Get this lecture online
* Please go to: http://gc.chem.nagoya-u.ac.jp
* Click on “Teaching”

* Click on “PPT” link of “9.1 Lecture IX —
Subroutines and Arrays in FORTRAN”

Lecture IX userid: gcguest, password: qcigf!

Computers in Chemistry —

P rOf' D F. Ste p h an | rl € limit.f90 (forrﬁ the sum of increasingiy Iarge'integers toa spe(fified Iirr'm)

Quantum Chemist ry Grou p 8.1 Lecture VIII - Functions in FORTR m
8.2 Example programs: temp2.f80 (FafwaQ @Celsius temperature conversion), temp2ext.f80 (same but with an
. . external function definition)
Nagoya University

, 7.1 Subroutines Il
7.1 Subroutines |

* The form of a subroutine subprogram is:
Programming with Subroutines

Program units designed to perform particular tasks Specificati ;
under the control of some other program unit. pecinication par
Execution part

Look like FUNCTIONS but do not return a value. END SUBROUTINE statement

FORTRAN 90 allows three types of subroutines:
internal, module, and external subroutines

subroutine heading

May not return a value to all, or may return more than * Like functlops, the subroy‘nne can be c_oﬁntamed n the
same or a different .f90 file. For simplicity, we will only

one value modified in the argument-list. - .
.) consider the case where one .f90 source code file
A function is referenced by its name alone, whereas a contains both program and subroutine(s).

subroutine is referenced by a CALL statement

7.1 Subroutines Il

Subroutine heading is a SUBROUTINE statement of the form:

SUBROUTINE subroutine-name (formal-argument-list)

Or, for a recursive subroutine,

RECURSIVE SUBROUTINE subroutine-name (formal-argument-list)

“subroutine-name” is a legal Fortran identifier, “formal-argument-
list” is an identifier or list (possibly empty, in which case we do not
need “()”) of identifiers separated by commas.

A subroutine is referenced in the program by a CALL statement of
the form:

CALL subroutine-name (actual-argument-list)

Subroutines can contain CALL statements themselves. However,
they cannot call themselves unless they are specified as a
“recursive” subroutine (see previous page).

7.1 Subroutines V

Specfication part of a subroutine has the same form as
that of a regular program. It must declare:

The type of each formal argument appearing in the
“list-of-arguments” as well as variables that appear in
the subroutine

The execution part of a function subprogram is similar
to a regular program, but unlike a function it does NOT
require a statement:

function-name = expression

The last statement of a function subprogram should
be:

END SUBROUTINE subroutine-name

7.1 Subroutines IV

Variables in the “formal-argument-list” are called
“formal” or “dummy arguments” and are used to
pass information to the function subprogram.

Note: Different program languages have different
default ways of passing information from the
main program to the subprogram.

FORTRAN: “pass-by-reference” (use a memory
pointer)

C/C++ and Java: “pass-by-value” (the value
cannot be changed by the subprogram)

7.1 Subroutines VI

Example: download a program to convert
temperature from Fahrenheit to Celsius units,
this time using an external subroutine,
temp3.f90, and compile and run it in an X-
Windows terminal by:

cd Downloads
gfortran —o temp3.x temp3.f90
Jtemp3.x

7.1 Subroutines VI
8.1 Arrays |

* Sample run:

§ :/uempd.x) ‘ * An array is a data structure
nter temperature in Fahrenheit:
* 12.00000 is equivalent to 0.000000 in Celsius * Arrays can be 1-dimensional (vector), 2-

More tmperatures to convert (Y/N)?

v dimensional (matrix), or multi-dimensional
[stephan@hawk ~]$./temp3.x
Enter temperature in Fahrenheit:
32 ’ REAL, DIMENSION(2) :: Vector, Rotated_Vector
32.00000 is equivalent to 0.000000 in Celsius . .
JHore taperstures to convert (Y/N)? REAL, DIMENSION(2,2) :: Rotation_Matrix
Enter temperature in Fahrenheit: . .
1120000 is cquivalent to 100,000 in celsius * Arrays are often used in vector calculus, linear
YMore tmperatures to convert (Y/N)? algebra’ data processing’ etC.
Enter temperature in Fahrenheit:
-zféi.soooo is equivalent to -30.27778 in Celsius * Ideal for CompUtatlonl espeCIa”y In Comblnatlon

More tmperatures to convert (Y/N)?

with counter-controlled DO loops

8.1 Arrays |l 8.1 Arrays Il
* A vector needs to be defined in a space. * Then, any vector v in R3 can be mathematically
Typically, this is three-dimensional Euclidean expressed as a linear combination of these
space R3where the three base vectors are three vectors:
orthogonal on each other (form 90° angles z v,

with each other):) V=V eX+V,0y +Vez =y,

1 0 0
=0 = |1 0 / = y '
X= y= L ’ LA a, b, care called
0 0 1 " “vector coefficients”

11 12

8.1 Arrays IV 8.1 Arrays V

* In two dimensions, the scalar (“dot”) product is

* A scalar projection v, of a vector v on another given by:
vector u is given by: veu = v, *u v, *u,= U] *|v| *cosO
\")
v, = |v|ecosO * Properties of the scalar (“dot”) product:
A L 90" a) If the two vectors are “orthogonal” (form 90°
u angles), their scalar product is 0!
* A scalar product between two vectors b) If the two vectors are identical (form 0°
corresponds to their “inner product”: angles), their scalar product is the square of its

: 2
veu = |v|*|u|*cosh. magnitude, |v|

8.1 Arrays VI

* Task: Write a program that reads two 2-
dimensional vectors v and u, and then
calculates and prints their scalar product.

* Note: Please try to use a subroutine to
compute the scalar product for any two
vectors.

e Good luck. This concludes today’s lecture.

