
Topic 12 – DNA technology

Branko Aleksic, MD, PhD Department of Psychiatry, Nagoya University

Copyright materials

Overview of genetic study (in psychiatry)


Today's topics:

- Japanese Schizophrenia GWAS
 - SNP-based analysis
 - Polygenic component analysis
 - Follow-up

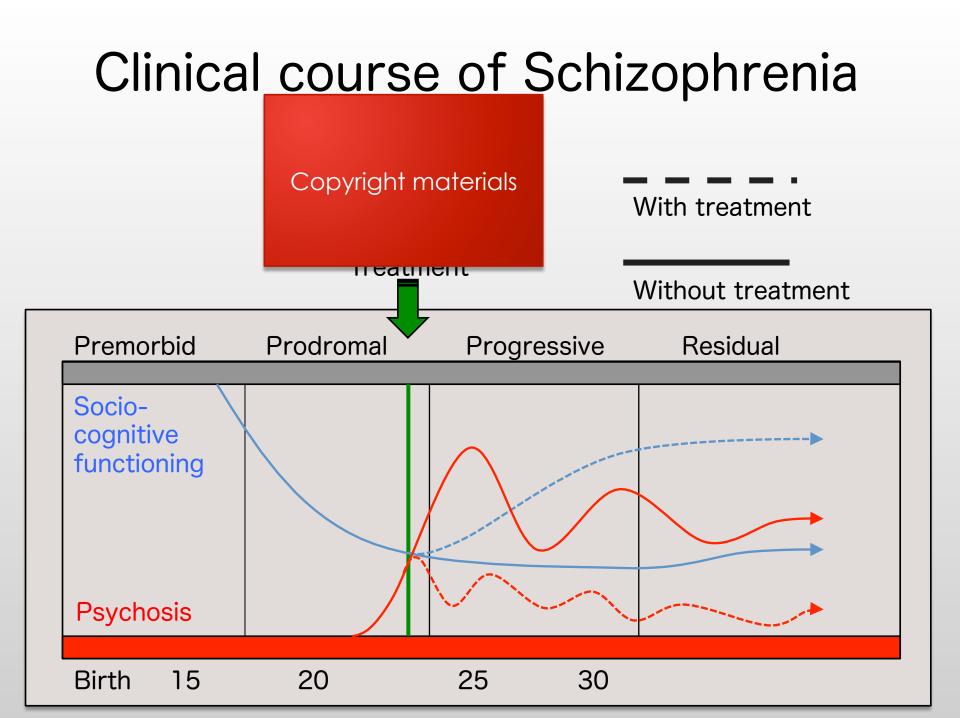
Schizophrenia GWAS

Northeast Participation

Effected deserver of the Sectory of Complete Psychology and the Sector S

M. Ikeda, B. Aleksic et al, 2011 Biol Psychiatry

History of Schizophrenia Diagnosis


- Emil Kraepelin (1856-1926): dementia praecox
 - Early onset
 - Progress to dementia
 - Cf. Demetia presenilis (Alzheimer's disease) and manic depressive insanity

- Eugen Bleuler (1857-1939): schizophrenia
 - did not necessarily have an early onset
 - Doesn't (always) progress to dementia

Schizophrenia now

- Common psychiatric disorder
- Onset is usually in early adulthood
- Characterized by:
 - Positive symptoms (hallucinations)
 - Negative symptoms (lack of motivation, social withdrawal)
 - Cognitive symptoms (decreasing of IQ)
- Usually prolonged medication is required

Approximate risks

	Schizophrenia	Schizoaffective	Bipolar disorder
Risk in general population	0.8-1%	0.3%	0.3-1%
Risk to siblings/ first degree rels	10%	2-3%	5-10%
Monozygotic (MZ) twin concordance	45%	40%	40%
Dizygotic (DZ) twin concordance	5-10%	5%	5%
Risk in adoption studies	8%	-	14% (but small sample)

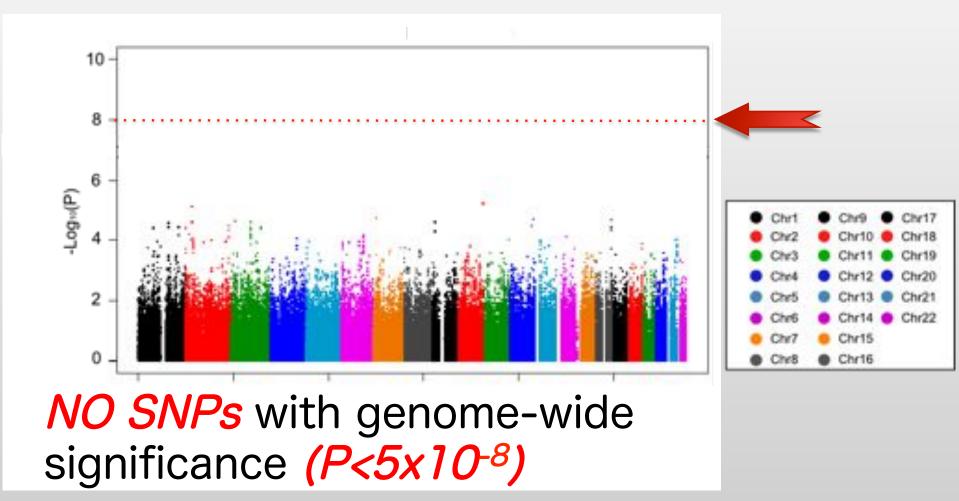
Heritability: examples

- Schizophrenia
- Autism
- Bipolar
- Unipolar depression
- Alcohol dependence
- Anxiety disorders

