Chapter 7

Magnetic systems

In this chapter we shall see how all the previous constructions can be used when a
magnetic field is considered on RY.

Very briefly, a continuous magnetic field is described by a closed continuous 2-
form B defined on RY. It is well-known that any such field B may be written as the
differential dA of a 1-forms A called a vector potential, which is highly non-unique (the
gauge ambiguity). By using coordinates, one has

Bji, = 0; A, — Ok A, for any j, k € {1,...d}.

In the presence of the field B = d A, the prescription (6.1.1) has to be modified. This
topic was very rarely touched in the literature and the following wrong solution appears:
The minimal coupling principle says roughly that the momentum D should be replaced
with the magnetic momentum 1" = D — A(X). This originated in Lagrangian classical
mechanics and works well also at the quantum level as long as we consider operators
which are polynomials of order less or equal to 2. But if one just replaces in (6.1.1) the
expression f((z +y)/2,n) by f((z +y)/2,n — A(z + y)/2) one gets a formula which
misses the right gauge covariance. Indeed, let us denote the result of this procedure for
some function f in phase space by Op 4(f). If another vector potential A’ is chosen such
that A’ = A 4+ Vp with p a scalar function, then dA" = dA. But the expected formula
Op 4 (f) = e?Op 4 (f)e is verified for some simple cases (A, A’ linear and f arbitrary,
or f polynomial of order strictly less than 3 in n and A, A" arbitrary), but it fails in
general.

Thus, the aim of the following sections is two show that the correct solution can
directly be inferred from the formalism constructed before, without the invocation of
a minimal coupling principle. The content of this chapter is borrowed from the three
references [MPR05, MPRO7, LMR10].

7.1 Magnetic twisted dynamical systems

From now on, the group G will always be R?, with its usual action @ by translations. The
2-cocycle will be defined in terms of the magnetic field. More precisely, the magnetic
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field on R? is a closed continuous 2-form B. Since on R? we have canonical global
coordinates, we shall speak freely of the components Bj;, of B; they are continuous real
functions on R? satisfying By; = —B;; and (in the distributional sense)

8jBkl+6lBjk+8kBlj =0 Vi, kL e {1,...,d}.

It is well-known that B = dA for some 1-form A on R? called a vector potential,
which is highly non-unique. For simplicity, we shall consider only continuous A; this is
always possible since at least one continuous vector potential always exists, namely the
transversal gauge which is defined by

Aj(z) = — Z/o B (sz)szyds. (7.1.1)

Given a k-form C on R? and a compact k-surface v C R?, we define

this integral having a well-defined parametrization independent meaning. We shall
mainly encounter circulations of 1-forms along linear segments v = [z,y| and fluxes
of 2-forms through triangles v = (x,y, ). In particular, for a continuous magnetic field
B one defines

WB(q;z,y) = e~ (lgatzatety) for all z,y,q € R%. (7.1.2)

From now on, let us fix a R%-algebra %, i.e. a C*-subalgebra of BC,(R?) which is
invariant under the actions of R? by translations. Note that in Definition 5.4.1 we have
also assumed that Cyp(RY) C €, but that this additional condition is not necessary here.
By Gelfand representation, we know that ¢ = Cy(2), with Q the spectrum of €. In
this setting, the additional assumption Cy(R?) C ¥ allowed one to identify R? with a
dense subset of Q. Let us now consider C'(€2), the set of continuous functions on Q. If €
is not unital, then such functions can be unbounded. The simplest example is obtained
by considering € = Cy(R?) with Q equal to R?. Taking this observation into account,
let us now define a magnetic field which is related to the R?-algebra €

Definition 7.1.1. A magnetic field B is of type € with € = Co(Q) if all its components
{Bji}? iy belong to C(Q;R).

Clearly, if Bj, € € for any j,k € {1,...,d}, then B is a magnetic field of type
% . However, the previous definition is more general, and unbounded magnetic field can
be considered in this setting. We recall that the notion of standard twisted system has
been introduced in Definition 5.4.2.

Lemma 7.1.2. If B is a magnetic field of type €, then (¢,R%0,w5) is a standard
twisted dynamical system.
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Proof. The proof that w® is a normalized 2-cocyle, i.e. that it satisfies relations (5.1.1)
and (5.1.2), follows easily by direct computations (for the first one use the Stokes
Theorem for the closed 2-form B and the tetrahedron of vertices ¢, q +x,q¢+ x4+ y,q+
T4y +z).

