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Abstract

The field of uncertain data management has received extensive attention of researchers

due to the increasing demand for managing uncertain data in a large variety of real-world

applications such as sensor networks, location-based services, monitoring and surveil-

lance. Uncertainty can occur for different reasons, including measurement errors and

noises in sensors, privacy-preserving transformations of sensitive records and the limited

confidence in the output of predictive models.

Managing uncertainty involves modeling, representing, querying, and indexing uncer-

tain data. Answering queries over uncertain databases poses more challenges than that

over traditional databases because managing uncertainty usually means costly probability

computations. Hence, it is crucial to develop efficient solutions when managing uncertain

data. In this thesis, we model uncertainty probabilistically and represent each uncertain

object in the database using a Gaussian distribution, which is a typical probability distri-

bution widely used in statistics, pattern recognition, and machine learning. We consider

the following three types of queries or searches over probabilistic data with Gaussian

distributions.

First, we study the probabilistic range query, which is an important query in the field of

uncertain data management. A probabilistic range query returns objects in the database

that exist within a specified range from the query object with probabilities no less than a

given probability threshold. The query object can be either a certain point or an uncertain

object represented by a Gaussian distribution.

We propose several effective filtering techniques by analyzing the properties of Gaussian

distribution. The proposed filtering techniques can significantly reduce the number of

objects that need to be verified by expensive probability computation. In this way, we

can avoid unnecessary computations and hence save cost. To support efficient query

processing, we further propose a novel indexing method to enable filtering unpromising

objects by groups rather than individually. We develop the indexing method by extending

the existing R-tree and improve it based on our analysis of Gaussian distribution. This

indexing method can effectively organize objects and greatly enhance the performance of

query processing. Extensive experiments on real datasets demonstrate the efficiency and

effectiveness of our proposed approach.

Second, we investigate the nearest neighbor search. As one of the commonest queries

over location information, the distance-based nearest neighbor search, which finds closest



objects to a given query point, has extensive applications in many areas. There have been

considerable efforts to extend nearest neighbor search over traditional location informa-

tion to uncertain location information. An example is the expected distance, which de-

fines the distance over uncertain location information. Following this trend, we represent

uncertain locations using Gaussian distributions and assume that the closeness between

each Gaussian object and the query point is measured by their expected distance. Under

this setting, we consider the problem of k-expected nearest neighbor search over Gaus-

sian objects. The result objects are ones that have the top-k smallest expected distances

to the query point.

We analyze properties of expected distance on Gaussian distribution mathematically and

derive the lower bound and upper bound of the distance. Based on our analysis, we pro-

pose three novel approaches to efficiently solve this problem. The proposed approaches

can prune unpromising objects whose lower bound distances are larger than upper bound

or expected distances of candidate objects without computing their actual expected dis-

tances. We only compute exact expected distances for candidate objects and finally return

the top-k smallest ones. To further improve the performance, we utilize R-tree to index

objects and their lower bound distances and upper bound distances. The proposed ap-

proaches can effectively reduce the number of exact distance computation which is rather

expensive. The efficiency and effectiveness of our approaches are demonstrated through

extensive experiments.

Finally, we explore the problem of similarity search, which is a crucial task in many

real-world applications such as multimedia databases, data mining, and bioinformatics.

In this work, we investigate similarity search on uncertain data represented by Gaus-

sian distributions. The query object is also represented by a Gaussian distribution. By

employing Kullback-Leibler divergence (KL-divergence) to measure the similarity be-

tween two Gaussian distributions, our goal is to search a database for the top-k Gaussian

distributions similar to a given query Gaussian distribution. Especially, we consider non-

correlated Gaussian distributions, where there are no correlations between dimensions

and their covariance matrices are diagonal.

To support query processing, we propose two types of novel approaches utilizing the

notions of rank aggregation and skyline queries. The first type presorts all objects in the

database on their attributes and computes result objects by merging candidates from each

presorted list. The second one transforms the problem to the computation of dynamic

skyline queries. We extend and modify the branch-and-bound skyline (BBS) algorithm,

which is proposed to answer skyline queries, and develop a novel algorithm to solve this



problem. We demonstrate the efficiency and effectiveness of our approaches through a

comprehensive experimental performance study.

In general, we provide a comprehensive view of managing probabilistic data with Gaus-

sian distributions. We believe that our contributions are multi-dimensional and will be

extended over time. First of all, we think our mathematical analyses of probabilistic range

query, nearest neighbor search, and similarity search over Gaussian objects will benefit

not only the existing related applications, but also potential studies of other applications

over data represented by Gaussian distributions. Furthermore, our proposed non-trivial

algorithms and indexing structures for efficient query processing, will not only enrich

user experience by speed in the real world, but also provide valuable insights and refer-

ences for developing solutions to other problems. Last but not least, we have conducted

extensive experimental evaluations on the performance of our proposed solutions.
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Chapter 1

Introduction

1.1 Research Background

In recent years, the rapid advancement in data acquiring devices has led to the increasing

availability of massive data in a wide variety of fields such as information retrieval, data

integration, mobile robotics, sensor networks, location-based services, monitoring and

surveillance. One common characteristic of the data acquired in these fields is their

uncertain nature. The reasons for uncertainty in data are diverse and ubiquitous shown

as follows [1, 2].

1. The uncertainty may be a result of the inherent limitations of the underlying equip-

ment. For example, in sensor and RFID data, uncertainty is due to measurement

errors and noises. The output of sensor networks is uncertain because of the noise

in sensor inputs and errors in wireless transmission [3].

2. In some applications, such as privacy-preserving data mining [4], it is a requirement

that the sensitive data be less precise. For instance, the data is perturbed purposely

to preserve the sensitivity of attribute values so that the data can be published [5].

3. In many cases, uncertainty results from the effect of statistical methods such as

forecasting and imputation or domain-specific properties and techniques. In the

area of probabilistic robotics [6], the behavior or location of a robot is usually

1
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estimated using the Markov or Bayes theory which forms a source of uncertainty

due to the limited confidence in the output of predictive models. In information

extraction, uncertainty comes from the imperfection of extraction tools and the

inherent ambiguity in unstructured text [7].

In some cases, it is possible to eliminate the uncertainties completely. However, this is

usually very costly, like manual removal of ambiguous matches in data cleaning. In many

cases, complete removal is not even possible. Uncertain data has no place in traditional,

precise database management systems like inventory and employee. This has created a

need for uncertain data management.

Following this trend, the database and data mining community has investigated exten-

sively the problem of modeling and querying uncertain data [8, 9] in recent decades.

Hundreds of research work has been done on this topic [1, 10] and several probabilistic

database management systems have been proposed [11–13].

The general approach to manage uncertain data is with a probabilistic model [14], which

represents uncertainties using probabilities. According to different granularities, Wang

et al. [10] classify uncertainty by three levels: table-based, tuple-based, and attribute-

based, with the latter two ones have been widely studied in the literature. The tuple-level

uncertainty describes the probability that a tuple exists in the database. On the other hand,

the attribute-level uncertainty indicates the probability that a specific value is randomly

selected to represent an individual attribute of a tuple from many alternative values. For

example, in a database of patients, the disease of a patient can be a cold with a probability

of 0.7 and a flu with a probability of 0.3. In this case, the attribute disease is represented

by a discrete probability distribution {0.7, 0.3}. If the attribute has a continuous domain

like the location of a mobile robot, a continuous probability density function such as

Gaussian distribution is often utilized to represent this kind of uncertainty.

In this thesis, we focus on the continuous attribute uncertainty and the case where uncer-

tainty is represented by Gaussian distribution. In other words, we assume that uncertain

objects stored in the database are represented by Gaussian distributions. Under this set-

ting, we consider query processing over probabilistic data with Gaussian distributions.
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Figure 1.1: One-dimensional

Gaussian distribution

Figure 1.2: Two-dimensional

Gaussian distribution

We focus our effort on Gaussian distribution because it is one of the most typical prob-

ability distributions, and is widely used in statistics, pattern recognition, and machine

learning [15, 16]. Especially, in the area of spatio-temporal databases, it is frequently

used to represent uncertain location information [14, 17–19].

In Fig. 1.1 and Fig. 1.2, we show examples of one-dimensional and two-dimensional

Gaussian distribution, respectively. Generally speaking, it describes the probability that a

random point distributes in the space. For example, from Fig. 1.1 in the one-dimensional

space, the probability of a point being around the center 0 is about 0.4. The probability

decreases as the point spreads from the center. This is the similar in the two-dimensional

space in Fig. 1.2. We project the probability surface to a plane and show the decreasing

trend with gradient colors. When using Gaussian distribution to represent uncertain loca-

tion information, it means that the object has the highest probability to be located in the

reported location (i.e., the center) and the farther it is, the smaller the probability to be

located there becomes.

In the first work, we consider range query, one of the most important queries over spatio-

temporal databases. A range query retrieves all the objects that are within the given search

range. A range query over uncertain objects, called a probabilistic range query [19, 20],

searches for objects within the given search range with probabilities no less than a speci-

fied probability threshold. The query object can be either a certain point or an uncertain

object represented by a Gaussian distribution. In location-based services, when represent-

ing the locations of landmarks by probability distributions like Gaussian distributions,
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this kind of query can be used to find surrounding landmarks for a self-navigated mobile

robot when building the environment map.

Our second work studies nearest neighbor query or nearest neighbor search, which is

also a common type of query in spatio-temporal databases. This query returns the nearest

objects to a query point. When extending traditional certain objects to uncertain objects,

there are two variations for the new query. The first one, called probabilistic nearest

neighbor query [21], utilizes a probability threshold to define qualifying objects in a sim-

ilar way as the range query. The second one, called expected nearest neighbor search,

identifies objects based on their expected distances [22, 23] to the query point. We focus

on the second one and consider k-expected nearest neighbor search over uncertain ob-

jects represented by Gaussian distributions. An application example is to find potential

customers nearby for shops or restaurants.

The third work explores similarity search over Gaussian distributions. Given a database

of Gaussian distributions and a query Gaussian distribution, we search the database for

top similar data Gaussian distributions. We utilize the Kullback-Leibler divergence (KL-

divergence) to measure the similarity between two Gaussian distributions. As in [24], we

can represent feature vectors generated in pattern recognition and machine learning using

Gaussian distributions and conduct similarity search over them to make interesting and

useful findings.

1.2 Research Objectives and Contributions

We have conducted three work on probabilistic data with Gaussian distributions. Our

first and second work are motivated by the uncertainty in location information in the area

of spatial databases. We represent uncertain locations of objects in the database using

Gaussian distributions. In the first work, we assume two kinds of query objects: a certain

point and an uncertain location. If the query object is uncertain, we also represent it using

a Gaussian distribution. We call them point and Gaussian query object, respectively.

Probabilistic range queries by the two kinds of query objects are different and should

be handled separately. We show their examples in Fig. 1.3. Here, we define the search
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(a) Point query object (b) Gaussian query object

Figure 1.3: Examples of probabilistic range queries

region as the circular area with the query object q as the center and radius δ. Given a

query object q, a range δ, and a probability threshold θ, we search for the objects located

within δ from q with probabilities at least θ.

Although there have been solutions to probabilistic range queries that can handle proba-

bilistic data with Gaussian distributions [25, 26], they are based on specific assumptions

and cannot be used to solve the problem in this work. The naı̈ve approach, which se-

quentially verifies all the objects in the database by computing their exact probabilities,

is prohibitively expensive for most real-world applications. This challenge motivates us

to develop efficient algorithms to support query processing. We propose a set of filtering

techniques to avoid unnecessary computations and a novel indexing method to accelerate

query processing. The proposed filtering techniques are based on properties of Gaussian

distribution and very effective in reducing computation cost. Due to these techniques,

only a small part of objects need to be checked. We develop the indexing method by ex-

tending the existing R-tree and improve it based on our analysis of Gaussian distribution.

The indexing method organizes all the objects in a structural way so that we can process

them by groups efficiently rather than individually.

In the second work, we assume only the point query object. The expected nearest neigh-

bor search returns objects that are close to the query point based on their expected dis-

tances. Since most users are interested in the top result objects, we consider k-expected

nearest neighbor search and returns the top-k results to users. There is no previous work

on k-expected nearest neighbor search over objects represented by Gaussian distribu-

tions. Moreover, the naı̈ve approach of performing sequential scan is also computation-

ally expensive for the problem in this work. To explore an efficient solution, we analyze
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properties of expected distance on Gaussian distribution mathematically and derive the

lower bound and upper bound of this distance. We develop effective filtering techniques

using the lower bound and upper bound. The proposed filtering techniques can prune

unpromising objects whose lower bound distances are larger than upper bound or ex-

pected distances of candidate objects without computing their actual expected distances.

To further improve the performance, we utilize R-tree to index all the objects and their

lower bound distances and upper bound distances. We propose three novel algorithms to

support efficient query processing. The proposed approaches can effectively reduce the

number of expensive distance computation.

The third work takes a different view and focuses on the property of Gaussian distri-

bution of being a probability distribution. We use Gaussian distribution as the query

object and search for top-k similar Gaussian distributions in the database. The similar-

ity between two Gaussian distributions here is measured by Kullback-Leibler divergence

(KL-divergence) [27], which is a representative measure for quantifying the similarity be-

tween two probability distributions. Since KL-divergence is a non-metric measure which

violates the properties of a standard distance function in metric spaces, existing solu-

tions for metric spaces cannot be employed to solve this problem. Although there have

been several studies on searching in non-metric spaces [28–31], their problem settings

are different from ours. The naı̈ve solution of sequential scan is again not suitable for

this problem. To this end, We propose two types of approaches utilizing the notions of

rank aggregation [32] and skyline queries [33]. The first type presorts all objects in the

database on their attributes and computes result objects by merging candidates from each

presorted list. The second one transforms the problem to the computation of dynamic

skyline queries. We extend and modify the branch-and-bound skyline (BBS) algorithm,

which is proposed to answer skyline queries, and develop a novel algorithm to solve this

problem. We propose novel algorithms to support efficient query processing by modify-

ing and extending existing algorithms.

Our contributions are summarized as follows:

• We formalize two types of probabilistic range queries with respect to the point and

Gaussian query object.
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• For the two types of probabilistic range queries, we propose effective filtering tech-

niques and a novel indexing method to support efficient query processing.

• We formally define the problem of k-expected nearest neighbor search over objects

represented by Gaussian distributions.

• We analyze mathematically properties of the expected distance on Gaussian distri-

bution and derive the lower bound and upper bound of this distance.

• We propose three novel approaches to improve the efficiency of k-expected nearest

neighbor search.

• We formalize the problem of top-k similarity search based on KL-divergence over

Gaussian distributions, and analyze mathematically the properties of KL-divergence

between two Gaussian distributions.

• We propose two types of approaches to improve the efficiency of query processing

using the notion of rank aggregation and skyline queries.

• We demonstrate the efficiency and effectiveness of our approaches through com-

prehensive experimental performance studies.

1.3 Related Work

The field of uncertain data management has received considerable attention from many

researchers since its growing up in recent decades. Managing uncertainty poses a number

of unique challenges on several fronts. The two broad issues are those of modeling the

uncertain data, and then leveraging it to work with various applications [1]. In [34, 35],

several issues and working models for uncertain data have been discussed. The other is-

sue is that of adapting data management and mining applications for uncertain data. There

have been a number of excellent surveys and books discussing uncertain data manage-

ment [1, 9, 10, 34, 36, 37]. Li et al. [38] provides a cross-disciplinary view of uncertainty

processing activities by different communities.



Chapter 1. Introduction 8

Several models have been proposed to incorporate uncertain objects in databases [14],

including the fuzzy model [39], the evidence-oriented model [40], and the probabilistic

model. Moreover, probabilistic graphical models [41] are proposed to represent complex

dependencies among uncertain data. These models are mainly different in the semantics

and complexities of the data in the underlying applications [35]. In the area of database,

the general approach to manage uncertain data is the use of probabilistic model, which

represents uncertainties using probabilities. According to different granularities of uncer-

tainty, the probabilistic model can be further classified into three categories: table-based,

tuple-based, and attribute-based [10, 14], with the latter two ones have been widely stud-

ied in the literature.

Specifically, a table-based approach concerns the “coverage” of a table, i.e., the percent-

age of tuples present in a table [42]. On the other hand, a tuple-based solution asso-

ciates each tuple with a probability indicating the likelihood that the tuple exists in the

table [43]. An attribute-based method represents the attribute of a tuple using a prob-

ability distribution [3, 19, 44, 45]. The probability distribution can be either a discrete

one, which describes a set of possible values with occurring probabilities [3, 44], or a

continuous one such as a Gaussian distribution [19, 45]. The former case is often dealt

with using the possible worlds semantics [46], while the latter one depends on properties

of specific probability density functions. Our work falls into the latter category.

There have been diverse studies on adapting data management and mining activities

for uncertain data. Several probabilistic database management systems have been pro-

posed, including Trio [11], MayBMS [12], and Orion [13]. In the area of spatio-temporal

databases, a large amount of work has been done to support efficient processing of various

queries such as probabilistic range queries [14, 19, 45], probabilistic nearest neighbor

queries [21], probabilistic join queries [47], and probabilistic skyline queries [48]. Their

continuous versions have also been investigated for moving objects to either query histor-

ical records, i.e., trajectories [49, 50], or monitor current activities [51, 52]. In addition,

there are other versions incorporated with query types like threshold queries [53], top-k

queries [54], ranking queries [55], aggregate queries [56], and reverse queries [57], and

versions in different environments such as distributed domains [58], indoor space [59],

constrained space [60], and road networks [61]. We show the diagram of our research
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Figure 1.4: Research diagram

work in this thesis in Fig. 1.4. Our first work in Chapter 2 combines probabilistic range

queries with the threshold query predicate, and our second work in Chapter 3 integrates

probabilistic nearest neighbor search with top-k queries. On the other hand, our third

work in Chapter 4 considers both similarity search and top-k queries.

Uncertain data management has also been studied in other fields such as data integra-

tion [62], data streams [63], XML data [64], graph data [65], sensor networks [66] and

biological images [67]. Moreover, mining uncertain data has received much attention

from multiple research communities including database, data mining, and information

retrieval. A number of algorithms for clustering uncertain data [68, 69], outlier detec-

tion [70] and frequent pattern mining [71] from uncertain data are proposed.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the probabilistic

range querying over Gaussian objects. Then we present the k-expected nearest neighbor

search over Gaussian objects in Chapter 3. Chapter 4 describes the top-k similarity search

over Gaussian distributions based on KL-divergence. Finally, in Chapter 5, we conclude

our studies and present future directions.



Chapter 2

Probabilistic Range Querying over

Gaussian Objects

2.1 Introduction

In the field of uncertain data management, probabilistic range query is an important

problem for processing uncertain data in real-world applications such as mobile robotics,

location-based services, and sensor networks. A probabilistic range query returns all the

data objects that appear within the given search region with probabilities no less than a

given probability threshold.

For instance, consider a self-navigated mobile robot moving in a wireless environment.

The robot builds a map of the environment by observing nearby landmarks via devices

such as sonars and laser range finders. Due to the inherent limitation brought about

by sensor accuracy and signal noises, the location information acquired from measuring

devices is not always precise. At the same time, the robot also conducts probabilistic

localization [6] to estimate its own location autonomously by integrating its movement

history and the landmark information. This may cause impreciseness in the location of

the robot, too. In consequence, probabilistic queries have evolved to tackle such impre-

ciseness as “find landmarks that are located within 5 meters from my current location

with probabilities at least 80%”.

10
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Typically for such applications, uncertain objects are stored in the database and associated

with probability distributions. Multi-dimensional Gaussian distribution is one of the

commonly used probability distributions for such a purpose. It is widely adopted in

statistics, pattern recognition [16], and localization in robotics [6].

In this work we study the case where the locations of data objects are uncertain, whereas

the location of the query object is either exact or uncertain. Specifically, data objects are

described by Gaussian distributions with different parameters to indicate their respective

uncertainty. A query object can be either a certain point in the multi-dimensional space

or an uncertain location represented by a multi-dimensional Gaussian distribution. We

solve the probabilistic range query problem according to the above setup.

