is satisfiable or not for the 3SAT is obviously not harder than finding an optimal solution

for the MAX-3SAT.

Some examples of NP-hard problems are given in the following. All of these problems

are typical combinatorial optimization problems.

Traveling Salesman Problem

Instance:

A directed graph G = (V,E) and weights on the edges w : E → R+.

Task:

Find a Hamiltonian cycle whose total edge weight is minimum.

Set Covering Problem

Instance:

A finit set U , a collection S = {S1, S2, . . . , Sn} where
⋃
Si∈S Si = U , and

weights w : S → R+.

Task:

Find a subset R ⊂ S such that
⋃
Sj∈R Sj = U and

∑
Sj∈Rwj is minimum.

Vertex Coloring Problem

Instance:

An undirected graph G = (V,E).
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Task:

Find a vertex coloring f : V → {1, 2, . . . , k} of G with f(v) 6= f(w) for

all {v, w} ∈ E and k is minimum.

It is strongly believed that NP-hard problems have no polynomial time algorithms [34].

Solving these problems exactly may necessitate enumerating an essential portion of all so-

lutions that increases exponentially with the size of input. Representative methods such as

branch-and-bound and dynamic programming are frequently utilized to find exact optimal

solutions by enumerating only promising solutions efficiently [45]. Many algorithms are

proposed for NP-hard problems utilizing these techniques. It is often the case that they

can exactly solve some small-scale instances and some relatively large instances with sim-

ple or special structures. However, for the problems that have complex structures or for

the large-scale instances, there are still no efficient algorithms to find their exact optimal

solutions.

In many practical applications, however, it is not really necessary to find exact op-

timal solutions, and sufficiently good solutions would be enough. Hence, approximation

and heuristic algorithms that compute sufficiently good solutions in reasonable time be-

come very important. The concept and some techniques for approximation and heuristic

algorithms are introduced in Section 2.3

2.3 Approximation and heuristic algorithms

In this section, we give the important concept and some typical techniques of approx-

imation and heuristic algorithms. In principle, any algorithm that computes a feasible

solution of a problem is an approximation or heuristic algorithm. The basis is to pay for

the reduced running time by getting only a suboptimal solution.

Assume that for an instance of an optimization problem, zA is the solution value

computed by an approximation algorithmA and OPT is the optimal value. If zA/OPT ≤ α
holds for every instance of the problem, the algorithm A is called an α-approximation

algorithm and α is called the approximation factor. Such approximation algorithms with

performance guarantees have been investigated in the past two decades and the theory of

hardness of approximation have been developed [8, 41,90].

Techniques such as greedy algorithm and local search are usually considered when de-

signing heuristics [1, 24]. These ideas are useful when devising heuristic algorithms for

NP-hard problems. Algorithms derived from these techniques are often easy to implement

and run in short time in practice.

A greedy algorithm [24] builds a solution by repeating simple steps, making a decision
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at each step myopically to optimize some underlying criterion. It always makes a locally

optimal choice, hoping that this choice will lead to a globally optimal solution. There

usually exist many different greedy algorithms for the same problem. Greedy algorithms

are guaranteed to find optimal solutions for some problems, and for many problems it can

produce solutions that are guaranteed to be close to optimal. Greedy algorithms are quite

powerful and work well for a wide range of problems. Many algorithms based on greedy

method are proposed for combinatorial optimization problems, e.g., Kruskal’s and Prim’s

algorithms for the minimum spanning tree problem, Dijkstra’s algorithm for the shortest

path problem explained in the previous section, and Chvatal’s greedy heuristic for the set

covering problem [22].

Local search [1] starts from an initial solution and repeats replacing the current solution

with a better solution in its neighborhood until no better solution is found. It is a useful

technique when designing heuristics algorithms, which explores the space of possible solu-

tions sequentially. Although, in general, it is not a polynomial time method, it is observed

by many researchers that it typically obtains near-optimal solutions in reasonable time for

many problems.

Since simply applying local search only once in a heuristic algorithm may not be

sufficient to find a good solution, many variants of simple local search such as multi-start

local search (MLS), iterated local search (ILS), variable depth search are often considered

when longer computation time is available. These variants are called metaheuristics in

general.

The MLS [73], which is one of the simplest metaheuristics, first generates a series of

initial solutions randomly and then applies local search for each initial solution indepen-

dently. It finally returns the best solution among the resulting locally optimal solutions.

The ILS [68] iterates local search many times. For each iteration, it starts from an

initial solution generated by slightly perturbing a good solution obtained so far. It is

important for the performance of algorithm to generate initial solutions that retain some

features of good solutions and care should be taken to avoid a cycling of solutions.

Recently, there have been an enormous number of studies on various types of meta-

heuristics [35, 40, 46, 80, 81, 91] such as tabu search, simulated annealing, genetic algo-

rithms and greedy randomized adaptive search procedures (GRASP). When more quality

is needed and more computation time is available, these techniques are often very effective

and yield good results in practice. Osman and Laporte provides a classification of a com-

prehensive list of 1380 references on the theory and application of metaheuristics in [81].

Below we briefly introduce some representative metaheuristics.

The tabu search [36] tries to enhance local search by using the memory of previous

searches. It repeatedly replaces the current solution with its best neighbor that is not



14 Background

included in a list, called tabu list, that records recently visited solutions.

The simulated annealing [60] is a kind of probabilistic local search in which test so-

lutions are randomly chosen from its neighborhood and accepted with a probability that

equals 1 if the test solution is better than the current solution and is positive even if it is

worse than the current solution. The acceptance probability of moves is controlled by a

parameter called temperature. This idea drives from the physical process of annealing.

The genetic algorithm [42] is inspired by the evolutionary process in nature. It repeat-

edly generates a set of new solutions by applying two types of operations called crossover

and mutation to the set of current solutions. The crossover operation generates one or

more new solutions by combining two or more current solutions. The mutation operation

generates a new solution by slightly perturbing a current solution.

The GRASP [86] usually consists of a greedy randomized construction procedure and

a local search. It iterates such a construction procedure and local search many times. In

the construction phase, it generates a feasible solution that is used as the initial solution

in the local search phase.

2.4 Packing problems

In this section, we survey some background of packing problems. Packing problems belong

to a class of optimization problems. In a packing problem, it involves packing a set of

objects, called items, into containers. The objective is to pack a single container as

densely as possible, or pack all items into as few containers as possible. A generic form of

the packing problem is as follows:

Packing Problem

Instance:

A set of n items, and a set of containers.

Task:

Pack the items into containers without overlap so as to minimize or max-

imize a given objective function.

There are variety of objective functions for packing problems. Some typical objective

functions are shown as follows:

• minimize the size of one container, e.g., strip packing problem,

• minimize the number of used containers, e.g., bin packing problem,
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• maximize the total profit of the packed items, e.g., knapsack problem.

Many of these problems are related to real-world applications and they have been

studied for a long time from both theoretical and practical points of view. There are

many survey papers for these problems such as the typologies given by Dyckhoff [29] and

Wäscher et al. [92], and a review by Hopper and Turton [44]. We explain some typical

packing problems according to their dimensions in the following sections.

We first explain the simplest version of the packing problems, the one-dimensional

packing problem. There are two major problems, the knapsack and the bin packing

problem. These problems have simple structures. Many simple greedy algorithms performs

well for these problems and many exact algorithms based on branch-and-bound or dynamic

programming have also been proposed. However, packing problems with more than one

dimension become much more complex. It seems very hard to find optimal solutions even

for small instances. In this thesis, we focus on the two-dimensional strip packing problem.

We give some background of the rectangle strip packing problem and the irregular strip

packing problem. Finally, we briefly explain the three-dimensional packing problem.

2.4.1 One-dimensional packing problems

One-dimensional packing is the most basic category of packing problems, and many al-

gorithms have been proposed. There are two major problems, the knapsack problem and

the bin packing problem, in this category.

Knapsack problem

The knapsack problem [58] is one of the representative combinatorial optimization prob-

lems. In the knapsack problem, we are given a set of items and a knapsack with a specified

capacity. The task is to select a subset of items such that the total profit of the selected

items is maximized and the total weight does not exceed the given capacity. This problem

has been studied for decades since it is the simplest prototype of maximization problems.

The knapsack problem is formally described as follows:

Knapsack Problem

Instance:

Sets of profits {p1, p2, . . . , pn} and weights {w1, w2, . . . , wn} for n items,

and a capacity value c. (Usually, all the values are positive integer num-

bers.)
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Task:

Find a subset S ⊂ {1, 2, . . . , n} such that
∑

i∈S wi ≤ c and
∑

i∈S pi is

maximum.

There are many simple greedy algorithms proposed to solve the knapsack problem and

most of them perform well in practice. An intuitive idea for greedy algorithms for the

knapsack problem is to consider the efficiency ei = pi/wi of each item i and try to select

the items with high efficiency into the knapsack. Such items contribute large profit while

consuming small amount of capacity. We first sort the items in decreasing order of their

efficiency such that e1 ≥ e2 ≥ · · · ≥ en. The greedy algorithm starts with an empty

knapsack S := ∅ and go through the items in this decreasing order putting every item j

into S if
∑

i∈S wi + wj ≤ c holds.

Dantzig [25] proposed a linear programming relaxation (LP-relaxation) of the original

problem, which is derived using real numbers instead of only integer values. Assuming

OPT is the optimal value of an instance of the knapsack problem, it is obvious for a

maximization problem that the optimal value zLP of the relaxed problem is at least as

large as the optimal value of the original problem, i.e., zLP ≥ OPT. We also assume that

the items are already sorted according to their efficiency. The solution of LP-relaxation

can be computed similarly to the above greedy algorithm. It also starts with an empty

knapsack and go through the items in the decreasing order putting items into the knapsack.

We call an item s a split item if
∑s−1

i=1 wi ≤ c and
∑s

i=1wi > c holds. The algorithm

returns a solution consisting of the first s − 1 items and an appropriate fractional part

(= (c−
∑s−1

i=1 wi)/ws) of item s. The optimal value zLP of the LP-relaxation is
∑s−1

i=1 pi +

((c−
∑s−1

i=1 wi)/ws) · ps, which is called Dantzig bound.

Note that OPT ≤ zLP ≤
∑s−1

i=1 pi + ps holds. Another greedy algorithm is to compare

the profit of the solution consisting of the first s− 1 items and that of the solution with a

single item having the highest profit. The algorithm adopts the solution with larger profit

(= max{
∑s−1

i=1 pi,max{p1, p2, . . . , pn}}). Assuming that z is the total profit value of items

in the solution returned by this greedy algorithm, OPT ≤ zLP ≤
∑s−1

i=1 pi +ps ≤ 2z holds.

Hence, this greedy algorithm is a 1
2 -approximation algorithm.

There are also pseudo-polynomial time algorithms using dynamic programming [12,25]

and fully polynomial time approximation schemes (FPTAS) for this problem. The first

FPTAS for the knapsack problem was proposed by Ibarra and Kim [47]. The FPTAS

with the currently known best complexity, both for the running time and the space, was

proposed by Kellerer and Pferschy in [57].

From practical experience it is known that many knapsack problem instances of con-

siderable size can be solved in reasonable time by exact algorithms using the techniques
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of dynamic programming and branch-and-bound [58].

Balas and Zemel [10] gave the precise definition of the core of a knapsack problem

based on the knowledge of an optimal solution. Some algorithms are based on primal-

dual dynamic programming recursions, the concept of solving a core and the separation of

cover inequalities [83, 84] to tighten the formulation. Martello et al. gave an overview of

the latest techniques of exact algorithms for the knapsack problem in [72].

Bin packing problem

In the bin packing problem, we are given a set of items and bins of equal capacity and the

task is to assign all the items to the bins such that the total size of the items assigned

to each bin does not exceed its capacity and the number of the used bins is minimum.

Without loss of generality, the capacity of each bin is assumed as 1. The bin packing

problem is formally described as follows:

Bin Packing Problem

Instance:

A set of items and their sizes of nonnegative numbers a1, a2, . . . , an ≤ 1.

Task:

Find a k ∈ Z+ and an assignment f : {1, 2, . . . , n} → {1, 2, . . . , k} such

that
∑

i:f(i)=j ai ≤ 1 for every j ∈ {1, 2, . . . , k} and k is minimum.

This problem is equivalent to the simplest version of the cutting stock problem [41]. A

generic form of the cutting stock problem is described as follows:

Cutting Stock Problem

Instance:

A set of n items, each with size ai ∈ Z+ and demand di ∈ Z+, and beams

of equal length l.

Task:

Cut beams into pieces such that the total size of pieces from each beam

is not larger than l, and for each i = 1, 2, . . . , n, we have di or more pieces

of length ai so as to minimize the number of used beams.

The simplest version of the above cutting stock problem is to set every demand di to

one and the resulting problem is equivalent to the bin packing problem.

The bin packing problem is proved to be NP-hard in the strong sense and no algo-

rithm can achieve a performance ratio strictly better than 3/2 unless P = NP. Below we
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introduce three well-known greedy heuristic algorithms for this problem. Let us denote

the optimal value of an instance of this problem by OPT.

The simplest heuristic algorithm among the three greedy algorithms is called the next-

fit algorithm [63]. It assigns items one by one into bins. Starting from one bin, the

algorithm assigns an unassigned item to the bin most recently opened if it has sufficient

remaining capacity, and whenever the capacity of the current bin would exceed after

assigning the item, the algorithm closes the current bin, opens a new bin, and then assigns

the item to the new bin. Assuming that NF is the number of bins that is returned by the

next-fit algorithm, the next-fit algorithm runs in O(n) time and for any instance, it satisfies

NF ≤ 2OPT−1 (see the proof in [63]). Hence, the next-fit algorithm is a 2-approximation

algorithm. Furthermore, there exists an instance which shows that this bound is tight. It

consists of 2n items of sizes {1/2, 1/n, 1/2, 1/n, . . . , 1/2, 1/n}. The OPT of this instance

is n/2 + 1, and the value of the solution returned by the next-fit algorithm is n.

The first-fit algorithm [63] is similar to the next-fit algorithm. At the beginning, it

prepares n bins. It assigns items one by one to bins where each item is assigned to the

oldest bin (having the smallest id) whose residual capacity is not smaller than the size of

the item. The first-fit algorithm is also a 2-approximation algorithm. Assuming that FF

is the number of bins that is returned by the first-fit algorithm, FF ≤
⌈
17
10OPT

⌉
holds [54].

There exist instances with arbitrarily large OPT and FF ≥ 17
10(OPT− 1).

Analysis shows that the next-fit and the first-fit algorithms perform well when the sizes

of items are small. It is proved that NF ≤ d
∑n

i=1 ai/(1− γ)e holds for any γ that satisfies

0 < γ < 1 and γ ≥ ai for every i. It is natural to assign larger items first. The first-fit-

decreasing algorithm [63] first sorts the items in decreasing order of their sizes and then

applies the first-fit algorithm to assign them to bins. The first-fit-decreasing algorithm is

a 3
2 -approximation algorithm [88] and it is shown that FFD ≤ 11

9 OPT + 2
3 holds for any

instance, where FFD is the number of bins used by the first-fit-decreasing algorithm [27].

2.4.2 Two-dimensional packing problems

Two-dimensional packing problem involves packing a set of two-dimensional items into

larger rectangular containers such that no item overlaps with others. Items in the problem

can be shaped arbitrarily such as the rectangles, circles and irregular shaped polygons.

As explained at the beginning of this section, there are many variations for the objective

functions. Among those, the strip packing problem has been intensively investigated. In

the strip packing problem, we are given a set of polygons, rectangles or irregular shaped

polygons, and only one rectangular container whose width is fixed and height is a variable.

The objective is to minimize the height of the given container. This problem is categorized
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as open dimension problem in a recent typology proposed by Wäscher et al. [92]. When

all the given items are rectangles, this problem is called the two-dimensional strip packing

problem (2SP) [92] and that for polygons is called the irregular strip packing problem.

There are some typical strategies and algorithms proposed for the strip packing prob-

lem. Hopper and Turton [44] gave a review of metaheuristics developed to two-dimensional

packing problems. The bottom-left strategy [9,43] and the clustering strategy [2] are known

as the most popular strategies for this problem. The bottom-left strategy, which was orig-

inally proposed for the rectangle packing problem [9], packs items into the container one

by one at the lowest position as left as possible. Figure 2.1 shows an example of pack-

ing items according to the bottom-left strategy. The clustering strategy always selects a

subset of the given items and packs them as compactly as possible and then treats the

resulting combination of items as a new item. There are also some heuristic algorithms

based on clustering strategy proposed in the literature [14,28,52,53]. Figure 2.2 shows an

example of the processing when packing items according to the clustering strategy.
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Figure 2.1: Bottom-left strategy
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Figure 2.2: Clustering strategy

The 2SP has various applications in material industry and scheduling problems. There

are many heuristic algorithms based on the explained strategies in the literature [9, 43].

As explained, the bottom-left strategy was first proposed for the 2SP in [9] and the algo-

rithm is called the bottom-left algorithm. The bottom-left algorithm is one of the simplest

forms among the algorithms based on the bottom-left strategy. Burke et al. [19] proposed

another algorithm called the best-fit algorithm, which is slightly more complicated than

the bottom-left algorithm. The research in this dissertation is inspired by these two algo-
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rithms and we explain them in details in Chapter 3. There are also some heuristics based

on local search [50,51] for the 2SP.

Since rectangle is the simplest shape of polygons and it is easy to define the relative

positions among them, there are some exact algorithms [59, 65, 71] proposed for the 2SP

utilizing this special structure. Alvarez-Valdes et al. [6] proposed new lower bounds for

2SP and a branch-and-bound algorithm obtained by incorporating a GRASP algorithm

and an exact algorithm based on staircase placement.

The irregular strip packing problem also has numerous material industry applications

such as paper and textile industries. The algorithm proposed in [7] utilizes the concept

of the bottom-left strategy. It first approximates every non-convex polygon by a convex

polygon that encloses it and then places them one by one at a feasible bottom-left position.

Heuristics [18, 20] also takes the bottom-left strategy when packing items. Recall that

the bottom-left algorithm packs items one by one according to a given sequence. Many

approaches have been proposed for finding a good sequence in [5, 37, 79]. Adamowicz

and Albano [3] proposed an algorithm using the concept of the clustering strategy. Their

algorithm first partitions the items into several groups, and then generates a rectangle

enclosure for each group where the polygons in each group are packed as compactly as

possible.

Algorithms that take advantages of mathematical programming techniques for the

irregular strip packing problem are proposed in [15, 38, 66]. Benell and Dowsland [15]

proposed an algorithm that incorporates both the bottom-left algorithm and a linear

programming based compaction algorithm, where a compaction algorithm translates the

packed items continuously so as to minimize the height of the container. There also exists a

separation algorithm [66], which is often used in combination with a compaction algorithm.

The separation algorithm works for a packing layout where there are some polygons having

overlap with others. It translates the items in the layout continuously in order to make

them separate with each other. The algorithm proposed in [38] updated many best known

results for the benchmark instances of the irregular strip packing problem. It featured

the bottom-left algorithm with the linear programming based compaction and separation

algorithms and it was further incorporated with simulated annealing.

2.4.3 Three-dimensional packing problems

Three-dimensional packing problems appear in various industrial applications and there

are some variations of this problem such as container loading problem, three-dimensional

strip packing problem, three-dimensional bin packing problem and three-dimensional knap-

sack problem. These variations have similar properties as those of the one- or two-
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dimensional packing problems. The three-dimensional strip packing problem involves

packing a set of cuboid items into one container with fixed basal shape and infinite height

so as to minimize the height of the container. The three-dimensional bin packing problem

asks to pack given items into bins whose shapes and sizes are given as input and the objec-

tive is to minimize the number of used bins. In the three-dimensional knapsack problem,

we are given a set of cuboid items, each with a profit, and a container, and the task is

to select a subset of items such that they can be packed inside of the container without

overlap and the total profit is maximum.

There are many heuristic algorithms proposed for these problems. Most of them are

based on heuristic algorithms proposed for the one- and two-dimensional packing prob-

lems. Bischoff and Marriott in [16] introduced 14 heuristics for the three-dimensional strip

packing problem and also performed a series of experiments to compare the performance

of these algorithms.

Note that in real-world applications, there exist many complicated constraints needed

to be considered such as the compactness of one container, the center of gravity, stability

of the packing layout, etc. Bortfeldt and Wäscher [17] provide an overview of real-world

container loading problems. They pointed out that many algorithms in the literature are of

limited practical value since they do not pay enough attention to constraints encountered

in practice.

2.5 Rectilinear block packing problems

Rectilinear block packing problem involves packing a set of arbitrarily shaped rectilinear

blocks into a larger rectangular container without overlap so as to minimize or maximize

a given objective function. A rectilinear block is a polygonal block whose interior angle

is either 90◦ or 270◦. This problem involves many industrial applications, such as VLSI

design, timber/glass cutting, and newspaper layout. It is among classical packing problems

and is known to be NP-hard [9].

It is difficult to represent the relationships among rectilinear blocks than those among

rectangles. Several structures have been designed to represent the relationships among

rectilinear blocks such as the bounded-sliceline grid (BSG) [78, 87], sequence-pairs [32, 33,

56, 94], O-tree [82], B∗-tree [93], transitive closure graph (TCG) [67] and corner block

list (CBL) [69]. Several heuristics have been proposed for the rectilinear block packing

problem based on these structures.

We explain two representative techniques, the BSG and the sequence-pair representa-

tions, in the following subsections. Both of them are often used for the two-dimensional

packing problem whose objective is to minimize the total area containing all the items,
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called the area minimization problem. The methods based on these representations per-

form well for small-scale instances in reasonable running time, and are especially effective

for instances consisting of rectilinear blocks that have simple shapes (e.g., L- or T-shape).

2.5.1 Bounded-sliceline grid

Nakatake et al. proposed in [77] a bounded-sliceline grid (BSG) structure to represent the

placement of items.

BSG is a topology defined in the plane and orthogonal line segments, called BSG-segs,

dissect the plane into square zones, called BSG-rooms (see Figure 2.3 (a) as an example).

The items are assigned to distinct BSG-rooms and they have the same relationship on

the placement with that among the BSG-rooms. A BSG of size n× n with assignment of

items to BSG-rooms can represent the relationship among given n items in a placement

of the items. Figure 2.3 (b) shows a placement of four items according to the assignment

in a BSG of size 4× 4 in Figure 2.3 (a).

a

b

d

c

(a)

a

b
c

d

(b)

Figure 2.3: An example of the BSG representation

Many approaches for the area minimization problem based on BSG are proposed in the

literature. It is not guaranteed that there is a corresponding BSG representation for every

placement for instances of L-shaped blocks packing problem. Because of this limitation,

optimal solutions may not be included in the search space of algorithms based on BSG.

The algorithms for L-shaped blocks packing problem was proposed in [55, 77]. They

partition each L-shaped block to two rectangles and assign them into two adjacent BSG-

rooms. Since adjacent BSG-rooms have a common BSG-seg, it is easy to align the rect-

angles into the original shapes. These approaches may still miss the optimal solution.

In [78], a method for packing rectilinear blocks and blocks with positional constraints

was proposed. The algorithm divides rectilinear blocks into a set of rectangles and packs

them based on BSG. Because of the limitation of BSG representation, it may also miss



2.5 Rectilinear block packing problems 23

the optimal solution.

Although the above algorithms may miss optimal solutions, their performance is often

good in practice.

Sakanushi et al. proposed in [87] an algorithm for packing convex rectilinear blocks

based on multi-BSG, which is an arrangement of plural BSGs on multiple layers. They

also represent a rectilinear block as a set of rectangles. The algorithm guarantees that an

optimal placement is contained in its solution space.

2.5.2 Sequence-pair

The sequence-pair [74,75] was proposed in 1995 as a coding scheme to represent a packing

layout of rectangles. The basic idea is that any feasible packing layout can be represented

by fixing the relative positions of all the rectangles. This technique is also used to represent

the solution space of the area minimization problem.