We now show that w? has the right continuity properties. It should define a mapping

RYxR?3 (z,y) = [wP(z,y)] () =wP(;2,y) € C(QT), (7.1.3)

continuous with respect to the topology of uniform convergence on compact subsets of
Q. But this is equivalent to the fact that w? defines un element of C(2 x R? x R%;T).
Note that this type of statement already appeared in the proof of Lemma 5.3.3. Taking
into account obvious properties of the exponential, this amounts to the fact that the
function

PP REXRIX R = R, 0P(q;7,9) =TP((g,q+ 2,9+ 7 +y))

can be viewed as a continuous function on  x R?% x R%,
We use the parametrization

d 1,1
WB(q;%y) = Z $jyk/ / s Bji(q + sx + sty)dsdt.
o Jo

Jk=1

Since the continuous action 6 on € defines a continuous mapping € on €2, one has the
continuous correspondence 2 x RY x R? > (q;2,y) — q + sz + sty = Osutsty(q) € .
Since Bjy, is seen as a continuous function from 2 to R, the assertion follows easily. [

Exercise 7.1.3. Work out the details of the previous proof, and in particular show that
wP satisfies the two conditions (5.1.1) and (5.1.2).

From now on, we can call (4,R% 0, w?) the twisted dynamical system associated
with the abelian algebra € and the magnetic field B. In most of the cases the 2-cocycle
wB e 72 (]Rd; 4 (‘5)) is not trivial. But as Proposition 5.4.3 shows, it is pseudo-trivial.
In fact, its pseudo-trivialization can be achieved by a vector potential. Any continuous
1-form A defines a 1-cochain A* € C*(R% C(R% T)) via its circulation:

[)\A(ZL’)] (Q) — )\A(q;x) _ e—z'l"A([q,q—l-z}) _ e—iz-fol A(g+sz)ds (714)

As soon as dA = B, we have 6'(A\) = w? (a priori with respect to C(R%T)), by a
suitable version of Stokes Lemma. As said above, the transversal gauge offers a contin-
uous vector potential corresponding to a given B. Actually, this is consistent with the
choice (5.3.1) of a pseudo-trivialization of w?: for ¢,z € RY, \(q;7) = w?(0;¢,2) =
e~ (00at2)) and it follows immediately that T2((0, ¢, ¢ + z)) = T'*([¢q, ¢ + z]), with A
given by (7.1.1).

Since specific standard twisted dynamical systems can be constructed based on any
magnetic field of type &, the whole formalism of the preceding chapters is available. In
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particular, twisted crossed product algebra % x;{f R?, also denoted by € NgT R? and
their Schrodinger representations are at hand. Note that as always, the dependence on
7 is within isomorphism, and that for any continuous B the C*-algebra Co(R?) x5 R?
is isomorphic to ¢ (H), the ideal of all compact operators in H = L?(R%).

Let us close this section with some comments on the magnetic momentum, already
introduced in the preamble of this chapter. The fact that the magnetic 2-cocycle w?
satisfies

wB(q;srtr) =1, Vg, x € RY and Vs, t €R (7.1.5)

leads directly to the magnetic momenta. Indeed, let us fix some continuous A such that
dA = B, and thus 6'(\) = w®. Then \* satisfies for all ¢,z € R? and all s,t € R:
M(q; sz +tx) = M (q; sz) A\ (g+ sz;tr) (note that in general, if A is not the exponential
of a circulation this will not be true). We consider then the Schrédinger covariant
representation (#, 7, U4) with % = L2(R%), 7(a) = a(X) and U4 = U*" defined by

U, u(z) = [UA(y)u)(z) = M (zsy)u(z +y), z,y e R, ueH.
The unitary operators {U#(y)},cre are called the magnetic translations. They often
appear in the physical literature. One has, by a short computation,

UA(sx +to) = UA(s2)U(tz), Vo € R Vst €R (7.1.6)
and this also implies U4 (—z) = U%(z)"! = U4 (x)* for all x € RY. In fact, the formula
UAy)U(2) = 7w (y. Uy + 2), y.z €R?

shows that (7.1.6) is equivalent with (7.1.5). For t € R and z € R?, let us set U/ (z) :=
UA(tx). By (7.1.6), we observe that {U/(x)}er is a strongly continuous unitary group
in H for any x. Thus, by Stone Theorem (see Theorem 1.7.12), it has a self-adjoint
generator that moreover depends linearly (as a linear operator on H) on the vector = €
R?. Thus we denote it by z-II* and call it the projection on = of the magnetic momentum
associated with the vector potential A. For any index j € {1,...,n} we set Hj‘ =e€j- 4

the projection of the magnetic momentum on the j’th vector of the canonical base in
R?. A direct computation shows that on C2°(R%) one has [T = D; — A;(X).
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7.2 Magnetic pseudodifferential calculus

In this section, we adapt the results presented in Section 6.1 when a magnetic field
is also present. Most of the following formulas appeared already in the more general
setting of Section 6.2, but this section can be seen as a useful résumé for the interested
reader.