There have been solutions to probabilistic range queries that can handle uncertain data

represented by Gaussian distributions, yet based on specific assumptions. For example,

U-tree [25] assumes that each uncertain object exists within a pre-defined uncertainty

region. It constructs an index structure for all the objects based on this region to reduce the

number of candidates that require expensive numerical integration. However, for some

application scenarios it is not easy to decide a suitable extent of the uncertainty region

for a real-world object. Gauss-tree [26] assumes that the Gaussian distribution must be

independent in each dimension. When these assumptions are violated, the solutions no

longer work. In this work, we solve these problems with generic Gaussian distributions

without any of these assumptions, i.e., an object can locate in an infinite space as opposed

to U-tree, and have correlations between dimensions as opposed to Gauss-tree.

A straightforward approach to this problem is to compute the appearance probability [14]

for each data object and output it if this probability is no less than the threshold. However,

the probability computation usually requires costly numerical integration for the accurate

result [25], rendering it prohibitively expensive to compute for all the data objects and

check if the query constraint is satisfied. Thus, such computations should be reduced as

much as possible.

To this end, we propose filtering techniques to generate a set of candidate data objects and

compute integrations only for these candidates. Equipped with the filtering techniques,

an R-tree-based indexing method is proposed to accelerate query processing. The index
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structure is inspired by the idea of TPR-tree [72], in which the minimum bounding boxes

(MBBs) vary with time. The difference is that in our index a parent MBB not only varies

with the probability threshold but also tightly encloses all the child MBBs.

In our preliminary work [19], we proposed query processing algorithms for probabilistic

range queries, assuming that only the location of the query object is uncertain and repre-

sented by a Gaussian distribution, but data objects are certain multi-dimensional points.

An R-tree can be used to manage these certain data points to process queries, which is

different from the situation here. In this work, we extend the uncertainty to data objects

and propose novel solutions. We develop several effective filtering techniques by ana-

lyzing properties of Gaussian distribution thoroughly and design a non-trivial indexing

method that can handle multiple online queries.

A precedent report of this work has appeared in [73]. The approach proposed in [73]

approximates the Gaussian distribution with an upper-bounding function. An R-tree-like

hierarchical index structure was proposed and an exponential summary function was de-

fined to cover multiple upper-bounding functions. Nevertheless, the summary function

is so sensitive to the child functions that it will become drastically large if the bounded

Gaussian distributions are sparsely distributed in the space or one of them has large vari-

ances, leading to loose bounding in the index structure and weak filtering power. This

work is an extension of our previous work [45]. We have extended the algorithms and

conducted additional experiments.

Our contributions are summarized as follows:

1. We formalize two types of probabilistic range queries with respect to the query

object: a certain point and an uncertain location represented by a Gaussian distri-

bution, while data objects are represented by Gaussian distributions with different

parameters.

2. For the two types of queries, we propose several effective filtering techniques to

identify promising data objects and prune unpromising ones.

3. We design a novel R-tree-based index structure to support probabilistic range queries

on Gaussian objects.
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4. We demonstrate the efficiency of our approach through a comprehensive experi-

mental performance study using real datasets.

The rest of this chapter is organized as follows. Section 2.2 defines our problem. We

present our filtering strategies in Section 2.3. Section 2.4 describes our index structure.

Experimental results and analyses are covered by Section 2.5. Section 2.6 reviews related

work. Section 2.7 concludes this chapter.

2.2 Problem Definition

In this section, we first define Gaussian objects, and then define probabilistic range

queries using two types of query objects: certain point objects and uncertain Gaussian

objects.

2.2.1 Gaussian Objects

The Gaussian distribution, also known as normal distribution, is a continuous probability

distribution defined by a bell-shaped probability density function in the one-dimensional

case. In this work, we assume that data objects are modeled by Gaussian distributions

in a d-dimensional space. A point x is in a d-dimensional numerical space, namely,

x = (x1, . . , xd)t.

Definition 2.1 (Gaussian objects). A Gaussian object o is represented by its possible

locations (points) and the probability density it appears at each location. Formally, the

probability density that o is located at xo is captured by a d-dimensional Gaussian prob-

ability density function

po(xo) =
1

(2π)d/2|Σo|1/2
exp

[

−1

2
(xo − µo)TΣ−1

o (xo − µo)

]

. (2.1)

µo is the mean location (center) of o. Σo is a d × d covariance matrix. |Σo| and Σ−1
o are the

determinant and the inverse of Σo, respectively. x
T denotes the transposition of the vector

x.
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2.2.2 Probabilistic Range Queries on Gaussian Objects

Given a database of Gaussian objects D, a query object q, a distance threshold δ, and a

probability threshold θ, a probabilistic range query (PRQ) on Gaussian objects retrieves

all the data objects o ∈ D such that the distance between o and q is no more than δ with

probabilities no less than θ. In this work, we consider two types of query objects for q:

1. The query object is a point object, namely,

q = (x1
q, x

2
q, . . , x

d
q)t.

2. The query object is a Gaussian object, namely,

pq(xq) =
1

(2π)
d
2 |Σq|

1
2

exp

[

−1

2
(xq − µq)tΣ−1

q (xq − µq)

]

.

The probabilistic range query with a point query object (PRQ-P) is formally defined as

PRQ-P(D, q, δ, θ) = {o | o ∈ D, Pr(‖xo − q‖ ≤ δ) ≥ θ},

where ‖xo − q‖ represents the Euclidean distance between xo and q. We call the region

consisting of the points with distances no more than δ from the query object the query

region, QR for short. Pr(‖xo − q‖ ≤ δ), the probability that o lies within QR, is computed

by

Pr(‖xo − q‖ ≤ δ) =
∫

χδ(xo, q) · po(xo)dxo, (2.2)

where

χδ(xo, q) =



























1, ‖xo − q‖ ≤ δ;

0, otherwise.

(2.3)

The integration in Eq. (2.2) is not in a closed-form and hence cannot be computed di-

rectly. Numerical solutions such as Monte Carlo methods can be employed to evaluate

the probability. We use the importance sampling [74] in the interest of efficiency. Specifi-

cally, we generate xo as per the probability function po(xo), and increment the count when
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Figure 2.1: PRQ-P query

Eq. (2.3) is satisfied. Finally, the probability can be obtained by dividing the count by

the number of samples generated. Generally speaking, however, Monte Carlo methods

are accurate only if the number of samples is sufficiently large (at the order of 106) [25].

Therefore, the probability computation induces expensive runtime cost.

Figure 2.1 illustrates a PRQ-P query in a 2-dimensional space. The Gaussian object o

exists in the space with decreasing probability densities as it spreads from the center µo.

A PRQ-P query finds the Gaussian objects located in the proximity of the query point

with a required probability. Computing the probability using Eq. (2.2) corresponds to

integrating the probability density function of o within the shaded area around q.

Similar to PRQ-P, the probabilistic range query with a Gaussian query object (PRQ-G)

is defined as

PRQ-G(D, q, δ, θ) = {o | o ∈ D, Pr(‖xo − xq‖ ≤ δ) ≥ θ},

where Pr(‖xo − xq‖ ≤ δ) is computed by

Pr(‖xo − xq‖ ≤ δ)

=

∫∫

χδ(xo, xq) · po(xo) · pq(xq)dxodxq, (2.4)

where

χδ(xo, xq) =



























1, ‖xo − xq‖ ≤ δ;

0, otherwise.
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To compute the integration in Eq. (2.4), although we can simply generate random num-

bers for the two Gaussian distributions po(xo) and pq(xq), respectively, a more efficient

method is shown in [73]. It constructs a 2d-dimensional Gaussian distribution by combin-

ing the two d-dimensional Gaussian distributions. Then the probability can be computed

by running the Monte Carlo method.

2.3 Filtering Based on Approximated Region

A naı̈ve algorithm to answer PRQ-P or PRQ-G queries is to pair the query object with

each data object and perform integration check with either Eq. (2.2) or Eq. (2.4). How-

ever, due to the overhead of the integration, the algorithm becomes prohibitively ex-

pensive for large datasets. So we develop our approach based on the filter-and-refine

paradigm, i.e., to obtain a set of candidate objects and then compute the integration only

for the candidates.

In this section, we first introduce the notion of ρ-region that leverages the two thresholds

δ and θ, and then propose the ρ-region-based filtering techniques to handle PRQ-P and

PRQ-G queries.

2.3.1 ρ-Region

Definition 2.2 (ρ-region). Consider a Gaussian object o and the integration of its proba-

bility density function po(xo) over an ellipsoidal region (xo − µo)tΣ−1
o (xo − µo) ≤ r2. Let

rρ be the value of r within which the integration equals ρ:

∫

(xo−µi
)tΣ

−1

o (xo−µo
)≤r2
ρ

po(xo)dxo = ρ.

We call the ellipsoidal region

(xo − µo)tΣ−1
o (xo − µo) ≤ r2

ρ

the ρ-region of o.
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In Fig. 2.1, the area encompassed by the dotted ellipsoidal curve shows a ρ-region. Be-

cause the probability density of a Gaussian distribution decreases as we move away from

the center of the object, if the query object is distant enough from the center, its probabil-

ity within QR will not reach θ. In other words, it is possible to determine whether a data

object can satisfy the query condition by deriving a suitable ρ-region with θ (the method

is introduced in Section 2.3.3 and 2.3.4) and examining whether its ρ-region intersects

QR.

To compute rρ with a given ρ, we borrow the approach proposed in our previous work [19].

It transforms the integration over an ellipsoidal region to an integration over a d-dimensional

spherical region. By assigning µo = 0 and Σo = I in Eq. (2.1), we have the normalized

Gaussian distribution

pnorm(x) = N(0, I) =
1

(2π)d/2
exp

[

−1

2
‖x‖2
]

.

Based on this probability density function, the following property can be derived.

Property 1. [19] Consider integration of pnorm(x) over ‖x‖2 ≤ r2. For a given ρ (0 < ρ <

1), let r̃ρ be the radius within which the integration becomes ρ:

∫

‖x‖2≤r̃2
ρ

pnorm(x)dx = ρ.

Then rρ = r̃ρ holds.

The preceding property indicates that we can compute r̃ρ and hence rρ for a given ρ value.

Therefore, we can construct a (ρ, rρ)-table offline (numerical integration is necessary)

and obtain the ρ-region by looking up the corresponding rρ from this table. If there is no

matched entry for a given ρ, we conservatively return the corresponding rρ of the smallest

value greater than ρ, so the correctness of the result can be guaranteed.

The ellipsoidal shape of a ρ-region renders it difficult to quickly examine whether the

ρ-region intersects QR as well as develop an indexing scheme based on prevalent spatial

indexes such as R-tree. Hence we will study the minimum bounding box (MBB) which

tightly bounds the ρ-region.
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Figure 2.2: MBB of ρ-Region

2.3.2 Minimum Bounding Box of ρ-Region

Figure 2.2 shows the MBB of a ρ-region of a 2-dimensional Gaussian object o. Let w j

denote the length of its edge along the j-th dimension. The following property holds [19].

Property 2. The value of w j ( j = 1, . . . , d) is given as

w j = σ jrρ, (2.5)

where σ j corresponds to the standard deviation in the j-th dimension

σ j =
√

(Σo) j j,

where (Σo) j j represents the ( j, j)-th element of Σo.

For a data object o, since σ j can be calculated from the covariance matrix Σo, the scale of

the MBB is determined uniquely by rρ, and hence ρ. Consequently, in order to establish

the filtering conditions utilizing the MBBs, it is essential to explore the relation between

ρ and the probability threshold θ. Next we will present our filtering techniques for PRQ-P

and PRQ-G, respectively.

2.3.3 Filtering Policies for PRQ-P Queries

Our filtering policies to process PRQ-P queries are divided into two cases: θ < 0.5 and

θ ≥ 0.5.
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Case 1 (θ < 0.5): Consider the four data objects o1, o2, o3, o4 shown in Fig. 2.3(a).

bbi(ρ) denotes the MBB of oi’s ρ-region. First, let’s consider o4. Since the probability

that o4 is located inside its ρ-region is ρ, the probability of being outside the ρ-region’s

MBB, is definitely less than 1− ρ. Furthermore, given the line symmetry of the Gaussian

distribution, the probability that o4 exists inside QR is at most (1 − ρ)/2. Hence, if

ρ = 1 − 2θ, and bb4(ρ) and QR do not overlap, the probability that o4 lies within QR

must be less than θ. Then, for objects o1, o2 and o3, we check and find their MBBs

intersect QR, so they become candidates. In summary, when θ < 0.5, a data object is a

candidate only if its bbi(1 − 2θ) intersects QR.

Case 2 (θ ≥ 0.5): We show our idea in Fig. 2.3(b). For the probability that a data object

exists inside QR to reach θ, its mean location should lie within QR. Thus, o2 and o4 can

be pruned, whereas o1 and o3 are considered as candidates.

Moreover, for all candidates, let ρ′ = θ and compute their bbi(ρ
′)’s. If QR fully contains

a bbi(ρ
′) (e.g., o3), the probability that this object lies within QR is definitely greater than

θ. We validate it as a result without computing the numerical integration.

Summarizing the two cases, the filtering condition for PRQ-P is: (1) θ < 0.5, bbi(ρ)

(ρ = 1 − 2θ) intersects QR for pruning, and bbi(ρ
′) (ρ′ = θ) is contained by QR for

validation. (2) θ ≥ 0.5, ‖µo − q‖ < δ for pruning, and bbi(ρ
′) (ρ′ = θ) is contained by QR

for validation.

2.3.4 Filtering Policies for PRQ-G Queries

For PRQ-G queries, since both the query object q and the data object oi are Gaussian

distributions, we obtain both of their MBBs of ρ-regions. We also consider two cases for

filtering: θ < 0.75 and θ ≥ 0.75.

Case 1 (θ < 0.75): As shown in Fig. 2.3(c), assume q and oi are independent in the

space. When the minimum distance between the two MBBs is exactly δ, the maximal

probability of ‖xo − xq‖ ≤ δ is given by the following lemma (the proof is in A.1):

Lemma 2.3. If MinDist(bbi(ρ), bbq(ρ)) ≥ δ, Pr(‖xo − xq‖ ≤ δ) < (3 − 2ρ − ρ2)/4.
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(a) PRQ-P: θ < 0.5 (b) PRQ-P: θ ≥ 0.5

(c) PRQ-G: Pruning (d) PRQ-G: Validation

Figure 2.3: Filtering policies for PRQ-P and PRQ-G

Let (3 − 2ρ − ρ2)/4 = θ, i.e., ρ = 2
√

1 − θ − 1. oi can be excluded from the candidate set

if the minimum distance between bbi(ρ) and bbq(ρ) is no less than δ.

Lemma 2.4. If ‖µo − µq‖ ≥ δ, Pr(‖xo − xq‖ ≤ δ) < 0.75.

Case 2 (θ ≥ 0.75): Based on Lemma 2.4 (the proof is in A.2), an object can be pruned if

the distance between its center and that of the query object is no less than δ.

Moreover, let ρ′ =
√
θ, if the maximum distance of bbi(ρ

′) and bbq(ρ′) is less than δ,

as shown in Fig. 2.3(d), the probability of ‖xo − xq‖ ≤ δ is greater than ρ′2, i.e., θ. In

this case, we validate it as a result without computing the exact probability by numerical

integration.

The filtering condition for PRQ-G is summarized as: (1) θ < 0.75, MinDist(bbi(ρ), bbq(ρ)) <

δ (ρ = 2
√

1 − θ − 1) for pruning, and MaxDist(bbi(ρ
′), bbq(ρ′)) < δ (ρ′ =

√
θ) for valida-

tion. (2) θ ≥ 0.75, ‖µo−µq‖ < δ for pruning, and MaxDist(bbi(ρ
′), bbq(ρ′)) < δ (ρ′ =

√
θ)

for validation.
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2.4 Indexing Data Objects

2.4.1 The Index Structure

The filtering conditions introduced in the previous section need to know the value of θ and

hence ρ to generate candidates. In order not to scan all the data objects and compute the

MBBs of the ρ-regions on the fly with the given θ, an immediate solution is to index the

MBBs for a sufficiently large ρmax. Because the MBB with a larger ρ always subsumes

the one with a smaller ρ, it can support all the queries if the ρ values computed from θ

satisfy the condition ρ ≤ ρmax. However, the efficiency of the index is compromised for

small ρ values. This method serves as a baseline algorithm (we use an R-tree to index

MBBs and name it FR-tree), and will be compared in the experiment with the indexing

technique we are going to present.

Inspired by the TPR-tree [72], we propose an R-tree-based index structure which stores

the MBBs in a parametric fashion. It works for arbitrary probability thresholds and range

thresholds, and there is no need to assume the two thresholds are given prior to index

construction. The MBBs can be dynamically computed as we traverse the index. Fur-

thermore, the MBB of a node (at both leaf and non-leaf levels) tightly encloses all its

children’s MBBs regardless of the θ value, as opposed to the TPR-tree within which all

child MBBs are bounded in a loose manner.

Our index is a balanced, multi-way tree organized in the structure of an R-tree. Each

entry in a leaf node contains a data object in the form of oi = (idi, µi,Σi), where idi is the

data object id, µi and Σi are the mean location and the covariance matrix of the Gaussian

object, respectively. In a non-leaf node, each entry has a pointer to a child node and an

MBB enclosing all the MBBs within the child node.

Consider an object oi with mean location (x1
i , . . , x

d
i
)t. Its MBB is a bounding box param-

eterized with rρ (MBB is denoted as the exactly computed bounding box at a specific rρ

hereafter). From Eq. (2.5), the extent of the bounding box (BB) in the j-th dimension can

be represented by

[x
j

i
− w j

i
, x

j

i
+ w

j

i
] = [x

j

i
− σ j

i
rρ, x

j

i
+ σ

j

i
rρ]. (2.6)
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(a) Node BB of Four Child BBs (b) Left and Right Edges of the BB

Figure 2.4: BB with varying ρ

Seeing the BBs grow with rρ, in order to tightly bound the BBs of child nodes at every

rρ, it is necessary to search each dimension for the leftmost and the rightmost BBs under

varying ρ. We illustrate this problem in Fig. 2.4(a). It shows the changing BB that

encloses the BBs of four 2-dimensional objects’ ρ-regions as rρ increases. When rρ is

less than r1, the left edge is determined by o1, and it becomes o3 when rρ exceeds r1. The

right bound is determined by o4 when rρ < r2, and o2 otherwise.

Figure 2.4(b) shows how the four BBs change horizontally with rρ. For each object, a

pair of symmetrical lines describe the left and the right coordinations of its BB. The lines

have different slopes due to the difference in their standard deviations. The bold polylines

illustrate the left and right coordinations of the outer enclosing BB. Hence, the problem

becomes how to find the bold polylines. To this end, a BB can be represented by several

segments with respect to rρ.

We store in the index the j-th dimension of a BB in the form of (〈x j

1
, σ

j

1
, r1〉, . . , 〈x j

k
, σ

j

k
,+∞〉).

For example, for the four objects in Fig. 2.4(a), the left and the right coordinations of the

BB are (〈x j

1, σ
j

1, r1〉, 〈x j

3, σ
j

3,+∞〉) and (〈x j

4, σ
j

4, r2〉, 〈x j

2, σ
j

2,+∞〉), respectively.1

We can find all the segments in the j-th dimension through a sort on the coordinations

first and then a linear scan from the object whose standard deviation has a larger value in

the j-th dimension. The time complexity is O(n log n), where n is the number of its child

nodes. The number of segments in a BB is at most n.

1 Our experiments show the average number of segments in a BB is 2–3. In case of many segments,

we allow users to specify a query probability threshold range [θmin, θmax] to reduce the number of segments

and hence the index size.
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We note the difference between our index and TPR-tree: (1) The bounding boxes of

TPR-tree change towards one direction in a rate (velocity), while our bounding boxes

change towards two opposite directions symmetrically with rρ. (2) The bounding boxes

of TPR-tree are tight only if an update occurs, while our bounding boxes are always tight.

2.4.2 Query Processing with the Index

Algorithm 1 and Algorithm 2 show the procedures of query processing of PRQ-P (the al-

gorithms for PRQ-G are similar and thus omitted due to the space limitation). To process

a query, θ is converted to ρ and ρ′, and then rρ and rρ′ with the pre-computed (ρ, rρ) table

(line 1–2). A first-in-first-out queue Q is employed to maintain the nodes we are going

to expand. Starting with the root node, we compare QR (MBB of q for PRQ-G) with the

node MBB, and check the filtering condition. To compute a node MBB, given rρ, we scan

the stored jth-dimension of its BB and find α such that rα−1 ≤ rρ < rα. Then the extent of

its MBB in the j-th dimension can be computed through Eq. (2.6) using xα, σα, and rρ.