A sequence-pair represents a solution of δ rectangles by a pair of permutations of their

names. The number of all possible sequence-pairs for δ rectangles is (δ!)2. A sequence-pair

describes the relative horizontal or vertical positions for each pair of rectangles as follows:

• If (· · · a · · · b · · · , · · · a · · · b · · · ) holds, then a is left to b (i.e., the right edge of a is

left to the left edge of b).

• If (· · · b · · · a · · · , · · · a · · · b · · · ) holds, then a is below b (i.e., the top edge of a is below

the bottom edge of b).

For a simple example, if we have three rectangles named a, b and c, (abc, bac) is a

sequence-pair that represents their packing layout. The sequence-pair (abc, bac) means

that a is left to c, b is below a and b is left to c. Figure 2.4 shows a placement with

minimum area for sequence-pair (abc, bac).

a

b

c
Sequence-pair: (abc, bac)

Figure 2.4: An example of an area minimum placement for a sequence-pair

One-dimensional compaction can be used to construct from a given sequence-pair a

placement with minimum area. It greedily pushes every rectangle to the bottom left corner

of the container and it can obtain such a placement in O(δ2) time.
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Fujiyoshi and Murata [33] generalized this technique to solve the rectilinear block

packing problem. They deal with the packing problem whose objective is to minimize

the area of the container. They first partition each rectilinear block as a set of rectangles

since a sequence-pair can only deal with rectangles. Procedure called X/Y -alignment was

proposed to align such rectangles. The algorithm to obtain a rectilinear block packing

layout from a given sequence-pair, i.e., a decoding algorithm to obtain a feasible packing

layout, was also proposed in [33]. The time complexity of the decoding algorithm is O(m3),

where m is the total number of rectangles representing all the rectilinear blocks.

Machida and Fujiyoshi [70] (in Japanese) proposed an improved decoding algorithm

that runs in O(m2 + n3) where m is the total number of rectangles and n is the number

of rectilinear blocks.

In a sequence-pair, if rectangles a, b, c, d are assigned in the order of

• (· · · a · · · bc · · · d · · · , · · · c · · · ad · · · b · · · ) or

• (· · · a · · · bc · · · d · · · , · · · b · · · da · · · c · · · ),

rectangles a, b, c, d make an adjacent cross [76]. There are at most d(δ − 2)/2e b(δ − 2)/2c
adjacent crosses in a sequence-pair with δ elements.

An efficient coding scheme for rectangle packing called Selected Sequence-Pair [62]

is defined as a sequence-pair with k adjacent crosses. Any arbitrary rectangle packing

layout can be represented by a selected sequence-pair and a packing layout with minimum

area for a given selected sequence-pair can be obtained in O(δ + k) time. Takashima

and Murata [89] proved that the necessary number of adjacent crosses for representing an

arbitrary placement of δ rectangles is at most δ−
⌊√

4δ − 1
⌋

i.e., k ≤ δ−
⌊√

4δ − 1
⌋
. Hence,

a given selected sequence pair can be decoded in linear time of the number of rectangles.

In [32], a decoding algorithm whose running time is O((p + 1)m) was proposed for a

given selected sequence-pair for rectilinear blocks, where m also denotes the total number

of rectangles representing all the rectilinear blocks and p is the number of rectilinear blocks

that are represented by more than one rectangle (not shaped as rectangles).



Chapter 3

Formulation and Important

Techniques

In this chapter, we first formally describe the rectilinear block strip packing problem con-

sidered in this thesis and then explain some definitions and several important techniques

used in our algorithms. First, we give the formulation of our problem and important defi-

nitions that are used through this thesis in Section 3.1. We then introduce in Section 3.2

some sophisticated data structures that are utilized when implementing our algorithms.

These data structures are explained in general form. We explain in Section 3.3 the concept

of a crucial technique called no-fit polygon that is very useful when determining whether

two polygons overlap each other in two-dimensional space. We use this technique in our al-

gorithms to check whether two blocks have intersections. We take the bottom-left strategy,

which was mentioned in Section 2.4.2, as the main strategy of our construction algorithms.

In this strategy, starting from an empty layout, items are packed into the container one by

one, and whenever a new item is packed into the container, it is placed at the BL position

relative to the current layout. The definition of BL positions in general and an efficient

algorithm, called Find2D-BL, to calculate the BL position for a rectangle are explained in

Section 3.4 and 3.5. Finally, we introduce in Section 3.6 two representative construction

heuristics for the rectangle packing problem, the bottom-left and the best-fit algorithms.

3.1 Formulation

In this section, we give the formulation of the rectilinear block packing problem and some

definitions used through this thesis.

For the rectilinear block packing problem we consider in this thesis, we are given a set

of n items of rectilinear blocks, and a rectangular container C (also called a strip) with
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fixed width W and unrestricted height H. The task is to pack all the items orthogonally

without overlap into the container. The rectilinear block packing problem is formally

described as follows.

Rectilinear Block Packing Problem

Instance:

A set of n items R = {R1, R2, . . . , Rn} of rectilinear blocks, each with a

deterministic shape and size in T = {T1, T2, . . . , Tt}, and a rectangular

container C with fixed width W and unrestricted height H.

Task:

Pack all of the items orthogonally without overlap into the container so

as to minimize height H.

We assume that the bottom left corner of the container is located at the origin

O = (0, 0) with its four sides parallel to the x- or y-axis. The objective is to mini-

mize height H of the container that is necessary to pack all of the given items. Note that

the minimization of height H is equivalent to the maximization of the occupation rate

defined by
∑n

i=1A(Ri)/WH, where A(Ri) denotes the area of a rectilinear shape Ri. As

explained in Chapter 2, this type of problem is often called the strip packing problem (e.g.,

the rectangle strip packing problem (2SP) and the irregular strip packing problem for the

case of irregularly shaped polygons). According to the improved typology of Wäscher et

al. [92], strip packing problems are categorized into the two dimensional open dimension

problem (2D ODP) with a single variable dimension.

We define the bounding box of an item Ri as the smallest rectangle that encloses Ri,

and its width and height are denoted as wi and hi. We call the area of the bounding box,

wihi, the bounding area of Ri. The location of an item Ri is described by the coordinate

(xi, yi) of its reference point, where the reference point is the bottom-left corner of its

bounding box. For convenience, each rectilinear block and the container C are regarded

as the set of points (including both interior and boundary points) whose coordinates are

determined from the origin O = (0, 0).

Let Ri(xi, yi) be the rectilinear block Ri placed at (xi, yi), i.e., the region occupied by

Ri when its reference point is located at (xi, yi). The region of Ri(xi, yi) can be represented

by Minkowski sum. The Minkowski sum of two sets A ⊂ R2 and B ⊂ R2 is defined as

A⊕B = {a+ b | a ∈ A, b ∈ B}, (3.1.1)

where a+ b is the vector sum of a and b and R is the set of real numbers. For convenience,

when B consists of a single point b (i.e., B = {b}), A⊕ {b} is denoted as A⊕ b. Then, a
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rectilinear block Ri placed at vi = (xi, yi) is represented by Ri(xi, yi) = Ri⊕ vi = {p+ vi |
p ∈ Ri}.

For a rectilinear block Ri, let int(Ri) be the interior of Ri (n.b., the boundary of Ri

is not included in int(Ri)). Then the rectilinear block packing problem is formulated as

follows:

minimize H

subject to 0 ≤ xi ≤W − wi, 1 ≤ i ≤ n (3.1.2)

0 ≤ yi ≤ H − hi, 1 ≤ i ≤ n (3.1.3)

int(Ri(xi, yi)) ∩Rj(xj , yj) = ∅, i 6= j. (3.1.4)

The constraints (3.1.2) and (3.1.3) require that all rectilinear blocks be packed inside

the container. The constraint (3.1.4) ensures that there exists no item overlapping with

others.

Two cases of this problem are often considered in the literature: (1) all the items are

not allowed to be rotated, and (2) all the items can be rotated 90◦, 180◦ or 270◦. However,

the case without rotations is assumed in this thesis unless otherwise stated, because it is

easy to apply the results in this thesis to the case with rotations as discussed in Chapter 7.

We summarize some important notations and terminologies used through this thesis in

Table 3.1. The column of “Notation/Terminology” shows the notations and terminologies

and that of “Definition” shows the corresponding meanings.

Table 3.1: Notations and terminologies

Notation/Terminology Definition

n number of rectilinear blocks

C container (strip)

W width of the container

H height of the container

A(R) area of a polygon R

bounding box the smallest rectangle that encloses a polygon

bounding area area of the bounding box of a polygon

reference point the bottom left corner of the bounding box of a polygon

R(x, y) polygon R placed at (x, y)

⊕ Minkowski sum

int(R) set of all points inside of a polygon R
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3.2 Data structures

Algorithms with different implementations devised to solve the same problem often differ

dramatically in their efficiency. The design and analysis of efficient data structures have

long been recognized as important subjects in implementation. There are various data

structures as explained in details in [24,39].

In this section, we introduce some sophisticated data structures that are used to imple-

ment our algorithms. These data structures are very powerful to help construct efficient

algorithms for a variety of problems. We explain these data structures in general form,

but it is easy to apply them to the implementations of our algorithms proposed in later

chapters.

We first explain two search tree structures in Section 3.2.1 and 3.2.2 and then the

heap in Section 3.2.3. Search tree data structures support many operations to deal with

elements, including Search, Minimum, Maximum, Predecessor, Successor, Insert

and Delete. We can use a search tree as a dictionary. Since we mainly utilize the

operations of Search, Insert and Delete through our implementations, we just explain

these three operations for a search tree. The heap data structure is an array object that

we can view as a nearly complete binary tree. Heaps provide improved performance when

we only need the operations of Insert and Delete.

3.2.1 Binary search tree

In computer science, a binary search tree is a particular type of data structure to store

objects in memory. A binary search tree is a rooted binary tree where each internal node

in the tree has at most two subtrees, the left and right subtrees.

6

5 8

2 4

(a)
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4

5

6

8

(b)

Figure 3.1: Examples of binary search trees in general
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In general case, in a binary search tree, each node represents an object with a key. For

every node v in the tree, the keys of nodes in the left subtree of v must not larger than

that of v and similarly the keys of nodes in the right subtree of v must not smaller than

that of v. Figure 3.1 illustrates two example binary search trees.

When we search for an object or a place to insert a new object into a tree, we traverse

the tree from the root to a leaf according to the keys of nodes on the path. If the key that

we are searching for is larger than the key of current node, we go down to its right child,

otherwise go down to its left child. The running time for most of operations on a binary

search tree is proportional to its height.

Different binary search trees can represent the same set of values, see Figure 3.1 as

an example. The set of values {2, 4, 5, 6, 8} can be represented by both trees shown in

Figure 3.1 (a) and (b). In the worst-case, we may build a binary search tree with height

O(n) where n is the number of nodes in the tree (e.g., the tree in Figure 3.1 (b)). In

particular, a search tree with height O(log n) is called a balanced search tree. In a balanced

search tree, every path from any node on the tree to the root contains O(log n) nodes.

A complete binary search tree is a special binary search tree where all the leaves have

the same depth. We consider the case when all the objects are assigned from left to right

in decreasing order of their keys and the internal nodes are only used for navigation. As

a result, a complete binary search tree has 2dlogne leaves and height dlog ne to store n

objects. This implies that there are 2dlogne − n dummy leaves in the tree. Figure 3.2

shows an example of the complete binary search tree. Each leaf node keeps a key x of an

object and each internal node keeps a key (x, y) where x denotes the smallest value of the

keys in its left subtree and y is the smallest value of the keys in its right subtree. The

dummy leaves in the tree are marked by ∗.

2 4 5 6 7 8 ∗ ∗

2, 4 5, 6 7, 8 ∗, ∗

2, 5 7, ∗

2, 7

∗: dummy node

Figure 3.2: An example of a complete binary search tree
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To build a complete binary search tree for n objects, we can first sort the objects in

decreasing order of their keys. Then, we create the dummy leaves and internal nodes.

Each internal node keeps the minimum values of the keys of its left and right children.

We can search for an object or a place for a new object with a key k by traveling the

tree from the root to a leaf. Assuming that we arrive at an internal node v with key (x, y),

there are three situations when we go down to a child of v as follows:

1. When k < x holds, we return the place of the left side of the leftmost node in the

tree rooted at v.

2. When x ≤ k < y holds, we go down to the left child of v.

3. When k ≥ y holds, we go down to the right child of v.

For example, we are asked to search for an object with key 5 in the tree shown in Figure 3.2.

We begin the travel from the root with key (2, 7). Since 2 ≤ 5 < 7 holds, we go down

to the left child with key (2, 5) and then go to its right child, the node with key (5, 6).

Finally we find the leaf that stores the object with key 5.

A binary search tree in which only leaves are used to store objects and internal nodes

are used for navigation is sometimes easier to handle than a binary tree in which objects

are stored in both leaves and internal nodes. The former only costs at most double space

than the latter. The former style is utilized in the Find2D-BL algorithm [48], which is an

algorithm to find the BL position for a rectangle and is explained in Section 3.5.

Building a complete binary search tree for storing n objects requires linear space and

O(n log n) time. One can search for a specified value in a tree in O(log n) time. We omit

the details of how to insert or to delete an object from a binary tree, because they are

similar and simpler than those for a 2-3 tree, which are explained in the next section.

3.2.2 2-3 tree

We introduce a more advanced data structure called 2-3 tree, which is a variant of B-tree.

B-tree is a generalization of a binary search tree where an internal node can have more

than two children [23, 61]. An interesting correspondence is known between B-trees and

red-black trees [11, 24]. Many database systems use B-trees or variants of B-trees to store

information.

The 2-3 tree, invented by Hopcroft [4], is a tree data structure where every internal

node has either two or three children and all leaves have exactly the same depth. Internal

nodes with two (three) children are called 2-nodes (3-nodes). The children of an internal

node are called left, middle and right child. A 2-node has only left and middle child. The
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height of a 2-3 tree with n objects is between blog3 nc and blog2 nc. Figure 3.3 shows a

simple example of a 2-3 tree.

2 4 5 7 9 10 11 13

2, 5 7, 9 10, 13

2, 13

Figure 3.3: An example of a 2-3 tree

Generally, a 2-3 tree is a rooted tree with the following properties:

• All objects are stored in leaves. Internal nodes are only used for navigation.

• All leaves are at the same depth from the root.

• The root node can have two or three internal nodes or zero to three leaves as children.

• Every leaf node contains a single key x of the object stored in it.

• Every internal node has either two or three children and a key (x, y) where x is the

smallest value and y is the largest value of the keys of its children.

The operations of Search, Insert and Delete are explained in the following.

Procedure Search on a 2-3 tree

One can search for a specified object or an appropriate place for a new object in a 2-3 tree

by traveling the tree from the root downward to a leaf according to the keys of nodes on

the path.

The procedure of Search operation is formally described as 2-3-Tree-Search(v, k) in

Algorithm 1. The 2-3-Tree-Search takes a pointer to the root v of a subtree and a key k to

be searched for in that subtree as input. If an object with key k is in the subtree rooted at

node v, 2-3-Tree-Search returns the corresponding leaf. Otherwise, the procedure returns

a place for inserting that object.

Without loss generality, we assume that at the beginning x ≤ k ≤ y holds, where (x, y)

is the key of v. In other words, we assume that there must exist a leaf with key k or a
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place to insert it between the leftmost and the rightmost leaves in the subtree rooted at

v. If k < x (resp., k > y), we can immediately return the place at the left (resp., right)

side of the leftmost (resp., rightmost) leaf in the tree.

Algorithm 1 2-3-Tree-Search(v, k)

Input: The root v of a subtree and a key k.

Output: A leaf that contains key k or the place for inserting an object with key k.

1: If v is a leaf, return v.

2: Let (x, y) be the key of v, vR be the sibling of v whose position is immediately to the

right of v and vl be the left child of v.

3: If k < x, return the place at the left side of the leftmost leaf in the subtree.

4: If k > y, return 2-3-Tree-Search(vR, k).

5: If x ≤ k ≤ y, return 2-3-Tree-Search(vl, k).

Figure 3.3 illustrates this procedure when we search for the key 9. The procedure

examines the nodes on the path marked by arrows. One can call 2-3-Tree-Search(root, k)

at the beginning where root is the root of the 2-3 tree. Whenever the search goes downward

from an internal node to one of its children, the procedure examines at most three nodes.

Therefore, this Search operation requires O(log n) time, where n is the number of nodes

in the 2-3 tree.

Procedure Insert on a 2-3 tree

The Insert operation inserts a new object into a 2-3 tree. We first call the procedure

2-3-Tree-Search(root, k) to find an appropriate place for the new object with key k. We

then create a new leaf node α for the new object and insert it to the corresponding parent

node v. If v was a 2-node before inserting α, we can obtain the resulting 2-3 tree just

by updating the keys of nodes on the path from α to the root. If v was a 3-node before

inserting α, i.e., it was full and have four children now, we need to split node v into two

nodes so that each has only two children. If the parent of v was also full, we must also

split it into two nodes and thus we need to split every 3-node and update the keys of the

resulting nodes on the path from α to the root.

The process of splitting a 3-node is illustrated in Figure 3.4. We insert a subtree rooted

at node α into the 3-node v and split v into two nodes v and u. We then insert nodes v

and u to the root p and as a result p has four children. We split p into two nodes p and

q and create a new node n to be the new root. The height of the tree thus grows by one.

Note that splitting the root of a tree is the only case that the height of a tree grows.

The procedure of Insert operation is formally described as 2-3-Tree-Insert(T, γ, α) in
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Figure 3.4: An example of splitting a 3-node in a 2-3 tree

Algorithm 2. The 2-3-Tree-Insert(T, γ, α) inserts a subtree rooted at node α at the place

γ into 2-3 tree T .

If we are asked to insert an object having key k into 2-3 tree T , we first call procedure

2-3-Tree-Search(root, k) to find the place γ for the new object, where root is the root of T .

Then we create a leaf node α for the new object and call procedure 2-3-Tree-Insert(T, γ, α)

to insert α into T .

The Insert operation updates the keys of nodes and splits 3-nodes on the path from

a leaf to the root without going down. Hence, it requires O(log n) time.

Algorithm 2 2-3-Tree-Insert(T, γ, α)

Input: A tree T , a subtree rooted at α and a place γ in T .

Output: Tree T after inserting the subtree rooted at α at γ.

1: Let root be the root of T .

2: Insert α at γ to T . Let v be the parent of α.

3: Update the key of v.

4: If v has four children, go to Step 5; otherwise, go to Step 7.

5: If v is the root, create a new root node n to be the parent of v and let root := n.

6: Let p be the parent of v. Split v into two nodes v1 and v2, each with two children. Set

the keys for v1 and v2 and connect them to be children of p. Set v := p and return

to Step 3.

7: Update the keys of nodes on the path from v to root and stop.

Procedure Delete on a 2-3 tree

The Delete operation removes an object from a 2-3 tree. It first searches for the leaf

α that stores the specified object, and then removes it from its parent v. If v has two
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children after removing α, it updates the keys of nodes on the path from v to the root

and the procedure stops. Otherwise, we must merge v that has only one child to one of

its siblings. Let vc be the only child remaining in v. We need to insert vc as a child to one

of v’s siblings that is immediately on the left or right hand of vc and remove the node v

from the tree. The key of every resulting node should be updated.

The procedure of Delete operation is formally described as 2-3-Tree-Delete(T, α) in

Algorithm 3. It deletes a subtree rooted at node α from tree T .

Algorithm 3 2-3-Tree-Delete(T, α)

Input: A tree T and a subtree in T rooted at α.

Output: Tree T after removing the subtree rooted at α.

1: Let root be the root of T and v be the parent of α.

2: Remove α.

3: If v is the root, update the keys of v and stop.

4: If v has two children, update the keys of nodes on the path from v to root and stop.

5: Let u be the only child of v. Let γ be the place of u and disconnect u with v.

6: Call 2-3-Tree-Delete(T, v).

7: Call 2-3-Tree-Insert(T, γ, u).

p

u v w

ul um α vm

p

u v w

ul um vm

Figure 3.5: An example of deleting a subtree from a 2-3 tree

The processing of deleting a subtree from a 2-3 tree by 2-3-Tree-Delete operation is

illustrated through an example in Figure 3.5. We are asked to delete a subtree rooted at

node α from the tree. We first remove α from its parent node v. As a result, v becomes a

node having only one child vm. Then, we disconnect vm from v, reconnect it as a child of
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the sibling u of v and delete v from the tree. After we delete v, the parent p of v becomes

a node having two children and thus the deletion procedure terminates after the key of

every resulting node is updated.

If we want to delete an object with key k from a 2-3 tree rooted at root, we can first

call procedure 2-3-Tree-Search(root, k) to find the corresponding leaf α that stores the

object and then call procedure 2-3-Tree-Delete(T, α).

The Delete operation updates the keys and merges the resulting nodes on a path

through the tree without going down. Therefore, this operation also requires O(log n)

time.

3.2.3 Heap

Many applications only need to insert objects and get the object having the highest prior-

ity. In designing their implementations, special queues, called priority queues, are usually

very efficient. A priority queue usually supports two basic operations: Insert that in-

serts an object into the queue and DeleteMin that returns the object having the highest

priority and removes it from the queue.

There are many data structures that can be used to implement a priority queue. If we

use a simple linked list, we can always insert an object at the head of the list in O(1) time

and search for the object having the highest priority in O(n) time by traveling through

the entire list of size n. Another method is to keep the elements in a sorted linked list.

This leads that the cost of Insert operation becomes O(n) time and that of DeleteMin

becomes O(1) time. Since we cannot call the DeleteMin operation more times than that

we call the Insert operation, it seems better to implement it with a sorted linked list.

We can also use a binary search tree that we explained in previous sections. Both of

the operations Insert and DeleteMin require O(log n) time. However, implementing

a priority queue using a binary search may be expensive because a binary search tree

supports more operations that are not necessary.

A heap, a specialized tree-based data structure, is usually utilized to implement a prior-

ity queue. It also requires O(log n) time for both the Insert and DeleteMin operations

in the worst case. However, it is proved that the operation Insert only costs O(1) time

on average. The heap is known as one of the most efficient implementations of a priority

queue and in fact a priority queue is often referred as a heap.

Heaps can be classified as either a min heap or a max heap. In a min (resp. max)

heap, the objects with smaller (resp. larger) values of keys have higher priority. We only

consider the case of min heap. The case of max heap is similar.

We use a binary tree to represent a heap. In a heap, the object having the smallest key
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Figure 3.6: An example of heap

is stored at the root and any subtree must also be a heap. This property is called heap-

order property. Consequently, in the binary tree of a heap, the keys of parent nodes are

always smaller than or equal to those of their children and the root contains the smallest

value among the keys. Figure 3.6(a) shows an example of a heap, and the binary tree in

Figure 3.6(b) is not a heap because the heap-order property is violated between nodes 12

and 10.

It is necessary to maintain the heap-order property when we apply the Insert and

DeleteMin operations on a heap. The procedures are explained in the following.

Procedure Insert on a heap

The Insert operation inserts a new object into a heap without violating heap-order prop-

erty. We first create an empty leaf node v in the tree at the place of the right side of

the rightmost leaf of the deepest level. If the new object with key k can be stored in v

without violating heap-order property, i.e., k is not larger than that of v’s parent node,

we put the new object in v and the procedure terminates. Otherwise, we move the object

in the parent node of v to v so that the empty node moves upward to the root. We repeat

comparing k with the key of the parent of the empty node and moving the empty node

upward until the new object can be put in it. This strategy is called percolate up where

the empty node percolates up in the heap until finding an appropriate place for the new

object.

The procedure of Insert operation on a heap is formally described as Heap-Insert(T, k)

in Algorithm 4. It inserts an object with key k into heap T without violating heap-order

property.
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Algorithm 4 Heap-Insert(T, k)

Input: A heap T and an object with key k.

Output: Heap T after inserting the object.

1: Create an empty leaf node α on the right side of the rightmost leaf of the deepest level

in T . Let u be the parent node of α.

2: If k is not smaller than the key of u, put the object with key k in α and stop.

3: Move the object in u to α and let α := u.

4: If α is the root of T , put the object with key k in α and stop. Otherwise, let u be the

parent node of α, return to Step 2.