80%+ 80%+ 60%

40-70% 50-60% 20-30% Copyright materials

Our Platform (affy 5.0)

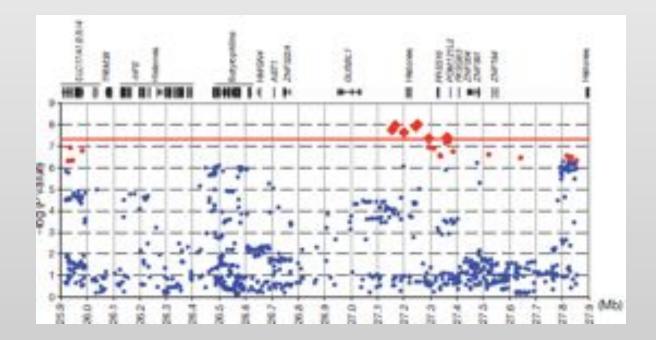


Samples (SNP-based analysis)

- GWAS (JPN)
 - 575 schizophrenia
 - 564 controls
 - Rep_JPN
 - <u>Replication1</u> (main sample for follow-up)
 - 1511 schizophrenia
 - 1517 controls
 - <u>Replication2</u> (additional con: JPN, public database)
 - 934 controls (Genotyped by Illumina550)
 - <u>Replication3</u> (WTCCC_scz: UK)
 - 479 schizophrenia
 - 2938 controls (Genotyped by Affy 500K)

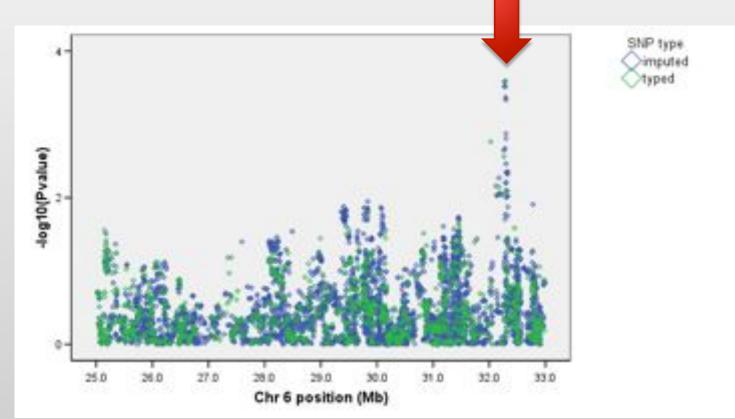
Meta Analysis

Manhattan Plot : GWAS sample (~1,200 sample)

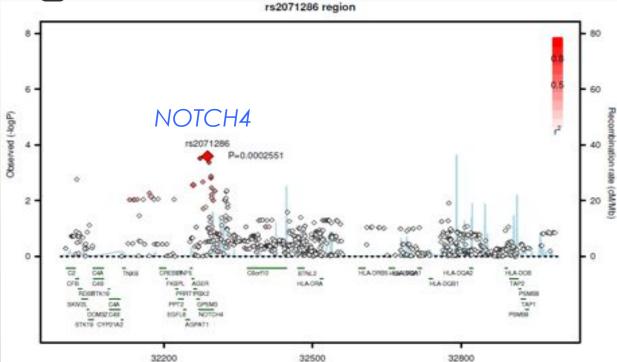

Result: CMH analysis : meta analysis (~8,000 sample)

				Meta _all	
CHR	SNP	closest gene	MAF	P _{CMH}	OR
2	rs11895771	SULT6B1	0.49	3.7X10 -5	0.84
7	rs1011131	LOC392288	0.070	1.2X10-4	1.30
14	rs1176970	LOC644919	0.15	1.4X10-4	1.22
1	rs4908274	COLIIAI	0.28	3.1X10-4	1.20
6	rs2294424	C6orf105	0.41	5.0X10-4	1.15
2	rs13010889		0.15	0.0011	0.85
2	rs17026152		0.26	0.0012	0.85
6	rs2787566	GRIK2	0.039	0.0014	1.34
6	rs2071286	NOTCH4	0.19	0.0014	0.87
8	rs17462248		0.20	0.0017	1.16

Again, NO SNPs with genome-wide significance (P<5x10⁻⁸)

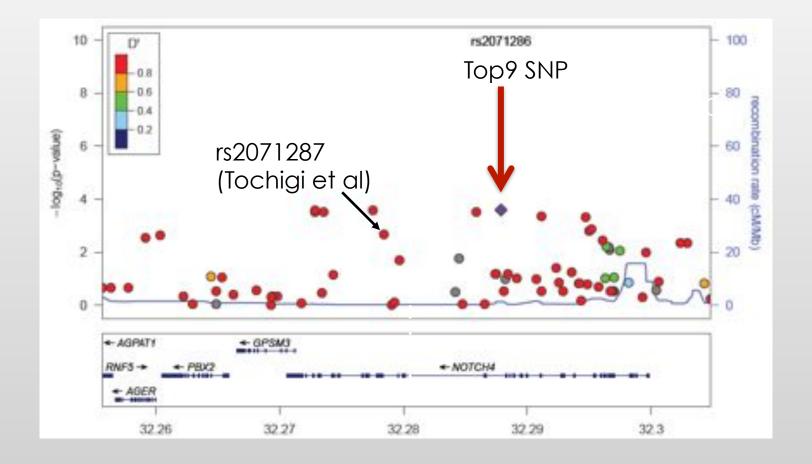

Promising candidate region reported in already published GWASes focused on schizophrenia

- Several candidate genes with genome-wide significance (5X10⁻⁸)
 - MHC region on Chr6 by SGENE, ISC, MGS, PGC