Let us directly start by introducing the analog of the Weyl system recalled in (6.1.4)
but in the presence of a magnetic field. For the time being, B is any continuous magnetic
field on R? and A is any corresponding continuous vector potential. Associated with
the Schrodinger covariant representation (H,w, U4) defined above, we can now define
the magnetic Weyl system W4 by

E3x WA(x) = e’%fogUA(:c) EUH).

These unitary operators satisfy then the relations

WA WA(y) = 2709 w[w? (@, y)] W (x +y)

for any x = (z,£) and y = (y,7).
Exercise 7.2.1. Check the above relations

For any f € S(Z) we can then write explicitly the operator Op?(f) := Dpi‘;;(f) in
‘H which has been introduced in Proposition 6.2.2, namely

[DpA(f)u} (z) = (zi)d /Rd /Rd ei(ziy).neiiFA([%ny (l’ —; yﬂ?) u(y) dydn.

Note that this formula can be called the magnetic Weyl calculus. Furthermore, it is
easily observed that this is an integral operator with kernel

KA :=)\51 (1 ®?@d)

where M (z,y) := M (z;y—2) and (S7*h)(z,y) = h (%, 2 — y). With this formula, we
can now extend the map K* and thus define Op#(F) for any F € S’(Z) as the integral
operator with kernel K4(F), defined on S(R?) with values in &’(R?). It seems legitimate
to view the correspondence f — DpA( f) as a functional calculus for the family of self-
adjoint operators Xi,..., Xg,[I¢}, ... TI1. The high degree of non-commutativity of
these 2d operators stays at the origin of the sophistication of the symbolic calculus.
The commutation relations

i1X5, X =0, Al X)) =6, [T = —Bu(X), jk=1,....d (7.2.1)

collapse for B = 0 to the canonical commutation relations satisfied by X and D,
see Exercise 4.1.3. But they are much more complicated, especially when B is not a
polynomial. The main mathematical miracle that allows, however, a nice treatment is



90 CHAPTER 7. MAGNETIC SYSTEMS

the fact that (7.2.1) can be recast in the form of a covariant representation of a twisted
dynamical system.

Let us stress once more that the functional calculus that we have defined is gauge
covariant, in the sense that it satisfies the property: If A’ = A 4+ V¢ with ¢ : R? -+ R
continuous, then DpAl( f) = X OpA(fleX) This gauge covariance property may
be seen as a special instance of Proposition 6.2.2.

The extension of the usual Moyal product has a particular form in the magnetic
setting. More precisely, by adapting the formula obtained in Section 6.2 to the magnetic
2-cocyle and for 7 = 1/2, one obtains on S(Z) the composition and the involution:

4d —2i0(x—y,x—2) —1 r—=z —x+z,z—y+x
(f oBg)(x)=(2ﬂ)d /_ /_ 2oy x2) il Pl atyy—wte sy ta) £(yY o (7) dydz, (7.2.2)

with x,y,z € =, and
B

(%) =f(x), ¥xez.

Note that with these formulas, one has (f o g)OB = ¢°” 0B ¥ as well as

Op(fof g) = Op(F)Op(g),  and  Op?(f7) = Op(f)".

Exercise 7.2.2. Without relying on the content of the previous sections, check directly
these equalities.

We remark that the involution °° and the product o are defined intrinsically,
without any choice of a vector potential. The choice is only needed when we represent
the resulting structures on the Hilbert space L2(R?). We call (7.2.2) the magnetic Moyal
product. The involution °” does not depend on B at all. This is no longer true if 7 # 1/2.
The property w?(z, —z) = 1, Vo € R?, is also used to get the simple form of o

Let us now assume that B is of type € for some Ralgebra 4. The C*-algebra
Qﬁ;}i Jo» introduced in Section 6.2, will be denoted by €Z. We call it the C*-algebra of
pseudodifferential symbols of class € associated with B. We recall that it is essentially
a partial Fourier transform of the twisted crossed product ¢ >4£1 /2 R¢. The formulas
defining the magnetic Weyl calculus make sense at least on the dense subset (1 ®
Fra) L' (R %), with iterated integrals. The extension of Op* is a faithful representation
of the C*-algebra €2 for any continuous A with dA = B. If Cy(R?) C €, then Op* is
irreducible.

