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Abstract

Investigation into the developing mechanism of
idiopathic scoliosis by means of computational
mechanics

Idiopathic scoliosis comprises spinal irregularity with lateral curva-
tures together with rotation without any marked abnormality of the
vertebrae or associated musculoskeletal condition. Since almost all
cases of the disorder appear during adolescence, particularly during
growth spurts, growth has been recognized as associated with the eti-
ology of idiopathic scoliosis in some way. The objective of the present
thesis is to investigate the etiology and the developing mechanism of
idiopathic scoliosis by means of computational mechanics.

The thesis consists of seven chapters.
Chapter 1 reviews the relevant background literature including the

information of the characteristic, the classification, the harm, and the
treatments of idiopathic scoliosis. A large number of hypotheses and
physical models have been proposed for the pathogenesis of idiopathic
scoliosis. From the point of view of the mechanics, we classify these
concepts into the following issues. (1) The growth itself is asymmet-
rical. (2) The buckling by symmetrical growth of the vertebral bodies
induces the deformation of scoliosis (the buckling hypothesis). For
the buckling hypothesis, we review the literature and points out that
Dickson presented an important observation of a flattening of the tho-
racic spine in the specimens of the idiopathic scoliosis. They identified
the trigger of the rotational instability as a median plane asymmetry,
that is, the flattening or decreasing of normal thoracic kyphosis at
the apex of the curvature, and they declared this instability to be a
buckling phenomenon.
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In Chapter 2, in order to demonstrate the buckling hypothesis, we
introduced the theory for buckling phenomenon caused by the growth
of vertebral bodies, and analyzed the buckling phenomena using three
types of plate models simplified the spine. We analyzed linear buck-
ling modes caused by the growth deformation using the finite element
method, and we confirmed the existence of buckling phenomena and
clarified the range of the geometrical parameters in which this buckling
occurs. By the comparison of the ranges between the three models,
we obtained the following results. (1) The growth of the frontal part
of spine in depth around 10 mm from the frontal plain causes the
buckling phenomena most easily. (2) The model with physiological
curvature enlarges the buckling area than the strait model. (3) The
structure having holes in the rear part also enlarges the buckling area.
These results support the buckling hypothesis as a cause of initiation
of the idiopathic scoliosis.

However, the results in Chapter 2 are only valid for infinitesimal de-
formation and not applicable to estimate the stability for post-buckling
behavior. Thus, in Chapter 3, we conducted the theory for post-
buckling deformation caused by the growth of vertebral bodies con-
sidering the geometrical nonlinearity, and demonstrated the nonlinear
post-buckling simulation using the simple plate model. In these anal-
yses, the buckling modes obtained from the linear buckling analyses
of the simple plate model in Chapter 2 were chosen as the initial per-
fections of the plate model. To solve unstable nonlinear post-buckling
deformation, the incremental Arc-length method was employed. From
the results, the stable post-buckling deformations were obtained in al-
most modes of the simple plate model, while an unstable post-buckling
deformation was confirmed after introducing the initial imperfection
to the 3rd buckling mode.

In Chapter 4, based on the results from Chapter 2, the similar
linear buckling analysis was performed using the spine finite element
model without rib cage instead of the simple plate models. The spine
finite element model consisted of 69,658 nodes and 59,356 elements.
For the boundary conditions, we assumed that the sacrum was fixed.
From the results, the 4th buckling mode which is similar to the clinical
scoliosis deformity was obtained. By a comparison of different growth
regions, we investigated the influence of the region of the buckling
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phenomena on the physiological curvature of the spine. We found
when the growth of the frontal parts of spine in depth around 10 mm,
the spine model was in the easiest state to get buckled. This result
accords with the result in Chapter 2.

Chapter 5 explores post-buckling deformations caused by the growth
of vertebral bodies using the spine models by the Arc-length Method.
The 4th mode obtained from the linear buckling analysis of the spine
model in Chapter 4 was chosen as the initial perfection of the spine
model for post-buckling analysis. However, we did not obtain any de-
formation similar to the clinical modes. Thus, we shrank the width of
the spine model, and fixed the node at the center of front boundary of
C7 in horizontal plane considering the controllability of posture. From
the results, the existence of the non-linear buckling phenomena was
confirmed. However, the magnitude of the deformations are too small
to explain the pathogenesis of the severe deformity observed in pa-
tients of idiopathic scoliosis. Thus, although the buckling hypothesis
can explain the pathogenesis of the onset in the idiopathic scoliosis, it
cannot explain the developing mechanism.

In Chapter 6, in order to investigate the mechanism of progres-
sion of the idiopathic scoliosis, the influence of bone remodeling after
the buckling was analyzed. The bone remodeling is a phenomenon
of absorption and formation of the bone which occurs according to
the change in the mechanical and physiological circumstance. In this
study, the bone formation was simulated by increasing of the volume
of the bone in proportion to the strain distribution which was obtained
from the nonlinear post-buckling deformation analysis in Chapter 5,
while the bone resorption was simulated by decreasing of the volume
of the bone in proportion to the strain distribution. From the re-
sults, it is confirmed that the bone formation corrects the original
curve, while the bone resorption worsens the original curve. These
results suggested that, the bone resorption with respect to strain at
post-buckling can be a candidate of the developing mechanism of the
idiopathic scoliosis.

Chapter 7 presents the conclusions conduced from this study and
suggestions for the future work on the topic. From the investigation
in Chapters 2 and 4, since the linear buckling modes are similar to the
scoliotic modes, the buckling hypothesis is effective as the pathogen-
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esis of the onset in the idiopathic scoliosis. However, from the results
in Chapters 3 and 4, since any severe scoliotic curve is not obtained
by the post-buckling deformation analysis, it is difficult to explain
the pathogenesis of the progression by the buckling hypothesis. On
the other hand, the investigation of bone remodeling in Chapter 6
declares that the bone resorption in proportion to the strain at the
post-buckling deformation progress the scoliotic curves. Thus, based
on the results obtained in the present study, it is concluded that the
buckling phenomena with respect to the growth deformation of the
vertebral bodies can be a pathogenesis of the onset of the idiopathic
scoliosis, and the bone resorption in proportion to the strain at the
post-buckling deformation can be a mechanism developing the idio-
pathic scoliosis.
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Chapter 1

Introduction

Scoliosis is a condition in which the spine curves sideways including
rotation or twisting. Idiopathic scoliosis is the most common type
of scoliosis, that appear during adolescence, especially during growth
spurts. The cause of this disorder still remains unknown.

A brief description of the following sections is given below: Sec-
tion 1.1 introduces the construction of the human spine. Section 1.2
presents the definition and characteristic of idiopathic scoliosis. The
natural history of classification of idiopathic scoliosis is stated in Sec-
tion 1.3. The harm of idiopathic scoliosis is introduced in Section
1.4. Section 1.5 explains the current spectrum of considerations for
surgery treatment and bracing treatment. Section 1.6 reviews the cur-
rent issues of debate about etiology of idiopathic scoliosis. Section 1.7
summarizes the background, previous study and objective of this re-
search. Lastly, the structure of this thesis is introduced in Section
1.8.

1.1 Spine

The human vertebral column is also named as the backbone or spine.
There are a total of 33 vertebrae in the human vertebral column.
These vertebrae are divided into five regions, the cervical spine, tho-
racic spine, lumbar spine, sacrum and coccyx [12]. There are seven
cervical vertebrae, twelve thoracic vertebrae and five lumbar verte-
brae, as shown in Figure 1.1.

19
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Cervical vertebrae

       C1 - C7

Thoracic vertebrae

        T1 - T12

Lumbar vertebrae

       L1 - L5

      Sacrum

      S1 - S5

  Coccyx

Co1 - Co5

Figure 1.1: Spine [1]
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Spinal curvature disease can be classified into three types as below.

(1) Kyphosis.

Kyphosis refers to the top back of spine (in the thoracic or tho-
racolumbar spine) significantly outwards, and commonly called
as roundback.

(2) Lordosis.

Lordosis refers to an excessive curvature at the lower back of the
spine, and commonly named as sway back.

(3) Scoliosis.

Scoliosis refers to the spine curves right or left including rotation
or twisting, occurring in 0.5% of the population. There are also
several different types of scoliosis classified based on the patient’s
age. They are the infantile scoliosis (from birth to 3 years old) ,
juvenile scoliosis (from 3 to 9 years old), and idiopathic scoliosis
(10 to 18 years old). The idiopathic scoliosis is the most common
type with unknown hypothesis on the etiology.

1.2 Idiopathic scoliosis

Idiopathic scoliosis comprise spinal irregularity with lateral curvatures
together with rotation without any marked abnormality of the verte-
brae or associated musculoskeletal condition. The cause of this dis-
order still remains unknown. Since almost all cases of the disorder
appear during adolescence, particularly during growth spurts, growth
has been recognized as associated with the etiology of idiopathic sco-
liosis in some way.

The degree of curvature for scoliosis is measured by Cobb angle
from a radiograph on the coronal plane. The Cobb angle is defined as
the angle between the two lines drawn parallel to the superior endplate
of the superior end vertebra and parallel to the inferior endplate of the
inferior end vertebra [13], as shown in Figure 1.3. A Cobb angle over
10◦ is generally considered as clinically significant scoliosis.
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Figure 1.2: A radiograph of a 11-year-old female idiopathic scoliosis
patient [2]



1.2. IDIOPATHIC SCOLIOSIS 23

Cobb Angle

Inferior end vertebra

Superior end vertebra

Apical vertebra

a

Figure 1.3: Schematic example of the Cobb angle [14]
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The prevalence of idiopathic scoliosis is estimated 2% to 3% of
adolescence whose Cobb angle is more than 10◦ [15]. The Cobb angle
around 40◦ makes up 0.1% of the idiopathic scoliosis population [16].
The scoliotic curves between 20◦ and 30◦ are generally 0.3 to 0.5% of
the idiopathic scoliosis population.

Idiopathic scoliosis also has a predominance of female patients.
The male-to-female ration is around 1:10 for the Cobb angle greater
than 30◦ [17]. Ueno [18] studied the prevalence of Cobb angle of
Japanese children over 10 in an 11 to 12 year olds age group and a 13
to 14 year olds age group. The prevalence was 0.04% in 11 to 12 year
olds and 0.25% in 13 to 14 year olds for the boys. Unfortunately, in
the girls groups, the prevalence was 0.78% in 11 to 12 year olds and
2.51% in 13 to 14 year olds.

1.3 The classification of idiopathic scol-

iosis

Several classification systems for idiopathic scoliosis have been repre-
sented and widely used around the world. However, each system still
needs to be modified for various shortcomings.

Ponseti’s Classification

Ponseti and Friedman [19] firstly made classification of idiopathic sco-
liosis in 1950. This system is defined on the basis of scoliostic curves
and location of the spine. The four types of scoliosis are called as
thoracic, thoracolumbar, lumbar and double major, which are shown
in Figure 1.4. However, this simple classification does not satisfy the
needs to formulate strategies for care [20].

King’s Classification

King et al. [21] proposed a new classification system which is more ac-
curate and useful than Ponseti’s Classification systems in 1983. Figure
1.5 shows the classification where
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(a) thoracic (b) thoracolumbar

(a) lumbar (b) double major

Figure 1.4: The classification for idiopathic scoliosis [3]
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Type I Thoracic and lumbar curve, the lumbar curve has bigger mag-
nitude and more rigid,

Type II Thoracic and lumbar curve, the thoracic curve has bigger
magnitude and more rigid,

Type III Single thoracic curve without lumbar curve,

Type IV Long thoracic curve with L4 tilted into curve,

Type V Double thoracic curve.

It is helpful to treatment strategy considering the curve pattern of
scoliosis. Since King’s classification systems offered more appropriate
guidelines, Harrington instrumentation was widely used as a kind of
scoliosis instrumentation in the early 1980s [22]. Nevertheless, the
King’s classification is not a complete system for all scoliosis types,
because of the ignore of double major and triple curves [20].

　

King type I King type II King type III

King type IV King type V

Figure 1.5: King’s classification [23]
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Lenke’s Classification

On the basic of King’s classification, Lenke et al. [24] [25] [26] created
a new classification system to address the potential problems. The
Lenke’s Classification was theorized to consist of three components:
curve type (Type 1 to 6), a sagittal thoracic modifier (－, N or +), and
lumbar spine modifier (A, B or C). Figure 1.6 shows the classification
where

Type 1 main thoracic,

Type 2 double thoracic,

Type 3 double major,

Type 4 triple major,

Type 5 thoracolumbar/lumbar (TL/L),

Type 6 thoracolumbar/lumbar - main thoracic (TL/L-MT),

Lumbar Modifier A The centeral sacral vertical line (CSVL) falls
between lumbar pedicles up to stable vertebra,

Lumbar Modifier B The centeral sacral vertical line (CSVL) falls
between medial border of lumbar concave pedicle and lateral
margin of apical vertebral body or bodies,

Lumbar Modifier C The centeral sacral vertical line (CSVL) falls
medial to lateral aspect of lumbar apical vertebral body or bod-
ies.

and

N Normal,

PT Proximal thoracic,

TL Thoracolumbar，

PT+TL Proximal thoracic and thoracolumbar.
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The Lenke’s classification offers significant information for the type
of surgery and other treatments. Although comparing with other clas-
sifications it is much more reliable and accurate, the Lenke’s classi-
fication also cannot called perfect. In some cases, the surgery type
chosen based on the Lenke’s classification cannot match the clinical
scoliosis type [27] [28] [29].

　

Lumber
Spine Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Modifier

A

B

C

Figure 1.6: Lenke’s classification [23]

1.4 The harm

In general, the scoliosis threatens vital organs, specifically the lungs
and heart. If the Cobb angle exceeds 70◦, the twisting of the spine
can cause the ribs to press against the lungs, do harm to breath, cause
lack of oxygen, and even damage to the heart. If the Cobb angle is
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Lumber Modifier A Lumber Modifier B

Lumber Modifier C

Figure 1.7: Lenke’s classification: lumbar spine modifiers A, B, and C
(CSVL = Center Sacral Vertical Line) [23]
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Normal PT TL PT+TL
Kyphosis Kyphosis Kyphosis

= +20◦

= +20◦

= +20◦

= +20◦

Figure 1.8: Lenke’s classification:Sagittal Thoracic Modifiers (－, N,
or +) [23]

over 100◦, patients are susceptible to lung infections, pneumonia and
even death.

Stuart et al. [30] studied 194 patients with untreated adolescent
idiopathic scoliosis between 1932 and 1948. They noticed the backache
was common for the patients and found the mortality rate was 15%. If
patients with severe scoliosis do not accept treatment, the spine would
continue to progress slightly in their rest life.