At the non-leaf level (line 7–18), if a node MBB at rρ′ satisfies the validation condition,

i.e., it is contained by QR (for PRQ-G, the maximum distance of two MBBs is less than

δ), we retrieve all the objects within this node and push them into the result set directly;

otherwise, we probe each child entry. If θ < 0.5 (0.75 for PRQ-G), we check whether

each child MBB at rρ intersects QR (for PRQ-G, whether the minimum distance between

each child MBB and the MBB of q is less than δ). On the other hand, when θ ≥ 0.5 (0.75

for PRQ-G), we obtain the MBB which bounds leftmost and rightmost means in each

dimension, and use this more compact MBB as the new child MBB for filtering checking

for both PRQ-P and PRQ-G.

At the leaf level (line 19–30), we also examine whether a node MBB at rρ′ satisfies the

validation condition first, so as to push its child entries into the result set as early as

possible and reduce the processing cost. If not, each child entry of this node is processed

as discussed in Section 2.3.3 (for PRQ-G, Section 2.3.4). When θ < 0.5 (0.75 for PRQ-

G), for each child entry, if its MBB at rρ intersects QR (for PRQ-G, the minimum distance

between each child MBB and the MBB of q is less than δ), we identify this data object
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Figure 2.5: An illustration of PRQ-P query processing

using Algorithm 2. We check whether the validation condition is satisfied. The qualified

data objects are inserted directly into the result set. Other data objects are regarded as

candidates for further verification through integration. When θ ≥ 0.5 (0.75 for PRQ-G),

for each child entry, if its mean location is inside QR, it is checked by Algorithm 2 in the

same way.

Figure 2.5 shows a query processing example for PRQ-P with θ = 0.3. r0.4 and r0.3 are

obtained from the (ρ, rρ) table. MBBs of all nodes in Fig. 2.5 are at r0.4. At first, the

root R is popped from Q. Since the MBB of R cannot satisfy the validation condition, we

have to check its child nodes n1, n2 and n3. Only n1 and n2 are pushed into Q because

the MBB of n3 does not intersect QR. Then we continue with the next level. For n1, its

MBB at r0.4 is not contained by QR, so its child entries cannot be all validated as results.

Since its MBB at r0.3 intersects QR, we probe into its child entries and find that o1 can

be pruned. Then o2 is validated as a result object and o3 becomes a candidate further

processed through integration. For n2, since its MBB at r0.3 is completely within QR, its

entries o4 and o5 are inserted into the result set directly without referring to their MBBs.

2.5 Experiments

2.5.1 Experimental Setup

Three real datasets are used in our experiments. MG and LB are two 2-dimensional

datasets of Montgomery and Long Beach road networks (39K and 52K, respectively)2.

2http://www.census.gov/geo/www/tiger
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Algorithm 1 PRQ-P(q, δ, θ)

1: ρ← 1 − 2θ, ρ′ ← θ
2: rρ ← TableLookup(ρ), rρ′ ← TableLookup(ρ′)

3: QR← QueryRegion(q, δ), ResultSet = ∅, CandidateSet = ∅
4: Q ← Root, N ← 0

5: while Q , ∅ do

6: N ← Q.pop()

7: if N is an internal node then ⊲ at the non-leaf level

8: if bbN(rρ′) IsContainedBy QR then

9: Insert all the objects within N into ResultSet

10: else

11: if θ < 0.5 then

12: for each child Ni in N do

13: if bbNi
(rρ) Intersects QR then

14: Push Ni into Q

15: else ⊲ θ ≥ 0.5

16: for each child Ni in N do

17: if meanbbNi
Intersects QR then

18: Push Ni into Q

19: else ⊲ at the leaf level

20: if bbN(rρ′) IsContainedBy QR then

21: Insert all the objects within Ni into ResultSet

22: else

23: if θ < 0.5 then

24: for each child Ni in N do

25: if bbi(rρ) Intersects QR then

26: IdentifyObjects(Ni)

27: else ⊲ θ ≥ 0.5

28: for each child Ni in N do

29: if mean(Ni) IsInside QR then

30: IdentifyObjects(Ni)

Airport is a 3-dimensional dataset containing latitudes, longitudes and elevations of 41K

airports in the world3. All datasets are normalized to [0, 1000]d. LB is used by default.

We generate PRQ-P and PRQ-G queries randomly. The probability threshold θ lies

within [0.01, 0.99], and the query range δ is chosen from [10, 100] for MG and LB, and

[100, 200] for Airport randomly. We also generate covariance matrices for both data

Gaussian objects and query Gaussian objects randomly.

3http://www.ourairports.com/data
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Algorithm 2 IdentifyObjects(Ni)

1: if bbNi
(rρ′) IsContainedBy QR then

2: Insert Ni into ResultSet

3: else

4: Integral← computeIntegral(Ni)

5: if Integral ≥ θ then

6: Insert Ni into ResultSet

We design two baseline approaches for experimental evaluation. Both of them and our

proposed approach return the same exact result. We check their correctness before each

comparison. One baseline approach is to sequentially scan the dataset and compute in-

tegrations required for obtaining result probabilities. We name it Scan and evaluate our

filtering techniques by comparing query processing time and candidate number with it.

The other baseline approach indexes the MBBs of the ρ-region with ρmax = 0.99. Be-

cause the MBB with a larger ρ always subsumes the one with a smaller ρ, it can support

all the queries if the ρ values computed from θ satisfy ρ ≤ ρmax. We equip this index with

our basic filtering techniques and name it FR-tree (Filtering + R-tree), and evaluate our

index structure by comparing filtering time and I/O access with it. Our index is referred

to as G-tree.

We implement the index structure by extending the spatial index library SaiL4 [75]. It is

a generic framework that integrates spatial and spatio-temporal index structures and sup-

ports user-defined datatypes and customizable spatial queries. We conduct experiments

using a PC with Intel Core 2 Duo CPU E8500 (3.16GHz), RAM 4GB, running Fedora

12. We construct an index of all data objects for both PRQ-P and PRQ-G, and store it in

the secondary memory.

2.5.2 Query Performance Evaluation

The average query response time of 200 queries on LB is shown in Table 2.1. It can

be seen that the query response time of Scan is 769 times that of G-tree for PRQ-P

(293 for PRQ-G). Another observation is that the time spent on probability integration is

almost equal to the overall response time. This indicates that the integration dominates the

4http://libspatialindex.github.com/
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Query / Algorithm Overall Integration

PRQ-P / G-tree 0.157 0.154

PRQ-P / Scan 120.764 120.692

PRQ-G / G-tree 0.809 0.806

PRQ-G / Scan 236.725 236.577

Table 2.1: Query response time on LB (seconds)
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Figure 2.6: Filtering and indexing performance

overall query processing and is computationally expensive. Consequently, it is important

to reduce candidates which need to perform the integration as much as possible.

Among 50,747 objects in LB, the average candidate number of G-tree is 97 for PRQ-P

(269 for PRQ-G). The number of validated objects by integration is 65 for PRQ-P (156

for PRQ-G). So for PRQ-P 67% (58% for PRQ-G) of the candidates identified by our

approach are real results. This demonstrates the effectiveness of our proposed filtering

techniques. In the sequel, we exclude the integration part from query processing and

focus on evaluating the filtering and indexing performance of FR-tree and G-tree.
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We run the two algorithms to process 10K queries on the three datasets and show the

average filtering time and I/O access of PRQ-P (resp. PRQ-G) in Fig. 2.6(a) – 2.6(c) (resp.

Fig. 2.6(b) – 2.6(d)). For PRQ-P, the average filtering time of G-tree is 61.6% of that of

FR-tree on the three datasets, because the average I/O access of G-tree is 92.2% less

than that of FR-tree, though the segmented bounding boxes in G-tree are more complex

to process than those in FR-tree. The reduction on PRQ-G is more substantial. The

average filtering time of G-tree on MG, LB and Airport is 45% less than that of FR-tree.

The I/O access of G-tree of three datasets is 6.5% that of FR-tree.

As a ρmax is adopted to process queries with any θ, the bounding boxes in FR-tree are very

loose. This causes more I/O accesses and increases filtering time. In contrast, since the

bounding boxes in G-tree are constructed in a parametric fashion, they can be calculated

dynamically for arbitrary θ and hence are very compact. Another interesting observation

is that the I/O access almost resembles the candidate number, indicating most I/Os are

spent on retrieving objects.

Figure 2.6(e) – 2.6(f) show the candidate ratio of PRQ-P and PRQ-G, which is calculated

by dividing the candidate number by the total number of objects. The candidate number

of FR-tree and G-tree is the same since we equip FR-tree with our filtering techniques.

The candidate ratio is around 2‰ for PRQ-P and 5‰ for PRQ-G on the three datasets.

This reveals that only a very small percentage of data objects will become candidates

owing to our filtering techniques.

Varying Dataset Size. To evaluate the scalability of our approach, we extract 20%, 40%,

60%, 80% and 100% of LB dataset randomly and show the filtering time and I/O access

of two methods in Fig. 2.7(a) – 2.7(b) on PRQ-P queries. The performance on PRQ-G

queries reveals a similar trend and hence is omitted due to the space limitation. As the

dataset size becomes larger, the filtering time and I/O access of the two methods almost

increase linearly. G-tree displays a steady increasing trend and always outperforms FR-

tree.

As shown in Fig. 2.7(c) – 2.7(d), in spite of the varying dataset size |D|, the candidate ratio

of PRQ-P retains 2‰ and 5.2‰ for PRQ-G, demonstrating the steadiness and scalability

of our approach with respect to the dataset size.
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Figure 2.7: Varying |D|
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Figure 2.8: Varying δ

Varying Query Range. We vary the query range δ from 10 to 100 and show the per-

formance on PRQ-P queries in Fig. 2.8(a) – 2.8(b). The performance on PRQ-G queries

is similar and hence omitted. As δ increases, FR-tree consumes much more time and

I/O accesses on filtering. In contrast, G-tree exhibits much slower increasing trends. Fig-

ure 2.8(c) – 2.8(d) show that the candidate ratio of both PRQ-P and PRQ-G also increases

with δ, but for PRQ-P it is only 3.7‰ (9.4‰ for PRQ-G) even if δ achieves 100.

Varying Probability Threshold. We vary θ from 0.1 to 0.9 and show the performance in
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Figure 2.9: Varying θ

Fig. 2.9(a) – 2.9(f) for both PRQ-P and PRQ-G queries. For PRQ-P, the filtering time and

I/O access of both FR-tree and G-tree decrease gradually with θ when θ < 0.5 (0.75 for

PRQ-G). When θ exceeds 0.5 (0.75 for PRQ-G), the filtering time slightly rebounds. This

is consistent with our filtering conditions as discussed in Section 2.3.3 and Section 2.3.4.

When θ < 0.5 (0.75 for PRQ-G), ρ = 1 − 2θ for PRQ-P (for PRQ-G, ρ = 2
√

1 − θ − 1

if θ < 0.75), so ρ decreases when θ moves towards larger values, and bounding boxes

shrink. As a result, most of non-candidates can be filtered quickly and less I/O accesses

are needed, and hence it accelerates filtering.

On the contrary, when θ ≥ 0.5 (0.75 for PRQ-G), the pruning condition becomes ‖µo −

q‖ < δ for PRQ-P (for PRQ-G, ‖µo − µq‖ < δ). So all the figures have turn points at 0.5

for PRQ-P (0.75 for PRQ-G). At the same time, bounding boxes computed for validation

which assigns ρ′ = θ for PRQ-P (for PRQ-G, ρ′ =
√
θ) enlarge as θ increases. So

more and more nodes and objects will become candidates, leading to the slightly rising

of the filtering time and I/O access. The reason also accounts for the trend of G-tree on

candidate ratio in Fig. 2.9(e) – 2.9(f).
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Despite the variation of θ, G-tree constantly outperforms FR-tree. In the case of PRQ-P,

the filtering time of FR-tree amounts to 1.8 times that of G-tree on average and 15.8

times on average for I/O access. This contrast is more evident on PRQ-G, where the

filtering time of FR-tree is 2 times that of G-tree on average and 20.1 times on average

for I/O access.

Varying Dimensionality. We also study the impact of dimensionality d using randomly

generated synthetic datasets with the size 20K and the query range within [100, 200].

Figure 2.10(a) – 2.10(d) show the scalability of FR-tree and G-tree against d for PRQ-

P. The figures of filtering time and I/O access for PRQ-G have similar trends and are

omitted. As shown in Fig. 2.10(a), the filtering time of FR-tree reduces constantly with

increasing d because the object density decreases with d. This can be confirmed by the

decreasing trend of I/O access of PRQ-P in Fig. 2.10(b) and the candidate ratio of both

PRQ-P and PRQ-G in Fig. 2.10(c) – 2.10(d).

It is also observed that the filtering performance of FR-tree begins to exceed that of

G-tree at d = 5. The explanation is that, candidates become fewer as object density

decreases, and hence the operation of comparing the query region with node bounding

boxes dominates the filtering procedure. While FR-tree’s MBBs can be obtained directly

from the R-tree, G-tree needs to compute the MBBs with the segments in the index.

As d increases, the decreasing object density can lower the processing cost. However,

the increasing d can also induce more effort in query processing since the bounding box

computation needs to be done for more dimensions. The above two factors result in the

fluctuating trend of G-tree’s filtering time in Fig. 2.10(a).

Index construction. We evaluate the index construction on the Airport dataset. The node

capacities of the indexes are selected to optimize query performance for both FR-tree and

G-tree. The index size of FR-tree is 6.94MB, and the construction time is 4.3 seconds on

average. G-tree has a size of 6.14MB, slightly smaller than FR-tree due to the different

entry style of an object from FR-tree. At the leaf level of FR-tree, for each object,

besides the bounding box at ρmax, the covariance matrix has to be stored additionally in

order to carry out our filtering techniques. In contrast, in G-tree the bounding box of an

object is formed by its mean and standard deviation in each dimension. In addition to the
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Figure 2.10: Varying d

bounding box, only the covariances between dimensions rather than the whole covariance

matrix need to be stored. G-tree takes 59.7 seconds on average to build. Although G-tree

needs more construction time, considering the superior query performance and the index

construction can be done offline, the index construction is in an affordable manner.

2.6 Related Work

Uncertain Data Management. We focus on research work in the area of unertain data

management that is closely related to our work. A number of approaches for managing

uncertain data have been proposed. Early research primarily focused on queries in a

moving object database model [76–79]. The solutions to several types of probabilistic

queries were proposed in [44], including probabilistic range queries, where their target is

merely the one-dimensional case.

A range query processing method for the case where both data objects and query object

are imprecise was proposed in [80]. But they assume that each object exists within a

rectangular area. Zheng et al. [81] modeled a fuzzy object by a fuzzy set where each

element is characterized by its probability of membership (the sum of all probabilities is

not necessarily one). For efficient query processing, they proposed the notion of α-cut,
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the subset of elements whose probabilities are no less than a user-specified probability

threshold α, to filter elements of the fuzzy object. Although we also exploit the idea of

filtering region (ρ-region), their rationale of computing the α-cut is different from ours.

Gauss-tree [26] was proposed as an index structure for Gaussian distributions. It assumes

all Gaussian distributions are probabilistically independent in each dimension. This im-

poses heavy restriction on the generality of the approach and the overall accuracy of the

query result is limited. In [82], Lian et al. proposed a generic framework to tackle the

local correlations among uncertain data.

Indexing Uncertain Data for Range Queries. Agarwal et al. [17] presented various

indexing structures on uncertain data that support range queries in the one-dimensional

case. Tao et al. proposed U-tree [25] to process probabilistic range queries in a multi-

dimensional space, where uncertain objects are assumed to follow arbitrary probability

distributions within uncertainty regions. Zhang et al. proposed a quadtree-based in-

dex called U-Quadtree [83] for range searching on multi-dimensional uncertain data.

They mainly focused on representing uncertainty by discrete instances inside a minimum

bounding box. The difference from our work is that we take advantage of specific proper-

ties of Gaussian distribution and index uncertain objects distributed in an infinite space.

Spatial Data Indexing. The traditional spatial database has been well studied and many

indexing methods have been proposed [84–86] to support spatial query processing. R-

tree [85] and its extension R*-tree [84], indexing objects by deriving their minimum

bounding rectangles (MBRs), are two of the well-known ones. TPR-tree [72] and TPR*-

tree [87] were proposed to index moving objects. However, none of these indexes can be

applied directly on the Gaussian objects to support the queries studied in this work.

2.7 Summary

In this work, we studied probabilistic range queries over uncertain data. We assumed

that the location of the query object is either fixed or follows a multi-dimensional Gaus-

sian distribution. The locations of data objects are represented by Gaussian distributions.
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Given these assumptions, we defined two types of probabilistic range queries with re-

spect to the query object. We proposed effective filtering techniques to reduce costly

exact probability computation as much as possible. Furthermore, we proposed a novel

R-tree-based index structure to expedite query processing. Extensive experiments on real

datasets demonstrate the efficiency and effectiveness of our proposed approach.



Chapter 3

k-Expected Nearest Neighbor Search

over Gaussian Objects

3.1 Introduction

In recent years, the advances in computing devices and technologies have been calling for

the attention of researchers to develop novel solutions for emerging new problems. For

instance, the location information obtained from mobile devices such as a mobile phone

is usually uncertain due to privacy protection, delays in location update from users, noise,

etc. In the area of database, there has been a large amount of work on representing un-

certain location information by probabilistic models and proposing efficient solutions for

query processing [10]. In particular, Gaussian distribution is frequently used to represent

this kind of probabilistic location information since it is one of the most typical prob-

ability distributions, and is widely used in statistics, pattern recognition, and machine

learning [15, 16]. For example, our first work in Chapter 2 presents probabilistic range

queries over objects represented by Gaussian distributions.

On the other hand, as one of the commonest queries over location information, the

distance-based nearest neighbor search has applications in numerous fields such as databases,

pattern recognition, cluster analysis, and recommendation systems. Given a query point

35
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Figure 3.1: An example

q, this query searches for closest objects to q in a set of objects. There have been con-

siderable efforts made to extend nearest neighbor search over traditional location infor-

mation to probabilistic location information. One representative example is the expected

distance [22, 23], which defines the distance over probabilistic location information. Fol-

lowing this trend, in this work, we represent probabilistic location information by Gaus-

sian distributions and assume that the closeness between each Gaussian object and the

query point is measured by their expected squared Euclidean distance [23], which is

frequently used in many areas such as pattern mining and cluster analysis. Under this

setting, we consider the problem of k-expected nearest neighbor search over Gaussian

objects.

Although there has been a considerable amount of research work on searching over Gaus-

sian distributions [20, 26], to the best of our knowledge, we are the first to consider the

problem of k-expected nearest neighbor search over objects represented by Gaussian dis-

tributions. Given a database D of objects represented by Gaussian distributions, a query

point q, and a constant k, we search D for the top-k objects having smallest distances

with q. As shown in Fig. 3.1, an application example is to find nearby mobile users to

a given query location such as a shop or a restaurant. Since the location of a mobile

user is uncertain, it is a common practice to represent uncertain locations using Gaussian

distributions in the area of spatial databases [20]. The restaurant or shop may consider

sending coupons or notifications to a number of nearest users for promotion.

The expected distance used in this work is defined using an integral and is normally com-

puted by numerical integration such as the Monte Carlo methods. This kind of methods

requires a sufficiently large number of samples (e.g., 105) to ensure accuracy. Hence,
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it will lead to very high time cost if we process queries by comparing distances of all

objects one by one in real time. This naı̈ve solution is intolerable for the vast major-

ity of real-world applications which demand immediate responses. What is more, the

world of today is being flooded with streams of large data and is in the age of big data.

This calls for novel approaches that can handle a large dataset and support efficient query

processing.

To find an efficient solution, we analyze properties of expected distance on Gaussian dis-

tribution mathematically and derive the lower bound and upper bound of this distance.