We close this section with some arguments about one possible extension for the
product of. Indeed, as already mentioned in the Extension 6.2.4, the integrals defining
f o g are absolutely convergent only for restricted classes of symbols. In order to
deal with more general distributions, an extension by duality was proposed in [MP04]
under an additional smoothness condition on the magnetic field. So let us assume that
the components of the magnetic field are CJy (R?)-functions, i.e. they are indefinitely
derivable and each derivative is polynomially bounded. The duality approach is based
on the observation [MP04, Lem. 14] : For any f, g in the Schwartz space S(Z), we have
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foPgeS(E), and

/: [ o8 gl(x)dx = / 190 fl()dx = / 00 g(x)dx = (£,3) =: (/. g).

As a consequence, by using the associativity of o” and the symmetry of (-, -), one easily
deduces that for f,g,h € S(Z), one has

(foPg,h) = (f,g0" h) = (g,ho" [).

Definition 7.2.3. For any distribution F € S'(Z) and any function f,h € S(E) we
define
(FoP f,h) = (F,foPh),  (fo" F.h):=(F.ho" [)

The expressions F' of f and f o F are a priori tempered distributions. The Moyal
algebra is precisely the set of elements of S’'(Z) that preserves regularity by composition.

Definition 7.2.4. The magnetic Moyal algebra .# (Z) is defined by
ME)={FeS(E)|Fo” feSE) and fo” F € S() for all f € S(Z)}.

For two distributions F' and G in .#(Z), the magnetic Moyal product can be extended
by
(FoP G,n) = (F,GoPh) forallhc SE).

Clearly, the set .#(Z) with this composition law and the complex conjugation
F — F° is a unital *-algebra. An important result [MP04, Prop. 23] concerning the
Moyal algebra is that it contains CJ5, ,(Z), the space of infinitely derivable complex
functions on = having uniform polynomial growth at infinity. Finally let us quote a
result linking .# (Z) with the functional calculus Op® [MP04, Prop. 21] : For any vector
potential A belonging to C’ZSZ(Rd), Op” is an isomorphism of *-algebras between . (=)

and B[S(R)| N B[S (RY)], where B[S(R?)] and B[S'(R?)] are, respectively, the spaces

of linear continuous operators on S(R?) and &'(R9).

Remark 7.2.5. The extension by duality also gives compositions 4 (Z) of S'(Z) C
S'(2) and S'(E) of . (Z) C S'(Z). One checks plainly that associativity holds for any
three factors product with two factors belonging to .#(Z) and one in S'(Z).

7.3 Magnetic Schrodinger operators

From now on, we consider for simplicity a R%algebra % which is unital and which
contains Cp(R?). As a consequence, € = C(Q2) with Q a compactification of R¢. Then,
given a magnetic field B of type €, cf. Definition 7.1.1, a continuous vector potential
A that generates B and a suitable symbol h : RY — R, our aim is to show that the
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magnetic Schrodinger operator h(IT4) (which needs to be carefully defined) defines an
observable affiliated to the C*-algebra

Op(€8) = Rep” (¢ %7, RY) = Repyy (¢ x5, RY) C B(H),

see Definition 4.3.7 for the precision notion of affiliation. The proof of such a statement
is rather difficult and we shall do it under some smoothness conditions on the magnetic
field B and on the symbol h. We point out that we prove in fact in Theorem 7.3.2 a
stronger result that does not depend on the choice of any particular vector potential.

Definition 7.3.1. (i) For s € R, a function h € C“(Rd) is a symbol of type s,
written h € S*(RY), if the following condition is satisfied:

Vo€ N Feq >0 such that [(%h)(€)| < cal(€)* for all € € RY

(i) The symbol h is called elliptic if there exist R > 0 and ¢ > 0 such that
(&) < h(€) forallé €RY and |¢| > R.

We denote by Sjl(Rd) the family of elliptic symbols of type s, and set S”(Rd) =
U, S5 (R?). Note that all the classes S*(R?) are naturally contained in C oonu(Z), thus in
A (Z). For any 2 € C\ R, we also set r, : R — C by r,(-) := (- — 2) 7!

We are in a position to state the main results about affiliation. The proofs of these
statements are postponed until the next section.

Theorem 7.3.2. Assume that B is a magnetic field whose components belong to € N

BC>®(R%). Then each real h € S (R%) defines an observable ®F affiliated to €2, such
that for any z € C\ R one has

(h—2) 0P ®P(r,) = ®P(r,) o (h— 2). (7.3.1)

In fact one even has ®5(r,) ( ) C S'(E), so the compositions can be

interpreted as A (=) x S’( ) — S’( ) and S’(E) (=) — S'(2).