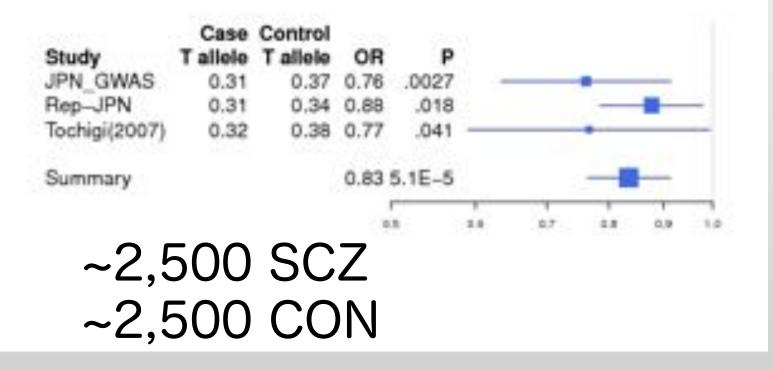


Japanese GWAS data low magnification on MHC

• MHC region on Chr6



Zooming in!


			Meta _all				
CHR	SNP	closest gene	MAF	P _{CMH}	OR	L95	U95
2	rs11895771	SULT6B1	0.4892	3.7X10 ⁻⁵	0.84	0.7708	0.9117
7	rs1011131	LOC392288	0.07039	1.2X10 ⁻⁴	1.30	1.136	1.48
14	rs1176970	LOC644919	0.1524	1.4X10 ⁻⁴	1.22	1.10	1.354
1	rs4908274	COL11A1	0.28	3.1X10 ⁻⁴	1.20	1.087	1.324
6	rs2294424	C6orf105	0.4128	5.0X10 ⁻⁴	1.15	1.063	1.244
2	rs13010889		0.1524	0.0011	0.85	0.7716	0.9375
2	rs17026152		0.2618	0.0012	0.85	0.7673	0.9369
6	rs2787566	GRIK2	0.03883	0.0014	1.34	1.12	1.609
6	rs2071286	NOTCH4	0.1929	0.0014	0.87	0.791	0.9459
8	rs17462248		0.1988	0.0017	1.16	1.056	1.268

Maximum magnification

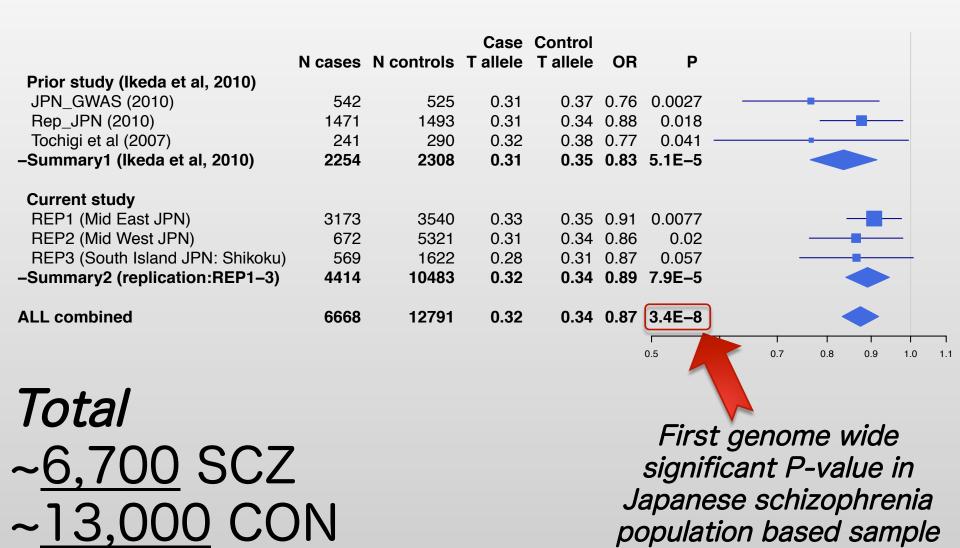
Follow up analysis for NOTCH4 (rs2071287)

Meta_JPN + previously published data (JPN)

Further Replication

- Samples used in the previous paper (Ikeda et al)
 - JPN_GWAS: 542 SCZ vs 525 CON
 - REP_JPN: 1471 SCZ vs 1493 CON
 - Tochigi et al: 241 SCZ vs 290 CON

- New samples
 - REP1:3150 SCZ vs 3483 CON, Mid-East JPN
 - REP2: 672 SCZ vs 5321 CON, Mid-West JPN
 - REP3: 569 SCZ vs 1622 CON, South Island: Shikoku Island JPN

