Computers in Chemistry – Lecture XI

Prof. Dr. Stephan Irle

Quantum Chemistry Group

Nagoya University

Get this lecture online

- Please go to: http://qc.chem.nagoya-u.ac.jp
- Click on "Teaching"
- Click on "PPT" link of "11.1 Lecture XI File Input/Output in FORTRAN"

userid: qcguest, password: qcigf!

```
10.2 Assignment 7 (PDF)
```

- 10.3 Example programs: debug.f90, matvec.f90, degrad.f90
- 11.1 Lecture XI File Input/Output in FORTRAN (PDF)
- 11.2 Solution to Assignment 7: rotvec.f90
- 11.3 Example programs: rotmol.f90, spectrum.f90
- 11.4 Gnuplot for Mac OS X gnuplot-4.2.5-i386.dmg
- 11.5 Example data: benzene.xyz, h2o-ir.dat

5 – Input/Output

- FORTRAN provides format specifiers for formatted input/output
- For example, the real number 5.0 can be written as "5", "5.0", "5.00", "5.000", etc.
- Similarly, the real number 5.0 can be written as 5.0*10**0 (=5.0E +00), 0.50*10**1(=0.5E+01), etc.
- The only format specifier we have seen so far is "*", which is the DEFAULT format specifier.
- The format of a number by which it is printed using the "*" format specifier depends on the compiler and computer type.
- Therefore, it is recommended to use "formatted input/output" whenever possible, however, in this class, the time is insufficient and FORTRAN formatting is actually quite confusing.

5.3 The WRITE and READ Statements I

• The WRITE statement has a more complicated syntax than the PRINT statement, and is more general. It has the form:

WRITE (control-list) output-list

- The control-list may include items selected from the following:
 - A unit specifier, UNIT = unit-specifier or simply unit-specifier (the default unit specifier is "*", which corresponds to the terminal (-screen))
 - A format specifier, similar as in the PRINT statement, given as: FMT= format-specifier or simply formatspecifier (the default format specifier is "*")

5.3 The WRITE and READ Statements II

The READ statement has the form:

READ (control-list) input-list

- Same as for the WRITE statement, the control-list for the READ statement may include items selected from the following:
 - A unit specifier, UNIT = unit-specifier or simply unit-specifier (the default unit specifier is "*", which corresponds to the terminal (-screen))
 - A format specifier, similar as in the PRINT statement, given as: FMT= format-specifier or simply formatspecifier (the default format specifier is "*")

5.4 File Processing I

- Files on the computer hard disk need to be opened and closed by the FORTRAN program before the data can be read or written.
- Opening files is done using the OPEN statement:

OPEN (open-list)

- The open-list for the OPEN statement may include items selected from the following:
 - A unit specifier, UNIT = unit-specifier or simply unitspecifier (Note: the default unit "*" does NOT need to be opened)
 - A file specifier, given as: FILE= character-expression which can be a character constant or variable. Trailing blanks are ignored
 - A status specifier, given as: STATUS= character-expression which can be a character constant or variable as the following 'OLD' (file already exists), 'NEW' (file needs to be created), 'UNKNOWN' (file may or may not yet exist)

5.4 File Processing II

Closing files is done using the CLOSE statement:

CLOSE (close-list)

- The close-list for the CLOSE statement may include items selected from the following:
 - A unit specifier, UNIT = unit-specifier or simply unitspecifier (Note: the default unit "*" does NOT need to be opened)
 - A status specifier, given as: STATUS= character-expression which can be a character constant or variable as the following 'OLD' (file already exists), 'NEW' (file needs to be created), 'UNKNOWN' (file may or may not yet exist)
 - An ERR = clause, where an integer variable can be obtained regarding the failure (non-zero value) or success (zero value) of the closing.

Applications of FORTRAN to Chemistry I

- Today, we will discuss two applications that involve both programming with arrays and File Input/Output (I/O).
- First example: rotation of a planar molecule (example: benzene) around the z-axis
- Second example: simulation of an IR spectrum by statistical broadening of computed vibrational frequencies and IR intensities of the water molecule

Applications of FORTRAN to Chemistry II

- Rotation of a planar molecule (oriented in the xyplane) around the z-axis
- "xyz format": very popular format to specify molecular geometries

Format:

- 1st line: Number of atoms (NATOMS)
- 2nd line: a title of 80 characters
- 3rd to 2+NATOMS line: for each atom in the molecule,
 the specification of the chemical element, followed by
 x, y, z coordinates in units of Å (Ångstrom).

Applications of FORTRAN to Chemistry III

Example: benzene.xyz (download from http://

qc.chem.nagoya-u.ac.jp/teaching)

```
12
Benzene
C
                      0.00000
                                   1.396490
                                                0.00000
                     -1.209396
                                   0.698245
                                                 0.00000
                     -1.209396
                                  -0.698245
                                                0.000000
C
                      0.00000
                                  -1.396490
                                                 0.00000
C
                      1.209396
                                  -0.698245
                                                 0.00000
                      1.209396
                                   0.698245
                                                0.00000
Η
                                   2.483191
                                                0.00000
                      0.00000
Η
                     -2.150506
                                   1.241595
                                                0.000000
                     -2.150506
                                  -1.241595
                                                 0.00000
Η
Η
                      0.000000
                                  -2.483191
                                                0.00000
Η
                      2.150506
                                  -1.241595
                                                0.000000
Η
                      2.150506
                                    1.241595
                                                 0.00000
                                                 Z-coordinate
                                   Y-coordinate
                      X-coordinate
                                                            10
```

Applications of FORTRAN to Chemistry IV

 Rotation of the molecule around the z-axis can be performed by the following rotation matrix:

$$A = \begin{bmatrix} \cos\theta & \sin(\theta) & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Applications of FORTRAN to Chemistry V

 The rotated Cartesian coordinates of an atom in the planar molecule is given by the following matrix-vector product:

$$\begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

- This rotation has to be carried out for all atoms in the molecule.
- Download program "rotmol.f90" from <u>http://qc.chem.nagoya-u.ac.jp/teaching</u>), compile, and test using the "benzene.xyz" example

Applications of FORTRAN to Chemistry VI

- Second example: Simulation of an IR spectrum.
- Example: IR spectrum of water.
- Sample data: Download "h2o-ir.dat" from http://qc.chem.nagoya-u.ac.jp/teaching:

```
1713.0153 75.79943727.3732 1.69523849.4717 19.3975
```

Applications of FORTRAN to Chemistry VII

We wish to include thermal/solution effects.
 We include statistical changes in the vibrational frequencies by assuming a Gaussian normal distribution:

$$f(x) = e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\int_{\frac{\pi}{\sigma}=0.4}^{\frac{\pi}{\sigma}=0.2} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$

$$\int_{\frac{\pi}{\sigma}=0.4}^{\frac{\pi}{\sigma}=0.2} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$$
Source: wikipedia

Applications of FORTRAN to Chemistry VIII

- Download program "spectrum.f90" from <u>http://qc.chem.nagoya-u.ac.jp/teaching</u>), compile, and test using the "h2o-ir.dat" example
- Plot the spectra for various choices of σ using the GNUPLOT software, also available on http://qc.chem.nagoya-u.ac.jp/teaching
- This concludes today's lecture.