We shall now consider a scalar potential V' € %. As seen in Theorem 3.4.5 the
algebra ¢ can be identified with part of the multiplier algebra of § (Ll(Rd; Cﬁ)) Then,
a straightforward reformulation of the perturbative argument presented in [ABG96,
p. 365-366] allows one to define the observable ®F,, := ®F + V. Considering now
h+V € §'(Z) we remark that we can compute the Moyal product

(h+V —2)0" CID,]?:V(TZ) =(h—2)o @fv(rz) +Vo q)hv(rz) =1

by using the explicit formula of (IJh v given in [ABGY6, p. 366]. This leads then to the
following statement:
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Corollary 7.3.3. Assume that B is a magnetic field whose components belong to € N
BC*>(RY). Let also V be a real function in €. Then @ﬁv 15 an observable affiliated to

€8, such that for any = € C\ R one has
(h+V —2)0"®p (r.) =1=),(r.) o (h+V —2).

These statements are elegant, being abstract, but in applications one also needs the
represented version:

Corollary 7.3.4. Assume that B is a magnetic field whose components belong to € N
BC>=(RY), and let V' be a real function in 6. Let A be a continuous vector potential that
generates B. Then Op?(h) + V(X) defines a self-adjoint operator in H with domain
given by the image of the operator Op™ [(h — 2)~'] (which do not depend on z € C\R).
This operator is affiliated to DpA(Qfg).

We finally give a description of the essential spectrum of the observables affiliated
to the C*-algebra €Z. For the generalized magnetic Schrodinger operators of Theorem
7.3.2, this is expressed in terms of the spectra of so-called asymptotic operators. The
affiliation criterion and the algebraic formalism introduced above play an essential role
in the proof of this result. Note that we shall mimic the approach already used in
Section 4.5 in the absence of a magnetic field, and freely use the notations and concepts
introduced there.

Recall that € = C(Q) with  a compactification of RY. Then, for any 7 € Q \ R,
one sets O, for the orbit generated by 7, and Q. for the corresponding quasi-orbit. In
this setting, for any f € C(€2), the function z + f(6,(7)) is an element of BC,(R?),
see Exercise 4.5.2 for details. In particular, this construction holds for V' and Bj; if
both belong to €.

Theorem 7.3.5. Let B be a magnetic field whose components belong to € N BC*(RY)
and let V' € € be a real function. Assume that {9, }i is a covering of 02 by quasi-orbits.
Then for each real h € S¥(R?) one has

ess [P (h) + V(X)] = Uie[Dp™ (h) + Vi(X)], (7.3.2)
where A, A; are continuous vector potentials for B, B; = Blo, , and V; = Vg, .

Clearly, the computation of the essential spectrum is first performed at an abstract
level, i.e. without using any representation. This computation is more simple since
no vector potentials are involved. Only for convenience and tradition, the previous
represented version is also stated. Note also that the proof of this theorem is similar to
the one presented in Section 4.5, the 2-cocycles fitting very well with the functoriality
of the crossed products. We do not give any details here and refer to [MPRO7, Sec. 3]
for the interested reader.
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7.4 Affiliation in the magnetic case

In this section we provide the proofs of Theorem 7.3.2 and of Corollary 7.3.4. Some
technical arguments are postponed to the end of the section. Throughout the section,
we assume tacitly all the assumptions of Theorem 7.3.2.

The proof of Theorem 7.3.2 will be based on the following strategy: Let .# be an
associative algebra with a composition law denoted by o and let h be an element of
A . Our aim is to find the inverse for . Assume that b’ is another element such that
h ol and b’ o b are invertible. These inverses are written (h o h)(=Y and (' o h)?
respectively. Then, the element b’ o (o b')(=Y is obviously a right inverse for b and the
element (h’ o h)(=Y o b’ a left inverse for . Both expressions are thus equal to h—V

In the sequel, we shall take for b the strictly positive symbol h + a, with a large
enough, and for b’ its pointwise inverse (h + a)~!. Finding an inverse (h + a)Y for
h + a with respect to the composition law o will lead rather easily to an observable.
In the calculations below we shall use tacitly the some approximation procedures. For
several arguments we will be forced to get out of the algebra .# = .4 (=). This will be
easily dealt with by a suitable use of elements of S'(Z).

Note finally that for simplicity, elements of R? will be denoted by p, k or [.