4

6 9

10 17 12 11

13 15 20

4

6 9

10 12 11

13 15 20 17

4

6 9

10 14 12 11

13 15 20 17

Figure 3.7: An example of inserting an object into a heap

We illustrate the processing of inserting an object with key 14 into a heap with an

example in Figure 3.7. We first create an empty leaf node for 14. Because the heap-order

property will be violated if we put 14 in the empty node, we move 17 to the empty node.

We percolate up the empty node until finding an appropriate place for 14.

Procedure DeleteMin on a heap

The DeleteMin operation can be implemented similarly as the Insert operation on a

heap. It finds the object having the smallest key and deletes it from a heap. Finding the

object having the smallest key is easy: according to the property of a heap, we can just

return the object stored in the root of the heap in O(1) time. The difficult part is to delete

the root from a heap.

We remove the object in the root v of a heap and let v be an empty node. We also

remove the rightmost leaf node t of the deepest level from the heap and try to put the

object in t into v. If the object in t can be stored in v without violating heap-order

property, i.e., the key of t is not larger than that of any child of v, we put that object

in v and the procedure terminates. Otherwise, we move the object in one of the children

of v that has smaller key to v so that the empty node moves downward to the leaf. We
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continue moving the empty node until the object in t can be put in it. This strategy is

called percolate down where we percolate down an empty node in the heap until finding

an appropriate place.

The procedure of DeleteMin operation on a heap is formally described as Heap-DeleteMin(T )

in Algorithm 5. It returns the object in the root and deletes the object in the root from

heap T without violating heap-order property.

Algorithm 5 Heap-DeleteMin(T )

Input: A heap T .

Output: The object in the root of T and T after deleting that object.

1: Let α be the root of T and return the object in α. Let t be the rightmost leaf of the

deepest level in T .

2: If α is a leaf, move the object in t to α, and go to Step 6.

3: Let u and v be the children of α and node u has smaller key.

4: If the key of t is not larger than that of u, move the object in t to α, and go to Step 6.

5: Move the object in u to α and let α := u. Return to Step 2.

6: Delete t from T and stop.
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Figure 3.8: An example of deleting the object with the minimum key from a heap

Figure 3.8 shows an example of the processing when we delete the object with the

minimum key from a heap. We first remove the object in the root and make it an empty

node. Then, we remove node 17 from the heap and try to put it into the empty node.

Because the heap-order property will be violated if we put 17 into the empty node at the
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root, we move node 6, whose key 6 is smaller than that of the other child node 9, to the

empty node. We percolate down the empty node until we find an appropriate place for

17.

3.3 No-fit polygon

The no-fit polygon (NFP) is a geometric technique to check overlaps of two polygons in

two-dimensional space. This concept was introduced by Art [7] in 1960s, who used the

term “shape envelope” to describe the positions where two polygons can be placed without

intersection.

The NFP is defined for an ordered pair of two polygons Pi and Pj , where the position

of polygon Pi is fixed and polygon Pj can be moved. The NFP of Pj relative to Pi,

NFP(Pi, Pj), denotes the set of all possible positions of polygon Pj having an intersection

with polygon Pi. Let P (x, y) be the polygon P placed at (x, y), i.e., the region occupied

by P when its reference point is located at (x, y), and int(P ) be the interior of P . We also

assume that the position of polygon Pi is fixed at the origin (0, 0). Then we have

NFP(Pi, Pj) = {(x, y) | int(Pi(0, 0)) ∩ Pj(x, y) 6= ∅}. (3.3.5)

For a point r = (x, y) in the plane and a set S ⊂ R2, we define −r = (−x,−y) and

−S = {−r | r ∈ S}. In other words, −S is obtained by reflecting S according to the

origin. Then, NFP(Pi, Pj) is formally defined by the Minkowski sum

NFP(Pi, Pj) = int(Pi)⊕ (−int(Pj)) = {u− w | u ∈ int(Pi), w ∈ int(Pj)}. (3.3.6)

Note that NFP(Pi, Pj) is an open set, i.e., it consists of all points inside of a polygon

except for boundary points. Let ∂NFP(Pi, Pj) denote the boundary of NFP(Pi, Pj), and

cl(NFP(Pi, Pj)) denote the closure of NFP(Pi, Pj), i.e., cl(NFP(Pi, Pj)) = ∂NFP(Pi, Pj)∪
NFP(Pi, Pj). The no-fit polygon has the following important properties:

• Pj(xj , yj) overlaps with Pi(xi, yi) ⇐⇒ (xj , yj) ∈ NFP(Pi, Pj)⊕ (xi, yi).

• Pj(xj , yj) touches Pi(xi, yi) ⇐⇒ (xj , yj) ∈ ∂NFP(Pi, Pj)⊕ (xi, yi).

• Pj(xj , yj) and Pi(xi, yi) are separated ⇐⇒ (xj , yj) /∈ cl(NFP(Pi, Pj))⊕ (xi, yi).

When Pi and Pj are both convex, ∂NFP(Pi, Pj) can be computed by the following

simple procedure: Slide Pj around Pi having it keep touching with Pi. Then the trace of

the reference point of Pj is ∂NFP(Pi, Pj). Such a no-fit polygon NFP(Pi, Pj) is illustrated

through the example in Figure 3.9.
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(x, y)

movable polygon Pj :

(0, 0)

fixed polygon Pi:

NFP(Pi, Pj)

Figure 3.9: An example of NFP(Pi, Pj)

Utilizing the technique of no-fit polygon, the problem of checking whether two polygons

overlap or not becomes an easier problem of checking whether a point is in a polygon or

not. When the two polygons are clear from the context, we may simply use NFP instead

of NFP(Pi, Pj).

Through this thesis, we use the technique of no-fit polygon to determine whether two

rectilinear blocks overlap each other. We treat each rectilinear block as a set of rectangles

whose relative positions are fixed. The NFP of two rectilinear blocks is the union of the

no-fit polygons of all pairs of rectangles that represent the two rectilinear blocks. Note

that when polygons Pi and Pj are rectangles, NFP(Pi, Pj) is also a rectangle and it can

be computed in O(1) time. The method of computing NFP of two rectangles in O(1) time

and the details of calculating NFP for rectilinear blocks are explained in Section 4.1.

3.4 Bottom-left stable feasible positions

For a given area where a set of rectilinear blocks are placed and one new item to be placed,

a bottom-left stable feasible position (BL stable feasible positions) is a location in the area

where the new item can be placed without overlap with already placed rectilinear blocks

and the new item cannot be moved leftward or downward. In this thesis, we assume that

the shape of the given area is rectangular. “Bottom-left stable” means that the new item

cannot move to the bottom or to the left, and “feasible” means that the new item will not

overlap with other blocks when it is placed.

Note that there are many bottom-left stable feasible positions in general. The bottom-

left position (BL position) is defined as the leftmost location among the lowest bottom-left
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stable feasible positions. The bottom-left stable feasible positions and the BL position are

illustrated through the example in Figure 3.10.

: Bottom-left stable feasible position

reference point

new item:

BL position

Figure 3.10: Bottom-left stable feasible positions and the BL position

We take the bottom-left strategy as the main strategy of our construction algorithms.

Whenever we want to pack a new item into the container, the new item is placed at the

BL position relative to the current layout.

3.5 Find2D-BL algorithm

The Find2D-BL algorithm [48] was proposed to calculate the BL position for a new rect-

angle to be placed relative to a rectangular container and to rectangles already placed in

the container. The main idea of the Find2D-BL algorithm is to find bottom-left stable

feasible positions by using the technique of NFP and a sweep-line method. The sweep line

is a line parallel to the x-axis, which moves upward from the bottom of the container.

The Find2D-BL algorithm first calculates the NFPs of the new rectangle relative to the

rectangles in the container, and it places the NFPs at the positions where the corresponding

rectangles are placed. The overlap number of a point v = (x, y), denoted by π(x, y), is

the number of NFPs that contain v. A new rectangle can be placed at a point in the

container whose overlap number equals zero. The BL position is the leftmost point in

the container among the lowest points whose overlap number is zero. The Find2D-BL

algorithm keeps the overlap number of arbitrary points on the sweep line in a complete

binary search tree data structure explained in Section 3.2.1. With the sweep line moving

upward from the bottom, the bottom-left position appears as the leftmost point among

the initially emerging points on the sweep line whose overlap number is zero. It is shown
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in [48] that the time complexity of this algorithm is as follows.

Theorem 3.5.1. (Imahori et al. [48]) Assuming that the number of rectangles is δ, the

Find2D-BL algorithm finds the BL position for the new rectangle in O(δ log δ) time.

3.6 Heuristics for the rectangle packing problem

In this section, we explain two representative construction heuristics for the rectangle pack-

ing problem, the bottom-left and the best-fit algorithms. We first explain the bottom-left

algorithm, which is one of the simplest forms among the algorithms based on the bottom-

left strategy. Then we explain the best-fit algorithm, which is slightly more complicated

than the bottom-left algorithm but it is known to be more effective.

3.6.1 Bottom-left algorithm for the rectangle packing problem

The bottom-left algorithm for the rectangle packing problem was proposed by Baker et

al. [9]. The algorithm uses the bottom-left strategy to pack items one by one at their BL

positions into the strip according to a given sequence. They also showed that when the

sequence of rectangles is the decreasing order of their widths, the resulting height of the

container will not be more than three times that of an optimal packing layout.

The bottom-left algorithm is one of the simplest forms among the algorithms based on

the bottom-left strategy and it performs fairly well in practice. Hence, the implementations

for the bottom-left algorithm have been studied for decades. If naively implemented, the

bottom-left algorithm requires O(δ4) time, where δ is the number of given rectangles.

Some simple implementations for this algorithm that require O(δ3) time in the worst case

are also developed. One typical implementation with running time of O(δ3) was proposed

by Hopper and Turton in [43]. Chazelle [20] proposed an O(δ2) time and O(δ) space

implementation for the bottom-left algorithm.

3.6.2 Best-fit algorithm for the rectangle packing problem

Burke et al. [19] proposed a different type heuristic algorithm based on the bottom-left

strategy, called the best-fit algorithm. The best-fit heuristic algorithm is also a greedy

algorithm. It is slightly more complicated than the bottom-left algorithm but it is known

to be more effective.

Instead of using a sequence of rectangle in the bottom-left algorithm, the best-fit

algorithm dynamically selects the next rectangle to pack during the packing process. It

always examines an available space as low as possible in the strip and then places the

rectangle that best fits the space.
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The best-fit algorithm also packs rectangles one by one at their BL positions. During

the packing process, the algorithm maintains a skyline of the upper edges of all placed

rectangles in the container. The skyline of a packing layout is the set of points that can

be seen from an infinitely high position. A skyline consists of a set of segments where

each segment touches the upper edge of at least one rectangle in the container or the

bottom edge of the strip. Any two adjacent segments have different heights and exactly

one common x-coordinate. Figure 3.11 shows an example of the skyline of a packing

layout. Each dashed line represents a segment and the union of all the segments is the

skyline of the packing layout in Figure 3.11.

1
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6

7 8 9
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Figure 3.11: An example of the skyline of a packing layout

For each iteration, the best-fit algorithm first finds the lowest available segment, the

segment having the lowest height (the smallest y-coordinate) in the skyline. If there exist

more than one segment having the lowest height, the algorithm chooses the leftmost one

among them as the lowest available segment. If there are rectangles that have not been

placed yet and can be placed on the segment (i.e., the width of such a rectangle is not

larger than that of the lowest available segment), the best-fit algorithm selects the widest

rectangle (the rectangle with the largest width) and places it at the leftmost position on

the segment. Whenever a rectangle is placed, the algorithm updates the skyline relative

to the resulting packing layout. If there are no rectangles that can be placed on the lowest

available segment, the algorithm raises the segment to the height of its lower adjacent

segment and merge the two segments (if both its adjacent segments have the same height,

three of these segments should be merged). The best-fit algorithm repeats this procedure

until all the rectangles are placed into the container.

Assume that δ is the number of given rectangles. If naively implemented, the best-fit

algorithm requires O(δ4) time in the worst case. Imahori and Yagiura [49] proposed an

efficient implementation of the best-fit algorithm that requires linear space and O(δ log δ)
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time, where δ is the number of rectangles.



Chapter 4

Construction Heuristics for the

Rectilinear Block Packing

Problem

In this chapter, we explain the bottom-left and best-fit algorithms for the rectilinear block

packing problem, which are generalized from the algorithms for the rectangle packing

problem. A crucial problem in generalizing these algorithms is how to find the bottom-left

position of a new rectilinear block. We first introduce a method to calculate NFPs for

rectilinear blocks in Section 4.1. Then in Section 4.2, we explain an algorithm that we call

Find2D-BL-R to find the BL position of a rectilinear block. We explain how to generalize

the bottom-left and best-fit algorithms to solve the rectilinear block packing problem in

Section 4.3 and 4.4, and analyze their time complexities. Finally, we also explain in

Section 4.5 the time complexities of the two algorithms when naively implemented.

4.1 Method of calculating NFPs for rectilinear blocks

In our algorithms, we assume that each rectilinear block Ri is represented with a set Bi of

rectangles whose relative positions are fixed, and let mi be the size of Bi, (i.e., mi be the

number of rectangles that represents a rectilinear block Ri). We also assume that each

such rectangle has a positive area, i.e., special cases of rectangles such as line segments

and points are not considered. Note that, a rectilinear block with m̃i concave vertices (i.e.,

vertices whose angle outside of the block is 90◦) can be cut into at most m̃i+1 rectangular

pieces by horizontal lines that go through its concave vertices. Hence, a rectilinear block

with m̃i concave vertices can be represented by at most m̃i+1 rectangles, i.e., mi ≤ m̃i+1.

It is also noted that there is no restriction on the way the relative positions are fixed, e.g.,
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an item Ri can be a set of two separate rectangles as long as their relative positions are

fixed. Hence, our algorithms can also deal with the packing problem in which each item

can be a set of (non-overlapping) rectilinear blocks whose relative positions are fixed.

B

w

h

B′

w′

h′

NFP(B,B′)

O ww′

h

h′

Figure 4.1: NFP of two rectangles

When we are given two rectangles B and B′, where rectangle B (resp., B′) has width

w (resp., w′) and height h (resp., h′), NFP(B,B′) can be computed by the following

expression:

NFP(B,B′) = {(x, y) | −w′ < x < w, −h′ < y < h}. (4.1.1)

Note that NFP(B,B′) is a rectangle, and it can be computed in O(1) time. Figure 4.1

shows an example of NFP(B,B′).

We then consider the case when two rectilinear blocks Ri and Rj are given. Let

Bi = {Bi1, Bi2, . . . , Bi,mi} be the set of rectangles that represents Ri, and vik be the

position of Bik relative to the reference point of Ri for k = 1, 2, . . . ,mi, i.e.,

Ri =

mi⋃
k=1

(Bik ⊕ vik) . (4.1.2)

The set Bj is defined similarly. The NFP(Ri, Rj) is the union of NFP(Bik, Bjl) for all

pairs of Bik and Bjl. That is, NFP(Ri, Rj) can be formally calculated as follows:

NFP(Ri, Rj) =

mi⋃
k=1

mj⋃
l=1

(NFP(Bik, Bjl)⊕ vik ⊕ (−vjl)) . (4.1.3)

For each rectangle Bjl, we can easily calculate its NFP with respect to Bik by using (4.1.1).

Hence NFP(Ri, Rj) consists of mimj rectangles, and it can be computed in O(mimj) time.

For convenience, we call such rectangles NFP rectangles.



4.2 Method of calculating BL position for rectilinear block 47

For the case of rectilinear block packing, we define the overlap number π(x, y) of a

point (x, y) to be the number of NFP rectangles containing it. Let N denotes the set of

all NFP rectangles in the plane and assume that every NFP rectangle in N is placed at

the position where the corresponding item is placed. Then the overlap number π(x, y) is

formally described as follows:

π(x, y) = |{Nk | (x, y) ∈ Nk, Nk ∈ N}| . (4.1.4)

For a set R̃ ⊆ R of placed items and a rectilinear block Rj to be placed, where each

item Ri ∈ R̃ is placed at vi, N consists of all NFP rectangles in NFP(Ri, Rj)⊕ vi for all

rectilinear block Ri placed. Then from (4.1.3), Rj can be placed at a point (x, y) without

overlap with any item in R̃ if and only if π(x, y) = 0.

4.2 Method of calculating BL position for rectilinear block

In this section, we explain the Find2D-BL-R algorithm, which uses the Find2D-BL algo-

rithm, to find the BL position for a rectilinear block.

First we calculate NFPs of the new rectilinear block relative to all of the items in the

container and then place each of them at the position where the corresponding item is

placed. Next, all we have to do to compute the BL position is to find the leftmost point

in the container among the lowest positions whose overlap number is zero. According to

the method of calculating NFPs explained in Section 4.1, the NFPs of the new rectilinear

block to be placed relative to items in the container consist of rectangles. The Find2D-BL

algorithm explained in Section 3.5 can find the BL position for a new rectangle relative to

rectangles already placed in the container. Hence, we can use the Find2D-BL algorithm to

the case of rectilinear blocks. After we obtain the NFPs of the new rectilinear block that

consist of rectangles, we can find the BL position by calling the Find2D-BL algorithm.

The Find2D-BL-R algorithm is formally described as Find2D-BL-R(Rj , L) in Algo-

rithm 6 where Rj is the new rectilinear block to be packed and L is the current packing

layout.

Algorithm 6 Find2D-BL-R(Rj , L)

Input: A block Rj and current packing layout L in the container.

Output: The BL position of Rj .

1: Calculate NFPs of Rj relative to the current packing layout L by using expression 4.1.3.

2: Place the NFPs at the positions where the corresponding items are placed.

3: Call Find2D-BL algorithm to compute the BL position (xj , yj) of Rj .

4: Output point (xj , yj) and stop.
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The number of rectangles that represent all items Ri in the container is not more

than M where M =
∑n

i=1mi. Hence, the number of rectangles that constitute the

NFPs of Rj relative to the packing layout is not more than mjM . The running time

for calculating NFPs of Rj in Step 1 and for placing them in Step 2 is O(mjM). Ac-

cording to Theorem 3.5.1, the Find2D-BL algorithm finds the BL position in O(δ log δ)

time when the number of placed rectangles is δ. Since the number of placed rectangles

is O(mjM), the running time of Step 2 is O(mjM log(mjM)) = O(mjM logM) time.

Therefore, the Find2D-BL-R algorithm computes the BL position of a rectilinear block

Rj in O(mjM logM +mjM) = O(mjM logM) time.

Theorem 4.2.1. Assuming that M is the number of rectangles that represent all items

Ri in the container and mj is the number of rectangles that represent a rectilinear block

Rj, the Find2D-BL-R algorithm computes the BL position of Rj in O(mjM logM) time.

4.3 Bottom-left algorithm for the rectilinear block packing

problem

In this section, we generalize the bottom-left algorithm for the rectangle packing problem

explained in Section 3.6.1 to solve the rectilinear block packing problem.

The bottom-left algorithm can be generally explained as follows: Given a set of n

rectilinear blocks R = {R1, R2, . . . , Rn} and an order of items (e.g., decreasing order of

area), the algorithm packs all of the items one by one according to the given order, where

each item is placed at its BL position relative to the current layout (i.e., the layout at the

time just before it is placed).

Assume for simplicity that {R1, R2, . . . , Rn} are packed according to the increasing

order of their indices. The bottom-left algorithm, in which Find2D-BL-R is utilized to

find BL positions, is formally described in Algorithm 7.

Algorithm 7 Bottom-Left Find2D-BL-R

Input: A sequence of rectilinear blocks R1, R2, . . . , Rn and a container.

Output: A packing layout.

1: Set j := 0 and the current packing layout L := ∅.
2: Set j := j + 1. If j > n, output L and stop.

3: Call Find2D-BL-R(Rj , L) to find the BL position (x, y) of Rj in L.

4: Pack Rj at (x, y) in L, and then return to Step 2.

Recall that the number of rectangles that represents a rectilinear block Ri is denoted

by mi, and M denotes the sum of mi over all the n rectilinear blocks. According to
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Theorem 4.2.1, the Find2D-BL-R algorithm calculates the BL position of a new rectilin-

ear block Rj in Step 3 in O(mjM logM) time. The computation of other steps is less

expensive than this. The bottom-left algorithm therefore runs in
∑n

j=1O(mjM logM) =

O(M2 logM) time.

Theorem 4.3.1. Assuming that M is the number of rectangles that represent all rectilinear

blocks, the bottom-left algorithm runs in O(M2 logM) time.

4.4 Best-fit algorithm for the rectilinear block packing prob-

lem

In this section, we generalize the best-fit algorithm for the rectangle packing problem

explained in Section 3.6.1 to solve the rectilinear block packing problem. It seems hard

to directly generalize this original idea of the best-fit for the rectangle packing problem

explained in Section 3.6.2 to the case of rectilinear blocks. We first give an interpretation

of the best-fit algorithm and this will make the generalization possible.

The following is a different explanation of the best-fit algorithm. To be more precise,

for any instance of the rectangle packing problem, the solution obtained by the following

procedure is exactly the same as the one obtained by that introduced in Section 3.6.2.

At the beginning of the packing process, no rectangles are placed in the container. The

algorithm packs rectangles one by one at their BL positions, and in each iteration, it

dynamically selects a rectangle to pack among the remaining items by the following rule:

Calculate the BL positions of all of the remaining items. Then, in this iteration, the

rectangle whose BL position takes the smallest x-coordinate among those with the lowest

y-coordinate is packed. When there is more than one such rectangle, the widest one

(resolving equal widths by the largest height) is chosen.

The best-fit algorithm for the rectilinear block packing problem is explained as follows:

Given a set of n rectilinear blocks R = {R1, R2, . . . , Rn} and a priority among them (e.g.,

an item with a wider bounding box has higher priority), the algorithm packs all of the

items one by one into the container, where each item is placed at its BL position relative

to the current layout. At the beginning of the packing process, no item is placed in the

container. Whenever an item is to be packed into the container, the algorithm calculates

the BL positions of all of the remaining items relative to the current layout. In this

iteration, the rectilinear block whose BL position takes the smallest x-coordinate among

those with the lowest y-coordinate is packed. If there exist ties, the block with the highest

priority is chosen.

In the above algorithm, “priority” generalizes the idea of choosing wider rectangles in



50 Heuristics for Rectilinear Block Packing

the best-fit algorithm for rectangles. That is, when the given items are all rectangles and

the priority is defined such that wider items have higher priority (resolving equal widths

by the largest height), the above algorithm becomes the same as the best-fit algorithm

for rectangles. For rectilinear blocks, however, such an interpretation seems impossible,

and various rules for the priority can be considered. In the computational experiments in

Section 5.6, we test some basic rules for deciding the priority.

The best-fit algorithm for the rectilinear block packing problem can be implemented

by using the Find2D-BL-R algorithm as follows. In each iteration, after a rectilinear

block is packed into the container, the y-coordinate of its reference point is recorded

as currentBottom. Note that, there are no rectilinear blocks that can be placed be-

low the line whose y-coordinate is currentBottom. We can therefore discard the space

below the line y = currentBottom from the candidates for the BL position. For this

reason, the Find2D-BL-R algorithm can set the initial position of the sweep line to

y = currentBottom, instead of y = −∞ (“y = −∞” signifies a sufficiently low position

where the sweep line overlaps with no NFP). This significantly reduces the computation

time in practice, although the worst-case time complexity stays the same as in the case

where the sweep line always starts from y = −∞. The best-fit algorithm is formally

described in Algorithm 8.

Algorithm 8 Best-Fit Find2D-BL-R

Input: A set of rectilinear blocks R and a container.

Output: A packing layout.

1: Set R′ := R, the current packing layout L := ∅ and currentBottom := −∞.

2: If R′ = ∅, output L and stop.

3: Set R′′ := R′, x∗ := +∞ and y∗ := +∞.

4: Choose an item Rj in R′′, and then let R′′ := R′′ \ {Rj}.
5: Call Find2D-BL-R(Rj , L) to find the BL position (x, y) of Rj , in which the initial

position of the sweep line is set to currentBottom.

6: If one of the following three conditions holds, then let x∗ := x, y∗ := y and j∗ := j.