Meanwhile, we employ the filter-and-refine paradigm to accelerate query processing. By

filtering, we prune unpromising objects whose lower bound distances are larger than up-

per bound or expected distances of candidate objects without computing their actual dis-

tances. In refinement, we compute exact distances of candidate objects and finally return

the top-k smallest ones. To further improve the performance, we utilize R-tree to index

objects and their lower bound distances and upper bound distances. We propose three

novel algorithms to support efficient query processing. The experimental result demon-

strates that our proposed approaches can achieve great efficiency and are applicable to

real-world applications.

We summarize our contributions as follows.

1. We formally define the problem of k-expected nearest neighbor search over objects

represented by Gaussian distributions.

2. We analyze mathematically properties of the expected distance on Gaussian distri-

bution and derive the lower bound and the upper bound of this distance.

3. We propose three novel approaches to improve the efficiency of query processing.

4. We demonstrate the efficiency of our approaches through a comprehensive experi-

mental performance study.

The rest of this chapter is organized as follows. We formally define the problem in Sec-

tion 3.2. Then in Section 3.3 we analyze expected distance on Gaussian distribution and

derive its lower bound and upper bound. We propose three approaches in Section 3.4.
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Experimental results and analyses are presented in Section 3.5. We review related work

in Section 3.6. Finally, Section 3.7 concludes this chapter.

3.2 Problem Definition

In this work, we consider the problem of k-nearest neighbor search over Gaussian objects

based on expected distance. We assume that all objects stored in the database are rep-

resented by Gaussian distributions with different parameters, i.e., their average vectors

and covariance matrices are not the same. The query objects are fixed points in the same

space.

A Gaussian distribution in the multi-dimensional space is represented by

p(x) =
1

(2π)d/2|Σ|1/2 exp

[

−1

2
(x − µ)TΣ−1(x − µ)

]

where µ denotes the average vector and Σ denotes the covariance matrix. |Σ| and Σ−1

represent the determinant matrix and reverse matrix of Σ, respectively. (x − µ)T repre-

sents the transposition of x − µ. For simplicity, we call objects represented by Gaussian

distribution Gaussian objects afterwards.

Here, we focus on the squared Euclidean distance (SQED) since it is frequently used in

many areas such as pattern mining and cluster analysis. The expected distance between

a Gaussian object o and a query point q based on SQED (called ESQED) is

ES QED(o, q) =

∫

‖x − q‖2 · p(x)dx. (3.1)

We formally define the problem as follows.

Definition 3.1. Given a database of Gaussian objects D = {o1, . . . , on}, a query point q,

a constant k, the problem of k-Expected Nearest Neighbor Search over Gaussian objects

searches D for k Gaussian objects that are nearest to q based on Eq. (3.1).
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The distance in Eq. (3.1) cannot be computed directly and is normally evaluated by nu-

merical integration using the Monte Carlo methods. We employ the importance sam-

pling [88] for efficiency. Specifically, we generate a sample x based on p(x) and sum

its SQED with q. The ESQED is the summed SQED divided by the number of samples

generated. This computation requires a sufficiently large number of samples (e.g., 105)

to ensure accuracy. Therefore, it will induce very high computation cost.

A straightforward solution is to do a sequential scan over the database and compute

their distances with each query point. This method is obviously too time-consuming

for real-world applications. In the preliminary experiments, we generate 100, 000 two-

dimensional Gaussian objects and use 100, 000 samples for numerical integration. The

average runtime of 100 queries is 1623.4 seconds, which is rather expensive and intoler-

able for the most of users.

In the following sections, we utilize the filter-and-refine paradigm to accelerate query

processing. Specifically, we filter objects that are unlikely to become the result with-

out computing their ESQEDs and refine candidate objects to obtain the final result. The

filtering is to prune objects whose lower bound distances are larger than upper bound

or expected distances of candidate objects. By refinement, we compute the ESQED of

each candidate object and choose the top-k objects with the smallest ESQED as the re-

sult. Hence, it is important to derive the lower bound and the upper bound of ESQED

(Section 3.3) and develop effective filtering algorithms (Section 3.4).

3.3 Lower bound and Upper bound

In [23], the following lemma is proved.

Lemma 3.2. Given an object p with f (x) as its probability density function and p as its

centroid, for any point q we have

∫

‖p− q‖2 · f (x)dx = ‖p− q‖2 +
∫

‖x − p‖2 · f (x)dx.
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Based on this lemma, we can obtain

ES QED(o, q) = ‖µ − q‖2 +
∫

‖x − µ‖2 · p(x)dx.

In the subsequent discussion, we denote the second part as ∆2, i.e.,

∆2 =

∫

‖x − µ‖2 · p(x)dx,

and derive its lower bound and upper bound. According to [19], the lower bound and

upper bound of Gaussian distribution is as follows:

p⊥(x) =
1

(2π)d/2|Σ|1/2 exp

[

−‖x‖
2

2λ⊥

]

p⊤(x) =
1

(2π)d/2|Σ|1/2
exp

[

−‖x‖
2

2λ⊤

]

where λ⊥ and λ⊤ are the minimum and maximum eigenvalues of Σ, respectively. Thus,

the lower bound of ∆2, denoted as ∆2
min, is

∆2 ≥
∫

‖x − µ‖2 · 1

(2π)d/2|Σ|1/2 exp

[

−‖x − µ‖
2

2λ⊥

]

dx

=
d · (λ⊥)1+d/2

|Σ|1/2
= ∆2

min.

and its upper bound ∆2
max is

∆2 ≤
∫

‖x − µ‖2 · 1

(2π)d/2|Σ|1/2 exp

[

−‖x − µ‖
2

2λ⊤

]

dx

=
d · (λ⊤)1+d/2

|Σ|1/2 = ∆2
max

For the proof, please refer to Appendix B.1.

Correspondingly, we obtain the lower bound (LB) and upper bound (UB) of ESQED:

LB(o, q) = ‖µ − q‖2 + ∆2
min ≤ ES QED(o, q) ≤ ‖µ − q‖2 + ∆2

max = UB(o, q). (3.2)
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3.4 Proposed Approaches

In this section, we propose three approaches for efficient query processing using the filter-

and-refine paradigm described in Section 3.2. However, it still seems cumbersome and

inefficient to compare the lower bound and upper bound distance of each Gaussian object.

Our idea is to employ an R-tree to index all Gaussian objects so that most unpromising

objects can be filtered by groups instead of individually. Moreover, we observe that ∆2
min

and ∆2
max involve costly matrix decomposition but they do not depend on queries. Based

on this observation, we consider precomputing ∆2
min and ∆2

max offline to speed up online

query processing.

In the first approach, we first precompute ∆2
min and ∆2

max for each Gaussian object and then

insert each d-dimensional Gaussian object into an R-tree as a (d + 1)-dimensional region

[(µ,∆2
min), (µ,∆2

max)]. Here, (µ,∆2
min) is the lower left coordinate and (µ,∆2

max) is the upper

right coordinate of the region. In this way, we can easily compute the lower bound and

upper bound distance of each Gaussian object using Eq. (3.2) when queries come.

At the same time, we associate each Gaussian object with its covariance matrix so that

we can compute its ESQED directly if it becomes a candidate. It should be noted that we

only need to store the lower triangular part or the upper triangular part of each covariance

matrix since it is symmetric. In other words, for a d × d covariance matrix, we store

d(d + 1)/2 out of its d2 elements.

For an R-tree node N with a region of [(µmin,∆
2
min), (µmax,∆

2
max)], its lower bound and

upper bound distance can be computed similarly using Eq. (3.2):

LB(N, q) = ‖µ − q‖2min + ∆
2
min ≤ ES QED(N, q) ≤ ‖µ − q‖2max + ∆

2
max = UB(N, q). (3.3)

Below we use an example dataset of six two-dimensional Gaussian objects in Table 3.1 to

describe our algorithms. µi,1 (resp. µi,2) denotes the average of each object oi in the first

(resp. second) dimension. λi,1 (resp. λi,2) denotes the eigenvalue of the variance matrix

of each object oi in the first (resp. second) dimension. ∆2
i,min (resp. ∆2

i,max) denotes ∆2
min

(resp. ∆2
max) of each object oi.
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oi µi,1 µi,2 λi,1 λi,2 ∆2
i,min ∆2

i,max

o1 0.5 4.0 0.5 1.0 0.71 2.83

o2 2.9 5.8 1.0 1.0 2.00 2.00

o3 4.0 6.0 1.5 0.5 0.58 5.20

o4 6.7 2.0 1.0 1.5 1.63 1.84

o5 8.5 3.0 0.5 0.5 1.00 1.00

o6 9.0 1.5 0.5 1.0 0.71 2.83

Table 3.1: An example dataset

Figure 3.2: R-tree image and structure of the example dataset

In Fig. 3.2, we show the image and structure of the constructed R-tree on the example

dataset and an example query. Each black solid point represents the average value in the

first dimension µi,1 and in the second dimension µi,2 of each object oi in the (µi,1, µi,2)

plane. The example query is the black hollow point q = (5.0, 5.0) with k = 2. We can

easily compute LB(N1, q) = 0+12+0.58 = 1.58, LB(N2, q) = 7.60, LB(o1, q) = 21.96, and

UB(o3, q) = 7.20. Notice that UB(o2, q) = LB(o2, q) = 7.05 because λ2,1 = λ2,2. It means

ES QED(o2, q) = 7.05. In other words, the ESQED of a Gaussian object can be computed

without numerical integration if its matrix covariance has the same eigenvalues in all

dimensions. The same is to o5, UB(o5, q) = LB(o5, q) = 17.25, i.e., ES QED(o5, q) =

17.25.

Algorithm 3 shows the algorithm of our first approach. Since it is based on precomputing,

LB, and UB, we call it PLUB afterwards. Entries (R-tree nodes or Gaussian objects) are

processed in the ascending order of their lower bound distances. We utilize a priority

queue Q to maintain candidate entries. After expanding the root node of the R-tree,

entries in Q are {(1.58,N1), (7.60,N2)}. Then the algorithm continues to expand N1. Since
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Algorithm 3 The PLUB algorithm

1: Input: R-tree, q, k ⊲ Initialize the priority queue Q, the candidate set C, and the

result set R

2: Q ← Root of R-tree, C ← ∅, R← ∅;
3: while Q is not empty do

4: N ← Q.top(); Q.pop();

5: if N is a leaf node then

6: for each Gaussian object oi in N do

7: if C has less than k candidates then

8: Insert oi with LB(oi, q) and UB(oi, q) into C;

9: else ⊲ C has k or more than k candidates

10: if LB(oi, q) is smaller than the k-th smallest UB in C then

11: Insert oi with LB(oi, q) and UB(oi, q) into C;

12: else ⊲ N is an index node

13: if C has less than k candidates then

14: for each child entry Ni in N do

15: Insert Ni with LB(oi, q) into Q;

16: else ⊲ C has k or more than k candidates

17: for each child entry Ni in N do

18: if LB(Ni, q) is smaller than the k-th smallest UB in C then

19: Insert Ni with LB(oi, q) into Q;

20: if C has k or more than k candidates and LB(Q.top(), q) is not smaller than the

k-th smallest UB in C then

21: break;

22: Compute the ESQEDs of the top-k candidates with the smallest LB in C and insert

them with their ESQEDs into R

23: for each of the rest candidates oi in C do

24: if LB(oi, q) is smaller than the largest ESQED in R then

25: Compute oi’s ESQED and replace it with oi and oi’s ESQED;

26: return R;

N1 is a leaf node and the candidate set C is empty, we insert o1, o2, and o3 and their LBs

and UBs into C. We obtain C = {(2.58, 7.20, o3), (7.05, 7.05, o2), (21.96, 24.08, o1)} and

Q = {(7.60,N2)}. The next top entry of Q, N2, has an LB that is larger than the second

largest UB in C, i.e., 7.60 > 7.20, which is the second smallest upper bound distance in

C. Thus, we finish processing Q and continue to update the result set R using C.

We first obtain the ESQED of o3 by numerical integration since it LB is the small-

est. For o2, we do not have to compute its ESQED by numerical integration because

we can directly obtain ES QED(o2, q) = 7.05 as described above. By this time, R =

{(3.99, o3), (7.05, o2)}. Since the LB of the last object o1 in C, 21.96, is larger than 7.05,
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we return R and terminate the algorithm.

The second approach, called PLB, only utilizes the lower bound. After precomputing∆2
min

for each Gaussian object, we insert each d-dimensional Gaussian object into an R-tree as

a (d + 1)-dimensional point (µ,∆2
min

). We can easily compute the lower bound distance

of each Gaussian object using Eq. (3.2) when queries come. We also associate each

Gaussian object with its covariance matrix so that we can compute its ESQED directly if

it becomes a candidate. The lower bound distance of an R-tree node can be computed in

the same way as PLUB using Eq. (3.3).

In the PLB algorithm, instead of inserting each candidate Gaussian object oi with LB(oi, q)

and UB(oi, q) into C (Line 8), we immediately compute its ESQED and insert oi with

ES QED(oi, q) into C. Moreover, we compare the LB of oi, Ni, and Q.top() with the k-th

smallest ESQED rather than the k-th smallest UB in C (Line 10, 18, and 20). In Line 11,

we replace the candidate having the k-th smallest ESQED of C with oi if ES QED(oi, q) is

smaller. Finally, since C has already had the top-k candidates with the smallest ESQEDs

in this time we skip Line 22 – 25 and return C directly in Line 26.

Continuing with the example dataset in Table 3.1 and the example query of q = (5.0, 5.0)

with k = 2, in the PLB algorithm we expand the root node of the R-tree (the R-tree

constructed by PLB is almost the same to that of PLUB in Fig. 3.2 and obtain Q =

{(1.58,N1), (7.60,N2)}. When expanding N1, we computes ESQEDs of o1, o2, and o3 in

turn and update C = {(3.99, o3), (7.05, o2)} and Q = {(7.60,N2)}. Then the algorithm will

be terminated since the LB of the next top entry in Q is larger than the second largest

ESQED in C, i.e., 7.60 > 7.05. Finally, we return C = {(3.99, o3), (7.05, o2)}.

The idea of the PLB algorithm is that, using ESQED rather than UB would help to prune

more entries since ESQED is always smaller and thus tighter than UB. At the same time,

however, it may induce more ESQED computations since it immediately computes the

ESQED of each candidate. For instance, we compute three times of ESQED using PLB

while only one time using PLUB in the running example. We will compare the perfor-

mance of PLUB and PLB in the experiment section.
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The third approach does not rely on precomputing and directly utilizes the average of

each Gaussian object, and is called AVG. Notice that by Eq. (3.2) we can obtain the least

lower bound (LLB) of ESQED as follows:

LLB(o, q) = ‖µ − q‖2 < ‖µ − q‖2 + ∆2
min ≤ ES QED(o, q). (3.4)

The least lower bound is looser than the lower bound but it allows us to filter unpromis-

ing objects using the simple average directly without caring about the complicated co-

variance matrix. we insert each d-dimensional Gaussian object into an R-tree as a d-

dimensional point µ. We compute the least lower bound distance of each Gaussian object

using Eq. (3.4) when queries come. We also associate each Gaussian object with its co-

variance matrix as we do previously. The least lower bound distance of an R-tree node is

the minimum least lower bound distance of all its child nodes.

Algorithm 4 shows the AVG algorithm. It is very similar to the PLB algorithm except that

it uses LLB as the search key instead of LB. We describe the algorithm by using the pre-

vious example in PLUB and PLB. The R-tree constructed by AVG is similar to the one in

Fig. 3.2 other than that in this case the R-tree is two-dimensional. We first expand the root

node of the R-tree and obtain Q = {(1.0,N1), (6.89,N2)}. Then we expand N1 and com-

putes ESQEDs of o1, o2, and o3 in turn. Meanwhile, we update C = {(3.99, o3), (7.05, o2)}

and Q = {(6.89,N2)}. Next, since the LLB of the next top entry in Q is smaller than the

second largest ESQED in C, i.e., 6.89 < 7.05, the algorithm cannot be terminated as

PLUB and PLB do. In other words, we have to further expand N2 and examine o4, o5, and

o6 through computing their ESQEDs. Finally, we return C = {(3.99, o3), (7.05, o2)}.

The AVG algorithm does not have to do any precomputing and the R-tree constructed by it

has a lower dimension than of PLUB and PLB. As the performance of R-tree deteriorates

with higher dimensions, we think this lower dimensional R-tree of AVG may compensate

the cost of more ESQED computations caused by the looser least lower bound. We will

verify this idea in the experiment section.
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Algorithm 4 The AVG algorithm

1: Input: R-tree, q, k ⊲ Initialize the priority queue Q, the candidate set C

2: Q ← Root of R-tree, C ← ∅;
3: while Q is not empty do

4: N ← Q.top(); Q.pop();

5: if N is a leaf node then

6: for each Gaussian object oi in N do

7: if C has less than k candidates then

8: Insert oi with ES QED(oi, q) into C;

9: else ⊲ C has k or more than k candidates

10: if LLB(oi, q) is smaller than the k-th smallest ESQED in C then

11: Replace it with oi and ES QED(oi, q);

12: else ⊲ N is an index node

13: if C has less than k candidates then

14: for each child entry Ni in N do

15: Insert Ni with LLB(oi, q) into Q;

16: else ⊲ C has k or more than k candidates

17: for each child entry Ni in N do

18: if LLB(Ni , q) is smaller than the k-th smallest ESQED in C then

19: Insert Ni with LLB(oi, q) into Q;

20: if C has k candidates and LLB(Q.top(), q) is not smaller than the k-th smallest

ESQED in C then

21: break;

22: return C;

Parameter Testing Range

k 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

data size 10K, 100K, 1M, 10M, 100M

dimension 2, 3, 4, 5, 6

Table 3.2: Parameters for testing

3.5 Experiments

3.5.1 Experimental Settings

We generate Gaussian distributions randomly for experiments. Each average value is

generated from (0, 1000), and each variance value is generated from (0, 100). We check

the effect of k, data size, and d , i.e., the number of result, the size of dataset, the dimen-

sionality, on the performance of each approach. The parameters tested in our experiments

and their default values (in bold) are summarized in Table 3.2.
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Figure 3.3: Effect of k

We compare the performance of our three proposed approaches: AVG, PLB, and PLUB.

During preprocessing, we construct R-trees and store them in the secondary memory. In

each experiment, we run 100 queries (generated randomly) and use the average runtime

and I/O access for performance evaluation. All experiments are conducted using a work-

station with Intel Xeon (R) CPU E3-1241 v3 (3.50GHz), RAM 16GB, running Ubuntu

12.10 LTS. Below we analyze the effect of each parameter on the performance of query

processing and discuss the merits and demerits of the proposed approaches.

3.5.2 Effect of k

We show the average runtime and I/O access of the three approaches when varying k in

Fig. 3.3(a) and Fig. 3.3(b). Their average runtime and I/O access all increases slowly

with a larger k. This is because that we need to do more computations to retrieve more

objects. As we can see from the two figures, PLUB runs the fastest, but its I/O access is

also the highest. The reason is that most of objects accessed by PLUB will be pruned by

upper bounds of candidate objects using their lower bounds and we only need to compute

ESQEDs for a small part of them. Since the computation of ESQED consumes quite high

time cost, this helps PLUB to achieve the best efficiency. In addition, when k is larger

than 5, AVG performs better than PLB because the two-dimensional R-tree of AVG is

more effective and retrieves less objects than the three-dimensional R-tree of PLB.
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Figure 3.4: Effect of data size

3.5.3 Effect of Data Size

As shown in Fig. 3.4(a) and Fig. 3.4(b), when data size increases, the average runtime and

I/O access of the three approaches all become larger. PLUB remains the most efficient

approach while AVG becomes the slowest one when data size exceeds 100K though it has

the least I/O access. This demonstrates that our derived lower bound and upper bound are

very effective in improving the efficiency of query processing. The sublinear growth of

runtime of our proposed approaches indicates that our approaches are applicable to large

datasets.

3.5.4 Effect of Dimensionality

The dataset of the same size (100K) becomes sparser in a higher dimensional space. In

other words, the object density decreases with increasing d. A smaller object density

contributes to better performance of query processing since it becomes easier to prune

unpromising objects. On the other hand, a higher d also means more complicated com-

putation and thus slows down query processing. Fig. 3.5(a) and Fig. 3.5(b) show the effect

of dimensionality on runtime and I/O access of the three approaches. When d is small,

the impact of object density overrides that of computation, which results in decreasing

runtime. When d is larger than 3, the impact of computation dominates the overall query

processing and leads to increasing runtime. However, even when d = 6, the runtime is

still less than 3 seconds (1 second for PLUB). Hence, our approaches can be applied to
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higher dimensions. This also indicates that PLUB is still best choice among the three

approaches in terms of efficiency.