1.5 Treatment of scoliosis

The treatment for idiopathic scoliosis approaches vary internationally,
and can be classified into two types, the nonsurgical treatment and
surgical treatment.

1.5.1 Nonsurgical treatment

There are different kinds of nonsurgical methods to treat idiopathic
scoliosis, such as traction treatment, bracing treatment and so on.
Bracing treatment is widely used to avoid surgery.
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Patients with a curve that is between 20◦ to 30◦ and still under
growth remaining are recommended to take bracing treatment. There
are many kinds of brace designed to match different types of scoliotic
curves. The brace is used to wrap around the patient body along with
a pelvic unit. The main objective of bracing treatment is to prevent
the progression of scoliotic curves for the growing children. It can not
be used to reduce the degree of the curves. Some researchers found
bracing treatment is unable to heal patients whose scoliotic curves are
more than 45◦ [31]. If the patient has curve degree greater than 30◦

and almost mature, bracing treatment may not be suitable.

There are also some other nonsurgical treatments such as surface
electrical stimulation [32], gymnastics [33], plantar orthosis [34], cast
correction [35], and so on. However, these treatments are available
for the mild scoliosis patients. For the severe patients, the surgical
treatment maybe suitable option. At present, the spine medical com-
munity advocates bracing treatment as the only nonsurgical treatment
for idiopathic scoliosis.

1.5.2 Surgical treatment

Surgical treatment is recommended for patients who have scoliotic
curves more than 30◦ while still growing, or are continuing to progress
more than 30◦ when growth stopped.

In 1962, Harrington [36] claimed a method to treat scoliosis by
poster fusion which has widely practiced operation at that time. The
Harrington system consists of a distraction rod and two hooks at the
ends of the rod, as shown in Figure 1.9. The distraction rod can
attach to the spine with the two hooks. This system can help correct
the scoliotic curve by stretching or distracting the spine. This method
is so successful that remained popular for more than 20 years.

In the early 1970’s, Luque [37] devised a more stable and flexible
systems named segmental spinal instrumentation (SSI) with two flex-
ible L-shaped rods and wires, as shown in Figure 1.10. The difference
from the Harrington systems is the wires which are threaded through
the canal at every vertebra. The wires are also used as the multiple
points of fixation around the rods. This system can also help correct
the scoliotic curves with rotation.
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In 1984, Cotrel and Dubousset [38] [39]developed a new system
named Cotrel-Dubousset instrumentation involves two flexible rods
and multiple hooks. This system consists of two steel rods which
allows segmental fixation through conical pedicel screws and lam-
ina hooks, as shown in Figure 1.11. Compared with early systems,
the Cotrel-Dubousset instrumentation offers better lateral and frontal
curve correction even with rotation, and reduction in deformation of
rib hump.

Finite element method (FEM) is also used before spinal surgery
to predict the outcome of the surgery, comparing the different in-
strumentations and various type of scoliotic curves between different
patients. In 1993, Stockes [40] used finite element models with indi-
vidual geometry from 3D stereo roentgenographic reconstructions of
the scoliotic spine, and tested the application of these models to sim-
ulation of Harrington distraction rod surgery. Gardner-Morset [41]
also examined the derotation maneuver using Cotrel-Dubousset in-
strumentations through finite element simulations.

1.6 Etiology of idiopathic scoliosis

Intensive research is ongoing throughout the world, and many possible
causal factors and theories have been evaluated. Genetic factors and
melatonin have been suggested to play an important role of idiopathic
scoliosis, but no genes or mechanism have been demonstrated with
this etiology.

The function of the spine is to support the structure of the body,
and thus mechanical phenomena can be considered to be the cause
of the spine being bent. In order to predict the natural history of
this condition in a patient and to estimate the effects of treatment,
the mechanical aspects of the etiology are more important than any
genetic or physiological factors.

A large number of hypotheses and physical models have been pro-
posed for the pathogenesis of idiopathic scoliosis. From the point of
view of the mechanics of the spine, these concepts can be divided into
two systems as follows: the growth itself is asymmetrical, or (the buck-
ling hypothesis) the buckling is induced by symmetrical growth of the
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Figure 1.9: Surgery with Harrington instrumentation [4]

Figure 1.10: Surgery with Luque instrumentation [4]
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Figure 1.11: Surgery with Cotrel-Dubousset instrumentation [4]
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vertebral bodies. The details of asymmetrical growth and buckling
etiology will be discussed in the next subtopic.

1.6.1 Physiological etiology

The role of genetic factors or hereditary in the cause of idiopathic
scoliosis has a widespread influence.

Harrington [42] investigated the relationship between morbidity
and general population. Harrington found a 27% prevalence of pa-
tients who had mother also had a scoliotic curve that exceeded 15◦.
Population studies reflects the fact that 11% of the first-degree rel-
atives are affected, as are 2.4% of second-degree relatives, and 1.4%
of third-degree relatives. However, Lowe denied this kind of family
sample and claimed it is difficult to yield exact evidences for genetic
linkage [43].

Patrick et al. [44] selected 57 individuals for genotyping, and in-
vestigated chromosomal relationship on blood lymphocytes from indi-
vidual in every family. One of the pedigrees of families with a strong
evidence that a potential scoliotic gene lays in two chromosomes. How-
ever, Patrick found no dominant idiopathic scoliosis gene has been
identified.

The abnormality in melatonin metabolism also thought to cause
idiopathic scoliosis. Some scientists indicated animals such as chick-
ens, rats with pinealectomy which could decrease melatonin can also
result in scoliosis. However, this etiology can not be proved from other
reports [45] [46]. Moreover, patients with idiopathic scoliosis are also
able to form melatonin, or impaired sleep or immune function. On
the basis of the available data, it remains unclear whether melatonin
can cause idiopathic scoliosis or not. In terms of physiological factors,
no mechanism associated with bending has been proven to have a cor-
relation with melatonin [47] [48]. Moreover, it seems unlikely that
scoliosis just results from the absence of melatonin. Future research is
also needed to explore the relationship between melatonin production
and growth mechanisms.
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1.6.2 Asymmetric growth hypothesis

For the hypothesis of asymmetrical growth, Normelli et al. [49] stud-
ied the length and ash weight of ribs in cadaveric specimens from
normal women and scoliosis female patients. They found the rib on
the concave side were longer and slender between the patients with
right convex thorax idiopathic scoliosis and the group of normal fe-
males. They also found the asymmetric rib growth is the beginning of
the rotation and deviation of the scoliotic spine.

Sevastik et al. [50] compared the growth of normal adult rabbits
groups and another groups whose ribs were elongated on the right side
by 1 cm by application of a metallic expander. They found the force
generated by mechanical elongation of one rib developed the scoliosis,
rotation of the vertebrae, and a decease in the sagittal curvatures of
the spine.

Stokes and Laible [51] put asymmetrical growth into a human tho-
rax finite element model to examine the hypothesis that asymmetrical
growth might result in the scoliosis deformation. Their findings pro-
duced spinal curves, which are too small to demonstrate the curvatures
of scoliosis patients.

Stokes and Gardner-Morse [52] found it seems impossible that sco-
liosis can be explained in terms of forces such as asymmetric thoracic
growth, or asymmetric vertebral development, after investigating with
a FEM ligamentous spine. Stokes et al. [53] also developed a rat
tail model to investigate the hypothesis that vertebral wedging dur-
ing growth to scoliosis results from asymmetric loading in a“ vicious
cycle.”The results confirmed that vertebral growth is modulated by
loading, according to the Hueter-Volkmann principle.

Hutnh et al. [54] later incorporated growth modulation and pedicle
growth into a spine finite element model. They found simulations
with asymmetrical pedicle geometry did not produce scoliotical curves,
rotation of spine, or wedding.

1.6.3 Buckling hypothesis

For the buckling hypothesis, we reviewed the literature and investi-
gated the buckling phenomenon induced by the growth of vertebral
bodies. We focused on remarks on flattening of the thoracic spine
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during growth spurt. Adams [55] in 1865 pointed out the lordosis oc-
curs in the thoracic region. Dickson et al. [56] [57] [58] presented an
important observation of a flattening of the thoracic spine during a
growth spurt. They identified the trigger of the rotational instability
as a median plane asymmetry, that is, the flattening or reversal of nor-
mal thoracic kyphosis at the apex of the curvature, and they declared
this instability to be a buckling phenomenon.

Porter [59] investigated the degree of spine deformity of the pa-
tients who had probable idiopathic scoliosis during the adolescent
growth spurt, and compared the discrepancy in length of the vertebral
canal and the anterior spinal column in skeletons. They found there
may be impaired growth in the length of the spinal cord, the posterior
parts are tethered, and when the spine continue to grow, they become
lordotic and then rotate.

Chu et al. [60] claimed that there was obvious reduction of verte-
bral column ratios in the idiopathic scoliosis patients, and declared an
abnormal growth between the neural and the skeletal systems. They
assert the functional tethering and relative shortening of spinal cord
might result in the idiopathic scoliosis.

Shinoda et al. [61] [62] paid attention on the influence from the
restraint of rib cage to idiopathic scoliosis. They claimed the existing
of the rib cage makes the buckling phenomenon occurs with rapidly
growing of spine, which causes the spine to become the scoliotic shape.

For years, predecessors in this research reviewed the literature and
investigated the buckling phenomenon induced by the growth of verte-
bral bodies [63] [64]. In an attempt to confirm the buckling hypothesis,
a numerical simulation of growth and the resulting buckling phenom-
ena was done by means of finite element analysis. It previously was
observed that growth was induced in the T4 to T10 vertebrae. Only
the sacrum was assumed to be stationary. From the growth analysis, a
deformation process that mitigated thoracic kyphosis was obtained as
observed in healthy children during early adolescence. From the buck-
ling analysis, the first to the fourth buckling modes that correspond to
the first side bending, first forward bending, first rotation, and second
side bending modes were obtained. The shape of the fourth buckling
mode (second side bending mode) was in good agreement with the
clinical shape. Considering the potential for controlling these modes
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by posture change, it is concluded that the second bending mode in
the coronal plane is one of the most likely etiologic candidates in the
mechanics of thoracic idiopathic scoliosis.

Aoyama et al. [10] developed a program to analyze deformation
histories caused by the growth of vertebral bodies considering the
geometrical nonlinearity and investigated buckling phenomena. We
assumed that growth represents generation of non-elastic bulk strain.
To exclude modes correctable by posture change, we considered con-
straints at the cervical spine. Using the developed program, we ana-
lyzed deformation histories induced by the growth of vertebral bod-
ies and obtained deformation histories including buckling phenomena
with side-bending modes similar to clinical curves. However, the mag-
nitudes of deformations were in the sub-millimeter order that is too
small for the etiology of idiopathic scoliosis by itself.

1.7 Objectives of this thesis

A large number of hypotheses and physical models have been pro-
posed for the pathogenesis of idiopathic scoliosis. For the buckling
hypothesis, we reviewed the literature and investigated the buckling
phenomenon induced by the growth of vertebral bodies. Dickson et
al. [56] presented an important observation of a flattening of the tho-
racic spine during a growth spurt. They identified the trigger of the
rotational instability as a median plane asymmetry, that is, the flat-
tening or reversal of normal thoracic kyphosis at the apex of the curva-
ture, and they declared this instability to be a buckling phenomenon.

Based on Dickson’s buckling hypothesis, predecessors in this re-
search used the linear buckling theory to analyze the buckling phe-
nomenon induced by the growth of vertebral bodies using finite ele-
ment models of the spine. Using a commercial program (MSC.Nastran
7.0), the fourth and sixth buckling modes were obtained, which are
similar to the clinical single and double-major curves, respectively [64].

However, when using a program based on nonlinear buckling the-
ory, no clear buckling modes that were similar to the clinical modes
could be observed [10]. After this investigation, the linear buckling
modes were reanalyzed by using another commercial program, and
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this program did not identify any buckling phenomena.

This led us to wonder whether the buckling phenomenon actually
existed, and so, as presented here, we returned to the starting point.
We used three types of simple model having different properties to
confirm the existence of the buckling phenomenon and we then clar-
ified the range in which the buckling phenomena occur. The reason
why we use the simple models is to show clearly the buckling mecha-
nism induced by the growth of vertebral bodies even through different
softwares. We need to compare the results of the three models in
order to evaluate the reliability of buckling hypothesis. After the lin-
ear buckling simulations, the existence of the nonlinear post-buckling
phenomena is also needed to be confirmed by the simple plate model.

If the buckling hypothesis could be confirmed by using simple plate
models, we would use finite element model of spine to investigate
whether this hypothesis is the cause of initiation of the idiopathic sco-
liosis or not. Moreover, not only the buckling hypothesis is examined,
the developing mechanism of idiopathic scoliosis is also investigated
by FEM in this research.

1.8 Structure of this thesis

A brief description of the following chapters are given as followed.

Chapter 1 reviews the relevant background literature including
the information of the characteristic, the classification, the harm, the
treatments of idiopathic scoliosis.

Chapter 2 explores the linear buckling behaviour of simple models
to investigate the buckling hypothesis. We assumed that the growth of
the vertebral bodies can be modeled by the generation of a non-elastic
bulk strain. We use FEM to analyze linear buckling modes caused
by the growth deformation, and we confirm the existence of the buck-
ling phenomena and clarify the range of the geometrical parameters in
which this buckling occurs. Our results support the buckling hypoth-
esis that a flattening or reversal of normal thoracic kyphosis at the
apex of the curvature of the spine causes the buckling phenomenon.

Chapter 3 presents post-buckling simulations caused by the growth
considering the geometrical nonlinearity using the simple plate models.
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To solve unstable nonlinear buckling behaviors, the incremental Arc-
length Method is employed. From the results, the stable post-buckling
deformations were obtained in almost simple plate models, while an
unstable post-buckling deformation was confirmed after introducing
the initial imperfection to the 3rd buckling mode.

Chapter 4 introduces the details of the spine finite element model
we used in this study. The linear buckling analysis of the spine model
is investigated, based on the results we got from the simple plate mod-
els. The 4th buckling mode which is similar to the clinical scoliosis
deformity were obtained. By a comparison of different growth regions,
we investigate the influence of the region of the buckling phenomena
on the physiological curvature of the spine and the intervertebral ar-
ticulation.

Chapter 5 explores post-buckling simulations caused by the growth
of vertebral bodies considering the geometrical nonlinearity using spine
models by Arc-length Method. From the results, the existence of the
non-linear buckling phenomena was confirmed in the spine model with
half width. Thus, the pathogenesis of the onset in the idiopathic scol-
iosis can be explained by the buckling hypothesis. However, the mag-
nitudes of the post-buckling deformations are too small to explain the
pathogenesis of the severe deformity observed in patients of idiopathic
scoliosis.