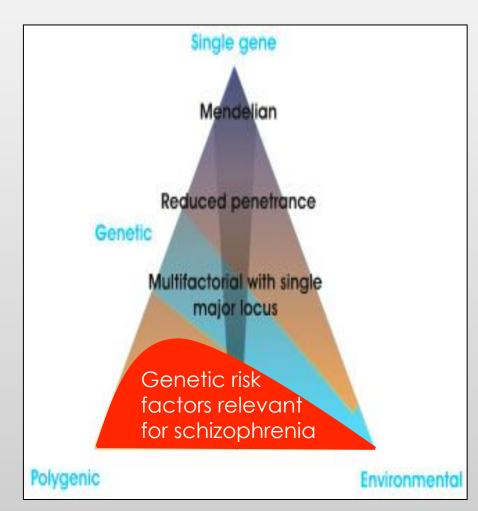

Extra samples : ~<u>4,400</u> SCZ ~<u>10,000</u> CON

REP1

REP2

REP3

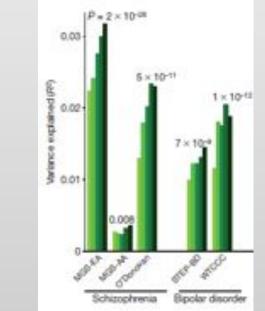
Meta-analysis

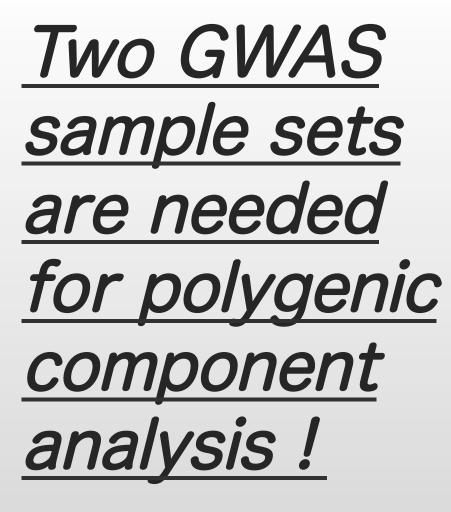


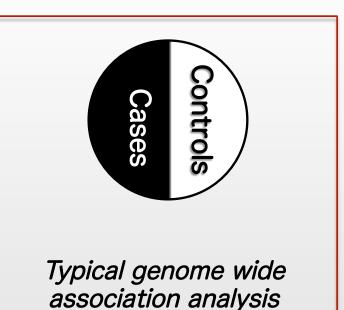
Today's topics:

- Japanese Schizophrenia GWAS
 - SNP-based analysis
 - Polygenic component analysis
 - Follow-up

Next we explored the concept of polygenic Component Analysis (PSA) using our dataset…

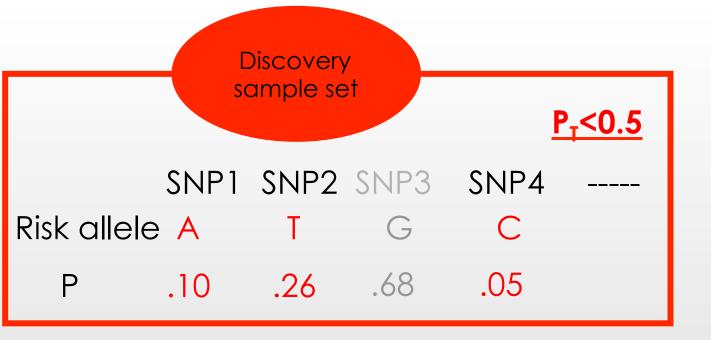

- •We know that schizophrenia is polygenic
- •We know that in case of common SNPs risk effect size is small
- •Recent studies showed that in case of schizophrenia common variants do have an important role en masse (cumulative risk effect)

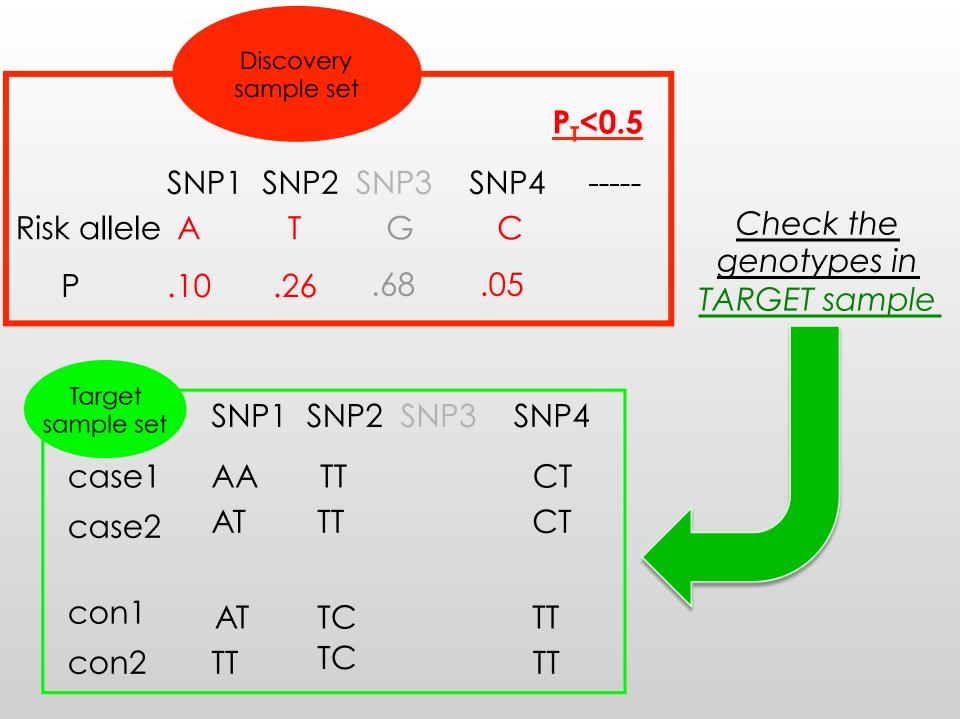

GWAS in schizophrenia (2) Polygenic Component Analysis

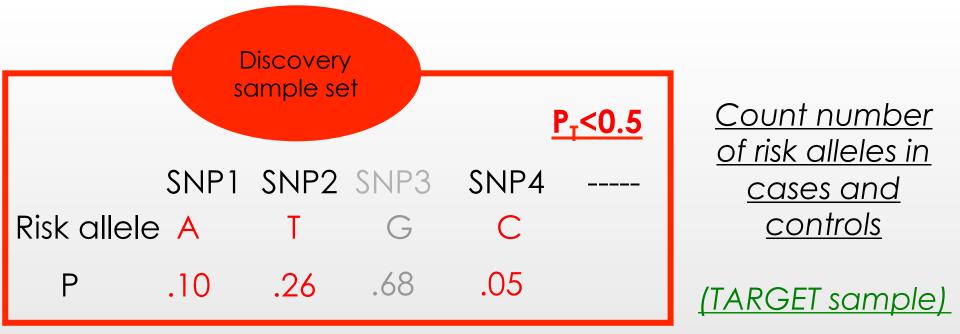

- Method used by International SCZ Consortium (ISC)
- Non stringent definition of risk SNPs (e.g. P<0.3)