(i) y < y∗.

(ii) y = y∗ and x < x∗.

(iii) y = y∗, x = x∗ and Rj has higher priority than Rj∗ .

7: If R′′ 6= ∅, return to to Step 4.

8: Pack the item Rj∗ so that its reference point is placed at (x∗, y∗) in L.

9: Set R′ := R′ \ {Rj∗} and currentBottom := y∗. Return to Step 2.
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Recall that each rectilinear block takes a deterministic shape from the set of t shapes

T = {T1, T2, . . . , Tt}, and when t < n, some items have an identical shape. In Step 6, if

the bottom-left position of an item with the same shape as Rj has already been computed

after Step 3 was executed most recently, it is not necessary to compute the bottom-left

position of Rj , because it is the same as that of the item with the same shape as Rj . Hence,

we can reduce the number of calls to Find2D-BL-R by not invoking it when the bottom-

left position of an item with the same shape has already been computed. Accordingly,

whenever the algorithm packs a new rectilinear block into the container, the Find2D-BL-R

algorithm is called at most once for each shape.

According to Theorem 4.2.1, the Find2D-BL-R algorithm calculates the BL position of

a rectilinear block Rj in Step 6 in O(mjM logM) time. In the loop from Step 4 to 7 until

it exits to Step 8, the computation of BL positions is executed at most once for every shape

in T . The computation time of this loop is therefore O(mM logM), where m =
∑t

i=1m
T
i

for mT
i defined to be the number of rectangles that represent Ti, i.e., mT

i = mj for an item

Rj whose size and shape is Ti. This loop is executed whenever an item is to be placed,

and the number of times an item is placed is n. Therefore, the above implementation of

the best-fit algorithm runs in O(nmM logM) time.

Theorem 4.4.1. Assuming that M is the number of rectangles that represent all n recti-

linear blocks and m is that of rectangles represent all distinct shapes of rectilinear blocks,

the best-fit algorithm packs n rectilinear blocks in O(nmM logM) time.

4.5 Time complexities of heuristic algorithms with naive im-

plementations

For comparison purposes, we explain the time complexities of the bottom-left and the

best-fit algorithms when they are naively implemented.

In the naive implementation, we also utilize the technique of NFP to calculate overlap

numbers of rectilinear blocks. Observe that the BL position of a rectilinear block only

appear at a crossing point where an NFP rectangle’s right edge crosses another’s top

edge. Such a crossing point is denoted as CrossPoint. Assuming that the number of

NFP rectangles is δ, the computation time to find the BL position is O(δ3), because there

are O(δ2) CrossPoints and it takes O(δ) time to calculate the overlap number for each

CrossPoint. The number of rectangles that represent a rectilinear block Ri is denoted by

mi and let M =
∑n

i=1mi. We also define mT
j as the number of rectangles that represent

shape Tj , and m is the sum of mT
j for all of the shapes in T . The bottom-left and the

best-fit algorithms compute the BL position of a rectilinear block Ri in O((miM)3) time,
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because the number of NFP rectangles is the sum of mimj for all items Rj in the container,

which is O(miM).

For every iteration, when the bottom-left algorithm packs a rectilinear block Ri into

the container, it calculates the NFPs in O(miM) time and computes the BL position of Ri

in O((miM)3) time. The bottom-left algorithm therefore runs in
∑n

i=1O((miM)3) time.

Noting that
∑n

i=1(miM)3 ≤
∑n

i=1(mM)3 = nm3M3 and
∑n

i=1(miM)3 ≤ (
∑n

i=1miM)3 =

M6, the time complexity of the bottom-left algorithm is O(min{M6, nm3M3}).
For every iteration, when the best-fit algorithm packs a rectilinear block into the

container, it computes the BL positions for all the shapes, and the running time for

calculating NFPs is
∑t

j=1O(mT
j M) = O(mM) and for computing the BL positions is∑t

j=1O((mT
j M)3) = O(m3M3). The best-fit algorithm therefore runs in

∑n
i=1O(m3M3) =

O(nm3M3) time.

4.6 Conclusion

In this chapter, we generalized two well-known construction heuristics for the rectangle

packing problem, the bottom-left and the best-fit algorithms, to solve the rectilinear block

packing problem. We also gave an efficient implementations for these two algorithms. If

naively implemented, the bottom-left algorithm requires O(min{M6, nm3M3}) time and

the best-fit algorithm requires O(nm3M3) time. We generalized the algorithm proposed

in [48] to find the BL position efficiently and reduced the running time of the bottom-left

algorithm to O(M2 logM) and that of the best-fit algorithm to O(nmM logM).

Although we performed a series of experiments based on benchmark instances, we did

not report any computational results in this chapter. This is because we design more

efficient implementations for these two algorithms in the next chapter. For comparison

purposes, we report the computational results in the next chapter.



Chapter 5

Efficient Implementations of

Construction Heuristics

In this chapter, we design more efficient implementations of the bottom-left and best-fit

algorithms than those explained in Chapter 4.

The basic idea of the efficient implementations is introduced in Section 5.1, and the

details for calculating BL positions using sophisticated data structures are explained in

Section 5.2. In Section 5.4, we explain how the data structures in Section 5.2 are utilized to

make the bottom-left and best-fit algorithms faster and then analyze the time complexity

of these algorithms.

W

H ′

(a)

W

H ′

C3

C2

C1

C4

(b)

Figure 5.1: Container Rectangles

Instead of considering the constraint that we must place every rectilinear block inside

of the container, we use a set of four sufficiently large rectangles called container rectangles
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C = {C1, C2, C3, C4} that satisfies the following condition: Assuming that R̃ is the set of

items that are arbitrarily placed in the container, a rectilinear block Ri is placed in the

container without protrusion and without overlap with any item in R̃ if and only if Ri

does not have overlap with any item in R̃∪ C. We denote R̂ = R̃∪ C; then |R̂| = |R̃|+ 4

holds. See Figure 5.1 for an example of container rectangles, where the value of H ′ is

+∞. Figure 5.1 (a) shows the give area, i.e., the container, and Figure 5.1 (b) shows the

corresponding container rectangles.

5.1 Basic idea

In this section, we explain the basic idea to compute BL positions efficiently for construc-

tion heuristics that are based on the bottom-left strategy.

Recall that when the Find2D-BL-R algorithm computes the BL position of an item Rj ,

it uses the NFPs of Rj relative to the items in the container, and such NFPs are placed at

the positions where the corresponding items are placed. We call such a layout of NFPs an

NFP layout for Rj . If the shapes of two items Rj and Rj′ are the same, their NFP layouts

are the same; thus it suffices to have t = |T | NFP layouts, each for a distinct shape in T ,

to compute the BL positions of all remaining items.

The basic idea is to dynamically keep the NFP layouts with respect to the current

packing layout for all shapes in T during the packing process. In other words, we do not

compute NFP layouts from scratch in each iteration of the construction heuristics.

Because the algorithm needs to keep tNFP layouts (and related data structures for each

NFP layout), O(t) times more memory space is necessary compared to the implementations

in Section 4.3 and 4.4 in which the Find2D-BL-R algorithm is invoked whenever needed. A

common feature of construction heuristics is that once an item is packed into the container,

its position is fixed and will not change. This means that for each shape Tj , after packing

an item Ri into the container, the NFPs in the container do not change, and we can obtain

the new NFP layout for Tj simply by inserting NFP(Ri, Tj). Thus, for each shape, we

dynamically modify the NFP layout with respect to the current packing layout during

the packing process. Figure 5.2 is an example that shows how NFP layout changes after

packing a rectilinear block into the container. Figure 5.2 (a) and (b) are the packing layout

and the NFP layout before packing item Ri, and Figure 5.2 (c) and (d) are the resulting

packing layout and NFP layout after packing Ri.

Whenever an item Ri is placed into the container, the algorithm computes the BL

position of every shape Tj using the NFP layout for Tj and a sweep line parallel to the

x-axis, which moves upward and keeps the overlap number π(x, y) of every point (x, y) on

the sweep line. As discussed in Section 3.5, the BL position is found when a point (x, y)
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Ri Tj

NFP(Ri, Tj):

packing layout

(a)

NFP layout for Tj

(b)

pack Ri

packing layout

(c)

Ri

NFP layout for Tj

(d)

Figure 5.2: An example of NFP layout after packing an item

with π(x, y) = 0 is found on the sweep line for the first time. Note that the y-coordinate

of the BL position of shape Tj does not decrease when item Ri is placed. Hence the BL

position of Tj does not appear below the sweep line at the position where it stopped when

the last BL position was found before the item Ri was placed. In other words, the sweep

line can start the search for the BL position from the last height ylast when the last BL

position was found before Ri was packed into the container. This means that for each

shape Tj , the sweep line moves from bottom to top only once (except for the computation

necessary to update the overlap numbers π(x, ylast) on the sweep line at the last height

after NFP(Ri, Tj) is placed) during the entire process of a construction heuristic.

We design sophisticated data structures to dynamically keep the information we need

to maintain the overlap numbers of all points on the sweep line. When the sweep line

moves from bottom to top, the overlap numbers on the sweep line change only at the

positions where the sweep line meets the bottom or top edge of an NFP rectangle. Such

a position (or the occasion when the sweep line meets such a position) is called an event.

For each shape Tj , we maintain a heap HEAP j for events of the sweep line and a balanced

search tree TREE j to keep the information of overlap numbers on the sweep line. For

the balanced search tree, we use a 2-3 tree data structure explained in Section 3.2.2 to

implement our algorithm.

For every iteration, after an item Ri is placed, the NFP of shape Tj relative to Ri, which

consists of mim
T
j NFP rectangles, is added to the NFP layout of Tj for each j = 1, . . . , t.

In the following sections, we show that TREE j and HEAP j can be updated in O(logM)

time for each j whenever an NFP rectangle is added to the NFP layout of Tj . This implies

that after an item Ri is placed, the computation time to update the balanced search trees

and heaps for all shapes is
∑t

j=1O(mim
T
j logM) = O(mim logM), where m is the sum

of mT
j for all the shapes in T and M is the sum of mi for all rectilinear blocks in R.
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We also show that using TREE j , it is possible in O(logM) time to judge whether

the BL position exists on the current sweep line, and to output such a position if it does

exist, whenever the sweep line moves from one event point to another. The number of

such events taken from HEAP j is shown to be O(
∑n

i=1mim
T
j ) = O(mT

j M) for each

shape Tj during the entire computation of a construction heuristic, where mT
j M is the

total number of NFP rectangles in the NFP layout of Tj when the construction algorithm

terminates. This implies that the total computation time to search for BL positions is

O(mT
j M logM) for each shape Tj during the entire execution of the construction heuristic.

Because for construction heuristics considered in this thesis, it suffices to update these

data structures for all items Ri in R and to compute BL positions for all shapes Tj in

T , the total computation time to maintain these data structures is O(
∑n

i=1mim logM +∑t
j=1m

T
j M logM) = O(mM logM) during the entire computation of the construction

heuristics.

5.2 Method of calculating BL positions

In this section, we explain the details of the efficient method to calculate the BL position of

a rectilinear block. In Section 5.2.1, we give a technique to compute the overlap number

for each point on the sweep line using a 2-3 tree. The algorithm of calculating a BL

position is explained in Section 5.2.2.

5.2.1 Compute overlap numbers by a 2-3 tree

Instead of the binary search tree that are used in the implementation explained in Chap-

ter 4 we use a 2-3 tree to keep the overlap number on the sweep line.

Given a rectilinear shape Tj , to compute the overlap number of each point on the

sweep line relative to the current layout, the algorithm first calculates the no-fit polygon

NFP(R, Tj) of Tj relative to the placed items R ∈ R̂ including container rectangles and

then places each of them at the position where the corresponding item is placed. (Recall

that R̂ is the set of placed items in the container and container rectangles.) Then we have

the NFP layout of Tj with respect to the current packing layout. Note that the algorithm

actually places the NFP rectangles rather than the NFPs of rectilinear shapes.

Let Nt (resp., Nb) be the set of all the top (resp., bottom) edges of NFP rectangles that

constitute the NFP layout of Tj relative to the items in R̂, and let Ntb = Nt ∪Nb. The

overlap numbers of points on the sweep line changes only when the sweep line encounters

an element in Ntb, and it occurs only for the points between the left edge and right edge

of the no-fit polygon encountered by the sweep line.
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Let Nl (resp., Nr) be the set of all the left (resp., right) edges of NFP rectangles that

constitute the NFP layout of Tj , and let Nlr = Nl ∪Nr. Note that, the no-fit polygons of

Tj relative to the container rectangles in C can be simply calculated by treating item Tj

as a rectangle whose height and width are the same as its bounding box. Hence, for each

i = 1, . . . , 4, we use the NFP of the bounding box of Tj relative to container rectangle Ci

instead of NFP(Ci, Tj). However, we may not clearly mention this point and assume for

simplicity that the four no-fit polygons of Tj relative to the container rectangles consist of

four rectangles throughout the remainder of this paper.

Recall that R̃ is the set of items placed in the container, and let M̃ =
∑

Ri∈R̃mi. Then

there are mT
j M̃ NFP rectangles in the NFP layout of Tj . Hence, |Nt| = |Nb| = |Nl| =

|Nr| = mT
j M̃ + 4 and |Ntb| = |Nlr| = 2mT

j M̃ + 8 hold. The elements in Nlr are sorted in

nondecreasing order of their x-coordinates, where ties are broken by treating the elements

in Nr as having higher priority. This tie-breaking rule is important, because if two no-fit

polygons have their left and right boundaries at the same x-coordinate, the intersection

point of the boundaries of the two no-fit polygons might be a feasible point where the

shape Tj can be placed without overlap. Let x
(k)
lr be the x-coordinate of the kth element

in the sorted list of Nlr, and define intervals

Sk = [x
(k)
lr , x

(k+1)
lr ], k = 1, 2, . . . , 2mT

j M̃ + 7

on the sweep line. The left boundary of S1 (resp., the right boundary of S2mT
j M̃+7)

corresponds to the left (resp., right) edge of the container rectangle whose right (resp.,

left) edge represents the left (resp., right) boundary of the container. The algorithm

maintains the overlap number for each interval Sk during the process, where the overlap

number π(x, y) of a point (x, y) is the number of NFP rectangles containing (x, y) that

constitute the NFP layout of Tj . Initially, the sweep line is at a sufficiently low position,

and it overlaps with no NFP rectangle. At this moment, the overlap number of every

interval Sk is zero. Figure 5.3 (a) shows an example of the intervals corresponding to an

NFP layout that contains three NFP rectangles.

We use a 2-3 tree whose leaves represent intervals S1, S2, . . . , S2mT
j M̃+7, where the kth

leaf (called leaf k for simplicity) from the left corresponds to the interval Sk. Note that the

height of the 2-3 tree is O(log(mT
j M̃)) = O(logM). Every node of this tree stores values

pvalue, pmin, and pcross, whose role will be explained later. See Figure 5.3 (b) for an example

of the 2-3 tree whose leaves represent intervals of the NFP layout in Figure 5.3 (a).

For two nodes u and v of the tree, let PATH (u, v) be the set of nodes in the path from

u to v including u and v themselves. Let g(k) be the overlap number for interval Sk of

the sweep line. To be more precise, g(k) is the overlap number of all points in Sk except

the left (resp., right) boundary of Sk if it corresponds to the left (resp., right) edge of an
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NFP layout:
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Figure 5.3: An example of intervals and corresponding 2-3 tree for an NFP layout

NFP rectangle. This means that the overlap number of the left (resp., right) edge of an

NFP rectangle is stored in an interval Sk whose right (resp., left) boundary is that edge.

Thus we need to treat the boundaries carefully considering that each NFP is an open set.

When the value of y is fixed to the height of the current sweep line, the function π(x, y)

is a lower semi-continuous piecewise linear function consisting of horizontal line segments

with heights g(1), g(2), . . . , g(2mT
j M̃ + 7) aligned in this order from left to right. The

algorithm maintains the values of pvalue for all nodes of the tree so that

∑
u∈PATH (k,root)

pvalue(u) = g(k) (5.2.1)

is satisfied for each leaf k, where root is the root node of the 2-3 tree. Then it is possible

to compute the overlap number of an interval in O(logM) time using the values of pvalue

in the path from the corresponding leaf to the root node.

We define a CrossPoint as follows: If an NFP rectangle’s right edge crosses another’s

top edge, we call the crossing point a CrossPoint. Figure 5.4 shows an example of the

CrossPoints.

Observe that, a bottom-left stable feasible position will only appear at non-overlapping

CrossPoints, and thus the BL position is also among them. To find such a CrossPoint

efficiently, we prepare for each leaf k, a Boolean value pcross(k) that takes value 1 if the

left boundary of interval Sk is a right edge of an NFP rectangle whose interior intersects

with the sweep line and 0 otherwise, and then we define the value of pmin for each node v
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reference point

new item:

: CrossPoint

Figure 5.4: An example of CrossPoints of the new rectilinear block

of the 2-3 tree as follows:

pmin(v) = min
k∈Q(v)

∑
u∈PATH(k,v)

pvalue(u), (5.2.2)

where Q(v) is the set of all leaf nodes k such that pcross(k) = 1 in the subtree rooted at the

node v. For convenience, we assume pmin(v) = +∞ if Q(v) = ∅. Note that pmin(v) = +∞
indicates that there exists no leaf node whose left boundary corresponds to the right edge

of an NFP rectangle with its interior intersecting with the sweep line among all leaf nodes

in the subtree rooted at the node v. The value of pmin(v) is used to compute the minimum

overlap number of intervals Sk corresponding to leaves k in Q(v), which can be computed

by

pmin(v)− pvalue(v) +
∑

u∈PATH (v,root)

pvalue(u). (5.2.3)

Because the BL position will only appear at a CrossPoint, we can ignore the leaves not in

Q(v). Using the value of pmin(v) and the values of pvalue(u) for nodes u on the path from

the parent node of v to the root node as shown in (5.2.3), it is possible to check whether

there exists a leaf node in Q(v) whose overlap number is equal to zero. Let a, b and c be

the children of a node v. (Note that for a 2-3 tree, there are either two or three children

for every node except the leaves. For simplicity, we assume that if the node v has just

two children, the value of pmin(c) = +∞, which makes the node c having no effect on the

final result.) Assume that the values of pmin(a), pmin(b) and pmin(c) are known. Then the
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value of pmin(v) can be computed in constant time by

pmin(v) = pvalue(v) + min{pmin(a), pmin(b), pmin(c)}. (5.2.4)

Consider the moment when the sweep line encounters an element in Ntb. Let B be the

NFP rectangle whose top or bottom edge is encountered by the sweep line, and assume

that the left (resp., right) edge of B is the lth (resp., (r + 1)st) element in the sorted list

of Nlr. In this situation, the overlap numbers for intervals Sl, Sl+1, . . . , Sr are changed.

The overlap numbers of these intervals should be increase (resp., decrease) by one if the

encountered edge is an element in Nb (resp., Nt).

We explain the algorithm to keep the values of pvalue, pmin and pcross appropriately,

assuming that their values were correct before the sweep line encountered an edge. The

algorithm first finds the leaf r+1 that corresponds to the (r+1)st interval. It then updates

the value of pcross(r + 1) to one (resp., zero) and the value of pmin(r + 1) to pvalue(r + 1)

(resp., +∞) if the bottom (resp,. top) edge of B is encountered. It further modifies

the values of pmin of all nodes on the path from r + 1 to the root by equation (5.2.4).

The details of this procedure is formally described as algorithm UpdateCross(T , B) in

Algorithm 9.

Algorithm 9 UpdateCross(T , B)

Input: A tree T and an NFP rectangle B whose right edge is the (r+1)st element in Nlr.

Output: Updated Tree T .

1: Find the leaf r + 1 that corresponds to the (r + 1)st interval.

2: Set r′ := r+ 1, and λ := 1 (resp., −1) if the edge encountered by the sweep line is the

bottom (resp., top) edge of B.

3: Set pcross(r
′) := 1 and pmin(r′) := pvalue(r

′) if λ = 1; otherwise (i.e., λ = −1), set

pcross(r
′) := 0 and pmin(r′) := +∞.

4: Modify the values of pmin of all nodes on the path from r′ to the root by equation

(5.2.4).

Then, the algorithm finds the leaves l and r that correspond to the lth and rth intervals.

See Figure 5.5 as an example. Here we assume for simplicity that the edge encountered

by the sweep line is the bottom edge of the B. The case when the top edge is encountered

is similar; instead of increasing the values by one, the algorithm decreases the values by

one. The algorithm increases the values of pvalue and pmin of the leaf nodes l and r by one.

It then traverses nodes on the paths from the leaf nodes l and r to their least common

ancestor v. During this traversal, whenever a node in the path from l (resp., r) to v is

reached from its left (resp., right) or middle child, the algorithm increases the values of

pvalue and pmin of all its right (resp., left) siblings by one. It also updates pmin for nodes
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in the paths from l and r to v so that the condition (5.2.2) is satisfied (using equation

(5.2.4)). Finally, the algorithm updates the values of pmin for all nodes in the path from

v to the root node of the tree.

The details of this procedure is summarized as algorithm UpdateValue(T , B) in Al-

gorithm 10. (Note that the depths of all leaves of a 2-3 tree are the same, and hence the

least common ancestor of the leaves l and r can be found by going up the tree from l and

r simultaneously. This feature is utilized in the description of Algorithm 10.)

Algorithm 10 UpdateValue(T , B)

Input: A tree T and an NFP rectangle B whose left and right edges are the lth and

(r + 1)st elements in Nlr.

Output: Updated Tree T .

1: Find the leaves l and r that corresponds to the lth and rth intervals.

2: Set λ := 1 (resp., −1) if the edge encountered by the sweep line is the bottom (resp.,

top) edge of B.

3: Invoke UpdateCross(T , B). Add the value λ to pvalue(l), pmin(l), pvalue(r) and pmin(r).

4: Let lprev := l and rprev := r, and then let l be the parent of l, and r be the parent of

r. If l = r, go to Step 4.

5: If the rightmost (resp., leftmost) child of l (resp., r) is different from lprev (resp., rprev),

add the value λ to pvalue, pmin of all right (resp., left) siblings of lprev (resp., rprev).

Update the values of pmin(l) and pmin(r) by equation (5.2.4). Return to Step 2.

6: If the node l(= r) has a child u between lprev and rprev, then add λ to pvalue(u) and

pmin(u). Then for each node v on the path from l(= r) to the root, update the

value of pmin(v) by equation (5.2.4). Stop.

Algorithm UpdateValue(T , B) runs in O(logM) time since the height of the 2-3 tree

is O(log M̃) = O(logM).

Lemma 5.2.1. Assuming that M is the number of rectangles that represent all rectilinear

blocks, procedure UpdateValue updates in O(logM) time the overlap number of intervals

that are stored in a 2-3 tree when the sweep line encounters a bottom or top edge of an

NFP rectangle.

5.2.2 Search for BL position on a 2-3 tree

In this section, we propose an algorithm called FindBL to find the BL position of a shape

Tj with respect to the packing layout of items in R̂ using the 2-3 tree. As explained before,

the BL position only appears at non-overlapping CrossPoints, where one NFP rectangle’s
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Figure 5.5: An example of procedure UpdateValue

right edge crosses another’s top edge. Hence, when the sweep line encounters the top edge

of an NFP rectangle, the UpdateValue algorithm modifies the overlap number, and the

BL position may appear at this moment. To manage these events, the elements in Ntb

are stored in HEAP j according to the non-decreasing order of their y-coordinates, where

an element with smaller y-coordinate comes to the top of the heap, and ties are broken

by putting more priority to elements in Nt. If the top edges of some NFP rectangles have

the same y-coordinate, we put more priority to those elements that correspond to NFP

rectangles whose left edge has a smaller x-coordinate.

A CrossPoint (x, y) whose overlap number π(x, y) equals zero is a bottom-left stable

feasible position of shape Tj relative to the current packing layout of R̂. With the sweep

line moving from bottom to top, the algorithm checks whether there exists such a point

among all the CrossPoints on the sweep line whenever the sweep line encounters the top

edge of an NFP rectangle. If there are more than one such point on the sweep line, the

algorithm finds the leftmost one. The BL position is the first such point that the algorithm

finds.