Chapter 6 extends the nonlinear remodeling simulations for the
spine models with the growth data from the post-buckling simula-
tion. The bone formation and resorption are simulated by positive
and negative volume changes in proportion to the strain from the
post-buckling simulations. The results suggests the bone resorption
caused the severe deformity as clinical scoliotic curves.

Chapter 7 presents the conclusions produced from the study and
suggestions for the future work on the topic.



Chapter 2

Linear Buckling Analysis for
Plate Model

This chapter presents the linear buckling theory and the linear buck-
ling analysis by using simple plate models.

Firstly, the origin of buckling hypothesis and previous studies are
introduced in Section 2.1. The basic information of linear buckling
simulation by FEM is presented in Section 2.2. The formulations of
the linear buckling problems and numerical solutions of the FEM are
stated in Section 2.3, Section 2.4, and Section 2.5. In order to verify
Dickson’s buckling theory, we returned to the starting point, using sim-
ple models to investigate the existence of the buckling phenomenon.
We used three types of simple plate model having different geometri-
cal properties to confirm the range of the geometrical parameters in
which this buckling occurs. The details of the three simple models
are introduced in Section 2.6. The simulation results of these three
simple models are described in Section 2.7. These results also support
Dickson’s buckling hypothesis that a flattening or reversal of normal
thoracic kyphosis at the apex of the curvature of the spine causes the
buckling phenomenon.

2.1 Buckling hypothesis

Intensive researches for the pathogenesis of idiopathic scoliosis is on-
going throughout the world, and many possible causal factors and

41
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(a) Before loading (b) Fully loaded

Figure 2.1: Lucas horizontal lateral loading test [5]

theories have been evaluated. We reviewed lots of literature about the
hypothesis on the etiology of idiopathic scoliosis, and more attention
have been paid to the buckling hypothesis.

2.1.1 Lucas’s experiment

Lucas and Bresler [5] used ligamentous adult spine from the dead
bodies to investigate the relationship between spinal stability and the
cause of scoliosis. They assumed the spine as an elastic rod and cal-
culated the critical load to made the spine buckled by Euler equation.
With a weight-pulley system, the spines were put increasing horizon-
tal lateral loading until buckling occurred, as shown in the Figure 2.1.
They found applying a vertical load near the value of 20 KN at the
top of the spine could make the spine to be buckled.
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2.1.2 Dickson’s experiment

Dickson et al. [56] presented an important observation of a flattening
of the thoracic spine during a growth spurt. They found the thoracic
kyphosis reduces in size from age of 8 to 14 year olds for the both
girls and boys. Especially at the age of 12, the thoracic kyphosis at
the apex of the curvature reach the minimum in size, and turn to
be flattening or reversal. In generally, boys on average mature later
than the girls. However, when the thoracic kyphosis is at its minimum
for girls, they are also undergoing the peak adolescent growth. This
reduction of thoracic kyphosis also raises the possibility of idiopathic
scoliosis. Dickson identified the trigger of the rotational instability as
a median plane asymmetry, that is, the flattening or reversal of normal
thoracic kyphosis at the apex of the curvature, and they declared this
instability to be a buckling phenomenon.

2.1.3 Previous research

Based on Dickson’s buckling hypothesis, the previous research in our
group used the linear buckling theory to analyze the buckling phe-
nomenon induced by the growth of vertebral bodies using finite ele-
ment models of the spine. By using a commercial program (MSC.Nastran
7.0), we obtained the fourth and sixth buckling modes, which are sim-
ilar to the clinical single and double-major curves, respectively [64].
Figure 2.3 shows the result of the fourth buckling mode induced by
the growth of vertebral bodies from T4 to T10.

However, previous results from a program based on nonlinear buck-
ling theory indicated no clear buckling modes that similar to the clin-
ical modes [10]. After this investigation, the linear buckling modes
using another commercial program were reanalyzed , and no buckling
phenomena was identified as well. This led us to wonder whether the
buckling phenomenon actually existed or not. Thus, we used three
types of simple plate model having different properties to confirm the
existence of the buckling phenomenon and we then clarified the range
in which the buckling phenomena occur. The reason why we use the
simple plate models is to show that the buckling mechanism induced
by the growth of vertebral bodies could be confirmed clearly even using
different softwares.
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(a) Changes in height with aging

(b) Changes in height increase rate with aging

Figure 2.2: Changes in height with aging for adolescents [6]
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Figure 2.3: Fourth buckling mode from previous research [7]

2.2 Buckling

2.2.1 Basics of buckling theory

Buckling is a treacherous instability phenomenon in nature and struc-
tural engineering. It can be described as a mathematical instability,
leading to a failure mode. Buckling is caused by a bifurcation in the
solution to the equations of static equilibrium.

Linear buckling is also called as eigenvalue buckling. The linear
buckling analysis can predict the theoretical buckling strength of an
ideal elastic structure. The goal of the linear buckling analysis could be
used to determine the buckling load factor and the estimate the critical
(bifurcation) load of the structure. Linear buckling analysis can not
provide exact results and only used when designing or examining is
needed.

There is another more accurate type of buckling analysis named
nonlinear buckling analysis which is often used to predict instability
for structural engineering. For more details about nonlinear buckling
analysis, will be discussed in Chapter 3.
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Figure 2.4: Euler buckling
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2.2.2 Buckling analysis through FEM

In this chapter, two kinds of finite element software packages, Abaqus
6.12 Edition (Abaqus, Inc.) and RADIOSS 11.0 (Altair Engineering,
Inc.) are used to examine the buckling hypothesis.

Abaqus 6.12 Edition (Abaqus, Inc.) offers two eigenvalue extrac-
tion methods for linear buckling analysis [65]. They are the Lanczos
method and the Subspace iteration method. The Lanczos method
can be finished faster than Subspace method when a large number of
eigenmodes are inquired. However, the Subspace method might be
faster when less than 20 eigenmodes are required. Because only a few
of the lowest eigenvalues are required for buckling analysis of clinical
idiopathic scoliosis, Lanczos method is used in this study.

For the RADIOSS 11.0 (Altair Engineering, Inc.) , there is only
Lanczos method can be used for linear buckling analysis [66]. The
difference of the results from the two softwares is shown in Section
2.8.

2.3 Growth deformation problem

Firstly, a review for the theory of buckling induced by the generation of
non-elastic bulk strain is present as following. In the present research,
the symbol R is used as the set of real numbers [10]. We denote a three
dimensional vector as x = (xi)i ∈ R3, and a tensol as E = (εij)ij ∈
R3×3. A function f having value of R defined on R3 is denoted as
f : R3 → R, and f (x) : R3 3 x 7→ f ∈ R.

Let Ω be a three-dimensional domain of a spine, from the sacrum
to the second cervical vertebra. We assume that the spine is an elastic
body fixed on a boundary ΓD, which corresponds to the boundary
of the sacrum. Moreover, let (0, tT) be a time domain with some
terminal time tT. The non-elastic bulk strain is defined as follows. Let
p : Ω → R be a function for the growth pattern, and let λ : (0, tT) → R
be a function for the magnitude of the growth over time. In previous
studies [64] [10], the function p took the value of 1 at the epiphyseal
growth plates and 0 elsewhere. Using p (x) and λ (t), we assume that
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the non-elastic bulk strain denoting the growth is given by

EG (t,x) = λ (t) p (x) I, (2.3.1)

where I is the identity matrix of the third order. Moreover, we assume
that λ (t) is a monotonically increasing function of t, and we denote
EG (t,x) by EG (λ).

The buckling theory is obtained from the large-deformation theory.
Let us briefly review the large-deformation theory. Consider a point
x = (xi)i ∈ Ω that moves to y (t,x) = (i+ u) (t,x) = x + u (t,x) :
(0, tT)× Ω 3 (t,x) 7→ y ∈ R3, where i denotes the identity mapping.
We define the deformation gradient tensor as

F (u) =

(
∂yi
∂xj

)
ij

= I +

(
∂ui

∂xj

)
ij

. (2.3.2)

Using F (u), the Green-Lagrange strain is defined as

E (u) = (εij (u))ij

==
1

2

(
F (u)F T (u)− I

)
= EL (u) +

1

2
EB (u,u) , (2.3.3)

where

EL (u) =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
ij

, (2.3.4)

EB (u,v) =
1

2

 ∑
k∈{1,2,3}

∂uk

∂xi

∂vk
∂xj


ij

(2.3.5)

denote the linear stain and the bilinear part of the Green-Lagrange
strain, respectively. Moreover, denoting the stiffness by C : Ω →
R3×3×3×3, the second Piola-Kirchhoff stress and the linear stress are
defined, respectively, as

S (u, λ) = (σij (u, λ))ij = C (E (u)−EG (λ))

=

 ∑
(k,l)∈{1,2,3}2

cijklεkl (u)


ij

, (2.3.6)
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SL (u, λ) = C (EL (u)−EG (λ)) . (2.3.7)

Using E (u) and S (u, λ), the potential energy induced by EG (λ)
without any external force is defined by

π (u) =
1

2
a (S (u, λ) ,E (u)−EG (λ)) (2.3.8)

for u ∈ U , where a (S,E) is a bilinear form with respect to S and E
defined as

a (S,E) =

∫
Ω

S ·E dx =

∫
Ω

∑
(i,j)∈{1,2,3}2

σijεij dx, (2.3.9)

and U is the set of displacements satisfying u = 0R3 on ΓD. Although
we are discussing a nonlinear problem, the bilinearlity of a(S,E) with
respect to S and E is maintained. From the principle of the minimum
potential energy, the displacement u ∈ U with respect to the growth
strain EG (λ) is determined by

π′ (u) [v] = a (C (E (u)−EG (λ)) ,E′ (u) [v]) = 0 (2.3.10)

for all v ∈ U , where π′ (u) [v] denotes the derivative of π (u) with
respect to an arbitrary variation v of u, and

E′ (u) [v] =
1

2

{
(F ′ (u) [v])

T
F (u) + (F (u))T F ′ (u) [v]

}
= EL (v) +EB (u,v) , (2.3.11)

F ′ (u) [v] =

(
∂vi
∂xj

)
ij

. (2.3.12)

Moreover, if the terms of EB can be neglected by assuming that
u and v are small, we have the weak form of the linear deformation
problem as

a (CEL (u) ,EL (v)) = a (CEG (λ) ,EL (v)) (2.3.13)

for all v ∈ U .
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2.4 Buckling problem

Buckling is known as a bifurcation phenomenon in the solution to
the equations of static equilibrium [67] [68]. Under the equilibrium
condition of π′ (u) [v] = 0 for all v ∈ U , a buckling phenomenon
occurs when there exists v2 ∈ U such that

π′′ (u) [v1,v2]

= a (S′ (u, λ) [v2] ,E
′ (u) [v1]) + a (S (u, λ) ,E′′ (u) [v1,v2])

= 0 (2.4.1)

for all v1 ∈ U , where

S′ (u, λ) [v2] = CE′ (u) [v2] , (2.4.2)

E′ (u) [v1] = EL (v1) +EB (v1,u) , (2.4.3)

E′′ (u) [v1,v2] = EB (v1,v2) . (2.4.4)

In Eq. (2.4.1), u and v2 are called, respectively, the critical displace-
ment and the eigenmode of the buckling phenomenon. Substituting in
Eq. (2.4.2), Eq. (2.4.3), and Eq. (2.4.4), Eq. (2.4.1) can be rewritten
as

π′′ (u) [v1,v2]

= a (C (EL (v2) +EB (v2,u)) ,EL (v1) +EB (u,v1))

+ a (S (u, λ) ,EB (v1,v2))

= 0. (2.4.5)

Here, let u0, a solution of the equilibrium condition of π′ (u0) [v] = 0
for all v ∈ U at a given λ0 = λ (t0), be the initial growth rate, and let
u = ζu0 and v2 be the solution of Eq. (2.4.5) for all v1 ∈ U . In this
case, u0 and ζ are called, respectively, the initial displacement and
the buckling coefficient. Using the above definitions, Eq. (2.4.5) can
be rewritten in the neighborhood of ζ = 1 as

a (CEL (v2) ,EL (v1))

= −ζ
{
a (S (u0, λ0) ,EB (v2,v1)) + a (CEL (v2) ,EB (u0,v1))

+ a (CEB (v2,u0) ,EL (v1))
}
. (2.4.6)
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Equation (2.4.6) for all v1 ∈ U is called the weak form of the nonlinear
buckling problem.

Moreover, if we can neglect the terms of EB without EB (v2,v1)
on the right-hand side of Eq. (2.4.6), we have the weak form of the
linear buckling problem as

a (CEL (v2) ,EL (v1)) = −ζa (SL (u0, λ0) ,EB (v2,v1)) (2.4.7)

for all v1 ∈ U . In this weak form, we can use an arbitrary value for
λ0 because the linearity of

a (SL (u, λ) ,EB (v2,v1)) = ζa (SL (u0, λ0) ,EB (v2,v1))
(2.4.8)

holds for Eq. (2.4.7).

2.5 Finite element analysis

Using the weak form of the linear buckling problem, an eigenvalue
problem for the buckling phenomenon can obtained by using FEM.
Following the standard procedure, we define approximate functions
for u0, v1, and v2 as

u0h (ū) =
∑
i∈ND

ū0i1φi

ū0i2φi

ū0i3φi

+
∑
i∈NN

ū0i1φi

ū0i2φi

ū0i3φi


=

(
ū0D

ū0N

)T(
φD

φN

)
= ūT

0φ, (2.5.1)

v1h (v̄1) = v̄T
1φ, (2.5.2)

v2h (v̄2) = v̄T
2φ, (2.5.3)

respectively, where N denotes the set of all node numbers, ND ⊂ N
denotes the set of node numbers on ΓD, and NN denotes N \ND. Here,
we call ū0, v̄1, and v̄2 the node vectors, and φ the basis functions.

The finite element equation of the growth deformation problem for
λ0 can be obtained as follows. Using Eq. (2.5.1) and Eq. (2.5.2) for u
and v, respectively, Eq. (2.3.13) can be rewritten as

v̄T
1

(
K̄ū0

)
= v̄T

1 b̄0, (2.5.4)
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where K̄ =
(
k̄ij

)
(i,j)∈N 2 and b̄0 =

(
b̄0i

)
i∈N consist of

k̄ij = a
(
SL

(
φ̄i

)
,EL

(
φ̄j

))
, (2.5.5)

b̄0i = a
(
CEG (λ0) ,EL

(
φ̄i

))
, (2.5.6)

where φ̄i is the three-dimensional function consisting of the basis vec-
tors for node i ∈ N . Substituting the Dirichlet condition on ΓD,
the approximate weak form of the linear growth deformation can be
written as(

0
v̄1N

)T(
K̄DD K̄DN

K̄ND K̄NN

)(
0

ū0N

)
=

(
b̄0D
b̄0N

)
(2.5.7)

for all v̄1N. Rearranging Eq. (2.5.7), we have

K̄NNū0N = b̄0N. (2.5.8)

Since K̄NN is a real symmetric and positive-definite matrix, ū0N can
be computed.