 $\sum xi$

GWAS data set




<section-header>Polygenic component
analysisImage: Control
Discovery
angle setImage: Control
Discovery
angle set



Calculate P value for SNPs/alleles based on discovery sample

Assign non stringent statistical threshold (P_T : P threshold) and define **risk SNPs/alleles (e.g. P_T<0.5)** based on discovery sample

Tarrand				Polygenic score
Target sample set	SNP1	SNP2 SNP3	SNP4	SNP1 SNP2 SNP4
casel	AA	TT	C⊺	2 + 2 + 1 = 5
case2	AT	TT	C⊺	1 + 2 + 1 = 4
conl	AT	TC	TT	1 + 1 + 0 = 2
con2	TT	TC	TT	0 + 1 + 0 = 1

					Polygenic	score
To	arget sample	SNP1	SNP2 SNP3	SNP4	SNP1 SNP2 SNP4	Mean
	case1	AA	TT	CT	2 + 2 + 1 = 5	4.5
	case2	AT	TT	CT	1 + 2 + 1 = 4	4.J
	con1 con2	AT TT	TC TC	TT TT	1 + 1 + 0 = 2 0 + 1 + 0 = 1	1.5

Tc	irget sample	SNP1	SNP2 SNP3	SNP4
	casel	AA	TT	CT
	case2	A⊺	TT	C⊺
	conl	AT	TC	TT
	con2	TT	TC	TT

Polygenic score

SNP1 SNP2 SNP4	Mear
2 + 2 + 1 = 5	4.5
1 + 2 + 1 = 4	
1 + 1 + 0 = 2	V
0 + 1 + 0 = 1	1.5

Samples used for Polygenic Score Analysis (PSA)

- Datasets
 - JPN
- UK-- WTCCC Schizophrenia WTCCC Bipolar

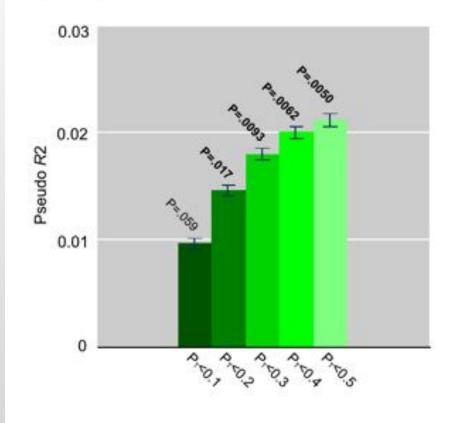
479 SCZ vs 2938 CON (O'Donovan et al ,2008)

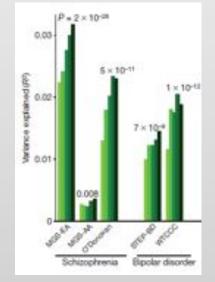
1868 BP vs 2938 CON (WTCCC, 2007)

- Statistical analysis
 - Logistic Regression
 - P value
 - Nagelkerke Pseudo R² as measure of explained variability
 - The more variability explained, the better the model

Polygenic component analysis (PCA) -Central hypothesis-

- Can PCA predict
 - status (schizophrenia or healthy) within Japanese GWAS sample
 - status within UK sample based on Japanese SNPs and vice versa