Proof of Theorem 7.3.2. (i) Let us consider an elliptic symbol h of order s and fix some
real number @ > —infh + 1. We set h, := h + a, and denote by h,' its inverse with
respect to pointwise multiplication, i.e. h;'(p) := (h(p) +a)~! for all p € R% Tt is clear
that ;' is a symbol of type —s. Since both functions h, and h;" belong to Cp5, ,(Z),
and thus to the Moyal algebra .# (Z), one can calculate their product. By using (7.2.2)

we obtain

_ ha(p — k)
hq P b, d dk [ d dl ¢~ 2iky—t2) 2.2
(ha o® ) (0:7) = (5 3 /Rd ‘”/Rd /Rd y/Rd ¢ e 20 20)5 7

(7.4.1)
with
vB(q; 22, 2y) = WP (q —x—y;2x,2(y — x)) (7.4.2)
The last factor in the integral does not depend on x and y; it can be developed:
ha(p = k) - Jo At (@;h) (p — 1+ t(1 — k) d
— =1+ li—k; = 14+>» F,;(p;k,1). (743
ha(p_l> ;(] J) h(p—l)—l—a ; ]( ) ( )

Moreover, let

V(g k1) = (FAP)(q; k,1) :=

1 . .
d d —iky Jil-x By .. )
@) /Rd fv/Rd ye ey (g; 1, y)

Then the following equality holds (in the sense of distributions):

/dk/ dI75(q; k,1) = v%(q;0,0) = 1. (7.4.4)
Rd Rd
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Thus, by inserting (7.4.3) and (7.4.4) into (7.4.1), we obtain

d
hao® ' =14 faj,

j=1

with
i) i= [k [ Q3D Fasoi k) = (Fy™)(ai, ) Faglrie ). (745

The last notation is used in order to emphasize the duality between €%, ,(R? x R?) and

its dual. Indeed, for ¢,p fixed, Lemma 7.4.2 proves that F, ;(p;-,-) € C (Rd X Rd),

pol,u

and Lemma 7.4.1 proves that v(¢;-,-) € Coy(R? x R?), from which one infers that

(Fv5) (g, ) € [, (R? x RY)]', see [Sch73, Chap. VII, Thm. XV].
(i) We are now going to deduce some useful estimates on f, ;. We set (D,) = (—i0,).

For a, j fixed and m, n integers that we shall choose below, one has

(95 fai)(@;p)| < sup [(2) " (y) " (D)™ (Dy) ™ v (g; 2, y)| -
H <x>7d <y>7d||L2(RdXRd) H <Dk>n+d<Dl>n+d<k>im<l>im (83Fa,j) (p; " ) HLQ(RdXRd) .
(7.4.6)

By taking into account (7.4.11), and by some simple computations, one can fix m such
that the last factor of (7.4.6) is dominated by ¢, a='/# (p)*/#=1=lol " with p > max{1, s}.
Then, by using Lemma 7.4.1, one can choose n (depending on m) such that the first
factor on the r.h.s. term of (7.4.6) is bounded. Altogether, one obtains

(05 fai)(g; )| < ca™ 'k (p)s/nmtolel, (7.4.7)

where ¢ depends on « and 7 but not on p, ¢ or a.

(iii) Let us now show that for each j, §1(f.;) is an element of L'(R%; ¢), and thus
belongs to the C*-algebra €Z.

By taking into account Lemma 7.4.1, the r.h.s. of the equation (7.4.5) can be
rewritten as (v%(g;-, "), (F*F,;)(p,-,-)), in which the duality between C5y(R? x RY)

pol

and (Coy(R? x Rd))/ = F*C2,  (R? x RY) is emphasized. As v? defines a function from

pol pol,u
R? xR to € (see Lemma 7.4.1) that is of class Coo(R? x R?), we can easily prove that
fa;(-;p) belongs to €, for all p € R? (by using partitions of unity on R x R% and by
approximating the duality pairing with finite linear combinations of elements in %).
This observation together with (7.4.7) imply that the hypotheses of Lemma 7.4.4
are fulfilled for each f, ;, with ¢ = — (1 — s/u) < 0. It follows that F'(f.,) belongs to
LY(R%€) and that there exists C' > 0 such that

137! (fai)lls < Ca™ Mk,
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Thus, for a large enough, the strict inequality H Z;l:l Y fm)H1 < 1 holds. It follows
that §1(1+ Z;.lzl faj) is invertible in L', the minimal unitization of LY (R4 %). Equiv-
alently, h, o? h;t =1+ Z;l:l fa,; is invertible in §(L'), the minimal unitization of
F(L'(R%€)). Its inverse will be denoted by (h, o h;l)(fl).