For the linear buckling problem, using Eq. (2.5.1), Eq. (2.5.2), and
Eq. (2.5.3) for u0, v1, and v2, respectively, Eq. (2.4.7) can be rewritten
as

v̄T
1 K̄v̄2 = −ζv̄T

1 Ḡū0, (2.5.9)

where K̄ =
(
k̄ij

)
(i,j)∈N 2 and Ḡ = (ḡij)(i,j)∈N 2 consist of Eq. (2.5.5)

and

ḡij (u0h) = a
(
SL (u0h) ,EB

(
φ̄i, φ̄j

))
, (2.5.10)

respectively. Substituting the Dirichlet condition on ΓD, the approxi-
mate weak form of the linear buckling problem can be written as(

0
v̄1N

)T((
K̄DD K̄DN

K̄ND K̄NN

)
+ ζ

(
ḠDD ḠDN

ḠND ḠNN

))(
0
v̄2N

)
= 0

(2.5.11)

for all v̄1N. Rearranging Eq. (2.5.11), we have

K̄NNv̄2N = −ζḠNNv̄2N. (2.5.12)

Since K̄NN and ḠNN are real symmetric matrices, Eq. (2.5.12) becomes
a real eigenvalue problem for the eigenvalue −ζ and eigenvector v̄2N.
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Figure 2.5: Lucas’s horizontal lateral loading test method [5]

2.6 Finite element Models

Based on the formulations of the buckling problem and numerical
solutions, we analyzed the linear buckling phenomena using the results
of growth deformations predicted by simple spine models. The details
of each model are described as below.

2.6.1 Young’s modulus

Firstly, in order to obtain the average Young’s modulus of the spine, we
repeated the Lucas’s horizontal lateral loading test though FEM [5].
The schematic drawing of Lucas’s horizontal lateral loading test is
shown in Figure 2.5. The simple plate model we used to repeat the
Lucas’s test is shown in Figure 2.6 (b), which has the same boundary
condition as Figure 2.6 (a). The bottom of the simple plate model was
fixed, and a horizontal lateral loading was put at the top of the plate
model. With the data from the Lucas’s horizontal lateral loading test,
the Young’s modulus can be calculated by the Euler’s buckling Load
formula. As result after calculation, the Young’s modulus for all the
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F F

(a)Boundary condition of Lucas’s test (b)Boundary condition of plate

Figure 2.6: The plate model in order to repeat Lucas’s loading test [5]

simple plate models is assumed to be 8 [MPa].
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2.6.2 Model 1

Model 1 is just a straight square column, has the height h = 500 mm
and depth d = 50 mm, which are appropriate geometrical dimensions
for an actual human spine, as shown in Figure 2.7. The front width
wF, back width wB, and depth of the growth domain g were chosen as
the variables. After calculation in Section 2.6.1, the Young’s modulus
was assumed to be 8 [MPa], and Poisson’s ratio was assumed to be
0.3. About 6,500 second-order tetrahedral elements were used for this
model.

In the living human being subject, the top of the spine is free
and the sacrum of the spine is fixed. For the boundary conditions of
the simple plate models, we also assigned a fixed boundary ΓD at the
bottom of all the models, which was at the base of the deformation.
The growth pattern p was assumed to take the value of 1 in the areas
shown in red in Figure 2.7, and the value 0 elsewhere. The value of
0.1 was used for the initial growth rate λ0. With changing the design
variables, front width wF and back width wB, we investigated the
difficulty levels of getting buckling phenomenon for Model 1 according
to different front width wF and back width wB. Figure 2.8 shows the
results of the numbers of the buckling modes in each wF–wB space for
Model 1, when growth domain g = 10 mm.
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Figure 2.7: Model 1
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Figure 2.8: Maps of the existence of buckling modes when g = 10 mm
for Model 1
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2.6.3 Model 2

Model 2 has a physiological curvature of 45◦ as the actual human
spine, as shown in Figure 2.9. The height h is 500 mm, and the depth
d is 50 mm, as same as Model 1. The front width wF, back width
wB, and depth of the growth domain g were chosen as the variables.
The front width wF and back width wB are the variables in order to
judge the difficulty degree for Model 2 to get buckling phenomenon
with different front width wF and back width wB. Figure 2.10 shows
the results of the numbers of the buckling modes in each wF–wB space
for Model 2, when growth domain g = 10 mm.

2.6.4 Model 3

Model 3 has small square holes (20mm × 20mm) in the rear part
which is similar as the foramina of the actual human spine, with height
h = 500 mm and depth d = 50 mm, as shown in Figure 2.11. The
front width wF, back width wB, and depth of the growth domain g
were chosen as the variables. We also changed the front width wF and
back width wB in order to investigate the difficulty levels for Model
3 to get buckling phenomenon at different front width wF and back
width wB. Figure 2.12 shows the results of the numbers of the buckling
modes in each wF–wB space for Model 3, when growth domain g = 10
mm.
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Actual human spine Model 2

Figure 2.9: Model 2
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Figure 2.10: Maps of the existence of buckling modes when g = 10
mm for Model 2
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Actual human spine Model 3

Figure 2.11: Model 3
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Figure 2.12: Maps of the existence of buckling modes when g = 10
mm for Model 3
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2.7 Results

Figure 2.8, Figure 2.10, and Figure 2.12 show the results of the num-
bers of the buckling modes in wF–wB space for Model 1, Model 2,
Model 3, respectively, when g = 10 mm. The number of buckling
modes is used as an index of the reliability of existence of the buck-
ling phenomena. If the buckling phenomena exist stably, based on
the similarity with the Euler buckling theory, many buckling modes
could occur through FEM. In order to distinguish the boundaries, the
numbers of buckling modes are shown different marks with different
colors in Figure 2.8, Figure 2.10, and Figure 2.12. The green circles
indicate more than ten buckling modes were obtained in the domain
with this wF–wB space. The yellow triangles indicate less than ten
buckling modes occurred in the domain with this wF–wB space. Be-
sides, the red crosses mean that there are no buckling phenomenon for
this combination of (wF, wB).

From the results of existence maps, we can see that the buck-
ling modes are stable when (wF, wB) = (16 mm, 16 mm). Figure 2.13
shows the shape of the buckling modes for Model 1 at (wF, wB) =
(16 mm, 16 mm) by using RADIOSS 11.0 (Altair Engineering, Inc.).
The results obtained by the Abaqus 6.12 Edition (Abaqus, Inc.) are
shown in the Figure 2.14. From these figures, the results obtained
from these two commercial software packages were almost the same.

We also investigated how buckling phenomenon occurs with chang-
ing the variable, growth depth g. The buckling coefficient ζ is used
to describe difficulty levels for the models to get buckled according to
different growth depth g. The Figure 2.15 shows the dependency of
the growth depth g on the buckling coefficient ζ for Models 1 and 2
at (wF, wB) = (16 mm, 16 mm) when g = 10 mm.
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(a) 1st mode (b) 2nd mode

(a) 3rd mode (b) 4th mode

(a) 5th mode (b) 6th mode

Figure 2.13: Shapes of the buckling modes for Model 1 at (wF, wB) =
(16 mm, 16 mm) when g = 10 mm via RADIOSS 11.0 (Altair Engi-
neering, Inc.)



62 CHAPTER 2. LIN. BUCKLING ANALY. FOR PLATE

(a) 1st mode (b) 2nd mode

(a) 3rd mode (b) 4th mode

Figure 2.14: Shapes of the buckling modes for Model 1 at (wF, wB) =
(16 mm, 16 mm) when g = 10 mm via Abaqus 6.12 Edition (Abaqus,
Inc.)
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Figure 2.15: Dependency of depth g of growth domain on the buckling
coefficient ζ for Model 1 and Model 2 at (wF, wB) = (16 mm, 16 mm)

2.8 Discussion

From the results of existence maps for buckling modes of Model 1,
Model 2 and Model 3, we can confirm that there are boundaries be-
tween the domain in which buckling occurs and the domain in which
it does not. Moreover, the area in which buckling occurs for Model
1 is larger than Model 2, and this result supports Dickson’s buckling
hypothesis, namely, that flattening of spine increases the possibility
for buckling to occur. The area in which buckling occurs for Model 3
is larger than Model 1, investigated that when the structure of a spine
has holes in the rear part, buckling can be taken place easier.

From the results shown in Figure 2.15, for all the models, buckling
is most likely to occur when the growth depth g is around 10 mm.
When the growth depth is small, the total amount of growth will be
also small in the initial growth deformation. Increasing of growth
depth from 0 mm to some amount brings the increase of the total
amount of growth. Then, it is considered that the buckling coefficient
decreases in the range of small growth depth. On the other hand,



64 CHAPTER 2. LIN. BUCKLING ANALY. FOR PLATE

in the range of large growth depth, since the growth deformation be-
comes dominant, it is considered that the likelihood of the buckling
phenomena decreases. From these considerations, the minimum value
of the growth depth exists when buckling is at the best state to occur.
In the case of the three models we used in this study, the minimum
value of the growth depth was around 10 mm. This result supports
the previous work [69], in which we showed that the growth of the
frontal parts of the vertebral bodies generates the best state for buck-
ling phenomena to occur.

2.9 Conclusion

In this Chapter, we used linear buckling theory to investigate the
buckling induced by the growth of vertebral bodies; to do so, we used
two commercial software packages via three simplified spine models.

From the results, we confirmed the existence of the buckling phe-
nomena, and we clarified the range of geometrical parameters in which
the buckling occurs. By the comparison of the range between the three
models, we can conclude the following results.

(1) The growth of the frontal parts of spine in depth around 10 mm
from the frontal plain causes the best state for buckling phenomena
to occur.

(2) The model with physiological curvature enlarges the buckling
area than the straight model.

(3) The structure having holes in the rear part also enlarges the
buckling area.

These results support the buckling hypothesis of Dickson that a
flattening or reversal of normal thoracic kyphosis at the apex of the
curvature of the spine causes the buckling phenomenon. Analyses us-
ing spine models to consider geometrical nonlinearity will be described
in next chapter.



Chapter 3

Nonlinear post-buckling
analysis for plate model

In this chapter, we investigated the nonlinear post-buckling analy-
sis by the simple plate model. Firstly, the basic of nonlinear post-
buckling analysis is introduced in Section 3.1. In this study, the Arc-
length Method is used to complete nonlinear post-buckling analysis,
which is then compared with the classical Newton-Raphson method
in Section 3.2. Section 3.3 states the effect of geometric imperfec-
tion of the finite element model which is necessary for post-buckling
analysis. The procedure of nonlinear post-buckling analysis through
Abaqus/Standard is introduced in Section 3.4. Section 3.5 reviews
the non-elastic strain and nonlinear buckling analysis by FEM. The
detail of the simple plate model is described in Section 3.6. The re-
sult for nonlinear post-buckling analysis for the simple plate model is
presented in the Section 3.7. Lastly, the discussion and conclusion of
the nonlinear post-buckling analysis is summarized in Section 3.8 and
Section 3.9.

3.1 Nonlinear buckling analysis

Linear buckling analysis can not provide exact simulation of buckling
phenomenon, and can only be used when designing and examining
process is needed. Especially, it is generally used to estimate the
critical buckling loads of the structure.

65
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Load

Displacement

Limit points

Figure 3.1: Typical unstable static problem

Load

Which one next?

Displacement

Figure 3.2: The shortcomings of classical Newton-Raphson Method
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Concerning about the material nonlinearity, geometric nonlinear-
ity, or unstable post-buckling behaviour, nonlinear analysis should
be considered to perform the buckling simulation. In order to ob-
tain more accurate results, nonlinear buckling analysis which includes
post-buckling behavior becomes necessary.

Nonlinear buckling simulation can be divided into 3 steps, pre-
buckling, buckling point, and post-buckling. Among them, focus
should be given to the post-buckling behavior since this step can in-
fluence the stability of the overall structure.

There are several numerical methods that have been created to
simulate nonlinear buckling analysis, such as Arc-length Method, ar-
tificial damping method, explicit dynamic analysis, and so on. How-
ever, among them, the Arc-length Method is the most widely used
for post-buckling analysis due to the greater efficiency in tracing the
equilibrium trajectory with nonlinear behavior. The explanation of
Arc-length Method will be introduced in Section 3.2.

3.2 Arc-length Method

Incremental-iterative methods are able to perform nonlinear analysis
for structural problems. These approaches can trace the equilibrium
path by predictor and corrector steps. Most of the iterative techniques
follow the classical Newton-Raphson procedure with some modifica-
tion.

For unstable problems such as nonlinear post-buckling analysis, the
equilibrium solution paths is difficult to be exhibited. A typical sam-
ple of unstable static problem is shown in Figure 3.1. Moreover, the
classical Newton’s method can not solve these problems where equi-
librium solution paths need to be traced beyond limit points (Figure
3.2).

Therefore, Arc-length Method is created to overcome these prob-
lems in Newton-Raphson Method. The Arc-length Method is also
named as Modified Riks Method, originally created by Riks andWemp-
ner. In 1979, Riks [70] introduced the constant Arc-length which could
pass the limit and turning point.

The Arc-length Method is a solution strategy in which the path
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through a converged solution, at any step, follows a direction orthog-
onal to the tangent of the solution curve. It is widely used for the
analysis of unstable structures which needs to be traced beyond limit
points.

Abaqus/Standard uses the incremental Arc-length, ∆λ, trace along
the static equilibrium path in load-displacement space. A schematic
principle for Arc-length Method is shown in Figure 3.3. The u means
the displacement, and the ζ is the load proportionality factor in the
figure. The load proportionality factor can be defined as the limiting
value of each iteration where the loads during a scenario are modified
step by step until the convergence is reached. The load proportion-
ality factor can be used to calculated for the current magnitude of
load of the whole model at each increment. The data of load pro-
portionality factor at each increment is stored in history output of
Abaqus/Standard where the users can download it immediately.

3.3 The effect of geometric imperfection

In fact, there are various kinds of imperfections inside the actual struc-
tures, such as the load applied or the geometry of the structure. To
obtain a correct post-buckling behavior, it is necessary to consider
the imperfections of the shape or the loading in the real structure.
The simulation of bifurcation for buckling phenomenon can turn to
be a problem with continuous response with the help of initial im-
perfections, as shown in Figure 3.4. When the analysis comes to the
bifurcation, the path is turned to be a smooth primary path instead of
the secondary path. Imperfections are usually introduced by pertur-
bations in the geometry. The Arc-length Method of Abaqus/Standard
can introduce a geometric imperfection pattern for the original model,
and then some response in the buckling mode occurs before the exact
load is reached.