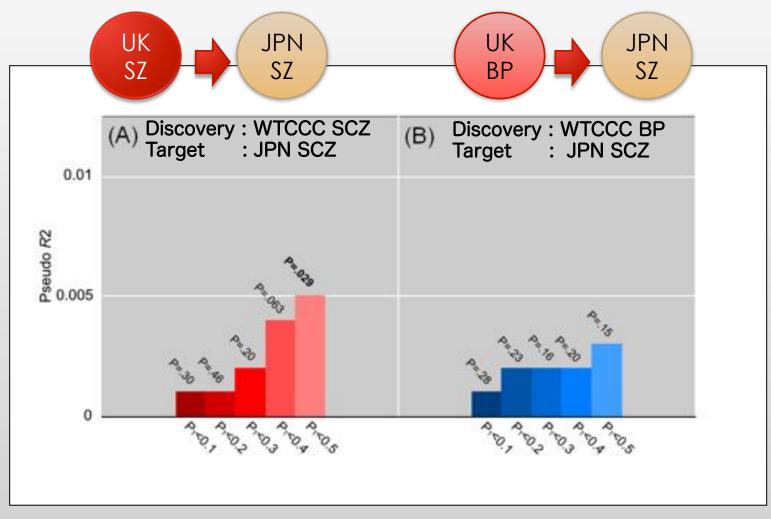

Discovery/Target pair Within JPN samples: random Division



Only one GWAS dataset in JPN sample …

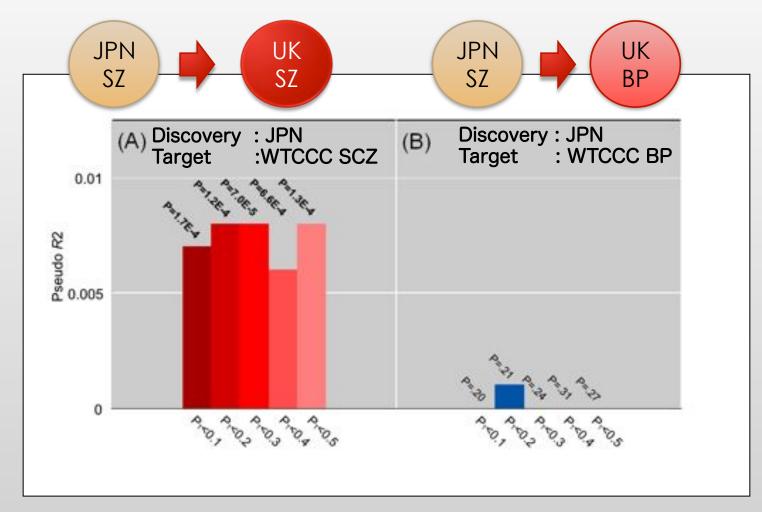
Discovery set For 'risk' alleles Target set For polygenic scores

Within JPN samples 1st/2nd: discovery/target pair



Significant enrichment (risk alleles) $R^2 \sim 2\%$ (P_T<0.5) \rightarrow en masse increase the risk # R^2 in ISC 3%

PCA Results

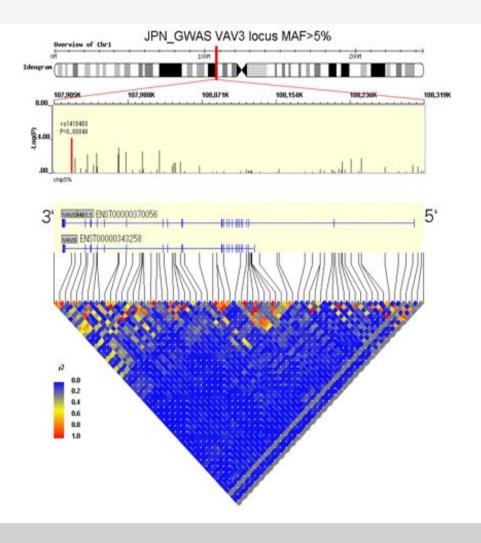

(UK schizophrenia and bipolar SNPs vs. Japanese schizophrenia SNPs)

Low pseudoR²~0.5% (P_T<0.5)

PCA Results

(Japanese schizophrenia SNPs vs. UK schizophrenia and bipolar SNPs)

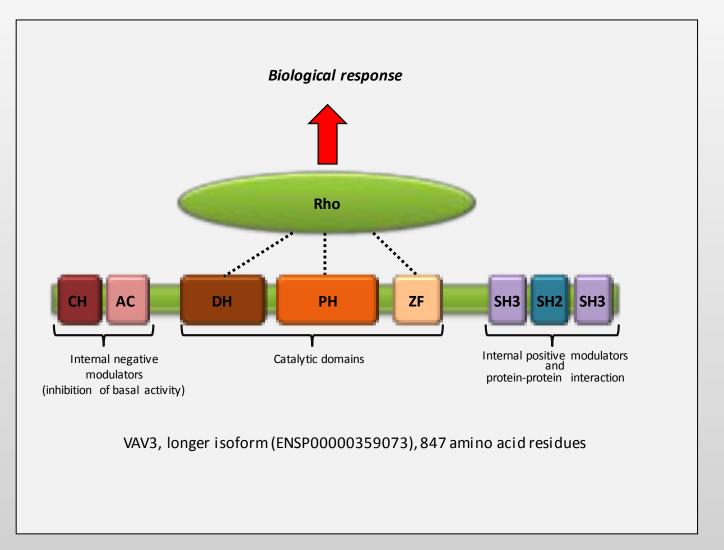
Low pseudoR²~0.7% (P_T<0.5)


Summary: GWAS

- Effect size of risk SNPs (common) is very small
- It is important to chase sub GWAS P-threshold in underpowered sample sets
- We replicated the observation of a polygenic component to schizophrenia within the Japanese population (p = .005)
- Our trans Japan-UK analysis of schizophrenia also revealed a significant correlation (best $p = 7.0 \times 10^{-5}$) in the polygenic component across populations
- These results indicate a shared polygenic risk of schizophrenia between Japanese and Caucasian samples, although we did not detect unequivocal evidence for a novel susceptibility gene for schizophrenia

Today's topics:

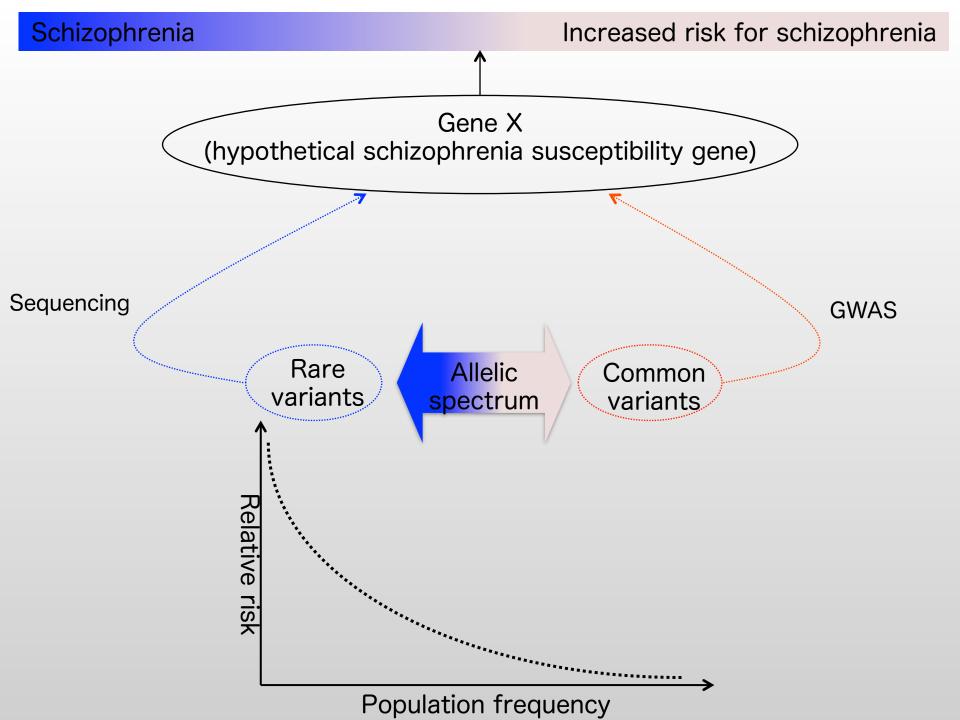
- Japanese Schizophrenia GWAS
 - SNP-based analysis
 - Polygenic component analysis
 - Follow-up