Our algorithm to calculate the BL position can deal with the situation where the
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sweep line does not start from the bottom of the container. This feature is very important

because the running time will be significantly reduced if we know a height yinit such that

the BL position will not appear below the line y = yinit which is higher than the bottom

of the container. Assume that we are given a 2-3 tree TREE j and a heap HEAP j that

satisfy the following conditions.

C1. For the edge e in Nt with the highest priority (with respect to the ordering rule of

elements in Ntb) among those in HEAP j , HEAP j contains all the elements in Ntb

whose priority is lower than the edge e. (Note that e is not necessarily at the root of

HEAP j , because there may be edges in Nb having higher priority than that of e in

the heap. If we keep deleting the element at the root of the heap, e is encountered

first among the elements in Nt.)

C2. The data structures TREE j and HEAP j are initialized so that when the FindBL

algorithm is executed until the edge e in condition C1 is deleted from HEAP j , the

values on the nodes of the 2-3 tree TREE j keep the information of overlap numbers

of the sweep line at the height of the edge e. To be more precise, at the time when

e is deleted from HEAP j , TREE j keeps the information of overlap numbers at the

moment when the sweep line has passed all of the edges in Ntb whose priorities are

higher than the edge at the root of HEAP j .

Here we define the BL order ‘�BL’ between points in the plane by (x, y) �BL (x′, y′) ⇐⇒
(1) y < y′ or (2) y = y′ and x ≤ x′. Let (xinit, yinit) be the left endpoint of the edge e in

condition C1. If the conditions C1 and C2 are satisfied, the FindBL algorithm outputs

the smallest point with respect to �BL among the bottom-left stable feasible positions

(x, y) that satisfies (xinit, yinit) �BL (x, y) and (x, y) 6= (xinit, yinit). Hence, if the following

condition C3 is also satisfied, the FindBL algorithm outputs the BL position.

C3. The BL position does not exist below the line y = yinit nor on the half line y = yinit

with x ≤ xinit, i.e., π(x, y) > 0 holds for every point (x, y) �BL (xinit, yinit).

The FindBL algorithm first takes an element e at the root of HEAP j and removes it

from the heap. Let B ∈ R̂ be the NFP rectangle having the element e as its top or bottom

edge, and assume that its left (resp., right) edge is the left boundary of the lth (resp., the

right boundary of rth) leaf of TREE j . Then the algorithm updates the overlap numbers

of intervals Sl, Sl+1, . . . , Sr by invoking the UpdateValue procedure. If e is a bottom edge,

the algorithm proceeds to the next element at the top of the heap. Otherwise, it goes up

the tree from the leaf l until it finds a right sibling u that satisfies

pmin(u)− pvalue(u) +
∑

v∈PATH (u, root)

pvalue(v) = 0, (5.2.5)
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i.e., the subtree rooted at u has a leaf k with pcross(k) = 1 and the overlap number g(k) = 0.

If the root is reached without finding such a sibling u, which implies that the current top

edge e does not include a CrossPoint whose overlap number is zero, the algorithm proceeds

to the next element at the root of HEAP j . Otherwise, the algorithm chooses the leftmost

sibling u that satisfies (5.2.5) among those to the right of the current node and then goes

down the tree from u by choosing at each node the leftmost child that satisfies (5.2.5).

If k > r holds for the leaf k reached by the above procedure, which implies that the left

boundary of interval Sk does not cross the edge e, the algorithm proceeds to the next

element at the root of HEAP j . Otherwise, the algorithm outputs the bottom-left stable

feasible point (x, y), where x is the left boundary of Sk and y is the height of the current

sweep line (i.e., the height of e). After the FindBL algorithm outputs the point (x, y), it

inserts the top and bottom edges of the NFP rectangle B into HEAP j . This is necessary

for the next call to FindBL; the BL position may remain the same event or remain the

same height after some NFP rectangles are added into the current NFP layout, and if this

is the case, the same (x, y) or point with the same y-coordinate must be output in the

next call.

A

B

: Point where the new item can move leftward.

: BL stable feasible position

Figure 5.6: NFP rectangles whose top edges have the same y-coordinate

Care should be taken when the edge e overlaps with the element e′ at the root of

HEAP j after e is removed from the heap, and e′ is also a top edge. If this happens, such

top edges are merged into one longer edge with their leftmost (resp., rightmost) endpoint

as its left (resp., right) endpoint, and the above procedure of traversing the tree is applied

to this longer edge instead of the edge e. This is to avoid finding a wrong point in such
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a case that is depicted in Figure 5.6, where the top edges of rectangles A and B have the

same y-coordinate and A leaves the sweep line earlier. The wrong point of this case is the

left point at the top right corner of B.

The details of our algorithm to calculate the BL stable feasible position next to

(xinit, yinit) are summarized in Algorithm 11 as algorithm FindBL. In Algorithm 11, lmin

(resp., rmax) is the leaf corresponding to the left (resp., right) end of the merged edge, and

pathVal keeps the sum of pvalue for all nodes in the path from the current node to the root.

The input of the FindBL algorithm consists of a 2-3 tree TREE j with 2mT
j M̃ + 7 leaves

and a heap HEAP j that satisfy the two conditions C1 and C2. The algorithm outputs

the BL stable feasible position next to (xinit, yinit).

Note that while Step 5 is repeated, the value of
∑

u∈PATH (γ, root) pvalue(u) is always

zero, and it suffices to check if the value of pmin equals zero to check whether (5.2.5) is

satisfied; hence it is not necessary to update pathVal once Step 5 is entered.

We now consider the time complexity of the FindBL algorithm. Let K be the number

of elements deleted from HEAP j during the entire execution of a call to FindBL. Each

call to Step 1 takes O(1) time and Step 1 is called O(K) times; hence the total execution

time of Step 1 is O(K).

By Lemma 5.2.1, procedure UpdateValue runs in O(logM) time. Then in Step 2, it

takes O(log M̃) = O(logM) time to delete an element from the heap, to find the leaves l

and r, and to execute the UpdateValue procedure. Because Step 2 is called O(K) times,

the total execution time of this step is O(K logM).

In Step 3 and 4, the algorithm first climbs the 2-3 tree from the leaf lmin, and whenever

the current node α is not the rightmost child of its parent, it checks whether the subtree

rooted at its right sibling αnext next to it has a leaf that contains a CrossPoint with overlap

number zero. When the first node u having such a leaf is found, the algorithm sets γ := u.

In Step 5, the algorithm goes down the tree from γ, choosing the leftmost child includ-

ing such a leaf that contains a CrossPoint with overlap number zero. Thus, once Step 3

is entered, the algorithm climbs up the tree from lmin in the loop of Step 3 and 4, and if

it does not stop this traversal at the root, it goes down the tree to a leaf in Step 5. The

time complexity of the loop of Step 3 and 4, once Step 3 is entered until the loop exits

to Step 1 or 5, is O(log M̃) = O(logM), because O(log M̃) nodes are visited during the

traversal from lmin to the γ when it exits to Step 5, and it is possible for each node u to

check in constant time whether the subtree rooted at the node u has a leaf node that has

a CrossPoint with overlap number zero. The time complexity of a loop of Step 5 from the

time it is entered until it exits to Step 6 is also O(logM) for a similar reason. The loop of

Steps 3 and 4 and that of Step 5 are entered at most K times, and hence the total time

complexity of Step 3–5 is O(K logM).
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Algorithm 11 FindBL(TREE j , HEAP j , (xinit, yinit))

Input: A tree TREE j , a heap HEAP j and a point (xinit, yinit).

Output: The BL stable feasible position next to (xinit, yinit).

1: Let λprev := 1.

2: If HEAP j is empty, output “no BL stable feasible position is found” and stop. Oth-

erwise, let e be the element at the top of HEAP j . Then let B ∈ R̂ be the NFP

rectangle having the element e as its top or bottom edge, and assume that its left

(resp., right) edge is the left boundary of the lth (resp., the right boundary of the

rth) leaf of the 2-3 tree TREE j . If e is the bottom (resp., top) edge of B, set

λ := 1 (resp., −1). If (1) λprev = −1 and λ = 1 or (2) λprev = −1, λ = −1 and

rmax + 1 ≤ l, then let α := lmin, pathVal :=
∑

u∈PATH (α, root) pvalue(u) and proceed

to Step 3. If λprev = 1 and λ = −1, let lmin := l and rmax := r. If λprev = −1

and λ = −1, let rmax := max{rmax, r}. Invoke UpdateValue(T , B). Remove the

element e from HEAP j , let λprev := λ, and then return to Step 2.

3: If α is the root, return to Step 1; otherwise, let αparent be the parent node of α, and

let pathVal := pathVal − pvalue(α).

4: If α is the rightmost child of αparent, set α := αparent and then return to Step 3;

otherwise, set α := αnext where αnext is the sibling next to α on the right. If the

value of pathVal + pmin(α) = 0, then set γ := α and proceed to Step 5; otherwise

return to Step 4.

5: If γ is a leaf, go to Step 6; otherwise, let γchild be the leftmost child of γ among all

children whose pmin equals 0. Let γ := γchild and then return to Step 5.

6: If γ ≥ rmax + 1, then return to Step 1. Otherwise, output (x, y), where x is the x-

coordinate of the left boundary of the interval Sγ corresponding to the leaf γ and y

is the y-coordinate of e. Add into HEAP j the top and bottom edges of a rectangle

whose left (resp., right) edge corresponds to the left boundary of lmin (resp., the

right boundary of rmax), top edge is at the height y, and bottom edge is at an

arbitrary height strictly smaller than y. Then stop.
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The algorithm returns from Step 6 to 1 at most K times, and the latter part of

Step 6 (i.e., after the “Otherwise”) is executed only once, which takes O(logM) time. In

summary, the total running time of algorithm FindBL is O(K logM).

Lemma 5.2.2. Assuming that K is the number of elements removed from heap until

the algorithm finds the BL position for a new rectilinear block, and M is the number of

rectangles that represent all rectilinear blocks, the FindBL algorithm finds the BL position

for the new item in O(K logM) time.

In later sections, we show that the number of edges to be added to HEAP j is O(mT
j M)

during the entire execution of the bottom-left or best-fit algorithm. During the process

of these heuristics, the FindBL algorithm is called many times, but the total number of

edges deleted from HEAP j (i.e., the sum of the values of K for all calls to FindBL) is

bounded by the number of added edges and hence is O(mT
j M). This implies that the total

execution time of FindBL for a shape Tj during the entire process of the bottom-left or

best-fit algorithm is O(mT
j M logM).

Note that we can easily modify the FindBL algorithm to enumerate all the bottom-

left stable feasible positions for a layout of rectilinear blocks. In Step 6 of Algorithm 11,

instead of inserting the top and bottom edges of the rectangle whose left (resp., right)

edge corresponds to the left boundary of lmin (resp., the right boundary of rmax), we insert

the top and bottom edges of a rectangle whose left (resp., right) edge corresponds to the

left boundary of γ (resp., the right boundary of rmax), where γ is the leaf that contains

the bottom-left stable feasible position most recently found. With this modification, the

algorithm outputs the bottom-left stable feasible position next to the one most recently

found, instead of reporting the same bottom-left stable feasible position again. Accord-

ingly, all we have to do to enumerate all bottom-left stable feasible positions is to call the

modified FindBL algorithm iteratively until HEAP j becomes empty. Assume that κ is the

number of bottom-left stable feasible positions. Then the modified FindBL algorithm is

called O(κ) times, and the time complexity of enumerating all such positions of a rectilin-

ear shape that consists of mT
j rectangles for a given layout of rectilinear blocks consisting

of M rectangles is O((mT
j M + κ) logM), because HEAP j initially contains O(mT

j M) ele-

ments and O(κ) elements are added into it during the entire process of calling the modified

FindBL iteratively.

Since the sweep line moves from bottom to top only once for each shape Tj , the entire

process will not be affected even if we delete the NFPs whose top edges are strictly lower

than the current sweep line. This idea can be implemented as follows. For each Tj ,

we maintain a queue that stores all the top edges removed from HEAP j in Step 2 of

Algorithm 11. Then, whenever Algorithm 11 terminates, for every top edge e in the queue



68 Efficient Implementations

that is strictly lower than the current sweep line, we delete from TREE j the two leaves l

and r+1 corresponding to the intervals whose left boundaries are the left and right edges,

respectively, of the NFP corresponding to e, modifying the right boundaries of l − 1 and

r, the leaves immediately to the left of l and r+ 1, to the right boundaries of l and r+ 1,

respectively (of course information in the inner nodes above the modified leaves should be

modified appropriately). Because the number of edges to be deleted from HEAP j cannot

be more than those inserted to it, and it takes O(logM) time to delete or modify a leaf, the

above process for a shape Tj takes O(mT
j M logM) time during the entire packing process.

This implies that this deleting process has no negative effect on the time complexity of

algorithm FindBL, while it may significantly reduce the memory space in practice.

Theorem 5.2.3. Assuming that M is the number of rectangles that represent all rectilin-

ear blocks, and mT
j is the number of rectangles that represent a rectilinear shape Tj, the

modified FindBL algorithm enumerates all the bottom-left stable feasible positions for Tj

in O(mT
j M logM) time.

5.3 Initialization and modification of trees and heaps

In this section, we explain how we modify the data structure dynamically and then give

the function to initialize the trees and heaps.

For each shape, our algorithms need to dynamically keep the NFP layout with respect

to the current packing layout during the process. We give a function to modify the 2-3

tree and the heap when an NFP rectangle B is added into the NFP layout.

The function first inserts the top and bottom edges of B into HEAP j (according to

the priority among the elements in Ntb explained at the beginning of Section 5.2.2). It

then finds the leaf k such that the corresponding interval Sk contains the left edge l of B

(according to the ordering of the elements in Nlr explained in Section 5.2.1), and it divides

the leaf k into two leaves k1 and k2 corresponding to intervals Sk1 and Sk2 , respectively,

where the left (resp., right) boundary of Sk1 (resp., Sk2) is that of Sk, and the right (resp.,

left) boundary of Sk1 (resp., Sk2) is the edge l. Then, the values of pvalue, pcross and pmin

of the leaf k are copied to the new leaves k1 and k2. The rebalance operator of the 2-3 tree

is then invoked so that the resulting tree satisfies the conditions that must be satisfied by

a 2-3 tree (see the Remark at the end of this subsection). The right edge of B is processed

similarly. The procedure is summarized as function ModifyTH in Algorithm 12.

The computation time of function ModifyTH is O(logmT
j M̃) = O(logM), where mT

j M̃

is the number of NFP rectangles in the NFP layout when procedure ModifyTH is invoked.
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Algorithm 12 ModifyTH(B, TREE j , HEAP j)

Input: An NFP rectangle B, a tree TREE j and a heap HEAP j .

Output: Updated TREE j and HEAP j .

1: Let l, r, b and t be the left, right, bottom and top edge of the NFP rectangle B.

2: Insert b and t into HEAP j . Let e := l.

3: Find the leaf k that corresponds to the interval Sk where the edge e should be inserted

according to the ordering rule of elements in Nlr explained in Section 5.2.1.

4: Divide the leaf k into two leaf nodes k1 and k2 corresponding to two intervals Sk1 and

Sk2 . Set the left (resp., right) boundary of Sk1 (resp., Sk2) to that of Sk, and set

the right (resp., left) boundary of Sk1 (resp., Sk2) to the edge e. For each i = 1

and 2, let pvalue(ki) := pvalue(k), pcross(ki) := pcross(k) and pmin(ki) := pmin(k).

5: Rebalance the 2-3 tree.

6: If e = r, then stop. Otherwise, let e := r and return to Step 3.

Lemma 5.3.1. The procedure ModifyTH updates in O(logM) time the corresponding

2-3 tree and heap when inserting an NFP rectangle into the container, where mT
j M̃ is the

number of NFP rectangles in the NFP layout.

At the beginning of the bottom-left or best-fit algorithm, no items are placed in the

container (except for the four container rectangles). Corresponding to this empty layout,

for each shape Tj , we prepare a 2-3 tree TREE j with seven leaves corresponding to the

intervals defined by the left and right edges of the NFPs of the bounding box of Tj

relative to the container rectangles and a heap HEAP j with eight elements consisting of

the bottom and the top edges of the NFPs (note that each of these NFPs is a rectangle).

See Figure 5.7 for an example of intervals corresponding to the empty layout and an item

in (a). In Figure 5.7 (b), NFP i (i = 1, . . . , 4) signifies the NFP of the bounding box of Tj

relative to container rectangle Ci in C.
The elements in the heap are arranged according to the priority rule among the top

and bottom edges explained at the beginning of Section 5.2.2, and the leaves of the tree

are ordered from left to right according to the ordering rule of the left and right edges

explained in Section 5.2.1. Note that at this moment, the sweep line is at a sufficiently low

position whose y-coordinate is lower than the bottom edges of all container rectangles. As

a result, the values of pvalue, pmin and pcross of all nodes are 0. The initialization phase is

summarized as procedure InitializeTH in Algorithm 13.

As explained before, the number of rectangles that represents a rectilinear shape Tj is

denoted by mT
j , and the sum of mT

j over t distinct shapes is denoted by m. Because it

takes O(mT
j ) time to compute the NFP of Tj relative to a container rectangle (even though
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Figure 5.7: Intervals corresponding to the empty layout

Algorithm 13 InitializeTH

Input: Four container rectangles and shapes {T1, T2, . . . , Tt}.
Output: TREE j and HEAP j for each shape Tj .

For every shape Tj (j = 1, 2, . . . , t), do the following Steps 1 and 2.

1: Compute the NFPs of Tj relative to the four container rectangles in C.
2: Create a heap HEAP j that consists of the top and bottom edges of the four NFPs

computed in Step 1. Then create a 2-3 tree TREE j that has seven leaves corre-

sponding to the seven intervals defined by the left and right boundaries of the four

NFPs. Set the values of pvalue and pmin to zero for all nodes in the tree, and set

the values of pcross to zero for all leaves of the tree.
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such an NFP is a rectangle), Step 1 takes O(mT
j ) time for each j. The sizes of HEAP j

and TREE j are O(1), and hence Step 2 takes O(1) time for each j. This initialization

phase therefore runs in
∑t

j=1O(mT
j ) = O(m) time.

At the beginning of the bottom-left or best-fit algorithm, the InitializeTH procedure

is called, and whenever an NFP rectangle is placed, the ModifyTH procedure is executed.

The FindBL algorithm is invoked whenever needed. The data structures TREE j and

HEAP j are modified only by these three procedures. It is not hard to see that the

conditions C1–C3 in Section 5.2.2 are satisfied after procedure InitializeTH has finished

and they are satisfied whenever the ModifyTH or FindBL algorithm terminates if they

are satisfied before the algorithm is invoked. These three conditions are therefore satisfied

whenever FindBL begins its computation. Consequently, the FindBL algorithm correctly

computes the BL position whenever it is called.

Theorem 5.3.2. The FindBL algorithm correctly computes the BL position of a new

rectilinear block.

Remark. A 2-3 tree must satisfy the following two conditions:

• All leaves are at the same depth.

• Every inner node has two or three children.

When a leaf k is divided into two leaf nodes k1 and k2, the number of children of the

parent α of k is increased by one, and α may have four children. If this is the case, α is

divided into two nodes α1 and α2, where α1 has the first two children of α, α2 has the

latter two, and both have the same parent as α. The value of pvalue(α) is copied to α1 and

α2, and the values of pmin(α1) and pmin(α2) are computed by (5.2.4). If the parent of α

has four children, the same operation is applied to it, and this process is repeated by going

up the tree until there is no node having four children. Note that when the root is divided

into two nodes, a new root having them as its children is created. We explained similar

operation on a 2-3 tree when inserting a new leaf in Section 3.2.2. See Figure 3.4 as an

example. Thus, the rebalance operation is processed by moving up the tree and hence can

be done in time proportional to the height of the tree, i.e., O(log(mT
j M̃)) = O(logM).

5.4 Construction heuristics with efficient implementations

In this section, we explain efficient implementations of construction heuristics for the

rectilinear block packing problem in which the FindBL algorithm and relevant data struc-

tures and procedures are utilized. We first explain the efficient implementations of the
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bottom-left and best-fit algorithms in Section 5.4.1 and 5.4.2. We then explain their time

complexity in Section 5.5.

5.4.1 Bottom-left algorithm based on FindBL algorithm

The bottom-left algorithm can be generally explained as follows: Given a set of n rectilinear

blocks R = {R1, R2, . . . , Rn} and an order of items (e.g., decreasing order of area), the

algorithm packs all the items one by one according to the given order, where each item is

placed at its BL position relative to the current layout (i.e., the layout at the time just

before it is placed).

Assume for simplicity that {R1, R2, . . . , Rn} are packed according to the increasing

order of their indices. The bottom-left algorithm, in which FindBL algorithm is utilized

to find BL positions, is formally described as Algorithm 14.

Algorithm 14 Bottom-Left FindBL

Input: A sequence of rectilinear blocks R1, R2, . . . , Rn and a container.

Output: A packing layout.

1: Call procedure InitializeTH. Let i := 0.

2: Set i := i+ 1. If i > n, output the packing layout and stop. Let TREE j and HEAP j

be the 2-3 tree and heap corresponding to the shape Tj of item Ri.

3: Call algorithm FindBL(TREE j , HEAP j , (0, 0)) to find the BL position (x, y) of Ri.

4: Pack Ri at (x, y).

5: For each shape Tj (j = 1, 2, . . . , t), call procedure ModifyTH(B, TREE j , HEAP j) for

every NFP rectangle B that constitutes NFP(Ri, Tj) to add the NFP of Tj relative

to Ri into the corresponding NFP layout. Then return to Step 2.

5.4.2 Best-fit algorithm based on FindBL algorithm

Assume that the rectilinear blocks are divided into groups according to the shape and

we are given a sequence of items of each shape that represents the decreasing order of

their priority. In each iteration, we compute the BL positions for all of the remaining

shapes using FindBL, and then we choose the rectilinear shape whose BL position takes

the smallest x-coordinate among those with the lowest y-coordinate, breaking ties by

choosing the shape having a remaining item with the highest priority. Then we take the

item at the top of the ordered list of the chosen shape and pack it into the container. We

then insert the NFPs of this item into the NFP layout for each shape and update the trees

and heaps. The best-fit algorithm is formally described as Algorithm 15.
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Algorithm 15 Best-Fit FindBL

Input: A set of rectilinear blocks R and a container.

Output: A packing layout.

1: Set R′ := R.

2: If R′ = ∅, output the packing layout and stop.

3: Set T ′ := T , x∗ := +∞, y∗ := +∞, xinit := 0 and yinit := 0.

4: Choose a shape Tj in T ′, and then let T ′ := T ′ \ {Tj}. If there is no item in R′ whose

shape is Tj , return to Step 4.

5: Find the BL position (x, y) of Tj using FindBL(TREE j , HEAP j , (xinit, yinit)). Let

Ri ∈ R′ be the item that takes the highest priority among those items whose shape

is Tj . If one of the following three conditions holds, then let x∗ := x, y∗ := y and

i∗ := i.

(i) y < y∗.

(ii) y = y∗ and x < x∗.

(iii) y = y∗, x = x∗ and Ri has higher priority than Ri∗ .

6: If T ′ 6= ∅, return to to Step 4.

7: Pack the item Ri∗ at (x∗, y∗).

8: For each shape Tj (j = 1, 2, . . . , t), call procedure ModifyTH(B, TREE j , HEAP j)

for every NFP rectangle B that constitutes NFP(Ri∗ , Tj) to add the NFP of Tj

relative to Ri∗ into the corresponding NFP layout.

9: Set R′ := R′ \ {Ri∗}, xinit := x∗, yinit := y∗, and return to Step 2.
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5.5 Time complexities

In this section, we explain the time complexities of the new implementation of the heuristic

algorithms for the rectilinear block packing problem.

For every iteration, our algorithms pack a rectilinear block into the container. When

a block Ri is placed, mim
T
j NFP rectangles are placed into the NFP layout of shape Tj ,

where mi and mT
j are the numbers of rectangles that represent Ri and Tj , respectively.