(iv) We recall that h;' € S~5(R?). Then, by Lemma 7.4.4 we get that h,' €
F(L'(RY) C F(L'(R%€)). Thus hy' o (h, o hy')"Y is a well defined element of
F(L* (R €)). Moreover, one readily gets h, o [h;! of (h, o hy')("V] = 1. For this,
just think of h, and h;! as elements of the Moyal algebra .#(Z) and interpret (h, o
h;H(Y € F(LY) as an element of S'(Z). The needed associativity follows easily from
the definition by duality of the composition law as stated in Remark 7.2.5. In the same
way one obtains [(h;! o h,)"Y o b1 0B h, = 1 in .#(Z). In conclusion, there exists
ag > —inf A+ 1 such that for any a > ag the symbol h, possess an inverse with respect
to the Moyal product

B = bt 0P (g o b)Y = (Bt 0P )TV 0P T € S'(E)

a

that also belongs to §(L'(R%¢)) C €Z. The second equality follows from Remark
7.2.5 by straightforward arguments.

(v) We define ®2(r,) := h) for # < —ag. Then ®2(r,) € F(LHR%€)) c €8 n
§'(Z), its norm is uniformly bounded for z in the given domain and (h—x) o ®B(r,) =
®P(r,) of (h — x) = 1, as shown above. This allows us to obtain an extension to the
half-strip {z =z + iy | © < —ayo, |y| < §} for some § > 0 by setting

OB (1) = ®B(r,) P {1+ (x — 2)®B (1)} V. (7.4.8)
It follows that
(h—2)0" B(r.) = {(h— ) P BF (1) + (& — 2B (r.)} o {1+ (& — )DP(r,)} ) = L.
We now prove that the map
{z=2+iy|z<—aolyl <6} 22— 0)(r.) € F(L'R%E))

satisfies the resolvent equation. Let us choose two complex numbers z and 2z’ in this
domain and subtract the two equations

(h—2) 0P ®P(r,) =1, (h—2)oP ®P(r.) =1 (7.4.9)

in order to get (h — z) o {®F(r,) — ®F(r.)} + (2 — 2)@F(r.) = 0. By multiplying at
the left with ®2(r,) and by using the associativity, we obtain the resolvent equation

5 (1) — O (rar) = (2 = )@ (1) oF @ (1)
Now, setting 2 = Z = x — iy with y > 0 and taking norms we get

198 (r:) |50t wasey <y
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With this estimate and formula (7.4.8), the function z +— ®2(r,) can be extended to
the domain C\ [—ao, +00), preserving the relations (7.4.9). The resolvent equation may
be proved in a similar way to hold on the entire domain C \ [—ag, +00) and analyticity
of the defined function follows in an evident way.

(vi) Thus we have got an analytic map C\[—ao, +00) 2 z — ®F(r.) € F(L'(R% %))
satisfying the resolvent equation and the symmetry condition. A general argument
presented in [ABGY96, p. 364] allows now to extend in a unique way the map ®7 to a
C*-algebra morphism Cy(R) — €Z. O

We can now provide the represented version of our affiliation criterion.

Proof of Corollary 7.5.4. We shall first consider the case V = 0 and then add V as a
bounded perturbation.

Let us denote by D, the range of the operator Op*[®Z(r,)] € %(H). By the resol-
vent identity it follows immediately that it is a subspace of H that does not depend
on z € C\ R. Thus we set D, = D. Since h € .#(Z), one has Op?(h) € B[S(RY)] N
B[S’ (RY)]. We interpret it as a linear operator in S'(R?) and set H(A,0) := Op”(h)|p.

Now, by applying Op” to (7.3.1) we get

{H(A,0) — 21}0p @ (r.)] = 1

and

Op (@7 (r){Op? (h) — 21sma)} = Lsa).
The first identity shows that H(A,0)D C H. Straightforwardly it is hermitian. The
second equality implies that S(RY) C D and thus D is dense in H. By the first equality
above the ranges of H(A,0) =+ both coincide with H. Thus, by a fundamental criterion
of self-adjointness, H(A,0) is self-adjoint.

By construction, {Op?[®2(r.)] | 2 € C\R} is the resolvent family of H (A, 0), which
is therefore affiliated to DpA((’;?).

Then we define the standard operator sum H(A, V) := H(A,0)+V : D — H. Using
the second resolvent equation and the Neumann series the conclusion of the Corollary
follows easily using [MPRO5, Prop. 2.6]. A different proof could start from the result of
Corollary 7.3.3. O

We can now present several technical lemmas which have already been used in the
previous proofs.

Lemma 7.4.1. Assume that the components of the magnetic field B belong to € N
BC*>®(RY). Then v, defined in (7.4.2), belongs to C°%(R? x R%€), or more precisely:

pol
(a) for each z,y € RY, vP(:;2,y) € €,

(b) for each o, € N, there exist ¢ > 0, sy > 0 and sy > 0 such that for all
g, r,y € R?:
105057 (52, y)| < e(x)™ (y)™,
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Proof. We use the explicit parameterized form of %

vB(q; 2, y) = exp —sz]yk/ / sBj(q— 2o — Sy + s+ st(y — ))ds}dt}

7,k=1

(7.4.10)
A careful examination of (7.4.10) leads directly to the results (a) and (b). See also the
proof of Lemma 4.2 in [MPRO5]. O

For the next statement, recall that F, ;(-;-, ) has been introduced in (7.4.3).