3.5.5 Discussion

Based on the above analyses, we conclude that PLUB achieves the best performance in

efficiency because it uses both lower bound and upper bound for filtering. AVG is a better

choice than PLB when k is larger than 10. But when data size is larger than 100K, PLB

becomes to be preferred to AVG. In general, all of our proposed approaches can answer

queries in seconds while the naı̈ve way of sequential scan may take hours or even days.

The index construction time of the three approaches does not differ very much with the

same data size. For example, when data size is 100K, AVG, PLB, and PLUB takes about

0.266, 0.340, and 0.345 seconds, respectively. We can also see that the time used for

index construction is quite small. PLB and PLUB have the same size of R-tree and their

R-trees are slightly larger than that of AVG.

3.6 Related Work

Nearest neighbor search is a fundamental problem in such diverse areas that this prob-

lem has been studied extensively and is now relatively well understood. A survey on

this problem is given in [89]. As uncertainty is inherent and immerging in many ap-

plications, there are a number of studies working on nearest neighbor searching under
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uncertainty [22, 23, 90], in which uncertainties are represented by probability distribu-

tions.

In [22], Ljosa et al. propose an approximate scheme to index expected distance for near-

est neighbor search under the L1 distance. Their result cannot be applied to our problem

since we consider the exact case under the squared Euclidean distance. In [23], Agarwal

et al. also consider the expected distance from a query point to an uncertain object and

return expected nearest neighbor (ENN). They propose efficient algorithms for answer-

ing ENN queries under several distance functions including squared Euclidean distance.

However, their discussions focus on theoretic computation of the expected Voronoi dia-

gram as preprocessing to answer ENN queries.

On the other hand, [90] considers the aspect of probability and studies probabilistic near-

est neighbor (PNN) queries where the qualification probability of an object being the

nearest neighbor of a query point is larger than a threshold (0 or a specified probabil-

ity threshold). There is also much work studying top-k probable nearest neighbor [91],

superseding nearest neighbor [92], and ranking queries [93].

However, none of the above work pays particular attention to Gaussian distribution,

which is a popular probability distribution in many fields of applications. In [26], Böhm

et al. model the feature vector of an uncertain object using Gaussian distribution and find

similar Gaussian distributions to a given query Gaussian distribution. The restriction of

this work is that they assume all Gaussian distributions are probabilistically independent

in each dimension, which makes it difficult to be applied to generic Gaussian distribu-

tions and limits its overall accuracy of the query result. Given a query object (a point or

Gaussian distribution), the work in [20] retrieves data objects represented by Gaussian

distributions that are with a certain range from the query with probabilities larger than a

specified threshold. They are both different from the problem we study in this work.

Finally, it is worth mentioning that nearest neighbor search has numerous variations such

as reverse nearest neighbor search [94], aggregate nearest neighbor search [95], continu-

ous nearest neighbor search [96], etc.
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3.7 Summary

In this work, we considered k-nearest neighbor search over objects represented by Gaus-

sian distributions based on expected distance. To support efficient query processing, we

analyzed mathematically the properties of expected distance on Gaussian distribution and

propose three novel approaches: AVG, PLB, and PLUB. We demonstrated the efficiency

of our proposed approaches through extensive experiments and a comprehensive perfor-

mance study. Among the three approaches, PLUB achieves the best efficiency while AVG

is better than PLB if k is large, and PLB is a better choice in the case of a large data size.



Chapter 4

Top-k Similarity Search over Gaussian

Distributions Based on KL-Divergence

4.1 Introduction

Probabilistic modeling, which infers probability distributions from vast amount of data

for real-world applications, is being practiced in a wide range of fields from statistics,

machine learning and pattern recognition [15] to bioinformatics and medical informat-

ics [97]. The research on managing probabilistic model-based data was pioneered by

Deshpande et al. [66], and then received considerable attention from the database re-

search community [8, 9, 11]. In this work, we study the problem of processing similarity

search queries over probabilistic model-based data, specifically, over objects represented

by Gaussian distributions. As shown in Fig. 4.1, given a database of Gaussian distri-

butions G and a query Gaussian distribution q, our objective is to find top-k Gaussian

distributions from G that are similar to q. In this work, we study query processing over

Gaussian distributions in view of their property of being probability distributions rather

than using them to represent uncertainties in Chapter 2 and Chapter 3.

Gaussian distribution, one of the most typical probability distributions, is widely used in

statistics, pattern recognition, and machine learning [15, 16]. Research work on Gaussian

52
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q

top-1

top-2

Figure 4.1: A one-dimensional query example (k = 2)

distributions has been conducted over a long period of time, including music classifica-

tion [98] and search [99], and image retrieval [24, 100].

For this reason, we focus on similarity search over data modeled in Gaussian distribu-

tions, assuming that a large number of objects, represented by non-correlated Gaussian

distributions are stored in the database. By non-correlated Gaussian distribution, we

mean that all dimensions are independent with each other, i.e., the covariance matrix of

each Gaussian distribution is diagonal. In this work, we focus on non-correlated Gaussian

distributions since they are frequently used in machine learning and statistics. Hereafter,

we use the term Gaussian distributions for non-correlated ones. We will report query pro-

cessing methods for the general correlated case in the future work because they are very

different. Given a query Gaussian distribution, our task is to retrieve from the database

the Gaussian distributions that are similar to the query. The top-k Gaussian distributions

with the highest similarity scores are returned as the answer to the query.

In [24], Böhm et al. considered similarity search on feature vectors such as structural fea-

tures of 2-D contours [101], time series [102] and color histograms in image databases.

They represented the uncertainty of each feature vector using a non-correlated multidi-

mensional Gaussian distribution. As discussed in [15], compared to general Gaussian

distributions, the number of parameters, the storage and computational requirements can

be reduced substantially by using non-correlated Gaussian distributions. In consequence,

the non-correlated Gaussian distribution is often preferred in practical applications [103].

Furthermore, Gaussian mixture models (GMMs), which are linear combinations of Gaus-

sian distributions, are known for their ability to model arbitrarily shaped distributions.
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For instance, GMMs are used to model driver behaviors for driver identification in [104].

We believe that our work paves the way for similarity search over GMMs, which will be

beneficial for many real world applications such as finding drivers with similar driving

behaviors.

To capture the similarity between a data Gaussian distribution and a query Gaussian dis-

tribution, we choose Kullback-Leibler divergence (KL-divergence) [27], a representa-

tive measure for quantifying the similarity between two probability distributions. KL-

divergence is introduced in [105], and has then become the commonest divergence mea-

sures used in practice [106].

It is well-known that KL-divergence is a non-metric measure which violates the prop-

erties of a standard distance function in metric spaces such as the Euclidean space with

the Euclidean distance. Specifically, it is asymmetric and does not satisfy the triangular

inequality. Hence, existing index structures based on distance functions for metric spaces

like M-tree [107] cannot be employed to solve this problem.

A naı̈ve solution is to sequentially compute the KL-divergence with the query Gaussian

distribution for each Gaussian distribution in the database, and select ones with top-k

smallest KL-divergences. However, this method poses remarkable computing overhead

and hence is not scalable to large datasets. In consequence, we employ the filter-and-

refine paradigm to improve the efficiency of query processing. It first generates a set of

promising candidates and filters unpromising ones without computing their similarities,

and then candidate objects are refined to obtain the final results.

We propose two types of approaches utilizing the notions of rank aggregation [32] and

skyline queries [33]. The first type presorts all objects in the database on their attributes

and computes result objects by merging candidates from presorted lists. We modify the

representative threshold algorithm (TA) [32] and propose two algorithms for efficient

query processing. The second one transforms the problem to the computation of dynamic

skyline queries [108]. We extend and modify the branch-and-bound skyline (BBS) algo-

rithm [108], which is proposed to answer skyline queries, and develop a novel algorithm

to solve this problem.
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We note that although there have been several studies on searching in non-metric spaces [28–

31], they are mainly developed for the generic class of non-metric similarity measures in

discrete domains. None of them paid particular attention to the case where objects are

modeled in Gaussian distributions and KL-divergence is chosen as the similarity mea-

sure. To the best of our knowledge, our work is the first study in similarity search based

on KL-divergence over Gaussian distributions.

Our contributions are listed as follows.

1. We formalize the problem of top-k similarity search based on KL-divergence over

Gaussian distributions, and analyze mathematically the properties of KL-divergence

between two Gaussian distributions.

2. We propose two types of approaches to improve the efficiency of query processing

using the notion of rank aggregation and skyline queries.

3. We demonstrate the efficiency and effectiveness of our approaches through a com-

prehensive experimental performance study.

The rest of this chapter is organized as follows. We formally define the problem in Sec-

tion 4.2. Then we analyze KL-divergence of Gaussian distributions in Section 4.3 and

propose two types of approaches in Section 4.4 and Section 4.5. Experimental results

and analyses are presented in Section 4.6. We review related work in Section 4.7. Fi-

nally, Section 4.8 concludes this chapter.

4.2 Problem Definition

4.2.1 Gaussian Distribution

In the one-dimensional space, a Gaussian distribution is described by the average µ and

the variance σ2:

p(x) =
1

√
2πσ2

exp

[

−(x − µ)2

2σ2

]

. (4.1)
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In the d-dimensional space, it is represented by the average vector µ and the covariance

matrix Σ [15]:

p(x) =
1

(2π)d/2|Σ|1/2 exp

[

−1

2
(x − µ)TΣ−1(x − µ)

]

. (4.2)

|Σ| (resp. Σ−1) is the determinant (resp. inverse matrix) of Σ. (·)T means the transposition

of (·). In this work, we assume that a large number of objects represented by Gaussian

distributions are stored in the database. For simplicity, objects represented by Gaussian

distributions are called Gaussian objects, and Gaussian objects in the database are called

data Gaussian objects afterwards.

4.2.2 Similarity Measure: KL-divergence

Given two continuous probability distributions p1(x) and p2(x), the Kullback-Leibler di-

vergence (KL-divergence) or relative entropy [27] between them is

DKL(p1‖p2) =

∫ +∞

−∞
p1(x) ln

p1(x)

p2(x)
dx. (4.3)

In information theory, KL-divergence DKL(p1‖p2) is interpreted as a measure of the in-

efficiency of assuming that the distribution is p2 when the true distribution is p1 [27].

In other words, it measures the information lost when p2 is used to approximate p1.

The smaller the KL-divergence is, the more similar the two probability distributions are.

Accordingly, the problem of KL-divergence-based top-k similarity search over Gaussian

distributions (KLD-Gauss) is actually equivalent to finding top-k Gaussian objects having

the smallest KL-divergences with the query Gaussian object.

KL-divergence satisfies the following properties of standard distance functions: 1) non-

negativity: DKL(p1‖p2) ≥ 0; 2) identity: DKL(p1‖p2) = 0 if and only if p1(x) = p2(x).

However, it is not symmetric, i.e.,DKL(p1‖p2) , DKL(p2‖p1) in general. Moreover, it vi-

olates the notion of triangular inequality, namely,DKL(p1‖p2)+DKL(p2‖p3) ≥ DKL(p1‖p3)

does not necessarily hold. In other words, KL-divergence is a non-metric measure [31].

Hence, index structures designed for query processing in metric spaces such as M-tree [107]

and iDistance [109] cannot be applied to accelerate similarity search based on KL-divergence.
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As KL-divergence is asymmetric, given a data Gaussian object p and a query Gaussian

object q, there are two options when using it as the similarity measure between them:

DKL(p‖q) orDKL(q‖p). It is not easy to decide which one to use, and may vary according

to different applications. Both of them are common in the literature. Thus, in this work,

we study both types.

The naı̈ve approach of solving the KLD-Gauss problem is to perform a sequential scan

over all objects in the database and compute their KL-divergences for each query. This

approach is obviously too time-consuming and will induce intolerable computation cost

for many real-world applications, especially over large scale databases. To improve the

efficiency of query processing, we adopt the well-known filter-and-refine paradigm. The

rationale is to avoid unnecessary computations by developing effective filtering tech-

niques.

In this work, we propose two types of approaches for filtering. They utilize the notions of

rank aggregation [32] and skyline queries [33], respectively. Below we first present our

analysis of KL-divergence of Gaussian distributions, and then introduce our approaches.

4.3 KL-divergence of Gaussian Distributions

Given two one-dimensional Gaussian distributions p1(x) = N(µ1, σ1) and p2(x) = N(µ2, σ2),

their KL-divergence, denoted as D1
KL(p1‖p2), is as follows [110]:

D1
KL(p1‖p2) =

1

2

[

(µ1 − µ2)2

σ2
2

+
σ2

1

σ2
2

− ln
σ2

1

σ2
2

− 1

]

. (4.4)

The two types of KL-divergence, D1
KL(p‖q) and D1

KL(q‖p), are referred to as D1
KL1 and

D1
KL2, respectively.

In the d-dimensional space, given p1(x) = N(µ1,Σ1) and p2(x) = N(µ2,Σ2), Dd
KL(p1‖p2)

is defined by

Dd
KL(p1‖p2) =

1

2
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∑
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where µ1,i (resp. µ2,i) is the i-th (1 ≤ i ≤ d) element of p1 (resp. p2)’s average vector µ1

(resp. µ2). According to the independence assumption, Σ1 and Σ2 are diagonal matrices

and their diagonal elements are denoted by σ2
1,i and σ2

2,i, respectively. Obviously,Dd
KL =

∑d
i=1Di

KL, where Di
KL is the KL-divergence in the i-th dimension.

Similarly, the two types of Dd
KL, Dd

KL(p‖q) and Dd
KL(q‖p), are denoted by Dd

KL1 and

Dd
KL2

, respectively. Since they are sums of the one-dimensional case, their properties of

monotonicity in each dimension are the same to that of D1
KL1 and D1

KL2, which will be

discussed subsequently.

4.3.1 D1
KL(p‖q): D1

KL1

As the smallerD1
KL1 is, the more similar p is to q, we differentiateD1

KL1 on p, specifically

on µp and σ2
p, and obtain the following equations:

∂D1
KL1

∂µp

=
µp − µq

σ2
q

(4.6)

∂D1
KL1

∂σ2
p

=
σ2

p − σ2
q

σ2
pσ

2
q

. (4.7)

By letting both Eq. (4.6) and Eq. (4.7) equal to 0, we derive the following property illus-

trated in Fig. 4.2. The arrows indicate decreasing directions of KL-divergence. We use

(µp − µq)2 as the horizontal axis to make the figure easy to understand.

Property 3. D1
KL1 is a monotonically increasing function centered at (µq, σ

2
q) and divided

by µp = µq, σ2
p = σ

2
q.

1. As µp increases,D1
KL1 increases monotonically when µp > µq, and decreases mono-

tonically when µp < µq.

2. As σ2
p increases, D1

KL1 increases monotonically when σ2
p > σ

2
q, and decreases

monotonically when σ2
p < σ

2
q.

3. D1
KL1 is minimized at µp = µq, σ2

p = σ
2
q, and its minimum is 0.
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Figure 4.2: Property of D1
KL1

Figure 4.3: Property of D1
KL2

Obviously, D1
KL1 is divisionally monotonous. The closer a point is to the center (µq, σ

2
q)

and the dividing lines µp = µq and σ2
p = σ

2
q, the smallerD1

KL1 is. In other words, smaller

|µp − µq| and |σ2
p − σ2

q| lead to smallerD1
KL1.

4.3.2 D1
KL(q‖p): D1

KL2

Similarly, we differentiateD1
KL2 on µp and σ2

p, and get the following equations:

∂D1
KL2

∂µp

=
µp − µq

σ2
p

(4.8)

∂D1
KL2

∂σ2
p

=
σ2

p − σ2
q − (µp − µq)2

σ4
p

. (4.9)

In the same way, by letting both Eq. (4.8) and Eq. (4.9) equal to 0, we can obtain the

following property illustrated in Fig. 4.3. It differs from D1
KL1 in that its plane is divided

by σ2
p = σ

2
q + (µp − µq)2 instead of σ2

p = σ
2
q.

Property 4. D1
KL2 is a monotonically increasing function centered at (µq, σ

2
q) and divided

by µp = µq, σ2
p = σ

2
q + (µp − µq)2.

1. As µp increases,D1
KL2 increases monotonically when µp > µq, and decreases mono-

tonically when µp < µq.

2. As σ2
p increases, D1

KL2 increases monotonically when σ2
p > σ

2
q + (µp − µq)2, and

decreases monotonically when σ2
p < σ

2
q + (µp − µq)2.
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3. D1
KL2 is minimized at µp = µq, σ2

p = σ
2
q + (µp − µq)2, and its minimum is 0.

Similarly, the closer a point is to the center (µq, σ
2
q) and the dividing lines µp = µq and

σ2
p = σ

2
q+(µp−µq)2, the smallerD1

KL2 is. Hence, smaller |µp−µq| and |σ2
p−σ2

q−(µp−µq)2|

indicate smallerD1
KL2.

4.4 TA-based Query Processing

The problem of sequential scan lies in that, it has to compute KL-divergences of all ob-

jects in the database, even though only k of them will be the answer. Based on this obser-

vation and monotonic properties of KL-divergence discussed in Section 4.3, we consider

selecting a small number of promising candidate objects by presorting to avoid comput-

ing KL-divergences for unpromising objects. For example, in the one-dimensional case,

we can sort the database on µ and σ2 in advance, and only consider ones whose µ and σ2

are close enough to that of q.

This is the basic idea of our first type of approaches, which utilize the notion of rank

aggregation [32]. Generally speaking, we rank objects on each attribute and aggregate

ones with high ranks to obtain the final top-k objects. Below we use the representative

threshold algorithm (TA) [32] for description. To better solve the KLD-Gauss problem,

we propose novel algorithms by modifying the TA algorithm. Below we first describe the

TA algorithm and then introduce our proposed algorithms.

4.4.1 The TA Algorithm

TA assumes that a middleware system S aggregates answers to queries from various

subsystems. Each subsystem S i supports two modes of data access: sorted access and

random access. In the sorted access mode, S obtains the grade of an object in the sorted

list of S i by proceeding through the list sequentially from the top. On the other hand,

random access to S i returns the corresponding grade of a given id.
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Top images of subsystems

Rank sred(xi) sround(xi)

1 (0.96, x1) (0.95, x2)

2 (0.91, x2) (0.92, x3)

3 (0.85, x4) (0.85, x5)

4 (0.81, x3) (0.83, x4)

5 (0.72, x5) (0.76, x1)

Top images in result

Rank sQ(xi), attribute

1 (x2, 0.91), red

2 (x4, 0.83), round

3 (x3, 0.81), red

Figure 4.4: An example of the TA algorithm

For example, consider a database of images in Fig. 4.4 with two subsystems S color and

S shape. S color returns images based on their colors, and S shape is based on shapes. Given a

query of Q : (color = “red”) ∧ (shape = “round”), S merges images with high redness

grades in S color and high roundness grades in S shape to obtain images satisfying the query.

Assume that Q requests top-3 images based on the score function sQ(x) = min{sred(x), sround(x)},

where sred(x) (resp. sround(x)) denotes the redness (resp. roundness) grade of image x. The

left table lists top-5 images with their grades in each subsystem. Assume we retrieve one

image by each sorted access. First, we obtain {sred(x1) = 0.96, sround(x2) = 0.95}. Other

grades of x1 and x2, sround(x1) = 0.76 and sred(x2) = 0.91, can be obtained via ran-

dom access. Thus, sQ(x1) = 0.76 and sQ(x2) = 0.91. The two images are both added

into a result set R = {(x2, 0.91), (x1, 0.76)}. At the same time, the threshold τ is kept

τ = min{0.96, 0.95} = 0.95. This is the possible best score of all images unprocessed.

Once scores of images in R are all no smaller than τ, the algorithm stops and returns R.

Next, sred(x2) = 0.91 and sround(x3) = 0.92 are retrieved. Since x2’s score has already

been computed, we do random access only for x3 and compute its score sQ(x3) = 0.81.

Then x3 is added into R and τ is updated to 0.91. In the next step, since x4 has a better

score than x1, we update R = {(x2, 0.91), (x4, 0.83), (x3, 0.81)} and τ = 0.85. Finally, as x3

and x4 have already been processed, we only need to update τ = 0.81. At this point, τ is

no better than any of images in R, i.e., no image unprocessed can have a better score than

that in R. Therefore, the algorithm terminates and returns R as shown in the right table

of Fig. 4.4. For ease of understanding, we associate each score with its corresponding

attribute, i.e., red or round.
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gi µi σ2
i

g1 2 2.5

g2 3.5 2.1

g3 5 2.7

g4 7 2.4

g5 9 2.5

g6 8 1.8

g7 4 0.7

g8 6 1.2

g9 6.4 1.1

g10 9 0.8

g11 8.5 0.2

g12 10.6 0.5

Order S µ S σ2

1 (2, g1) (0.2, g11)

2 (3.5, g2) (0.5, g12)

3 (4, g7) (0.7, g7)

4 (5, g3) (0.8, g10)

5 (6, g8) (1.1, g9)

6 (6.4, g9) (1.2, g8)

7 (7, g4) (1.8, g6)

8 (8, g6) (2.1, g2)

9 (8.5, g11) (2.4, g4)

10 (9, g10) (2.5, g1)

11 (9, g5) (2.5, g5)

12 (10.6, g12) (2.7, g3)

Figure 4.5: An example dataset and its sorted orders

4.4.2 The Proposed Algorithms

To utilize TA, we redefine sorted access and random access for the KLD-Gauss prob-

lem. Given an object id, random access returns the corresponding average vector and

covariance matrix. We design two types of sorted access. The first one retrieves µp, j

or σ2
p, j

(1 ≤ j ≤ d) and object id in the ascending order of |µp, j − µq, j| or |σ2
p, j
− σ2

q, j
|

(or |σ2
p, j
− σ2

q, j
− (µp, j − µq, j)

2|, omit afterwards). The second one gives access to D j

KL

(1 ≤ j ≤ d) and object id in the ascending order of D j

KL. They are called CompleteTA

(CTA) and PartialTA (PTA), respectively, and will be detailed subsequently.

4.4.2.1 The CTA Algorithm

For CTA, we presort the database on µp, j and σ2
p, j (1 ≤ j ≤ d), and get 2d sorted lists.

For example, in Fig. 4.5 the left table shows a list of 12 one-dimensional objects, and

the right table shows their sorted orders on µi and σ2
i

(called S µ and S σ2 , respectively).

In the multidimensional case, for each dimension j, we sort all objects on both µi, j and

σ2
i, j

and get 2d sorted lists: (S µ,1, S σ2,1), . . . , (S µ,d, S σ2,d). By default, in each dimension

j, the sorted access to each list of average returns an object p with its average µp, j in

the ascending order of |µp, j − µq, j|, and the sorted access to each list of variance returns

another object g with its variance σ2
g, j in the ascending order of |σ2

g, j − σ2
q, j|.
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Algorithm 5 The straightforward CTA algorithm

1: Initialize the top-k list R and the query q (µq, σ
2
q);

2: repeat

3: for each dimension j do

4: SortedAccessavg()→ (µa, j, ga);

5: SortedAccessvar()→ {(σ2
v, j, gv), (σ

2
v, j
, g
v
)};

6: if Any of ga, gv, gv
has not been accessed then

7: Do RandomAccess and calculate its KL-divergence;

8: Update R;

9: Let µ j, σ
2
j , σ

2
j

be the last values accessed by SortedAccess;

10: µ← {µ j|1 ≤ j ≤ d}; σ2 ← {σ2
j |1 ≤ j ≤ d}; σ2 ← {σ2

j
|1 ≤ j ≤ d};

11: τ← min{CalcKLD(µ, σ2), CalcKLD(µ, σ2)};
12: until |R| = k and KL-divergences in R are all no greater than τ;

13: return R;

Algorithm 5 shows the straightforward application of the TA algorithm using the rede-

fined random access and sorted access. The algorithm runs by dimensions. In each

dimension j, we retrieve an object ga with its average µa, j by sorted access to the list of

average. The average value of the retrieved object, µa, j, is closest to that of the query,

µq, j, i.e., |µa, j − µq, j| is the smallest. If there is a tie, i.e., there are two objects ga and ga′

satisfying |µa, j − µq, j| = |µa′, j − µq, j| = ∆µ, we can break it randomly since the algorithm

relies on τ and the computation of τ depends on ∆µ not µa, j or µa′, j.

On the other hand, because of the asymmetry of KL-divergence discussed in Section 4.2,

each sorted access to the list of variance should return two objects in the two directions

of σ2
v, j : σ2

v, j ≥ σ2
q, j and σ2

v, j
: σ2
v, j < σ

2
q, j (one in each direction) instead of one object to

ensure correctness. We explain it using the following example. Consider a query q with

µq = 5, σ2
q = 1 and k = 3. In the first step, while we retrieve (5, g3) from S µ, from S σ2

both (1.1, g9) and (0.8, g10) need to be retrieved (in bold) to ensure correctness because

we do not know which of them will have a smaller KL-divergence with respect to q. If we

retrieve only (1.1, g9) and find (5, 0.8) has a smaller KL-divergence than that of (5, 1.1)

with respect to q when computing τ, τ will be larger than it is supposed to be and this

may lead to a wrong result. In other words, we start processing from the entries in bold

and continue searching in both directions.

If an object is accessed for the first time by sorted access, we obtain its average vector

and covariance matrix by random access and calculate its KL-divergence (Line 6 – 7).
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Step Retrieved objects R τ

1 g3, (g9, g10) (g3, 0.35), (g9, 0.98), (g10, 8.01) 0.002

2 g7, (g7, g8) (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.508

3 g8, (g6, g12) (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.597

Figure 4.6: Query processing using the straightforward CTA

Step Retrieved objects R τ

1 g3, g9 (g3, 0.35), (g9, 0.98) 0.002

2 g7, g8 (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.508

3 g8, g10 (g3, 0.35), (g8, 0.508), (g7, 0.53) 0.512

4 g9, g7 (g3, 0.35), (g8, 0.508), (g7, 0.53) 1.01

Figure 4.7: Query processing using the improved CTA

For example, we do random access for g3, g9 and g10, and compute their KL-divergences

(D1
KL1 is used for computing KL-divergences in this example).

Then we update the top-k list R as follows. When |R| < k, the object with its KL-

divergence is added to R directly. When |R| achieves k, if its KL-divergence is better

than any entry in R, we add it into R and delete the entry with the largest KL-divergence

so that R only maintains the best k objects. Meanwhile, we compute the threshold τ

using the last accessed average and variance values (Line 9 – 11). As τ is the best KL-

divergence of all objects unseen, the algorithm terminates when KL-divergences in R are

all no greater than τ.

We show the processing steps of the example query in Fig. 4.6. Continuing with the

example, we update R = {(g3, 0.35), (g9, 0.98), (g10, 8.01)}. At the same time, we compute

KL-divergences of (5, 1.1) and (5, 0.8) with respect to the query (5, 1), and update τ as

the smaller one, which is 0.002.

In the second step, (4, g7) from S µ, (1.2, g8) and (0.7, g7) from S σ2 , are retrieved. Since

KL-divergences of g7 and g8 are smaller than that of g9 and g10, we update R as {(g3, 0.35),

(g8, 0.508), (g7, 0.53)} and τ = 0.508. In the last step, we retrieve (6, g8) from S µ, (1.8, g6)

and (0.5, g12) from S σ2 . R stays the same, but τ is updated to 0.597. Finally, as all the

objects in R have no greater KL-divergences than τ, we stop searching and return R.

In each step, as the straightforward algorithm retrieves two objects with respect to the

variance in a brute-force way, it tends to do many unnecessary accesses. We avoid them
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by considering the priority of the object in each direction and access only one in each

step. We derive the following lemma to guide the algorithm (see the proof in C.1).

Lemma 4.1. 1. Assume |µp, j − µq, j| = |µp′, j − µq, j| (1 ≤ j ≤ d) and σ2
p,m = σ

2
p′,m

(1 ≤ m ≤ d,m , j). If σ2
p, j
> σ2

q, j
, σ2

p′, j < σ
2
q, j

, and (σ2
p, j
− σ2

q, j
) ≤ (σ2

q, j
− σ2

p′, j),

thenDKL(p||q) < DKL(p′||q).

2. Assume |µp, j−µq, j| = |µp′, j−µq, j| (1 ≤ j ≤ d) andσ2
p,m = σ

2
p′,m (1 ≤ m ≤ d,m , j). If

σ2
p, j
> σ2

q, j
+(µp, j−µq, j)

2, σ2
p′, j < σ

2
q, j
+(µp′, j−µq, j)

2, and (σ2
p, j
−σ2

q, j
−(µp, j−µq, j)

2) ≤

(σ2
q, j + (µp′, j − µq, j)

2 − σ2
p′, j), thenDKL(q||p) < DKL(q||p′).

Based on Lemma 4.1, during the bidirectional search over the variance, when an object p

with σ2
p, j > σ

2
q, j is obtained, we only need to consider another object p′ with σ2

p′, j < σ
2
q, j,

if σ2
p′, j is nearer to σ2

q, j
(or σ2

q, j
+(µp′ , j−µq, j)

2) than that of p. For example, in the first step,

in S σ2 when comparing (1.1, g9) with (0.8, g10), since (1.1−1) ≤ (1−0.8), we only retrieve

g9 and delay the retrieval of g10. In other cases, we compare their KL-divergences using

the current average value µ j obtained, i.e., KL-divergences of (µ j, σ
2
p, j

) and (µ j, σ
2
p′, j), and

select the one with a smaller KL-divergence with respect to q.

We show the running steps of the improved CTA algorithm in Fig. 4.7. At first, we

retrieve (5, g3) from S µ. Meanwhile, we retrieve (1.1, g9) from S σ2 based on Lemma 4.1

as explained above. Accordingly, we update R and τ. Then we continue to retrieve

(4, g7) from S µ. Since (1.2 − 1) ≤ (1 − 0.8), we retrieve (1.2, g8) from S σ2 based on

Lemma 4.1 and update R and τ accordingly. In the third step, when comparing (1.8, g6)

with (0.8, g10) in S σ2 , because they do not satisfy Lemma 4.1, we compute their KL-

divergences using the current average value µ8 = 6. In other words, we compare KL-

divergences of (6, 1.8) and (6, 0.8) with respect to (5, 1). Then g10 is selected. As we can

see, while the straightforward CTA algorithm accessed 7 objects, the improved one only

retrieved 5 objects with one additional step.
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4.4.2.2 The PTA Algorithm

For PTA, in each dimension we construct a two-dimensional R-tree of all data Gaussian

objects. When a query q comes, by using the skyline-based approach described in Sec-

tion 4.5, we can obtain the top objects with the smallest Di
KL with respect to q in each

dimension i (detailed in Section 4.5.6). The PTA algorithm is similar to the CTA algo-

rithm, except that we retrieve objects based on Di
KL instead of µi and σ2

i with respect to

q, and τ is calculated by τ =
∑d

i=1Di
KL

.

Next, we introduce another approach, which transforms the KLD-Gauss problem to dy-

namic skyline queries [108] by using the notion of skyline queries [33].

4.5 Skyline-based Query Processing

In this section, by utilizing the properties of KL-divergence and Gaussian distributions,

we propose another approach for solving the KLD-Gauss problem. We extend and mod-

ify the BBS (Branch-and-Bound Skyline) algorithm [108], which is proposed to answer

skyline queries. Below we first introduce the concept of skyline queries and the BBS

algorithm, and then describe our extensions and the proposed algorithm.

4.5.1 Skyline Queries and Dynamic Skyline Queries

Given a dataset D, a skyline query [33] returns all the objects not dominated by others

within D. pi is said to be dominated by p j, if p j is better than pi on at least one attribute,

and better than or equals to pi on other attributes. A common example is, given a list

of hotels with prices and distances from a beach, to find ones having the lowest prices

and the shortest distances. A hotel with $200 and 1km from the beach is preferable to

(dominate) the one of $250 and 1.5km.

A dynamic skyline query, a variation of a skyline query, returns all the objects that are not

dynamically dominated with respect to a set of dimension functions f1, f2, ..., fm specified

by the query [108]. Each function fi takes as parameters a subset of the n attributes
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in the original n-dimensional space. The objective is to return the skyline in the new

m-dimensional space defined by f1, f2, ..., fm.

Continuing with the hotel example, assume for each hotel we store its x and y coordinates

and price c (3-dimensional) information in the database. Dynamic skyline queries can be

used to retrieve hotels that are closest to a specified location (xu, yu) and price cu. In other

words, closeness functions are defined by f1 =
√

(x − xu)2 + (y − yu)2, and f2 = |c − cu|.

Note that (xu, yu) and cu normally vary with queries.

In [108], Papadias et al. proposed the BBS algorithm for processing skyline queries. They

proved that BBS is I/O optimal; that is, it accesses the least number of disk pages among

all algorithms based on R-trees. Hence, the following discussion concentrates on this

technique.

4.5.2 The BBS Algorithm

Consider the task of computing the skyline of the example dataset in Fig. 4.5, i.e., finding

objects with the smallest averages and variances. According to BBS, we construct an

R-tree to index all objects. Each Gaussian object is inserted into the R-tree as a two-

dimensional point (µi, σ
2
i
). Its image and hierarchical structure are shown in Fig. 4.8 and

Fig. 4.9. Each group of objects, i.e., an R-tree node, is represented by an MBR (Minimum

Bounding Rectangle).

A priority queue Q is employed to maintain entries (R-tree nodes or Gaussian objects)

to be accessed in the ascending order of mindist. The mindist of an entry, is the smallest

cityblock (L1) distance of its MBR to a reference point. For example, the mindist of N1 to

the origin O is calculated by summing up the length of OA and AB, where B is the lower-

left point of N1, and A is the projection of B on the µp-axis. The mindist of a Gaussian

object to O, e.g., g1 = (2, 2.5), is simply its L1 distance to O, i.e., 2 + 2.5 = 4.5.

We use the example in Fig. 4.8 to illustrate the algorithm. After expanding the root node,

entries in Q are {(N1, 3.8), (N2, 4.2)}. Then we expand N1 and insert N11, N12 into Q. Q

becomes {(N11, 4.1), (N2, 4.2), (N12, 8.8)}. When expanding N11, since g3 is dominated
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Figure 4.8: R-tree image Figure 4.9: R-tree structure

by g1 (and g2), it is rejected. After expanding N2, Q = {(g1, 4.5), (N21, 4.7), (g2, 5.6),

(N22, 8.7), (N12, 8.8)}.

Next g1 is added into a candidate set S as the first skyline object. Since N21 is not dom-

inated by g1, it is expanded and g7 is inserted into Q. Then Q = {(g7, 4.7), (g2, 5.6),

(N22, 8.7), (N12, 8.8)}. g7 and then g2 are both added into S because g7 is not dominated

by g1, and g2 is not dominated by g7 and g1. Subsequently, expanding N22 leads to another

candidate g11. The last entry N12 will not be expanded as it is dominated by g7. Finally,

S = {g1, g7, g2, g11} is returned as the skyline result.

BBS can be applied to compute dynamic skylines by expanding entries in Q according to

mindist in the dynamic space [108]. In others words, we compute mindist with respect to

the query object q instead of the origin O. Dynamic skylines can be computed in the same

way except that the mindist of each entry in Q will be changed (each mindist is computed

on-the-fly when the entry is considered for the first time). Assuming f1 = |µp − µq| and

f2 = |σ2
p −σ2

q|, the dynamic skyline result of the query q = (5, 1) in Fig. 4.8 is {g3, g8, g9}.

4.5.3 Transformation and Extension

According to Section 4.3, the closer µp is to µq, σ2
p is to σ2

q, the smaller KL-divergence is.

This is analogous to a dynamic skyline query by assuming f1 = |µp−µq|, f2 = |σ2
p−σ2

q| (or
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f2 = |σ2
p −σ2

q − (µp − µq)2|). Hence, we transform the KLD-Gauss problem to computing

the dynamic skyline with respect to q.

In [108], BBS is applied directly to compute dynamic skylines. However, we note that

since KL-divergence is asymmetric over σ2
i
, the two subspaces divided by σ2

p = σ
2
q (or

σ2
p = σ

2
q + (µp − µq)2) should be treated separately when we use BBS. In each dimension,

we need to maintain two priority queues, and merge two result sets to obtain the final

top-k objects. This is obviously inefficient and would incur extra computation cost.

Note that a straightforward method is to use iterative skyline computation according to

the property that the top-1 object, based on any monotone ranking function, must be one

of the skyline objects [111]. After deleting the top-1 object from our consideration, we

recompute dynamic skyline objects. Then we select the top-2 object among them. Top-3,

4, . . ., k objects are computed in a similar way. This method would also lead to heavy

cost.

The two concerns motivate us to propose a more efficient approach. We develop our ideas

by extending the BBS algorithm. For ease of presentation, we describe our approach

usingD1
KL1 and present necessary modifications in Section 4.5.5.

Because of the asymmetry of KL-divergence, we can only determine the dominance rela-

tionship between an object and each entry in the same subspace where the object locates,

and cannot conclude whether it dominates any entry in the other subspace directly. For

example, in Fig. 4.8 we can directly determine that g8 dominates N12. However, we do not

know whether g8 dominates g7 or N22. As a result, the dynamic skyline in each subspace

has to be computed separately.

In order to reduce the cost caused by separate subspace computation, we consider en-

hancing the filtering power of each object from the subspace where it locates to the other

subspace. If the dominance relationship between the two subspaces can be determined,

we only need to maintain one priority queue and compute the two dynamic skylines to-

gether. To this end, for each point in one subspace, we find its counterpoint in the other

subspace so that it can be used for filtering in that subspace.
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This idea is confirmed by the properties of KL-divergence discussed in Section 4.3.1.

Since KL-divergence shows monotonicity in both sides of σ2
p = σ

2
q and is minimized at

σ2
p = σ

2
q, for each point g in one subspace there must be one and only one corresponding

point g′ that satisfies µg′ = µg and D1
KL(g′‖q) = D1

KL(g‖q). We call g′ the equal-KLD

point of g. The two equations produce σ2
g′ − σ2

q lnσ2
g′ = σ

2
g − σ2

q lnσ2
g. Because of its

complexity, there is no analytical solution for σ2
g′ . We compute σ2

g′ numerically by the

Newton method and use its approximation (a slightly larger value to ensure correctness)

instead. For example, the equal-KLD point of g8 = (6, 1.2) is g′8 = (6, 0.82), which can

be used to filter entries such as N22 additionally (i.e., g′8 dominates N22).

We formally define the equal-KLD point as follows.

Definition 4.2 (equal-KLD point). Given a Gaussian point g, g′ is the equal-KLD point

of g, if g′ satisfiesD1
KL(g′‖q) = D1

KL(g‖q).

Accordingly, we extend the definition of dynamically dominate to dynamically KLD-

dominate as follows.

Definition 4.3 (dynamically KLD-dominate). Given a Gaussian point g and an entry e, g

dynamically KLD-dominates e, if g’s equal-KLD point g′ dynamically dominates e.

For example, by computing g8’s equal-KLD point g′8 = (6.01, 1.1), we can conclude that

g8 dynamically KLD-dominates g9 = (6.4, 1.1) since g′8 dynamically dominates g9. As g

is an equal-KLD point of itself, we can equally say g dynamically KLD-dominates e, if g

dynamically dominates e. The relationship of g dynamically KLD-dominates e guarantees

that the KL-divergence of g is smaller than that of any object within e.

To reduce the overhead of iterative skyline computation, we modify the way of dominance

checking that the BBS algorithm does. We sort all candidates in the ascending order of

KL-divergence. For each entry in the priority queue, we check the dominance relationship

from the k-th candidate to the last one instead of checking all candidates as BBS does.

If all entries are dynamically KLD-dominated by these “inferior” (from k to the last)

candidates, the “superior” top-(k-1) and the first “inferior” candidates will be the final

top-k result.
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Algorithm 6 Skyline-based query processing algorithm

1: procedure KLD Query SKY(R-tree, q, k)

2: Q← (0,Root); ⊲ Initialize Q with the Root of R-tree

3: S ← ∅; ⊲ Initialize the candidate set

4: while Q is not empty do

5: e← Q.top(); Q.pop();

6: Check e against S ;

7: if e is not dynamically KLD-dominated by S then

8: if e is a Gaussian object g then

9: Add g and its KL-divergence into S ;

10: else ⊲ e is an R-tree node N

11: for each child Ni do

12: Check Ni against S ;

13: if Ni is not dynamically KLD-dominated by S then

14: Q.push(Ni, mindist(Ni));

15: return top-k of S ;

4.5.4 The Proposed Algorithm: SKY

Based on the discussion above, we propose the SKY algorithm shown in Algorithm 6.

An R-tree is employed to index averages and variances of all Gaussian objects in the

database. Given the constructed R-tree, a query Gaussian object q, and a constant k, the

algorithm returns the top-k Gaussian objects having the smallest KL-divergences with q.

The algorithm begins from the root node and continues until all entries in the priority

queue Q are processed. When checking the top entry e of Q against the candidate set S

(Line 6), if |S | < k, we add it to S if it is an Gaussian object, and expand it in the case of an

R-tree node. Otherwise (i.e., |S | ≥ k), we sort S in the ascending order of KL-divergence,

and compare e against “inferior” candidates in S , i.e., from the k-th candidate until the

last one. In this way, we can avoid the expensive iterative dynamic skyline computation.

We reject e if it is dynamically KLD-dominated by S . If not, it is either added into S with

its divergence (when e is a Gaussian object) or expanded (when e is an R-tree node). In

the expansion of an R-tree node N, we check each of its child nodes Ni against S and

insert Ni to Q if Ni is not dynamically KLD-dominated by S . Finally, the top-k candidates

of S will become the result.

Another problem is that, there still will be quite a long list of entries in Q waiting for dom-

inance checking. In order to prune non-promising entries, for each “inferior” candidate
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p, we derive its maximum mindist (mmdist) using the Lagrange multiplier.

maximize
µp,σ

2
p

mmdist = |µp − µq| + |σ2
p − σ2

q|

subject to
1

2













(µp − µq)2

σ2
q

+
σ2

p

σ2
q

− ln
σ2

p

σ2
q

− 1













= C.

To guide the algorithm based on mmdist, we further derive the following lemma (see the

proof in C.2).

Lemma 4.4. Any entry (Gaussian object or R-tree node) whose mindist is larger than

mmdist of an object g will be dynamically KLD-dominated by g.

According to Lemma 4.4, we only need to consider entries with mindist < mmdist so that

the searching process can be finished early. We note that this filtering technique only

works forD1
KL1. In other cases, all entries in Q have to be processed.

We use the example in Fig. 4.8 to illustrate our algorithm in the case of D1
KL1. Assume

k = 3. After expanding the root node, Q = {(N2, 0), (N1, 0.8)}. Then we expand N2 and

Q = {(N21, 0), (N1, 0.8), (N22, 3.7)}. Next, N21 is expanded and g7, g8, g9 are inserted into

Q. Entries in Q are {(N1, 0.8), (g8, 1.2), (g7, 1.3), (g9, 1.5), (N22, 3.7)}.

After expanding N1, Q is {(N11, 1.1), (g8, 1.2), (g7, 1.3), (g9, 1.5), (N12, 2.8), (N22, 3.7)}.

Then N11’s child objects g1, g2, g3 are inserted into Q. Thus, Q = {(g8, 1.2), (g7, 1.3),

(g9, 1.5), (g3, 1.7), (g2, 2.6), (N12, 2.8), (N22, 3.7), (g1, 4.5)}.

The top three entries g8, g7, g9 with KL-divergences are added into S successively and

S = {(g8, 0.51), (g7, 0.53), (g9, 0.98)}. At the same time, we compute the mmdist of g9,

which is 4.03, and keep δ = 4.03. Next, since g3 is not dynamically KLD-dominated by

g9, it is inserted into S and S = {(g3, 0.35), (g8, 0.51), (g7, 0.53), (g9, 0.98)}. The mmdist

of g7 is 2.40 < 4.03. Thus, δ is updated to 2.40. Since the mindist of g2 is larger than δ,

the algorithm stops and returns {(g3, 0.35), (g8, 0.51), (g7, 0.53)}.
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gi µi,1 σ2
i,1 µi,2 σ2

i,2

g1 6.0 0.8 5.8 2.0

g2 6.0 3.0 6.4 1.6

g3 8.2 1.2 3.1 1.6

g4 2.5 3.4 4.7 0.9

Table 4.1: A two-dimensional example dataset

4.5.5 Extending the Skyline-based Approach

The case of D1
KL2 can be processed similarly except the filtering technique based on

mmdist cannot be applied. In the multi-dimensional case, the algorithm is the same

to the one shown in Algorithm 6. A 2d-dimensional R-tree is constructed to index

d-dimensional Gaussian objects in the database. The following definitions and com-

putations will replace their counterparts in the one-dimensional case: (1) mindist =

∑d
i=1(|µp,i − µq,i| + |σ2

p,i − σ2
p,i|) (2) Compute equal-KLD point based on Dd

KL1 or Dd
KL2.

(3) An object g dynamically KLD-dominates an entry e, if g’s equal-KLD point g′ dy-

namically dominates e in all dimensions.

4.5.6 Application to the PTA Algorithm

As discussed in Section 4.4.2.2, in each dimension PTA accesses the top objects with the

smallestDi
KL using the skyline-based method SKY. Since PTA performs multiple sorted

accesses in each dimension, we need to maintain all dominated entries instead of rejecting

them as SKY does. We associate each “inferior” candidate with all entries dominated by

it, and release them for further processing when this candidate becomes “superior” in the

next sorted access.

We use the following example two-dimensional dataset shown in Table 4.1 to illustrate

the PTA algorithm. We construct an R-tree in each dimension. Their R-tree images

in the first dimension and the second dimension are shown in Fig. 4.10 and Fig. 4.11,

respectively.

Consider the same query q = (5.0, 2.0; 6.0, 1.5) with k = 2. Assume that we retrieve

two objects in each dimension. At first, in the first dimension after expanding the root
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Figure 4.10: R-tree image (d = 1) Figure 4.11: R-tree image (d = 2)

node in Fig. 4.10, we obtain Q1 = {(N1, 1.0), (N2, 1.8)} where Q1 is a priority queue

maintaining entries (R-tree nodes and Gaussian objects) to be processed in the ascending

order of their mindists from q. Then we expand N1 and insert its two child Gaussian

objects, g2 and g4, into Q1 = {(N2, 1.8), (g2, 2.0), (g4, 3.9)}. Next, we expand N2 in the

same way and obtain Q1 = {(g2, 2.0), (g1, 2.2), (g4, 3.9), (g3, 4.0)}. The next entries, g2

and g1, are added into the candidate set S 1 successively with their KL-divergences in this

dimension, S 1 = {(g2, 0.297), (g1, 0.408)}. At the same time, we compute the mmdist of

g1 and assign it to δ1 = 3.904. Since the mindist of the next entry g4 is smaller than δ1,

i.e., 3.9 < 3.904, we continue to check g4. When checking it against S 1, we find that g4

is dynamically KLD-dominated by g1. Hence, we add it to the dominating list of g1, and

obtain S 1 = {(g2, 0.297), (g1, 0.408, {(g4, 3.9)})}. At this time, we have Q1 = {(g3, 4.0)}.

Since the mindist of the next entry g3 is larger than δ1, based on Lemma 4.4 we stop

searching and return g2 and g1 with the second smallest D1
KL
= 0.408.

In the second dimension, we calculate the smallest D2
KL

in the same way as D1
KL

in the first

dimension. After expanding the root node in Fig. 4.11, we obtain Q2 = {(N2, 0.1), (N1, 1.3)}.

Then we expand N2 and obtain Q2 = {(g2, 0.5), (g1, 0.7), (N1, 1.3)}. Next, we add g2 and g1

into S 2 successively with their KL-divergences in this dimension, S 2 = {(g1, 0.036), (g2, 0.054)}.

At the same time, we compute the mmdist of g2 and assign it to δ2 = 0.897. Since the

mindist of the next entry in Q2 = {(N1, 1.3)} is larger than δ2, again based on Lemma 4.4

we stop searching and return g1 and g2 with the second smallest D2
KL = 0.054.

What follows is that the algorithm will compute the overall KL-divergences of g2 and g1

in the two dimensions (0.35 and 0.44), respectively, and update τ = D1
KL + D2

KL = 0.462.

Since the second smallest KL-divergence 0.44 is larger than τ, we first release (g4, 3.9)
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Parameter Testing Range

k 1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

data size 1K, 10K, 100K, 1000K, 10000K

dimension 1, 2, 3, 4, 5

distribution independent, correlated, anti-correlated

Table 4.2: Parameters for testing

from S 1 to Q1 and delete the entries of g1 and g2 from S 1 and S 2, and then repeat the

same process in the next round until the kth smallest KL-divergence is no larger than τ.

4.6 Experiments

4.6.1 Experimental Setup

We generate both data Gaussian distributions and query Gaussian distributions randomly

under the same setting. Each average value is generated from (0, 1000), and each vari-

ance value is generated from (0, 100). The parameters tested in our experiments and their

default values (in bold) are summarized in Table 4.2. To test the effect of data distri-

bution, we also generate three datasets with independent, correlated, and anti-correlated

distributions, respectively, using the standard skyline data generator in [33].

We compare our TA-based algorithms CTA, PTA and skyline-based algorithm SKY, with

the sequential scan methods Scan and the extended BBS algorithm BBS. In each dimen-

sion i (1 ≤ i ≤ d), BBS processes objects in the two subspaces divided by σ2
p,i = σ

2
q,i (or

σ2
p,i
= σ2

q,i
+ (µp,i − µq,i)

2) separately. In other word, it maintains 2d priority queues and

compute each top object by merging candidate objects from these priority queues.

During the preprocessing, we build a 2d-dimensional R-tree for SKY and BBS. Each

Gaussian distribution is inserted as a 2d-dimensional point, consisting of the d-dimensional

average vector and d-dimensional variance vector. For PTA, we construct d two-dimensional

R-trees. Each two-dimensional R-tree maintains the average and variance value in the i-

th dimension (1 ≤ i ≤ d), and provides sorted access to the ranked Di
KL and object id
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(see Section 4.4). Random access is supported by an Gaussian object list in the order of

object id. All R-trees and lists are stored in the secondary memory.

In each experiment, we run 100 queries and use the average runtime for performance

evaluation. We do not consider I/O access because the system tends to load indices of

small size into main memory upon reading and the runtime is mainly spent on CPU.

All experiments are conducted using a workstation with Intel Xeon(R) CPU E3-1241 v3

(3.50GHz), RAM 16GB, running Ubuntu 12.10 LTS.

4.6.2 Performance Evaluation

We first compare SKY with BBS. While SKY takes about 0.02 seconds using both the

first type and the second type of KL-divergence (called KLD1 and KLD2 afterwards),

BBS takes 2.45 seconds for KLD1, and 0.23 seconds for KLD2. This demonstrates the

effectiveness of our extension and modification to the basic BBS algorithm. Because of

the uneven property of KLD2 shown in Fig. 4.3, most of objects are assigned to the same

priority queue. Consequently, BBS spends less time using KLD2 than that using KLD1.

We leave BBS out of our consideration in the following experiments because of its clear

inefficiency.

4.6.2.1 Effect of k

Intuitively, a larger k incurs more cost, since retrieving more objects potentially leads to

more computations. The constantly increasing runtime of PTA, CTA and SKY shown in

Fig. 4.12 follows this intuition. Scan is an exception of this intuition since it computes

KL-divergence for all data Gaussian objects regardless of k. CTA and SKY outperform

Scan over all k, and PTA performs better than Scan when k < 100 for KLD1 (k < 60

for KLD2). The difference is that PTA displays the most significant increase while the

runtime of CTA rises more slowly, and SKY still keeps the low runtime as k increases.

Even when k is 100, the runtime of SKY is only 12% of that of Scan.
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Figure 4.12: Effect of k

That’s because the TA-based approaches, CTA and PTA, retrieve many objects itera-

tively based on their partial information in each dimension (average, variance or KL-

divergence), and they need to retrieve much more objects with a larger k. On the other

hand, SKY retrieves less objects based on their full information in all dimensions and thus

costs less runtime. Especially, PTA needs to maintain all intermediate entries and com-

pute the dynamic skyline to retrieve candidate objects in each dimension. Thus, it takes

even more runtime than CTA, which retrieves candidates more easily by sorted access to

presorted lists.

4.6.2.2 Effect of Data Size

Figure 4.13 shows the scalability of the four approaches. All of them consume more

runtime with a larger data size. Scan exhibits the worst scalability to large scale datasets,

while SKY demonstrates the best. The performance of PTA and CTA is between them

with that CTA performs better.

When the data size increases, the density of objects in the space becomes larger. This

means that there will be more objects with similar averages, variances or KL-divergences

in one dimension but different in other dimensions. As a result, PTA and CTA suffer more

from ineffective retrievals and thus perform worse than SKY, which has better scalability

due to its more effective retrieval by R-tree. Especially, SKY and CTA outperform Scan

when the data size is larger than 10K and are much better with the increasing data size.
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Figure 4.13: Effect of data size
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Figure 4.14: Effect of dimension

4.6.2.3 Effect of Dimensionality

As shown in Fig. 4.14, dimensionality affects the proposed approaches greatly, while it

has little effect on Scan. Since PTA and SKY both utilize R-trees for indexing and the

performance of R-tree degrades with the increasing dimension d, their runtime rises very

fast. The runtime of PTA rises even faster since in each dimension it retrieves objects

based on partial information and this results in much more ineffective retrievals, i.e., it

retrieves much more unpromising objects. CTA spends more runtime with increasing d

due to the similar reason as PTA that it does much more ineffective retrievals.

When d is larger than 3, they deteriorate significantly and are defeated by Scan. This

indicates that our proposed approaches are more efficient in low dimensions less than

4. Moreover, their performance will be improved with a larger data size. For example,

as shown in Fig. 4.15, when d = 3, the advantage of CTA and SKY over Scan is more

obvious when the data size increases from 1000K to 10000K.
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Figure 4.15: Improvement with increasing data size
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Figure 4.16: Effect of data distribution

4.6.2.4 Effect of Data Distribution

In Fig. 4.16, we show the effect of data distribution on the four approaches. Generally,

the runtime of all approaches does not vary greatly over the three different distributions.

CTA shows the most apparent decrease over correlated and anti-correlated distributions

since it depends directly on the average or variance of each object in each dimension.

Correlations mean that objects are concentrated in the center and thus decrease the num-

ber of ineffective retrieval on average. It is clear that SKY has the best performance. This

demonstrates the capability of our proposed approaches over different data distributions.

4.6.2.5 Index Construction

As preprocessing, we build R-trees and lists to support efficient query processing. In each

experiment, we build a 2d-dimensional R-tree for SKY and BBS, and d two-dimensional

R-trees for PTA. When using the default dataset (d = 2, data size = 1000K), the index

construction time is about 5 seconds for building a four-dimensional R-tree, and is about
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7 seconds for building 2 two-dimensional R-trees. The lists include an object list for

random access in CTA and PTA, and d sorted lists for sorted access in CTA and PTA.

The time for building these two kinds of lists using the default dataset is about 1 second

and 9 seconds, respectively. When the data size or d varies, the construction time varies

proportionally. In view of the performance improvement shown in previous sections, the

preprocessing cost of our proposed approaches is rather low.

4.7 Related Work

In this work, we proposed query processing approaches for top-k similarity search over

Gaussian distributions based on KL-divergence, a non-metric similarity measure. Skopal

et al. [31] surveyed the domains employing non-metric functions for similarity search,

and methods for efficient and effective non-metric similarity search. To improve the

searching efficiency, a class of approaches adopt the indexing strategy based on analytic

properties. They analyze the properties of a specific similarity function, and develop

special access methods for that function. Another advantage is their ability to support

both exact and approximate search. Our work falls into this category and supports exact

search.

Other approaches are based on statistical methods. For the efficiency, they perform costly

preprocessing by suitably clustering or transforming the original database into another

space such as the metric space based on the distance distribution statistics, so that existing

metric indexing methods can be employed [28, 29, 31]. One drawback is that they cannot

provide exact results. Furthermore, expensive preprocessing is often needed prior to the

indexing itself. On the contrary, our proposed approaches have low preprocessing cost

and support exact similarity search.

As a general class of similarity measures including KL-divergence, Bregman divergence

has also led to a stream of research work to develop various algorithms. For example,

[112] proposed clustering approaches with Bregman divergence. Zhang et al. [30] de-

veloped a prune-and-refine-based searching method for Bregman divergence, which is

close to our work, but it works only for discrete probability distributions (described by
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d-dimensional vectors) in finite domains. Moreover, they considered only the first type

of asymmetric divergences.

In [24], an index structure called Gauss-tree was proposed for similarity search over

multivariate Gaussian distributions. They also assumed non-correlated Gaussian distri-

butions. Although their problem is very similar to ours, they defined a different similarity

measure as follows. For a d-dimensional Gaussian distribution g, they used Nµg, j ,σg, j(x j) to

represent its probability density function in each dimension j, which is a one-dimensional

Gaussian distribution with two parameters, the average µg, j and the variance σ2
g, j. Given

a database DB and a query Gaussian distribution q, the similarity of g in DB and q is

defined as:

P(g|q) =
p(q|g)

∑

w∈DB p(q|w)
(4.10)

where

p(q|g) =
d
∏

j=1

∫ +∞

−∞
Nµq, j ,σq, j

(x j) · Nµg, j ,σg, j(x j)dx

=

d
∏

j=1

Nµq, j ,σq, j+σg, j (µg, j) (4.11)

Here, p(q|g) represents the probability density for observing q under the condition that

we already observed g. The conditions that maximize Eq. (4.11) are µg, j = µq, j and

σg, j → 0 not σ2
g, j = σ

2
q, j. Hence, we think Eq. (4.10) is not a proper similarity measure

for two Gaussian distributions.

4.8 Summary

In this work, assuming that large scale data is modeled by Gaussian distributions, we stud-

ied the problem of similarity search over non-correlated Gaussian distributions based on

KL-divergence. We analyzed the mathematical properties of KL-divergence of Gaussian

distributions. Based on the analysis, we proposed two types of approaches to efficiently

and effectively process top-k similarity search over Gaussian distributions, which returns

the k most similar ones to a given query Gaussian distribution. They utilize the notions
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of rank aggregation and skyline queries, respectively. We demonstrated the efficiency

and effectiveness of our approaches through a comprehensive experimental performance

study.



Chapter 5

Conclusions and Future Work

In this chapter, we conclude this thesis in Section 5.1 and present several interesting

future directions in Section 5.2.

5.1 Conclusions

In this thesis, we studied uncertain data management due to the increasing uncertain

data in a wide variety of fields in recent decades. Uncertainty can occur for different

reasons and can be represented by a number of models. In particular, probabilistic model

is utilized by many researchers to represent uncertainties using probability distributions.

Among the three categories of probabilistic model, which are table-based, tuple-based,

and attribute-based, we focused our attention on the third category, attribute-based, and

further concentrate on the continuous case where the uncertain attribute is represented

by a continuous probability density function, specifically, Gaussian distribution. In other

words, we assumed that each uncertain object in the databases is described by a Gaussian

distribution.

We considered three types of queries over probabilistic data with Gaussian distributions.

The first one is probabilistic range query, which searches for objects within the given

range with probabilities no less than a specified probability threshold. The query object

83
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can be either a certain point or an uncertain object represented by a Gaussian distribu-

tion. In the second work, we investigated expected nearest neighbor search based on the

expected distance. The query object considered in this work is a certain point. The result

objects are ones that have the k smallest expected distance to the query point. Finally, our

third work studied similarity search over Gaussian distributions. The query object is also

a Gaussian distribution. We use the KL-divergence as the similarity measure between two

Gaussian distributions and return the top-k similar Gaussian distributions as the result.

Answering queries over uncertain databases poses a number of challenges since man-

aging uncertainty usually means costly probability computations. Hence, we developed

efficient solutions for these three problems and conducted comprehensive performance

studies using both synthetic and real datasets. We summarized each of our proposed

solutions as follows.

5.1.1 Probabilistic Range Queries

In this work, we studied probabilistic range queries over uncertain data represented by

Gaussian distributions. We assumed that the locations of data objects are represented

by Gaussian distributions and the location of the query object is either fixed or follows

a multi-dimensional Gaussian distribution. Under this setting, we defined two types of

probabilistic range queries with respect to the query object and called them PRQ-P and

PRQ-G queries, respectively.

To reduce expensive probability computations, we proposed a set of filtering techniques

to avoid unnecessary computations. We designed a number of filtering polices for both

PRQ-P and PRQ-G queries based on approximated regions that are derived from our

analysis of properties of Gaussian distribution. The proposed filtering techniques are

very effective in reducing the number of objects that need to be verified by probability

computation and thus can save computation cost.

Furthermore, we proposed a novel indexing method called G-tree to accelerate query

processing. We developed the indexing method by extending the existing R-tree and im-

proved it based on our analysis of Gaussian distribution. The indexing method organizes
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all the objects very effectively and enables filtering unpromising objects by groups rather

than individually. Hence, the performance of query processing can be greatly enhanced.

The experimental results show that at least 99.5% of all the objects in the dataset can be

pruned on average and over 58% of them are real result objects after evaluation by ex-

act probability computation. This demonstrates the great pruning power of our proposed

filtering techniques. Moreover, we equipped R-tree with our filtering techniques, called

FR-tree, to evaluate the performance of our proposed indexing method G-tree. In the

experiments, we compared them by varying the dataset size, the query range, the prob-

ability threshold, and the dimensionality. In all cases, G-tree outperforms FR-tree and

shows great scalability and stability.

5.1.2 Expected Nearest Neighbor Search

In this work, we considered k-expected nearest neighbor search over objects represented

by Gaussian distributions. This query finds the top-k objects that are nearest to a given

query point based on their expected distances to the query point. In other words, the result

objects are ones that have the k smallest expected distance to the query point. Since the

naı̈ve approach of performing sequential scan is computationally expensive for solving

this problem, we proposed novel solutions to support efficient query processing.

We analyzed properties of expected distance on Gaussian distribution mathematically

and derived the lower bound and upper bound of the distance. Based on our analysis, we

proposed three novel approaches, AVG, PLB, and PLUB, to efficiently prune unpromis-

ing objects without computing their actual expected distances. We only compute actual

expected distances for candidate objects and finally return the top-k smallest ones. To fur-

ther improve the performance, we utilized R-tree to index objects and their lower bound

distances and upper bound distances.

Both the lower bound and upper bound are described by the distance between the average

point of a Gaussian distribution and the query point plus a non-negative minimum or

maximum value that depends on the covariance matrix of the Gaussian distribution. The

first one, AVG uses simply the distance between the average point and the query point as
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the lower bound to prune unpromising objects whose lower bound distances are greater

than the actual expected distances of top-k candidates. This approach is rather simple, but

it enables us to pay less cost on storing information about the covariance matrix in the

R-tree. The second approach, PLB employs the more precise lower bound for filtering

and needs to maintain more information about the covariance matrix. Finally, the third

one, PLUB exploits both the lower bound and upper bound to prune non-candidates as

much as possible. The non-candidates here are objects whose lower bound distances are

greater than upper bound distances of candidate objects. Correspondingly, PLUB stores

the most information about the covariance matrix. In other words, they are tradeoffs in

different degrees between computation cost and storage cost.

In the experiments, we compared the performance of our proposed approaches AVG,

PLB, and PLUB, by varying the three parameters, k, dataset size, and dimensionality. All

the approaches show good scalability and stability over these parameters. We found that

among the three approaches, PLUB achieves the best efficiency while AVG is better than

PLB if k is large, and PLB is a better choice in the case of a large data size.

5.1.3 Similarity Search

In this work, we investigated similarity search on uncertain data modeled in non-correlated

Gaussian distributions, where there are no correlations between dimensions and their co-

variance matrices are diagonal. The query object is also represented by a non-correlated

Gaussian distribution. We employed KL-divergence to measure the similarity between

two Gaussian distributions. This query returns the top-k Gaussian distributions that are

similar to a given query Gaussian distribution based on KL-divergence. In other words,

the result objects are Gaussian distributions that have the top-k smallest KL-divergence

with the query Gaussian distribution.

We analyzed mathematically KL-divergence of Gaussian distributions and derived its

divisionally monotonous properties. Based on the analysis, we proposed two types of ap-

proaches, TA-based and Skyline-based, to efficiently and effectively solve this problem.

They utilize the notions of rank aggregation and skyline queries, respectively. The first
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type presorts all objects in the database on their attributes and computes result objects

by merging candidates from each presorted list. We extended the existing TA algorithm

and developed two novel algorithms, CTA and PTA. The second one transforms the prob-

lem to the computation of dynamic skyline queries. We extended and modified the BBS

algorithm and developed a novel algorithm called SKY to solve this problem.

In our experimental study, we evaluated the effects of k, dataset size, dimensionality, and

data distribution on our proposed three approaches, CTA, PTA, and SKY. The experi-

mental results show that all of our approaches performs better than the naı̈ve approach

Scan. Among them, SKY demonstrates the best and the performance of PTA and CTA is

between SKY and Scan, with that CTA performs slightly better. Moreover, we found that

our proposed approaches show great stability over different data distributions.

5.2 Future Work

In this thesis, we considered the attribute-level uncertainty represented by Gaussian dis-

tribution and our proposed approaches are mainly based the spatial index R-tree. As

one future direction, we can consider other uncertainty models such as other probabil-

ity distributions and the discrete uncertainty model. Furthermore, we can consider the

Gaussian Mixture model, which can be used to represent arbitrary complex probability

distributions. Another future direction is to develop novel index structures that are able

to be adapted to multiple uncertainty models. For instance, we can combine the power

of R-tree with that of other indexing methods such as Grid-based index structure and

Quadtree. In addition, we plan to design an integrated query framework that can support

multiple types of queries at the same time.

Other interesting research directions include applying other types of queries such as sky-

line queries, join queries, reverse queries, and aggregate queries, over probabilistic data

with Gaussian distributions and defining novel types of queries by observing and pon-

dering over emerging real-world applications. Moreover, we can consider queries over

probabilistic data with Gaussian distributions in distributed environments and road net-

works.
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In the following sections, we present specific future work for each of our three work.

5.2.1 Probabilistic Range Queries

In the current implementation, the node split policy of G-tree follows that of R*-tree and

the computation of the four penalty metrics (area, margin, overlap and centroid distance)

used for splitting is based on that of TPR-tree. As the future work, the structure of G-tree

can be optimized for more efficient query processing by taking advantage of its features.

Furthermore, we plan to develop novel indexing methods based on other index structures

such as the Grid-based index structure.

5.2.2 Expected Nearest Neighbor Search

Currently, we use directly R-tree to index Gaussian distributions and their lower bound

and upper bound distances. In the future, we consider improving and extending R-tree for

expected nearest neighbor search over Gaussian distributions. We also plan to consider

other indexing methods such as the Grid-based index structure. Moreover, we consider

adapting the indexing method proposed in our first work to support query processing in

this work. In addition, we plan to extend our work to distance measures other than the

expected distance.

5.2.3 Similarity Search

In the future, we plan to improve index structures to reduce preprocessing cost. In this

work, we use directly R-tree to index Gaussian distributions. Therefore, in the future,

we consider improving and extending R-tree for similarity search over Gaussian distri-

butions. We also plan to consider other indexing methods such as the Grid-based index

structure besides R-tree. Furthermore, we will study the similarity search problem in

the general case of multi-dimensional Gaussian distributions and use similarity measures

other than KL-divergence.
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Appendix for Chapter 2

A.1 Proof of Lemma 2.3

As shown in Fig. A.1(a), consider the case where the minimum distance between bbi(ρ)

and bbq(ρ) is δ. The space outside the ρ-region of oi (resp. q) is divided into two parts by

the line la (resp. ld) equally, both with an existence probability of (1 − ρ)/2. Assuming

the probability that oi (resp. q) is located in the dashed area between la and lb (resp. lc

and ld) excluding the half part of ρ-region is α (resp. β), the probability that oi lies within

the left part of lb and q lies within the left part of lc is ((1 − ρ)/2 + ρ + α)((1 − ρ)/2 − β).

When oi lies within the right part of lb (q can be located both in the right and left part of

lc), the probability is ((1 − ρ)/2 − α). Thus, the maximal probability of ‖xo − xq‖ ≤ δ can

be calculated by summing up the two probabilities, resulting in

Pr(‖xo − xq‖ ≤ δ)

< ((1 − ρ)/2 + ρ + α)((1 − ρ)/2 − β)

+ ((1 − ρ)/2 − α)

= (3 − 2ρ − ρ2)/4 − (α + β)(1 + ρ)/2 − αβ

< (3 − 2ρ − ρ2)/4.

�
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(a) θ < 0.75 (b) θ ≥ 0.75

Figure A.1: Proof of maximal probability for PRQ-G

A.2 Proof of Lemma 2.4

Assume that the distance between the two mean locations is exactly δ as illustrated in

Fig. A.1(b). oi (resp. q) has a probability of 0.5 to be located in both left and right

part of the line lo (resp. lq). ‖xo − xq‖ ≤ δ happens in three cases: (1) Both oi and q

distribute in the left part of lo and lq. (2) Both oi and q distribute in the right part of lo

and lq. (3) oi distribute in the right part of lo and q distribute in the left part of lq. Each

case has a probability of 0.5 ∗ 0.5. Hence, the maximal probability of ‖xo − xq‖ ≤ δ is

0.5 ∗ 0.5 ∗ 3 = 0.75. �
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Appendix for Chapter 3

B.1 The Proof of Lower bound and upper bound of ∆2

Since ∆2 =
∫

‖x − µ‖2 · p(x)dx and p⊥(x) ≤ p(x) ≤ p⊤(x), we have

∆2
min =

∫

‖x − µ‖2 · p⊥(x)dx ≤ ∆2 ≤
∫

‖x − µ‖2 · p⊤(x)dx = ∆2
max,

Here,

p⊥(x) =
1

(2π)d/2|Σ|1/2 exp

[

−‖x‖
2

2λ⊥

]

p⊤(x) =
1

(2π)d/2|Σ|1/2
exp

[

−‖x‖
2

2λ⊤

]

where λ⊥ and λ⊤ are the minimum and maximum eigenvalues of Σ, respectively. We first

derive ∆2
min and then apply the same process to ∆2

max.

Assume that in a d-dimensional space a vector x is represented by (x1, . . . , xd). By as-

suming y = x − µ, we have

∆2
min =

∫

‖x − µ‖2 · 1

(2π)d/2|Σ|1/2 exp

[

−‖x − µ‖
2

2λ⊥

]

dx

=
1

(2π)d/2|Σ|1/2

∫

‖y‖2 · exp

[

−‖y‖
2

2λ⊥

]

dy. (B.1)
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According to [113], we transform Cartesian coordinates to spherical polar coordinates by

y1 = r cos θ1 . . . cos θd−2 cos θd−1 = rc1 . . . cd−2cd−1

y2 = r cos θ1 . . . cos θd−2 sin θd−1 = rc1 . . . cd−2sd−1

...

yk = r cos θ1 . . . cos θd−k sin θd−k+1 = rc1 . . . cd−k sd−k+1

...

y1 = r sin θ1 = rs1.

The Jacobian is (−1)drd−1cd−2
1

cd−3
2
. . . cd−2. Then we have

∫

‖y‖2 · exp

[

−‖y‖
2

2λ⊥

]

dy

=

∫ +∞

−∞
. . .

∫ +∞

−∞
(

d
∑

i=1

y2
i ) · exp















− 1

2λ⊥

d
∑

i=1

y2
i















dy1 . . . dyd

=

∫ ∞

0

∫ +π/2

−π/2
. . .

∫ +π/2

−π/2

∫ 2π

0

r2 · exp

[

− r2

2λ⊥

]

· ‖(−1)drd−1cd−2
1 cd−3

2 . . . cd−2‖drdθ1 . . . dθd−1

=

∫ ∞

0

rd+1 · exp

[

− r2

2λ⊥

]

dr ·
∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2 ·

∫ 2π

0

r2dθd−1. (B.2)

According to [114],
∫ ∞

0

xne−axb

dx =
1

b
a−

n+1
b γ(

n + 1

b
).

By letting n = d + 1, a = 1
2λbot

, and b = 2, we can obtain

∫ ∞

0

rd+1 · exp

[

− r2

2λ⊥

]

dr =
1

2
(2λbot)

d+2
2 γ(

d + 2

2
).

Then Eq. (B.2) becomes

∫

‖y‖2 · exp

[

−‖y‖
2

2λ⊥

]

dy

=
1

2
(2λbot)

d+2
2 γ(

d + 2

2
) ·
∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2 ·

∫ 2π

0

r2dθd−1

= (2λbot)
d+2

2 γ(
d + 2

2
) ·
∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2 · π. (B.3)
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Based on properties of Gamma function, the following statements hold.

1. If d is odd, then

γ(
d + 2

2
) =

d

2
· d − 2

2
. . .

1

2
·
√
π. (B.4)

2. If d is even, then

γ(
d + 2

2
) =

d

2
· d − 2

2
. . .

2

2
· 1. (B.5)

Also, when n > 0 we have

∫ +π/2

−π/2
cosn θdθ = [

cosn−1 θ sin θ

n
]π/2−π/2 +

n − 1

n

π/2

inf
−π/2

cosn−2 θdθ

=
n − 1

n

π/2

inf
−π/2

cosn−2 θdθ.

By deduction, the following statements hold.

1. If d is odd, then

∫ +π/2

−π/2
cosn θdθ =

n − 1

n
· n − 3

n − 2
. . .

4

5
· 2

3
· 2.

2. If d is even, then

∫ +π/2

−π/2
cosn θdθ =

n − 1

n
· n − 3

n − 2
. . .

3

4
· 1

2
· π.

Thus, we have

1. If d is odd, then

∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2

= (
d − 3

d − 2
· d − 5

d − 4
. . .

4

5
· 2

3
· 2) · (d − 4

d − 3
· d − 6

d − 5
. . .

3

4
· 1

2
· π) . . . 2

=
2π

d − 2
. . .

2π

3
· 2. (B.6)
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2. If d is even, then

∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2

= (
d − 3

d − 2
· d − 5

d − 4
. . .

3

4
· 1

2
· π) · (d − 4

d − 3
· d − 6

d − 5
. . .

4

5
· 2

3
· 2) . . .

π

2
· 2

=
2π

d − 2
. . .

3π

4
· π. (B.7)

Based on Eq. (B.4), Eq. (B.5), Eq. (B.6), and Eq. (B.7), we have

1. If d is odd, then

γ(
d + 2

2
) ·
∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2 = (

d

2
· d − 2

2
. . .

1

2
·
√
π) · ( 2π

d − 2
. . .

2π

3
· 2)

=
d

2
π

d
2−1.

2. If d is even, then

γ(
d + 2

2
) ·
∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2 = (

d

2
· d − 2

2
. . .

2

2
· 1) · ( 2π

d − 2
. . .

2π

4
· π)

=
d

2
π

d
2−1.

In other words, the following equation holds no matter d is odd or even.

γ(
d + 2

2
) ·
∫ +π/2

−π/2
cd−2

1 dθ1 . . .

∫ +π/2

−π/2
cd−2dθd−2 =

d

2
π

d
2−1.

Then Eq. (B.3) becomes

∫

‖y‖2 · exp

[

−‖y‖
2

2λ⊥

]

dy = (2λbot)
d+2

2 · d

2
π

d
2−1 = d · (λbot)

d
2+1 · (2π) d

2 . (B.8)

Based on Eq. (B.1), and Eq. (B.8), we have

∆2
min =

1

(2π)d/2|Σ|1/2
· d · (λbot)

d
2+1 · (2π) d

2 =
d · (λbot)1+d/2

|Σ|1/2
.
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Similarly, we can prove

∆2
max =

d · (λtop)1+d/2

|Σ|1/2
.

Hence, we have proved the lower bound and upper bound of ∆2. �
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Appendix for Chapter 4

C.1 Proof of Lemma 4.1

C.1.1 Case 1: DKL(p||q)

Assume σ2
p, j
−σ2

q, j
= C1 and σ2

q, j
−σ2

p′, j = C2, i.e. σ2
p, j
= σ2

q, j
+C1 and σ2

p′, j = σ
2
q, j
−C2.

Then 0 < C1 ≤ C2 < σ
2
q, j.

Let ∆1 = DKL(p||q) −DKL(p′||q). Then

∆1 =
1

2
ln
σ2

q, j
−C2

σ2
q, j
+C1

+
C1 +C2

2σ2
q, j

,

∂∆1

∂σ2
q, j

=
(C1 +C2)[(C2 −C1)σ2

q, j + C1C2]

2σ4
q, j

(σ2
q, j
−C2)(σ2

q, j
+ C1)

> 0.

Since ∆1|σ2
q, j
→∞ = 0, ∆1 < 0 holds for all σ2

q, j
, i.e.,DKL(p||q) < DKL(p′||q).

C.1.2 Case 2: DKL(q||p)

Since |µp, j − µq, j| = |µp′, j − µq, j|, we use |µp, j − µq, j| to represent both of them. Assume

σ2
p, j
−σ2

q, j
− (µp, j−µq, j)

2 = C1 and σ2
q, j
−σ2

p′, j− (µp, j−µq, j)
2 = C2, i.e., σ2

p, j
= σ2

q, j
+ (µp, j−

µq, j)
2 +C1 and σ2

p′, j = σ
2
q, j + (µp, j − µq, j)

2 −C2. Then 0 < C1 ≤ C2 < σ
2
q, j + (µp, j − µq, j)

2.
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Let ∆2 = DKL(q||p) −DKL(q||p′) and α = σ2
q, j + (µp, j − µq, j)

2. Then

∆2 =
1

2
ln
α + C1

α − C2

− α(C1 +C2)

2(α + C1)(α − C2)
,

∂∆2

∂σ2
q, j

=
(C1 + C2)[α(C2 − C1) + 2C1C2]

2(α − C2)2(α + C1)2
> 0.

Since ∆2|σ2
q, j
→∞ = 0, ∆2 < 0 holds for all σ2

q, j, i.e.,DKL(q||p) < DKL(q||p′). �

C.2 Proof of Lemma 4.4

Let the mmdist of g be mmdistg. Due to the definition of mmdist, for any equal-KLD

point g′ of g, mmdistg ≥ |µg′ − µq| + |σ2
g′ − σ2

q| holds. Since mindiste, the mindist of an

entry e, satisfies mindiste = |µe − µq| + |σ2
e − σ2

q| > mmdistg, we have

|µe − µq| + |σ2
e − σ2

q| > |µg′ − µq| + |σ2
g′ − σ2

q|. (C.1)

Given q and the KLD of g and q, and assuming

D1
KL(g‖q) =

1

2













(µg − µq)2

σ2
q

+
σ2
g

σ2
q

− ln
σ2
g

σ2
q

− 1













= C,

when σ2
g = σ

2
q, (µg − µq)2 takes the maximum 2Cσ2

q.

The reason is as follows. We can easily find that the function f (x) = x − ln x takes the

minimum when x = 1. Therefore,
σ2
g

σ2
q
− ln

σ2
g

σ2
q

takes the minimum when
σ2
g

σ2
q
= 1. In other

words, when σ2
g = σ

2
q, (µg − µq)2 is the maximum. We prove the lemma in the following

two cases.

1. (µe − µq)2 > 2Cσ2
q:

Consider g’s equal-KLD point g′ satisfying |µg′ − µq| =
√

2Cσq, and σ2
g′ = σ

2
q.

Since |µe − µq| >
√

2Cσq = |µg′ − µq|, and |σ2
e − σ2

q| ≥ 0 = |σ2
g′ − σ2

q|, it is obvious

that e is dynamically dominated by g′, i.e., e is dynamically KLD-dominated by g.
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2. Otherwise:

Consider g’s equal-KLD point g′ satisfying µg′ = µe. According to eq.(C.1), we

have |σ2
e − σ2

q| > |σ2
g′ − σ2

q|. In other words, |µe − µq| = |µg′ − µq|, and |σ2
e − σ2

q| >

|σ2
g′ −σ2

q|. Therefore, e is dynamically dominated by g′, i.e., e is dynamically KLD-

dominated by g.
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