By Lemma 5.3.1, procedure ModifyTH takes O(logM) time for each NFP rectangle.

Time for modifying the balanced search trees and heaps by calling procedure ModifyTH

for all shapes is
∑t

j=1O(mim
T
j logM) = O(mim logM), where m =

∑t
j=1m

T
j . Because

we need to insert such NFP rectangles into the NFP layout of every shape Tj for all

items Ri in R, the time spent for procedure ModifyTH during the entire execution of the

bottom-left or best-fit algorithm is
∑n

i=1O(mim logM) = O(mM logM).

According to Lemma 5.2.2, the execution time of a call to the FindBL algorithm is

O(K logM) for K the number of elements deleted from HEAP j during the call to FindBL.

For convenience, let Kjl be the number of elements deleted from HEAP j by the call to

FindBL in the lth iteration of the bottom-left or best-fit algorithm. The number of deleted

elements never exceeds the number of elements added to it. The number of elements

added to HEAP j in the initialization phase is O(1), and that of the iteration when an

item Ri is added is 2mim
T
j + 2 (the top and bottom edges of mim

T
j NFP rectangles, and

the top and bottom edges added into the heap in Step 6 of FindBL). Hence the total

number of elements added into HEAP j is
∑n

i=1(2mim
T
j + 2) + O(1) = O(mT

j M), which

implies that
∑n

l=1Kjl = O(mT
j M). As a result, the total running time for computing BL

positions of shape Tj by FindBL is
∑n

l=1O(Kjl logM) = O(mT
j M logM). Hence the total

time of FindBL for all shapes is
∑t

j=1O(mT
j M logM) = O(mM logM) during the entire

execution of the bottom-left or best-fit algorithm.

The time complexity of other parts of the algorithms are dominated by the execution

time of these two procedures. Therefore, both the bottom-left and best-fit algorithms run

in O(mM logM) time.

Theorem 5.5.1. Assuming that M is the number of rectangles that represent all rectilinear

blocks and m is the number of rectangles that represent all distinct shapes of rectilinear

blocks, both the bottom-left and the best-fit algorithms run in O(mM logM) time using the

FindBL algorithm.

Note that it is not necessary to add in an NFP layout an NFP rectangle whose top

edge is strictly lower than the current sweep line, because the sweep line never moves

downward and hence such an NFP rectangle will not affect the overlap number during the
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remaining execution of the bottom-left or best-fit algorithm. According to the definitions

of reference points and NFP, the highest edge of NFP(Ri, Tj) of two rectilinear blocks Ri

and Tj is not higher than the top edge of the bounding box of Ri. Based on this, in Step 4

and Step 7 of Algorithm 14 and 15, respectively, after packing the item Ri or Ri∗ into

container, we first check the top edge of its bounding box. For each shape, if it is lower

than the corresponding sweep line, there is no need to insert its NFP rectangles into the

NFP layout. Otherwise, for every NFP rectangle of the item Ri or Ri∗ that has just been

packed, we check its top edge and insert it into the NFP layout only when it is not lower

than the sweep line. Even with this modification, the worst-case time complexities of the

two algorithms are the same, but this usually reduces the running time and memory space

in practice.

5.6 Computational results

The bottom-left and best-fit algorithms proposed in Chapter 4 and 5 were implemented in

the C programming language and run on a Mac PC with a 2.3 GHz Intel Core i5 processor

and 4 GB memory.

The performance of these algorithms have been tested on a series of instances, which are

generated from nine benchmark instances. The information of these benchmark instances

is addressed in Table 5.1. For more details of these instances, readers could refer to [21]. We

generate a set of instances named C-class by copying every shape in these nine instances.

Table 5.2 shows the information of these classes of instances. For example, the set of

instances generated with this rule from the instance “ami49L21” is labeled “C-ami49L21.”

The width W of the container is set to W =
⌈√∑n

i=1A(Ri)
⌉

according to the total sum of

areas of items. The column of “#inst” reports the number of instances in each class. All of

these instances are available at http://www.co.cm.is.nagoya-u.ac.jp/~yagiura/rectilinear/.

We analyze the computational results from both sides of the running time and the

occupation rate. As to the order of the items for the bottom-left algorithm and the priority

among the items for the best-fit algorithm, we tested the decreasing order of width, height,

area and the area of the bounding box. The occupation rate of the decreasing order of

area is slightly better than the results obtained by other orders. Hence, we report those

results of the decreasing order of area.

The computational results obtained by the bottom-left and the best-fit algorithm are

shown in Table 5.3 to 5.11. Each table shows the results for an instance set in C-class. In

the tables, the columns of “Occup.” of “Bottom-Left” and “Best-Fit” show the occupation

rate in % obtained by the bottom-left and the best-fit algorithms. For each instance, the

best results among the two algorithms are marked by ‘∗’. The column “FBLR” is the
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running time of the algorithms explained in Chapter 4, which utilize the Find2D-BL-R to

find the BL positions. The column “FindBL” is the running time of the algorithms with

efficient implementations in Chapter 5. All the running times are shown in seconds.

The computational results in column “FBLR,” which are obtained by the bottom-left

and best-fit algorithms explained in Chapter 4, show that the running time of the best-fit

algorithm is much smaller than that of the bottom-left algorithm. The computational

results in columns “FBLR” and “FindBL” show that our efficient implementations sig-

nificantly reduce the computation time of the bottom-left and best-fit algorithms. By

incorporating FindBL, the bottom-left algorithm becomes more than 500 times faster for

the instance B10 2048, and the best-fit algorithm becomes more than 30 times faster for

B10 2048 and T64 1024.

Observe in columns “FBLR” that the running time of the best-fit algorithm that

utilizes the Find2D-BL-R algorithm to compute BL positions is much smaller for large-

scale instances than that of the bottom-left algorithm. As explained in Section 4.4, in

every iteration, the best-fit algorithm can discard the space below the sweep line where

the latest item is placed. This significantly reduces the computation time for large-scale

instances.

As to the occupation rate, the data in column “Occup.” show that our algorithms

tend to perform better when the instance becomes larger. Which of the bottom-left and

best-fit algorithms is better depends on instances, and if we take the best result of these

two, the occupation rate often reaches higher than 95%.

Table 5.1: Information of benchmark instances

Name t n m M

ami49L21 28 28 49 49

ami49LT21 27 27 49 49

TMCNCGSRC 51 51 76 76

B10 9 9 14 14

B30 29 29 59 59

T19 19 19 42 42

T40 32 32 42 42

T64 15 15 33 33

T144 20 20 31 31
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Table 5.2: Information of C-class instances that are generated by copying benchmark

instances

Name #inst t n m M W

C-ami49L21 10 28 28–14336 49 49–25088 5936–134337

C-ami49LT21 10 27 27–13924 49 49–25088 5953–134714

C-TMCNCGSRC 9 51 51–13056 76 76–19456 2376–38018

C-B10 12 9 9–18432 14 14–28672 9–438

C-B30 10 29 29–14848 59 59–30208 29–676

C-T19 11 19 19–19456 42 42–43008 18–601

C-T40 10 32 32–16384 42 42–21504 301–6818

C-T64 11 15 15–15360 33 33–33792 7–249

C-T144 10 20 20–10204 31 31–15872 11–249

Table 5.3: Computational results for ami49L21 (28 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

ami49L21 001 5936 28 49 49 ∗85.00 0.0000 0.0039 84.66 0.0068 0.0039

ami49L21 002 8396 56 49 98 83.41 0.0084 0.0078 ∗86.42 0.0185 0.0090

ami49L21 004 11873 112 49 196 ∗86.91 0.0294 0.0173 86.55 0.0536 0.0215

ami49L21 008 16792 224 49 392 ∗87.68 0.1412 0.0374 86.98 0.1538 0.0504

ami49L21 016 23747 448 49 784 ∗88.40 0.5864 0.1054 87.17 0.4213 0.1243

ami49L21 032 33584 896 49 1568 85.31 2.5567 0.2384 ∗87.78 1.2249 0.2770

ami49L21 064 47495 1792 49 3136 ∗89.49 10.9921 0.5121 87.82 3.4498 0.5632

ami49L21 128 67168 3584 49 6272 ∗89.93 47.3732 1.1610 88.28 10.1575 1.2505

ami49L21 256 94991 7168 49 12544 ∗90.19 218.3621 2.3410 88.84 29.1903 3.1304

ami49L21 512 134337 14336 49 25088 ∗90.59 1026.5724 5.0132 88.66 84.3987 7.6326
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Table 5.4: Computational results for ami49LT21 (27 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

ami49LT21 001 5953 27 49 49 82.58 0.0002 0.0055 ∗86.80 0.0063 0.0061

ami49LT21 002 8419 54 49 98 84.71 0.0120 0.0085 ∗87.42 0.0185 0.1190

ami49LT21 004 11907 108 49 196 ∗87.14 0.0312 0.0188 86.09 0.0541 0.2697

ami49LT21 008 16839 216 49 392 ∗88.57 0.1245 0.0472 85.31 0.1492 0.5101

ami49LT21 016 23814 432 49 784 ∗87.96 0.5812 0.0948 86.61 0.4444 0.1184

ami49LT21 032 33678 864 49 1568 ∗88.44 2.4679 0.2165 87.54 1.2210 0.2553

ami49LT21 064 47628 1728 49 3136 ∗89.27 10.5217 0.5110 87.41 3.7520 0.6144

ami49LT21 128 67357 3456 49 6272 ∗89.96 43.1320 1.2052 87.70 9.8772 1.3976

ami49LT21 256 95257 6912 49 12544 ∗89.65 216.9078 2.6589 87.73 27.5558 3.1103

ami49LT21 512 134714 13824 49 25088 ∗90.00 1012.3210 5.9850 88.38 80.0347 6.9339

Table 5.5: Computational results for TMCNCGSRC (51 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

TMCNCGSRC 001 2376 51 76 76 ∗83.85 0.0015 0.0109 73.68 0.0264 0.0127

TMCNCGSRC 002 3360 102 76 152 ∗84.87 0.0194 0.0224 78.47 0.0813 0.0268

TMCNCGSRC 004 4752 204 76 304 ∗85.60 0.0623 0.0485 79.70 0.2348 0.0627

TMCNCGSRC 008 6720 408 76 608 ∗88.37 0.3134 0.1176 81.71 0.6242 0.1492

TMCNCGSRC 016 9504 816 76 1216 ∗86.94 1.3324 0.2757 83.03 1.9218 0.3489

TMCNCGSRC 032 13441 1632 76 2432 ∗88.05 5.7123 0.5914 83.97 5.3972 0.7934

TMCNCGSRC 064 19009 3264 76 4864 ∗88.44 24.5076 1.3641 84.72 15.6673 1.9113

TMCNCGSRC 128 26882 6528 76 9728 ∗88.06 106.6426 3.1013 84.75 45.0612 4.1709

TMCNCGSRC 256 38018 13056 76 19456 ∗88.12 484.3105 6.7650 85.38 131.3252 9.4778
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Table 5.6: Computational results for B10 (9 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

B10 0001 9 9 14 14 ∗87.04 0.0004 0.0006 ∗87.04 0.0005 0.0004

B10 0002 13 18 14 28 ∗80.34 0.0018 0.0013 ∗80.34 0.0017 0.0010

B10 0004 19 36 14 56 ∗82.46 0.0097 0.0015 79.16 0.0049 0.0026

B10 0008 27 72 14 112 84.40 0.0194 0.0048 ∗89.84 0.0129 0.0054

B10 0016 38 144 14 224 87.95 0.0456 0.0073 ∗89.95 0.0372 0.0080

B10 0032 54 288 14 448 87.04 0.1645 0.0188 ∗92.84 0.0100 0.0153

B10 0064 77 576 14 896 88.78 0.7894 0.0311 ∗93.01 0.2929 0.0338

B10 0128 109 1152 14 1792 89.74 2.9940 0.0710 ∗94.35 0.7383 0.0682

B10 0256 155 2304 14 3584 90.79 12.6032 0.1326 ∗93.53 2.2887 0.1580

B10 0512 219 4608 14 7168 90.44 55.2214 0.3142 ∗93.52 6.9335 0.3511

B10 1024 310 9216 14 14336 91.32 244.6453 0.7025 ∗93.81 19.1195 0.8663

B10 2048 438 18432 14 28672 91.57 834.0140 1.6130 ∗96.39 57.6938 1.8165

Table 5.7: Computational results for B30 (29 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

B30 001 29 29 59 59 79.05 0.0001 0.0077 ∗83.32 0.0108 0.0069

B30 002 42 58 59 118 81.87 0.0091 0.0142 ∗85.41 0.0266 0.0157

B30 004 59 116 59 236 84.18 0.0406 0.0343 ∗86.59 0.0949 0.0388

B30 008 84 232 59 472 84.30 0.2105 0.0708 ∗88.69 0.2971 0.0867

B30 016 119 464 59 944 84.65 0.9015 0.1507 ∗89.70 0.8364 0.2009

B30 032 169 928 59 1888 85.06 3.8053 0.3360 ∗89.57 2.3240 0.4642

B30 064 239 1856 59 3776 85.19 16.4675 0.7607 ∗90.34 6.9546 1.0543

B30 128 338 3712 59 7552 86.15 71.1954 1.7002 ∗90.28 20.3806 2.3403

B30 256 478 7424 59 15104 86.27 323.4450 3.8178 ∗90.17 56.1533 5.2021

B30 512 676 14848 59 30208 87.03 1470.6230 8.6587 ∗90.64 161.9050 11.5104
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Table 5.8: Computational results for T19 (19 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

T19 0001 18 19 42 42 ∗67.62 0.0003 0.0042 65.37 0.0049 0.0049

T19 0002 26 38 42 84 ∗73.39 0.0018 0.0081 69.63 0.0159 0.0078

T19 0004 37 76 42 168 72.00 0.0168 0.0162 ∗74.83 0.0466 0.0161

T19 0008 53 152 42 336 72.99 0.0923 0.0284 ∗75.05 0.1389 0.0330

T19 0016 75 304 42 672 74.56 0.4012 0.0623 ∗76.84 0.3776 0.0756

T19 0032 106 608 42 1344 75.05 1.6874 0.1464 ∗78.94 1.1887 0.1880

T19 0064 150 1216 42 2688 75.69 7.2680 0.3188 ∗79.27 3.2077 0.3873

T19 0128 212 2432 42 5376 75.05 30.8377 0.7202 ∗78.94 9.7410 0.9248

T19 0256 300 4864 42 10752 75.69 138.2885 1.5685 ∗79.48 27.4225 1.9829

T19 0512 425 9728 42 21504 74.87 610.6031 3.4406 ∗80.39 79.1770 4.0719

T19 1024 601 19456 42 43008 74.81 2817.6456 8.4418 ∗79.87 239.7320 9.0745

Table 5.9: Computational results for T40 (32 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

T40 001 301 32 42 42 ∗88.72 0.0004 0.0041 81.53 0.0080 0.0052

T40 002 426 64 42 84 ∗90.70 0.0018 0.0069 87.00 0.0237 0.0095

T40 004 602 128 42 168 ∗92.82 0.0214 0.1237 91.41 0.0667 0.0171

T40 008 852 256 42 336 92.67 0.0841 0.0324 ∗93.69 0.1817 0.0338

T40 016 1205 512 42 672 ∗94.19 0.3924 0.0687 92.74 0.5261 0.0802

T40 032 1704 1024 42 1344 ∗95.26 1.6252 0.1529 93.18 1.5402 0.2013

T40 064 2410 2048 42 2688 ∗96.07 6.8731 0.3383 92.74 4.2180 0.4619

T40 128 3409 4096 42 5376 ∗96.58 29.0134 0.7906 93.15 11.9671 1.0504

T40 256 4821 8192 42 10752 ∗97.01 128.0145 1.7350 93.44 33.2296 2.3315

T40 512 6818 16384 42 21504 ∗96.86 576.5932 3.9335 93.53 99.5149 5.1017
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Table 5.10: Computational results for T64 (15 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

T64 0001 7 15 33 33 79.22 0.0001 0.0017 ∗87.14 0.0028 0.0028

T64 0002 11 30 33 66 ∗85.31 0.0006 0.0055 ∗85.31 0.0088 0.0053

T64 0004 15 60 33 132 85.61 0.0143 0.0092 ∗90.37 0.0280 0.0109

T64 0008 22 120 33 264 85.31 0.0678 0.0180 ∗92.42 0.0866 0.0184

T64 0016 31 240 33 528 87.46 0.2453 0.0380 ∗92.60 0.2469 0.0400

T64 0032 44 480 33 1056 90.54 1.0780 0.0839 ∗94.39 0.7050 0.1128

T64 0064 62 960 33 2112 91.26 4.5690 0.1867 ∗93.98 2.0836 0.2161

T64 0128 88 1920 33 4224 92.42 19.3126 0.4416 ∗95.41 6.0466 0.4700

T64 0256 124 3840 33 8448 93.29 86.1563 0.9837 ∗96.87 17.6114 1.0678

T64 0512 176 7680 33 16896 93.40 382.6577 2.1363 ∗96.44 51.6020 2.3696

T64 1024 249 15360 33 33792 93.26 1692.5672 4.7761 ∗97.23 153.8780 5.0661

Table 5.11: Computational results for T144 (20 distinct shapes)

Bottom-Left Best-Fit

Instance W n m M Occup. FBLR FindBL Occup. FBLR FindBL

T144 001 11 20 31 31 85.31 0.0000 0.0028 ∗92.42 0.0029 0.0025

T144 002 15 40 31 62 85.61 0.0010 0.0048 ∗90.37 0.0091 0.0037

T144 004 22 80 31 124 88.73 0.0091 0.0071 ∗92.42 0.0278 0.0083

T144 008 31 160 31 248 92.60 0.0490 0.0202 ∗95.41 0.0873 0.0198

T144 016 44 320 31 496 92.42 0.2110 0.0300 ∗94.39 0.2399 0.0375

T144 032 62 640 31 992 95.41 0.9061 0.0814 ∗96.87 0.7115 0.1008

T144 064 88 1280 31 1984 96.44 3.8920 0.1909 ∗97.50 2.1135 0.2169

T144 128 124 2560 31 3968 96.87 16.8501 0.3864 ∗97.50 5.9863 0.4793

T144 256 176 5120 31 7936 98.01 73.0135 0.8748 ∗98.59 17.3983 1.0518

T144 512 249 10240 31 15872 98.38 328.4476 2.0470 ∗98.76 49.4838 2.3441
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Figure 5.8 shows two example layouts obtained by the bottom-left and the best-fit

algorithms. These are the layouts obtained for the instance named T144 004. The height

obtained by the bottom-left algorithm is 25 and that obtained by the best-fit algorithm is

24. The occupation rates of these layouts are 88.73% and 92.42%, respectively, as reported

in Table 5.11.
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Figure 5.8: Layouts obtained for T144 004 by the two algorithms (left: bottom-left algo-

rithm, right: best-fit algorithm)

For analyzing how performance changes for the cases when m is small relative to M and

m is large relative to M , we tested our best-fit algorithm with the efficient implementations

in Chapter 5 on instances named “HHIY” that were generated randomly. Theses instances

are also publicly available and can be downloaded from http://www.co.cm.is.nagoya-

u.ac.jp/~yagiura/rectilinear/.

Each rectilinear block was generated by combing up to six rectangles, and we generated

four instances with 10, 100, 1000 and 10,000 distinct shapes. We then generated other

instances by copying the shapes in these instances, e.g., the instance with 1000 blocks

(i.e., n = 1000) with 100 distinct shapes was generated by making 10 copies of each shape

in the instance with 100 distinct shapes. Table 5.12 shows the information of m and M

for each instance of HHIY. The computational results of these instances are shown in

Table 5.13. Each cell in these tables contains the result obtained for the instance that has

n rectilinear blocks and t distinct shapes for the values of n and t in the corresponding

row and column (e.g., the data in the cell in the row of “n = 1000” and column of “100

Shapes” is the result of the instance generated by making 10 copies of each shape in the

instance with 100 distinct shapes). The column of “Occup.” shows the occupation rate
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in %. All running times are shown in seconds.

We can observe from the tables that, for every value of n, the running time increases

almost linearly with the number of distinct shapes of these instances. Even for the instance

with 10,000 distinct shapes, our algorithm runs in about 5798 seconds. According to the

results, when the values of M are similar, the computation time is almost proportional to

m.

Table 5.12: Information of HHIY

10 Shapes 100 Shapes 1000 Shapes 10000 Shapes

n m M m M m M m M

10 34 34 − − − − − −
100 34 340 345 345 − − − −

1000 34 3400 345 3450 3546 3546 − −
10000 34 34000 345 34500 3546 35460 35014 35014

Table 5.13: Computational results for HHIY

10 Shapes 100 Shapes 1000 Shapes 10000 Shapes

n Occup. Time Occup. Time Occup. Time Occup. Time

10 69.23 0.0031 − − − − − −
100 82.65 0.0330 81.29 0.4125 − − − −

1000 84.11 0.3998 86.90 4.6103 94.20 53.8471 − −
10000 85.14 4.6979 88.08 52.4316 95.42 562.6420 95.21 5798.3214

5.7 Conclusion

In this chapter, we proposed more efficient implementations of the bottom-left and the

best-fit algorithms for the rectilinear block packing problem than those in Chapter 4, with

which the bottom-left algorithm requires O(M2 logM) time and the best-fit algorithm

requires O(nmM logM) time.

We designed sophisticated data structures that dynamically keep the information so

that the BL position of each item can be found in sub-linear amortized time. We then

analyzed the time complexities of the two construction algorithms and showed that both

algorithms run in O(mM logM) time.

We performed a series of experiments on a set of instances that are generated from

nine benchmark instances to analyze the performance of our algorithms from both sides of

occupation rate and running time. The computational results show that the proposed algo-
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rithms are especially efficient for large instances with repeated shapes. Even for instances

with more than 10,000 rectilinear blocks with up to 60 distinct shapes, the proposed algo-

rithms run in less than 12 seconds. The occupation rate of the packing layouts obtained

by our algorithms often reached higher than 95% for large-scale instances.

We compared the running time of our algorithms with the implementation explained

in Chapter 4 and those with implementation proposed in this chapter. The computational

results show that our efficient implementations significantly reduced the computation time

of the bottom-left and the best-fit algorithms.

We also created large-scale instances with up to 10,000 distinct shapes to test our

efficient algorithms and show that the running time increases almost linearly with the

number of distinct shapes. For instances with 10,000 distinct shapes, our algorithms run

in less than 6000 seconds.

In the next chapter, we further analyze the quality of packing layouts obtained by the

bottom-left and the best-fit algorithm and propose a new construction heuristic.



Chapter 6

Partition-based Heuristic

Algorithm for the Rectilinear

Block Packing

In this chapter, we first analyze the strength and weakness of the bottom-left and the best-

fit algorithms from the viewpoint of the quality of the packing results in Section 6.1. We

summarize the reasons why the best-fit algorithm outperforms the bottom-left algorithm

for many instances and situations when the bottom-left algorithm performs better for

some kinds of instances.

Based on these observations, in Section 6.2, we propose a new construction heuristic

algorithm called the partition-based best-fit heuristic (abbreviated as PBF) as a bridge

between the bottom-left and the best-fit algorithms. The basic idea of the PBF algorithm

is that all the items to be packed are partitioned into groups, and then items are packed

into the container in a group-by-group manner. The best-fit algorithm is taken as the

internal tactics to pack items of each group.

We then in Section 6.3 show that the PBF algorithm runs in the same time complexity

using similar implementations explained in Chapter 5 of the bottom-left and the best-fit

algorithms (these two algorithms have the same time complexity). We also give some

effective rules to partition items into groups in Section 6.4. We finally perform a series

of experiments on instances that were generated from nine benchmark instances. The

computational results are addressed in Section 6.5.
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6.1 Analysis of the performance of the bottom-left and the

best-fit algorithms

In this section, we analyze the performance of the bottom-left and the best-fit algorithms

according to the experimental results addressed in Chapter 5.

We observed that the best-fit algorithm performed better with respect to the occupa-

tion rate for many of the instances we tested. However, there are also a non-negligible

number of instances for which the opposite holds. Observing and analyzing the packing

layouts obtained by these two algorithms, we summarize the reason why the best-fit al-

gorithm performs better for many of the instances we tested and the situations when the

bottom-left algorithm performs better.