Lemma 7.4.2. For each j € {1,...,d}, each a, 3,y € N? and each p > max{l,s}
there exists ¢ > 0 such that

1020, 0) Flj(p; ke, 1)| < ca™/m (py/n=1mlel (k)= (1) (7.4.11)
for all p,k,l € RY gnd a > —inf h + 1.

Proof. 1t is enough to show that the expression

sup
t€(0,1]

0 00 07 (1 — ky) (1) (p + (¢ = 1)1 = k) b (o= )] (7.4.12)

is dominated by the r.h.s. term of (7.4.11) with a constant ¢ not depending on p, k, [
and a.

It is easy to see that for any 6 € N7 we have 9°h;t = h;! u,s, where u,s €
S~191(R4) uniformly in a. By using this, the Leibnitz formula and the inequality (z-+y) <
V2(x)(y), it follows straightforwardly that (7.4.12) is dominated by

crhy H(p = 1){p)* k) *(1)°

for some ¢; > 0 independent of p, k, [ and a. Furthermore, by using the ellipticity
of h, we see that there exist co > 0 and c3 > 0 independent of p,l and a such that
hit(p—1) < e (1)¥[a+ e (p)*] 7! for all p,I € RY. The final step consists in taking into
account the inequality a + c3(p)® > p'/* (ves)'/v a/* (p)*/¥, valid for any p > 1, v > 1
with p= '+ vt =1. O

In order to state the next lemma in its full generality, we need the definition:

Definition 7.4.3. Fors € R, SS(Rd; ') denotes the set of all functions f : RIXRY — ¢
that satisfy:

(i) f(5p) € forallp € RY,
(ii) f(g;-) € C=(RY), Yq € R, and for each o € N¢

sup || £(¢; ) |ls.a == sup sup [(p)~*"10% f(g;p)|] < o0
qeRd qGRd pGRd
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It is easily seen that the algebraic tensor product ¢ © S5(R%) is contained in
S5(R%;6).

Lemma 7.4.4. Let f be an element of St(Rd;%) with t < 0. Then its partial Fourier
transform F~Lf is an element of L*(R%;€) that satisfies for a suitable large integer m

I|l§~ f||L1 Rag) < C |max sup || f(¢; )t - (7.4.13)

< g€RY

Proof. This is a straightforward adaptation of the proof of [ABG96, Prop. 1.3.3] (see
also [ABG96, Prop. 1.3.6]). We decided to present it in order to put into evidence the
explicit bound (7.4.13). Actually, the arguments needed to control the behavior in the
variable ¢ are easy and we leave them to the reader; we take simply f € St(Rd).

Since the case t < —d is rather simple, we shall concentrate on the more difficult
one: —d < t < 0. Let us first choose a cutoff function y € C®(R?) that is 1 in a
neighbourhood of 0. One has the estimates (with F the Fourier transform but without
the constant factor):

1L =)F "l < € Y QI (1= )F (@ )l

|a]=m

C’(/Rd (1- X(%))2|w]_4mdx>1/2 Z 107 f || .2

la|=m

/ B 20 _4m 1/2 2(t—2m) 1/2
< C(/Rd(l X())" || dx) (/Rd@) dp> mase £

IN

where we take m € N with 4m > d to make the integrals convergent.

We study now the behavior of F~!f near the origin, a more difficult matter. Let us
fix a second cutoff function ¢ € C*°(R%) such that 0 < ¢ < 1, (p) = 0 for [p| < 1 and
©(p) =1 for |p| > 2. For b > 0 we set ¢p(p) := ¢(bp). We have:

{F =Nl < [ 1501 < Ufle [ biap<C o b

Ip|<2/b Ip|<2/b

Moreover, if m € 2N with m > d + 1, then one has:

" IF @D < C Y [[FH(0%(@n))] ()]

lal=m

< 03 Sare [ ool 16°)0)

|a|=m B<La

C’lglgﬁHth,a{ / plmdp+ Y ol / pl 1 dp}

Ip>1/b |Bl<m 1/b<|p|<2/b

C" max|| f|lsa ™07
ja]<m

IN
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By ﬁxing b= |y|7 we get |[f_1((p|y|f)](y)| < " ‘IITaXHth’a |y|_d_t. The singularity at
al<m
the origin is integrable, and putting all the inequalities together we obtain (7.4.13). O



