Computers in Chemistry —
Lecture VIII

Prof. Dr. Stephan Irle
Quantum Chemistry Group
Nagoya University

Today’s Lecture

Programming with Functions

Combine FORTRAN statements into a program
unit that can be used in similar or different
contexts.

Saves time, makes code easier to read
Especially useful for complex problems:
. Divide the problem into small pieces

. write functions and/or subroutines to solve
them

. put them together in one complete program.

Get this lecture online
* Please go to: http://gc.chem.nagoya-u.ac.jp

* Click on “Teaching”

* Click on “PPT” link of “8.1 Lecture VIII —
Functions in FORTRAN”

userid: gcguest, password: qcigf!

v.e mesginSt v 1 Lt
6.3 Practice program: quadratic1.f80 (Solve quadratic equation)
7.1 Lecture VII - DO LOOPS (PDF)

7.2 Assignment 6 (PDF)

7.3 Practice programs: multiplication-table.{3@ Q-limit.f90 do-tree.f80

8.1 Lecture VIII - FUNCTIONS IN FORT w
8.2 Example programs: temp2.f30 (Fahrenh®iste=2€lsius temperature conversion), temp2ext.f90 temp2ext.f90 (same but
with an external function definition)

6.2 Functions |

* FORTRAN language provides many intrinsic, or
library, functions.

* Include numeric functions such as cos(), exp(),
abs(), etc. shown in Lecture 5 (Table 2-2), as well
as character and logical functions.

* For a complete list, see for example
http://www.nsc.liu.se/~boein/f77t090/a5.html

* Today we would like to add new, user-defined
functions




6.2 Functions Il

Functions are written as “function subprograms”, which are
separate program units with similar syntax to that of a
FORTRAN “program”:

Function heading
Specification part
Execution part

END FUNCTION statement

The function can be contained in the same or a

different .f90 file. For simplicity, we will only consider the
case where one .f90 source code file contains both program
and functions.

6.2 Functions IV

Variables in the “formal-argument-list” are called
“formal” or “dummy arguments” and are used to
pass information to the function subprogram.

Note: Different program languages have different
default ways of passing information from the
main program to the subprogram.

FORTRAN: “pass-by-reference” (use a memory
pointer)

C/C++ and Java: “pass-by-value” (the value
cannot be changed by the subprogram)

1.

2.

6.2 Functions Il

Function heading is a FUNCTION statement of the form:
FUNCTION function-name (formal-argument-list)

Or:
type-identifier FUNCTION function-name (formal-argument-list)

“function-name” is a legal Fortran identifier, “formal-
argument-list” is an identifier or list (possibly empty, in
which case we still need “()”) of identifiers separated by
commas, and in the second version, “type-identifier” is
the name of a FORTRAN type (integer, real, etc.)

6.2 Functions V

Specfication part of a function subprogram has the same
form as that of a regular program. It must declare:

The type of the function value of not declared in the
function heading

The type of each formal argument appearing in the “list-
of-arguments” as well as variables that appear in the
function subprogram

The execution part of a function subprogram is similar to a
regular program, except that it has to include at least one
statement:

function-name = expression

The last statement of a function subprogram should be:

END FUNCTION function-name



6.2 Functions VI

The function value of the function subprogram will be
returned to the calling program, when a “RETURN”
statement is executed.

RETURN

Example: download a program to convert temperature
from Fahrenheit to Celsius units, temp2.f90, and
compile and run it in an X-Windows terminal by:

cd Downloads
gfortran —o temp2.x temp2.f90
Jtemp2.x

6.2 Functions VI

In this program, | have used an “internal” function
subprogram, which is included BEFORE the END
PROGRAM statement.

Alternative ways: EXTERNAL function subprogram,
temp2ext.f90

Download, run, and compare the two programs

NOTES: INTENT(IN) protects the variable from being
modified within the function subroutine

EXTERNAL statement is necessary when using an external
function subprogram that appears outside the PROGRAM
(within the same .f90 file or within different .f90 files)

6.2 Functions VI

e Sample run:

$ ./temp2.x
Enter temperature in Fahrenheit:
32
32.00000 is equivalent to 0.000000 in Celsius
More tmperatures to convert (Y/N)?

y

[stephan@hawk ~]$ ./temp2.x
Enter temperature in Fahrenheit:
32

32.00000 is equivalent to 0.000000 in Celsius
More tmperatures to convert (Y/N)?
Y
Enter temperature in Fahrenheit:
212
212.0000 is equivalent to 100.0000 in Celsius
More tmperatures to convert (Y/N)?
e
Enter temperature in Fahrenheit:
-22.5
-22.50000 is equivalent to -30.27778 in Celsius

More tmperatures to convert (Y/N)?

6.2 FUNCTIONS IX

* Task: Write a FORTRAN 90 program containing

a real-valued function NumericGrade that
accepts a letter grade and returns the
corresponding numeric value (A =4.0, B=3.0,
C=2.0,D=1.0,F=0.0)

Good luck. This concludes today’s lecture.