The reason why the best-fit algorithm performs better for many instances is that

whenever the best-fit algorithm packs an item into the container, it tries all the remaining

items relative to the current layout, and chooses the one that can be placed at the lowest

position. As a result, an item that fits well with the surrounding layout tends to be chosen,

which means that redundant space around the new item is usually small. On the contrary,

the bottom-left algorithm may not choose a proper item that fits well with the current

layout, because the next item to place is always fixed a priori (by the given order of items).

Figure 6.1 shows an example when the best-fit algorithm performs better. The left layout

of Figure 6.1 is obtained by the bottom-left algorithm, and the right one is obtained by

the best-fit algorithm. The height obtained by the bottom-left algorithm is 40 and that

obtained by the best-fit algorithm is 37.

Figure 6.1: An example when the best-fit algorithm performs better (left: the bottom-left

algorithm, right: the best-fit algorithm)
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However, for some cases, e.g., when there are items whose areas are small but the

bounding areas are large, and there are also items whose bounding areas are small, the

bottom-left algorithm often performs better. Note that if the area of an item is small but

its bounding area is large, it has large blank space inside (i.e., if it is put into its bounding

box, large blank space remains in the bounding box in which small items can fit).

From practical experience it is known that the bottom-left algorithm tends to perform

well when the given order is the order of decreasing sizes of items, where various measures

for sizes can be considered such as the areas of items, their bounding areas, widths or

heights. Let us consider the case where the algorithm packs items in the decreasing order

of bounding area.

At the beginning of the packing process, the bottom-left algorithm packs relatively

bigger items (with greater bounding area) into the container, and some of them have

large blank space inside. At this moment, large spaces are often made between such large

items. Later, when relatively smaller ones come, they tend to be packed into the blank

space between the packed ones. This means that the placement of small ones does not

have much influence on the final value of height H of the container, and H is mainly

decided by the layout of bigger ones.

Conversely, because the BL positions of relatively smaller items are often lower than

those of bigger ones, the best-fit algorithm tends to pack smaller ones first, and leave

relatively bigger ones behind. In the end of the processing of the best-fit algorithm, the

remaining bigger items have no choice but to place on the top of smaller ones, and the blank

space between these bigger items have significantly negative effect on the final occupation

rate. Figure 6.2 shows an example of this case. The left layout of Figure 6.2 is obtained

by the bottom-left algorithm, and the right one is obtained by the best-fit algorithm. The

height of the left one is 3960 and that of the right one is 4283.

For the same instance used in Figure 6.2, Figure 6.3 shows the layouts when the first

half of the items are packed into the container. The left layout is obtained by the bottom-

left algorithm, and the right one is obtained by the best-fit algorithm. The height of the

left one is 3960 and that of the right one is 1880. At this moment, the height of the

container obtained by the bottom-left algorithm is already the same as that of its final

layout. This suggests that the remaining half of items have no effect on the final height

of the container. On the contrary, many small items have already been packed by the

best-fit algorithm, and by comparing the layouts on the right of Figures 6.2 and 6.3, we

can observe that most of the remaining items are large.
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Figure 6.2: An example when the bottom-left algorithm performs better (left: the bottom-

left algorithm, right: the best-fit algorithm)

6.2 Partition-based best-fit algorithm

In this section, we propose a new construction heuristic algorithm, the partition-based

best-fit (PBF) algorithm, for the rectilinear block packing problem.

Considering the observation in Section 6.1, the idea of simply choosing either the best-

fit algorithm or the bottom-left algorithm according to the property of instances comes

naturally. Another simple idea would be just to run both algorithms and then choose the

better layout. However, note the fact that the best-fit algorithm performs excellent in

many cases when the sizes of items are similar. Hence, we propose a new construction

heuristic algorithm, which uses the best-fit algorithm as its core part, but alleviates the

drawback of the best-fit algorithm. The main idea is to divide the given rectilinear blocks

into groups and then pack the items into the container in a group-by-group manner. We

utilize the best-fit algorithm to pack the items in each group.

Intuitively, we would like to divide the items into groups so that the sizes of items in

the same group are similar. There will be many rules to achieve this, regarding how to

measure the sizes, how to divide items into groups and so forth. The rules we consider for

measuring sizes and for dividing items into groups will be explained in Section 6.4.

Because there are many possible rules to divide the items into groups and to give

priority among the items, we explain the framework of the PBF algorithm assuming that

we are given a partition and priority among items. Then the PBF algorithm is generally

explained as follows: We are given a set of n rectilinear items R = {R1, R2, . . . , Rn}, which

is divided into K groups B = {B1, B2, . . . , BK}, and the priority among the items. The
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Figure 6.3: Layouts when the algorithms pack half of the items (left: the bottom-left

algorithm, right: the best-fit algorithm)

PBF algorithm packs all of the groups one by one according to the given order, where

each group is packed by the best-fit algorithm relative to the current layout (i.e., the

layout at the time just before it is placed). The PBF algorithm is formally described as

Algorithm 16.

Algorithm 16 PBF algorithm

Input: K groups of rectilinear blocks B1, B2, . . . , BK and a container.

Output: A packing layout.

1: Set k := 1.

2: For the current layout, call the best-fit algorithm to pack all the items in group Bk

into the container.

3: If k = K, output the current layout and stop; otherwise, set k := k + 1, and then

return to Step 2.

Note that, if K = 1, the PBF algorithm performs the same as the best-fit algorithm. If

K = n, the processing of PBF algorithm is the same as the bottom-left algorithm. In this

sense, the PBF algorithm generalizes the bottom-left and the best-fit algorithms, bridging

the gap between them.

6.3 Time complexity

In this section, we analyze the time complexity of the PBF algorithm. As explained in

Section 5.5, mi is the number of rectangles that represent a rectilinear block Ri and mT
j



90 PBF Algorithm for Rectilinear Block Packing

is the number of rectangles that represent shape Tj . Recall also that M =
∑n

i=1mi and

m =
∑t

j=1m
T
j .

We can implement the PBF algorithm so that is runs in the same time complexity as

the best-fit algorithm, which equals O(mM logM) time, by slightly modifying the efficient

implementations proposed in Chapter.

Below we briefly explain the basic idea of the efficient implementation of the best-fit

algorithm. We utilized the technique of no-fit polygon (NFP) to check overlaps among

items and to compute the BL positions of items. The NFP of an item Rj relative to Ri

has the following property: the reference point of Rj is contained in the NFP if and only

if Rj overlaps with Ri. When the algorithm computes the BL position of an item Rj , it

uses the NFPs of Rj relative to the items in the container, and such NFPs are placed at

the positions where the corresponding items are placed. We call such a layout of NFPs an

NFP layout for Rj . One of the advantages of such a layout is that the problem of finding

the BL position of Rj reduces to the problem of finding the leftmost position among the

lowest positions that are not contained in any of the NFPs in the NFP layout. Note that

if the shape of two items Rj and Rj′ are the same, their NFP layouts are the same. Hence,

we only need to keep t = |T | NFP layouts, each for a distinct shape in T , to compute BL

positions for the remaining items.

A common feature of construction heuristics is that once an item is packed into the

container, its position is fixed and will not change. This indicates that it is not necessary

to compute NFP layouts from scratch in each iteration of the construction heuristics. The

basic idea is to dynamically keep the NFP layout with respect to the current packing

layout for each shape in T during the packing process. Whenever an item is to be placed

into the container, the algorithm computes the BL position of every shape Tj by using

the NFP layout for Tj . It then chooses an item Ri to place in this iteration (i.e., the item

whose BL position is the leftmost among the lowest) and place it at its BL position. The

algorithm then updates the NFP layout of every shape Tj in T , adding to the NFP layout

the NFP of Tj relative to Ri.

We analyzed in Section 5.5 the time complexity of the best-fit algorithm and summa-

rized the result in Theorem 5.5.1 that throughout the entire computation of the best-fit al-

gorithm, the total running time for computing BL positions of shape Tj is O(mT
j M logM),

including the time to update the NFP layout of Tj . The total computation time of this

part for all shapes is therefore
∑t

j=1O(mT
j M logM) = O(mM logM). This dominates the

running time of the other parts of the algorithm. As a consequence, the best-fit algorithm

runs in O(mM logM) time.

The point is that, with this implementation, the BL positions of all the remaining

items are available in every iteration. We can therefore implement the PBF algorithm
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similarly, just by considering in each iteration, the items belonging to the current group to

be packed in this iteration, instead of considering all the remaining items in choosing the

next item to place. Such a modification does not increase the execution time from that of

the best-fit algorithm. Hence, with an implementation similar to the best-fit algorithm,

the PBF algorithm runs in O(mM logM) time.

Theorem 6.3.1. Assuming that M is the number of rectangles that represent all rectilinear

blocks and m is the number of rectangles that represent all distinct shapes of rectilinear

blocks, the PBF algorithm runs in O(mM logM) time.

6.4 Partition rules

In this section, we explain some rules that are utilized to partition the given items into

groups. Our rules are based only on the shapes and sizes of items, and for this reason, any

two rectilinear blocks with the same shape and size are always in the same group. Hence

the partition of items can be defined by a partition of shapes in T .

We consider a framework in which the PBF algorithm (Algorithm 1) is repeatedly

called with a series of partitions. Algorithm 1 is first applied to the partition consisting of

only one block. Then in each iteration, Algorithm 1 is applied to a partition generated by

dividing a group in the partition for the previous iteration into two (i.e., in each iteration,

the number of groups in a partition increases by one).

We explain the rules of how to partition a group into two in Section 6.4.1, and the

rules to choose a group to be divided in Section 6.4.2. We test the PBF algorithm on a

series of instances based on these rules and the computational results will be addressed in

Section 6.5.

6.4.1 Rules to partition a group

Recalling the analysis of the performance of the bottom-left and the best-fit algorithm

discussed in Section 6.1, the essential purpose of our rules is to pack at the early stage,

the items that are “difficult” for the algorithm to pack or that have “negative” impact on

the final occupation rate. We propose two types of rules, the static rules and the adaptive

rules, to measure such “difficulty” or “negative impact” of the items.

Static rules

The static rules divide a given group in two parts according to the information of properties

of the items themselves. We consider various rules to partition one group. Considering the

analysis that is explained in Section 6.1, we propose size-based rules in which the sizes are
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measured by the values of the areas, bounding areas, widths or heights of the items. First

we sort the items in the given group in decreasing order of size with respect to a criterion

(e.g., area) and then divide the group into two at the place between two adjacent items in

the sorted list where the gap with respect to the size criterion is the largest. For example,

assume that there is a group with five shapes of rectilinear blocks G = {T1, T2, T3, T4, T5}
whose areas are “12, 2, 10, 5, 11,” respectively. If we use the size-based rule with area

for the criterion, we sort the shapes in G in the decreasing order of areas and obtain the

sequence “T1, T5, T3, T4, T2” and the corresponding sequence of areas “12, 11, 10, 5, 2.” The

gap between the first and second items is 12 − 11 = 1, that of the second and third is

11 − 10 = 1, and so forth. We divide the group G between the third and fourth items

where the biggest gap of 5 is achieved, obtaining two new groups G1 = {T1, T3, T5} and

G2 = {T2, T4}.
We also consider another static rule named inclusion-based rule. For two shapes Ti

and Tj ∈ T̃ where T̃ is the current group to partition, Ti � Tj signifies that Ti and Tj can

be packed into the bounding box of Tj without overlap. We divide the items in the given

group into two parts Large and Small so that for every item Ti in Small, there exists

at least one item Tj in the given group that satisfies Ti � Tj . This rule can be formally

described as follows:

Small = {Ti ∈ T̃ | ∃Tj ∈ T̃ , Ti � Tj},

Large = T̃ \ Small.

Adaptive rules

The adaptive rules utilize the information of the BL positions of the rectilinear blocks in

the given group relative to a packing layout obtained in the current iteration (i.e., the

latest call to Algorithm 1), in order to generate a partition for the next iteration. In

computing the BL positions that are utilized for this purpose, we consider two strategies

and call the resulting rules BL-midway and BL-final.

In the rule of BL-midway, for each group Bk, we recompute the BL position and store

it for every shape Ti in Bk relative to the packing layout at the time immediately after all

the rectilinear blocks in group Bk have been packed into the container. (Note that at the

time such BL positions are recomputed, all items with shape Ti for every shape Ti in Bk

have already been packed, and such recomputed BL positions will not be used to actually

place rectilinear blocks, but just to generate a partition for the next iteration. Note also

that we do not have to actually recompute BL positions, because they are automatically

obtained whenever an item is placed and the NFP layouts are updated, and hence the

recomputation of BL positions will not increase the time complexity.)
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In the rule of BL-final, we recompute the BL position and store it for every shape Ti

relative to the packing layout after packing all the rectilinear blocks into the container

(i.e., we store the BL position of every shape relative to the final packing layout). Then,

we sort the shapes in the group to divide in the decreasing order of the y-coordinates of

their recomputed BL positions. We then divide the group into two at the place between

two adjacent items in the sorted order where the difference of y-coordinates is largest.

6.4.2 Rules to choose a group to divide

In this section, we give some rules to choose a group to divide next.

Considering the groups that are obtained by the inclusion-based rule, only the group

of Small could be divided. Indeed, with this rule, the Large group cannot be divided

any more for the following reason. For every pair of shapes Ti and Tj in Large, Ti � Tj

cannot hold because otherwise, Ti � Tj and Tj ∈ Large ⊆ T̃ would imply that Ti must

have been in Small, which is a contradiction. Hence, we always choose Small for the

group to divide next. This partition process terminates when there is less than two shapes

in Small.

For the other rules we explained in Section 6.4.1, we propose four rules to choose the

group to divide next time. When these rules are used, partition process terminates when

the chosen group contains a unique shape.

We first give three simple rules labeled FirstGrp, LastGrp and LargeGrp as follows.

Below we assume that groups are sorted according to the order of items with respect to the

adopted criterion. For example, assuming that the decreasing order of area is considered,

when a group is divided into two, the group containing items with larger area is listed

first, and the two new groups are placed at the place of the original group (before the

division is applied) in the list of groups.

• In the FirstGrp rule, we always choose the first group that contains more than one

shape.

• In the LastGrp rule, we always choose the last group that contains more than one

shape.

• In the LargeGrp rule, we choose the group with the largest size (i.e., the group that

contains the largest number of shapes). If there is more than one group with the

largest size, we break the tie by choosing the first one among them.

Considering the analysis of the performance of the bottom-left and the best-fit algo-

rithm, one of our intentions of partitioning the rectilinear blocks into groups is to make

the best-fit algorithm perform well in packing each group into the container. To achieve
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this, it is preferable that the sizes of items in the same group are similar. Hence, when-

ever we choose a group to divide, it is natural to choose a group that contains shapes

with large differences in their sizes. Recall that in the rules of Section 6.4.1 to partition

one group into two (except for the inclusion-based rule), the group is always divided at a

place between two adjacent items in the sorted order where the gap with respect to the

considered criterion is the largest. The value of this gap will have correlation with the

differences among the sizes of items in one group. As a consequence, we consider another

rule named BigGapGrp to choose the group to divide as follows.

• In the BigGapGrp rule, we choose the group with the biggest gap, where the gap

is the one used by an adopted partition rule. If there exist ties, the group with the

largest size is chosen.

As explained at the beginning of this section, any two rectilinear blocks with the same

shape are in the same group. This indicates that the PBF algorithm terminates after at

most t−1 iterations, if we partition one group into two in each iteration. Note that, when

we begin with one group, the processing of the PBF algorithm is the same as the best-fit

algorithm, and after t − 1 iterations, when items are divided into t groups of distinct

shapes, it becomes the same as the bottom-left algorithm.

6.5 Computational results

The PBF algorithm proposed in this paper was also implemented in the C programming

language and run on a Mac PC with a 2.3 GHz Intel Core i5 processor and 4 GB memory.

The performance of the PBF algorithm has been tested on a series of instances, which

are used to test the efficient implementations proposed in Chapter 5. The information

of the benchmark instances and those in C-class are addressed in Table 5.1 and 5.2 in

Section 5.6. The instances in C-class were generated from the benchmark instances by

copying every shape.

For analyzing the performance of the algorithms for the case when the sizes of recti-

linear blocks are quite different, we also test the bottom-left, the best-fit and the PBF

algorithms on the another set of instances named E-class that are generated by adding

enlarged shapes of the instances in C-class. For convenience, we again address the in-

formation of instances in C-class in Table 6.1. Each rectilinear block in an instance of

E-class is generated by enlarging the size of one item in the corresponding instance in

Table 6.1 by one, two, four or eight times. The information of the instances in E-class

is addressed in Table 6.2. The width W of the container is set to W =
⌈√∑n

i=1A(Ri)
⌉

according to the total sum of areas of items. The column of “#inst” reports the number of



6.5 Computational results 95

instances in each class. All of these instances are available at http://www.co.cm.is.nagoya-

u.ac.jp/~yagiura/rectilinear/.

Table 6.1: Information of C-class instances

Name #inst t n m M W

C-ami49L21 10 28 28–14336 49 49–25088 5936–134337

C-ami49LT21 10 27 27–13924 49 49–25088 5953–134714

C-TMCNCGSRC 9 51 51–13056 76 76–19456 2376–38018

C-B10 12 9 9–18432 14 14–28672 9–438

C-B30 10 29 29–14848 59 59–30208 29–676

C-T19 11 19 19–19456 42 42–43008 18–601

C-T40 10 32 32–16384 42 42–21504 301–6818

C-T64 11 15 15–15360 33 33–33792 7–249

C-T144 10 20 20–10204 31 31–15872 11–249

Table 6.2: Information of E-class instances that are generated by adding enlarged copies

of shapes of different sizes

Name #inst t n m M W

E-ami49L21 8 112 112–14366 196 196–25088 54735–619265

E-ami49LT21 8 108 108–13824 196 196–25088 54889–621004

E-TMCNCGSRC 7 204 204–13056 305 305–19456 21906–175255

E-B10 10 36 36–18432 56 56–28672 89–2022

E-B30 8 116 116–14848 236 236–30208 275–3118

E-T19 9 76 76–19456 168 168–43008 173–2771

E-T40 8 128 128–16384 168 168–21504 2778–31430

E-T64 9 60 60–15360 132 132–33792 72–1152

E-T144 8 80 80–10240 124 124–15872 101–1152
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As for the order of items for the bottom-left algorithm and the priority among items for

the best-fit algorithm, we tested the decreasing order of height, width, area, and bounding

area. The computational results of the decreasing order of area is slightly better than the

results obtained by other orders. Hence, we report those results of the decreasing order

of area. We define the BestOccup as the best occupation rate of an instance found when

the processing terminates. The processing of the PBF algorithm begins with one group

and is repeated until no further partition is possible for the chosen group. AvgOccup is

the average value of BestOccup over all instances in each class.

The occupation ratios obtained by the bottom-left, best-fit and the PBF algorithms

are shown in Table 6.3 and 6.4. The average for all instances in each set of instances

is reported. The columns of BL and BF show the avgOccup in percent obtained by the

bottom-left and the best-fit algorithms. The column of Incl-based is the avgOccup in

percent obtained by the PBF algorithm in which we utilize the Inclusion-based rule and

the priority among items is set to the decreasing order of area. For each set of instances,

the best results among the seven algorithms are marked by ‘∗’.

Table 6.3: Comparison of computational results with a fixed rule to choose the group to

divide next

Instance BL BF Incl-based FirstGrp LastGrp LargeGrp BigGapGrp

C-ami49L21 88.10 87.32 88.51 ∗90.24 89.97 89.99 90.00

C-ami49LT21 87.83 87.10 88.79 90.26 89.82 90.03 ∗90.26

C-TMCNCGSRC 86.92 81.71 88.93 ∗90.18 90.05 90.17 90.00

C-B10 87.66 90.32 90.59 ∗92.06 ∗92.06 91.74 91.74

C-B30 84.52 88.14 88.31 ∗89.42 89.25 89.18 89.19

C-T19 73.79 76.24 76.61 ∗78.55 78.35 78.35 78.41

C-T40 94.09 91.24 94.33 ∗96.62 96.30 96.30 96.54

C-T64 86.99 92.92 92.92 ∗93.50 ∗93.50 ∗93.50 ∗93.50

C-T144 91.11 93.39 96.40 ∗96.90 96.60 96.60 96.45

E-ami49L21 94.71 89.51 94.86 95.65 ∗95.70 95.69 95.69

E-ami49LT21 94.72 87.66 94.63 95.46 95.62 ∗95.70 95.62

E-TMCNCGSRC 92.89 83.55 93.18 93.58 93.94 ∗94.08 93.88

E-B10 93.93 87.92 94.75 96.10 96.55 ∗96.71 96.69

E-B30 94.58 89.20 95.27 95.55 95.59 95.63 ∗95.90

E-T19 86.95 84.19 88.42 88.94 ∗89.69 89.58 89.57

E-T40 98.01 90.63 98.33 98.80 98.88 ∗98.94 98.90

E-T64 95.33 92.87 96.42 97.19 97.49 97.48 ∗97.54

E-T144 97.83 96.71 98.32 98.74 98.73 ∗98.95 98.73
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Table 6.4: Comparison of computational results with a fixed rule to divide a group

Static Adaptive

Instance BL BF Incl-based BndArea Area Width Height BL-midway BL-final

C-ami49L21 88.10 87.32 88.51 89.58 89.75 89.28 89.50 90.12 ∗90.23

C-ami49LT21 87.83 87.10 88.79 89.76 89.99 88.92 89.47 90.13 ∗90.30

C-TMCNCGSRC 86.92 81.71 88.93 89.93 90.08 87.67 88.26 ∗90.15 90.07

C-B10 87.66 90.32 90.59 90.36 91.28 90.25 91.15 ∗91.68 ∗91.68

C-B30 84.52 88.14 88.31 88.30 88.81 88.63 88.42 ∗89.16 88.98

C-T19 73.79 76.24 76.61 76.63 77.16 77.66 75.67 ∗77.87 77.49

C-T40 94.09 91.24 94.33 96.16 96.13 94.88 ∗96.30 95.29 95.21

C-T64 86.99 92.92 92.92 ∗93.43 92.92 93.24 92.87 92.92 92.92

C-T144 91.11 93.39 ∗96.40 96.30 96.14 95.21 95.30 95.72 95.01

E-ami49L21 94.71 89.51 94.86 95.34 95.51 95.06 95.32 ∗95.72 95.70

E-ami49LT21 94.72 87.66 94.63 95.29 95.39 95.00 95.30 ∗95.65 95.62

E-TMCNCGSRC 92.89 83.55 93.18 ∗94.09 93.83 92.26 92.95 93.84 93.60

E-B10 93.93 87.92 94.75 95.58 95.48 95.16 ∗96.61 95.98 95.93

E-B30 94.58 89.20 95.27 95.39 95.44 94.89 94.91 ∗95.61 95.57

E-T19 86.95 84.19 88.42 87.64 89.22 87.49 88.86 89.23 ∗89.36

E-T40 98.01 90.63 98.33 98.90 98.74 97.64 ∗98.92 98.71 98.70

E-T64 95.33 92.87 96.42 96.91 96.53 96.42 ∗97.41 97.31 96.98

E-T144 97.83 96.71 98.32 98.72 98.64 98.31 ∗98.82 98.30 97.87

In Table 6.3, we address the computational results obtained by the PBF algorithm

when we use the rules of FirstGrp, LastGrp, LargeGrp and BigGapGrp for choosing a

group to divide next. The columns of FirstGrp, LastGrp, LargeGrp and BigGapGrp are

the avgOccup in percent of each class obtained by the PBF algorithm when utilizing

the rules of FirstGrp, LastGrp, LargeGrp and BigGapGrp to choose a group to divide.

For each instance set (i.e., for each row), the table shows the average of the best result

obtained for each instance by multiple calls to the PBF algorithm with different rules in

Section 6.4.1 to divide one group (except for the Inclusion-based rule). For example, the

value of “90.24%” in the cell of row C-ami49L21 and column FirstGrp is the average of

the values of BestOccup for all the instances in class C-ami49L21, where the BestOccup

of every instance is the best occupation rate when we try all of the Size-based and the

adaptive rules to partition the first group.