Association signal in JGWAS

Gene centered data:

- Location: 1p13.3
- Size: 400 kbps
- 2 isoforms has been reported

VAV3 structure



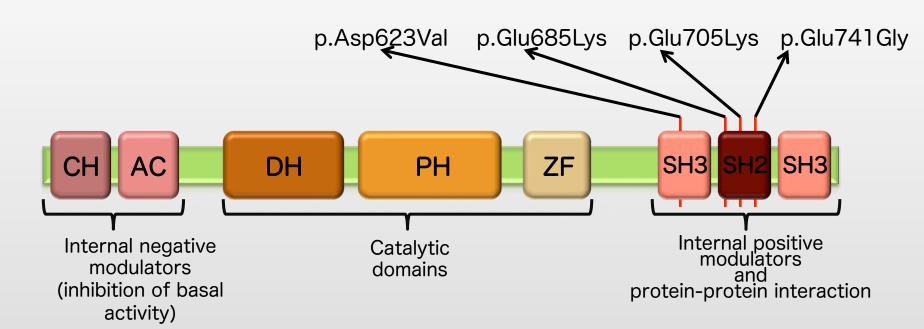
MOLECULAR AND CELLULAR BIOLOGY, Nov. 1999, p. 7870–7885

VAV3 and Schizophrenia

- Related to the axon guidance (process identified as disturbed in schizophrenic patients)
- Identified by linkage study in Japanese population

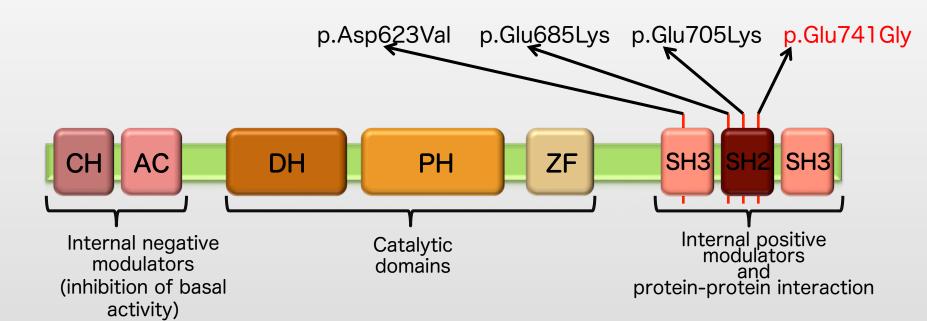
Copyright materials

Our study of VAV3

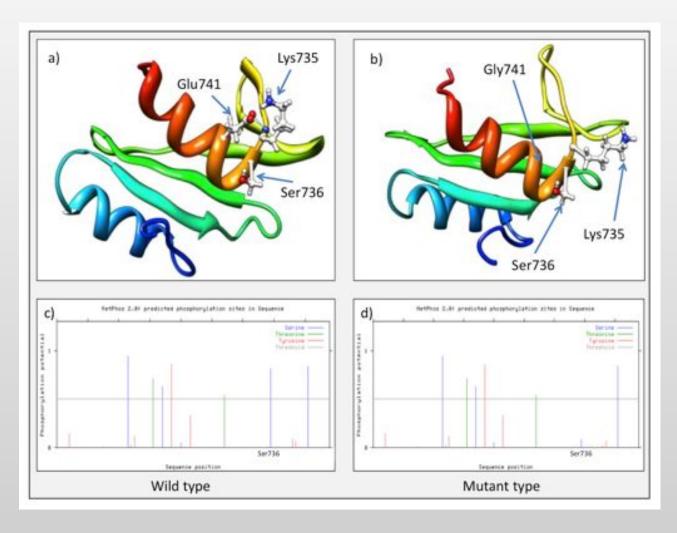

- Mutation screening and association analysis of associated rare variants
- Check the effect of associated common SNP on brain morphology (MRI)

FOCUS ON THE RARE VARIANTS

Mutation screening -strategy-


- Custom array resequencing method
- Focusing on exons only
 - Novel rare missense/nonsense variants
- Screening only cases (N=321)
- Follow up candidates in large case-control sample