To complete a post-buckling analysis, an initial deformed shape
should be created by using the deformed shape from a linear eigenvalue
buckling analysis. Thus an eigenvalue buckling analysis will produce
critical buckling loads and buckled shapes on the“perfect”structure
at first. A factored deformed shape from this linear buckling analysis
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Load

Displacement

Figure 3.4: A schematic principle for Imperfection [8]

can then be used as the initial mesh for a further nonlinear buckling
analysis to develop post-buckling behavior. The critical imperfections
are added to the lowest buckling modes to create the perturbed mesh
in Abaqus/Standard.

3.4 Nonlinear buckling analysis by FEM

3.4.1 Elastic deformation problem by means of
non-elastic strain

In this study, growth of vertebrae in the growth period can be consid-
ered as increasing mass in the epiphyseal growth plates. To simulate
growth phenomena, an elastic deformation problem is formulated by
means of generation of a non-elastic strain by taking into account large
deformation theory [10].

Let Ω0 ⊂ R3 and Γ0 (Ω̄0 = Ω0∪Γ0) be a three-dimensional domain
and its boundary of an elastic body of initial position at time t = 0,
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and X = (Xi)i ∈ Ω0 be a position of a material point defined in
Ω0. Let the elastic body deform by generation of a non-elastic strain
in accordance with time t ∈ (0, T ) and a material point at X ∈ Ω0

move to x(X, t) = (xi(X, t))i ∈ Ωt while restricting displacement
on Γ0

0 × (0, T ) for a sub-boundary Γ0
0 ⊂ Γ0 (measure of Γ0

0 is not
zero). Using the Lagrangian description, let displacement u(X, t) =
(ui(X, t))i and its admissible set U be defined as

u = x(X, t)−X, (3.4.1)

U =
{
u ∈

(
H1

(
Ω0 × (0, T )

))3∣∣∣ u = 0 on Γ0
0

}
. (3.4.2)

Let the non-elastic strain be given with the definition of the Green-
Lagrange strain Ē(X, t) =

(
Ēij(X, t)

)
ij
∈ (L∞ (Ω0 × (0, T )))

3×3
and

the bone be the Saint-Venant material defined in terms of the Hooke’s
law relationship between second Piola-Kirchhoff stress tensor Sij(u)
and the elastic part of the Green-Lagrange strain tensor Eij(u) by

Sij(u) = Cijkl

(
Ekl(u)− Ēkl

)
, (3.4.3)

Eij(u) =
1

2
(Fki(u)Fkj(u)− δij) = EL

ij(u) +
1

2
EBL

ij (u,u) ,

(3.4.4)

where Cijkl(X) ∈ L∞ (Ω0) is the stiffness tensor, δij denotes Kro-
necker’s delta, and the deformation gradient tensor Fij(u) and the
tensors of linear form EL

ij(u) and the bilinear form EBL
ij (u,v) are de-

fined by

Fij(u) =
∂xi

∂Xj

, (3.4.5)

EL
ij (u) =

1

2

(
∂ui

∂Xj

+
∂uj

∂Xi

)
, (3.4.6)

EBL
ij (u,v) =

1

2

(
∂vk
∂Xi

∂uk

∂Xj

+
∂uk

∂Xi

∂vk
∂Xj

)
. (3.4.7)

In this study, the summation convention for indices is used.
The equilibrium equation given by the velocity of the Cauchy stress

can be converted to the weak forms in the total Lagrange description
using the second Piola-Kirchhoff stress and the Green-Lagrange strain
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by multiplying the equilibrium equation with a variational displace-
ment v ∈ U and integrating over Ω0 and (0, T ) as∫ T

0

∫
Ω0

Sij(u)δEij (u,v) dXdt = 0 ∀v ∈ U, (3.4.8)∫ T

0

∫
Ω0

(
Ṡij(u)δEij (u,v) + Sij(u)δĖij (u,v)

)
dXdt = 0

∀v ∈ U, (3.4.9)

where the variatinal terms δ( · ) and derivatives with respect to time
˙( · ) = ∂( · )/∂t are defined by

δFij (v) =
∂vi
∂Xj

, (3.4.10)

δEij (u,v) =
1

2
(δFki (v)Fkj(u) + Fki(u)δFkj (v))

= EL
ij (v) + EBL

ij (u,v) , (3.4.11)

δĖij (u,v) = EL
ij (v̇) + EBL

ij (u̇,v) + EBL
ij (u, v̇)

= EBL
ij (u̇,v) , (3.4.12)

Ṡij(u) = Cijkl

(
Ėkl(u)− ˙̄Ekl

)
, (3.4.13)

Ėij(u) = EL
ij (u̇) + EBL

ij (u̇,u) . (3.4.14)

As v ∈ U is arbitrary, we set v̇ = 0.
By substituting Eqs. from (3.4.11) to (3.4.14) into Eqs. (3.4.8)

and (3.4.9), we can obtain the weak form for FEM as∫ T

0

aNL (u,v) dt =

∫ T

0

b
(
Ē,u,v

)
dt, (3.4.15)∫ T

0

(
aL (u̇,v) + aNL1 (u, u̇,v) + aNL2 (u, u̇,v)

)
dt

=

∫ T

0

b
(
˙̄E,u,v

)
dt, (3.4.16)

by using definitions as
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aNL (u,v)

=

∫
Ω0

Cijkl

(
EL

kl (u) +
1

2
EBL

kl (u,u)

)(
EL

ij (v) +
1

2
EBL

ij (v,v)

)
,

(3.4.17)

aL (u̇,v) =

∫
Ω0

CijklE
L
kl (u̇)E

L
ij (v) dX, (3.4.18)

aNL1 (u, u̇,v) =

∫
Ω0

Cijkl

(
EBL

kl (u̇,u)EL
ij (v)

+ EL
klj (u̇)E

BL
ij (u,v) + EBL

kl (u̇,u)EBL
ij (u,v)

)
dX,

(3.4.19)

aNL2 (u, u̇,v) =

∫
Ω0

Sij(u)E
BL
ij (u̇,v) dX, (3.4.20)

b
(
Ē,u,v

)
=

∫
Ω0

CijklĒkl

(
EL

ij (v) + EBL
ij (u,v)

)
dX. (3.4.21)

3.4.2 Nonlinear buckling analysis

Equation (3.4.16) can be solved by FEM. Let Ω0
h =

∪
e∈I Ω

e, I, N
and N0 be sets of numbers for finite elements, nodes and nodes on Γ0

0

respectively, N e be a set of node numbers for element e, and |N | be
the number of nodes. Let Pk(Ω

e) denote a set of polynomials defined
on Ωe used as the interpolation function N e

α(X) (α ∈ N e, X ∈ Ωe) in
which the k-th order polynomial space is included. Let us define an
approximation space Uh and nodal vector u using nodal displacement
uα = (uiα)i ∈ (C ((0, T )))3 as

Uh =
{
uh ∈

(
C
(
Ω̄0 × (0, T )

))3 ∣∣∣
uh|Ωe =

∑
α∈N e

N e
αuα ∈ Pk(Ω

e) ∀e ∈ I, uh|Γ0h
= 0

}
,

(3.4.22)

u = (uα)α∈N\N0
∈ (C ((0, T )))|N\N0| , (3.4.23)

and discretize u in time into u0 = 0 and uk+1 = uk + ∆uk (k =
1, 2, 3, · · · ) using notations ( · )

(
tk
)
= ( · )k for t0 = 0 and tk+1 =
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tk+∆tk. Introducing uh,vh ∈ Uh ⊂ U , Eqs. (3.4.15) and (3.4.16) can
be converted into

Qk+1 = F k+1, (3.4.24)

Kk+1∆uk =
(
KL +KNL1,k+1 +KNL2,k+1

)
∆uk = ∆F k,

(3.4.25)

where Qk, F k, KL, KNL1,k, KNL2,k and ∆F k are defined as

Qk = Q
(
uk

h

)
= (Qα)α∈N e ,

Qα =
∑
e∈I

aNL
(
uk

h,N
e
α

)
, (3.4.26)

F k = F
(
Ē

k
,uk

h

)
= (F α)α∈N e ,

F α =
∑
e∈I

b
(
Ē

k
,uk

h,N
e
α

)
, (3.4.27)

KL =
(
KL

αβ

)
α,β∈N e ,

KL
αβ =

∑
e∈I

aL
(
N e

α,N
e
β

)
, (3.4.28)

KNL1,k = KNL1
(
uk

h

)
=

(
KNL1

αβ

)
α,β∈N e ,

KNL1
αβ =

∑
e∈I

aNL1
(
uk

h,N
e
α,N

e
β

)
, (3.4.29)

KNL2,k = KNL2
(
uk

h

)
=

(
KNL2

αβ

)
α,β∈N e ,

KNL2
αβ =

∑
e∈I

aNL2
(
uk

h,N
e
α,N

e
β

)
, (3.4.30)

∆F k = ∆F k
(
∆Ē

k
,uk

h

)
=

(
Ḟ α

)
α∈N e

,

Ḟ α =
∑
e∈I

b
(
∆Ē

k
,uk

h,N
e
α

)
. (3.4.31)

In this study, the non-elastic strain Ē(X, t) can be written in the
form of separation of variables by

Ē(X, t) = ζ(t)Ē0(X), (3.4.32)
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where Ē0(X) ∈ (L∞ (Ω0))
3×3

and ζ(t) ∈ C ((0, T )) are growth strain
mode to yield a basic growth pattern and growth rate to give the mag-
nitude increasing in accordance with time, respectively. Introducing
the relationship, Eqs. (3.4.24) and (3.4.25) can be converted by

Qk+1 = ζk+1F̄
k+1
0 , (3.4.33)

Kk+1∆uk = ∆ζkF̄ 0, (3.4.34)

where F̄
k
0 is defined by

F̄
k
0 = F̄ 0

(
Ē0,u

k
h

)
=

(
F̄ 0α

)
α
, F̄ 0α =

∑
e∈I

b
(
Ē0,u

k
h,N

e
α

)
.

(3.4.35)

In this study, to compute deformation path including unstable phe-
nomena, we employed the Arc-length Method, in which ∆uk and ∆ζk

are determined by∫
Ω0

(uh · uh +∆ζ2fh · fh)dx = (∆λ)2, (3.4.36)

where uh

∣∣∣
Ω0

=
∑̄

α∈NeN e
αuα, fh

∣∣∣
Ω0

=
∑̄

α∈NeN e
αF α, and ∆λ is a given

constant called the incremental Arc-length. The nonlinear problem
given by Eqs. (3.4.33), (3.4.34) and (3.4.36) was solved by Newton-
Raphson iteration.

The buckling point can be defined by the condition that Kk+1

becomes a singular matrix:

det
(
Kk+1

)
= 0. (3.4.37)

At this point, the minimum eigenvalue ω1 = 0 and eigenmode φ1,
which is called buckling mode, can be defined by

Kk+1φ1 = ω1φ1. (3.4.38)

By taking the inner product between both parts of Eq. (3.4.33) and
φ1, the following relationships hold at the buckling point.

φ1 ·
(
Kk+1∆uk

)
= ω1φ1 ·∆uk = ∆ζkφ1 · F̄ 0 = 0. (3.4.39)
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When Eq. (3.4.39) is satisfied by φ1 · F̄ 0 6= 0, ∆ζk = 0, this point is
called the limit point. At this point, we can compute the deformation
path by the Arc-length Method. Conversely, when Eq. (3.4.39) is
satisfied by φ1 · F̄ 0 = 0, this point is called the bifurcation point. In
addition, when both conditions of φ1 ·F̄ 0 = 0 and ∆ζ = 0 are satisfied,
this point is called the symmetric bifurcation point. At these bifur-
cation points, we have to analyze the eigenmodes φ1 by appropriate
methods.

To judge buckling points, we employed a method using decompo-
sition of the tangent stiffness matrix K = LDLT , in which L and D
denote the lower triangular and diagonal matrices [71,72]. Using this
method, we monitor the number of negative elements in D and iden-
tify passing the buckling points when the number changes. For the
analysis of φ1, we employed both the scaled corrector method and the
block Lanczos method, and confirmation was achieved in accordance
with these results by interactive operation.

3.5 Post-buckling analysis in Abaqus

In this research, all the nonlinear post-buckling analyses were con-
ducted by the finite element software package, Abaqus 6.12 Edition
(Abaqus, Inc.). The flowchart for post-buckling analysis in Abaqus is
shown in Figure 3.5. Before the Arc-length Method can be performed,
the linear eigenvalue buckling analysis for the same model should be
firstly completed. After the linear eigenvalue buckling analysis, the
.fil file is obtained and the eigenmode from the Abauqs/Standard can
be chosen. And then, users can introduce the imperfections into the
.inp file through that .fil file. The keywords *STATIC, RIKS and
*IMPERFECTION are used when post-buckling analysis in .inp file
is performed.

3.6 Model

After comparing the numbers of buckling mode for each model in
Chapter 2, Model 1, which buckled easily, was used for the nonlinear
post-buckling analysis in this chapter. The height and depth of this
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Figure 3.5: Flowchart of post-buckling analysis procedure in Abaqus
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h
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Figure 3.6: The plate model

plate model is set to be h = 500 mm and d = 50 mm, respectively,
as same as the models in Chapter 2. In this chapter, the width of
the model is set as wF = wB = 6mm, which is expected to cause
more buckling models to the model. Young’s modulus and Poisson’s
ratio is still assumed to be 8 [MPa] and 0.3, respectively. This plate
model consists of 403,781 nodes and 265,812 elements. All elements
are second-order tetrahedron (C3D10 in Abaqus/Standard).

For the boundary conditions, we still assigned a fixed boundary
ΓD at the bottom of the model. The growth pattern g was assumed
to take the value of 1 in the areas shown in red in Figure 3.6, and the
value 0 elsewhere. The value of 0.1 was used for the initial growth
rate.
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3.7 Result

Firstly, the linear buckling analysis was completed by using the simple
model, and the 1st Mode, 2nd Mode, 3rd Mode, 4th Mode of the linear
buckling were obtained. Then the geometric imperfection patterns
were introduced to the modes respectively before the nonlinear post-
buckling analysis. The imperfect initial geometry for each Mode is
αw1 = 5.0 mm，αw2 = 6.0 mm，αw3 = 5.9 mm, and αw4 = 5.0
mm.

After the nonlinear post-buckling analysis, the 1st Mode, 2nd Mode,
3rd Mode, 4th Mode are shown in Figure 3.7, Figure 3.9, Figure 3.11,
and Figure 3.13, respectively.

From these results, we can see, the deformation for the 2nd Mode
and 3rd Mode are identified similar to the clinical scoliotic curves.

The relationship between the current load proportionality factor
and Arc-length for the 1st Mode, the 2nd Mode, the 3rd Mode, the
4th Mode are shown in Figure 3.8, Figure 3.10, Figure 3.12, and Figure
3.14, respectively.

3.8 Discussion

From the results of the history of the load proportionality factor and
the Arc-length for all types of modes, the result for the 3rd Mode is
appear to be different from the others.

For the 3rd Mode, the model is inverted to the right and left with
large deformation during the analysis, which is shown in Figure 3.15.
And the load proportionality factor turns to negative value from the
latter part of the analysis. From these results, the existence of the
unstable nonlinear post-buckling phenomena can be observed in the
case of 3rd Mode.

For the other three modes, the analysis finished with small Arc-
length. When the increment decreases gradually, the equilibrium so-
lution paths could not be found, and the deformation of the model
was large enough, which made the simulation come to completion at
the end of the equilibrium path.

From the results of Mode1, Mode 2, and Mode 3, when the load
proportionality factor is around 10, the changing of path occurred,
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Figure 3.7: The 1st Mode from nonlinear growth deformations of plate
model with initial imperfections (λ = 12.16)
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Figure 3.8: History of load proportionality factor for the 1st Mode
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Figure 3.9: The 2nd Mode from nonlinear growth deformations of
plate model with initial imperfections (λ = 45.59)
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Figure 3.10: History of load proportionality factor for the 2nd Mode
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Figure 3.11: The 3rd Mode from nonlinear growth deformations of
plate model with initial imperfections (λ = 50.54)
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Figure 3.12: History of load proportionality factor for the 3rd Mode
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Figure 3.13: The 4th Mode from nonlinear growth deformations of
plate model with initial imperfections (λ = 9.359)
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Figure 3.14: History of load proportionality factor for the 4th Mode
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Figure 3.15: History of load proportionality factor for the 3rd mode
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which indicated that the nonlinear post-buckling began to occur. Then
for Mode 1 (Figure 3.8) and Mode 2 (Figure 3.10), the load propor-
tionality factor increased gradually following the increase of the Arc-
length. On the other hand, For the Mode 3, the load proportionality
factor decreased after the turning point, which means the unstable
large deformation occurred.

From these results, the stable post-buckling deformations were ob-
tained in almost modes of the simple plate model. Especially, an
unstable post-buckling deformation was confirmed in the case of the
3rd buckling mode.

3.9 Conclusion

In order to verify the buckling hypothesis, linear buckling analysis
was performed in Chapter 2. However, this analysis is only valid
for infinitesimal deformation and is not applicable to estimate the
stability for post-buckling behavior. In this chapter, we conducted
post-buckling simulations caused by the growth of vertebral bodies
considering the geometrical nonlinearity using the simple plate model.
After introducing initial imperfection to the buckling modes, stable
deformations are obtained for almost modes of the simple plate model.
Especially, for the 3rd Mode, an unstable post-buckling deformation of
the model during the analysis were obtained. Therefore, the existence
of the nonlinear buckling phenomena in the simple plate model can
be confirmed via the nonlinear growth deformation analysis.





Chapter 4

Linear buckling analysis for
spine model

This chapter introduces details of the finite element model of spine
used in this research. Section 4.1 summarizes the structure of spine’s
vertebrae. Section 4.2 reviews the previous works of our research group
related to buckling hypothesis. Then, the history and manufacture
of the spine model is introduced in Section 4.3. The elements, the
material, the boundary conditions and other properties of the spine
model are presented in Section 4.4. Next, the results of linear buckling
analysis of this spine model is stated in Section 4.5. The required time
for a patient to develop to a state of a scoliotic shape as in the 4th
Mode of the linear buckling analysis is calculated in the discussion
part of Section 4.6. In the end, the conclusion of linear buckling
phenomenon for the spine model is summarized in Section 4.7.

4.1 The structure of the spine

4.1.1 Classification of bone

The bone can be classified into two types, cortical bone and cancellous
bone. Compact bone is dense bone tissue laied on the facial part of
the bone. Inside the cortical bone, there are the trabeculae which is
full of holes conecting to each other by rods and plates. Bone marrow
contains immature cells inside the interior of the bones. Callcellous

87
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bone also contains lots of bone marrow which fills the space inside
trabeculae.

In order to supply nutrition to the cortical bone, small canals runs
parallel to the long axis of the bone. These canals, named as Haversian
canals, are connected to one another by the Volkmann’s canals. The
concentric layers, or lamellae, that surrounding the Haversian canals,
consists an osteon system.

Osteon

Periosteum
Volkmann's canal

Haversian canal

Trabecula

Medullary cavity

Cortical 

bone
Cancellous

 bone

Figure 4.1: The structure of the bone [73]

4.1.2 The structure of the spine

The human vertebral column is also named as the backbone or spine.
There are a total of 33 vertebrae in the human vertebral column.
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Cervical vertebrae

       C1 - C7

Thoracic vertebrae

        T1 - T12

Lumbar vertebrae

       L1 - L5

      Sacrum

      S1 - S5

  Coccyx

Co1 - Co5

Figure 4.2: Spine [1]
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These vertebrae are divided into five regions, the cervical spine, tho-
racic spine, lumbar spine, sacrum and coccyx. There are seven cervi-
cal vertebrae, twelve thoracic vertebrae and five lumbar vertebrae, as
shown in Figure 4.2.

4.1.3 The joints of vertebrae

There are different kinds of ligaments as the joints of vertebea, such
as intervertebral disc, zygapophysial joint, anterior longitudinal liga-
ment, posterior longitudinal ligament, ligamentum flavum, interspinous
ligament, supraspinous ligament, as shown is Figure 4.3 and 4.4．

The intervertebral disc can be described as the shock-absorber be-
tween every vertebra. The intervertebral disc consists of the central
nucleus pulposus, and surrounding by the anulus fibrosus. The nucleus
pulposus is the core of the disc as shown in Figure 4.3. It consists of
jelly-like material and loose network of collagen fibers. The anulus fi-
brosus is the tough exterior of the intervertebral disc surrounding the
nucleus pulposus. It can help distribute pressure or force and pass to
the intervertebral disc.

The zygapophysial joints are located on the back of the spine on
each side to connect adjacent vertebrae. The joints can help prevent
the spine from bending or twisting and keep stability of the spine. The
zygapophysial joints consists of cartilage surrounding with capsule.
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Anular apophysis of vertebral body

Anterior longitudinal ligament

Intervertebral surface
Outer zone of collagenous fibers
                 of  intervertebral disc

Anulus fibrosus
Nucleus pulposus

Intervertebral
               disc

Foramen for basivertebral vein

Posterior longitudinal ligament
Pedicle of vertebral arch

Lamina of vertebral arch Inferior articular process

Spinous process

Thoracolumbar fascia

Supraspinous ligament
Lnterspinous ligament

Ligamentum flavum

Superior articular processIntervertebral foramen

Figure 4.3: Cross sectional view of lumbar vertebrae [1]

Transverse process

Superior articular process

Inferior articular process

Lamina of vertebral arch

Spinous process

Zygapophysial joint (articular capsule)

Ligamentum flavum

Figure 4.4: Articular capsule of thoracic vertebrae [1]
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4.2 Previous researches

Since the function of the spine is to maintain the form of the body, we
can consider some mechanical phenomena may cause of the spine to
be bent. Various hypothesis on the etiology of idiopathic scoliosis have
been proposed for that reason, and one of them is buckling hypoth-
esis. Regarding to the buckling hypothesis, our research group have
reviewed the literature and investigated the buckling phenomenon in-
duced by the growth of vertebral bodies.

Starting from 1995, Azegami [74] [75] [76] [63] began to conform
the buckling hypothesis with numerical simulation by FEM. The finite
element models of spine for early stage, shown in Figure 4.5 were used
for the numerical simulations of vertebral growth [77] [78] [79] [80].
From the results of growth analysis, they found the 4th buckling mode
was similar to the clinical shape of idiopathic scoliosis. While the 1st
buckling mode, 2nd buckling mode and 3rd buckling mode, they can
be controlled by posture changes resulting from the muscle system.
Moreover, the mechanical spine model was also used to demonstrate
the buckling hypothesis on etiology of idiopathic scoliosis [81] [82] [83].
But, no major muscle in the thoracic spine region seems to be the
reason why the 4th buckling mode occurs, and be the possible cause
of the spinal deformation as etiology of thoracic idiopathic scoliosis
[84] [85] [63] [86] [87].

Based on the buckling hypothesis, Takeuchi [7] [88] [89]used the
linear buckling theory to analyze the buckling phenomenon induced by
the growth of vertebral bodies using FEM. A more exact finite element
model of spine with thoracic cage was used for the linear buckling
analysis. Heat expansion was applied to the model to allow the growth
of vertebrae to occur. Various growth pattern between T1 and L5 were
examined. Commercial FEM program MSC. Nastran V70 [90] [91] was
used to investigate all valid buckling modes. As a result, they found
that the 4th buckling mode were in agreement with clinical shapes for
the case of single curve. In some other cases with wide range of growth
part, 6th buckling mode was similar to the clinical shapes for the case
of double curve. Some of the buckling modes which are in agreement
with clinical shapes are shown in Figure 4.7. Critical growth with
respect to the 4th buckling mode and 6th buckling mode are shown
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Figure 4.5: Previous spine model (1995)



94 CHAPTER 4. LIN. BUCKLING ANALY. FOR SPINE

Figure 4.6: Previous spine model (1996)
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in Figure 4.8(a) and Figure 4.8(b), respectively. From the results in
Figure 4.8(a), they found that when the growth pattern near to the
central of the thoracic vertebrae around T7 or T8, a 4th buckling
mode can occur easily, and these results indicated the etiologies of
single and double curves are second and third side bending modes
respectively [9] [92] [64]. These numerical results also demonstrated
that the sensitivity function is high at the articular capsules of the the
costotransverse joints, costovertebral joints, intervertebral joints and
the intervertebral disks between T6 and T8 [93] [94] [95] [96].

Sasaoka [97] [82] [98] used mechanical models of spine by exper-
iment to investigate the effect of the buckling hypothesis. With the
comparison between the 4th buckling mode and the 2nd side bend-
ing natural vibration mode, variation of the frequency of the 2nd side
bending mode was measured. His results verified the existence of the
buckling phenomenon by the growth of the vertebral bodies. More-
over, two techniques named as morphing and fitting methods were
developed to construct finite element models of spine for the indi-
vidual patients [83] [99].However, these results valid for infinitesimal
deformation and is not applicable for the stability of post-buckling
behavior.

Aoyama [100] [101] [10] [102] developed a program to analyze defor-
mation histories caused by the growth of vertebral bodies considering
the geometrical nonlinearity and investigated unstable phenomena. He
assumed that growth represents generation of non-elastic bulk strain.
Constraints at the cervical spine using a distributed spring were con-
sidered to exclude modes correctable by posture change. Using the
developed program, deformation histories induced by the growth of
vertebral bodies were analyzed. Deformation histories including un-
stable phenomena with side-bending modes similar to clinical curves
were obtained. Loading factor vs. displacement at the front-center
point on the eighth thoracic vertebra is shown in Figure 4.10 (a) to
(c), and displacement of the center points in all vertebrae is shown in
Figure 4.10 (d). The results indicated that the displacement in left
direction of all vertebrae was less than 0.1mm. The magnitude of de-
formation was in the sub-millimeter order, which are too small for the
etiology of idiopathic scoliosis.
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(a) 4th Mode by T1-L5 growth (b) 4th Mode by T1-T7 growth

(c) 4th Mode by T11-L5 growth (d) 6th Mode by T1-L5 growth

Figure 4.7: Typical buckling modes [9]
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Figure 4.9: Loading factor vs. displacement at the front-center point
on the 8th thoracic vertebra [10].
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4.3 The manufacture of the spine model

Our research group has produced several finite element models of spine
to investigate the mechanical etiology of idiopathic scoliosis based on
the buckling hypothesis, as shown in Figure 4.5 and Figure 4.6 [75]
[63] [77] [78] [79].

Commercial data of 3-dimensional spine surface from the View-
point DataLabs International, Inc. (Viewpoint Premire, catalog num-
bers of VP2886 and VP3611, Viewpoint Corporation, 498 7th Ave.
Suite 1810, New York, NY 10018, USA) was used for the geometrical
shapes. Our research group obtained the 3D spine surface data and
used pre-post process function to make the finite element model by
these data [96]. A solid modeler (I-DEAS Master Series2.1, SDRC,
2000 Eastman Drive, Miford, Ohio 45150-2789, USA) was used to
construct the finite element meshes or combination in the respective
subdomains. The procedure for devision of element meshes is shown
as below. The procedure for manufacture of the 8th thoracic vertebrae
is used as a sample in Figure 4.11.

(1) On the basic of commercially available facial data, the small
aggregation region of hexahedrons and pentahedrons are deter-
mined at first, which are shown in Figure 4.11a and Figure 4.11b.

(2) Inside each small aggregation region, the I-DEAS Master series
version 2.1 was used to divide the finite element meshes or com-
bination for each hexahedron and pentahedron. (Figure 4.11c)．

(3) The elements of intervertebral joints were added.

(4) After the quality evaluations for each element were conducted,
the elements which can not satisfy the criteria were modified
manually.

After meshing process, the construction of the inner vertebrae is
shown in the Figure 4.12 to 4.15.
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(a) Facial data (b) Small aggregation region (c) Finite elements

Figure 4.11: Finite element division for T8 thoracic vertebrae

- The number of nodes : 2,220

The number of elements : 1,752

Figure 4.12: The finite element model of the 2nd cervical vertebra
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The number of nodes : 2,985
The number of elements : 2,312

Figure 4.13: The finite element model of the 5th cervical vertebra

The number of nodes : 3,084
The number of elements : 2,444

Figure 4.14: The finite element model of the 7th thoracic vertebra
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The number of nodes : 2,509
The number of elements : 1,948

Figure 4.15: The finite element model of the 3rd lumbar vertebra
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4.4 The finite element model of spine

The height of the finite element model of spine is around 610 [mm].
Since the normal human muscle system can not control the spinal de-
formity, the muscle system supporting the spinal column is ignored in
this model. The aspect of the 9th and 10th thoracic vertebrae (T9
and T10) are shown in Figure 4.16. Each vertebra consists of can-
cellous bone on the inside of the vertebral body and cortical bone on
the surface of the vertebral body, vertebral arch, transverse process,
spinal process and articular process. The intervertebral disks consist
of nucleus pulposus in the center of the disks (approximately 60% of
radius) and annulus fibrosus in the exterior of the disks. Adjacent ver-
tebrae were connected with intervertebral disks and articular capsules
of intervertebral joints. Costal bones and vertebrae are connected with
costotransverse joint and costovertebral joint. Sternum and the costal
bones form first to tenth are combined with costal cartilage.

The spine model with rib cage consists of 84,587 modes and 68,582
elements. The spine model without rib cage consists of 69,658 nodes
and 59,356 elements. For this study, in order to get a better result,
we changed part of the first-order elements (especially the principal
structural part of vertebrae) to the reduced-integration, second-order
elements. Therefore, after revolution of the elements, the new spine
model without rib cage consists of 181,675 nodes and 59,356 elements.
The spine model with rib cage and spine model without rib cage are
shown in Figure 4.17 and Figure 4.18, respectively. Then, Abaqus
6.12 Edition (Abaqus, Inc.) was used to investigate the linear buckling
analysis for the spine models.

4.4.1 The element

There are different types of solid elements for users to select in Abaqus.
In this study, the C3D4H, C3D6H, C3D15H, C3D8RH, C3D20RH are
used for the finite element model. The use rate for each element is
shown in the Table 4.1. The description for the function of each type
of element is stated as: the capital letter R means reduced integration,
and the capital letter H indicates this element is hybrid element. In
order to prevent from volumetric locking problems, the reduced inte-
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Cortical bone

Cancellous bone

Epiphyseal ring
(Cortical bone)

Anulus fibrosus
Nucleus pulposus

Articular capsule

Hyaline cartilage plate
(Cancellous bone)

Interspinal disk:

Costovertebral joint

Costotransverse joint

Figure 4.16: Finite element mesh for T9-T10

　

Table 4.1: Using rate for each type of element

Element Name Numer Use rate
second-oder Hexahedron C3D20RH 33357 56.2%
first-oder Hexahedron C3D8RH 19083 32.2%

second-order Pentahedron C3D15H 32 0.05%
first-order Pentahedron C3D6H 6870 11.6%
first-order Tetrahedron C3D4H 14 0.02%
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The number of nodes : 84,587
The number of elements : 65,582

Figure 4.17: Finite element model of spine with rib cage
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The number of nodes : 181,675
The number of elements : 59,356

Figure 4.18: Finite element model of spine without rib cage
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gration hybrid elements are mostly used in the model. The qualities
of elements are shown in Table 4.2.

In order to obtain the geometrically high precision, the spine model
was also modified and adjusted through comparing the mechanical
result from clinical spinal experiments. The material properties of
cortical bones and cancellous bones in vertebrae, ribs and sternum
were assumed using the data by Yamada [103], since their materials
are so hard that their material properties are insensitive to the spinal
deformations. By using the experimental results of bending ligamen-
tous cadaver spines devoid of musculature by Lucas and Bresler [5],
material properties of intervertebral joints were identified. Young’s
modulus of intervertebral disks was determined by comparing with
the reactions of the thoracic and lumber intervertebral disks to exter-
nal forces of tension, compression and shearing in two directions and
moments of bending in the two directions and torsion by Markolf [104].
By using the data of the deformation properties of costosternal and
costovertebral articulations when loading to ribs obtained by Schultz
et al [105], Young’s modulus of costovertebral articulations and cos-
totransverse articulations were identified. The material properties of
the spinal finite element model is shown in Table 4.3.

4.4.2 The boundary conditions and growth region

For the boundary conditions, we still assumed that the sacrum is fixed,
as shown in Figure 4.19.

The growth pattern of spine is marked in blue, as shown in the
Figure 4.20. According to the previous study, the hyaline cartilage
plates and the epiphyseal rings from T4 to T10, which are the easiest
part to cause buckling phenomenon, is chosen to be the location of
growth pattern [9]. The value of growth proportion α for the hyaline
cartilage plates and the epiphyseal rings are shown in Table 4.4.
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Table 4.2: Finite element qualities of the spine model

Elements Warping Distortion Stretch
Cortical bone
Cancellous bone < 43◦ > 0.6 > 0.05
Costal cartilage
Nucleus pulposus
Anulus fibrosus
Articular < 30◦ > 0.65 > 0.1
Costovertebral joint
Costotransverse joint

　

Table 4.3: Material properties of each vertebra
Young’s Shear

modulus(MPa) modulus(MPa)
Cortical bone 17000 6540

Interior cortical bone 1000 385
Epiphyseal ring 1000 385
Cancellous bone 200 76.9

Hyaline cartilage plate 100 38.5
Nucleus pulposus 0.1 0.038
Anulus fibrosus 2.5 5.0

Cervical vertebrae 7.5 2.88
Thoracic vertebrae 7.5 2.88
Lumbar vertebrae 0.6 0.23

Sternum 17000 6540
Costal cartilage 500 19.2

Costovertebral joints 1.1 2.54
Poisson’s ratio 0.3
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(a) Front view (b) Side view

Figure 4.19: The boundary condition for the spine model

Table 4.4: Growth proportion α

Vertebrae T4 T5 T6 T7 T8 T9 T10
α[-] 0.02 0.04 0.06 0.08 0.06 0.04 0.02
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Epiphyseal growth plates

Figure 4.20: Growth region [11]
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4.5 Results

After linear buckling analysis, lots of buckling modes were obtained,
which are similar to the results from previous research. The shape
of the 4th Mode as shown in Figure 4.24, accords with clinical single
curve of main thoracic scoliosis. While the shape of the 7th Mode
shown in Figure 4.27, resembles the clinical double curve of the tho-
racic scoliosis.

We also tried to investigate the difficulty for linear buckling anal-
ysis to occur with respect to various growth region ΩG = ∪i∈VΩGi.
5mm, 10mm, and 15mm of growth depth was added from the front to
back of the vertebrae (from T4 to T10). Since the 4th Mode is similar
to the clinical scoliotic shape, all the Load Proportionality Factor ζ4 of
the 4th Mode with respect to different growth depth were compared.
The comparison results of the Load Proportionality Factor ζ4 for each
growth region is shown in Table 4.6. We found that when the growth
depth is around 10mm, the smallest Load Proportionality Factor ζ4
is recorded, which means the buckling phenomenon occurs most eas-
ily. This also accords with the results we obtained with simple plate
models in Chapter 3.
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Front view Side view

Figure 4.21: The 1st Mode of spine model (ζ1 = 1.046)
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Front view Side view

Figure 4.22: The 2nd Mode of spine model (ζ2 = 2.272)
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Front view Side view

Figure 4.23: The 3rd Mode of spine model (ζ3 = 2.521)



116 CHAPTER 4. LIN. BUCKLING ANALY. FOR SPINE

Front view Side view

Figure 4.24: The 4th Mode of spine model (ζ4 = 5.203)
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Front view Side view

Figure 4.25: The 5th Mode of spine model (ζ5 = 5.936)
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Front view Side view

Figure 4.26: The 6th Mode of spine model (ζ6 = 7.242)
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Front view Side view

Figure 4.27: The 7th Mode of spine model (ζ7 = 13.564)
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Front view Side view

Figure 4.28: The 8th Mode of spine model (ζ8 = 15.094)
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4.6 Discussion

Table 4.5: Growth rate of vertebrae for normal girls

Period
7–8 8–9 9–10

year olds year olds year olds
Thoracic vertebrae 5.3% 7.0% 4.5%

Thoracic interspinal disk 3.8% 0.8% −5.1%
Lumbar vertebrae 3.9% 4.4% 2.6%

Lumbar interspinal disk 9.8% 7.9% 6.8%

Table 4.6: Load Proportionality Factor at the 4th buckling ζ4 with
respect to depth of growth domain ΩG

Depth of growth domain (mm) ζ4
5 4.1408
10 3.555
15 4.0477

In the linear buckling analysis, the value of growth proportion α
for the hyaline cartilage plates and the epiphyseal rings is shown in
Table 4.4. The average value for the growth proportion α in Table
4.4 is 0.0457. The Load Proportionality Factor at the 4th buckling
ζ4 is 5.203. Therefore, the average value of the growth amount of
the hyaline cartilage plates and the epiphyseal rings can be calculated
as 0.0457 × 5.203 ≈ 0.2377. The hyaline cartilage plates and the
epiphyseal rings occupy 12% of the thickness of the interspinal disk.
Therefore, the average value of growth amount for the vertebrae from
T4 to T10 can be calculated as 0.2377× 0.12 ≈ 0.0285.

Nehme [106] investigated the growth rate for the spine of the nor-
mal girls, and the results of growth rate of each vertebra are shown
in Table 4.5. For the thoracic vertebrae of 8 -9 year olds normal girls,
the growth rate for one year is around 7.0%. Thus the growth rate
for one month is 0.070 ÷ 12 ≈ 0.0058. Thus the growth period can
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be estimated as 0.0285÷ 0.0058 ≈ 4.9. This means it takes nearly 4.9
months for the spine to get buckled as the 4th buckling mode in this
analysis.

4.7 Conclusion

In this chapter, in order to investigate the buckling hypothesis, the
finite element model of spine is used to complete the linear buckling
analysis. New finite element model of spine which is more exact than
the previous model is introduced. After the linear buckling analysis,
the 4th buckling mode which is similar to the clinical scoliotic curves
is obtained. Then we tried to investigate the difficulty of the spine
model to get buckled with respect to different growth regions. When
the growth depth is around 10 mm, the smallest Load Proportionality
Factor ζ4 is recorded, which accords the results of the simple plate
models analysis in Chapter 2. After all calculations, we can estimate
that 4.9 months are required for the spine to deform as similar shape
of 4th buckling mode for the case of patient from 8-9 year olds.



Chapter 5

Nonlinear post-buckling
analysis for spine model

In this chapter, we conducted post-buckling simulations caused by the
growth of vertebral bodies by considering the geometrical nonlinearity
using the spine models with full width and half width. In Section 5.1
and Section 5.2, the 4th buckling mode of the normal spine model
and the spine model with half width was chosen to verify the nonlin-
ear post-buckling phenomenon. Then, the existence of the non-linear
buckling phenomena and stable deformation during buckling process
were examined in the spine model with half width in Section 5.3.

5.1 The normal model

The growth region ΩG = ∪i∈VΩGi is the hyaline cartilage plates and
the epiphyseal rings from T4 to T10 for the nonlinear post-buckling
analysis, which is still same as the linear buckling analysis discussed in
Chapter 4. The sacrum is fixed as the boundary conditions as shown
in Figure 5.1.

In order to study the nonlinear post-buckling analysis, the initial
imperfection was introduced to the 4th Mode which is result of the
linear buckling analysis in Chapter 4, as shown in Figure 5.2. The
value of imperfection as 15% was applied to the 4th Mode, and the
result of nonlinear post-buckling analysis is shown in Figure 5.3.

123
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After the nonlinear simulation, the result of the relationship be-
tween the load proportionality factor and Arc-length is shown in Fig-
ure 5.4, which indicates the simulation stopped when the Arc-length is
just around 28.9. Comparing with the original model, little deforma-
tion can be observed after the simulation as shown in Figure 5.3. From
these results, we can claim that no occurrence of the nonlinear post-
buckling phenomenon in this simulation. Even though several differ-
ent value of imperfection were used, similar results were obtained and
these results strengthened our claim that no nonlinear post-buckling
occur for this model.

5.2 The narrow model

5.2.1 The spine model with half width

The finite element model of spine that we used in the analysis consists
of the data of male adults. However, the idiopathic scoliosis are found
more frequently in young girls during adolescence. Comparing with
male adults, the spine of girls during adolescence is more soft, easier to
be bend and narrower in size. Therefore, in order to suit the condition
of adolescence girls, we shrank the width of the spine model to half of
its original width, while the other conditions and properties are still
maintained. The spine model with half width is shown in Figure 5.5.
The hyaline cartilage plates and the epiphyseal rings from T4 to T10
is still set to be the growth region ΩG = ∪i∈VΩGi.

The results of linear buckling analysis of the spine model with half
width is shown in Figure 5.6. The 4th Mode which is similar to the
clinical scoliotic shape is still chose as the buckling mode for nonlinear
post-buckling analysis.

After applying the value of imperfection as 15% to the 4th Mode
of the linear buckling analysis, the result of nonlinear post-buckling
analysis is shown in the Figure 5.7. The relationship between the load
proportionality factor and Arc-length is shown in Figure 5.8. From
these results, the nonlinear analysis could not continue and finished
with small Arc-length. The results indicated that still no nonlinear
post-buckling phenomenon occurred for this model.
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(a) Front view (b) Side view

Figure 5.1: The boundary condition for the spine model

Front view Side view

Figure 5.2: The 4th linear mode of spine model (ζ4 = 5.203)
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(a) Front view (b) Side view

Figure 5.3: The nonlinear post-buckling analysis for the 4th Mode
(λ = 28.89)
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Figure 5.4: History of load proportionality factor for the spine model
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(a) Front view (b) Side view

Figure 5.5: The boundary condition for the half width spine model

(a) Front view (b) Side view

Figure 5.6: The 4th linear buckling mode of half width spine model
(ζ = 12.701)
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(a) Front view (b) Side view

Figure 5.7: Nonlinear growth deformations of half width spine models
with initial imperfections of the 4th buckling mode (λ = 72.95)
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Figure 5.8: History of load proportionality factor for the half width
spine model
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5.2.2 The new boundary condition

By considering muscles have the function to control the position of
spine, we fixed the nodes at the center of front boundary of C7 around
the neck. Moreover, the fixed sacrum is still maintained. The new
boundary condition of the spine model with half width is shown in
Figure 5.9.

After introducing the value of imperfection as 15% to the 4th Mode
of the linear buckling analysis, the result of nonlinear post-buckling
analysis under the new boundary condition is shown in the Figure
5.10. The relationship between the load proportionality factor and
Arc-length is shown in Figure 5.11. From these results, when the Arc-
length passed 32, the load proportionality factor decreased after the
maximum value, which indicated that, the existence of the non-linear
buckling phenomena can be confirmed in the spine model with half
width under the new boundary we used. Moreover, when the analysis
finished, the load proportionality factor is around 90, the Arc-length
is around -30, and the deformation of spine model at this moment is
shown in Figure 5.10. However, after measuring, the Cobb angle α
is only 7.5◦, which is too small comparing with the clinical scoliotic
curves.

5.3 Discussion

From the results in Figure 5.11, we can see, the turning point of the
load proportionality factor occurred when the Arc-length is around
32, indicated that the unstable nonlinear post-buckling phenomenon
occurred in this analysis. At this moment, the load proportionality
factor is ζ = 25, which means, when the growth of vertebral bodies
was given by occurring in the sub-domain ΩG, with 25% of the bulk
strain (0.01 × ζ = 0.25), which caused the unstable post-buckling
phenomenon occurred in this model. However, when the Arc-length
is around 90, the value of the load proportionality factor is nearly -30.
This impractical value also indicated the buckling hypothesis can be
the onset in the idiopathic scoliosis, but can not be the reason for
developing mechanism of idiopathic scoliosis.

From these results, the pathogenesis of the onset in the idiopathic
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(a) Front view (b) Side view

Figure 5.9: The new boundary condition for the half width spine model
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®

(a) Front view (b) Side view

Figure 5.10: Nonlinear growth deformations of half width spine models
with initial imperfections of the 4th buckling mode (λ = 90.1, Cobb
angle α = 7.5◦)
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Figure 5.11: History of load proportionality factor for the half width
spine model
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scoliosis can be explained by the buckling hypothesis. Even though
nonlinear post-buckling phenomenon occurred in this analysis, the
magnitudes of the post-buckling deformations are too small to ex-
plain the pathogenesis of the severe deformity observed in patients of
idiopathic scoliosis.

The reasons why the post-buckling analysis ended with small Arc-
length is discussed as following. By referring to the error history
from Abaqus/Standard, the first-order triangular elements seem to be
the problem occurred at the end of the analysis. When the analysis
finished, the stature of the elements are shown in the Figure 5.12.
As a result, the first-order triangular elements seem too easy to be
deformed.

First-order triangular and tetrahedral elements should be avoided
as much as possible in stress analysis problems [107]. These elements
are too stiff and exhibit slow convergence with mesh refinement. If the
use of first-order elements are unavoidable, better mesh with sufficient
accuracy should be applied in the spine models.

For the future work, the innovation and improvement of the first-
order elements of spine model should be continued.

5.4 Conclusion

Results in this chapter indicate that, the existence of the non-linear
buckling phenomena can be observed and measured by using the spine
model with half width. Moreover, after the nonlinear post-buckling
phenomena, unstable deformations were obtained in the spine model
with half width. Therefore, the pathogenesis of the onset in the idio-
pathic scoliosis can be explained by the buckling hypothesis. However,
the magnitudes of the post-buckling deformations are too small to ex-
plain the pathogenesis of the severe deformity observed in patients of
idiopathic scoliosis.
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(a) Before analysis (b) After analysis

(a) Before analysis (b) After analysis

Figure 5.12: The 4th linear buckling mode of half width spine model
(ζ = 12.701)





Chapter 6

Bone remodeling

In this chapter, the influence of bone remodeling on the buckling spine
is discussed. We used heat deformation analysis by FEM to examine
the bone remodeling etiology. Firstly, the Fung’s bone remodeling
hypothesis is introduced, and the condition for bone remodeling simu-
lation is described. Then, we conducted bone formation analysis and
bone resorption analysis to investigate the developing mechanism of
the severe deformity observed in patients of idiopathic scoliosis.

6.1 Bone remodeling

After many theoretial and experimental studies, Fung [108] proposed
a hypothesis on the growth of bone. He claimed that the remodel-
ing of blood vessel inside bone involving growth or resorption of cells
and extracellular materials has obvious relationship with the stress in
the vessel. He recognized that active or passive mechanism depends
in strain in the cell membranes can transport of matter through cell
membranes. The strain decides the granular-to-brous transformation
of actin molecules. Chemical reaction rate depends in pressure, stress
and strain. Hence, the stress and strain in a manner shown in the Fig-
ure 6.1. The meaning of the equilibrium states a, b, c is as described
as below. The point a means an increase of stress cause growth, a de-
crease of stress causes resorption. The point b or c means a decrease
of stress causes growth, an increase causes resorption.

Fung pointed out an equation to describe the growth rate as below,

135
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Hueter-Volkmann PrincipleWolff Principle

Figure 6.1: Fung Principle

m = C(s− a)k1(b− s)k2(c− s)k3 (6.1.1)

where, the m is the growth rate, s is the stress, C, a, b, c, k1, k2, k3

are constants. If the k1, k2, k3 is small than 1, the slope of the curve
is steep. If the k1, k2, k3 is bigger than 1, the slope of the curve is flat.
And the point a means homeostatic condition of blood vessel wall at
normal blood pressure. Moreover, when the blood pressure increased,
the growth rate behaves like the right part of point a. When the s
reaches the value between a and b or c and 0, the bone tissue growths.
When the s falls between aand s, or exceeds b, the resorption of bone
occurs.

At simple level, bone remodeling is under controlled by the Wolff’
principle, which is proposed by Dr. Wolff in the 19th century [109].
Enormous stress or force will cause bone to grow, build, adapt, trans-
form, and remodel. The intermittent increased stress will stimulate
bone formation, and the reduced intermittent stress will cause bone
resorption.

In 1862, Richard von Volkmann restated his own theory about
bone growth, and quoted Carl Hueter’s work, and then the Hueter-
Volkmann principle, an important orthopedic concept concerning bone
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growth, was created [110]. The Heuter-Volkmann principle can be
summarized as below: for the immature bone growth, increased pres-
sure inhibits growth; decreased pressure accelerates growth.

On the other hand, the Hueter-Volkmann principle is different from
that stated by the Wolff’ principle. The Wolff’ principle relates mainly
to the alterations inside the internal construction of the bone. The
greater stress results in greater bone density and apposition. However,
the increased compression reduces the longitudinal growth, accords to
the Hueter-Volkmann principle.

In 1966, Frost proposed the concept of a mechanical feedback sys-
tem for modeling and remodeling of bone [111] [112] [113]. He invented
the BMU, which means the basic multicellular unit of a bone. The
activity of these unit of cells accomplish bone remodeling, occurring
after skeletal maturity inside the internal structure, caused by the dy-
namic components of stress. When bone does not have enough strain,
the bone resorption occurs. When bone has ideal strain, the bone will
keep organized and mineralized [114] [115]. Strain has the function to
control the cellular reaction of bone.

The theory of bone remodeling was then developed by other re-
searchers. As a living tissue, low stress conditions results in bone re-
sorption, whereas high stress conditions make the bone growing [116]
[117]. Cowin [118] used model bone with a normal adaptive process to
demonstrate the strain can control mass deposition or resorption pro-
cess, which result in bone remodeling. Neuman [119] claimed an osteon
ages its hydroxyapatite crystals become dehydrated and lose ability to
remain interact with flood plasma. At this time, an old dehydrated
osteon will be resorbed to maintain the physiological function of bone
chemically.

6.2 Remodeling analysis

We simulated the bone modeling (bone formation and resorption)
analysis as heat deformation caused by changes in temperature [120]
[121] [122]. Bone modeling increased and decreased the volume of
the whole vertebral bodies from T4 to T10. For the boundary condi-
tions, we still assumed the sacrum is fixed. However, by considering
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the function of muscles, we also fixed the nodes at the center of front
boundary of C7 around the neck. The boundary condition is as same
as the nonlinear post-buckling analysis for the half width spine model
in Chapter 5.2.2, as shown in Figure 6.5.

The strain distribution occurring after the nonlinear post-buckling
analysis from half width spine model is shown in Figure 6.2. We
obtained strain distribution from Abaqus/Standard when the Arc-
length is 50, as shown in Figure 6.3.

The strain distribution we used is obtained from Abaqus/Standard
immediately, named as the logarithmic strain (LE). The logarithmic
strain can be calculated as below in Abaqus/Standard,

εL = α lnV = α(
3∑

i=1

lnλinin
T
i ) (6.2.1)

where V is the left stretch tensor, λi are the principal stretches, and
ni are the principal stretch directions. α is a negative or positive
constant, with regards to the bone formation and resorption, respec-
tively. These nonlinear analysis were still performed with Abaqus 6.12
Edition (Abaqus, Inc.).

After the nonlinear post-buckling analysis from Chapter 5.2, the
Max principle logarithmic strain in each element distribution when
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Arc-length λ = 50 could be obtained from Abaqus/Standard. In-
creasing volume in proportion to the strain simulated bone forma-
tion, whereas decreasing volume simulated bone resorption. With the
changing between positive or negative of α, the bone formation anal-
ysis and bone resorption analysis were produced.

6.3 Results and discussion

The result for bone formation from strain distribution is shown in
Figure 6.6, and the result for bone resorption from strain distribu-
tion is shown in Figure 6.7. For bone formation, the spine model
became straightly because of the thermal expansion. While, the scoli-
otic curves occurs when the model is in resorption condition, as shown
in Figure 6.7. After the bone resorption analysis, the biggest spatial
displacement near T7 is around 16.97 mm, as shown at the red triangle
in Figure 6.7 (b). Thus, the bone resorption was similar to the clini-
cal scliotic curves. The results from this study suggest that scoliotic
changes in the spinal column are caused by the buckling phenomenon.
Moreover, scoliotic changes triggered by the buckling phenomenon are
counteracted by bone formation, but worsened by bone resorption for
computational investigation.
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Figure 6.4: The strain distribution during nonlinear post-buckling
analysis when Arc-length λ =50
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(a) Front view (b) Side view

Figure 6.5: The boundary condition for bone remodeling analysis
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Front view Side view
(a) Before bone formation

Front view Side view
(b) After bone formation

Figure 6.6: Comparison between before bone formation and after bone
formation (λ =50).
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Front view Side view
(a) Before bone resorption

Front view Side view
(b) After bone resorption

Figure 6.7: Comparison between before bone resorption and after
bone resorption (λ =50) (The biggest spatial displacement is around
16.97mm.)
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6.4 Conclusion

In this chapter, in order to investigate the mechanism of progression
of the idiopathic scoliosis, the influence of bone remodeling after the
buckling was analyzed. From the results, it is confirmed that the
bone formation corrects the original curve, while the bone resorption
worsens the original curve. These results indicate that, the bone re-
sorption with respect to strain at post-buckling can be a candidate of
the developing mechanism of the idiopathic scoliosis.





Chapter 7

Conclusion

7.1 Achievement of this research

Idiopathic scoliosis still remains as a disorder of unknown etiology
with a large number of hypotheses. A large number of hypotheses and
physical models have been proposed for the pathogenesis of idiopathic
scoliosis. We have focused on a hypothesis that idiopathic scoliosis
is a buckling phenomenon induced by the growth of vertebral bodies.
We tried to investigate the etiology and the developing mechanism of
idiopathic scoliosis by means of computational mechanics.

The results of each chapter are summarized as below,

In Chapter 1，the features of idiopathic scoliosis, the treatment,
and the various hypotheses on the etiology to cause idiopathic scolio-
sis were introduced at first. Especially, the background and informa-
tion about the buckling hypothesis to cause idiopathic scoliosis was
stated. The achievements and failures about the previous research on
the buckling hypothesis from our research group was reviewed. At last
the objective of this research was determined clearly.

In Chapter 2，we used simple plate models to confirm the existence
of a buckling phenomenon that has various geometrical properties.
We used three types of simple model having different properties to
analyze linear buckling modes caused by the growth deformation, and
we confirmed the existence of the buckling phenomena and clarified
the range of the geometrical parameters in which this buckling occurs.
By a comparison of different models, we investigated the influence of
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the region of the buckling phenomena on the physiological curvature
of the spine and the intervertebral articulation. Our results support
buckling hypothesis that a flattening or reversal of normal thoracic
kyphosis at the apex of the curvature of the spine causes the buckling
phenomenon.

The result we obtained in Chapter 2 is valid for infinitesimal de-
formation and is not applicable to estimate the stability for nonlinear
post-buckling behavior. In Chapter 3, we conducted nonlinear post-
buckling simulations caused by the growth of vertebral bodies consid-
ering the geometrical nonlinearity using the simple plate model. After
introducing initial imperfection to the buckling mode, stable defor-
mations were obtained in almost modes of the simple plate model.
Especially, for the 3rd Mode, an unstable deformation of the model
during the analysis were obtained. From the nonlinear growth defor-
mation analysis, the existence of the nonlinear buckling phenomena
was confirmed in the simple plate model.

In Chapter 4，the finite element model of spine was used to com-
plete the linear buckling analysis to investigate the buckling hypoth-
esis. The new finite element model of spine which is more exact than
the previous model was introduced. After the linear buckling analysis,
the 4th Mode which is similar to the clinical scoliotic curves was ob-
tained. We also tried to investigate the difficulty for the spine model
to get buckled with respect to different growth regions. When the
growth depth is around 10 mm, the smallest Load Proportionality
Factor ζ4 is recorded, which accords the results from the simple plate
models in Chapter 2.

In Chapter 5，we conducted post-buckling simulations caused by
the growth of vertebral bodies considering the geometrical nonlinearity
using the spine models. However, we did not obtain any buckling phe-
nomenon after introducing imperfections to the normal spine model.
Thus, we shrank the width of the spine model, and fixed the node at
the center of front boundary of C7 of the spine model considering the
controllability of posture. Under this condition, the existence of the
non-linear buckling phenomena was confirmed in the spine model with
half width. Moreover, after the non-linear buckling phenomena, sta-
ble deformations were obtained for the spine model with half width.
Thus, the pathogenesis of the onset in the idiopathic scoliosis can be
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explained by the buckling hypothesis. However, the magnitudes of
the post-buckling deformations are too small to explain the pathogen-
esis of the severe deformity observed in patients of idiopathic scoliosis.
Thus, although the buckling hypothesis can explain the pathogenesis
of the onset in the idiopathic scoliosis, it cannot explain the developing
mechanism.

In Chapter 6, in order to investigate the mechanism of progression
of the idiopathic scoliosis, the influence of bone remodeling on the
buckling spine was investigated. The bone formation was simulated
by increasing of the volume of the bone in proportion to the strain
distribution which was obtained from the nonlinear post-buckling de-
formation analysis, and the bone resorption was simulated by decreas-
ing of the volume of the bone in proportion to the strain distribution.
From the results, the incremental deformation resulting from bone
formation corrected the original curve. On the other hand, incremen-
tal deformation resulting from bone resorption worsened the original
curve. These results suggested that, the bone resorption with respect
to strain at post-buckling can be a candidate of the developing mech-
anism of the idiopathic scoliosis.

7.2 Future work

In this research, we used numerical results by FEM to investigate the
effect of buckling phenomena in the etiology of idiopathic scoliosis. In
the future, we hope this study could contribute to clinical applications
for treatment and prevention of idiopathic scoliosis.

Various buckling modes obtained in this research explained the dif-
ferent types of clinical scoliotic shapes. Moreover, the finite element
analysis in this study can be used to predict the symptom from the
initial stage to the final stage for the patients without surgical treat-
ment. Besides, these technology can be applied to predict the future
development of scoliotic curve after surgery.

The improvement that should be made to enhance in this research
are summarized as below.

(1) The results of nonlinear analysis for bone resorption we obtained
is too small to explain the pathogenesis of the severe deformity
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observed in patients of idiopathic scoliosis. The future investi-
gation is needed in order to obtain severe deformity like clinical
scoliotic curves.

(2) The accuracy of the finite element model of spine needs to be
upgraded. In order to obtain better results, especially, the first-
order triangular and tetrahedral elements should be improved.
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