We also summarize the results obtained when using the different rules to partition one

group in two. We report the computational results obtained when we use the rules of Size-

based and the adaptive rules to partition one group in Table 6.4. The columns of BndArea

(bounding area), Area, Width, Height in Static and BL-midway and BL-final in Adaptive



98 PBF Algorithm for Rectilinear Block Packing

are the avgOccup in percent of the BestOccup that are obtained by the PBF algorithm

when we fix these rules to partition one group and examine all the rules introduced in

Section 6.4.2 for choosing the group to divide next. For example, the value of “89.58%” in

the cell of row C-ami49L21 and column BndArea is the average of the values of BestOccup

for all the instances in class C-ami49L21, where the BestOccup of every instance is the

best occupation rate when we try all of rules to choose one group and divide it according

to the values of the corresponding criterion from bounding areas of the items. We use the

decreasing order of area as the priority among the items when adaptive rules are utilized.

If the Size-based rules are used to partition one group, the priority among the items is

decided by the decreasing order of the values of the bounding areas, areas, widths and

heights of the items.

The computational results show that the PBF algorithm improves the occupation

rate significantly compared with the bottom-left and the best-fit algorithms, and the

improvement is more remarkable for the case where the sizes among the rectilinear blocks

are much different (i.e., the instances in E-classes).

The results in Table 6.3 show that the PBF algorithm performs best for the instances

whose sizes are not much different (i.e., instances in C-classes) when the algorithm chooses

the group to divide with the FirstGrp rule. If there are large differences in the sizes of the

rectilinear blocks (i.e., instances in E-classes), the PBF algorithm performs better for most

of such instances when the algorithm chooses the group to divide with the LargeGrp rule.

Note that even for the cases where the PBF algorithm did not obtain the best results with

the above rules, the difference in the occupation rate is less than 0.77% between the results

obtained by the best and the worst rules among the four rules (i.e., FirstGrp, LastGrp,

LargeGrp and BigGapGrp). This suggests that the performance of the PBF algorithm is

robust against the rules of choosing one group to divide.

The big difference among the results in Table 6.4 indicates that the rules to partition

one group into two are very important for the PBF algorithm. The PBF algorithm per-

forms better for most of the instances when using the adaptive rule BL-midway or the

static rule Height. Even for the classes where the occupation rates obtained by these two

rules are not the best, the difference between the best of these two rules and the best

among all rules is less than 0.68%.

Figure 6.4 shows three example layouts obtained by the bottom-left, the best-fit and the

PBF algorithms. These are layouts obtained for the instance named E-TMCNCGSRC 001.

The occupation rate obtained by the bottom-left algorithm is 90.59%, that obtained by

the best-fit algorithm is 79.51%, and that obtained by the PBF algorithm is 92.45%. The

running time spent for these layouts are reported in Table 6.7.

We report the running time spent by the bottom-left, the best-fit and the PBF algo-
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Figure 6.4: Layouts obtained for E-TMCNCGSRC 001 by the three algorithms (left: the

best-fit algorithm, middle: the bottom-left algorithm, right: the PBF algorithm)

rithms in Table 6.5 to 6.7. All the running times are shown in seconds. Table 6.5 shows the

running time spent for the instance with the largest size in every class. We also report the

running times for instances with various sizes. For this purpose, we choose TMCNCGRSC

because its computation times in Table 6.5 are the longest for both of the categories of

the C- and E-classes. Table 6.6 and 6.7 address the running times for instances in classes

C-TMCNCGSRC and E-TMCNCGSRC, respectively. The columns of BL-Time and BF-

Time show the running times of the bottom-left and the best-fit algorithms. The running

time of the PBF algorithm when using the Inclusion-based rule to partition the Small

group are addressed in column Incl-time. For other pairs of rules to choose and partition

a group (e.g., the combination of LargeGrp and BL-final), the PBF algorithm is repeated

t− 1 times, and we consider the total computation time for the t− 1 iterations. The com-

bination of such rules do not have a large influence on the computation time except that

the PBF algorithm with the adaptive rule BL-midway and BL-final tend to spend slightly

more computation time. For this reason, we do not report the results obtained by all pairs

of rules but just report the running time of the PBF algorithm with the combination of

LargeGrp and BL-final rules in column Largest-Final.

We address in Table 6.8 to 6.11 the details of the computational results for each class

of instances by the PBF algorithm when it uses one of the rules from FirstGrp, LastGrp,

LargeGrp and BigGapGrp to choose a group to divide. The BestOccup of every instance

is the best occupation rate obtained by the PBF algorithm with a specified pair of rules for

choosing and partitioning groups. As explained in Section 6.5, the avgOccup is defined as

the average value of BestOccup over all instances in one class. The columns of BndArea,

Area, Width and Height are the avgOccup in percent obtained by the PBF algorithm with

the Size-based rules based on the values of the bounding areas, areas, widths and heights
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Table 6.5: Computation time for the largest instances in each class

Instance t n m M BL-Time BF-Time Incl-Time Largest-Final

C-ami49L21 512 28 14336 49 25088 5.12 6.52 18.26 147.64

C-ami49LT21 512 27 13924 49 25088 5.51 7.00 22.17 166.96

C-TMCNCGSRC 256 51 13056 76 19456 6.23 8.91 45.64 380.30

C-B10 2048 9 18432 14 28672 1.52 1.82 3.64 12.56

C-B30 512 29 14848 59 30208 8.25 9.13 31.45 247.60

C-T19 1024 19 19456 42 43008 7.91 8.42 41.46 147.35

C-T40 512 32 16384 42 21504 3.45 5.62 20.62 144.43

C-T64 1024 15 15360 33 33792 4.62 4.95 24.67 68.20

C-T144 512 20 10204 31 15872 2.05 2.62 18.43 45.80

E-ami49L21 128 112 14366 196 25088 21.08 29.02 230.56 2997.43

E-ami49LT21 128 108 13824 196 25088 19.67 24.61 158.74 2442.70

E-TMCNCGSRC 064 204 13056 305 19456 26.11 35.73 346.61 6609.45

E-B10 512 36 18432 56 28672 5.64 7.65 54.62 249.38

E-B30 128 116 14848 236 30208 28.47 38.62 367.72 3450.55

E-T19 256 76 19456 168 43008 27.97 36.52 400.45 2347.43

E-T40 128 128 16384 168 21504 15.38 21.90 130.73 2413.09

E-T64 256 60 15360 132 33792 15.44 21.07 257.26 1103.24

E-T144 128 80 10240 124 15872 7.00 9.09 110.62 628.38

Table 6.6: Computation time for instances in class C-TMCNCGSRC

Instance W t n m M BL-Time BF-Time Incl-Time Largest-Final

C-TMCNCGSRC 001 2376 51 51 76 76 0.01 0.01 0.07 0.56

C-TMCNCGSRC 002 3360 51 102 76 152 0.02 0.03 0.15 1.35

C-TMCNCGSRC 004 4752 51 204 76 304 0.06 0.06 0.38 3.09

C-TMCNCGSRC 008 6720 51 408 76 608 0.11 0.14 0.82 6.35

C-TMCNCGSRC 016 9504 51 816 76 1216 0.26 0.36 2.00 16.24

C-TMCNCGSRC 032 13441 51 1632 76 2432 0.60 0.88 4.78 40.51

C-TMCNCGSRC 064 19009 51 3264 76 4864 1.34 1.86 9.72 90.77

C-TMCNCGSRC 128 26882 51 6528 76 9728 2.91 3.90 19.46 178.45

C-TMCNCGSRC 256 38018 51 13056 76 19456 6.23 8.91 45.64 380.30
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Table 6.7: Computation time for instances in class E-TMCNCGSRC

Instance W t n m M BL-Time BF-Time Incl-Time Largest-Final

E-TMCNCGSRC 001 21906 204 204 304 304 0.20 0.26 1.64 48.72

E-TMCNCGSRC 002 30981 204 408 304 608 0.46 0.68 3.74 113.68

E-TMCNCGSRC 004 43813 204 816 304 1216 1.03 1.59 8.56 253.87

E-TMCNCGSRC 008 61962 204 1632 304 2432 2.25 3.56 20.62 610.46

E-TMCNCGSRC 016 87627 204 3264 304 4864 5.51 8.67 43.73 1523.50

E-TMCNCGSRC 032 123924 204 6528 304 9728 12.31 18.80 90.63 3248.41

E-TMCNCGSRC 064 175255 204 13056 304 19456 26.11 35.73 346.61 6609.45

of items. The columns of BL-midway and BL-final are the avgOccup in percent obtained

with the adaptive rules BL-midway and BL-final. We choose the decreasing order of area

as the priority among the items when the adaptive rules are utilized. When the Size-based

rules are used, the priority among the items is set to the same criterion as the one used

to partition a group.

6.6 Conclusion

In this chapter, we proposed a new constructive heuristic algorithm, the partition-based

best-fit (PBF) algorithm, for the rectilinear block packing problem. The PBF algorithm

can be regarded as a bridge between the bottom-left and the best-fit algorithms and takes

advantages of both of these two algorithms. We analyzed the time complexity of the

proposed PBF algorithm and showed that it runs in O(mM logM) time with the efficient

implementation explained in Chapter 5.

We also proposed some effective rules utilized in the PBF algorithm and performed a

series of experiments on 168 instances that were generated from nine benchmark instances.

The occupation rate of the packing layouts obtained by the proposed PBF algorithm was

more than 93% on average for these instances. The computational results show that the

improvement on the performance of the occupation rate obtained by the PBF algorithm

is remarkable compared with the bottom-left and the best-fit algorithms, and the PBF

algorithm is especially effective for instances with many different sizes of shapes.
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Table 6.8: Computational results using the rule FirstGrp to choose a group

Size-based Adaptive

Instance BL BF BndArea Area Width Height BL-midway BL-final

C-ami49L21 88.10 87.32 89.54 89.09 89.04 89.28 ∗89.61 89.56

C-ami49LT21 87.83 87.10 ∗89.67 88.99 88.68 89.38 89.48 89.52

C-TMCNCGSRC 86.92 81.71 89.08 89.59 87.56 87.61 89.49 ∗89.70

C-B10 87.66 90.32 90.36 91.28 89.95 90.82 91.28 ∗91.68

C-B30 84.52 88.14 88.17 88.50 88.63 88.42 ∗89.16 88.91

C-T19 73.79 76.24 76.60 77.16 77.66 75.62 ∗77.68 77.32

C-T40 94.09 91.24 95.89 95.95 94.47 ∗96.02 94.60 94.88

C-T64 86.99 92.92 ∗93.43 92.92 92.52 92.87 92.92 92.92

C-T144 91.11 93.39 ∗96.30 96.14 95.21 95.30 95.01 95.01

E-ami49L21 94.71 89.51 95.18 94.96 94.43 94.78 ∗95.51 95.42

E-ami49LT21 94.72 87.66 94.96 95.02 94.14 95.10 ∗95.40 95.07

E-TMCNCGSRC 92.89 83.55 ∗93.40 92.95 91.51 92.30 93.31 93.16

E-B10 93.93 87.92 94.72 94.42 94.94 94.30 ∗95.45 95.36

E-B30 94.58 89.20 94.64 95.04 94.55 93.83 ∗95.33 95.33

E-T19 86.95 84.19 87.38 ∗88.61 86.06 87.76 88.27 87.88

E-T40 98.01 90.63 ∗98.74 98.60 97.58 98.68 98.42 98.60

E-T64 95.33 92.87 95.52 95.93 95.04 95.73 ∗96.33 95.96

E-T144 97.83 96.71 ∗98.72 98.14 98.31 98.33 98.12 97.82
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Table 6.9: Computational results using the rule LastGrp to choose a group

Size-based Adaptive

Instance BL BF BndArea Area Width Height BL-midway BL-final

C-ami49L21 88.10 87.32 89.48 89.15 89.08 89.22 89.57 ∗89.68

C-ami49LT21 87.83 87.10 89.29 89.10 88.74 88.98 89.51 ∗89.57

C-TMCNCGSRC 86.92 81.71 ∗89.92 89.58 87.46 87.98 89.18 88.96

C-B10 87.66 90.32 90.36 91.28 90.25 91.15 ∗91.35 ∗91.35

C-B30 84.52 88.14 87.88 88.50 88.54 88.42 88.52 ∗88.58

C-T19 73.79 76.24 76.51 77.14 77.56 75.22 ∗77.68 77.15

C-T40 94.09 91.24 95.67 95.98 94.87 ∗96.20 94.70 94.69

C-T64 86.99 92.92 ∗93.43 92.92 93.24 92.87 92.92 92.92

C-T144 91.11 93.39 ∗96.30 95.31 95.21 95.30 95.24 94.40

E-ami49L21 94.71 89.51 95.27 ∗95.48 95.02 95.17 95.33 95.47

E-ami49LT21 94.72 87.66 94.91 95.29 95.00 95.18 ∗95.30 95.08

E-TMCNCGSRC 92.89 83.55 ∗93.88 93.78 92.15 92.76 93.48 93.35

E-B10 93.93 87.92 95.58 95.33 95.06 ∗96.33 95.76 95.64

E-B30 94.58 89.20 95.02 95.31 94.63 94.72 95.22 ∗95.37

E-T19 86.95 84.19 87.42 89.08 87.35 88.52 ∗89.09 88.55

E-T40 98.01 90.63 ∗98.77 98.63 97.61 98.76 97.81 98.08

E-T64 95.33 92.87 96.38 96.34 96.42 ∗97.34 96.45 96.41

E-T144 97.83 96.71 ∗98.72 98.00 98.14 98.58 98.15 97.81
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Table 6.10: Computational results using the rule LargeGrp to choose a group

Size-based Adaptive

Instance BL BF BndArea Area Width Height BL-midway BL-final

C-ami49L21 88.10 87.32 ∗89.48 89.04 89.07 89.37 89.45 89.40

C-ami49LT21 87.83 87.10 89.34 89.12 88.69 89.41 ∗89.75 89.62

C-TMCNCGSRC 86.92 81.71 ∗89.82 89.60 87.49 88.09 89.47 89.51

C-B10 87.66 90.32 90.36 91.28 90.25 90.82 90.96 ∗91.35

C-B30 84.52 88.14 87.88 88.50 88.54 88.42 ∗88.68 ∗88.68

C-T19 73.79 76.24 76.51 77.14 77.66 75.51 ∗77.68 77.15

C-T40 94.09 91.24 95.61 95.87 94.87 ∗96.20 94.84 94.71

C-T64 86.99 92.92 ∗93.43 92.92 92.52 92.87 92.92 92.92

C-T144 91.11 93.39 ∗96.30 95.31 95.21 95.30 95.01 95.01

E-ami49L21 94.71 89.51 95.34 95.43 95.02 95.18 95.42 ∗95.49

E-ami49LT21 94.72 87.66 95.07 95.24 94.79 95.26 95.47 ∗95.52

E-TMCNCGSRC 92.89 83.55 ∗94.08 93.77 92.15 92.63 93.55 93.31

E-B10 93.93 87.92 95.43 95.34 94.99 ∗96.51 95.77 95.44

E-B30 94.58 89.20 95.17 95.20 94.69 94.65 95.39 ∗95.42

E-T19 86.95 84.19 87.34 ∗89.21 86.90 88.30 89.08 88.96

E-T40 98.01 90.63 98.84 98.60 97.60 ∗98.92 98.08 98.11

E-T64 95.33 92.87 96.89 96.45 96.38 ∗97.34 96.37 96.41

E-T144 97.83 96.71 98.72 98.43 98.14 ∗98.82 98.10 97.80
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Table 6.11: Computational results using the rule BigGapGrp to choose a group

Size-based Adaptive

Instance BL BF BndArea Area Width Height BL-midway BL-final

C-ami49L21 88.10 87.32 89.47 89.44 88.98 89.22 89.59 ∗89.77

C-ami49LT21 87.83 87.10 89.57 89.72 88.79 89.30 89.69 ∗89.78

C-TMCNCGSRC 86.92 81.71 ∗89.50 88.61 87.42 88.03 89.49 89.40

C-B10 87.66 90.32 90.36 91.28 90.25 90.82 ∗91.35 ∗91.35

C-B30 84.52 88.14 88.30 ∗88.81 88.54 88.42 88.68 88.68

C-T19 73.79 76.24 76.51 76.85 77.48 75.55 ∗77.77 77.15

C-T40 94.09 91.24 96.06 94.90 94.49 ∗96.25 95.13 94.62

C-T64 86.99 92.92 ∗93.43 92.92 92.52 92.87 92.92 92.92

C-T144 91.11 93.39 ∗96.30 95.12 95.21 95.30 95.01 95.01

E-ami49L21 94.71 89.51 95.17 95.13 94.53 95.04 ∗95.60 95.43

E-ami49LT21 94.72 87.66 95.20 95.02 94.28 95.14 ∗95.53 95.44

E-TMCNCGSRC 92.89 83.55 93.50 93.11 91.81 92.79 ∗93.72 93.34

E-B10 93.93 87.92 95.45 94.39 94.99 ∗96.51 95.72 95.67

E-B30 94.58 89.20 95.33 95.24 94.78 94.82 ∗95.48 95.44

E-T19 86.95 84.19 87.37 88.71 86.85 88.25 88.88 ∗88.98

E-T40 98.01 90.63 98.74 98.64 97.62 ∗98.84 98.41 98.31

E-T64 95.33 92.87 96.69 96.45 96.38 ∗97.41 96.27 96.27

E-T144 97.83 96.71 ∗98.72 98.51 98.14 98.42 98.06 97.82





Chapter 7

Extension for Packing with

Rotation

In this chapter, we explain how we can apply the efficient data structure in Chapter 5 to

the rectilinear block packing problem with rotation.

Natural ways to generalize the bottom-left algorithm would be the following:

• The order of items and their orientations (i.e., the rotation angle) are given, and

then the bottom-left algorithm for the case without rotation is applied.

• The order of items is given, and in each iteration, for the next item to be placed,

the BL positions of this item with respect to all orientations are computed. Then

one of the orientations is chosen based on some rules (e.g., the one with the lowest

BL position is chosen), and the item is placed with the selected orientation at its

BL position.

A natural way to generalize the best-fit algorithm is as follows: We are given a priority

among all combinations of orientations and items. (Because there are four possible orien-

tations, 0◦, 90◦, 180◦ and 270◦, there are 4n possible combinations.) Whenever an item is

to be packed, the BL positions of all remaining items with respect to all orientations are

computed, and then the combination that attains the left-most BL position among the

lowest ones is chosen, resolving ties by choosing the one with the highest priority.

There might be other ways to generalize these algorithms, but the most expensive

computation of such algorithms would be the computation of the BL positions of the

remaining items with respect to all orientations. The data structures in Chapter 5 can

be easily generalized to deal with this case just by preparing 4t copies of NFP layouts

(and relevant data structures for each of them), each corresponding to a combination

of an orientation and a shape in T . Because this increases the computation time only
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by a constant factor, the time complexity of the case with rotation is the same as the

case without rotation. The case where the reflection of items is allowed can be treated

similarly. Note that the same argument can also be applied to the case in which candidate

orientations are different among items (e.g., item 1 cannot be rotated, item 2 can be

rotated by 90◦, 180◦ and 270◦, item 3 can be rotated by 180◦ and so forth), and also to

a more general case in which each item can take different shapes from a constant number

of candidates.



Chapter 8

Conclusion

Throughout this thesis, we have considered the developments of construction heuristics

for the rectilinear block packing problem. The results in this thesis are summarized as

follows.

We first reviewed in Chapter 2 and 1 the background of packing problems and de-

scribed the rectilinear block packing problem. There are numerous variants of packing

problems and many of these problems are related to real-world applications. For the sim-

plest version of packing problems, one-dimensional packing problems, many simple greedy

algorithms perform well and exact algorithms can solve instances of considerable size in

reasonable time. The packing problems with more than one dimension become much more

complex and it is hard to solve them exactly even for small instances. However, in many

industrial applications, e.g., the VLSI design, good solutions for large-scale instances are

often necessary. To deal with such situations, we developed construction algorithms for the

rectilinear block packing problem especially to find good solutions of large-scale instances

in short time.

In Chapter 3, we explained several basic techniques and ideas used in our algorithms.

First, we introduced some sophisticated data structures utilized in the implementations of

our algorithms. We then explained the concept of the technique of no-fit polygon [7] that

is very useful when determining whether two blocks overlap each other. We introduced

two well-known construction heuristics for the rectangle packing problem and adopt the

bottom-left strategy [9] as the main strategy of our construction algorithms.

Then, in Chapter 4, we generalized two well-known construction heuristics for the rect-

angle packing problem, the bottom-left and the best-fit algorithms, to solve the rectilinear

block packing problem. We also gave an efficient implementations for these two algorithms.

If naively implemented, the bottom-left algorithm requires O(min{M6, nm3M3}) time and

the best-fit algorithm requires O(nm3M3) time. We generalized the algorithm proposed
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in [48] to find the BL position efficiently and reduced the running time of the bottom-left

algorithm to O(M2 logM) and that of the best-fit algorithm to O(nmM logM).

In Chapter 5, we proposed more efficient implementations of the bottom-left and the

best-fit algorithms for the rectilinear block packing problem than those in Chapter 4. We

designed sophisticated data structures that dynamically keep the information so that the

BL position of each item can be found in sub-linear amortized time. We then analyzed the

time complexities of the two construction algorithms and showed that both algorithms run

in O(mM logM) time. We performed a series of experiments on a set of instances that are

generated from nine benchmark instances to analyze the performance of our algorithms

from both sides of occupation rate and running time. The computational results show that

the proposed algorithms are especially efficient for large instances with repeated shapes.

Even for instances with more than 10,000 rectilinear blocks with up to 60 distinct shapes,

the proposed algorithms run in less than 12 seconds. The occupation rate of the packing

layouts obtained by our algorithms often reached higher than 95% for large-scale instances.

We compared the running time of our algorithms with the implementation explained in

Chapter 4 and those with implementation proposed in Chapter 5. The computational

results show that our efficient implementations significantly reduced the computation time

of the bottom-left and the best-fit algorithms. We also created large-scale instances with

up to 10,000 distinct shapes to test our efficient algorithms and showed that the running

time increases almost linearly with the number of distinct shapes. For instances with

10,000 distinct shapes, our algorithms run in less than 6000 seconds.

In Chapter 6, we further analyzed the quality of packing layouts obtained by the

bottom-left and the best-fit algorithm and proposed a new constructive heuristic algo-

rithm, the partition-based best-fit (PBF) algorithm, for the rectilinear block packing prob-

lem. The PBF algorithm can be regarded as a bridge between the bottom-left and the

best-fit algorithms and takes advantages of both of these two algorithms. We analyzed the

time complexity of the proposed PBF algorithm and showed that it runs in O(mM logM)

time with the efficient implementation explained in Chapter 5. We also proposed some

effective rules utilized in the PBF algorithm and performed a series of experiments on 168

instances that were generated from nine benchmark instances. The occupation rate of the

packing layouts obtained by the proposed PBF algorithm was more than 93% on average

for these instances. The computational results show that the improvement on the perfor-

mance of the occupation rate obtained by the PBF algorithm is remarkable compared with

the bottom-left and the best-fit algorithms, and the PBF algorithm is especially effective

for instances with many different sizes of shapes.

Finally, in Chapter 7, we briefly explained how to apply the efficient implementation

to the rectilinear block packing problem with rotation. We show that the time complexity
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of the case with rotation is the same as that without rotation.

In recent years, since the computers are getting faster, approaches based on simple local

search and metaheuristics perform well for small-scale instances of NP-hard problems.

However, development of efficient algorithms for the problems with complex structures

or for the large-scale instances is still big challenge. In this thesis, we focused on the

development of construction algorithms for the rectilinear block packing problem. We

designed implementations for the algorithms utilizing sophisticated data structures to

reduce the running time. As a consequence, our algorithms can obtain good solutions in

short time for large-scale instances. The author hopes that the research in this thesis will be

useful in practical applications and helpful for the development of efficient implementations

of algorithms.
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