Get this lecture online
* Please go to: http://gc.chem.nagoya-u.ac.jp

* Click on “Teaching”

* Click on “PPT” link of “10.1 Lecture X — Linear

Computers in Chemistry — Algebra in FORTRAN”

Lecture X userid: gcguest, password: qcigf!
9.1 Lecture IX - SUBROUTINES and Arrays in FORTRAN (PDF)
PrOf- Dr. Stepha n |r|e 9.2 Example programs: temp3.f90, scalarp.fS0 (Scalar Product)
. 10.1 Lecture X - Linear Algebra in FORTRAN (PDF)
Quantum Chemist ry Grou 0] 10.1 Solutions to Agsigrment 6: classcode.f90, quadratic2.f90, quadratic3.f90
10.2 Assignment
Nagoya Unive rsity 10.3 Example proghasas+~d€bug.f80, matvec.f30, matmul.f90, degrad.fS0

8.2 Compile-Time Arrays and Run-
8.1 Arrays Time Arrays |

Q:daggzxeisnz:lnaeta structure with elements of same type * In the previous example of array type definitions, memory

Arrays can be 1-dimensional (vector), 2-dimensional for the 1D afrays ”Vec.tor", “Rotated_Vector”, ahd t.he 2D

(matrix), or multi-dimensional ! array “Rotation_Matrix” was allocated at compile time (the
dimensions were 2 and 2x2, respectively).

REAL, DIMENSION(2) :: Vector, 'Rotated_Yector * “Compile-Time Arrays” (CTAs) are older elements of

REAL, DIMENSION(2,2) :: Rotation_Matrix FORTRAN than Run-Time Arrays (RTAs), which were
Arrays have to be declared in “type statements”. These introduced in the FORTRAN 90 standard.
statements specify their dimensions (sizes) * CTAs are inflexible and may waste computer memory.
Arrays are often used in vector calculus, linear algebra, data Nevertheless, they continue to exist in older codes, and are

processing, etc.

Ideal for computation, especially in combination with)])
counter-controlled DO loops * We will nevertheless first discuss CTAs.

still widely used.

8.2 Compile-Time Arrays and Run-
Time Arrays Il

* There are two alternative ways to specify CTAs:

REAL, DIMENSION(2) :: Vector, Rotated_Vector
REAL, DIMENSION(2,2) :: Rotation_Matrix
or

REAL :: Vector(2), Rotated_Vector(2)
REAL :: Rotation_Matrix(2,2)

* The dimensions can be specified via previously
defined parameters, as shown next.

8.2 Compile-Time Arrays and Run-
Time Arrays IV

* Run-Time Arrays (RTAs) require a declaration
statement:

REAL, DIMENSION (:), ALLOCATABLE :: Vector, Rotated_Vector

REAL, DIMENSION(:,:), ALLOCATABLE :: Rotation_Matrix

and an ALLOCATION statement:
READ *, N

ALLOCATE (Vector(N), Rotated_Vector(N), STAT = AllocateStatus)
IF (AllocateStatus /= 0) STOP “*** NOT ENOUGH MEMORY ***”

ALLOCATE (Rotation_Matrix(N,N), STAT = AllocateStatus)

IF (AllocateStatus /= 0) STOP “*** NOT ENOUGH MEMORY ***”

or

8.2 Compile-Time Arrays and Run-
Time Arrays Il

Example for the use of an integer parameter in
specifying the dimensions of arrays:

INTEGER, PARAMETER :: NDim =2
REAL, DIMENSION(NDim) :: Vector, Rotated_Vector
REAL, DIMENSION(NDim,NDim) :: Rotation_Matrix

INTEGER, PARAMETER :: NDim = 2
REAL :: Vector(NDim), Rotated Vector(NDim)
REAL :: Rotation_Matrix(NDim,NDim)

Changing the code from 2D to 3D, for example, is
simple, since we only have to change the value in a
single place (NDim in the PARAMETER statement).

8.2 Compile-Time Arrays and Run-
Time Arrays V

In the previous example, N and AllocateStatus are
INTEGER variables that have to be declared in the type
declaration section:

INTEGER :: N, AllocateStatus
If memory is available, the value of “AllocateStatus”
will be 0. Otherwise, a non-zero value will be returned.
RTAs need to be deallocated when no longer needed,
using the DEALLOCATE Statement:

DEALLOCATE (Vector, Rotated_Vector, STAT = AllocateStatus)
DEALLOCATE (Rotation_Matrix, STAT = AllocateStatus)

AllocateStatus is O if successful, otherwise non-zero.

8.2 Working with Arrays | 8.2 Working with Arrays Il

* Consider the following matrix-vector product: * Read Matrix A and vector X:
(v] [r i INTEGER, PARAMETER :: N=3 ! Dimension or vector space
Yl Al 1 Al2 A13 Xl INTEGER :: 1, J | Counter variables
REAL, DIMENSION (N) :: X, Y | Declaration of vectors X, Y
Y2 = A21 A22 A23 X2 REAL, DIMENSION (N,N) :: A | Declaration of matrix X
READ *, A | Will read all 9 elements of 2D array A in column order
Y3 A3l A32 A33 X3 READ *, X ! Will read all 3 elements of 1D array X
* If Ais a unitary matrix (AA* = A*A =1, A* is the * FORTRAN stores data in 2D arrays by increasing
conjugate transpose of A), this operation columns first. In the previous example, the
corresponds to a rotation of vector X to give following order is read:
vector Y. A(1,1), A(2,1), A(3,1), ...
8.2 Working with Arrays Il 8.2 Working with Arrays IV
* You can check the order by PRINT *, A * To print the matrix in N lines, use:
/‘H\ —»—\ DOI=1,N
A(1,1) A(l,l2) A(l,k3) PRINT *, (A(1,J),J =1, N)
END DO
A(2,1) A(2,)2) A(2,3) hi i h il b inted. th
A(3,1) | A(3,2) A(3,3) Lr;]t |slway, rst the rows will be printed, then
'-) e columns
S N
« Memory storage works the same way! If we * In FORTRAN 90, an array can be processed as a
program, we want to consider this since single object!
“jumping” by processing rows first, then columns, | Print Vector Y

decreases the efficiency of the code PRINT *, Y

8.2 Working with Arrays V

* The matrix-vector product is typically performed
as follows:

Y =0.! Clears accumulator
DOI1=1,3
DOJ=1,3
Y(1) = Y(1) + A(1,))*X())
END DO
END DO
PRINT *, Y

* Download program “matvec.f90” from the
gc.chem.nagoya-u.ac.jp webpage, compile, and
run

8.X Conversion of degree to radians

FORTRAN'’s trigonometric functions (sin, cos, tan)
assume that the argument is in units of rad, NOT
degree!

Conversion of angles from degree to radians:

Pl =3.141592653589793

RAD = DEG/360.0 * 2*PI
Download program “degrad.f90” from the
gc.chem.nagoya-u.ac.jp webpage, compile, and run

Practice: write a program that can convert radians back
to degree!

This concludes today’s lecture.