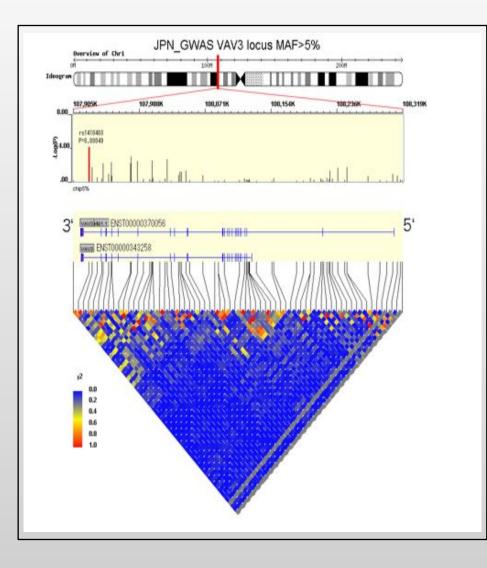
Discovered variants


Species	Protein	n Acn622\/al		n Glu70Elvc	n Glu7/1Gly	Pairwise Alignment Scores vs H.sapiens			
Species	Protein	p.Asp623Val	p.Glu685Lys	p.Glu705Lys	p.Glu741Gly	Protein identity %	DNA Identity %	Substitution Rate	
Homo sapiens	NP_006104.4	LQAGDTV	LQAETEL	K E S G E Y A	LMELVEY	n/a	n/a	n/a	
Canis lupus familiaris	XP_537047.2	I Q A G D T V	LQAETEL	K E S G E Y A	LMELVEY	97.1	92.9	0.075	
Bos taurus	XP_615898.4	IQAGDTV	LQAETEL	R E S G E Y A	LMELVEY	95.7	92.8	0.076	
Mus musculus	NP_065251.2	IQAGDTV	LQAETEL	K E S G E Y A	LMELVEY	95.4	90.5	0.101	
Rattus norvegicus	XP_227600.4	IQAGDTV	LQAETEL	K E S G E Y A	LMELVEY	94.8	89.6	0.112	
Gallus gallus	NP_996745.1	IQIGDTI	LQAESEL	K E S G E Y A	LMELVDY	86.3	81.3	0.215	
Danio rerio	XP_687553.3	AQIGDVI	H H A E S E L	R E S R E Y A	V L G L V E Y	71.2	68.2	0.414	
Caenorhabditis elegans	NP_001041223.1	FAKGDRI	A K A E S T L	K N R K Q T A	TVELVQY	35.3	46.0	0.953	

Association analysis

Chr	Variant	Physical position ¹	Protein domain	M ²	JMut (minor allele count)	m²	JPN_GWAS (MAF) N=1100			Rep_JPN (MAF) N=3000				Meta analysis N=4200		
							Cases ³	Control ³	P _{allele}	OR ⁴	Cases ³	Control ³	P _{allele}	OR ⁴	P _{CMH} ⁵	OR ⁴
1	p.Asp623Val	107,986,810	N-SH3	Α	2	Т	0.0006964	0.0008993	0.8561	0.7742	0.0003344	0	0.3171	NA	0.6649	1.662
1	p.Glu685Lys	107,947,271	SH2	G	1	А	0.0006974	0.001821	0.4151	0.3824	0.0003336	0	0.3168	NA	0.8415	0.8246
1	p.Glu705Lys	107,947,211	SH2	G	3	А	0.0007022	0.0009074	0.8557	0.7737	0.0006658	0.0003311	0.5605	2.011	0.7354	1.355
1	p.Glu741Gly	107,940,485	SH2	Α	7	G	0.004972	0.01087	0.09038	0.4547	0.0074480	0.0117400	0.0897	0.6314	0.02065	0.5821

In-silico modeling of SH2 domain (VAV3)



COMMON VARIANTS

Voxel based morphometry

- We followed up rs1410403 (SNP associated with schizophrenia in JGWAS
- P_{CMH}=9.3×10⁻⁴, odds ratio=0.86
- case control sample was comprised of 100 patients with schizophrenia (38.3 \pm 13.0) and 264 healthy controls (36.7 \pm 11.9)
- All magnetic resonance imaging was performed on a 1.5T GE Sigma EXCITE system

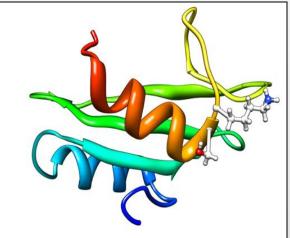
Association signal in JGWAS

Gene centered data:

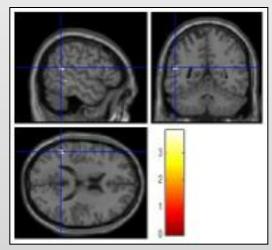
- Location: 1p13.3
- Size: 400 kbps
- 2 isoforms has been reported

Effect on the brain morphology

Copyright materials


- Rs1410403 (A/G) was followed up
- Minor allele frequency (G) in CONTROLS of this SNP was 37%
- Minor allele frequency (G) in *CASES* of this SNP was 32%
- OR=0.86

Summary of findings


 p.Glu741Gly might be responsible for genetic susceptibility to schizophrenia-biological consequences are unknown (OR=0.52)

 Rs1410403 might influence volume of gray matter in schizophrenic patients (OR=0.86)

VAV3 effects of associated variants

Change in protein structureBiological consequences unknown

Protein structure unchangedVariation in gray matter volume

Low

High

Odds ratio

80-

Frequency

Challenges and future directions

- Consideration of the effect of environmental factors such as maternal infection or drug use
- Consideration of epigenetic mechanism
- Use of high-throughput whole genome sequencing
 - Has potential to detect virtually all SNPs/SNVs
 - Will provide comprehensive information of individual at DNA-single base pair level
 - Very costly

Take Home Messages

- Strong genetic basis of SZ proven from age-old family studies to the ultra modern GWAS
- Specific genes and loci are not definitely established (i.e. lack of consistent replication)
- Problem arising from multiple factors
 - Lack of operationalized phenotypes
 - Presence of large number of risk variants with relatively small effect size
 - Cost, manpower and expertise inadequacy

Thank you for your attention! Any questions or comments?

comments:

