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Chapter 1

C∗-algebras

This chapter is mainly based on the first chapters of the books [Mur90] and [RLL00].

1.1 Basics on C∗-algebras

Definition 1.1.1. A Banach algebra C is a complex vector space endowed with an
associative multiplication and with a norm ∥ · ∥ which satisfy for any a, b, c ∈ C and
α ∈ C

(i) (αa)b = α(ab) = a(αb),

(ii) a(b+ c) = ab+ ac and (a+ b)c = ac+ bc,

(iii) ∥ab∥ ≤ ∥a∥∥b∥ (submultiplicativity)

(iv) C is complete with the norm ∥ · ∥.

One says that C is Abelian or commutative if ab = ba for all a, b ∈ C. One also says
that C is unital if 1 ∈ C, i.e. if there exists an element 1 ∈ C with ∥1∥ = 1 such that
1a = a = a1 for all a ∈ C 1. A subalgebra J of C is a vector subspace which is stable
for the multiplication. If J is norm closed, it is a Banach algebra in itself.

Examples 1.1.2. (i) C or Mn(C) (the set of n × n-matrices over C) are unital
Banach algebras. C is Abelian, but Mn(C) is not Abelian for any n ≥ 2.

(ii) The set B(H) of all bounded operators on a Hilbert space H is a unital Banach
algebra.

(iv) The set K(H) of all compact operators on a Hilbert space H is a Banach algebra.
It is unital if and only if H is finite dimensional.

1Some authors do not assume that ∥1∥ = 1. It has the advantage that the algebra {0} consisting
only in the element 0 is unital, which is not the case if one assumes that ∥1∥ = 1.
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6 CHAPTER 1. C∗-ALGEBRAS

(iv) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are Abelian Ba-
nach algebras, where Cb(Ω) denotes the set of all bounded and continuous func-
tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which
vanish at infinity, i.e. for any ε > 0 there exists a compact set K ⊂ Ω such
that supx∈Ω\K |f(x)| ≤ ε. These algebras are endowed with the L∞-norm, namely
∥f∥ = supx∈Ω |f(x)|. Note that Cb(Ω) is unital, while C0(Ω) is not, except if Ω is
compact. In this case, one has C0(Ω) = C(Ω) = Cb(Ω).

(v) If (Ω, µ) is a measure space, then L∞(Ω), the (equivalent classes of) essentially
bounded complex functions on Ω is a unital Abelian Banach algebra with the es-
sential supremum norm ∥ · ∥∞.

Observe that C is endowed with the complex conjugation, that Mn(C) is also en-
dowed with an operation consisting of taking the transpose of the matrix, and then
the complex conjugate of each entry, and that C0(Ω) and Cb(Ω) are also endowed with
the operation consisting in taking the complex conjugate f 7→ f . All these additional
structures are examples of the following structure:

Definition 1.1.3. A C∗-algebra is a Banach algebra C together with a map ∗ : C → C
which satisfies for any a, b ∈ C and α ∈ C

(i) (a∗)∗ = a,

(ii) (a+ b)∗ = a∗ + b∗,

(iii) (αa)∗ = αa∗,

(iv) (ab)∗ = b∗a∗,

(v) ∥a∗a∥ = ∥a∥2.

The map ∗ is called an involution.

Clearly, if C is a unital C∗-algebra, then 1∗ = 1.

Examples 1.1.4. The Banach algebras described in Examples 1.1.2 are in fact C∗-
algebras, once complex conjugation is considered as the involution for complex functions.
Note that for B(H) and K(H) the involution consists in taking the adjoint 2 of any
element a ∈ B(H) or a ∈ K(H). In addition, let us observe that for a family {Ci}i∈I
of C∗-algebras, the direct sum ⊕i∈ICi, with the pointwise multiplication and involution,
and the supremum norm, is also a C∗-algebra.

Definition 1.1.5. A ∗-homomorphism φ between two C∗-algebras C and Q is a linear
map φ : C → Q which satisfies φ(ab) = φ(a)φ(b) and φ(a∗) = φ(a)∗ for all a, b ∈ C.
If C and Q are unital and if φ(1) = 1, one says that φ is unit preserving or a unital
∗-homomorphism. If ∥φ(a)∥ = ∥a∥ for any a ∈ C, the ∗-homomorphism is isometric.

2If H is a Hilbert space with scalar product denoted by ⟨·, ·⟩ and if a ∈ B(H), then its adjoint a∗ is
defined by the equality ⟨af, g⟩ = ⟨f, a∗g⟩ for any f, g ∈ H. If a ∈ K(H), then a∗ ∈ K(H) as well.



1.1. BASICS ON C∗-ALGEBRAS 7

A C∗-subalgebra of a C∗-algebra C is a norm closed (non-empty) subalgebra of C
which is stable for the involution. It is clearly a C∗-algebra in itself. In particular, if
F is a subset of a C∗-algebra C, we denote by C∗(F ) the smallest C∗-subalgebra of
C that contains F . It corresponds to the intersection of all C∗-subalgebras of C that
contains F .

Exercise 1.1.6. (i) Show that a ∗-homomorphism φ between C∗-algebras is isomet-
ric if and only if φ is injective.

(ii) If φ : C → Q is a ∗-homomorphism between two C∗-algebras, show that the kernel
Ker(φ) of φ is a C∗-subalgebra of C and that the image Ran(φ) of φ is a C∗-
subalgebra of Q.

An important result about C∗-algebras states that each of them can be represented
faithfully in a Hilbert space. More precisely:

Theorem 1.1.7 (Gelfand-Naimark-Segal (GNS) representation). For any C∗-algebra
C there exists a Hilbert space H and an injective ∗-homomorphism from C to B(H). In
other words, every C∗-algebra C is ∗-isomorphic 3 to a C∗-subalgebra of B(H).

Extension 1.1.8. The proof of this theorem is based on the notion of states (positive
linear functionals) on a C∗-algebra, and on the existence of sufficiently many such
states. The construction is rather explicit and can be studied, see for example [Mur90,
Thm. 3.4.1].

The next definition of an ideal is the most suitable one in the context of C∗-algebra.

Definition 1.1.9. An ideal in a C∗-algebra C is a (non-trivial) C∗-subalgebra J of C
such that ab ∈ J and ba ∈ J whenever a ∈ J and b ∈ C. This ideal J is said to be
maximal in C if J is proper (⇔ not equal to C) and if J is not contained in any other
proper ideal of C.

For example, C0(Ω) is an ideal of Cb(Ω), while K(H) is an ideal of B(H). Let us
add one more important result about the quotient of a C∗-algebra by any of its ideals.
In this setting we set

C/J = {a+ J | a ∈ C} and ∥a+ J ∥ := inf
b∈J
∥a+ b∥.

In this way C/J becomes a C∗-algebra, and if one sets π : C → C/J by π(a) = a+ J ,
then π is a ∗-homomorphism with J = Ker(π). The ∗-homomorphism π is called the
quotient map. We refer to [Mur90, Thm. 3.1.4] for the proof about the quotient C/J .

Consider now a (finite or infinite) sequence of C∗-algebras and ∗-homomorphisms

. . . −→ Cn
φn−→ Cn+1

φn+1−→ Cn+2 −→ . . .

3A ∗-isomorphism is a bijective ∗-homomorphism.
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This sequence is exact if Ran(φn) = Ker(φn+1) for any n. A sequence of the form

0 −→ J φ−→ C ψ−→ Q −→ 0 (1.1)

is called a short exact sequence. In particular, if J is an ideal in C we can consider

0 −→ J ι
↪−→ C π−→ C/J −→ 0

where ι is the inclusion map and π the quotient map already introduced.
If in (1.1) there exists a ∗-homomorphism λ : Q → C such that ψ ◦λ = id, then λ is

called a lift for ψ, and the short exact sequence is said to be split exact. For example,
let C1, C2 be C∗-algebras, and consider the direct sum C1 ⊕ C2 with the pointwise
multiplication and involution, and the supremum norm. One can then observe that the
following short exact sequence

0 −→ C1
ι1−→ C1 ⊕ C2

π2−→ C2 −→ 0

is split exact, when ι1 and π2 are defined by ι1(a) = (a, 0) and π2(a, b) = b. Indeed, one
can set λ : C2 → C1 ⊕ C2 with λ(b) = (0, b) and the equality π2 ◦ λ = id holds. Note
that neither all short exact sequences are split exact, nor all split exact short exact
sequences are direct sums.

Let us finally mention that with any C∗-algebra C one can associate a unique unital
C∗-algebra C̃ which contains C as an ideal and such that C̃/C = C. In addition, the
short exact sequence

0 −→ C ι
↪−→ C̃ π−→ C −→ 0

is split exact, with λ(α) = α1 for any α ∈ C. Here 1 denotes the identity element of C̃.
The C∗-algebra C̃ is called the (smallest) unitization of C. Note that

C̃ =
{
a+ α1 | a ∈ C, α ∈ C

}
, (1.2)

and therefore C is naturally identified with the element of the form a+ 01 in C̃.

Exercise 1.1.10. Work out the details of the construction of C̃, see for example
[RLL00, Exercise 1.3].

An important property of the previous construction is its functoriality, in the sense
that for any ∗-homomorphism φ : C → Q between C∗-algebras, there exists a unique
unit preserving ∗-homomorphism φ̃ : C̃ → Q̃ such that φ̃ ◦ ιC = ιQ ◦ φ. This morphism
is defined by φ̃(a+ α1C̃) = φ(a) + α1Q̃ for any a ∈ C and α ∈ C.

1.2 Spectral theory

Let us now consider an arbitrary unital C∗-algebra C, and let a ∈ C. One says that a
is invertible if there exists b ∈ C such that ab = 1 = ba. In this case, the element b
is denoted by a−1 and is called the inverse of a. The set of all invertible elements is
denoted by GL(C). Clearly, GL(C) is a group.
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Exercise 1.2.1. Show that GL(C) is an open set in any unital C∗-algebra C, and that
the map GL(C) ∋ a 7→ a−1 ∈ C is differentiable. The Neumann series can be used in the
proof, namely if ∥a∥ < 1 one has

(1− a)−1 =
∞∑
n=0

an. (1.3)

Note that in the sequel, we shall sometimes write a − z for a − z1, whenever a is
an element of a unital C∗-algebra and z ∈ C.

Definition 1.2.2. Let C be a unital C∗-algebra and let a ∈ C. The spectrum σC(a) of a
with respect to C is defined by

σC(a) :=
{
z ∈ C | (a− z1) ̸∈ GL(C)

}
.

The spectral radius r(a) of a with respect to C is defined by

r(a) := sup
{
|z| | z ∈ σC(a)

}
.

Note that the spectrum σC(a) of a is a closed subset of C which is never empty.
This result is not completely trivial and its proof is based on Liouville’s Theorem in
complex analysis. In addition, note that the estimate r(a) ≤ ∥a∥ and the equality
r(a) = limn→∞ ∥an∥1/n always hold. We refer to [Mur90, Sec. 1.2] for the proofs of these
statements. Let us mention that if C has no unit, the spectrum of an element a ∈ C can
still be defined by σC(a) := σC̃(a).

Based on these observations, we state two results which are often quite useful.

Theorem 1.2.3 (Gelfand-Mazur). If C is a unital C∗-algebra in which every non-zero
element is invertible, then C = C1.

Proof. We know from the observation made above that for any a ∈ C, there exists z ∈ C
such that a − z1 ̸∈ GL(C). By assumption, it follows that a − z1 = 0, which means
a = z1.

Lemma 1.2.4. Let J be a maximal ideal of a unital Abelian C∗-algebra C, then C/J =
C1.

Proof. As already mentioned, C/J is a C∗-algebra with unit 1 + J ; we denote the
quotient map C → C/J by π. If I is an ideal in C/J , then π−1(I) is an ideal of C
containing J , which is therefore either equal to C or to J , by the maximality of J .
Consequently, I is either equal to C/J or to 0, and C/J has no proper ideal.

Now, if a ∈ C/J and a ̸= 0, then a ∈ GL
(
C/J

)
, since otherwise a(C/J ) would be

a proper ideal of C/J . In other words, one has obtained that any non-zero element of
C/J is invertible, which implies that C/J = C1, by Theorem 1.2.3.

The following statement is an important result for spectral theory in the framework
of C∗-algebras. It shows that the computation of the spectrum does not depend on the
surrounding algebra.
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Theorem 1.2.5. Let C be a C∗-subalgebra of a unital C∗-algebra Q which contains the
unit of Q. Then for any a ∈ C,

σC(a) = σQ(a).

The proof of this theorem is mainly based on the previous lemmas, but requires
some preliminary works. We refer to [Mur90, Thm. 1.2.8 & 2.1.11] for its proof. Note
that because of this result, it is common to denote by σ(a) the spectrum of an element
a of a C∗-algebra, without specifying in which algebra the spectrum is computed.

In the next definition we consider some special elements of a C∗-algebra.

Definition 1.2.6. Let C be a C∗-algebra and let a ∈ C. The element a is self-adjoint
or hermitian if a = a∗, a is normal if aa∗ = a∗a. If a is self-adjoint and σ(a) ⊂ R+,
then a is said to be positive. If C is unital and if u ∈ C satisfies uu∗ = u∗u = 1, then u
is said to be unitary.

The set of all positive elements in C is usually denoted by C+, and one simply writes
a ≥ 0 to mean that a is positive. An important result in this context is that for any
a ∈ C+, there exists b ∈ C such that a = b∗b. One can even strengthen this result by
showing that for any a ∈ C+, there exists a unique b ∈ C+ such that a = b2. This
element b is usually denoted by a1/2. Now, for any self-adjoint operators a1, a2, one
writes a1 ≥ a2 if a1 − a2 ≥ 0. For completeness, we add some information about C+.

Proposition 1.2.7. Let C be a C∗-algebra. Then,

(i) The sum of two positive elements of C is a positive element of C,

(ii) The set C+ is equal to {a∗a | a ∈ C},

(iii) If a, b are self-adjoint elements of C and if c ∈ C, then a ≥ b⇒ c∗ac ≥ c∗bc,

(iv) If a ≥ b ≥ 0, then a1/2 ≥ b1/2,

(v) If a ≥ b ≥ 0, then ∥a∥ ≥ ∥b∥,

(vi) If C is unital and a, b are positive and invertible elements of C, then a ≥ b ⇒
b−1 ≥ a−1 ≥ 0,

(vii) For any a ∈ C there exist a1, a2, a3, a4 ∈ C+ such that

a = a1 − a2 + ia3 − ia4.

Proof. See Lemma 2.2.3, Theorem 2.2.5 and Theorem 2.2.6 of [Mur90].

In the next statement, we provide some information on the spectrum of self-adjoint
and unitary elements of a unital C∗-algebra. For that purpose, we immediately infer
from the equality ∥u∗u∥ = ∥u∥2 that if u is unitary, then ∥u∥ = 1. We also set

T := {z ∈ C | |z| = 1}.
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Lemma 1.2.8. Any self-adjoint element a in a unital C∗-algebra C satisfies σ(a) ⊂ R.
If u is a unitary element of C, then σ(u) ⊂ T.

Proof. First of all, let b ∈ C and observe that from the equality
(
(b−z)−1

)∗
= (b∗−z)−1,

one infers that if z ∈ σ(b), then z ∈ σ(b∗). Furthermore, from the equality

z−1(z − b)b−1 = −(z−1 − b−1),

one also deduces that if z ∈ σ(b) for some b ∈ GL(C), then z−1 ∈ σ(b−1).

Now, for a unitary u ∈ C, one deduces from the above computations that if z ∈
σ(u), then z−1 ∈ σ

(
(u∗)−1

)
= σ(u). Since ∥u∥ = 1 one then infers from the equality

r(u) = ∥u∥ = 1 that |z| ≤ 1 and |z−1| ≤ 1, which means z ∈ T.
If a = a∗ ∈ C, one sets eia :=

∑∞
n=0

(ia)n

n!
and observes that

(eia)∗ = e−ia = (eia)−1.

Therefore, eia is a unitary element of C and it follows that σ
(
eia

)
⊂ T. Now, let us

assume that z ∈ σ(a), set b :=
∑∞

n=1
in(a−z)n−1

n!
, and observe that b commutes with a.

Then one has

eia − eiz = (ei(a−z) − 1)eiz = (a− z)beiz.

It follows from this equality that eiz ∈ σ(eia). Indeed, if
(
eia − eiz

)
∈ GL(C), then

beiz
(
eia− eiz

)−1
would be an inverse for (a− z), which can not be since z ∈ σ(a). From

the preliminary computation, one deduces that |eiz| = 1, which holds if and only if
z ∈ R. One has thus obtains that σ(a) ⊂ R.

Let us now state an important result for Abelian C∗-algebras.

Theorem 1.2.9 (Gelfand). Any Abelian C∗-algebra C is ∗-isomorphic to a C∗-algebra
of the form C0(Ω) for some locally compact Hausdorff 4 space Ω.

In fact, Gelfand’s theorem provides more information, namely

(i) The mentioned ∗-isomorphism is isometric,

(ii) Ω is compact if and only if C is unital,

(iii) Ω and Ω′ are homeomorphic if and only if C0(Ω) and C0(Ω
′) are ∗-isomorphic,

(iv) The set Ω is called the spectrum of C and corresponds to the set of characters of C
endowed with a suitable topology. A character on C is a non-zero ∗-homomorphism
from C to C.

4A Hausdorff space is a topological space in which distinct points have disjoint neighbourhoods.
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In this context, let us mention that there exists a bijective correspondence between
open subsets of Ω and ideals in C0(X). For example, if X is any open subset of Ω, then
C0(X) ⊂ C0(Ω) (by extending the element of C0(X) by 0 on Ω \X) and C0(X) is then
clearly an ideal of C0(Ω). As a consequence, one gets the following short exact sequence:

0 −→ C0(X)
ι

↪−→ C0(Ω)
π−→ C0(Ω \X) −→ 0.

Extension 1.2.10. Write down the details of the construction of the Gelfand trans-
form, first for Banach algebras, and then for C∗-algebras. Provide a proof of the above
statements.

The Gelfand representation has various useful applications. One is contained in the
proof of the following statement, see [Mur90, Thm. 2.1.13] for its proof. This statement
corresponds to a so-called bounded functional calculus.

Proposition 1.2.11. Let a be a normal element of a unital C∗-algebra C, and let
ι : σ(a) → C be the inclusion map, i.e. ι(z) = z for any z ∈ σ(a). Then there exists a
unique unital ∗-homomorphism φa : C

(
σ(a)

)
→ C satisfying φa(ι) = a. Moreover, φa

is isometric and the image of φa is the C∗-subalgebra C∗({a,1}) of C generated by a
and 1.

Note that if f is a polynomial, then the equality φa(f) = f(a) holds, and if f
corresponds to the map f(z) = z̄, then one has φa(f) = a∗. For the former reason, one
usually write simply f(a) instead of φa(f) for any f ∈ C

(
σ(a)

)
. We also mention a useful

result about the spectrum of elements obtained by the previous bounded functional
calculus [Mur90, Thm. 2.1.14].

Theorem 1.2.12 (Spectral mapping theorem). Let a be a normal element in a unital
C∗-algebra C, and let φa be the ∗-homomorphism mentioned in the previous statement.
Then for any f ∈ C

(
σ(a)

)
, the following equality holds:

σ
(
f(a)

)
= f

(
σ(a)

)
.

Let us still gather some additional spectral properties.

(i) If φ : C → Q is a unital ∗-homomorphism between unital C∗-algebras, and if a is
a normal element of C, then σ

(
φ(a)

)
⊂ σ(a), or in other words the spectrum of

a can not increase through a ∗-homomorphism. In addition, if f ∈ C
(
σ(a)

)
, then

f
(
φ(a)

)
= φ

(
f(a)

)
.

(ii) If a is a normal element in a non-unital C∗-algebra C, then f(a) is a priori defined

only in its unitization C̃. Now, if π : C̃ → C denotes the quotient map and for
a ∈ C, one has by the previous point that

π
(
f(a)

)
= f

(
π(a)

)
= f(0).

It thus follows from the description of C̃ provided in (1.2) that f(a) belongs to C
if and only if f(0) = 0.
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(iii) If a is a normal element in a C∗-algebra, then r(a) = ∥a∥.

We finally state a technical result which will be used at several occasions in the
next chapter.

Lemma 1.2.13. Let C be a unital C∗-algebra, let K be a non-empty compact subset of
R and let FK be the set of self-adjoint elements of C with spectrum in K. Then for any
fixed f ∈ C(K), the map

Fk ∋ a 7→ f(a) ∈ C

is continuous.

The proof of this statement is provided in [RLL00, Lem. 1.2.5] and relies on an
ε/3-argument.

1.3 Matrix algebras

For any C∗-algebra C, let us denote by Mn(C) the set of all n× n matrices with entries
in C. Addition, multiplication and involution for such matrices are mimicked from the
scalar case, i.e. when C = C. In order to define a C∗-norm on Mn(C), let us consider
any injective ∗-homomorphism φ : C → B(H) for some Hilbert space H, and extend
this morphism to a ∗-homomorphism φ :Mn(C)→ B(Hn) by defining5

φ

a11 . . . a1n
...

. . .
...

an1 . . . ann


f1...
fn

 =

φ(a11)f1 + · · ·+ φ(a1n)fn
...

φ(an1)f1 + · · ·+ φ(ann)fn


for any t(f1, . . . , fn) ∈ Hn (the notation t(. . . ) means the transpose of a vector). Then
a C∗-norm on Mn(C) is obtained by setting ∥a∥ := ∥φ(a)∥ for any a ∈Mn(C), and this
norm is independent of the choice of φ. Note that the following inequalities hold:

max
i,j
∥aij∥ ≤

∥∥∥∥∥∥∥
a11 . . . a1n

...
. . .

...
an1 . . . ann


∥∥∥∥∥∥∥ ≤

∑
i,j

∥aij∥. (1.4)

These inequalities have a useful application. It shows that if Ω is a topological space
and if f : Ω → Mn(C), then f is continuous if and only if each function fij : Ω → C is
continuous.

5The use of the same notation for the maps φ : C → B(H) and φ : Mn(C) → B(Hn) is done on
purpose. Some authors would use φn for the second map, but the omission of the index n does not
lead to any confusion and simplifies the notation.
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Finally, let us mention that if φ : C → Q is a ∗-homomorphism between two C∗-
algebras C and Q, then the map φ :Mn(C)→Mn(Q) defined by

φ

a11 . . . a1n
...

. . .
...

an1 . . . ann

 =

φ(a11) . . . φ(a1n)
...

. . .
...

φ(an1) . . . φ(ann)

 (1.5)

is a ∗-homomorphism, for any n ∈ N∗. Note that again we have used the same notation
for two related but different maps.



Chapter 2

Projections and unitary elements

The K-theory of a C∗-algebra is constructed from equivalence classes of its projections
and from equivalence classes of its unitary elements. For that reason, we shall consider
several equivalence relations and look at the relations between them. The K-groups will
be defined only in the following chapters. This chapter is mainly based on Chapter 2 of
the book [RLL00].

2.1 Homotopy classes of unitary elements

Definition 2.1.1. For any topological space Ω, one says that a, b ∈ Ω are homotopic in
Ω if there exists a continuous map v : [0, 1] ∋ t 7→ v(t) ∈ Ω with v(0) = a and v(1) = b.
In such a case one writes a ∼h b in Ω.

Clearly, the relation ∼h defines an equivalence relation on Ω, and one says that
v is a continuous path from a to b in Ω. Note that if Ω′ is another topological space
with a, b ∈ Ω′ as well, then a, b could be homotopic in Ω without being homotopic in
Ω′. Thus, mentioning the ambient space Ω is crucial for the definition of the homotopy
relation. On the other hand, we shall often just write t 7→ v(t) for the continuous path,
without specifying t ∈ [0, 1].

In the next statement, we consider this equivalence relation in the set U(C) of all
unitary elements of a unital C∗-algebra C. Clearly, this set is a group (for the multiplica-
tion) but not a vector space. Note also that if u0, u1, v0, v1 ∈ U(C) satisfy u0 ∼h u1 and
v0 ∼h v1, then u0v0 ∼h u1v1. Indeed, if t 7→ u(t) and t 7→ v(t) denote the corresponding
continuous paths, then t 7→ u(t)v(t) is a continuous map between u0v0 and u1v1. In
the sequel we shall denote by U0(C) the set of elements in U(C) which are homotopic
to 1 ∈ C. Let us also recall from Lemma 1.2.8 that for any unitary element u, one has
σ(u) ∈ T.

Lemma 2.1.2. Let C be a unital C∗-algebra. Then:

(i) If a ∈ C is self-adjoint, then eia belongs to U0(C),

(ii) If u ∈ C is unitary and σ(u) ̸= T, then u ∈ U0(C),

15
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(iii) If u, v ∈ C are unitary with ∥u− v∥ < 2, then u ∼h v.

Proof. i) In the proof of Lemma 1.2.8 it has already been observed that if a is self-
adjoint, then eia is unitary. By considering now the map [0, 1] ∋ t 7→ v(t) := eita ∈ U(C),
one easily observes that this map is continuous, and that v(0) = 1 and v(1) = eia. As
a consequence, eia ∼h 1, or equivalently eia ∈ U0(C).

ii) Since σ(u) ̸= T, there exists θ ∈ R such that eiθ ̸∈ σ(u). Let us then define
v : σ(u) → R by v

(
ei(θ+t)

)
= θ + t for any t ∈ (0, 2π) such that ei(θ+t) ∈ σ(u). Since

σ(u) is a closed set in T, it follows that v is continuous. In addition, one has that
eiv(z) = z for any z ∈ σ(u). Thus, if one sets a := v(u), one infers that a is a self-adjoint
element of C and that u = eia. As a consequence of (i), one deduces that u ∈ U0(C).

iii) If ∥u − v∥ < 2, it follows that ∥v∗u − 1∥ = ∥v∗(u − v)∥ < 2. Then, from
the estimates |z| ≤ r(a) ≤ ∥a∥ valid for any z ∈ σ(a) and any a ∈ C, one infers
that −2 ̸∈ σ(v∗u − 1), or equivalently −1 ̸∈ σ(v∗u). Since v∗u is a unitary element of
C, one infers then from (ii) that v∗u ∼h 1. Finally, by multiplying the corresponding
continuous path on the left by v (or by using the remark made just before the statement
of the lemma), one infers that u ∼h v, as expected.

Let us stress that the previous lemma states that for any self-adjoint a ∈ C, eia is a
unitary element of U0(C). However, not all unitary elements of C are of this form, and
the point (ii) has only provided a sufficient condition for being of this form. Later on,
we shall construct unitary elements which are not obtained from a self-adjoint element.

Let us observe that since unitary elements of Mn(C) have only a finite spectrum,
one can directly infer from the previous statement (ii) the following corollary:

Corollary 2.1.3. The unitary group in Mn(C) is connected, or in other words

U0
(
Mn(C)

)
= U

(
Mn(C)

)
.

By considering matrix algebras, the following statement can easily be proved:

Lemma 2.1.4 (Whitehead). Let C be a unital C∗-algebra, and let u, v ∈ U(C). Then
one has in U

(
M2(C)

)
(
u 0
0 v

)
∼h

(
uv 0
0 1

)
∼h

(
vu 0
0 1

)
∼h

(
v 0
0 u

)
.

In particular, one infers that (
u 0
0 u∗

)
∼h

(
1 0
0 1

)
(2.1)

in U
(
M2(C)

)
.



2.1. HOMOTOPY CLASSES OF UNITARY ELEMENTS 17

Proof. Since ( 0 1
1 0 ) is a unitary element of M2(C), one infers from the previous corollary

that ( 0 1
1 0 ) ∼h ( 1 0

0 1 ). Then, by observing that(
u 0
0 v

)
=

(
u 0
0 1

)(
0 1
1 0

)(
v 0
0 1

)(
0 1
1 0

)
,

one readily infers that the r.h.s. is homotopic to ( u 0
0 1 ) (

1 0
0 1 ) (

v 0
0 1 ) (

1 0
0 1 ) = ( uv 0

0 1 ). The
other relations can be proved similarly.

Let us add some more information on U0(C).

Proposition 2.1.5. Let C be a unital C∗-algebra. Then,

(i) U0(C) is a normal subgroup of U(C), i.e. vuv∗ ∈ U0(C) whenever u ∈ U0(C) and
v ∈ U(C),

(ii) U0(C) is open and closed relative to U(C),

(iii) An element u ∈ C belongs to U0(C) if and only if u = eia1 eia2 . . . eian for some
self-adjoint elements a1, . . . , an ∈ C.

Exercise 2.1.6. Provide the proof of this statement, see also [RLL00, Prop. 2.1.6].

Based on the content of this proposition, the following lemma can be proved:

Lemma 2.1.7. Let C, Q be unital C∗-algebras, and let φ : C → Q be a surjective (and
hence unit preserving) ∗-homomorphism. Then:

(i) φ
(
U0(C)

)
= U0(Q),

(ii) For each u ∈ U(Q) there exists v ∈ U0
(
M2(C)

)
such that φ(v) = ( u 0

0 u∗ ),

(iii) If u ∈ U(Q), and if there exists v ∈ U(C) such that u ∼h φ(v), then u belongs to
φ
(
U(C)

)
.

Proof. i) Since a unital ∗-homomorphism is continuous and maps unitary elements
on unitary elements, it follows that φ

(
U0(C)

)
is contained in U0(Q). Conversely, if u

belongs to U0(Q), then u = eib1 eib2 . . . eibn for some self-adjoint elements b1, . . . , bn ∈ Q
by Proposition 2.1.5.(iii). Since φ is surjective, there exists aj ∈ C such that bj = φ(aj)
for any j ∈ {1, . . . , n}. Note that aj can be chosen self-adjoint since otherwise the
element (aj + a∗j)/2 is self-adjoint and satisfies φ

(
(aj + a∗j)/2

)
= (bj + b∗j)/2 = bj. Then,

by setting v = eia1 eia2 . . . eian one gets, again by Proposition 2.1.5, that v ∈ U0(C) and
that φ(v) = u.

ii) For any u ∈ U(Q) consider the element ( u 0
0 u∗ ) which belongs to U0

(
M2(Q)

)
by

(2.1). By applying then the point (i) to U0
(
M2(C)

)
and U0

(
M2(Q)

)
instead of U0(C)

and U0(Q), one immediately deduces the second statement.
iii) If u ∼h φ(v), then uφ(v)∗ = uφ(v∗) is homotopic to 1 ∈ Q, i.e. uφ(v∗) ∈ U0(Q).

By (i) it follows that uφ(v∗) = φ(w) for some w ∈ U0(C). Consequently, one infers that
u = φ(wv), or in other words u ∈ φ

(
U(C)

)
.



18 CHAPTER 2. PROJECTIONS AND UNITARY ELEMENTS

Recall that for any unital C∗-algebra C, one denotes by GL(C) the group of its
invertible elements. The set of elements of GL(C) which are homotopic to 1 is denoted
by GL0(C). Clearly, U(C) is a subgroup of GL(C). The following statement establishes
a more precise link between these two groups. Before this, observe that for any a ∈ C,
the element a∗a is positive, as recalled in Proposition 1.2.7. Thus, one can define |a| :=
(a∗a)1/2 which is also a positive element of C, and call it the absolute value of a.

Proposition 2.1.8. Let C be a unital C∗-algebra.

(i) If a belongs to GL(C), then |a| belongs to GL(C) as well, and w(a) := a|a|−1 belongs
to U(C). In addition, the equality a = w(a)|a| holds.

(ii) The map

w : GL(C) ∋ a 7→ w(a) ∈ U(C)

is continuous, satisfies w(u) = u for any u ∈ U(C), and verifies w(a) ∼h a in
GL(C) for any a ∈ GL(C),

(iii) If v0, v1 ∈ U(C) satisfies v0 ∼h v1 in GL(C), then v0 ∼h v1 in U(C).

Proof. i) If a is invertible, it follows that a∗ and a∗a are invertible as well. As a con-

sequence, the element |a| = (a∗a)1/2 is also invertible, with inverse
(
(a∗a)−1

)1/2
. For

simplicity, let us set w := a|a|−1 which verifies a = w|a|. Since w is the product of two
invertible elements, w is invertible as well, and it satisfies w∗ = w−1 since

w∗w = |a|−1a∗a|a|−1 = |a|−1|a|2|a|−1 = 1.

Consequently, w ∈ U(C).
ii) The continuity of the map a 7→ a−1 in GL(C) can easily be obtained by the

Neumann series, as recalled in Exercise 1.2.1. Thus, to show that the map a 7→ w(a)
is continuous, it is sufficient to show that the map a 7→ (a∗a)1/2 is continuous. Clearly,
the map a 7→ a∗a is continuous, because involution and multiplication are continuous.
It remains to show the continuity of the map b 7→ b1/2 on any bounded subset F of C+.
However, this directly follows from Lemma 1.2.13 since any bounded subset F of C+ is
contained in some FK (in the notation of the mentioned lemma) with K = [0, R] and
R := sup{∥a∥ | a ∈ F}.

If u is unitary, one has u∗u = 1 and thus |u| = 1, which implies that w(u) = u. On
the other hand, for a ∈ GL(C), let us set v(t) = w(a)

(
t|a| + (1 − t)1

)
with t ∈ [0, 1].

Clearly, v(0) = w(a) and v(1) = a, and let us show v(t) ∈ GL(C) for any t. Indeed, since
|a| is positive and invertible, it follows that λ := inf σ(|a|) > 0, from which one infers
that t|a| + (1 − t)1 ≥ min{λ, 1}1 > 0. As a consequence of Proposition 1.2.7.(vi), it
follows that t|a| + (1 − t)1 is invertible, and therefore v(t) is invertible as well. Since
the map t 7→ v(t) is continuous, one concludes that w(a) ∼h a in GL(C).

iii) If t 7→ v(t) is a continuous path in GL(C) between v0 and v1, then t 7→ w
(
v(t)

)
is a continuous path in U(C) between v0 and v1.
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The above proposition says that U(C) is a retract1 of GL(C). Note also that the
above decomposition a = w(a)|a| for any invertible element a of C is called the polar
decomposition of a. This decomposition is often written a = u|a| with u := w(a).

Finally, let us state a useful result:

Lemma 2.1.9. Let C be a unital C∗-algebra, and let a ∈ C be invertible. Assume that
b ∈ C satisfies ∥b− a∥ < ∥a−1∥−1. Then b is invertible, with

∥b−1∥−1 ≥ ∥a−1∥−1 − ∥a− b∥,

and a ∼h b in GL(C).

Exercise 2.1.10. Provide a proof of the previous lemma, with the possible help of
[RLL00, Prop. 2.1.11].

2.2 Equivalence of projections

We start with the definition of a (self-adjoint) projection in the setting of a C∗-algebra.

Definition 2.2.1. An element p in a C∗-algebra C is called a projection if p = p2 = p∗.
The set of all projections in C is denoted by P(C).

Exercise 2.2.2. Let C be a unital C∗-algebra, and let p ∈ P(C). Show that σ(p) ⊂
{0, 1}.

Clearly, the equivalence by homotopy ∼h can be considered on P(C), but let us
consider two additional equivalence relations. Namely, for any p, q ∈ P(C), one writes
p ∼ q if there exists v ∈ C such that p = v∗v and q = vv∗ and calls it the Murray-
von Neumann equivalence. Alternatively, one writes p ∼u q if there exists an element
u ∈ U(C̃) such that q = upu∗ and calls it the unitary equivalence. Note that an element
v of C satisfying v∗v, vv∗ ∈ P(C) is called a partial isometry. The projection p := v∗v
is called the support projection of v, and the projection q := vv∗ is called the range
projection of v. We can then observe that in this setting one has

v = qv = vp = qvp. (2.2)

Exercise 2.2.3. Show that for any v in a C∗-algebra such that v∗v is a projection, then
automatically vv∗ is also a projection. By using the equalities provided in (2.2), show
that the Murray-von Neumann relation is transitive.

Lemma 2.2.4. Let C be a unital C∗-algebra, and let p, q ∈ P(C). Then the following
statements are equivalent:

(i) p ∼u q,
1A retract of a topological space Ω consists in a subspace Ω0 such that there exists a continuous

map τ : Ω→ Ω0 satisfying x ∼h τ(x) in Ω, for any x ∈ Ω, and such that τ(x) = x for all x ∈ Ω0.
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(ii) q = upu∗ for some u ∈ U(C),

(iii) p ∼ q and 1− p ∼ 1− q.

Proof. Let us denote by 1̃ the unit of C̃ and keep the notation 1 for the unit of C. We
set 1 := 1̃− 1, and one can observe that 1 is a projection in C̃. In addition, one has

C̃ =
{
a+ α1 | a ∈ C, α ∈ C

}
and a1 = 1a = 0 for any a ∈ C.

(i) ⇒ (ii): Assume that q = vpv∗ for some v ∈ U(C̃). By the previous observation,
one has v = u+ α1 for some u ∈ C and α ∈ C. By computing v∗v and vv∗, one readily
infers that u ∈ U(C) and then that q = upu∗.

(ii) ⇒ (iii): Suppose that q = upu∗ for some u ∈ U(C). By setting v := up and
w := u(1− p) one gets

v∗v = p, vv∗ = q, w∗w = 1− p, ww∗ = 1− q. (2.3)

(iii)⇒ (i): Suppose that there are partial isometries v and w in C satisfying (2.3).
By setting u := v + w + 1 and by taking (2.3) and the definition of 1 into account one
gets

uu∗ = vv∗ + ww∗ + wv∗ + vw∗ + (1̃− 1) = wv∗ + vw∗ + 1̃

and

u∗u = v∗v + w∗w + w∗v + v∗w + (1̃− 1) = w∗v + v∗w + 1̃.

Then, by inserting the support and the range projections one readily obtains wv∗ =
w(1 − p)pv∗ = 0, and similarly vw∗ = 0, w∗v = 0 and v∗w = 0, which imply that

u ∈ U(C̃). We finally find that upu∗ = vpv∗ = vv∗ = q, as expected.

Let us now state a short technical result, which proof can be found in [RLL00,
Lem. 2.2.3].

Lemma 2.2.5. Let C be a C∗-algebra and let p ∈ P(C) and a ∈ C be self-adjoint. By
setting δ := ∥p− a∥, one has

σ(a) ⊂ [−δ, δ] ∪ [1− δ, 1 + δ].

Based on the previous lemma, one can now show the following statement:

Proposition 2.2.6. Let C be a C∗-algebra, and let p, q ∈ P(C) with ∥p− q∥ < 1. Then
p ∼h q in P(C).

Proof. For any t ∈ [0, 1], let us set a(t) := (1 − t)p + tq. Clearly, a(t) is self-adjoint, it
satisfies

min
{
∥a(t)− p∥, ∥a(t)− q∥

}
≤ ∥p− q∥/2 < 1/2,
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and the map t 7→ a(t) is continuous. Moreover, by Lemma 2.2.5 and with the notation of
Lemma 1.2.13, each a(t) belongs to FK withK := [−δ, δ]∪[1−δ, 1+δ] and δ = ∥p−q∥/2.
Note that since ∥p− q∥ < 1, these two intervals are disjoint.

Now, let f be the continuous function on K given by f(x) = 0 if x ∈ [−δ, δ] and
f(x) = 1 if x ∈ [1 − δ, 1 + δ]. Then, since f = f 2 = f , it follows that f

(
a(t)

)
is a

projection for each t ∈ [0, 1]. In addition, the map t 7→ f
(
a(t)

)
∈ P(C) is continuous by

Lemma 1.2.13, and hence one has in P(C)

p = f(p) = f
(
a(0)

)
∼h f

(
a(1)

)
= f(q) = q.

One usually says that two elements a, b in a unital C∗-algebra are similar if there
exists c ∈ GL(C) such that b = cac−1. In the next statement, we show that if two
self-adjoint elements are similar, then they are unitarily equivalent.

Proposition 2.2.7. Let a, b be self-adjoint elements in a unital C∗-algebra C, and
suppose that there exists c ∈ GL(C) such that b = cac−1. Let c = u|c| be the polar
decomposition of c, with u ∈ U(C). Then b = uau∗.

Proof. Since a and b are self-adjoint, the equation b = cac−1 implies that bc = ca and
that ac∗ = c∗b. As a consequence, one infers that

|c|2a = c∗ca = c∗bc = ac∗c = a|c|2,

which means that a and |c|2 commute. One then deduces that a commutes with all
elements of C∗({|c|2,1}) and in particular a commutes with |c|−1 (which exists since c
is invertible). It thus follows that

uau∗ = c|c|−1au∗ = ca|c|−1u∗ = bc|c|−1u∗ = buu∗ = b.

Let us add one more information on the relation between ∼h and the unitary equiv-
alence.

Proposition 2.2.8. Let C be a C∗-algebra, and let p, q ∈ P(C). Then p ∼h q in P(C)
if and only if there exists a unitary element u ∈ U0(C̃) such that q = upu∗.

Proof. Let 1 denote the unit of C̃, and assume that there exists u ∈ U0(C̃) which verifies

q = upu∗. Let t 7→ u(t) be a continuous path in U(C̃) with u(0) = 1 and u(1) = u.

Because C is an ideal in C̃ it follows that u(t)pu(t)∗ is a projection in C for any t, and
thus the map t 7→ u(t)pu(t)∗ is a continuous path in P(C) from p to q.

Conversely, if p ∼h q in P(C), then there are projections p0, p1, . . . pn in C with p0 = p
and pn = q such that ∥pj+1 − pj∥ < 1/2 for any j = 0, 1, . . . n− 1. By concatenation, it
is sufficient to show the statement for ∥p− q∥ < 1/2. Thus, let us set

b := pq + (1− p)(1− q) ∈ C̃
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and observe that

pb = pq = bq, (2.4)

and that

∥b− 1∥ =
∥∥p(q − p) + (1− p)(p− q)

∥∥ ≤ 2∥p− q∥ < 1.

By Lemma 2.1.9 it follows that b is invertible and that b ∼h 1 in GL(C̃). In addition, by

considering the polar decomposition b = u|b| with u ∈ U(C̃), one obtains from (2.4) and
from Proposition 2.2.7 that p = uqu∗. Finally, from Proposition 2.1.8.(ii) one deduces

that u ∼h b ∼h 1 in GL(C̃), from which one gets that u ∈ U0(C̃), again from Proposition
2.1.8.(iii).

Up to now, we have considered three equivalence relation, the homotopy relation
∼h, the Murray-von Neumann relation ∼ and the unitary relation ∼u. It can be shown
on examples that these three relations are different from each other, see for example
[RLL00, Ex. 2.2.9]. In fact, in the next lemma we shall show that homotopy equivalence
is stronger than unitary equivalence, which is itself stronger that Murray-von Neumann
equivalence. However, we shall see subsequently that these relations are equal modulo
passing to matrix algebras.

Lemma 2.2.9. Let p, q be projections in a C∗-algebra C. Then:

(i) If p ∼h q in P(C), then p ∼u q,

(ii) If p ∼u q, then p ∼ q.

Proof. Clearly, the first statement is a consequence of Proposition 2.2.8. For the second
one, let u ∈ U(C̃) such that q = upu∗. Then v := up belongs to C and satisfies v∗v = p
and vv∗ = upu∗ = q.

Proposition 2.2.10. Let p, q be projections in a C∗-algebra C. Then:

(i) If p ∼ q, then
(
p 0
0 0

)
∼u

(
q 0
0 0

)
in M2(C),

(ii) If p ∼u q, then
(
p 0
0 0

)
∼h

(
q 0
0 0

)
in P

(
M2(C)

)
.

Let us mention that both algebras M2(C̃) and M̃2(C) (the smallest unitization of
M2(C)) will be used during the proof of this proposition. It is easily observed that these
two algebras are not equal, as illustrated in the following proof.

Proof. i) Let v ∈ C such that p = v∗v and q = vv∗. By taking (2.2) into account and

by denoting by 1 the unit of C̃, one readily infers that

u :=

(
v 1− q

1− p v∗

)
, w :=

(
q 1− q

1− q q

)
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are unitary elements of M2(C̃), with u∗ =
(
v∗ 1−p
1−q v

)
and w∗ = w. Then, one observes

that

wu

(
p 0
0 0

)
u∗w∗ = w

(
q 0
0 0

)
w∗ =

(
q 0
0 0

)
.

Clearly, one has wu ∈M2(C̃), but by an explicit computation one observes that

wu =

(
v + (1− q)(1− p) (1− q)v∗

q(1− p) (1− q) + qv∗

)

belongs to M̃2(C) ⊂M2(C̃), the claim (i) is thus proved.

ii) Let u ∈ U(C̃) such that q = upu∗. By (2.1), there exists a continuous path

v : [0, 1] → U
(
M2(C̃)

)
such that v(0) = ( 1 0

0 1 ) and v(1) = ( u 0
0 u∗ ). Then by setting

w(t) := v(t)
(
p 0
0 0

)
v(t)∗, one gets that w(t) ∈ P

(
M2(C)

)
for any t, that the map t 7→ w(t)

is continuous, and that w(0) =
(
p 0
0 0

)
and w(1) =

(
q 0
0 0

)
.

2.3 Liftings

Let us now consider two C∗-algebras C and Q, and let φ : C → Q be a surjective
∗-homomorphism. Given an element b ∈ Q, an element a ∈ C satisfying φ(a) = b is
called a lift for b. The set of all lifts for b is then given by a + Ker(φ). Now, if b has
some additional properties, like being a projection or a unitary element, we shall be
interested in looking at lifts for b which share similar properties (if possible). In the
following statement, we collect several results in this direction.

Proposition 2.3.1. Let φ : C → Q be a surjective ∗-homomorphism between C∗-
algebras. Then:

(i) Every b ∈ Q has a lift a ∈ C satisfying ∥a∥ = ∥b∥,

(ii) Every self-adjoint b ∈ Q has a self-adjoint lift a ∈ C. Moreover, this self-adjoint
lift can be chosen such that ∥a∥ = ∥b∥,

(iii) Every positive b ∈ Q has a positive lift a ∈ C, and this lift can be chosen such that
∥a∥ = ∥b∥,

(iv) A normal element b ∈ Q does not in general lift to a normal element in C,

(v) A projection in Q does not in general lift to a projection in Q,

(vi) When C and Q are unital, a unitary element b ∈ Q does not in general lift to a
unitary element in C.



24 CHAPTER 2. PROJECTIONS AND UNITARY ELEMENTS

Proof. ii) Consider a self-adjoint element b ∈ Q, and let x ∈ C be any lift for b. Then
a0 := (x + x∗)/2 defines a self-adjoint lift for b. In order to impose the equality of the
norms, let us consider f : R→ R be the continuous function defined by

f(t) =


−∥b∥ if t ≤ −∥b∥
t if − ∥b∥ ≤ t ≤ ∥b∥
∥b∥ if t ≥ ∥b∥

and set a := f(a0). Then a is self-adjoint, being obtained by functional calculus of a
self-adjoint element, and one has σ(a) = {f(t) | t ∈ σ(a0)} ⊂ [−∥b∥, ∥b∥]. One infers
from this inequality that ∥a∥ ≤ ∥b∥, since r(a) = ∥a∥ for any self-adjoint element. On
the other hand, one has

φ(a) = φ
(
f(a0)

)
= f

(
φ(a0)

)
= f(b) = b,

because of the definition of f . Since φ is a ∗-homomorphism, one infers that ∥φ∥ ≤ 1,
from which one concludes that ∥b∥ ≤ ∥a∥. By collecting these inequalities one obtains
that ∥a∥ = ∥b∥.

i) Let b be an arbitrary element of Q, and set y = ( 0 b
b∗ 0 ). Then y is a self-adjoint

element in M2(Q), and

∥y∥2 = ∥y∗y∥ = ∥( bb∗ 0
0 b∗b )∥ = max{∥bb∗∥, ∥b∗b∥} = ∥b∥2.

It follows then by (ii) that there exists a self-adjoint lift x = ( x11 x12x21 x22 ) ∈ M2(C) for y
with ∥x∥ = ∥y∥ = ∥b∥. Clearly, a := x12 is then a lift for b, and from (1.4) one infers
that ∥a∥ ≤ ∥x∥ = ∥b∥. As in the proof of (ii), one also has ∥b∥ ≤ ∥a∥, from which one
deduces that ∥a∥ = ∥b∥.

iii) Let b be a positive element inQ, and let x ∈ C be any lift for b. Set a0 := (x∗x)1/2,
which is positive, and observe that

φ(a0) =
(
φ(x)∗φ(x)

)1/2
= (b∗b)1/2 = b.

We can then set a := f(a0) with the function f introduced in the proof of (ii), and
one gets that a is self-adjoint with σ

(
f(a)

)
⊂ [0, ∥b∥]. Thus, a is positive and satisfies

φ(a) = b together with ∥a∥ = ∥b∥.
The remaining three assertions are based on counterexamples. For (iv), a coun-

terexample is provided in [RLL00, Ex. 9.4.(iii)] and is based on the unilateral shift. For
(v), consider the algebras C := C

(
[0, 1]

)
and Q := C ⊕ C, with φ : C → Q defined

by φ(f) =
(
f(0), f(1)

)
for any f ∈ C. Clearly, (0, 1) is a projection in Q, but there is

no lift f in C which is a projection and which satisfies
(
f(0), f(1)

)
= (0, 1). For (vi),

a counterexample is provided in [RLL00, Ex. 2.12.(ii)] for the algebras C := C(D) and
Q := C(T), with D := {z ∈ C | ∥z∥ ≤ 1}.



Chapter 3

K0-group for a unital C∗-algebra

In this chapter, we associate with each unital C∗-algebra an Abelian group. This group
will be constructed from equivalence classes of projections. The K0-group for non-unital
C∗-algebra will be described in the next Chapter.

3.1 Semigroups of projections

Let us start by introducing a semigroup of projections in a C∗-algebra, with or without
a unit. For that purpose, let C be an arbitrary C∗-algebra and set for n ∈ N∗

Pn(C) := P
(
Mn(C)

)
and P∞(C) :=

∞∪
n=1

Pn(C).

One can then define the relation ∼0 on P∞(C), namely for two elements p, q ∈ P∞(C)
one writes p ∼0 q if there exits v ∈ Mm,n(C) such that p = v∗v ∈ Pn(C) and q = vv∗ ∈
Pm(C). Clearly, Mm,n(C) denotes the set of m × n matrices with entries in C, and the
adjoint v∗ of v ∈ Mm,n(C) is obtained by taking the transpose of the matrix, and then
the adjoint of each entry.

One easily observes that the relation ∼0 is an equivalence relation on P∞(C). It
combines both the Murray-von Neumann equivalence relation ∼ and and the identifica-
tion of projections in different sized matrix algebras over C. For example, if p, q ∈ Pn(C)
then p ∼0 q if and only if p ∼ q.

We also define a binary operation ⊕ on P∞(C) by

p⊕ q = diag(p, q) :=

(
p 0
0 q

)
,

so that p ⊕ q belongs to Pm+n(C) whenever p ∈ Pn(C) and q ∈ Pm(C). We can now
derive some of the properties of ∼0.

Proposition 3.1.1. Let C be a C∗-algebra, and let p, q, r, p′, q′ be elements of P∞(C).
Then:

25
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(i) p ∼0 p⊕ 0n for any natural number n, where 0n denotes the 0-element of Mn(C),

(ii) If p ∼0 p
′ and q ∼0 q

′, then p⊕ q ∼0 p
′ ⊕ q′,

(iii) p⊕ q ∼0 q ⊕ p,

(iv) If p, q ∈ Pn(C) such that pq = 0, then p+ q ∈ Pn(C) and p+ q ∼0 p⊕ q,

(v) (p⊕ q)⊕ r = p⊕ (q ⊕ r).

Proof. i) Let m,n be integers, and let p ∈ Pm(C). One then sets v := ( p0 ) ∈Mm+n,m(C),
and one gets p = v∗v and vv∗ = p⊕ 0n.

ii) Let v, w such that p = v∗v, p′ = vv∗, q = w∗w and q′ = ww∗, and set u :=
diag(v, w). Then p⊕ q = u∗u and p′ ⊕ q′ = uu∗.

iii) Assume p ∈ Pn(C) and q ∈ Pm(C), and set v :=
(

0n,m q
p 0m,n

)
, with 0k,l the

0-matrix of size k × l. Then one gets p⊕ q = v∗v and q ⊕ p = vv∗.
iv) If pq = 0 it is easily observe that p + q is itself a projection. Then, if one sets

v := ( pq ) ∈M2n,n(C), one gets p+ q = v∗v and p⊕ q = vv∗.
v) This last statement is trivial.

Definition 3.1.2. For any C∗-algebra C, one sets

D(C) := P∞(C)/ ∼0

which corresponds to the equivalent classes of elements of P∞(C) modulo the equivalence
relation ∼0. For any p ∈ P∞(C) one writes [p]D ∈ D(C) for the equivalent class contain-
ing p. The set D(C) is endowed with a binary operation defined for any p, q ∈ P∞(C)
by

[p]D + [q]D = [p⊕ q]D. (3.1)

Because of the previous proposition, one directly infers the following result:

Lemma 3.1.3. The pair
(
D(C),+

)
defines an Abelian semigroup.

We end this section with two exercises dealing with projections.

Exercise 3.1.4. Let tr : Mn(C) → C denote the usual trace on square matrices, and
let p, q ∈ P

(
Mn(C)

)
. Show that the following statements are equivalent:

(i) p ∼ q,

(i) tr(p) = tr(q),

(i) dim
(
p(Cn)

)
= dim

(
q(Cn)

)
.

Use this to show that D(C) ∼= Z+ ≡ {0, 1, 2, . . . } when Z+ is equipped with the usual
addition.
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Exercise 3.1.5. Let H be an infinite dimensional separable Hilbert space, and let p, q
be projections in B(H).

(i) Show that p ∼ q if and only if dim
(
p(H)

)
= dim

(
q(H)

)
,

(ii) Show that p ∼u q if and only if dim
(
p(H)

)
= dim

(
q(H)

)
and dim

(
p(H)⊥

)
=

dim
(
q(H)⊥

)
,

(iii) Infer that D
(
B(H)

) ∼= Z+ ∪ {∞} ≡ {0, 1, 2, . . . ,∞}, where the usual addition
on Z+ is considered together with the addition n + ∞ = ∞ + n = ∞ for all
n ∈ Z+ ∪ {∞}.

3.2 The K0-group

In this section we construct the K0-group associated with a unital C∗-algebra C. This
group is defined in terms of the Grothendieck construction applied to the Abelian
semigroup

(
D(C),+

)
. We first recall this construction in an abstract setting.

Let (D,+) be an Abelian semigroup, and define onD×D the relation∼ by (x1, y1) ∼
(x2, y2) if there exists z ∈ D such that x1 + y2 + z = x2 + y1 + z. This relation is clearly
reflexive and symmetric. For the transitivity, suppose that (x1, y1) ∼ (x2, y2) and that
(x2, y2) ∼ (x3, y3). This means that there exist z, w ∈ D such that

x1 + y2 + z = x2 + y1 + z and x2 + y3 + w = x3 + y2 + w.

It then follows that

x1 + y3 + (y2 + z + w) = x2 + y1 + z + y3 + w = x3 + y1 + (y2 + z + w)

so that (x1, y1) ∼ (x3, y3). As a consequence, ∼ defines an equivalence relation on D×D.
The equivalence class containing (x, y) is denoted by ⟨x, y⟩, and we set G(D) for the
quotient D ×D/ ∼. Then, the operation

⟨x1, y1⟩+ ⟨x2, y2⟩ = ⟨x1 + x2, y1 + y2⟩

endows G(D) with the structure of an Abelian group. Indeed, the inverse −⟨x, y⟩ of
⟨x, y⟩ is given by ⟨y, x⟩, and ⟨x, x⟩ = 0, for any x, y ∈ D. The pair

(
G(D),+

)
is called

the Grothendieck group.
For any fixed y ∈ D, let us also define the map

γD : D ∋ x 7→ γD(x) := ⟨x+ y, y⟩ ∈ G(D),

and observe that this map does not depend on the choice of any specific y ∈ D. Indeed,
one easily observes that (x+y, y) and (x+y′, y′) define the same equivalence class since
(x+ y) + y′ = (x+ y′) + y. The map γD is called the Grothendieck map.

Finally, one says that the semigroup (D,+) has the cancellation property if whenever
the equality x+z = y+z holds, it follows that x = y. Let us now gather some additional
information on this construction in the following proposition.
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Proposition 3.2.1. Let (D,+) be an Abelian semigroup, and let
(
G(D),+

)
and γD be

the corresponding Grothendieck group and Grothendieck map. Then:

(i) Universal property: If H is an Abelian group and if φ : D → H is an additive
map, then there is one and only one group homomorphism ψ : G(D)→ H making
the diagram

D φ
//

γD ""D
DD

DD
DD

D H

G(D)

ψ

OO

commutative,

(ii) Functoriality: For every additive map φ : D → D′ between semigroups there exists
one and only one group morphism G(φ) : G(D)→ G(D′) making the diagram

D φ - D′

G(D)

γD

?

G(φ)
- G(D′)

γD′

?

commutative,

(iii) G(D) = {γD(x)− γD(y) | x, y ∈ D},

(iv) For any x, y ∈ D one has γD(x) = γD(y) if and only if x + z = y + z for some
z ∈ D,

(v) The Grothendieck map γD : D → G(D) is injective if and only if (D,+) has the
cancellation property,

(vi) Let (H,+) be an Abelian group, and let D be a non-empty subset of H. If D is
closed under addition, then (D,+) is an Abelian semigroup with the cancellation
property. In addition, G(D) is isomorphic to the subgroup H0 generated by D, and
H0 = {x− y | x, y ∈ D}.

The proofs of these statements can be found in [RLL00, Sec. 3.1.2]. Let us just
mention the one of (iii): Since each element of G(D) has the form ⟨x, y⟩ for some
x, y ∈ D, it is sufficient to observe that

⟨x, y⟩ = ⟨x+ y, y⟩ − ⟨x+ y, x⟩ = γD(x)− γD(y).

We still illustrate the previous construction with two examples.

Examples 3.2.2. (i) The Grothendieck group of the Abelian semigroup (Z+,+) is
isomorphic to (Z,+). Note that (Z+,+) has the cancellation property.
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(ii) The Grothendieck group of the Abelian semigroup
(
Z+ ∪ {∞},+

)
is {0}. Note

that
(
Z+ ∪ {∞},+

)
does not possess the cancellation property.

We are now ready for the main definition of this chapter. Recall that for any C∗-
algebra C, the Abelian semigroup

(
D(C),+

)
has been introduced in Definition 3.1.2,

see also Lemma 3.1.3.

Definition 3.2.3. Let C be a unital C∗-algebra, and let
(
D(C),+

)
be the corresponding

Abelian semigroup. The Abelian group K0(C) is defined by

K0(C) := G
(
D(C)

)
.

One also set [·]0 : P∞(C)→ K0(C) for any p ∈ P∞(C) by

[p]0 := γ
(
[p]D

)
with γ : D(C)→ K0(C) the Grothendieck map.

In the following two propositions, we provide a standard picture of the K0-group
for a unital C∗-algebra, and state some of its universal properties. Before them, we
introduce one more equivalence relation on P∞(C), namely p, q ∈ P∞(C) are stable
equivalent, written p ∼s q, if there exists r ∈ P∞(C) such that p⊕ r ∼0 q⊕ r. Note that
if C is unital, then p ∼s q if and only if p ⊕ 1n ∼0 q ⊕ 1n for some n ∈ N. Indeed, if
p⊕ r ∼0 q ⊕ r for some r ∈ Pn(C), then

p⊕ 1n ∼0 p⊕ r ⊕ (1n − r) ∼0 q ⊕ r ⊕ (1n − r) ∼0 q ⊕ 1n,

where Proposition 3.1.1.(iv) has been used twice.

Proposition 3.2.4. For any unital C∗-algebra C one has

K0(C) =
{
[p]0 − [q]0 | p, q ∈ P∞(C)

}
=

{
[p]0 − [q]0 | p, q ∈ Pn(C), n ∈ N∗}. (3.2)

Moreover, one has

(i) [p⊕ q]0 = [p]0 + [q]0 for any projections p, q ∈ P∞(C),

(ii) [0C] = 0, where 0C stands for the zero element of C,

(iii) If p, q ∈ Pn(C) for some n ∈ N∗ and if p ∼h q ∈ Pn(C), then [p]0 = [q]0,

(iv) If p, q are mutually orthogonal projections in Pn(C), then [p+ q]0 = [p]0 + [q]0,

(v) For all p, q ∈ P∞(C), then [p]0 = [q]0 if and only if p ∼s q.
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Proof. The first equality in (3.2) follows from Proposition 3.2.1.(iii). Hence, if g is an
element of K0(C) there exist p′ ∈ Pk(C) and q′ ∈ Pl(C) such that g = [p′]0− [q′]0. Choose
then n greater than k and l, and set p = p′⊕ 0n−k and q := q⊕ 0n−l. Then p, q ∈ Pn(C)
with p ∼0 p

′ and q ∼0 q
′ by Proposition 3.1.1.(i). It thus follows that g = [p]0 − [q]0.

i) One has by (3.1)

[p⊕ q]0 = γ
(
[p⊕ q]D

)
= γ

(
[p]D + [q]D

)
= γ

(
[p]D

)
+ γ

(
[q]D

)
= [p]0 + [q]0.

ii) Since 0C ⊕ 0C ∼0 0C, point (i) yields that [0C]0 + [0C]0 = [0C]0, which means that
[0C]0 = 0.

iii) This statement follows from the implications

p ∼h q ⇒ p ∼ q ⇒ p ∼0 q ⇔ [p]D = [q]D ⇒ [p]0 = [q]0,

where the first two relations are defined only when p and q are in the same matrix
algebra over C, while the three other implications hold for any p, q ∈ P∞(C). Note that
the first implication is due to Lemma 2.2.9.

iv) By Proposition 3.1.1.(iv), one has p + q ∼0 p ⊕ q, and therefore [p + q]0 =
[p⊕ q]0 = [p]0 + [q]0 by (i).

v) If [p]0 = [q]0, then by Proposition 3.2.1.(iv) there exists r ∈ P∞(C) such that
[p]D + [r]D = [q]D + [r]D. Hence [p ⊕ r]D = [q ⊕ r]D, and then p ⊕ r ∼0 q ⊕ r. It thus
follows that p ∼s q.

Conversely, if p ∼s q, then there exists r ∈ P∞(C) such that p⊕ r ∼0 q ⊕ r. By (i)
one gets that [p]0 + [r]0 = [q]0 + [r]0, and because K0(C) is a group we conclude that
[p]0 = [q]0.

Proposition 3.2.5 (Universal property of K0). Let C be a unital C∗-algebra, and let
H be an Abelian group. Suppose that there exists ν : P∞(C) → H satisfying the three
conditions:

(i) ν(p⊕ q) = ν(p) + ν(q) for any p, q ∈ P∞(C),

(ii) ν(0C) = 0,

(iii) If p, q ∈ Pn(C) for some n ∈ N∗ and if p ∼h q ∈ Pn(C), then ν(p) = ν(q).

Then there exists a unique group homomorphism α : K0(C)→ H such that the diagram

P∞(C)
[·]0

��

ν

""E
EE

EE
EE

EE

K0(C) α
// H

is commutative.

The proof of this statement is provided the proof of [RLL00, Prop. 3.1.8] to which
we refer.
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3.3 Functoriality of K0

Let us now consider two unital C∗-algebras C and Q, and let φ : C → Q be a
∗-homomorphism. As already seen in Section 1.3, φ extends to a ∗-homomorphism
φ : Mn(C) → Mn(Q) for any n ∈ N∗. Again, the same notation is used for the
original morphism and for its extensions. Since ∗-homomorphisms map projections to
projections, one infers that φ maps P∞(C) into P∞(Q). Let us then define the map
ν : P∞(C) → K0(Q) by ν(p) := [φ(p)]0 for any p ∈ P∞(C). Since ν satisfies the three
conditions of Proposition 3.2.5 with H = K0(Q) one infers that there exists a unique
group homomorphism K0(φ) : K0(C)→ K0(Q) given by

K0(φ)([p]0) = [φ(p)]0 (3.3)

for any p ∈ P∞(C). In other words, the following diagram is commutative:

P∞(C) φ- P∞(Q)

K0(C)

[·]0

?

K0(φ)
- K0(Q).

[·]0

?

With this construction at hand, we can now state and prove the main result on
functoriality. Here, the functor K0 associates with any unital C∗-algebra C the Abelian
group K0(C). For two unital C∗-algebras C and Q one sets 0C→Q for the map sending
all elements of C to 0 ∈ Q, and 0K0(C)→K0(Q) for the map sending all elements of K0(C)
to the identity element in K0(Q).

Proposition 3.3.1 (Functoriality of K0 (unital case)). Let J , C and Q be unital C∗-
algebras. Then

(i) K0(idC) = idK0(C),

(ii) If φ : J → C and ψ : C → Q are ∗-homomorphisms, then

K0(ψ ◦ φ) = K0(ψ) ◦K0(φ),

(iii) K0({0}) = {0},

(iv) K0(0C→Q) = 0K0(C)→K0(Q).

Proof. By using (3.3) one can check that for any p ∈ P∞(C) and any q ∈ P∞(J ) the
equalities

K0(idC)([p]0) = [p]0, K0(ψ ◦ φ)([q]0) =
(
K0(ψ) ◦K0(φ)

)
([q]0)
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hold. Then, by taking the standard picture of K0 (equality (3.2)) into account, one
readily deduces the statement (i) and (ii).

iii) One has Pn({0}) = {0n}, with 0n the zero (and single) element ofMn({0}). Since
the zero projections 0 = 01, 02, . . . are all ∼0-equivalent, it follows that D({0}) = {[0]D}.
As a consequence, one deduces that K0({0}) = G

(
{[0]D}

)
= {0}.

iv) Since 0C→Q = 00→Q ◦ 0C→0 : C → {0} → Q, the statement (iv) can be deduced
from (ii) and (iii).

For two C∗-algebras C and Q, two ∗-homomorphisms φ0 : C → Q and φ1 : C → Q
are said to be homotopic, written φ0 ∼h φ1, if there exists a path of ∗-homomorphisms
t 7→ φ(t) with φ(0) = φ0 and φ(1) = φ1 such that for any a ∈ C the map [0, 1] ∋
t 7→ [φ(t)](a) ∈ Q is continuous. In this case, one also says that t 7→ φ(t) is pointwise
continuous. The two C∗-algebras C and Q are said to be homotopy equivalent if there
exist two ∗-homomorphisms φ : C → Q and ψ : Q → C such that ψ ◦ φ ∼h idC and
φ ◦ ψ ∼h idQ. In this case one says that

C φ−→ Q ψ−→ C (3.4)

is a homotopy between C and Q.
Proposition 3.3.2 (Homotopy invariance of K0 (unital case)). Let C and Q be unital
C∗-algebras.

(i) If φ, ψ : C → Q are homotopic ∗-homomorphisms, then K0(φ) = K0(ψ),

(ii) If C and Q are homotopy equivalent, then K0(C) is isomorphic to K0(Q). More
specifically, if (3.4) is a homotopy between C and Q, then K0(φ) : K0(C)→ K0(Q)
and K0(ψ) : K0(Q)→ K0(C) are isomorphisms, with K0(φ)

−1 = K0(ψ).

Exercise 3.3.3. Provide a proof of Proposition 3.3.2, with the possible help of [RLL00,
Prop. 3.2.6].

Our next aim is to show that K0 preserves exactness of the short exact sequence
obtained by adjoining a unit to a unital C∗-algebra. This result will be useful when
defining the K0-group for a non-unital C∗-algebra.

For two C∗-algebras C and Q, two ∗-homomorphisms φ : C → Q and ψ : C → Q are
said to be orthogonal to each other ormutually orthogonal, written φ⊥ψ, if φ(a)ψ(b) = 0
for any a, b ∈ C.
Lemma 3.3.4. If C and Q are unital C∗-algebras, and if φ : C → Q and ψ : C → Q
are mutually orthogonal ∗-homomorphisms, then φ+ψ : C → Q is a ∗-homomorphism,
and K0(φ+ ψ) = K0(φ) +K0(ψ).

Proof. One readily check that φ + ψ : C → Q is a ∗-homomorphism. In addition, the
∗-homomorphism φ : Mn(C) → Mn(Q) and ψ : Mn(C) → Mn(Q) are also orthogonal,
for any n ∈ N∗. By using then Proposition 3.2.4.(iv) we obtain for any p ∈ Pn(C):

K0(φ+ ψ)([p]0) = [(φ+ ψ)(p)]0 = [φ(p) + ψ(p)]0

= [φ(p)]0 + [ψ(p)]0 = K0(φ)([p]0) +K0(ψ)([p]0).
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This shows that K0(φ+ ψ) = K0(φ) +K0(ψ).

Lemma 3.3.5. For any unital C∗-algebra C, the split exact sequence

0 −→ C ι
↪−→ C̃

π−−−−−→←−−−−−
λ

C −→ 0

induces a split exact sequence

0 −→ K0(C)
K0(ι)

−−−−−→ K0(C̃)
K0(π)

−−−−−→←−−−−−
K0(λ)

K0(C) −→ 0 (3.5)

Proof. Recall from the proof of Lemma 2.2.4 that if 1̃ denotes the unit of C̃ and if 1
denotes the unit of C, then 1 := 1̃ − 1 is a projection in C̃. In addition, C̃ = C + C1,
with a1 = 1a = 0 for any a ∈ C. Let us then define the ∗-homomorphisms µ : C̃ → C
and λ′ : C → C̃ by µ(a + α1) := a and λ′(α) := α1 for any a ∈ C and α ∈ C. One
readily infers that

idC = µ ◦ ι, idC̃ = ι ◦ µ+ λ′ ◦ π, π ◦ ι = 0C→C, π ◦ λ = idC,

and the ∗-homomorphisms ι ◦ µ and λ′ ◦ π are orthogonal to each other. Proposition
3.3.1 and Lemma 3.3.4 then lead to

0K0(C)→K0(C) = K0(0C→C) = K0(π) ◦K0(ι), (3.6)

idK0(C) = K0(idC) = K0(π ◦ λ) = K0(π) ◦K0(λ), (3.7)

idK0(C) = K0(idC) = K0(µ ◦ ι) = K0(µ) ◦K0(ι), (3.8)

idK0(C̃) = K0(idC̃) = K0(ι ◦ µ+ λ′ ◦ π)
= K0(ι) ◦K0(µ) +K0(λ

′) ◦K0(π). (3.9)

Now, the split exactness of (3.5) follows from these equalities. Indeed, the injectiv-
ity of K0(ι) follows from (3.8). If g ∈ Ker

(
K0(π)

)
, one infers from (3.9) that g =

K0(ι)
(
K0(µ)(g)

)
, which shows that g belongs to Ran

(
K0(ι)

)
. Since by (3.6) one also gets

Ran
(
K0(ι)

)
⊂ Ker

(
K0(π)

)
, these two inclusions mean that Ran

(
K0(ι)

)
= Ker

(
K0(π)

)
.

Finally, the surjectivity of K0(π) is a by-product of (3.7), from which one also infers
the splitness.

3.4 Examples

In this section, we introduce the examples discussed in [RLL00, Sec. 3.3] and refer to
this book for the proofs.

Consider first a C∗-algebra C endowed with a bounded trace τ , i.e. τ : C → C is a
bounded linear map satisfying the trace property

τ(ab) = τ(ba), ∀a, b ∈ C.
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This trace property implies in particular that τ(p) = τ(q) whenever p, q are Murray-
von Neumann equivalent projections in C. This trace is also called positive if τ(a) ≥ 0
whenever a ∈ C+. If C is unital and if τ(1C) = 1, then τ is called a tracial state.

For any trace τ on a C∗-algebra C, one defines a trace on Mn(C) by setting

τ

a11 . . . a1n
...

. . .
...

an1 . . . ann

 =
n∑
j=1

τ(ajj).

It thus endows P∞(C) with a map τ : P∞(C) → C, and this map satisfies the three
conditions of Proposition 3.2.5. For the last one, recall that the homotopy equivalence
implies the Murray-von Neumann equivalence, see Lemma 2.2.9. As a consequence, one
infers that there exists a unique group homomorphism K0(τ) : K0(C) → C satisfying
for any p ∈ P∞(C)

K0(τ)([p]0) = τ(p). (3.10)

Note that if τ is positive, then the r.h.s. of (3.10) is a positive real number, and K0(τ)
maps K0(C) into R.
Example 3.4.1. For any n ∈ N∗, one has

K0

(
Mn(C)

) ∼= Z. (3.11)

In fact, if tr denotes the usual trace already introduced in Exercise 3.1.4, then

K0(tr) : K0

(
Mn(C)

)
→ Z (3.12)

is an isomorphism.

Example 3.4.2. If H is an infinite dimensional separable Hilbert space, then we have

K0

(
B(H)

)
= {0}.

Note that this fact is related to the content of Exercise 3.1.5.

Example 3.4.3. If Ω is a compact, connected and Hausdorff space, then there exists a
surjective group homomorphism

dim : K0

(
C(Ω)

)
→ Z (3.13)

which satisfies for p ∈ P∞
(
C(Ω)

)
and x ∈ Ω

dim([p]0) = tr
(
p(x)

)
.

Note that by continuity this number is independent of x. Note also that if Ω is con-
tractible1 then the map (3.13) is an isomorphism.

Exercise 3.4.4. Provide the proofs for the statements of Examples 3.4.1, 3.4.2 and
3.4.3.

Extension 3.4.5. Study the K-theory for topological spaces, as presented for example
in [RLL00, Sec. 3.3.7].

1The space Ω is contractible if there exists x0 ∈ Ω and a continuous map α : [0, 1] × Ω → Ω such
that α(1, x) = x and α(0, x) = x0 for any x ∈ Ω.



Chapter 4

K0-group for an arbitrary
C∗-algebra

In this chapter, we extend the construction of the K0-group for a non-unital C∗-algebra,
and show that this definition is coherent with the previous one when the algebra has a
unit.

4.1 Definition and functoriality of K0

Definition 4.1.1. Let C be a non-unital C∗-algebra, and consider the associated split
exact sequence

0 −→ C ι
↪−→ C̃

π−−−−−→←−−−−−
λ

C −→ 0.

One defines K0(C) as the kernel of the homomorphism K0(π) : K0(C̃)→ K0(C).

Clearly, K0(C) is an Abelian group, being a subgroup of the Abelian group K0(C̃).
In addition, consider p ∈ P∞(C) and the equivalence class [p]0 ∈ K0(C̃). Since by (3.3)
one has

K0(π)([p]0) = [π(p)]0 = 0,

it follows that [p]0 belongs to K0(C). In this way, we obtain a map [·]0 : P∞(C)→ K0(C).
Now, for any C∗-algebra, unital or not, we have a short exact sequence

0 −→ K0(C) −→ K0(C̃)
K0(π)

−−−−−→ K0(C) −→ 0. (4.1)

Note that the map K0(C) −→ K0(C̃) corresponds to K0(ι) when C is unital while it
simply corresponds to the inclusion map when C is not unital. Note also that in the
unital case, it has been proved in Lemma 3.3.5 that (4.1) is indeed a short exact sequence
while for the non-unital case, this follows from the definition of K0(C).

When C is unital, K0(C) is isomorphic to its image in K0(C̃) through the map K0(ι),

and K0(ι) maps [p]0 ∈ K0(C) to [p]0 ∈ K0(C̃) for any p ∈ P∞(C). Since the image of

35
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K0(ι) is equal to the kernel of K0(π), the identity

K0(C) = Ker
(
K0(π)

)
holds, for both unital and non-unital C∗-algebras (with a slight abuse of notation).

Let us now consider a ∗-homomorphism φ : C → Q between C∗-algebras, and
let φ̃ : C̃ → Q̃ be the corresponding ∗-homomorphism introduced right after Exercise
1.1.10. The commutative diagram

C ιC - C̃ πC - C

Q

φ

?

ιQ
- Q̃

φ̃

?

πQ
- C.

id

?

induces by functoriality ofK0 for unital C
∗-algebras the following commutative diagram:

K0(C) - K0(C̃)
K0(πC)- K0(C)

K0(Q)

K0(φ)

?
- K0(Q̃)

K0(φ̃)

?

K0(πQ)
- K0(C)

idK0(C)

?

where K0(φ) corresponds to the restriction to K0(C) of the group homomorphism

K0(φ̃) : K0(C̃) → K0(Q̃). Note that if C and Q are unital, then the above group
homomorphism K0(φ) corresponds to the one already introduced in Section 3.3. Note
also that the equality

K0(φ)([p]0) = [φ(p)]0 ∀p ∈ P∞(C)

holds, no matter if C is unital or not.
We can now state in a greater generality the functorial properties of K0 which have

already been discussed in Proposition 3.3.1 for unital C∗-algebras only. The proof of
this statement consists in minor modifications of the one already presented in the unital
case.

Proposition 4.1.2 (Functoriality ofK0 (general case)). Let J , C and Q be C∗-algebras.
Then

(i) K0(idC) = idK0(C),

(ii) If φ : J → C and ψ : C → Q are ∗-homomorphisms, then

K0(ψ ◦ φ) = K0(ψ) ◦K0(φ),
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(iii) K0({0}) = {0},

(iv) K0(0C→Q) = 0K0(C)→K0(Q).

Let us now mention that the homotopy invariance of K0, as already presented in
Proposition 3.3.2 for the unital case, also extends to the present more general setting:

Proposition 4.1.3 (Homotopy invariance of K0 (general case)). Let C and Q be C∗-
algebras.

(i) If φ, ψ : C → Q are homotopic ∗-homomorphisms, then K0(φ) = K0(ψ),

(ii) If C and Q are homotopy equivalent, then K0(C) is isomorphic to K0(Q). More
specifically, if (3.4) is a homotopy between C and Q, then K0(φ) : K0(C)→ K0(Q)
and K0(ψ) : K0(Q)→ K0(C) are isomorphisms, with K0(φ)

−1 = K0(ψ).

Let us end this section with a construction which will play an important role in the
sequel. For any C∗-algebra C one defines the cone C(C) and the suspension S(C) by

C(C) :=
{
f ∈ C([0, 1]; C) | f(0) = 0

}
, (4.2)

S(C) :=
{
f ∈ C([0, 1]; C) | f(0) = f(1) = 0

}
. (4.3)

We have then a short exact sequence

0 −→ S(C) ι
↪−→ C(C) π−→ C −→ 0, (4.4)

where ι is the inclusion mapping, and π(f) = f(1) for any f ∈ C(C).
Note that the cone C(C) is homotopy equivalent to the C∗-algebra {0}. Indeed, for

any t ∈ [0, 1] let us define the ∗-homomorphism φ(t) : C(C)→ C(C) by[
φ(t)(f)

]
(s) := f(st) f ∈ C(C), s ∈ [0, 1].

Clearly, the map [0, 1] ∋ t 7→
(
φ(t)

)
(f) ∈ C(C) is continuous, and therefore one has

0C(C)→C(C) = φ(0) ∼h φ(1) = idC(C).

It then easily follows that the C∗-algebra C(C) is homotopy equivalent to {0}, and then
from Proposition 4.1.3.(ii) and Proposition 4.1.2.(iii) that K0

(
C(C)

)
= {0}.

4.2 The standard picture of the group K0

In Proposition 3.2.4, an explicit formulation of the K0-group for a unital C∗-algebra
was provided. In this section, we present a similar picture for general C∗-algebras. This
formulation is very convenient whenever explicit computations involving K0-groups are
performed.
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Consider an arbitrary C∗-algebra C and the corresponding split exact sequence

0 −→ C ι
↪−→ C̃

π−−−−−→←−−−−−
λ

C −→ 0.

One then defines the scalar mapping s by

s := λ ◦ π : C̃ → C̃,

i.e. s(a+ α1) = α1 for any α ∈ C and with 1 the unit of C̃. Note that π
(
s(a)

)
= π(a)

for any a ∈ C̃, and that a− s(a) ∈ C. As usual, we keep the notation s for the induced

∗-homomorphism Mn(C̃)→Mn(C̃). Its image is the subset Mn(C) of Mn(C̃) consisting
of all matrices with scalar entries. For short, any element a ∈Mn(C) or a ∈Mn(C̃) will
be called a scalar element if a = s(a). On the other hand, note that a − s(a) belongs
to Mn(C) for any a ∈Mn(C̃).

The scalar mapping is natural in the sense that if C and Q are C∗-algebras, and if
φ : C → Q is a ∗-homomorphism, we then get the commutative diagram:

C̃ s - C̃

Q̃

φ̃

?

s
- Q̃.

φ̃

?

(4.5)

The following proposition contains the standard picture of K0(C):

Proposition 4.2.1. For any C∗-algebra C one has

K0(C) =
{
[p]0 − [s(p)]0 | p ∈ P∞(C̃)

}
. (4.6)

Moreover, one has

(i) For any pair of projections p, q ∈ P∞(C̃) the following conditions are equivalent:

(a) [p]0 − [s(p)]0 = [q]0 − [s(q)]0,

(b) There exist natural numbers k and ℓ such that p⊕ 1k ∼0 q ⊕ 1ℓ in P∞(C̃),
(c) There exist scalar projections r1 and r2 such that p⊕ r1 ∼0 q ⊕ r2.

(ii) If p ∈ P∞(C̃) satisfies [p]0− [s(p)]0 = 0, then there exists a natural number m with
p⊕ 1m ∼ s(p)⊕ 1m.

(iii) If φ : C → Q is a ∗-homomorphism, then

K0(φ)
(
[p]0 − [s(p)]0

)
=

[
φ̃(p)

]
0
−

[
s
(
φ̃(p)

)]
0

for any p ∈ P∞(C̃).



4.2. THE STANDARD PICTURE OF THE GROUP K0 39

Proof. To prove that equation (4.6) holds, observe first that for any p ∈ P∞(C̃) it follows
from the equality π = π ◦ s that

K0(π)
(
[p]0 − [s(p)]0

)
= [π(p)]0 − [(π ◦ s)(p)]0 = 0.

From it, one infers that [p]0 − [s(p)]0 belongs to K0(C) for any p ∈ P∞(C̃).
Conversely, let g be an arbitrary element of K0(C), and let n ∈ N∗ and p′, q′ ∈ Pn(C̃)

be such that g = [p′]0 − [q′]0, see (3.2). Then set

p :=

(
p′ 0
0 1n − q′

)
and q :=

(
0 0
0 1n

)
.

Then one has p, q ∈ P2n(C̃) and

[p]0 − [q]0 = [p′]0 + [1n − q′]0 − [1n]0 = [p′]0 − [q′]0 = g,

where we have used that [1n − q′]0 + [q′]0 = [1n]0. Since q = s(q) and K0(π)(g) = 0 we
deduce that

[s(p)]0 − [q]0 = [s(p)]0 − [s(q)]0 = K0(s)(g) =
(
K0(λ) ◦K0(π)

)
(g) = 0.

This shows that g = [p]0 − [q]0 = [p]0 − [s(p)]0.

i) Let p, q ∈ P∞(C̃) be given, and suppose that [p]0 − [s(p)]0 = [q]0 − [s(q)]0. Then

[p ⊕ s(q)]0 = [q ⊕ s(p)]0, and hence p ⊕ s(q) ∼s q ⊕ s(p) in P∞(C̃), by Proposition
3.2.4.(v). By the observations made after Definition 3.2.3, there exists n ∈ N such that
p⊕s(q)⊕1n ∼0 q⊕s(p)⊕1n. This shows that (a) implies (c). To see that (c) implies (b)

note that if r1 and r2 are scalar projections in P∞(C̃) of dimension k and ℓ, respectively,
then r1 ∼0 1k and r2 ∼0 1ℓ (see Exercise 3.1.4), and hence p⊕ 1k ∼0 q ⊕ 1ℓ.

To see that (b) implies (a) note first that

[p⊕ 1k]0 − [s(p⊕ 1k)]0 = [p]0 + [1k]0 − [s(p)]0 − [1k]0 = [p]0 − [s(p)]0.

Therefore, it is sufficient to show that [p]0 − [s(p)]0 = [q]0 − [s(q)]0 when p ∼0 q.

Suppose accordingly that p = v∗v and q = vv∗ for some partial isometry v ∈ Mm,n(C̃).
Let s(v) ∈Mm,n(C), viewed as a subset ofMm,n(C̃), be the matrix obtained by applying
s to each entry of v. Then s(v)∗s(v) = s(p) and s(v)s(v)∗ = s(q), and so s(p) ∼0 s(q).
As a consequence, [p]0 = [q]0 and [s(p)]0 = [s(q)]0, and this proves that (a) holds.

ii) If [p]0 − [s(p)]0 = 0, then p ∼s s(p) by Proposition 3.2.4.(v), and there exists
m ∈ N such that p⊕1m ∼ s(p)⊕1m, see the observations made juste before Proposition
3.2.4. Note that p⊕ 1m ∼ s(p)⊕ 1m is equivalent to p⊕ 1m ∼0 s(p)⊕ 1m since p and

s(p) belong to the same matrix algebra over C̃.
iii) By definition one has

K0(φ)
(
[p]0 − [s(p)]0

)
= K0(φ̃)

(
[p]0 − [s(p)]0

)
=

[
φ̃(p)

]
0
−
[
φ̃
(
s(p)

)]
0
=

[
φ̃(p)

]
0
−

[
s
(
φ̃(p)

)]
0
.
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The following slightly technical statement will be used in the next section. If proof
is provided in [RLL00, Lem. 4.2.3].

Lemma 4.2.2. Let C, Q be C∗-algebras, and φ : C → Q a ∗-homomorphism. Let also
g be an element of K0(C) which belongs to the kernel of K0(φ). Then:

(i) There exist n ∈ N∗, p ∈ Pn(C̃) and a unitary element u ∈ Mn(Q̃) such that
g = [p]0 − [s(p)]0 and uφ̃(p)u∗ = s

(
φ̃(p)

)
.

(ii) If φ is surjective, one can choose u = 1 in the point (i).

4.3 Half and split exactness and stability of K0

Let us start this section with an easy lemma which described what happens when a
unit is added to a short exact sequence. The proof of this lemma is left as an exercise.

Lemma 4.3.1. Consider the short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0,

and let n ∈ N∗. Then

(i) The map φ̃ :Mn(J̃ )→Mn(C̃) is injective,

(ii) An element a ∈ Mn(C̃) belongs to Ran(φ̃) if and only if ψ̃(a) = s
(
ψ̃(a)

)
, with

s : Q̃ → Q̃ the scalar mapping.

Proposition 4.3.2 (Half exactness of K0). Every short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0,

induces an exact sequence of Abelian groups

K0(J )
K0(φ)

−−−−−→ K0(C)
K0(ψ)

−−−−−→ K0(Q),

that is Ran
(
K0(φ)

)
= Ker

(
K0(ψ)

)
.

Proof. By functoriality of K0 one already knows that

K0(ψ) ◦K0(φ) = K0(ψ ◦ φ) = K0(0J→Q) = 0K0(J )→K0(Q),

which implies that Ran
(
K0(φ)

)
⊂ Ker

(
K0(ψ)

)
.

Conversely, assume that g ∈ Ker
(
K0(ψ)

)
. According to Lemma 4.2.2.(ii) there exist

n ∈ N∗ and p ∈ Pn(C̃) such that g = [p]0− [s(p)]0 and ψ̃(p) = s
(
ψ̃(p)

)
. Then by Lemma

4.3.1.(ii) there exists e ∈Mn(J̃ ) such that φ̃(e) = p. Since by Lemma 4.3.1.(i) the map

φ̃ is injective, one infers that e ∈ Pn(J̃ ). Therefore,

g = [φ̃(e)]0 −
[
s
(
φ̃(e)

)]
0
= φ̃

(
[p]0 − [s(p)]0

)
= K0(φ)

(
[e]0 − [s(e)]0

)
(4.7)

which thus belongs to Ran
(
K0(φ)

)
. Note that the standard picture of K0(J ) has been

used in the last equality of (4.7). These two inclusions lead to the statement.
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Proposition 4.3.3 (Split exactness of K0). Every split exact sequence of C∗-algebras

0 −→ J φ−→ C
ψ

−−−−−→←−−−−−
λ

Q −→ 0

induces a split exact sequence of Abelian groups

0 −→ K0(J )
K0(φ)−→ K0(C)

K0(ψ)

−−−−−→←−−−−−
K0(λ)

K0(Q) −→ 0.

Proof. It follows from Proposition 4.3.2 that the equality Ran
(
K0(φ)

)
= Ker

(
K0(ψ)

)
holds. In addition, from the functoriality of K0 one infers that

idK0(Q) = K0(idQ) = K0(ψ) ◦K0(λ)

which implies that K0(ψ) is surjective and the splitness of the sequence. As a conse-
quence, it only remains to show that K0(φ) is injective.

For the injectivity, let us consider g ∈ Ker
(
K0(φ)

)
. By Lemma 4.2.2.(i), there exist

n ∈ N∗, p ∈ Pn(J̃ ) and a unitary element u ∈ Mn(C̃) such that g = [p]0 − [s(p)]0
and uφ̃(p)u∗ = s

(
φ̃(p)

)
. Set v := (λ̃ ◦ ψ̃)(u∗)u, and observe that v is a unitary element

of Mn(C̃) and ψ̃(v) = 1. By Lemma 4.3.1.(ii) there exists an element w ∈ Mn(J̃ )
with φ̃(w) = v. In addition, since φ̃ is injective, w must be unitary. Then, from the
computation (use Lemma 4.3.1.(ii) in the second last equality)

φ̃(wpw∗) = vφ̃(p)v∗ = (λ̃ ◦ ψ̃)(u∗)s
(
φ̃(p)

)
(λ̃ ◦ ψ̃)(u)

= (λ̃ ◦ ψ̃)
(
u∗s

(
φ̃(p)

)
u
)
) = (λ̃ ◦ ψ̃)

(
φ̃(p)

)
= s

(
φ̃(p)

)
= φ̃

(
s(p)

)
and by the injectivity of φ̃ we conclude that wpw∗ = s(p). This shows that p ∼u s(p)
in Mn(J̃ ), and hence that g = 0.

Let us study the behavior of K0 with respect to direct sum of C∗-algebras.

Proposition 4.3.4. For any C∗-algebras C1 and C2 the K0-groups K0(C1 ⊕ C2) and
K0(C1)⊕K0(C2) are isomorphic.

Proof. For i ∈ {1, 2}, recall that ιi : Ci → C1 ⊕ C2 denotes the canonical inclusion
∗-homomorphism (already introduced in Section 1.1) and let us set πi : C1 ⊕ C2 → Ci
for the projection ∗-homomorphism. The sequence

0 −→ C1
ι1−→ C1 ⊕ C2

π2−−−−−→←−−−−−
ι2

C2 −→ 0,

is a split exact short exact sequence of C∗-algebras, and therefore by Proposition 4.3.3
one directly infers that

0 −→ K0(C1)
K0(ι1)

−−−−−→ K0(C1 ⊕ C2)
K0(π2)

−−−−−→←−−−−−
K0(ι2)

K0(C2) −→ 0
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is a split exact short exact sequence. It then follows by a standard argument (five
lemma) that K0(C1)⊕K0(C2) is isomorphic to K0(C1⊕C2), with the isomorphism given
by

K0(C1)⊕K0(C2) ∋ (g, h) 7→ K0(ι1)(g) +K0(ι2)(h) ∈ K0(C1 ⊕ C2).

We shall now see on two examples that the functor K0 is not exact. Note that it
would be the case if any short exact sequence of C∗-algebras would be transformed in
a short exact sequence at the level of the K0-groups.

Example 4.3.5. Consider the exact sequence

0 −→ C0

(
(0, 1)

) ι
↪−→ C

(
[0, 1]

) ψ−→ C⊕ C −→ 0.

One deduces from Proposition 4.3.4 and from Example 3.4.1 that K0(C⊕C) ∼= Z2, and
from Example 3.4.3 that K0

(
C
(
[0, 1]

)) ∼= Z. Therefore K0(ψ) can not be surjective.

Example 4.3.6. Let H be an infinite dimensional separable Hilbert space, and consider
the C∗-algebra B(H). The C∗-subalgebra K(H) of compact operators on H is an ideal
of B(H), and the quotient algebra Q(H) := B(H)/K(H) is called the Calkin algebra.
Thus we have a short exact sequence

0 −→ K(H) ι
↪−→ B(H) ψ−→ Q(H) −→ 0.

From Example 3.4.2 one knows that K0

(
B(H)

)
= {0}. It will be shown later on that

K0

(
K(H)

) ∼= Z which means that K0(ι) can not be injective.

We finally state an important result for the computation of the K0-groups for C
∗-

algebras, but refer to [RLL00, Prop. 4.3.8 & 6.4.1] for its proof.

Proposition 4.3.7 (Stability of K0). Let C be a C∗-algebra and let n ∈ N∗. Then
K0(C) is isomorphic to K0

(
Mn(C)

)
. In addition, for any separable Hilbert space H the

following equality holds
K0

(
C ⊗ K(H)

) ∼= K0(C).

Extension 4.3.8. Work on the notion of ordered Abelian K0-group, as presented for
example in [RLL00, Sec. 5.1].

Extension 4.3.9. Work on the irrational rotation C∗-algebra, as introduced in Exercise
5.8 of [RLL00]. This algebra has played an important role in operator algebra, and the
literature on the subject is very rich.

Extension 4.3.10. Work on the notion of inductive limit of C∗-algebras, as presented
in Chapter 6 of [RLL00], and more precisely in Section 6.2 of this reference.



Chapter 5

The functor K1

In this chapter, we define the K1-group of a C∗-algebra C as the set of homotopy
equivalent classes of unitary elements in the matrix algebras over C̃. It will also be
shown that the functor K1 is half exact and homotopy invariant. Since we shall prove
in the sequel that K1(C) is naturally isomorphic to K0

(
S(C)

)
, some of the properties

of K1 will directly be inferred from equivalent properties of K0. For that reason, their
proofs will be provided only once this isomorphism has been exhibited.

5.1 Definition of the K1-group

Let us first recall that the set of unitary elements of a unital C∗-algebra C is denoted
by U(C). For any n ∈ N∗ one sets

Un(C) := U
(
Mn(C)

)
and U∞(C) :=

∪
n∈N∗

Un(C).

We define a binary operation ⊕ on U∞(C): for u ∈ Un(C) and v ∈ Um(C) one sets

u⊕ v :=

(
u 0
0 v

)
∈ Un+m(C).

In addition, a relation ∼1 on U∞(C) is defined as follows: for u ∈ Un(C) and v ∈ Um(C)
one writes u ∼1 v if there exists a natural number k ≥ max{m,n} such that u⊕1k−n ∼h
v ⊕ 1k−m in Uk(C). With these definitions at hand one can show:

Lemma 5.1.1. Let C be a unital C∗-algebra. Then:

(i) ∼1 is an equivalence relation on U∞(C),

(ii) u ∼1 u⊕ 1n for any u ∈ U∞(C) and n ∈ N,

(iii) u⊕ v ∼1 v ⊕ u for any u, v ∈ U∞(C),

(iv) If u, v, u′, v′ ∈ U∞(C), u ∼1 u
′ and v ∼1 v

′ then u⊕ v ∼1 u
′ ⊕ v′,

43
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(v) If u, v ∈ Un(C), then uv ∼1 vu ∼1 u⊕ v,

(vi) (u⊕ v)⊕ w = u⊕ (v ⊕ w) for any u, v, w ∈ U∞(C).

Proof. The proofs of (i), (ii) and (vi) are trivial, and (v) follows from Lemma 2.1.4. For
the proof of (iii), let us consider u ∈ Un(C) and v ∈ Um(C), and set

z =

(
0 1m
1n 0

)
∈ Un+m(C).

Then by taking (v) into account, one gets

v ⊕ u = z(u⊕ v)z∗ ∼1 z
∗z(u⊕ v) = u⊕ v.

For the proof of (iv) it is sufficient to show that

(I) (u⊕ 1k)⊕ (v ⊕ 1ℓ) ∼1 u⊕ v for any u, v ∈ U∞(C) and any k, ℓ ∈ N,

(II) u ∼h u′ and v ∼h v′ imply that u ⊕ v ∼h u′ ⊕ v′ for all u, u′ ∈ Un(C) and
v, v′ ∈ Um(C).

Now, statement (I) follows from (ii), (iii) and (vi). To see that (II) holds, let t 7→ u(t)
and t 7→ v(t) be continuous paths of unitary elements with u = u(0), u′ = u(1), v = v(0)
and v′ = v(1). Then t 7→ u(t)⊕v(t) is a continuous path of unitary elements from u⊕v
to u′ ⊕ v′.

Definition 5.1.2. For any C∗-algebra C one defines

K1(C) := U∞(C̃)/ ∼1 .

The equivalent class in K1(C) containing u ∈ U∞(C̃) is denoted by [u]1. A binary oper-

ation on K1(C) is defined by [u]1 + [v]1 := [u⊕ v]1 for any u, v ∈ U∞(C̃).

It follows from Lemma 5.1.1 that + is well-defined, commutative, associative, has
zero element [1]1 ≡ [1n]1 for any n ∈ N∗, and that

0 = [1]1 = [uu∗]1 = [u]1 + [u∗]1

for any u ∈ U∞(C̃). All this shows that
(
K1(C),+

)
is an Abelian group, and that

−[u]1 = [u∗]1 for any u ∈ U∞(C̃).
We now collect these information and provide the standard picture of K1. The

statements follow either directly from the definitions or from Lemma 5.1.1.

Proposition 5.1.3. Let C be a C∗-algebra. Then

K1(C) = {[u]1 | u ∈ U∞(C̃)},

and the map [·]1 : U∞(C̃)→ K1(C) has the following properties:
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(i) [u⊕ v]1 = [u]1 + [v]1 for any u, v ∈ U∞(C̃)

(ii) [1]1 = 0,

(iii) If u, v ∈ Un(C̃) and u ∼h v, then [u]1 = [v]1,

(iv) If u, v ∈ Un(C̃), then [uv]1 = [vu]1 = [u]1 + [v]1,

(v) For u, v ∈ U∞(C̃), [u]1 = [v]1 if and only if u ∼1 v.

We provide some additional information on the K1-group. The first one corresponds
to the universal property of K1, which is the analogue of Proposition 3.2.5 for K0.

Proposition 5.1.4 (Universal property of K1). Let C be a C∗-algebra and let H be an

Abelian group. Suppose that there exists ν : U∞(C̃)→ H satisfying the three conditions:

(i) ν(u⊕ v) = ν(u) + ν(v) for any u, v ∈ U∞(C̃),

(ii) ν(1) = 0,

(iii) If u, v ∈ Un(C̃) for some n ∈ N∗ and if u ∼h v ∈ Un(C̃), then ν(u) = ν(v).

Then there exists a unique group homomorphism α : K1(C)→ H such that the diagram

U∞(C̃)

[·]1
��

ν

""D
DD

DD
DD

DD

K1(C) α
// H

(5.1)

is commutative.

Proof. We first show that if u ∈ Un(C̃) and v ∈ Um(C̃) satisfies u ∼1 v, then ν(u) = ν(v).
For that purpose, let k ∈ N with k ≥ max{m,n} such that u ⊕ 1k−n ∼h v ⊕ 1k−m in

Uk(C̃). By taking (i) and (ii) into accounts, one infers that ν(1r) = 0 for any r ∈ N∗.
As a consequence, (i) and (iii) imply that

ν(u) = ν(u⊕ 1k−n) = ν(v ⊕ 1k−m) = ν(v).

It follows from this equality that there exists a map α : K1(A)→ H making the diagram
(5.1) commutative. Then, the computation

α
(
[u]1 + [v]1

)
= α([u⊕ v]1) = ν(u⊕ v) = ν(u) + ν(v) = α([u]1) + α([v]1)

shows that α is a group morphism. The uniqueness of α follows from the surjectivity of
the map [·]1.
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If C is a unital algebra, it would be natural to define directly the K1-group of C
by U∞(C)/ ∼1 without using the algebra C̃. This is indeed possible, as shown in the
following statement. For that purpose, recall from the proof of Lemma 2.2.4 that if 1̃
denotes the unit of C̃ and if 1 denotes the unit of C, then 1 := 1̃− 1 is a projection in
C̃. In addition, C̃ = C + C1, with a1 = 1a = 0 for any a ∈ C. One also defines the ∗-
homomorphism µ : C̃ → C by µ(a+α1) := a and extends it to a unital ∗-homomorphism

Mn(C̃)→Mn(C) for any n ∈ N∗. In this way one obtains a map U∞(C̃)→ U∞(C).

Proposition 5.1.5. Let C be a unital C∗-algebra. Then there exists an isomorphism
ρ : K1(C)→ U∞(C)/ ∼1 making the following diagram commutative:

U∞(C̃) µ - U∞(C)

K1(C)

[·]1

?

ρ
- U∞(C)/ ∼1 .

?

Proof. Observe first that the map µ : U∞(C̃)→ U∞(C) is surjective. Then, it is sufficient
to show that

(I) µ(u) ∼1 µ(v) if and only if u ∼1 v for any u, v ∈ U∞(C̃),

(II) µ(u⊕ v) = µ(u)⊕ µ(v) for any u, v ∈ U∞(C̃).

Clearly, (II) is a direct consequence of the definition of the map µ. For (I) it is sufficient
to show that

(I’) µ(u) ∼h µ(v) in Un(C) if and only if u ∼h v in Un(C̃), for any u, v ∈ Un(C̃) and
any n ∈ N∗.

For that purpose, observe that if u, v ∈ Un(C̃) are such that u ∼h v, then µ(u) ∼h µ(v).
For the converse implication, assume that u, v ∈ Un(C̃) and that µ(u) ∼h µ(v) in Un(C).
By the definition of µ one can find u0 and v0 in Un(C1) such that u = µ(u) + u0 and
v = µ(v) + v0. By Corollary 2.1.3 one infers that u0 ∼h v0 in Mn(C1), which easily

proves that u ∼h v in Mn(C̃). Indeed, one can consider the continuous path t 7→ a(t)
and t 7→ b(t) of unitary elements in Mn(C) and Mn(C1), respectively, with µ(u) = a(0),
µ(v) = a(1), u0 = b(0) and u1 = b(1). Then t 7→ a(t) + b(t) is a continuous path in

Un(C̃) with u = a(0) + b(0) and v = a(1) + b(1).

When C is unital, we shall often identify K1(C) with U∞(C)/ ∼1 through the iso-
morphism ρ of the previous proposition. If u is a unitary element of U∞(C), then [u]1
will denote the element of K1(C) it represents under this identification. As a immediate
consequence of the previous proposition, one also obtains that for any C∗-algebra:

K1(C) ∼= K1(C̃). (5.2)

Let us finally conclude this section with the explicit computation of a K1-group.
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Lemma 5.1.6. One has K1(C) = K1

(
Mn(C)

)
= {0} for any n ∈ N∗. More generally

one has K1

(
B(H)

)
= {0} for any separable Hilbert space H.

Proof. It has been proved in Corollary 2.1.3 that the unitary group of Mk

(
Mn(C)

)
=

Mkn(C) is connected for every n and k in N∗. This implies that U∞
(
Mn(C)

)
/ ∼1 is the

trivial group with only one element. From the description of K1 for a unital C∗-algebra
provided by Proposition 5.1.5 one infers that K1

(
Mn(C)

)
= {0}.

Let us now consider any separable Hilbert space H and first show that u ∼h 1n for
any unitary element u ∈Mn

(
B(H)

)
. Indeed, let us define φ : T→ [0, 2π) by

φ(eiθ) = θ, 0 ≤ θ < 2π.

Then φ is a bounded Borel measurable map, and z = eiφ(z) for any z ∈ T. As a
consequence, for any u ∈ Un

(
B(H)

)
= U

(
B(Hn)

)
, one infers that φ(u) = φ(u)∗ in

B(Hn), and that u = eiφ(u). By Lemma 2.1.2.(i) it follows that u ∼h 1n. Consequently,
one deduces that u ∼1 1, and then that U∞

(
B(H)

)
/ ∼1= {0}. In other words, one

concludes that K1

(
B(H)

)
= {0} as above.

5.2 Functoriality of K1

This section is partially analogue to Section 3.3. Let us first consider two C∗-algebras
C and Q, and let φ : C → Q be a ∗-homomorphism. Then φ induces a unital ∗-
homomorphism φ̃ : C̃ → Q̃ which itself extends to a unital ∗-homomorphism φ̃ :
Mn(C̃) → Mn(Q̃) for any n ∈ N∗. This gives rise to a map φ̃ : U∞(C̃) → U∞(Q̃),
and one can set ν : U∞(C̃) → K1(Q) by ν(u) := [φ̃(u)]1 for any u ∈ U∞(C̃). It is
straightforward to check that ν satisfies the three conditions of Proposition 5.1.4, and
hence there exists precisely one group homomorphism K1(φ) : K1(C) → K1(Q) with
the property

K1(φ)([u]1) = [φ̃(u)]1 (5.3)

for any u ∈ U∞(C̃).
Note that if C and Q are unital C∗-algebras, and if φ : C → Q is a unital ∗-

homomorphism, then K1(φ)([u]1) = [φ(u)]1 for any u ∈ U∞(C).
The following proposition shows that K1 is a homotopy invariant functor which

preserves the zero objects.

Proposition 5.2.1 (Functoriality and homotopy invariance of K1). Let J , C and Q
be C∗-algebras. Then

(i) K1(idC) = idK1(C),

(ii) If φ : J → C and ψ : C → Q are ∗-homomorphisms, then

K1(ψ ◦ φ) = K1(ψ) ◦K1(φ),
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(iii) K1({0}) = {0},

(iv) K1(0C→Q) = 0K1(C)→K1(Q),

(v) If φ, ψ : C → Q are homotopic ∗-homomorphisms, then K1(φ) = K1(ψ),

(vi) If C and Q are homotopy equivalent, then K1(C) is isomorphic to K1(Q). More
specifically, if (3.4) is a homotopy between C and Q, then K1(φ) : K1(C)→ K1(Q)
and K1(ψ) : K1(Q)→ K1(C) are isomorphisms, with K1(φ)

−1 = K1(ψ).

Proof. The proof of (i) and (ii) can directly be inferred from (5.3) together with the

equalities ĩdC = idC̃ and ˜(ψ ◦ φ) = ψ̃ ◦ φ̃.
As already mentioned in (5.2), the equalityK1(C) = K1(C̃) holds for any C∗-algebra.

In particular, K1({0}) is isomorphic to K1(C), which is equal to {0} by Lemma 5.1.6.
This implies (iii).

The zero homomorphism 0C→Q can be seen as the composition of the maps C → {0}
and {0} → Q. Hence, (iv) follows from (iii) and (ii).

(v) Let us now consider a path t 7→ φ(t) of ∗-homomorphisms from C to Q, with
φ(0) = φ and φ(1) = ψ, and such that the map [0, 1] ∋ t 7→ φ(t)(a) ∈ Q is continuous,

for any a ∈ C. The induced ∗-homomorphism φ̃ : Mn(C̃) → Mn(Q̃) is unital, for any

n ∈ N∗, and the map [0, 1] ∋ t 7→ φ(t)(a) ∈ Mn(Q̃) is continuous, for any a ∈ Mn(C̃).
Hence for any u ∈ Un(C̃) one has in Un(Q̃):

φ̃(u) = φ̃(0)(u) ∼h φ̃(1)(u) = ψ̃(u).

As a consequence, one infers that

K1(φ)([u]1) = [φ̃(u)]1 = [ψ̃(u)]1 = K1(ψ)([u]1),

which proves (v).
Finally, statement (vi) is a consequence of (i), (ii) and (v).

Let us also prove a short lemma which will be useful in the next proposition.

Lemma 5.2.2. Let C and Q be C∗-algebras, let φ : C → Q be a ∗-homomorphism, and
let g ∈ Ker

(
K1(φ)

)
. Then

(i) There exists an element u ∈ U∞(C̃) such that g = [u]1 and φ̃(u) ∼h 1,

(ii) If φ is surjective, then there exists u ∈ U∞(C̃) such that g = [u]1 and φ̃(u) = 1.

Proof. (i) Choose v ∈ Um(C̃) such that g = [v]1. Then [φ̃(v)]1 = 0 = [1m]1, and hence
there exists an integer n ≥ m such that

φ̃(v)⊕ 1n−m ∼h 1m ⊕ 1n−m = 1n.

Set u = v ⊕ 1n−m, and then [u]1 = [v]1 = g and φ̃(u) = φ̃(v)⊕ 1n−m ∼h 1n.
(ii) Use (i) to find v ∈ Un(C̃) with g = [v]1 and φ̃(v) ∼h 1. By Lemma 2.1.7.(iii)

and (i), there exists w ∈ Un(C̃) such that φ̃(w) = φ̃(v) and w ∼h 1. Then u := w∗v has
the desired properties.
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Proposition 5.2.3 (Half exactness of K1). Every short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0,

induces an exact sequence of Abelian groups

K1(J )
K1(φ)

−−−−−→ K1(C)
K1(ψ)

−−−−−→ K1(Q),

that is Ran
(
K1(φ)

)
= Ker

(
K1(ψ)

)
.

Proof. By functoriality of K1 one already knows that

K1(ψ) ◦K1(φ) = K1(ψ ◦ φ) = K1(0J→Q) = 0K1(J )→K1(Q),

which implies that Ran
(
K1(φ)

)
⊂ Ker

(
K1(ψ)

)
.

Conversely, assume that g ∈ Ker
(
K1(ψ)

)
. According to Lemma 5.2.2.(ii) there

exist n ∈ N∗ and u ∈ Un(C̃) such that g = [u]1 and ψ̃(u) = 1. Then, by Lemma

4.3.1.(ii) there exists v ∈ Mn(J̃ ) such that φ̃(v) = u. Finally, [v]1 belongs to K1(J ),
and K1(φ)([v]) = [φ̃(v)]1 = [u]1 = g.

Let us now mention that the functor K1 is split exact and preserves direct sums
of C∗-algebras. These statements can be proved in the same way as for the functor
K0 in Propositions 4.3.3 and 4.3.4. These statements also follow from the isomorphism
K1(C) ∼= K0

(
S(C)

)
which will be established later on. For this reason, we state these

results without providing a proof.

Proposition 5.2.4 (Split exactness of K1). Every split exact sequence of C∗-algebras

0 −→ J φ−→ C
ψ

−−−−−→←−−−−−
λ

Q −→ 0

induces a split exact sequence of Abelian groups

0 −→ K1(J )
K1(φ)−→ K1(C)

K1(ψ)

−−−−−→←−−−−−
K1(λ)

K1(Q) −→ 0.

Proposition 5.2.5. For any C∗-algebras C1 and C2 the K0-groups K1(C1 ⊕ C2) and
K1(C1)⊕K1(C2) are isomorphic. More precisely, if ιi : Ci → C1⊕C2 denotes the canonical
inclusion ∗-homomorphism, then the group morphism is provided by the map

K1(C1)⊕K1(C2) ∋ (g, h) 7→ K1(ι1)(g) +K1(ι2)(h) ∈ K1(C1 ⊕ C2).

We close this section with an important result for the computation of K1-groups,
which is the analogue for K1 of the content of Proposition 4.3.7 on the stability of K0.
Note that the proof of the following statement can be proved from its analogue for K0

by taking the isomorphism K1(C) ∼= K0

(
S(C)

)
into account.
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Proposition 5.2.6 (Stability of K1). Let C be a C∗-algebra and let n ∈ N∗. Then
K1(C) is isomorphic to K1

(
Mn(C)

)
. In addition, for any separable Hilbert space H the

following equality holds
K1

(
C ⊗ K(H)

) ∼= K1(C). (5.4)

Corollary 5.2.7. For any separable Hilbert space H one has K1

(
K(H)

)
= {0}.

Proof. From equation (5.4) one infers that K1

(
K(H)

) ∼= K1(C), but K1(C) = {0} by
Lemma 5.1.6.

Extension 5.2.8. Work on the relations between K1-group and determinant for unital
Abelian C∗-algebras, as presented in [RLL00, Sec. 8.3].



Chapter 6

The index map

In this chapter, we introduce the index map associated with the short exact sequence

0 −→ J φ−→ C ψ−→ Q −→ 0 (6.1)

of C∗-algebras. This map is a group homomorphism δ1 : K1(Q) → K0(J ) that gives
rise to an exact sequence

K1(J )
K1(φ)- K1(C)

K1(ψ)- K1(Q)

K0(Q) �
K0(ψ)

K0(C) �
K0(φ)

K0(J ) .

δ1

?

(6.2)

The index map generalizes the classical Fredholm index of Fredholm operators on
a Hilbert space.

6.1 Definition of the index map

Before introducing the index map, two preliminary lemmas are necessary.

Lemma 6.1.1. Consider the short exact sequence (6.1) and let u ∈ Un(Q̃).

(i) There exist v ∈ U2n(C̃) and p ∈ P2n(J̃ ) such that

ψ̃(v) =

(
u 0
0 u∗

)
, φ̃(p) = v

(
1n 0
0 0

)
v∗, s(p) =

(
1n 0
0 0

)
,

(ii) If v and p are as in (i) and if w ∈ U2n(C̃) and q ∈ P2n(J̃ ) satisfy

ψ̃(w) =

(
u 0
0 u∗

)
, φ̃(q) = w

(
1n 0
0 0

)
w∗,

then s(q) = diag(1n, 0n) and p ∼u q in P2n(J̃ ).

51
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Proof. (i) Since the unital ∗-homomorphism ψ̃ :Mn(C̃)→Mn(Q̃) is surjective, it follows
from Lemma 2.1.7.(ii) that there exists v ∈ U2n(C̃) such that ψ̃(v) = diag(u, u∗). By a
direct computation one then gets

ψ̃ (vdiag(1n, 0n)v
∗) = diag(1n, 0n)

which implies in particular that ψ̃ (vdiag(1n, 0n)v
∗) is a scalar element of Q̃. One then

infers from Lemma 4.3.1 that φ̃ is injective, and that there exists an element p ∈M2n(J̃ )
such that φ̃(p) = v diag(1n, 0n)v

∗. Note that since v diag(1n, 0n)v
∗ is a projection and

φ̃ is injective, then p is a projection as well. Finally, since

ψ̃
(
φ̃(p)

)
= ψ̃ (vdiag(1n, 0n)v

∗) = diag(1n, 0n),

one infers that s(p) = diag(1n, 0n).
(ii) The same arguments as above show that s(q) = diag(1n, 0n). Note also that

ψ̃(wv∗) = 12n. Again by Lemma 4.3.1 one infers that there exists z ∈ M2n(J̃ ) such
that φ̃(z) = wv∗. Note also that because of the injectivity of φ̃, z is necessarily unitary.
Finally, since

φ̃(zpz∗) = wv∗φ̃(p)vw∗ = wdiag(1n, 0n)w
∗ = φ̃(q),

one deduces that q = zpz∗, which means that p ∼u q in P2n(J̃ ), as claimed.

Based on these results, let us define ν : U∞(Q̃) → K0(J ) by ν(u) = [p]0 − [s(p)]0
for any u ∈ Un(Q̃), where p ∈ P2n(J̃ ) is the one mentioned in the point (i) of the
previous Lemma. Note that this map is well-defined because of the point (ii) above. In
the following lemma, we gather some additional information on this map ν.

Lemma 6.1.2. The map ν : U∞(Q̃)→ K0(J ) has the following properties:

(i) ν(u1 ⊕ u2) = ν(u1) + ν(u2) for any u1, u2 ∈ U∞(Q̃),

(ii) ν(1) = 0,

(iii) If u1, u2 ∈ Un(Q̃) and u1 ∼h u2, then ν(u1) = ν(u2),

(iv) ν
(
ψ̃(u)

)
= 0 for any u ∈ U∞(C̃),

(v)
[
K0(φ)

](
ν(u)

)
= 0 for any u ∈ U∞(Q̃).

Proof. (i) For j ∈ {1, 2}, consider uj ∈ Unj
(Q̃) and chose vj ∈ U2nj

(C̃) and pj ∈ P2nj
(J̃ )

according to Lemma 6.1.1.(i). In particular, one has

ψ̃(vj) =

(
uj 0
0 u∗j

)
, φ̃(pj) = vj

(
1nj

0
0 0

)
v∗j
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so that ν(uj) = [pj]0 − [s(pj)]0. Let us also introduce the elements y ∈ U2(n1+n2)(C),
v ∈ U2(n1+n2)(C̃) and p ∈ P2(n1+n2)(J̃ ) by

y =


1n1 0 0 0
0 0 1n2 0
0 1n1 0 0
0 0 0 1n2

 , v = y

(
v1 0
0 v2

)
y∗, p = y

(
p1 0
0 p2

)
y∗.

It then follows that

ψ̃(v) =


u1 0 0 0
0 u2 0 0
0 0 u∗1 0
0 0 0 u∗2

 , φ̃(p) = v

(
1n1+n2 0

0 0

)
v∗,

which corresponds to the requirements of Lemma 6.1.1.(i) for diag(u1, u2), and therefore

ν(u1 ⊕ u2) = [p]0 − [s(p)]0 = [p1 ⊕ p2]0 − [s(p1 ⊕ p2)]0 = ν(u1) + ν(u2)

because p ∼u p1 ⊕ p2.
(iii) Given u1 ∈ Un(Q̃) choose v1 ∈ U2n(C̃) and p1 ∈ P2n(J̃ ) such that

ψ̃(v1) =

(
u1 0
0 u∗1

)
, φ̃(p1) = v1

(
1n 0
0 0

)
v∗1.

Then ν(u1) = [p1]0− [s(p1)]0. Since u
∗
1u2 ∼h 1n ∼h u1u∗2 in Un(Q̃) we can apply Lemma

2.1.7.(iii) and infer that there exist a, b ∈ Un(C̃) with ψ̃(a) = u∗1u2 and ψ̃(b) = u1u
∗
2. By

setting then v2 := v1diag(a, b) ∈ U2n(C̃) we obtain that

ψ̃(v2) =

(
u2 0
0 u∗2

)
, v2

(
1n 0
0 0

)
v∗2 = v1

(
1n 0
0 0

)
v∗1 = φ̃(p1).

Thus, one can choose p2 = p1 and its satisfies φ̃(p2) = v2diag(1n, 0n)v
∗
2. Finally, by the

definition of ν one infers that ν(u2) = [p1]0 − [s(p1)]0 = ν(u1).

(iv) For u ∈ Un(Q̃) let us set v = diag(u, u∗) ∈ U2n(C̃) and p = diag(1n, 0n) ∈
P2n(J̃ ) so that p = s(p). It then follows that

ψ̃(v) =

(
ψ̃(u) 0

0 ψ̃(u∗)

)
, φ̃(p) = v

(
1n 0
0 0

)
v∗,

and thus ν
(
ψ̃(u)

)
= [p]0 − [s(p)]0 = 0.

The statement (ii) is then a direct consequence of (iv), and the statement (v)

follows from the fact that φ̃(p) is unitarily equivalent to s
(
φ̃(p)

)
in M2n(C̃) when p is a

projection in M2n(J̃ ) associated with u as in Lemma 6.1.1.(i).
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By the previous lemma, one deduces that the three conditions required in Propo-
sition 5.1.4 are satisfied. Thus it follows from the universal property of K1 that there
exists a unique group homomorphism δ1 : K1(Q) → K0(J ) satisfying δ1([u]1) = ν(u)

for any u ∈ U∞(Q̃).
Definition 6.1.3. The unique group homomorphism δ1 : K1(Q) → K0(J ) which sat-
isfies

δ1([u]1) = ν(u) ∀u ∈ U∞(Q̃)
is called the index map associated with the short exact sequence (6.1).

Let us summarize the main properties of the index map in the following statement:

Proposition 6.1.4 (First standard picture of the index map). Let

0 −→ J φ−→ C ψ−→ Q −→ 0

be a short sequence of C∗-algebras, let n be a natural number, and consider u ∈ Un(Q̃),
v ∈ U2n(C̃) and p ∈ P2n(J̃ ) which satisfy

ψ̃(v) =

(
u 0
0 u∗

)
, φ̃(p) = v

(
1n 0
0 0

)
v∗.

Then
δ1([u]1) = [p]0 − [s(p)]0.

Moreover, one has

(i) δ1 ◦K1(ψ) = 0,

(ii) K0(φ) ◦ δ1 = 0.

Proposition 6.1.5 (Naturality of the index map). Let

0 - J φ - C ψ - Q - 0

0 - J ′

γ

?
φ′

- C ′

α

?
ψ′

- Q′

β

?
- 0

be a commutative diagram with two short exact sequences of C∗-algebras, and with
α, β, γ three ∗-homomorphisms. Let δ1 : K1(Q)→ K0(J ) and δ′1 : K1(Q′)→ K0(J ′) be
the index map associated with the short exact sequences. Then the following diagram is
commutative:

K1(Q)
δ1- K0(J )

K1(Q′)

K1(β)

?
δ′1- K0(J ′) .

K0(γ)

?
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Proof. Let g be an element in K1(Q), and let u ∈ Un(Q̃) with g = [u]1. By Lemma

6.1.1.(i) there exists v ∈ U2n(C̃) and p ∈ P2n(J̃ ) such that

ψ̃(v) =

(
u 0
0 u∗

)
, φ̃(p) = v

(
1n 0
0 0

)
v∗.

Set v′ := α̃(v) in U2n(C̃ ′) and p′ := γ̃(p) in P2n(J̃ ′). Then one has

ψ̃′(v′) = ˜(ψ′ ◦ α)(v) = ˜(β ◦ ψ)(v) = β̃
(
ψ̃(v)

)
=

(
β̃(u) 0

0 β̃(u)∗

)
,

φ̃′(p′) = ˜(φ′ ◦ γ)(p) = (̃α ◦ φ)(p) = α̃(v)

(
1n 0
0 0

)
α̃(v)∗ = v′

(
1n 0
0 0

)
(v′)∗ ,

which corresponds to the requirements of Lemma 6.1.1.(i) for β̃(u), Then, from the
definition of the index map one has(

δ′1 ◦K1(β)
)
(g) = δ′1

(
[β̃(u)]1

)
= [p′]0 − [s(p′)]0

= [γ̃(p)]0 −
[
s
(
γ̃(p)

)]
0
= K0(γ)

(
[p]0 − [s(p)]0

)
= K0(γ)

(
δ1([u]1)

)
=

(
K0(γ) ◦ δ1

)
(g).

This shows that δ′1 ◦K1(β) = K0(γ) ◦ δ1.

6.2 The index map and partial isometries

In this section we provide another picture of the index map, which is more intuitive and
more useful in applications. The key point in the construction is the following lemma.

Lemma 6.2.1. Let ψ : C → Q be a surjective ∗-homomorphism between C∗-algebras,
and suppose that C is unital (in which case Q is unital as well and ψ is unit preserving).
Then for each unitary element u ∈ Q there exists a partial isometry v ∈ M2(C) such
that

ψ(v) =

(
u 0
0 0

)
. (6.3)

Proof. For any u ∈ U(Q), there exists by Proposition 2.3.1.(i) an element c ∈ C such
that ψ(c) = u and ∥c∥ = ∥u∥ = 1. We then set

v =

(
c 0

(1− c∗c)1/2 0

)
and check that v∗v = diag(1, 0). By taking Exercise 2.2.3 into account, one infers that
vv∗ is a projection as well, and that v is a partial isometry. From the equalities ψ(c) = u
and ψ

(
(1− c∗c)1/2

)
= (1− u∗u)1/2 = 0, one deduces that (6.3) holds.
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Proposition 6.2.2 (Second standard picture of the index map). Let

0 −→ J φ−→ C ψ−→ Q −→ 0

be a short sequence of C∗-algebras. Let n ≤ m be a natural numbers, let u ∈ Un(Q̃) and
let v be a partial isometry in Mm(C̃) with

ψ̃(v) =

(
u 0
0 0m−n

)
. (6.4)

Then 1m − v∗v = φ̃(p) and 1m − vv∗ = φ̃(q) for some projections p, q in Pm(J̃ ), and
the index map δ1 : K1(Q)→ K0(J ) is given by

δ1([u]1) = [p]0 − [q]0. (6.5)

Before providing the proof observe that Lemma 6.2.1 ensures the existence of a
partial isometry v satisfying (6.4). It is then a consequence of the above proposition
that the r.h.s. of (6.5) does not depend on the choice of v.

Proof. Let us set e = 1m − v∗v and f = 1m − vv∗ in Pm(C̃). Then one has ψ̃(e) =
ψ̃(f) = diag(0n,1m−n). Because ψ̃(e) and ψ̃(f) are scalar matrices, it follows from

Lemma 4.3.1.(ii) that there are projections p, q ∈ Pm(J̃ ) such that φ̃(p) = e and
φ̃(q) = f , and s(p) = s(q) = diag(0n,1m−n). Let us then set

w :=

(
v f
e v∗

)
, r :=

(
1m − q 0

0 p

)
, z :=


1n 0 0 0
0 0 0 1m−n
0 0 1n 0
0 1m−n 0 0

 .

Then r is a projection in M2m(J̃ ), w is a unitary element of M2m(C̃) and z is a self-

adjoint unitary matrix in M2m(C). In addition, zw ∈ U2m(C̃), and one has

ψ̃(zw) = z


u 0 0 0
0 0 0 1m−n
0 0 u∗ 0
0 1m−n 0 0

 =

(
u1 0
0 u∗1

)
,

where u1 = diag(u,1m−n) in Um(Q̃). One also observes that

zw

(
1m 0
0 0

)
w∗z∗ = z

(
vv∗ ve
ev∗ e

)
z∗ = z

(
1m − f 0

0 e

)
z∗ = φ̃(zrz∗).

Since zrz ∈ P2m(J̃ ), it finally follows from the definition of the index map that

δ1([u]1) = δ1([u1]1) = [zrz∗]0 − [s(zrz∗)]0 = [r]0 − [s(r)]0

= [1m − q]0 + [p]0 − [1n]0 − [1m−n]0 = [p]0 − [q]0,

as desired.
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Note that if J is an ideal in C and if φ is the inclusion map, then (6.5) can be
rephrased as

δ1([u]1) = [1m − v∗v]0 − [1m − vv∗]0, (6.6)

where m,n are integers with m ≥ n, u belongs to Un(Q̃) and v is a partial isometry in

Mm(C̃) that lifts diag(u, 0m−n).
Similarly, if C and Q are unital C∗-algebras, it would be convenient to have a direct

expression for the index map. The following statement deals with such a situation for
both pictures of the index map.

Proposition 6.2.3. Let

0 −→ J φ−→ C ψ−→ Q −→ 0

be a short sequence of C∗-algebras, and suppose that C is unital (in which case Q is

unital as well and ψ is unit preserving). Let φ̄ : J̃ → C be the ∗-homomorphism defined
by φ̄(a+ α1C̃) = φ(a) + α1C for any a ∈ J and α ∈ C. Let also u ∈ Un(Q).

(i) If v ∈ U2n(C) and p ∈ P2n(J̃ ) are such that

φ̄(p) = v

(
1n 0
0 0

)
v∗, ψ(v) =

(
u 0
0 u∗

)
,

then δ1([u]1) = [p]0 − [s(p)]0,

(ii) Let m ≥ n be integers and let v be partial isometry in Mm(C) with ψ(v) =
diag(u, 0m−n), then 1m − v∗v = φ̄(p) and 1m − vv∗ = φ̄(q) for some p, q in

Pm(J̃ ), and δ1([u]1) = [p]0 − [q]0.

We refer to [RLL00, Prop. 9.2.3] for the proof of the above statement. Let us provide

one more version of the previous results when u in Un(Q̃) or u in Un(Q) lifts to a partial

isometry in Mn(Q̃) or in Mn(Q), respectively, and where for further simplification we
assume that J is an ideal of C.

Proposition 6.2.4. Let

0 −→ J ι
↪−→ C ψ−→ Q −→ 0

be a short sequence of C∗-algebras, where J is an ideal in C and ι is the inclusion map.

(i) Let u ∈ Un(Q̃) and let v ∈Mn(C̃) be a partial isometry such that ψ̃(v) = u. Then
1n − v∗v and 1n − vv∗ are projections in Mn(J ), and

δ1([u]1) = [1n − v∗v]0 − [1n − vv∗]0. (6.7)

(ii) Assume that C is unital (in which case Q is unital as well and ψ is unit preserving),
and let u ∈ Un(Q) which has a lift to a partial isometry v ∈Mn(C). Then 1n−v∗v
and 1n − vv∗ are projections in Mn(J ), and

δ1([u]1) = [1n − v∗v]0 − [1n − vv∗]0.
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Proof. (i) Since

ψ̃(1n − v∗v) = 1n − u∗u = 0, ψ̃(1n − vv∗) = 1n − uu∗ = 0, (6.8)

we see that 1n − v∗v and 1n − vv∗ belong to Mn(J ), and these two elements are
projections because v is a partial isometry. The identity (6.7) follows from Proposition
6.2.2 together with (6.6).

(ii) Here ψ(1n − v∗v) = 1n − u∗u = 0 and ψ(1n − vv∗) = 1n − uu∗ = 0, showing
that 1n− v∗v and 1n− vv∗ belong to Mn(J ). The statement can then be inferred from
Proposition 6.2.3.(ii).

6.3 An exact sequence of K-groups

In this section, we show that the exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

induces the exact sequence (6.2) at the level of K-groups, with δ1 : K1(Q) → K0(J )
the index map introduced in the previous sections. For that purpose and without loss of
generality, we shall assume that J is an ideal in C and that the map φ is the inclusion
map. In this case, Mn(J̃ ) is a unital C∗-subalgebra of Mn(C̃) for each n ∈ N∗.

Lemma 6.3.1. The kernel of the index map δ1 : K1(Q) → K0(J ) is contained in the
image of the map K1(ψ) : K1(C)→ K1(Q).

Proof. Let g ∈ K1(Q) such that δ1(g) = 0, and let u ∈ Un(Q̃) such that g = [u]1. By

Lemma 6.2.1 there exists a partial isometry w1 ∈M2n(C̃) such that

ψ̃(w1) =

(
u 0
0 0n

)
.

Then, by Proposition 6.2.2 one infers that the following equalities hold in K0(J ):

0 = δ1(g) = δ1([u]1) = [12n − w∗
1w1]0 − [12n − w1w

∗
1]0 .

By Proposition 3.2.4, one infers that there exists k ∈ N and a partial isometry w2 ∈
M2n+k(J̃ ) such that

(12n − w∗
1w1)⊕ 1k = w∗

2w2, (12n − w1w
∗
1)⊕ 1k = w2w

∗
2.

Computing the image of these elements through ψ̃ one gets

ψ̃(w∗
2w2) =

(
0n 0
0 1n+k

)
= ψ̃(w2w

∗
2).

In addition, since w2 ∈M2n+k(J̃ ) one deduces from Lemma 4.3.1 that ψ̃(w2) is a scalar
matrix. As a consequence, one has ψ̃(w2) = diag(0n, z) for some scalar and unitary



6.3. AN EXACT SEQUENCE OF K-GROUPS 59

matrix z ∈Mn+k(Q̃). Since Un+k(C) is connected, cf. Corollary 2.1.3, one finally deduces
that z is homotopic to 1n+k in Un+k(Q̃).

Let us now set v := diag(w1, 0k)+w2. One can observe that v ∈ U2n+k(C̃), and that

ψ̃(v) =

(
u 0
0 0n+k

)
+

(
0n 0
0 z

)
∼h

(
u 0
0 1n+k

)
in U2n+k(Q̃).

This proves that
g = [u]1 = [ψ̃(v)]1 = K1(ψ)([v]1),

as desired.

Lemma 6.3.2. The kernel of the map K0(φ) : K0(J ) → K0(C) is contained in the
image of the index map δ1 : K1(Q)→ K0(J ).

Proof. Let g ∈ K0(J ) with g ∈ Ker
(
K0(φ)

)
. By Lemma 4.2.2, there exist n ∈ N,

p ∈ Pn(J̃ ) and w ∈ Un(C̃) such that g = [p]0 − [s(p)]0 and wpw∗ = s(p).

The element u0 := ψ̃
(
w(1n − p)

)
is a partial isometry in Mn(Q̃) and

1n − u∗0u0 = ψ̃(p) = ψ̃
(
s(p)

)
= 1n − u0u∗0,

where Lemma 4.3.1 has been used for the second equality. It follows that u0 is a partial
isometry and is normal, and that

u := u0 + (1n − u∗0u0)

is a unitary element in Mn(Q̃). In order to lift diag(u, 0n) to a suitable partial isometry

v in M2n(C̃), let us first observe that v1 := diag
(
w(1n − p), s(p)

)
in M2n(C̃) satisfies

ψ̃(v1) = diag
(
u0, s(p)

)
. Let z ∈M2n(C) be the self-adjoint unitary matrix given by

z :=

(
1n − s(p) s(p)
s(p) 1n − s(p)

)
,

and set v := zv1z
∗. Then one has

ψ̃(v) = zψ̃(v1)z
∗ = z

(
u0 0
0 s(p)

)
z∗ =

(
u 0
0 0n

)
.

It finally follows from Proposition 6.2.2 that

δ1([u]1) = [12n − v∗v]0 − [12n − vv∗]0 = [12n − v∗1v1]0 − [12n − v1v∗1]0

=

[(
p 0
0 1n − s(p)

)]
0

−
[(
s(p) 0
0 1n − s(p)

)]
0

= [p]0 − [s(p)]0

= g

in K0(J ), and this proves the statement.
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By combining the contents of Propositions 4.3.2, 5.2.3, and 6.1.4, together with
Lemmas 6.3.1 and 6.3.2 one gets the following result:

Proposition 6.3.3. Every short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

gives rise to the following exact sequence of Abelian groups:

K1(J )
K1(φ)- K1(C)

K1(ψ)- K1(Q)

K0(Q) �
K0(ψ)

K0(C) �
K0(φ)

K0(J ) .

δ1

?

Extension 6.3.4. Study the classical situation of Fredholm operators and Fredholm
index, as presented for example in [RLL00, Sec. 9.4].



Chapter 7

Higher K-functors, Bott periodicity

In this chapter, we first show that K1(C) is isomorphic to K0

(
S(C)

)
, where S(C) is

the suspension of a C∗-algebra C defined in (4.3). Higher K-groups are then defined
iteratively, and various exact sequences are considered. The Bott map is constructed
and Bott periodicity is stated. However, its full proof is not provided.

7.1 The isomorphism between K1(C) and K0

(
S(C)

)
Let us first recall that the suspension of an arbitrary C∗-algebra C is defined by

S(C) :=
{
f ∈ C([0, 1]; C) | f(0) = f(1) = 0

}
and observe that this C∗-algebra is equal to C0

(
(0, 1); C

)
. Clearly, the norm on S(C)

is defined by ∥f∥ := supt∈[0,1] ∥f(t)∥C, and f ∗(t) := f(t)∗. With any ∗-homomorphism
φ : C → Q between two C∗-algebras C and Q one can associate a ∗-homomorphism
S(φ) : S(C)→ S(Q) by [S(φ)(f)](t) := φ

(
f(t)

)
for any f ∈ S(C) and t ∈ [0, 1]. In this

way, S defines a functor from the category of C∗-algebras to itself, with S({0}) = {0}
and S(0C→Q) = 0S(C)→S(Q).

The following lemma is a classical statement about density. Its proof is left to the
reader, see also [RLL00, Lemma 10.1.1].

Lemma 7.1.1. Let Ω be a locally compact Hausdorff space and let C be a C∗-algebra.
For any f ∈ C0(Ω) and any a ∈ C one writes fa for the element of C0(Ω; C) defined by
[fa](x) = f(x)a for any x ∈ Ω. Then the set

span{fa | f ∈ C0(Ω), a ∈ C}

is dense in C0(Ω; C).

We can now show the main result about the functor S:

Lemma 7.1.2 (Exactness of S). The functor S is exact.

61



62 CHAPTER 7. HIGHER K-FUNCTORS, BOTT PERIODICITY

Proof. Given the short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

one has to show that

0 −→ S(J ) S(φ)−→ S(C) S(ψ)−→ S(Q) −→ 0

is also a short exact sequence. In fact, the only non-trivial part is to show that S(ψ) is
surjective. However, this easily follows from the density of span{fb | f ∈ C0(Ω), b ∈ Q}
in S(Q) and from the fact that any element of this dense set belongs to the range of
S(C) by S(ψ), since S(ψ)(fa) = fψ(a) for any a ∈ C and any f ∈ C0

(
(0, 1)

)
.

Theorem 7.1.3. For any C∗-algebra C there exists an isomorphism

θC : K1(C)→ K0

(
S(C)

)
satisfying the following property: If φ is a ∗-homomorphism between two C∗-algebras C
and Q then the following diagram is commutative:

K1(C)
K1(φ) - K1(Q)

K0

(
S(C)

)
θC

?
K0(S(φ))- K0

(
S(Q)

)
.

θQ

?

(7.1)

Proof. Let us first consider the short exact sequence

0 −→ S(C) ι
↪−→ C(C) π−→ C −→ 0, (7.2)

where C(C) denotes the cone of C. Since C(C) is homotopy equivalent to {0}, as shown
at the end of Section 4.1, it follows that K0

(
C(C)

)
= K1

(
C(C)

)
= {0}. By applying

then the exact sequence of Abelian groups obtained in Proposition 6.3.3 to the above
short exact sequence of C∗-algebras one infers that the map δ1 : K1(C)→ K0

(
S(C)

)
is

an isomorphism. One can thus set θC = δ1.
Observe now that every ∗-homomorphism φ : C → Q induces a commutative dia-

gram
0 - S(C) - C(C) - C - 0

0 - S(Q)

S(φ)

?
- C(Q)

C(φ)

?
- Q

φ

?
- 0

where [C(φ)(f)](t) := φ
(
f(t)

)
for any f ∈ C(C) and t ∈ [0, 1]. By applying then the

naturality of the index map, see Proposition 6.1.5, one directly gets the commutative
diagram (7.1).
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For later use, let us provide a more concrete description of the isomorphism θC.
For that purpose, let u ∈ Un(C̃) with s(u) = 1n be given. Let v ∈ C

(
[0, 1];U2n(C̃)

)
be

such that v(0) = 12n, v(1) = diag(u, u∗), and s
(
v(t)

)
= 12n for any t ∈ [0, 1], and set

p := vdiag(1n, 0)v
∗. Then p ∈ P2n

(
S̃(C)

)
, s(p) = diag(1n, 0) and

θC([u]1) := [p]0 − [s(p)]0 .

For the justification of this formula observe first that any g ∈ K1(C) can be repre-

sented by an element u ∈ Un(C̃) with s(u) = 1n. Indeed, for any g ∈ K1(C) there exists
n ∈ N and w ∈ Un(C̃) such that g = [w]1. Then one can set u := ws(w)∗ and check
that s(u) = 1n and g = [u]1. Note that the latter equality holds since s(w)∗ ∼h 1n, and
this follows from Corollary 2.1.3 about the property that the unitary group in Mn(C)
is connected.

Now, for each u ∈ Un(C̃) such that s(u) = 1n we can find v ∈ C
(
[0, 1];U2n(C̃)

)
with v(0) = 12n, v(1) = diag(u, u∗) and s

(
v(t)

)
= 12n for every t ∈ [0, 1]. Indeed, by

Whitehead’s Lemma (Lemma 2.1.4) one can find z ∈ C
(
[0, 1];U2n(C̃)

)
with z(0) = 12n

and z(1) = diag(u, u∗). The element v is then defined by v(t) := s
(
z(t)

)∗
z(t) and has

the desired properties.

Let us finally observe that an element f ∈ C
(
[0, 1];M2n(C̃)

)
belongs to M2n

(
C̃(C)

)
if and only if s

(
f(t)

)
= f(0) for each t ∈ [0, 1], while f belongs to M2n

(
S̃(C)

)
if and

only if s
(
f(t)

)
= f(0) = f(1) for each t ∈ [0, 1]. Note also that if π is defined as in

(7.2), then π̃(f) = f(1) for any f ∈ M2n

(
C̃(C)

)
. With these identifications, it follows

that v ∈ U2n
(
C̃(C)

)
, and

π̃(v) =

(
u 0
0 u∗

)
, p = v

(
1n 0
0 0

)
v ∈ P2n

(
S̃(C)

)
.

By the definition of the index map, one infers that

θC([u]1) = δ1([u]1) = [p]0 − [s(p)]0,

as already mentioned.

7.2 The long exact sequence in K-theory

In this section we define the higher functor Kn for every integer n ≥ 2. Part of the
construction should be considered as a preliminary step for the six-term exact sequence
which will be obtained later on.

Definition 7.2.1. For each integer n ≥ 2 one defines iteratively the functor Kn from
the category of C∗-algebras to the category of Abelian groups by

Kn := Kn−1 ◦ S

where the suspension S is seen as a functor from the category of C∗-algebras into itself.
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More specifically, for any n ≥ 2 and for any C∗-algebra C one sets

Kn(C) := Kn−1

(
S(C)

)
and for each ∗-homomorphism φ : C → Q between C∗-algebras one also sets

Kn(φ) := Kn−1

(
S(φ)

)
.

Now, let us denote by Sn(C) the n-th iterated suspension of the C∗-algebra C. It is
inductively defined by Sn(C) := S

(
Sn−1(C)

)
. Similarly, if Q is another C∗-algebra

and if φ : C → Q is a ∗-homomorphism, then one gets a ∗-homomorphism Sn(φ) :
Sn(C)→ Sn(Q). This ∗-homomorphism is defined by induction by the relation Sn(φ) =
S
(
Sn−1(φ)

)
. The higher K-groups are then given by

Kn(C) = K1

(
Sn−1(C)

) ∼= K0

(
Sn(C)

)
, (7.3)

and
Kn(φ) = K1

(
Sn−1(φ)

)
. (7.4)

We shall also apply the convention that S0(C) = C and S0(φ) = φ.

Proposition 7.2.2. For each integer n ≥ 2, Kn is a half exact functor from the category
of C∗-algebras to the category of Abelian groups.

Proof. As already mentioned, the suspension S is an exact functor from the category of
C∗-algebras to itself, see Lemma 7.1.2. On the other hand, K1 is a half exact functor,
as shown in Proposition 5.2.3. Since the composition of two functors is again a functor,
we obtain by formulas (7.3) and (7.4) that Kn is a functor for each n ≥ 2. The half
exactness of Kn easily follows from the mentioned properties of S and of K1.

For the short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

let us now define the higher index maps. For that purpose and for n ≥ 1 one defined
inductively the index maps δn+1 : Kn+1(Q) → Kn(J ) as follows. By the exactness of
S, the sequence

0 −→ Sn(J ) S
n(φ)−→ Sn(C) S

n(ψ)−→ Sn(Q) −→ 0 (7.5)

is exact, and by Theorem 7.1.3 we have an isomorphism

θSn−1(J ) : Kn(J ) = K1

(
Sn−1(J )

)
→ K0

(
Sn(J )

)
.

As a consequence, there exists one and only one group homomorphism δn+1 making the
diagram

Kn+1(Q)
δn+1 - Kn(J )

K1

(
Sn(Q)

)
id

?
δ̄1- K0

(
Sn(J )

)
θ−1

Sn−1(J )

6

(7.6)
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commutative, where δ̄1 is the index map associated with the short exact sequence (7.5).
Note that the index maps δ1, δ2, . . . are natural in the following sense: Given a

commutative diagram of C∗-algebras

0 - J φ - C ψ - Q - 0

0 - J ′

γ

?
φ′

- C ′

α

?
ψ′

- Q′

β

?
- 0

(7.7)

with ∗-homomorphisms α, β, γ, then the diagram

Kn+1(Q)
δn+1- Kn(J )

Kn+1(Q′)

Kn+1(β)

?
δ′n+1- Kn(J ′) .

Kn(γ)

?

(7.8)

is commutative. To see this, let us apply the exact functor Sn to the diagram (7.7), let
δ̄1 and δ̄′1 be the index maps of the two resulting short exact sequences, and consider
the diagram

Kn+1(Q)
id- K1

(
Sn(Q)

) δ̄1- K0

(
Sn(J )

) θ−1

Sn−1(J )- Kn(J )

Kn+1(Q′)

Kn+1(β)

?
id- K1

(
Sn(Q′)

)
K1(Sn(β))

?
δ̄′1- K0

(
Sn(J ′)

)
K0(Sn(γ))

? θ−1

Sn−1(J )- Kn(J ′) .

Kn(γ)

?

(7.9)

The center square of this diagram commutes by naturality of the index map δ1, see
Proposition 6.1.5, and the right-hand square commutes by naturality of θ, as obtained
in Theorem 7.1.3. Hence, (7.9) is a commutative diagram. Since δn+1 corresponds to
the composition of the three horizontal homomorphisms, this implies that (7.8) is com-
mutative.

Proposition 7.2.3 (The long exact sequence in K-theory). Every short exact sequence
of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

induces an exact sequence of K-groups:

· · · Kn+1(ψ)−→ Kn+1(Q)
δn+1−→ Kn(J )

Kn(φ)−→ Kn(C)
Kn(ψ)−→ Kn(Q)

δn−→ Kn−1(J )
Kn−1(φ)−→ . . .

· · · δ1−→ K0(J )
K0(φ)−→ K0(C)

K0(ψ)−→ K0(Q),

where δ1 is the index map and δn its higher analogues for n ≥ 2.
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Proof. Let {δ̄n}∞n=1 be the index maps associated with the short exact sequence

0 −→ S(J ) S(φ)−→ S(C) S(ψ)−→ S(Q) −→ 0.

It follows directly from the definition of the index maps and Theorem 7.1.3 that the
diagrams

K2(J ) - K2(C) - K2(Q)
δ2 - K1(J ) - K1(C) - K1(Q)

K1

(
S(J )

)
id

?
- K1

(
S(C)

)
id

?
- K1

(
S(Q)

)
id

?

δ̄1

- K0

(
S(J )

)
θJ

?
- K0

(
S(C)

)
θC

?
- K0

(
S(Q)

)
θQ

?

and, for n ≥ 3

Kn(J ) - Kn(C) - Kn(Q)
δn- Kn−1(J ) - Kn−1(C) - Kn−1(Q)

Kn−1(S(J ))

id

?
- Kn−1(S(C))

id

?
- Kn−1(S(Q))

id

?
δ̄n−1

- Kn−2(S(J ))

id

?
- Kn−2(S(C))

id

?
- Kn−2(S(Q))

id

?

are commutative. The lower row in the first diagram is exact by Proposition 6.3.3, and
for both diagrams the exactness of the lower row implies the exactness of the upper
row. Exactness of the long exact sequence is then established by induction.

Example 7.2.4. The suspension S(C) = C0

(
(0, 1); C

)
of a C∗-algebra C is isomorphic

to C0(R; C) since R is homeomorphic to (0, 1). Note also that C0

(
X;C0(Y )

)
is isomor-

phic to C0(X × Y ) for any pair of locally compact Hausdorff spaces X and Y . As a
consequence, Sn(C) is isomorphic to C0(Rn), from which one infers that

Kn(C) ∼= K0

(
C0(Rn)

)
, Kn+1(C) ∼= K1

(
C0(Rn)

)
for any n ≥ 1.

7.3 The Bott map

From now on, the following picture for S(C) will be used:

S(C) :=
{
f ∈ C(T; C) | f(1) = 0

}
with T := {z ∈ C | |z| = 1}. Although this definition does not corresponds to the
previous one, the two algebras are clearly isomorphic.

Let us first consider a unital C∗-algebra C. For any n ∈ N∗ and p ∈ Pn(C) one
defines the projection loop fp : T→ Un(C) by

fp(z) := zp+ (1n − p), ∀z ∈ T.
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By identifying Mn

(
S̃(C)

)
with the set of elements f of C(T;Mn(C)) such that f(1)

belongs to Mn(C1C), by considering f − f(1) which belongs to Mn

(
S(C)

)
, we obtain

that fp belongs to Un
(
S̃(C)

)
. In addition, observe that the maps p 7→ fp and fp 7→ p

are continuous because of the equalities

∥fp − fq∥ = sup
z∈T
∥fp(z)− fq(z)∥ = 2∥p− q∥.

One then easily infers that the following properties hold:

(i) fp⊕q = fp ⊕ fq for any projections p, q ∈ P∞(C),

(ii) f0 = 1,

(iii) If p ∼h q in Pn(C) for some n ∈ N∗, then fp ∼h fq in Un
(
S̃(C)

)
.

Thus, from the universal property of K0, one gets a unique group homomorphism

βC : K0(C)→ K1

(
S(C)

)
such that βC([p]0) = [fp]1 for any p ∈ P∞(C). The map βC is called the Bott map.

If φ : C → Q is a unital ∗-homomorphism between unital C∗-algebras, then for any
z ∈ T one has

[S̃(φ)(fp)](z) = φ
(
fp(z)

)
= fφ(p)(z)

since [S̃(φ)(f)](z) = φ
(
f(z)

)
for any f ∈Mn

(
S̃(C)

)
. This implies that the diagram

K0(C)
K0(φ) - K0(Q)

K1

(
S(C)

)
βC

?
K1(S(φ))- K1

(
S(Q)

)
βQ

?

(7.10)

is commutative. This fact is referred to by saying that the Bott map is natural.
Suppose now that C is a non-unital C∗-algebra. Then we have the following diagram:

0 - K0(C) - K0(C̃) −−−−−→←−−−−− K0(C) - 0

0 - K1

(
S(C)

)
βC

?

...............
- K1

(
S(C̃)

)
βC̃

?
−−−−−→←−−−−−K1

(
S(C)

)
βC

?
- 0 .

(7.11)

The right square is commutative because of the commutativity of (7.10). It then follows
that there is a unique group homomorphism βC : K0(C) → K1

(
S(C)

)
making the left

square commutative. In addition, a direct computation leads to

βC
(
[p]0 − [s(p)]0

)
= [fpf

∗
s(p)]1 p ∈ P∞(C̃). (7.12)
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It then follows from (7.12) that (7.10) holds also in the non-unital case.
The main result of this section then reads:

Theorem 7.3.1 (Bott periodicity). The Bott map βC : K0(C) → K1

(
S(C)

)
is an

isomorphism for any C∗-algebra C.

Note that if C is non-unital, a diagram chase in (7.11) (or the five lemma) shows
that βC is an isomorphism if βC̃ and βC are isomorphisms. Hence it is sufficient to prove
the above theorem for unital C∗-algebras. The proof is rather long and technical and
will not be reported here. In fact, we shall only state a rather technical lemma from
which the main result will be deduced. For more details, we refer to [RLL00, Sec. 11.2]
or to [W-O93, Sec. 9.2].

In the following statements, the notation zk means the map T ∋ z 7→ zk ∈ T for
any natural number k.

Lemma 7.3.2 (Lemma 11.2.13 of [RLL00]). Let n be a natural number.

(i) For any u ∈ Un
(
S̃(C)

)
there are natural numbers m ≥ n and k and an element

p ∈ Pm(C) such that (zku)⊕ 1m−n ∼h fp in Um
(
S̃(C)

)
,

(ii) If p, q belong to Pn(C) with fp ∼h fq in Un
(
S̃(C)

)
, then there exist a natural

number m ≥ n and r ∈ Pm−n(C) such that p⊕ r ∼h q ⊕ r in Pm(C).

Proof of Theorem 7.3.1. We prove that the Bott map is both surjective and injective.

(i) For a given g ∈ K1

(
S(C)

)
, let n ∈ N and u ∈ Un

(
S̃(C)

)
such that g = [u]1.

By Lemma 7.3.2.(i), there exist two natural numbers m ≥ n and k and an element

p ∈ Pm(C) such that (zku)⊕1m−n ∼h fp in Um
(
S̃(C)

)
. By Whitehead’s Lemma (Lemma

2.1.4) one also infers that

f1nk
= z1nk ∼h zk1n ⊕ 1nk−1 in Unk

(
S̃(C)

)
.

As a consequence, one deduces that

βC
(
[p]0 − [1nk]0

)
= [fp]1 − [f1nk

]1 = [zku]1 − [zk1n]1

= [u]1 + [zk1n]1 − [zk1n]1 = [u]1 = g,

from which one infers the surjectivity of βC.
(ii) Let us now consider g ∈ K0(C) such that βC(g) = 0. Let n ∈ N∗ and p, q ∈ Pn(C)

such that g = [p]0− [q]0, see Proposition 3.2.4. One then infers that [fp]1 = [fq]1, which

implies that fp ⊕ 1m−n ∼h f1 ⊕ 1m−n in Um
(
S̃(C)

)
for some m ≥ n. Let us then set

p1 :=

(
p 0
0 0

)
∈ Pm(C), q1 :=

(
q 0
0 0

)
∈ Pm(C).
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Then fp1 = fp ⊕ 1m−n and fq1 = fq ⊕ 1m−n, and consequently fp1 ∼h fq1 in Um
(
S̃(C)

)
.

It follows then from Lemma 7.3.2.(ii) that there exist a natural number k ≥ m and
r ∈ Pk−m(C) such that p1 ⊕ r ∼h q1 ⊕ r in Pk(C). We then conclude that

g = [p]0 − [q]0 = [p1 ⊕ r]0 − [q1 ⊕ r]0 = 0,

from which one infers the injectivity of βC.

7.4 Applications of Bott periodicity

Bott periodicity makes it possible to compute the K-groups of several algebras. First
of all, let us state one of its corollary.

Corollary 7.4.1. For any C∗-algebras C and any integer n one has

Kn+2(C) ∼= Kn(C).

Proof. The case n = 0 corresponds precisely to the content of Theorem 7.3.1. The
general case follows then by induction on n because

Kn+2(C) = Kn+1

(
S(C)

) ∼= Kn−1

(
S(C)

)
= Kn(C)

for any n ≥ 1.

Example 7.4.2. We deduce from the previous corollary together with the content of
Example 7.2.4 that for any natural number n

K0

(
C0(Rn)

) ∼= Kn(C) ∼=
{
K0(C) ∼= Z n even
K1(C) = {0} n odd.

Similarly we have

K1

(
C0(Rn)

) ∼= {
{0} n even
Z n odd.

Example 7.4.3. For any integer n ≥ 0 consider the n-sphere defined by

Sn := {(x1, . . . , xn+1) ∈ Rn+1 | x21 + x22 + · · ·+ x2n+1 = 1}.

Clearly, the one-point compactification of Rn is homeomorphic to Sn for any n ≥ 1,

and therefore we have an isomorphism C̃0(Rn) ∼= C(Sn). In addition, observe from the
split exactness of K0, see Proposition 4.3.3, together with the equality K0(C) ∼= Z, see
(3.12), that for any C∗-algebra Q one has

K0(Q̃) ∼= K0(Q)⊕ Z.

It then follows that

K0

(
C(Sn)

) ∼= {
Z⊕ Z n even

Z n odd
K1

(
C(Sn)

) ∼= {
{0} n even
Z n odd.

Note that the equality K1(C) ∼= K1(C̃) of (5.2) has been used for the computation of the
K1-group.
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Chapter 8

The six-term exact sequence

By combining the various results obtained in the previous section we obtain the so-
called six-term exact sequence in K-theory. In fact, we already know five of the six
maps of this sequence. The last map is called the exponential map and is constructed
from the Bott map composed with the index map δ2. With this six-term exact sequence,
it is possible to compute the K-theory of several C∗-algebras.

8.1 The exponential map and the six-term exact se-

quence

For any short exact sequence of C∗-algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

we define the exponential map δ0 : K0(Q)→ K1(J ) by the composition of the maps

K0(Q)
βQ−→ K2(Q)

δ2−→ K1(J ),

where δ2 has been defined in the diagram (7.6). In other words if δ̄1 denotes the index
map associated with the short exact sequence

0 −→ S(J ) S(φ)−→ S(C) S(ψ)−→ S(Q) −→ 0,

then
K0(Q)

δ0 - K1(J )

K1

(
S(Q)

)
βQ

?
δ̄1- K0

(
S(J )

)
θJ

?

(8.1)

is a commutative diagram.

71
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Theorem 8.1.1 (The six-term exact sequence). Every short exact sequence of C∗-
algebras

0 −→ J φ−→ C ψ−→ Q −→ 0

gives rise to the six-term exact sequence

K1(J )
K1(φ)- K1(C)

K1(ψ)- K1(Q)

K0(Q)

δ0

6

�
K0(ψ)

K0(C) �
K0(φ)

K0(J ) .

δ1

?

Proof. By Proposition 6.3.3 it only remains to show that this sequence is exact atK0(Q)
and at K1(J ). To see it, consider the diagram

K2(C)
K2(ψ)- K2(Q)

δ2- K1(J )
K1(φ)- K1(C)

K0(C)

βC ∼=

6

K0(ψ)
- K0(Q)

βQ ∼=

6

δ0
- K1(J )

id

6

K1(φ)
- K1(C)

id

6

which is commutative: The left-hand square commutes by naturality of the Bott map,
see diagram (7.10), and the center square commutes by the definition of the exponential
map. The top row is exact by Proposition 7.2.3, from which one infers that the bottom
row is exact as well.

8.2 An explicit description of the exponential map

The exponential map is composed of two natural maps, and therefore is natural as
explained in the following statement:

Proposition 8.2.1. The exponential map δ0 is natural in the following sense: Given a
commutative diagram

0 - J φ - C ψ - Q - 0

0 - J ′

γ

?
φ′

- C ′

α

?
ψ′

- Q′

β

?
- 0



8.2. AN EXPLICIT DESCRIPTION OF THE EXPONENTIAL MAP 73

with two short exact sequences of C∗-algebras and with three ∗-homomorphisms, the
diagram

K0(Q)
δ0- K1(J )

K0(Q′)

K0(β)

?
δ′0- K1(J ′) .

K1(γ)

?

(8.2)

is commutative, where δ0 and δ′0 are the associated exponential maps.

Proof. The diagram (8.2) can be decomposed into two commuting squares

K0(Q)
βQ- K2(Q)

δ2- K1(J )

K0(Q′)

K0(β)

?

βQ′
- K2(Q′)

K2(β)

?

δ′2

- K1(J ′) ,

K1(γ)

?

as seen in diagrams (7.10) and (7.8).

The following proposition is somewhat technical but it provides an explicit descrip-
tion of the exponential map and justifies its name.

Proposition 8.2.2. Let

0 −→ J φ−→ C ψ−→ Q −→ 0

be a short exact sequence of C∗-algebras, and let δ0 : K0(Q)→ K1(J ) be its associated
exponential map. Let g be an element of K0(Q). Then δ0(g) can be computed as follows.

(i) Let p ∈ Pn(Q̃) such that g = [p]0 − [s(p)]0, and let a be a self-adjoint element

in Mn(C̃) for which ψ̃(a) = p. Then φ̃(u) = exp(2πia) for precisely one element

u ∈ Un(J̃ ), and δ0(g) = −[u]1.

(ii) Suppose that C is unital, in which case also Q is unital and ψ is unit preserving.

Let φ̄ : J̃ → C be given by φ̄(x + α1) = φ(x) + α1C for any x ∈ J and α ∈ C.
Suppose that g = [p]0 for some p ∈ Pn(Q), and let a be a self-adjoint element
in Mn(C) such that ψ(a) = p. Then φ̄(u) = exp(2πia) for precisely one element

u ∈ Un(J̃ ), and δ0(g) = −[u]1.

By the standard picture ofK0 provided in Proposition 4.2.1 we can find a projection
p as in (i) for any element g ∈ K0(Q). In the unital case, any element of K0(Q) can be
described as the difference of two elements of Pn(Q), as shown in Proposition 3.2.4. In
both cases the existence of a self-adjoint lift is provided by Proposition 2.3.1.
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Proof. (ii) We assume in this proof that Q ̸= {0}, and hence the map φ̄ : Mn(J̃ ) →
Mn(C) is injective for any n ∈ N∗. The image of φ̄ :Mn(J̃ )→Mn(C) consists of those
elements x ∈Mn(C) such that ψ(x) ∈Mn(C1) ⊂Mn(Q). Then, since

ψ
(
exp(2πia)

)
= exp

(
2πiψ(a)

)
= exp(2πip) = 1n

there exists a unique element u ∈ Mn(J̃ ) such that φ̄(u) = exp(2πia), and since φ̄(u)

is unitary, one concludes that u ∈ Un(J̃ ). By (8.1) we must show that

(δ̄1 ◦ βQ)([p]0) = θJ ([u
∗]1), (8.3)

where δ̄1 : K1

(
S(Q)

)
→ K0

(
S(J )

)
denotes the index map associated with the short

exact sequence

0 −→ S(J ) S(φ)−→ S(C) S(ψ)−→ S(Q) −→ 0. (8.4)

Note that we shall here use the picture S(Q) = C0

(
(0, 1);Q

)
, for which Mk

(
S̃(Q)

)
is

identified with the set of all continuous functions f : [0, 1] → Mk(Q) where f(0) =
f(1) ∈Mk(C1) ⊂Mn(Q).

In the setting just mentioned, the projection loop fp ∈ Un
(
S̃(Q)

)
associated with

the projection p ∈ Pn(Q) is given for any t ∈ [0, 1] by

fp(t) = e2πitp+ (1n − p) = e2πitp.

By Lemma 6.1.1 there exists v ∈ U2n
(
S̃(C)

)
such that S̃(ψ)(v) = diag(fp, f

∗
p ). By using

a similar identification, one infers that v : [0, 1] → U2n(C) is a continuous map with
v(0) = v(1) belonging to U2n(C1) ⊂ U2n(C), and

ψ
(
v(t)

)
=

(
fp(t) 0
0 fp(t)

∗

)
, ∀t ∈ [0, 1].

As fp(0) = fp(1) = 1n one infers that v(0) = v(1) = 12n.
Now, since a is a self-adjoint lift for p in Mn(C), let us set z(t) = exp(2πita)

for any t ∈ [0, 1]. Then z(t) belongs to Un(C), the map t 7→ z(t) is continuous, and
ψ
(
z(t)

)
= fp(t). Hence one gets

ψ

(
v(t)

(
z(t)∗ 0
0 z(t)

))
= 12n and s

(
v(t)

(
z(t)∗ 0
0 z(t)

))
= 12n.

It follows that we can find w(t) in U2n(J̃ ) with

φ̄
(
w(t)

)
= v(t)

(
z(t)∗ 0
0 z(t)

)
and s

(
w(t)

)
= 12n.

Now, t 7→ w(t) is continuous because φ̄ is isometric, w(0) = 12n, and

φ̄
(
w(1)

)
=

(
z(1)∗ 0
0 z(1)

)
= φ̄

(
u∗ 0
0 u

)
,
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which shows that w(1) = diag(u∗, u). By considering the short exact sequence

0 −→ S(J̃ ) ι−→ C(J̃ ) π(1)−→ J̃ −→ 0 (8.5)

where π(1) means the evaluation at the value 1, one infers from Theorem 7.1.3 applied

to (8.5) with the unitary element w ∈ U2n
(
C̃(J̃ )

)
and the projection w ( 1n 0

0 0 )w
∗ ∈

P2n

(
S̃(J̃ )

)
that

θJ ([u
∗]1) =

[
w

(
1n 0
0 0

)
w∗

]
0

−
[(

1n 0
0 0

)]
0

. (8.6)

This corresponds to the r.h.s. of (8.3).
For the l.h.s. of (8.3), recall first that βQ([p]0) = [fp]1 ∈ K1

(
S(Q)

)
. Note that we

also have

φ̄

(
w(t)

(
1n 0
0 0

)
w(t)∗

)
= v(t)

(
1n 0
0 0

)
v(t)∗,

which implies that

S̃(φ)

(
w

(
1n 0
0 0

)
w∗

)
= v

(
1n 0
0 0

)
v∗. (8.7)

The unitary element v was chosen such that S̃(ψ)(v) = diag(fp, f
∗
p ), and so we get from

equations (8.7) and from the definition of the index map for the short exact sequence
(8.4) that δ̄1([fp]1) is also equal to the r.h.s. of (8.6). This fact proves (8.3), as expected.

(i) Consider the diagram

0 - J φ - C ψ - Q - 0

0 - J

id

?
φ′

- C̃

ιC

?
ψ′

- Q̃

ιQ

?
- 0

where φ′ = ιC ◦φ and ψ′ = ψ̃. Let δ′0 be the exponential map associated with the short
exact sequence in its lower row. By naturality of the exponential map one gets

δ0
(
[p]0 − [s(p)]0

)
=

(
δ′0 ◦K0(ιQ)

)
([p]0 − [s(p)]0)

= δ′0
(
[p]0 − [s(p)]0

)
= δ′0

(
[p]0

)
− δ′0

(
[s(p)]0

)
.

The maps φ̃ : J̃ → C̃ and φ′ : J̃ → C̃ coincide. It follows from (ii) that there is an

element u ∈ Un(J̃ ) such that φ̃(u) = φ′(u) = exp(2πia) and that δ′0([p]0) = −[u]1.
Since s(p) = ψ′(s(p)), with s(p) viewed as a scalar projection belonging to Mn(Q̃) as
well as to Mn(C̃), it follows that [s(p)]0 belongs to the image of K0(ψ

′) and hence to
the kernel of δ′0. This completes the proof.
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Chapter 9

Cyclic cohomology

In Section 3.4 we have shown that any bounded trace τ on a C∗-algebra C naturally
defines a group morphism K0(τ) : K0(C)→ C satisfying for any p ∈ P∞(C)

K0(τ)([p]0) = τ(p).

However, many important C∗-algebras do not possess such a bounded trace, and one
still would like to extract some numerical invariants from their K-groups. One solution
to this problem can be obtained by using cyclic cohomology, which is the subject of
this chapter. Our main references are the books [Con94, Chap. III], [Kha13, Chap. 3],
[MN08, Chap. 5] and the paper [KS04].

9.1 Basic definitions

Let A be a complex associative algebra, and for any n ∈ N let Cn(A) denote the set of
(n+ 1)-linear functionals on A. The elements η ∈ Cn(A) are called n-cochains.

Definition 9.1.1. An element η ∈ Cn(A) is cyclic if it satisfies for each a0, . . . , an ∈ A:

η(a1, . . . , an, a0) = (−1)nη(a0, . . . , an) .

The set of all cyclic n-cochains is denoted by Cn
λ (A).

For any η ∈ Cn(A) let us also define bη by

[bη](a0, . . . , an+1) :=
n∑
j=0

(−1)jη(a0, . . . , ajaj+1, . . . , an+1) + (−1)n+1η(an+1a0, . . . , an).

(9.1)
Then one has:

Lemma 9.1.2. The space of cyclic cochains is invariant under the action of b, i.e. for
any n ∈ N one has

bCn
λ (A) ⊂ Cn+1

λ (A).

77
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Proof. Define the operator λ : Cn(A)→ Cn(A) and b′ : Cn(A)→ Cn+1(A) by(
λη

)
(a0, . . . , an) := (−1)nη(an, a0, . . . , an−1), (9.2)(

b′η
)
(a0, . . . , an+1) :=

n∑
j=0

(−1)jη(a0, . . . , ajaj+1, . . . , an+1). (9.3)

One readily checks that (1− λ)b = b′(1− λ) and that

Cn
λ (A) = Ker(1− λ),

which imply the statement of the lemma.

As a consequence of the previous lemma one can consider the complex

C0
λ(A)

b−→ C1
λ(A)

b−→ C2
λ(A)

b−→ . . .

which is called the cyclic complex of A. Note that the property b2 = 0, necessary for
the next definition, is quite standard in this framework and can be checked quite easily.

Definition 9.1.3. (i) An element η ∈ Cn
λ (A) satisfying bη = 0 is called a cyclic

n-cocycle, and the set of all cyclic n-cocycles is denoted by Zn
λ (A),

(ii) An element η ∈ Cn
λ (A) with η ∈ b

(
Cn−1
λ (A)

)
is called a cyclic n-coboundary, and

the set all cyclic n-coboundaries is denoted by Bn
λ(A),

(iii) The cohomology of the cyclic complex of A is called the cyclic cohomology of A,
and more precisely HCn(A) := Zn

λ (A)/Bn
λ(A) for any n ∈ N. The elements of

HCn(A) are called the classes of cohomology.

Note that a cyclic n-cocycle η is simply a (n + 1)-linear functional on A which
satisfies the two conditions

bη = 0 and (1− λ)η = 0, (9.4)

where b has been introduced in (9.1) and λ in (9.2). Observe also that the equality

Z0
λ(A) = HC0(A) (9.5)

holds, and that this space corresponds to the set of all traces on A.

Example 9.1.4. Let us consider the case A = C. Then, any η ∈ Cn
λ (C) is completely

determined by its value η(1, . . . , 1). In addition, by the cyclicity property one infers that
η = 0 whenever n is odd. Hence the cyclic complex of C is simply given by

C→ 0→ C→ . . .

from which one deduces that for any k ∈ N:

HC2k(C) ∼= C and HC2k+1(C) = 0.
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Let us now consider another convenient way of looking at cyclic n-cocycles in terms
of characters of a graded differential algebra over A. For that purpose, we first recall
that a graded differential algebra (Ω, d) is a graded algebra

Ω = Ω0 ⊕ Ω1 ⊕ Ω2 ⊕ . . . ,

with each Ωj an associative algebra over C, together with a map d : Ωj → Ωj+1 which
satisfy

(i) wjwk ∈ Ωj+k for any elements wj ∈ Ωj and wk ∈ Ωk,

(ii) For any homogeneous elements w1, w2 and if deg(w) denotes the degree of a ho-
mogeneous element w:

d(w1w2) = (dw1)w2 + (−1)deg(w1)w1(dw2), (9.6)

(iii) d2 = 0.

Definition 9.1.5. A closed graded trace of dimension n on the graded differential
algebra (Ω, d) is a linear functional

∫
: Ωn → C satisfying for any w ∈ Ωn−1∫

dw = 0, (9.7)

and for any wj ∈ Ωj, wk ∈ Ωk such that j + k = n:∫
wjwk = (−1)jk

∫
wkwj . (9.8)

With these definitions at hand, we can now set:

Definition 9.1.6. A n-cycle is a triple (Ω, d,
∫
) consisting in a graded differential

algebra (Ω, d) together with a closed graded trace
∫
of dimension n. This n-cycle is over

the algebra A if in addition there exists an algebra homomorphism ρ : A → Ω0.

Given a n-cycle over the algebra A, one defines the corresponding character η by

η(a0, . . . , an) :=

∫
ρ(a0)dρ(a1) . . . dρ(an) ∈ C (9.9)

for any a0, . . . , an ∈ A. The link between such characters and cyclic n-cocycles can now
be proved.

Proposition 9.1.7. Any n-cycle (Ω, d,
∫
) over the algebra A defines a cyclic n-cocycle

through its character η given by (9.9).

For simplicity we shall drop the homomorphism ρ : A → Ω0 in the sequel, or
equivalently identify A with ρ(A) in Ω0.
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Proof. With the convention mentioned before, one can rewrite (9.9) as

η(a0, . . . , an) :=

∫
a0da1 . . . dan.

By using Leibnitz rule as recalled in (9.6) and the graded trace property as mentioned
in (9.8) one then gets(

bη
)
(a0, . . . , an+1)

=

∫
a0a1da2 . . . dan+1 +

n∑
j=1

(−1)j
∫
a0da1 . . . d(ajaj+1) . . . dan+1

+ (−1)n+1

∫
an+1a0da1 . . . dan

= (−1)n
∫
a0da1 . . . danan+1 + (−1)n+1

∫
an+1a0da1 . . . dan

= 0.

On the other hand, by using the closeness property recalled in (9.7) one also gets

(
(1− λ)η

)
(a0, . . . , an) =

∫
a0da1 . . . dan − (−1)n

∫
anda0 . . . dan−1

= (−1)n−1

∫
d
(
ana0da1 . . . dan−1

)
= 0.

Since the two conditions of (9.4) are satisfied, the statement follows.

Let us end this section with some examples of cyclic cocycles.

Example 9.1.8. Let A be a complex and associative algebra, and let τ be a linear
functional on A with the tracial property, i.e. τ(ab) = τ(ba) for any a, b ∈ A. Assume
also that δ : A → A is a derivation on A such that τ

(
δ(a)

)
= 0 for any a ∈ A. Then

the map
A×A ∋ (a0, a1) 7→ τ

(
a0 δ(a1)

)
∈ C

is a cyclic 1-cocycle on A.
More generally, if δ1, . . . , δn are mutually commuting derivations on A which satisfy

τ
(
δj(a)

)
= 0 for any a ∈ A and j ∈ {1, 2, . . . , n}, then for any a0, . . . , an ∈ A

η(a0, a1, . . . , an) :=
∑
σ∈Sn

sgn(σ)τ
(
a0 δσ(1)(a1) . . . δσ(n)(an)

)
defines a cyclic n-cocycle on A. Here we have used the standard notation Sn for the
permutation group of n elements.
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Example 9.1.9. LetM be an oriented compact and smooth manifold of dimension n,
and set A := C∞(M). Then the map η defined for f0, f1, . . . , fn ∈ A by

η(f0, f1, . . . , fn) :=

∫
M
f0df1 ∧ · · · ∧ dfn

is a cyclic n-cocycle on A.

Example 9.1.10. In H := L2(Rn) consider the algebra K∞ of smooth integral operators
defined for any u ∈ H by

[Au](x) =

∫
Rn

a(x, y)u(y)dy

for some a ∈ S(Rn × Rn) (the Schwartz space on Rn × Rn). Define the derivation
δ1, . . . , δ2n on K∞ by

δ2j(A) := [Xj, A], δ2j−1(A) := [Dj, A], j ∈ {1, 2, . . . , n}

with Xj the operator of multiplication by the variable xj and Dj := −i ∂
∂xj

. Then one

easily checks that δjδk = δkδj, and that Tr
(
δj(A)

)
= 0, where Tr(A) =

∫
Rn a(x, x) dx.

Then the map η defined for any a0, a1, . . . , a2n ∈ K∞ by

η(a0, a1, . . . , a2n) :=
(−1)n

n!

∑
σ∈S2n

sgn(σ)Tr
(
a0 δσ(1)(a1) . . . δσ(2n)(a2n)

)
is a cyclic 2n-cocycle on K∞.

9.2 Cup product in cyclic cohomology

Starting from two classes of cohomology, our aim in this section is to construct a new
class of cohomology. The key ingredient is the cup product which is going to be defined
below.

First of all, let (Ω, d,
∫
) be a n-cycle over A and let (Ω′, d′,

∫ ′
) be a n′-cycle over

a second complex associative algebra A′. The corresponding algebra homomorphisms
are denoted by ρ : A → Ω0 and ρ′ : A′ → Ω′0. The graded differential tensor product
algebra

(
Ω⊗ Ω′, d⊗ d′

)
is then defined by

(Ω⊗ Ω′)ℓ := ⊕j+k=ℓ Ωj ⊗ Ω′k

and
d⊗ d′(w ⊗ w′) := (dw)⊗ w′ + (−1)deg(w)w ⊗ (d′w′).

We also set for w ∈ Ωn and w′ ∈ Ω′n′∫ ⊗
ω ⊗ ω′ :=

∫
ω

∫ ′
ω′
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which is a closed graded trace of dimension n+ n′ on
(
Ω⊗Ω′, d⊗ d′

)
. Finally, the map

ρ⊗ ρ′ : A⊗A′ → (Ω⊗ Ω′)0 ≡ Ω0 ⊗ Ω′0

defines an algebra homomorphism which makes
(
Ω ⊗ Ω′, d ⊗ d′,

∫ ⊗ )
a (n + n′)-cycle

over A⊗A′.
In a vague sense, the above construction associates with the two characters η and

η′, defined by (9.9), a new character obtained from the (n+n′)-cycle over A⊗A′. Since
characters define cyclic n-cocyles, one has obtained a new (n + n′)-cocycle in terms of
a n-cycle and a n′-cycle. However, a deeper result can be obtained.

For that purpose, let us now denote by
(
Ω(A), d

)
the universal graded differential

algebra over A. We shall not recall its construction here, but refer to [Con85, p. 98-99],
[Con94, p. 185-186] or [GVF01, Sec. 8.1]. For the time being, let us simply mention that
any (n + 1)-linear functional η on A, i.e. any η ∈ Cn(A), defines a linear functional η̂
on Ω(A)n by the formula

η̂(a0da1 . . . dan) := η(a0, . . . , an) ∀a0, . . . , an ∈ A. (9.10)

Also, in terms of Ω(A) a generalization of Proposition 9.1.7 reads:

Proposition 9.2.1. Let η be a (n + 1)-linear functional on A. Then the following
conditions are equivalent:

(i) There is a n-cycle (Ω, d,
∫
) over A, with ρ : A → Ω0 the corresponding algebra

homomorphism, such that

η(a0, . . . , an) :=

∫
ρ(a0)dρ(a1) . . . dρ(an) ∀a0, . . . , an,

(ii) There exists a closed graded trace η̂ of dimension n on
(
Ω(A), d

)
such that

η(a0, . . . , an) = η̂(a0da1 . . . dan) ∀a0, . . . , an,

(iii) η is a cyclic n-cocycle.

Note that the proof of this proposition is not very difficult, once a good description
of

(
Ω(A), d

)
has been provided, see [Con94, Prop. III.1.4].

Let us now come to the cup product. In general, the graded differential algebra(
Ω(A⊗A′), d

)
and the graded differential tensor product algebra

(
Ω(A)⊗Ω(A′), d⊗d′

)
are not equal. However, from the universal property of

(
Ω(A ⊗ A′), d

)
one infers that

there exists a natural homomorphism

π : Ω(A⊗A′)→ Ω(A)⊗ Ω(A′).

This homomorphism plays a role in the definition of the cup product.
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For any η ∈ Cn(A) and η′ ∈ Cn′
(A′), recall that η̂ and η̂′ are respectively linear

functionals on Ω(A)n and on Ω(A′)n
′
. One then defines the cup product η # η′ ∈

Cn+n′
(A⊗A′) by the equality

̂(η#η′) =
(
η̂ ⊗ η̂′

)
◦ π.

Some properties of this product are gathered in the following statement.

Proposition 9.2.2. (i) The cup product η ⊗ η′ 7→ η#η′ defines a homomorphism

HCn(A)⊗HCn′
(A′)→ HCn+n′

(A⊗A′),

(ii) The character of the tensor product of two cycles is the cup product of their char-
acters.

The proof is provided in [Con94, Thm. III.1.12]. Let us however mention that its
main ingredients are the equivalences recalled Proposition 9.2.1 as well as the subsequent
diagram (for the point (ii)). For it, let us consider again a n-cycle

(
Ω, d,

∫ )
over A and

a n′-cycle
(
Ω′, d′,

∫ ′ )
over A′, with respective algebra homomorphisms ρ : A → Ω0 and

ρ′ : A′ → Ω′0. Since the universal graded differential algebra
(
Ω(A), d

)
is generated by

A, there exists a unique extension of ρ to a morphism of differential graded algebras

ρ̃ : Ω(A)→ Ω.

As a consequence, there also exist two additional algebra homomorphisms

ρ̃′ : Ω(A′)→ Ω′ and ρ̃⊗ ρ′ : Ω(A⊗A′)→ Ω⊗ Ω′.

Then, by the universal property of Ω(A⊗A′) the following diagram is commutative:

Ω(A⊗A′) π //

ρ̃⊗ρ′ ((QQ
QQQ

QQQ
QQQ

Q
Ω(A)⊗ Ω(A′)

ρ̃⊗ρ̃′
��

Ω⊗ Ω′ .

Example 9.2.3. Let τ be a trace on an algebra B, i.e. τ ∈ HC0(B). Then the map

HCn(A) ∋ η 7→ η#τ ∋ HCn(A⊗ B)

is explicitly given on product elements by

[η#τ ](a0 ⊗ b0, . . . , an ⊗ bn) = η(a0, . . . , an)τ(b0 b1 . . . bn).

As a special example, let B =Mk(C) and let τ = tr be the usual traces on matrices.
In this case, the cup product defines a map

HCn(A) ∋ η 7→ η#tr ∈ HCn
(
Mk(A)

)
.
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On more general elements A0, . . . , An ∈Mk(A) and if one denotes by Aℓij the component
(i, j) of Aℓ for ℓ ∈ {0, 1, . . . , n}, then one has

[η#tr](A0, A1, . . . , An) =
k∑

j0,...,jn=1

η
(
A0
j0j1

, A1
j1j2

, . . . , Anjnj0
)
.

We end this section with the introduction of the periodicity operator S. This op-
erator is obtained by considering the special case A′ = C in the above construction.
As mentioned in Example 9.1.4, any cyclic 2-cocycle η′ on C is uniquely defined by
η′(1, 1, 1) which we chose to be equal to 11. Since A⊗C = A one gets a map of degree
2 in cyclic cohomology, commonly denoted by S:

S : HCn(A) ∋ η 7→ Sη := η#η′ ∈ HCn+2(A).

A computation involving the universal graded differential algebra
(
Ω(A), d

)
as pre-

sented in [Con94, Corol. III.1.13] leads then to the explicit formula

[Sη](a0, a1, . . . , an+2) = η̂
(
a0a1a2da3 . . . dan+2

)
+ η̂

(
a0da1 (a2a3)da4 . . . dan+2

)
+

n∑
i=3

η̂
(
a0da1 . . . dai−1 (aiai+1)dai+2 . . . dan+2

)
+ η̂

(
a0da1 . . . dan (an+1an+2)

)
,

where η̂ is the linear functional on Ω(A)n defined by η.
Finally, the following result can be checked by a direct computation.

Lemma 9.2.4. For any cocycle η ∈ Zn
λ (A), Sη is a coboundary in Cn+2

λ (A), i.e. Sη =
bψ for ψ ∈ Cn+1

λ (A) given by

ψ(a0, . . . , an+1) =
n+1∑
j=1

(−1)j−1η̂
(
a0(da1 . . . daj−1)aj(daj+1 . . . dan+1)

)
.

9.3 Unbounded derivations

In the previous two sections, only algebraic manipulations were considered, and it was
not necessary for A to have a topology. We shall now consider topological vector spaces
and topological algebras, the C∗-condition will appear only at the end of the game.
However, interesting cocycles are often only defined on dense subalgebras, and this
naturally leads us to the definition of unbounded operators/derivations and unbounded
traces. In this section we focus on the former ones.

1The conventions about the normalization differ from one reference to another one. For example,
in [Con94] it is assumed that η′(1, 1, 1) = 1 but in [Con85] the convention η′(1, 1, 1) = 2πi is taken.
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Given two topological vector spaces B1 and B2 over C 2, a linear operator from B1
to B2 consists in a pair

(
T,Dom(T )

)
, where Dom(T ) ⊂ B1 is a linear subspace and

T : Dom(T )→ B2 is a linear map. Note that most of the time one simply speaks about
the operator T , but a domain Dom(T ) is always attached to it. This operator is densely
defined if Dom(T ) is dense in B1. One also says that this operator is closable if the
closure of its graph

Graph(T ) :=
{
(ξ, T ξ) ∈ B1 × B2 | ξ ∈ Dom(T )

}
does not contain an element of the form (0, ξ′) with ξ′ ̸= 0. In this case, the closure
Graph(T ) is equal to Graph(T̄ ) for a unique linear operator T̄ called the closure of T .

For the definition of the dual operator, let us assume that B1 and B2 are locally
convex topological vector spaces3, and let B∗

j denote the strong dual of Bj4, see [Yos65,
Sec. IV.7] for the details. Then the dual operator

(
T ∗,Dom(T ∗)

)
of a densely defined

unbounded operator
(
T,Dom(T )

)
is defined as the unbounded operator from B∗

2 to B∗
1

such that

Dom(T ∗) :=
{
ζ∗ ∈ B∗

2 | ∃ξ∗ ∈ B∗
1 s.t. ⟨Tξ, ζ∗⟩ = ⟨ξ, ξ∗⟩ ∀ξ ∈ Dom(T )

}
T ∗ζ∗ := ξ∗.

Note that we use the same notation ⟨·, ·⟩ for various duality relations. Observe also that
the equality ⟨ξ, T ∗ζ∗⟩ := ⟨Tξ, ζ∗⟩ holds for all ξ ∈ Dom(T ) and ζ∗ ∈ Dom(T ∗). We
finally mention that the dual operator of a densely defined operator T is always closed.
In the context of Banach spaces, the dual operator is often called the adjoint operator.

Let us now define the general notion of a derivation, and then consider more pre-
cisely unbounded derivations.

Definition 9.3.1. Let B1 be a Banach algebra and let B2 be a topological vector space
which is also a B1-bimodule5. Then, an unbounded operator δ from B1 to B2 is called a
derivation if Dom(δ) is a subalgebra of B1 and if for any a, b ∈ Dom(δ):

δ(ab) = δ(a)b+ aδ(b).

The following result is then standard, see [Con94, Lem. III.6.2].

2A topological vector space X over C is a vector space which is endowed with a topology such that
the addition X ×X → X and the scalar multiplication C×X → X are continuous.

3A locally convex topological vector space is a vector space together with a family of semi-norms
{pa} which defines its topology. Any Banach space is a locally convex topological vector space.

4The strong dual of a locally convex topological vector space X consists in the set of all continuous
linear functionals on X endowed with the bounded convergence topology. This topology is defined
by the family of semi-norms of the form p∗(T ) ≡ p∗B(T ) := supx∈B |T (x)| with T a continuous linear
functional on X and B any bounded set of X.

5A B-bimodule is an Abelian group X together with a multiplication on the right and on the left
by elements of a ring B (satisfying some natural conditions) and for which the equality (aξ)b = a(ξb)
holds for any a, b ∈ B and any ξ ∈ X.
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Lemma 9.3.2. Let B1 be a unital Banach algebra and let B2 be a Banach B1-bimodule6

satisfying for any b, b′ ∈ B1 and ξ ∈ B2
∥bξb′∥ ≤ ∥b∥∥ξ∥∥b′∥. (9.11)

Let δ be a densely defined and closable derivation from B1 to B2. Then its closure δ̄ is
still a derivation, and its domain Dom(δ̄) is a subalgebra of B1 stable under holomorphic
functional calculus7.

Let us illustrate the use of the previous definition with two examples. For that
purpose, observe that for any Banach algebra B its dual space B∗ can be viewed as a
B-bimodule by the relation

⟨bξb′, a⟩ := ⟨ξ, b′ab⟩ ∀a, b, b′ ∈ B and ξ ∈ B∗.

Moreover the relation (9.11) holds, namely ∥bξb′∥ ≤ ∥b∥∥ξ∥∥b′∥.

Lemma 9.3.3. Let B be a unital C∗-algebra, and let δ be a densely defined derivation
from B to the B-bimodule B∗. Assume in addition that 1B belongs to Dom(δ∗) (in B∗∗).
Then,

(i) τ := δ∗(1B) ∈ B∗ defines a trace on B,

(ii) The map K0(τ) : K0(B)→ C corresponds to the 0-map.

Let us mention that this statement holds for more general Banach algebras and the
C∗-property does not play any role. However, since the K-groups have been introduced
only for C∗-algebras, we restrict the statement to this framework. Unfortunately, the
proof below uses the K-groups for more general algebras, and therefore is only partially
understandable in our setting.

Proof. i) For any a, b ∈ Dom(δ) one first infers that:

τ(ab) := ⟨δ∗(1B), ab⟩ = ⟨1B, δ(ab)⟩ = ⟨1B, δ(a)b⟩+ ⟨1B, aδ(b)⟩
= ⟨b, δ(a)⟩+ ⟨a, δ(b)⟩ = ⟨a, δ(b)⟩+ ⟨b, δ(a)⟩
= ⟨1B, δ(b)a⟩+ ⟨1B, bδ(a)⟩ = ⟨1B, δ(ba)⟩ = ⟨δ∗(1B), ba⟩ = τ(ba).

6A Banach B-bimodule is a Banach space X which is also a B-bimodule with B a Banach algebra
B, and for which the multiplication on the left and on the right also satisfy ∥aξ∥ ≤ c∥a∥∥ξ∥ and
∥ξb∥ ≤ c∥b∥∥ξ∥ for some c > 0, all ξ ∈ X and any a, b ∈ B.

7In order to define the notion of stable under holomorphic functional calculus, let us consider a unital
Banach algebra B, an element a ∈ B and let f be a holomorphic function defined on a neighbourhood
O of σ(a). We then define

f(a) :=
1

2πi

∫
γ

f(z)(z − a)−1dz ∈ B

with γ a closed curve of finite length and without self-intersection in O encircling σ(a) only once and
counterclockwise. By holomorphy of f this integral is independent of the choice of γ, and for any fixed
a, the map f 7→ f(a) defines a functional calculus, called the holomorphic functional calculus of a.
In this setting, if A is a unital and dense subalgebra of a unital Banach algebra B one says that A
is stable under holomorphic functional calculus if f(a) ∈ A whenever a ∈ A and f is a holomorphic
function in a neighbourhood of σ(a).
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Since τ is a bounded functional on B, one deduces from the density of Dom(δ) in B
that the equality τ(ab) = τ(ba) holds for any a, b ∈ B.

ii) Let a ∈ Dom(δ). The equality

⟨a, δ(b)⟩ = τ(ab)− ⟨b, δ(a)⟩

valid for any b ∈ Dom(δ) shows that Dom(δ) ⊂ Dom(δ∗), with δ∗(a) = τ(a ·) − δ(a)
for any a ∈ Dom(δ). Since δ∗ is closed operator and τ(a ·) is bounded operator, one
infers that δ is a closable operator from B to B∗, whose extension is denoted by δ̄. By
Lemma 9.3.2 one deduces that its domain A := Dom(δ̄) is a subalgebra of B which
is stable under holomorphic functional calculus. A consequence of this stability is that
there exists an isomorphism betweenK0(A) (which has not been defined in these lecture
notes) and K0(B), see [Con94, III.App.C] and the references mentioned there.

The next step consists in showing that the homomorphism K0(τ) corresponds to
the 0-map on all elements of p ∈Mn(A) satisfying p2 = p. For simplicity, let us choose
n = 1 (in the general case, use τ ⊗ tr on A⊗Mn(C) instead of τ on A). Then, for any
p ∈ A satisfying p2 = p one has

τ(p) = τ(p2) = ⟨δ∗(1B), p
2⟩ = 2⟨p, δ(p)⟩.

But one also has

⟨p, δ(p)⟩ = ⟨p, δ(p2)⟩ = 2⟨p, δ(p)⟩

from which one infers that τ(p) = 0. Since p ∈ A is an arbitrary idempotent, the
statement then follows once a suitable description of K0(A) has been provided.

The next statement has a similar flavor. It deals with the notion of a 1-trace, and
motivates the introduction of more general n-traces in the next section. Again, let us
mention that the following statement holds for more general Banach algebras.

Proposition 9.3.4. Let B be a unital C∗-algebra, and let δ be a densely defined deriva-
tion from B to the B-bimodule B∗ satisfying for all a, b ∈ Dom(δ)

⟨δ(a), b⟩ = −⟨δ(b), a⟩. (9.12)

Then,

(i) δ is closable, with its closure denoted by δ̄,

(ii) There exists a unique map φ : K1(B) → C such that for any v ∈ GLn
(
Dom(δ̄)

)
one has

φ([w(v)]1) = ⟨δ̄(v), v−1⟩

where w(v) ∈ Un(B) is defined by w(v) = v|v|−1, as explained in Proposition 2.1.8.
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Proof. The result about the closability of δ is standard. It follows from the closeness of
δ∗ and from the fact that δ∗ = −δ on Dom(δ), which means that δ is a skew-symmetric
operator and −δ∗ is a closed extension of it. As a consequence, δ is closable with closure
denoted by δ̄.

Since δ is closable, it follows from Lemma 9.3.2 that δ̄ is also a derivation, and
its domain Dom(δ̄) is a subalgebra of B stable under holomorphic functional calculus.
Let us denote by A this subalgebra. Let us mention two important properties of this
stability, and refer to [CMR07, Prop. 2.58 & Thm. 2.60] for a proof of these properties
in a more general context: Firstly, if v1, v2 ∈ GLn(A) are homotopic in GLn(B) then they
are also homotopic in GLn(A). Secondly, there exists an isomorphism between K1(A)
(which has not been defined in these lecture notes) and K1(B).

Let us now consider a piecewise affine path t 7→ v(t) in GLn(A) and observe that
the function f(t) :=

⟨
δ̄
(
v(t)

)
, v(t)−1

⟩
is constant. Indeed, its derivative with respect to

t satisfies

f ′(t) =
⟨
δ̄
(
v′(t)

)
, v(t)−1

⟩
−
⟨
δ̄
(
v(t)

)
, v(t)−1v′(t)v(t)−1

⟩
= −

⟨
δ̄
(
v(t)−1

)
, v′(t)

⟩
−
⟨
δ̄
(
v(t)

)
, v(t)−1v′(t)v(t)−1

⟩
=

⟨
v(t)−1δ̄

(
v(t)

)
v(t)−1, v′(t)

⟩
−
⟨
δ̄
(
v(t)

)
, v(t)−1v′(t)v(t)−1

⟩
= 0.

In other words, the expression ⟨δ̄(v), v−1⟩ is constant on piecewise affine paths in
GLn(A), and the statement follows once a suitable description of K1(A) has been pro-
vided.

9.4 Higher traces

We shall now insert the results obtained in the previous section in a more general
framework. Before stating the main definition of this section, let us extend slightly the
validity of (9.10). First of all, recall that if A is any associative and unital8 algebra over
C we set

(
Ω(A), d

)
for the corresponding universal graded differential algebra over A.

In this setting, the following equality holds for any aj, ak ∈ A ⊂ Ω(A)0

(daj)ak = d(aj ak)− aj d(ak),

from which one infers the equality valid for any a0, . . . , ak, a ∈ A:

a0da1 . . . dak a

= a0da1 . . . d(ak a)− a0da1 . . . dak−1ak da

= (−1)ka0a1da2 . . . dak da+
k−1∑
j=1

(−1)k−ja0da1 . . . d(aj aj+1) . . . dak da

+ a0da1 . . . dak−1d(ak a).

8For simplicity we assume A to be unital but the following construction also holds in the non-unital
case.
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For any (n+ 1)-linear functional η on A, the previous equalities allow us to give a
meaning to expressions of the form

η̂
(
x1da1 (x2da2) . . . (xndan)

)
for any a0, . . . , an, x1 . . . , xn ∈ A. Indeed, if one first replaces xj daj with d(xj aj) −
(dxj)aj and then moves aj to the left with the above equalities, one gets an equality of
the form

x1da1 (x2da2) . . . (xndan) =
∑
ℓ

(−1)mℓb0ℓdb1ℓdb2ℓ . . . dbnℓ

for some bjℓ ∈ A and mℓ ∈ N. By the linearity of η one can finally set

η̂
(
x1da1 (x2da2) . . . (xndan)

)
=

∑
ℓ

(−1)mℓη(b0ℓ, b1ℓ, . . . , bnℓ).

For example, for n = 2 one has

η̂
(
x1da1 (x2da2)

)
= η(x1, a1x1, a2)− η(x1a1, x2, a2).

With these notations, the main definition of this section then reads:

Definition 9.4.1. Let B be a unital Banach algebra and n ∈ N. A n-trace on B is a
cyclic n-cocycle η on a dense subalgebra A of B such that for any a1, . . . , an ∈ A there
exists c = c(a1, . . . , an) > 0 with∣∣η̂(x1da1 (x2da2) . . . (xndan))∣∣ ≤ c∥x1∥∥x2∥ . . . ∥xn∥ ∀x1, . . . , xn ∈ A. (9.13)

Our aim will be to show that when B is a unital C∗-algebra, any such n-traces on B
determines a map from Ki(B) to C, for i ∈ {0, 1}. For that purpose, lots of preliminary
works are necessary.

Remark 9.4.2. For fixed a1, . . . , an, condition (9.13) allows one to extend the multi-
linear functional defined on An to a bounded multi-linear functional on Bn. The values
taken by this functional on elements of Bn are obtained by a limiting process. For this
extension, we shall freely write η̂

(
x1da1 (x2da2) . . . (xndan)

)
with xj ∈ B.

Remark 9.4.3. Let us observe that the two examples of the previous section fit into the
definition of a 0 and of a 1-trace. Indeed, in the framework of Lemma 9.3.3 one already
inferred that τ := δ∗(1B) is a trace on B, and thus a cyclic 0-cocycle. In addition, the
estimate |τ(x1)| ≤ ∥τ∥∥x1∥ holds for any x1 ∈ B. In the framework of Proposition 9.3.4
one can set η(a0, a1) := ⟨δ(a0), a1⟩. By taking the property (9.12) into account, as well
as the definition of the B-bimodule B∗, one gets for any a0, a1, a2 ∈ Dom(δ)

[bη](a0, a1, a2) = η(a0a1, a2)− η(a0, a1a2) + η(a2a0, a1)

= ⟨δ(a0a1), a2⟩ − ⟨δ(a0), a1a2⟩+ ⟨δ(a2a0), a1⟩
= −⟨δ(a2), a0a1⟩ − ⟨δ(a0), a1a2⟩+ ⟨δ(a2)a0, a1⟩+ ⟨a2δ(a0), a1⟩
− ⟨δ(a2), a0a1⟩ − ⟨δ(a0), a1a2⟩+ ⟨δ(a2), a0a1⟩+ ⟨δ(a0), a1a2⟩
= 0
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from which one easily infers that η is a cyclic 1-cocycle on A := Dom(δ). In addition,
one has for any a1, x1 ∈ A

|η̂(x1da1)| = |η(x1, a1)| = |⟨δ(x1), a1⟩| = |⟨δ(a1), x1⟩| ≤ ∥δ(a1)∥∥x1∥

which corresponds to (9.13) in this special case.

Let us now denote by E the vector space of all (2n− 1)-linear functionals

φ : B × · · · × B︸ ︷︷ ︸
n times

×A× · · · × A︸ ︷︷ ︸
(n−1) times

→ C

which are continuous in the B-variables. We endow E with the family of semi-norms
(pa)a∈An−1 defined by

pa(φ) ≡ p(a1,...,an−1)(φ) := sup
xj∈B,∥xj∥≤1

|φ(x1, . . . , xn, a1, . . . , an−1)|.

With this family of semi-norms, E becomes a locally convex topological vector space.
In addition, for any φ ∈ E and any x ∈ B we also set

[xφ](x1, . . . , xn, a1, . . . , an−1) := φ(x1x, x2, . . . , xn, a1, . . . , an−1),

[φx](x1, . . . , xn, a1, . . . , an−1) := φ(x1, xx2, . . . , xn, a1, . . . , an−1).

Endowed with this additional structure, one has obtained a B-bimodule E. Note finally
that for any a ∈ An−1 one has

pa(xφ) ≤ pa(φ)∥x∥ and pa(φx) ≤ pa(φ)∥x∥. (9.14)

Based on the previous definition, the following lemma can now be proved. Recall
that the notion of a derivation has been introduced in Definition 9.3.1.

Lemma 9.4.4. Let B be a unital Banach algebra, n ∈ N and let η be a n-trace on B
defined on a dense subalgebra denoted by A. For any a ∈ A let

δ(a) : B × · · · × B︸ ︷︷ ︸
n times

×A× · · · × A︸ ︷︷ ︸
(n−1) times

→ C

be defined by

[δ(a)](x1, . . . , xn, a2, . . . , an) := η̂
(
(x1da)(x2da2) . . . (xndan)

)
.

Then:

(i) δ is a derivation from B to the B-bimodule E, with Dom(δ) = A,

(ii) δ is closable, when B is endowed with its norm topology and E with the topology
of simple convergence.
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Proof. i) It clearly follows from the definition of the n-trace that δ(a) is an element of
E. In addition, for any a, b ∈ A and since d(ab) = (da)b+ a(db) one has

[δ(ab)](x1, . . . , xn, a2, . . . , an)

= η̂
(
(x1d(ab))(x2da2) . . . (xndan)

)
= η̂

(
(x1da)(bx2da2) . . . (xndan)

)
+ η̂

(
(x1adb)(x2da2) . . . (xndan)

)
= [δ(a)](x1, bx2, x3, . . . , xn, a2, . . . , an) + [δ(b)](x1a, x2, . . . , xn, a2, . . . , an)

= [δ(a)b](x1, . . . , xn, a2, . . . , an) + [aδ(b)](x1, . . . , xn, a2, . . . , an).

By setting Dom(δ) := A, one infers that δ is a derivation from B to E.
ii) By the definition of the topologies on B and E, we have to show that for any

{aν} ⊂ A with ∥aν∥ → 0 and δ(aν)→ φ ∈ E in the weak sense9 as ν →∞, then φ = 0.
By density of A in B, it is sufficient to show that φ(x1, . . . , xn, a2, . . . , an) = 0 for any
xj, aj ∈ A.

By assumption on φ and by taking into account the properties of the closed graded
trace η̂ of dimension n on

(
Ω(A), d

)
one gets∣∣φ(x1, . . . , xn, a2, . . . , an)∣∣

= lim
ν→∞

∣∣η̂((x1daν)(x2da2) . . . (xndan))∣∣
= lim

ν→∞

∣∣η̂(daν(x2da2) . . . (xndan)x1)∣∣
= lim

ν→∞

∣∣∣η̂(d(aν(x2da2) . . . (xndan)x1))− η̂(aν d((x2da2) . . . (xndan)x1))∣∣∣
= lim

ν→∞

∣∣∣η̂(aν d((x2da2) . . . (xndan)x1))∣∣∣
≤ c lim

ν→∞
∥aν∥

= 0.

Note that we had to chose xj ∈ A instead of xj ∈ B in order to give a meaning to the
expression d

(
(x2da2) . . . (xndan)x1

)
.

Our aim is now to extend the domain of the derivation δ, in a way similar to the
one obtained in the less general framework of Lemma 9.3.2. For that purpose, let us
call δ-bounded a subset X of A whenever there exist finitely many c1, . . . , ck ∈ A such
that for all a ∈ X:

pa
(
δ(a)

)
≤ sup

j∈{1,...,k}
pa
(
δ(cj)

)
∀a ∈ An−1.

We can then consider the subset B of B defined as follows: a ∈ B if there exists a
δ-bounded sequence {am}m ⊂ A converging to a in B. In other words, a ∈ B if there
exist {am}m ⊂ A and finitely many c1, . . . , ck ∈ A such that am → a in B and

sup
m
pa
(
δ(am)

)
≤ sup

j∈{1,...,k}
pa
(
δ(ck)

)
∀a ∈ An−1.

9Let us emphasize that ν belongs to a directed set, a sequence might not be general enough.
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By this assumption the sequence δ(am) is then bounded in E, and for any xj, aj ∈ A
one has∣∣∣[δ(am)](x1, . . . , xn, a2, . . . , an) + η̂

(
ad

(
(x2da2) . . . (xndan)x1

))∣∣∣
=

∣∣∣η̂((x1dam)(x2da2) . . . (xndan))+ η̂
(
ad

(
(x2da2) . . . (xndan)x1

))∣∣∣
=

∣∣∣− η̂(amd
(
(x2da2) . . . (xndan)x1

))
+ η̂

(
ad

(
(x2da2) . . . (xndan)x1

))∣∣∣
≤ c∥am − a∥

which converges to 0 asm→∞. As a consequence, one gets that δ(am) weakly converges
to δ(a), independently of the choice of the sequence {am}m, with

[δ(a)](x1, . . . , xn, a2, . . . , an) = −η̂
(
ad

(
(x2da2) . . . (xndan)x1

))
∀xj, aj ∈ A.

Note that by construction one has pa
(
δ(a)

)
≤ supk pa

(
δ(ck)

)
for all a ∈ An−1.

The following result then holds:

Lemma 9.4.5. (i) B is a dense subalgebra of B containing A,

(ii) For any q ∈ N∗, Mq(B) is stable under holomorphic functional calculus.

We only provide the proof of the first statement. For the second one, we refer to
[Con86, Lem. 2.3].

Proof. Let a, a′ ∈ B with two sequences {an} and {a′n} in A satisfying an → a and
a′n → a′. Clearly, ana

′
n → aa′ in B, and in addition one has for any a ∈ An−1

pa
(
δ(ana

′
n)
)
= pa

(
δ(an)a

′
n + anδ(a

′
n)
)
≤ c

(
pa
(
δ(an)

)
+ pa

(
δ(a′n)

))
≤ sup

j∈{1,...,k}
pa
(
δ(cj)

)
for some c < ∞ independent of n and a finite family of elements c1, . . . , ck ∈ A. Note
that (9.14) has been used for the first inequality. By definition of B, the previous
computation means that aa′ ∈ B, which is thus an algebra.

For the density, it is sufficient to observe that A ⊂ B, and to recall that A is dense
in B.

In the next statement we mention an argument which has already been used in
the proofs of Lemma 9.3.3 and of Proposition 9.3.4. Unfortunately, its content is not
fully understandable in the context of these lecture notes since K0(B) and K1(B) have
not been defined (B is not a C∗-algebra but a dense subalgebra which is closed under
holomorphic functional calculus).

Proposition 9.4.6. Let B be a unital C∗-algebra endowed with a n-trace, and let B be
the dense subalgebra defined above.

(i) The inclusion B ⊂ B defines an isomorphism of K0(B) with K0(B),
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(ii) The inclusion B ⊂ B defines an isomorphism of K1(B) with K1(B).
Remark 9.4.7. With this remark, we would like to emphasize that in the definition of
B the n-trace plays a significant role. In that respect, the existence of a cyclic cocycle
precedes the construction of a suitably dense subalgebra of B. In other words in order
to extract information from the K-groups, one should not first define any specific dense
subalgebra but look for a n-trace, and then define a suitable subalgebra stable under
holomorphic functional calculus. Note that a similar observation is also made on page
113 of [MN08].

We end up this section with two technical lemmas. All this material will be useful
in the next section and for the main theorem of this chapter. For that purpose and for
any finite family a1, . . . , an ∈ A we set

C(a1, . . . , an) := pa
(
δ(a1)

)
with a = (a2, . . . , an) ∈ An−1.

Lemma 9.4.8. (i) For any a1, . . . , an ∈ A the value C(a1, . . . , an) is invariant under
cyclic permutations of its arguments,

(ii) If Xis a δ-bounded subset of A then

sup
a1,...,an∈X

C(a1, . . . , an) <∞.

Proof. i) By definition one has

C(a1, . . . , an) = sup
xj∈B,∥xj∥≤1

∣∣η̂((x1da1)(x2da2) . . . (xndan))∣∣.
Since η̂ is a closed graded trace of dimension n on

(
Ω(A), d

)
it follows from the per-

mutation property (9.8) that C(a1, . . . , an) is invariant under cyclic permutations of its
arguments.

ii) Let c1, . . . , ck ∈ A such that pa
(
δ(a)

)
≤ supj pa

(
δ(cj)

)
for all a ∈ An−1 and

a ∈ X. Now, observe that

C(a1, . . . , an) = pa
(
δ(a1)

)
≤ sup

j
pa
(
δ(cj)

)
= sup

j
C(cj, a2, . . . , an).

By the same argument and by taking point (i) into account one gets that for a2 ∈ X

C(cj, a2, . . . , an) = C(a2, . . . , an, c1)

= p(a3,...,an,c1)
(
δ(a2)

)
≤ sup

j′
p(a3,...,an,c1)

(
δ(cj′)

)
≤ sup

j′
C(cj′ , a3, . . . , an, cj).

By iteration one finally infers that if ai ∈ X for any i ∈ {1, . . . , n} then

C(a1, . . . , an) ≤ sup
j1,...,jn

C(cj1 , . . . , cjn) <∞

as claimed.
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Lemma 9.4.9. Let x1, . . . , xn ∈ B and consider n δ-bounded convergent sequences
{aj,m}m ⊂ A with limm aj,m = aj,∞ in B, for any j ∈ {1, . . . , n}. Then the sequence

m 7→ η̂
(
(x1da1,m)(x2da2,m) . . . (xndan,m)

)
converges to a limit which depends only on a1,∞, . . . , an,∞, x1, . . . , xn.

Observe that by definition of B, the above assumptions imply that a1,∞, . . . , an,∞
belong to B.

Proof. Let us denote by X the set of all aj,m which is δ-bounded by assumption. By
Lemma 9.4.8 the family of all multi-linear functionals φ on Bn defined by

φ(x1, . . . , xn) := η̂
(
(x1da1)(x2da2) . . . (xndan)

)
with aj ∈ X is a bounded set. Let us then define

φm(x1, . . . , xn) := η̂
(
(x1da1,m)(x2da2,m) . . . (xndan,m)

)
.

In order to show the simple convergence of the sequence φm we can assume that
x1, . . . , xn belong to the dense subset A of B. We also slightly enlarge X by defin-
ing X ′ = X ∪ {x1, . . . , xn}. By applying again Lemma 9.4.8.(ii) with X ′ instead of X,
and by taking the equality

η̂
(
x1da(x2da2) . . . (xndan)

)
= −η̂

(
ad

(
(x2da2) . . . (xndan)x1

))
into account, one gets that there exists a constant c > 0 (which depends on x1, . . . , xn
but not on a, a2, . . . , an) such that∣∣∣η̂(ad((x2da2) . . . (xndan)x1))∣∣∣ ≤ c∥a∥ ∀aj ∈ X.

Similarly, we also get that∣∣η̂(x1da1 (x2da2) . . . (xndan))− η̂(x1da′1(x2da2) . . . (xndan))∣∣ ≤ c∥a1 − a′1∥

for any a1, . . . , an, a
′
1 ∈ X. By using cyclic permutations one also infers that

∣∣η̂(x1da1 (x2da2) . . . (xndan))− η̂(x1da′1(x2da′2) . . . (xnda′n))∣∣ ≤ c
n∑
j=1

∥aj − a′j∥

for any a1, . . . , an, a
′
1, . . . , a

′
j ∈ X.

We deduce from the previous estimates that the sequence φm(x1, . . . , xn) is a Cauchy
sequence, and that the limit of this sequence does not depend upon the choice of the
δ-bounded sequences {aj,m} converging to aj,∞.



9.5. PAIRING OF CYCLIC COHOMOLOGY WITH K-THEORY 95

9.5 Pairing of cyclic cohomology with K-theory

In this section we finally pair cyclic cohomology with K-theory. We shall first deal with
even cyclic cocycle.

For any n ∈ N let us consider a 2n-cyclic cocycle η on an associative complex unital
algebra A, i.e. η ∈ Z2n

λ (A). As seen in section 9.2 on the cup product, one can define
an element η#tr ∈ Z2n

λ

(
Mq(A)

)
for any q ∈ N∗. Let also p be an idempotent in Mq(A),

i.e. an element p ∈Mq(A) satisfying p2 = p. With these two ingredients one can define
and study the expression

1

n!
[η#tr](p, p, . . . , p︸ ︷︷ ︸

2n+1 terms

). (9.15)

Let us first observe that this expression depends only on the cyclic cohomology
class of η in HC2n(A). By considering directly the algebra Mq(A) instead of A, it is
sufficient to concentrate on the special case q = 1. Thus, let us assume that η = bψ for
some ψ ∈ C2n−1

λ (A), or in another words let us assume that η is a coboundary. Then
by the definition of b one has

η(p, . . . , p) = bψ(p, . . . , p)

=
2n−1∑
j=0

(−1)jψ(p, . . . , p, . . . , p) + ψ(p, . . . , p)

= ψ(p, . . . , p)

= 0,

where the cyclicity of ψ has been used for the last equality.
Our next aim is to state and prove a result related to the periodicity operator S

introduced at the end of Section 9.2. Let us stress once again that for the next statement
we choose η′(1, 1, 1) = 1 for the normalization of η′ ∈ Z2

λ(C), other conventions are also
used in the literature. As in the computation made before, we can restrict our attention
of the case q = 1.

Lemma 9.5.1. For any η ∈ Z2n
λ (A) and for any idempotent p ∈ A one has

[Sη](p, p, . . . , p︸ ︷︷ ︸
2n+3 terms

) = (n+ 1)η(p, p, . . . , p︸ ︷︷ ︸
2n+1 terms

).

Proof. By taking the expression mentioned just before Lemma 9.2.4 into account one
gets

[Sη](p, . . . , p) = η̂
(
pdp . . . dp

)
+ η̂

(
pdppdp . . . dp

)
+

2n∑
i=3

η̂
(
pdp . . . dppdp . . . dp

)
+ η̂

(
pdp . . . dpp

)
.
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Then, since dp p = dp − p dp, one easily infers that nearly half of the terms in the
previous sum simply cancel out and one obtains that

[Sη](p, . . . , p) = (n+ 1)η̂
(
pdp . . . dp

)
= (n+ 1)η(p, . . . , p),

which corresponds to the statement.

Our last aim with respect to the expression (9.15) is to show that it is invariant under
the conjugation of p by invertible elements. As before, we can restrict our attention to
the case q = 1.

Lemma 9.5.2. For any η ∈ Z2n
λ (A), any idempotent p ∈ A and any v ∈ GL(A) one

has
η(p, . . . , p) = η(vpv−1, . . . , vpv−1).

The proof of this statement is based on the following observation and result. If A,B
are associative complex algebras and if ρ : A → B is an algebra homomorphism, then
it induces a morphism ρ∗ : Cn

λ (B)→ Cn
λ (A) defined for any a0, . . . , an ∈ A by

[ρ∗η](a0, . . . , an) = η
(
ρ(a0), . . . , ρ(an)

)
.

As a consequence, it also induces a map ρ∗ : HCn(B) → HCn(A). This map depends
only on the equivalence class of ρ modulo inner automorphisms, as mentioned in the
next statement (see [Con94, Prop. III.1.8] for its proof):

Proposition 9.5.3. Let v ∈ GL(A), and set θ(a) := vav−1 for any a ∈ A for the
corresponding inner automorphism. Then the induced map θ∗ : HCn(A)→ HCn(A) is
the identity for any n ∈ N.

Proof of Lemma 9.5.2. With the notations of the previous statement, it is enough to
observe that

η(vpv−1, . . . , vpv−1) = η
(
θ(p), . . . , θ(p)

)
= [θ∗η](p, . . . , p) = η(p, . . . , p).

Note that for the last equality, the result of the previous proposition has been used
together with the fact that (9.15) depends only on the cohomology class of η.

Remark 9.5.4. An alternative approach for the proof of Lemma 9.5.2 is provided in
[Kha13, p. 169-170]. However, even if this alternative approach might look more intu-
itive (the derivative of a certain expression computed along a smooth path of idempotents
is zero), it works only in some suitable topological algebras. In the previous proof, no
topological structure is involved.

All the information obtained so far on the expression (9.15) can now be gathered in
a single statement. As before, the only missing bit of information is about the definition
of K0(A) in this framework.
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Proposition 9.5.5. For any q ∈ N∗ and n ∈ N, the following map is bilinear

K0(A)×HC2n(A) ∋ ([p]0, [η]) 7→ ⟨[p]0, [η]⟩ :=
1

n!
[η#tr](p, . . . , p) ∈ C, (9.16)

with p ∈Mq(A) an idempotent and with η ∈ Z2n
λ (A). In addition, the following proper-

ties hold:

(i) ⟨[p]0, [Sη]⟩ = ⟨[p]0, [η]⟩,

(ii) If η, η′ are even cyclic cocycles on the algebras A,A′, then for any idempotents
p ∈ A and p′ ∈ A′ one has⟨

[p⊗ p′]0, [η#η′]
⟩
= ⟨[p]0, [η]⟩⟨[p′]0, [η′]⟩

and a similar formula holds in a matricial version.

For odd cyclic cocycles, a similar construction and similar statements can be proved.
We proceed in a similar way. For n ∈ N let η be a (2n + 1)-cyclic cocycle over A,
i.e. η ∈ Z2n+1

λ (A), with A an associative complex unital algebra. For any q ∈ N∗ and
v ∈ GLq(A) we shall study the expression

[η#tr](v−1 − 1, v − 1, v−1 − 1, . . . , v−1 − 1, v − 1︸ ︷︷ ︸
2n+2 terms

). (9.17)

Before studying in details this expression, let us recall that the K1-theory of a C∗-
algebra C was computed from the equivalence classes of U∞(C̃), see Definition 5.1.2. For
the K1-theory of A, the addition of a unit is also part of the construction. Note also
that at the price of changing the algebra A to Mq(A), we can restrict our attention to
the case q = 1 in the following developments.

As a preliminary step, let Ã be the algebra obtained from A by adding a unit to
it. Since A was already assumed to be unital, then the map

ρ : Ã ∋ (a, λ) 7→ (a+ λ1, λ) ∈ A× C

is an isomorphism, with 1 the unit of A. Less explicitly, this isomorphism had already
been used in the proof of Lemmas 2.2.4 and 3.3.5.

For η ∈ Z2n+1
λ (A) let us now define η̃ ∈ C2n+1(Ã) by

η̃
(
(a0, λ0), . . . , (a2n+1, λ2n+1)

)
= η(a0, . . . , a2n+1), ∀(aj, λj) ∈ Ã.

By cyclicity of η, η̃ clearly belongs to C2n+1
λ (Ã). Let us now check that bη̃ = 0, which

means that η̃ ∈ Z2n+1
λ (Ã). Indeed, for any (aj, λj) ∈ Ã observe first that

η̃
(
(a0, λ0), . . . , (aj, λj)(aj+1, λj+1), . . . , (a2n+2, λ2n+2)

)
= η(a0, . . . , ajaj+1, . . . , a2n+2) + λj η(a0, . . . , aj−1, aj+1, . . . , a2n+2)

+ λj+1 η(a0, . . . , aj, aj+2, . . . , a2n+2).
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As a consequence, one infers from the above equality and from the equality bη = 0 that

bη̃
(
(a0, λ0), . . . , (a2n+2, λ2n+2)

)
= λ0 η(a1, . . . , a2n+2) + (−1)2n+2λ0 η(a2n+2, a1, . . . , a2n+1)

= λ0
[
η(a1, . . . , a2n+2) + (−1)2n+1η(a1, . . . , a2n+2)

]
= 0.

Note that the cyclicity of η has been used for the last equality.
With the definition of η̃ at hand let us define

η := η̃ ◦ diag
(
ρ−1(·, 1), . . . , ρ−1(·, 1)

)
: A2n+1 → C,

and observe that for any v ∈ GL(A) the equality

η(v−1, v, . . . , v−1, v) = η(v−1 − 1, v − 1, v−1 − 1, . . . , v−1 − 1, v − 1)

holds. Observe also that the newly defined cyclic cocycle η satisfies the equality

η(1, a1, . . . , a2n+1) = 0.

Such a cocycle is called a normalized cocycle on A.
Let us now show that (9.17) depends only on the cyclic cohomology class of η

in HC2n+1(A). For that purpose, let us assume that η = bψ for some ψ ∈ C2n
λ (A)

with ψ(1, a1, . . . , a2n) = 0. Note that this normalization is indeed possible thanks to

the equality bψ̃ = b̃ψ. Then by taking the normalization and the cyclicity of ψ into
account, one directly infers that

[bψ](v−1, v, . . . , v−1, v)

=
2n∑
j=0

(−1)jψ(v−1, . . . ,1, . . . , v) + (−1)2n+1ψ(1, . . . , v)

= 0,

as expected.
In the next statement, we consider the action of the periodicity operator, as in

Lemma 9.5.2 for even cyclic cocycles. As before, without loss of generality it is sufficient
to consider the case q = 1. Let us stress that the following statement holds for the
periodicity operator introduced at the end of Section 9.2, any other convention would
lead to other constants10.

Lemma 9.5.6. For any normalized η ∈ Z2n+1
λ (A) and any v ∈ GL(A) one has

[Sη](v−1, v, . . . , v−1, v︸ ︷︷ ︸
2n+4 terms

) = (2n+ 2)[η](v−1, v, . . . , v−1, v︸ ︷︷ ︸
2n+2 terms

).

10Be aware that the constants appearing in the literature are not consistent between different authors,
or even in different papers of the same author.
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Proof. For that purpose, recall that the periodicity operator S has been defined at the
end of Section 9.2. Then, by using its explicit expression and the fact that v−1v = 1 =
vv−1 one gets

[Sη](v−1, v, v−1 . . . , v︸ ︷︷ ︸
2n+4 terms

) = η̂(v−1 dvdv−1 . . . dv︸ ︷︷ ︸
2n+1 terms

) + η̂(v−1dvdv−1 . . . dv)

+
2n+1∑
i=3

η̂(v−1dvdv−1 . . . dv) + η̂(v−1dvdv−1 . . . dv)

=(2n+ 2) η̂(v−1dvdv−1 . . . dv)

=(2n+ 2)η(v−1, v, v−1 . . . , v︸ ︷︷ ︸
2n+2 terms

),

which leads directly to the result.

By summing up the results obtained above, one can now state the main result for
odd cocycles:

Proposition 9.5.7. For any q ∈ N∗ and n ∈ N, the following map is bilinear

K1(A)×HC2n+1(A) ∋ ([v]1, [η]) 7→ ⟨[v]1, [η]⟩ ∈ C

with
⟨[v]1, [η]⟩ := C2n+1 [η#tr](v−1 − 1, v − 1, v−1 − 1, . . . , v−1 − 1, v − 1︸ ︷︷ ︸

2n+2 terms

)

with v ∈ GLq(A) and η ∈ Z2n+1
λ (A). In addition, the constants C2n+1 can be chosen

iteratively such that the following property holds :

⟨[v]1, [Sη]⟩ = ⟨[v]1, [η]⟩. (9.18)

Part of the proof of this statement has already been provided above. For example,
its has been shown that the pairing depends only on the cohomology class of η, and
that the relation (9.18) holds if and only if

C2n+3 (2n+ 2) = C2n+1.

We emphasize once more that this relation is a by-product of the choice of the normal-
ization for the periodicity operator S. In addition, the value of the constant C1 can still
be chosen arbitrarily.

On the other hand and quite unfortunately, the proof of the independence on the
choice of a representative in theK1-class of v is out of reach with the material introduced
in these lecture notes. At first, a precise description of K1(A) should be provided, and
more information on the Connes-Chern character are also necessary. Note also that
our construction of the cyclic cohomology of A was based only on one boundary map,
namely b. However, a more efficient construction involving a second map B and the



100 CHAPTER 9. CYCLIC COHOMOLOGY

Hochschild cohomologyHn(A,A∗) is introduced in [Con94, Chap. III] and this approach
leads more easily to some stronger results, see also [Kha13, Chap. 3].

Based on the this construction and by taking the result of Section 9.4 into account,
the main result of this chapter now reads:

Theorem 9.5.8. Let B be a unital C∗-algebra endowed with a n-trace η defined on a
dense subalgebra denoted by A.

(i) If n is even, there exists a map φ : K0(B)→ C such that for any p ∈ Pq(A) one
has

φ([p]0) =
1

(n/2)!
[η#tr](p, . . . , p), (9.19)

(ii) If n is odd, there exists a map φ : K1(B)→ C such that for any v ∈ GLq(A) one
has

φ([w(v)]1) = Cn[η#tr](v−1 − 1, v − 1, v−1 − 1, . . . , v−1 − 1, v − 1), (9.20)

where w(v) is defined by w(v) = v|v|−1 ∈ Uq(B). With our normalization for the
periodicity operator S, the constants Cn satisfy the relations Cn+2(n+ 1) = Cn.

Proof. This statement is a direct transcription of the content of Propositions 9.5.5 and
9.5.7 once there exist isomorphisms between the K-groups Ki(A) and Ki(B). In fact,
instead of A one has to consider the slightly larger algebra B introduced in Section 9.4.
By Proposition 9.4.6 one only has to extend the cocycle η to a cyclic cocycle on B. For
that purpose, it is sufficient to show that for any δ-bounded sequences {aj,m}m ⊂ A with
aj,m → aj,∞ the sequence η(a0,m, . . . , an,m) converges to a limit as m → ∞. However,
with the notations of the Lemma 9.4.9 and of its proof one has

η(a0,m, . . . , an,m) = φm(a0,m,1, . . . ,1),

and it is precisely proved in Lemma 9.4.9 that this expression has a limit as m goes to
infinity.



Chapter 10

Application: Levinson’s theorem

In this chapter, we briefly describe how the formalism introduced in the previous chap-
ters leads to some index theorems in the context of scattering theory. Obviously, we
shall only scratch the surface, and most the previous material is not really necessary
for the example presented hereafter. However, for more involved examples this material
turns out to be essential. We refer to [Ric15] for more information on the subject.

10.1 The �-anisotropic algebra

In this section we briefly construct a C∗-algebra which will play a major role later on.
This algebra has been introduced in [GI03, Sec. 3.5] for a different purpose, and we
refer to this paper for the details of the construction.

In the Hilbert space L2(R) we consider the two canonical self-adjoint operators X of
multiplication by the variable, and D = −i d

dx
of differentiation. These operators satisfy

the canonical commutation relation written formally [iD,X] = 1, or more precisely
e−isXe−itD = e−iste−itDe−isX . We recall that the spectrum of both operators is R. Then,
for any functions φ, η ∈ L∞(R), one can consider by bounded functional calculus the
operators φ(X) and η(D) in B

(
L2(R)

)
. And by mixing some operators φi(X) and ηi(D)

for suitable functions φi and ηi, we are going to produce an algebra C which will be
useful in many applications.

Let us consider the closure in B
(
L2(R)

)
of the C∗-algebra generated by elements of

the form φi(D)ηi(X), where φi, ηi are continuous functions on R which have limits at
±∞. Stated differently, φi, ηi belong to C([−∞,+∞]). Note that this algebra is clearly
unital. In the sequel, we shall use the following notation:

C(D,X) := C∗
(
φi(D)ηi(X) | φi, ηi ∈ C([−∞,+∞])

)
.

Let us also consider the C∗-algebra generated by φi(D)ηi(X) with φi, ηi ∈ C0(R), which
means that these functions are continuous and vanish at ±∞. As easily observed, this
algebra is a closed ideal in C(D,X) and is equal to the C∗-algebra K

(
L2(R)

)
of compact

operators in L2(R), see for example [GI03, Corol. 2.18].

101
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Let us now study the quotient C∗-algebra C(D,X)/K
(
L2(R)

)
. For that purpose, we

consider the square � := [−∞,+∞]×[−∞,+∞] whose boundary � is the union of four
parts: � = C1∪C2∪C3∪C4, with C1 = {−∞}× [−∞,+∞], C2 = [−∞,+∞]×{+∞},
C3 = {+∞}× [−∞,+∞] and C4 = [−∞,+∞]×{−∞}. We can also view C(�) as the
subalgebra of

C([−∞,+∞])⊕ C([−∞,+∞])⊕ C([−∞,+∞])⊕ C([−∞,+∞]) (10.1)

given by elements Γ := (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end points,
that is, Γ1(+∞) = Γ2(−∞), Γ2(+∞) = Γ3(+∞), Γ3(−∞) = Γ4(+∞), and Γ4(−∞) =
Γ1(−∞). Then C(D,X)/K

(
L2(R)

)
is isomorphic to C(�), and if we denote the quotient

map by

q : C(D,X) → C(D,X)/K
(
L2(R)

) ∼= C(�)

then the image q
(
φ(D)η(X)

)
in (10.1) is given by Γ1 = φ(−∞)η(·), Γ2 = φ(·)η(+∞),

Γ3 = φ(+∞)η(·) and Γ4 = φ(·)η(−∞). Note that this isomorphism is proved in [GI03,
Thm. 3.22]. In summary, we have obtained the short exact sequence

0→ K
(
L2(R)

)
↪→ C(D,X)

q→ C(�)→ 0 (10.2)

with K
(
L2(R)

)
and C(D,X) represented in B

(
L2(R)

)
, but with C(�) which is not natu-

rally represented in B
(
L2(R)

)
. Note however that each of the four functions summing

up in an element of C(�) can individually be represented in B
(
L2(R)

)
, either as a

multiplication operator or as a convolution operator.

We shall now construct several isomorphic versions of these algebras. First of all,
let us consider the Hilbert space L2(R+) and the action of the dilation group. More
precisely, we consider the unitary group {Ut}t∈R acting on any f ∈ L2(R+) as

[Utf ](x) = et/2f
(
etx

)
, ∀x ∈ R+ (10.3)

which is usually called the unitary group of dilations, and denote its self-adjoint gener-
ator by A and call it the generator of dilations.

Let also B be the operator of multiplication in L2(R+) by the function − ln,
i.e. [Bf ](λ) = − ln(λ)f(λ) for any f ∈ Cc(R+) and λ ∈ R+. Note that if one sets
L for the self-adjoint operator of multiplication by the variable in L2(R+), i.e.

[Lf ](λ) := λf(λ) f ∈ Cc(R+) and λ ∈ R+, (10.4)

then one has B = − ln(L). Now, the equality [iB,A] = 1 holds (once suitably defined),
and the relation between the pair of operators (D,X) in L2(R) and the pair (B,A)
in L2(R+) is well-known and corresponds to the Mellin transform. Indeed, let V :
L2(R+) → L2(R) be defined by (V f)(x) := ex/2f(ex) for x ∈ R, and remark that V
is a unitary map with adjoint V ∗ given by (V ∗g)(λ) = λ−1/2g(lnλ) for λ ∈ R+. Then,
the Mellin transform M : L2(R+)→ L2(R) is defined by M := FV with F the usual
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unitary Fourier transform1 in L2(R). The main property of M is that it diagonalizes
the generator of dilations, namely, MAM ∗ = X. Note that one also has MBM ∗ = D.

Before introducing a first isomorphic algebra, observe that if η ∈ C([−∞,+∞]),
then

M ∗η(D)M = η(M ∗DM ) = η(B) = η
(
− ln(L)

)
≡ ψ(L)

for some ψ ∈ C([0,+∞]). Thus, by taking these equalities into account, it is natural to
define in B

(
L2(R+)

)
the C∗-algebra

C(L,A) := C∗
(
ψi(L)ηi(A) | ψi ∈ C([0,+∞]) and ηi ∈ C([−∞,+∞])

)
,

and clearly this algebra is isomorphic to the C∗-algebra C(D,X) in B
(
L2(R)

)
. Thus,

through this isomorphism one gets again a short exact sequence

0→ K
(
L2(R+)

)
↪→ C(L,A)

q→ C(�)→ 0

with the square � made of the four parts � = B1 ∪ B2 ∪ B3 ∪ B4 with B1 = {0} ×
[−∞,+∞], B2 = [0,+∞] × {+∞}, B3 = {+∞} × [−∞,+∞], and B4 = [0,+∞] ×
{−∞}. In addition, the algebra C(�) of continuous functions on � can be viewed as a
subalgebra of

C
(
[−∞,+∞]

)
⊕ C

(
[0,+∞]

)
⊕ C

(
[−∞,+∞]

)
⊕ C

(
[0,+∞]

)
(10.5)

given by elements Γ := (Γ1,Γ2,Γ3,Γ4) which coincide at the corresponding end points,
that is, Γ1(+∞) = Γ2(0), Γ2(+∞) = Γ3(+∞), Γ3(−∞) = Γ4(+∞), and Γ4(0) =
Γ1(−∞).

Finally, if one sets Fs for the unitary Fourier sine transformation in L2(R+), defined
for x, k ∈ R+ and any f ∈ Cc(R+) ⊂ L2(R+) by

[Fsf ](k) := (2/π)1/2
∫ ∞

0

sin(kx)f(x)dx (10.6)

then the equalities −A = F∗
sAFs and

√
HD = F∗

s LFs hold, where HD corresponds to
the Dirichlet Laplacian on R+ (see the next section for its definition). As a consequence,
note that the formal equality [i1

2
ln(HD), A] = 1 can also be fully justified. Moreover, by

using this new unitary transformation one gets that the C∗-subalgebra of B
(
L2(R+)

)
defined by

C(HD,A) := C∗
(
ψi(HD)ηi(A) | ψi ∈ C([0,+∞]) and φi ∈ C([−∞,+∞])

)
, (10.7)

is again isomorphic to C(D,X). In addition, the following short exact sequence takes place

0→ K
(
L2(R+)

)
↪→ C(HD,A)

q→ C(�)→ 0, (10.8)

and C(�) can naturally be viewed as a subalgebra of the algebra introduced in (10.5)
with suitable compatibility conditions at end points.

1For f ∈ Cc(R) and x ∈ R we set [Ff ](x) = (2π)−1/2
∫
R e−ixyf(y)dy.
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10.2 Elementary scattering system

In this section we introduce an example of a scattering system for which everything can
be computed explicitly. It will allow us to describe more precisely the kind of results we
are looking for, without having to introduce too much information on scattering theory.
In fact, we shall keep the content of this section as simple as possible.

Let us start by considering the Hilbert space L2(R+) and the Dirichlet Laplacian
HD on R+ := (0,∞). More precisely, we set HD = − d2

dx2
with the domain Dom(HD) =

{f ∈ H2(R+) | f(0) = 0}. Here H2(R+) means the usual Sobolev space on R+ of order
2. For any α ∈ R, let us also consider the operator Hα defined by Hα = − d2

dx2
with

Dom(Hα) = {f ∈ H2(R+) | f ′(0) = αf(0)}. It is well-known that if α < 0 the operator
Hα possesses only one eigenvalue, namely −α2, and the corresponding eigenspace is
generated by the function x 7→ eαx. On the other hand, for α ≥ 0 the operators Hα

have no eigenvalue, and so does HD.
A common object of scattering theory is defined by the following formula:

Wα
± := s− lim

t→±∞
eitH

α

e−itHD ,

and these limits in the strong sense are known to exist for this model. These operators
are called the wave operators, they are isometries, and their existence allows one to study
the operator Hα with respect to HD. Moreover, we shall provide below a very explicit
formula for these operators. Let us still stress that scattering theory is a comparison
theory, one always study pairs of operators.

Our first result for this model then reads, see [Ric15, Cor. 9.3] for its proof:

Lemma 10.2.1. The following equalities hold:

Wα
− = 1 + 1

2

(
1 + tanh(πA)− i cosh(πA)−1

)[α + i
√
HD

α− i
√
HD

− 1
]
,

Wα
+ = 1 + 1

2

(
1− tanh(πA) + i cosh(πA)−1

)[α− i√HD

α + i
√
HD

− 1
]
.

It clearly follows from these explicit formulas that the operators Wα
± belong to

the algebra C(HD,A) introduced in (10.7). Since these operators are also isometries with
a finite dimensional co-kernel, they can be considered as lifts for their image in the
quotient algebra C(HD,A)/K

(
L2(R+)

)
. We shall come back to this approach involving

algebras in the next session, and work very explicitly for the time being.
Motivated by the above formula for Wα

−, let us now introduce the complex function

Γα� : [0,+∞]× [−∞,+∞] ∋ (x, y) 7→ 1+ 1
2

(
1+tanh(πy)− i cosh(πy)−1

)[α + i
√
x

α− i
√
x
−1

]
.

Since this function is continuous on the square � := [0,+∞]×[−∞,+∞], its restriction
on the boundary � of the square is also well defined and continuous. Note that this
boundary is made of four parts: � = B1 ∪ B2 ∪ B3 ∪ B4 with B1 = {0} × [−∞,+∞],
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B2 = [0,+∞]×{+∞}, B3 = {+∞}× [−∞,+∞], and B4 = [0,+∞]×{−∞}, and that
the algebra C(�) of continuous functions on � can be viewed as a subalgebra of (10.5)
with the necessary compatibility conditions at the end points. With these notations,
the restriction function Γα� := Γα�

∣∣
� is given for α ̸= 0 by

Γα� =
(
1,
α + i

√
·

α− i
√
·
,− tanh(π·) + i cosh(π·)−1, 1

)
(10.9)

and for α = 0 by

Γ0
� :=

(
− tanh(π·) + i cosh(π·)−1,−1,− tanh(π·) + i cosh(π·)−1, 1

)
. (10.10)

For simplicity, we have directly written this function in the representation provided by
(10.5).

Let us now observe that the boundary � of � is homeomorphic to the circle S.
Observe in addition that the function Γα� takes its values in the unit circle T of C.
Then, since Γα� is a continuous function on the closed curve � and takes values in T,
its winding number Wind(Γα�) is well defined and can easily be computed. So, let us
compute separately the contribution wj(Γ

α
�) to this winding number on each component

Bj of �. By convention, we shall turn around � clockwise, starting from the left-down
corner, and the increase in the winding number is also counted clockwise. Let us stress
that the contribution on B3 has to be computed from +∞ to −∞, and the contribution
on B4 from +∞ to 0. Without difficulty one gets:

w1(Γ
α
�) w2(Γ

α
�) w3(Γ

α
�) w4(Γ

α
�) Wind(Γα�)

α < 0 0 1/2 1/2 0 1
α = 0 −1/2 0 1/2 0 0
α > 0 0 −1/2 1/2 0 0

By comparing the last column of this table with the information on the eigenvalues
of Hα mentioned at the beginning of the section one gets:

Proposition 10.2.2. For any α ∈ R the following equality holds:

Wind(Γα�) = number of eigenvalues of Hα. (10.11)

The content of this proposition is an example of Levinson’s theorem. Indeed, it
relates the number of bound states of the operator Hα to a quantity computed on the
scattering part of the system. Let us already mention that the contribution w2(Γ

α
�) is the

only one usually considered in the literature. However, we can immediately observe that
if w1(Γ

α
�) and w3(Γ

α
�) are disregarded, then no meaningful statement can be obtained.

Obviously, the above result should now be recast in a more general framework, and
the algebraic background should be taken into account. Indeed, except for very specific
models, it is usually not possible to compute precisely both sides of (10.11), but such
an equality still holds in a much more general setting. The next section shows how
K-theory can provide an insight on Levinson’s theorem.
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10.3 The abstract topological Levinson’s theorem

Before stating the main result of this chapter, let us reformulate the content of Propo-
sition 6.2.4.(ii). The key point in the next statement is that the central role is played
by the partial isometry in C instead of the unitary element in Q. In fact, the following
statement is at the root of our topological approach of Levinson’s theorem.

Proposition 10.3.1. Consider the short exact sequence

0→ J ↪→ C q→ Q→ 0

with C unital. Let W be a partial isometry in Mn(C) and assume that Γ := q(W ) is a
unitary element of Mn(Q). Then 1n−W ∗W and 1n−WW ∗ are projections in Mn(J ),
and

ind([q(W )]1) := δ1([q(W )]1) = [1n −W ∗W ]0 − [1n −WW ∗]0 .

In order to go one more step in our construction, let us add some information about
some special K-groups, as already mentioned in Example 4.3.6 and in Example 7.4.3.

Example 10.3.2. (i) Let C(S) denote the C∗-algebra of continuous functions on
the unit circle S, with the L∞-norm, and let us identify this algebra with

{
ζ ∈

C([0, 2π]) | ζ(0) = ζ(2π)
}
, also endowed with the L∞-norm. Some unitary ele-

ments of C(S) are provided for any m ∈ Z by the functions

ζm : [0, 2π] ∋ θ 7→ e−imθ ∈ T.

Clearly, for two different values of m the functions ζm are not homotopic, and
thus define different classes in K1

(
C(S)

)
. With some more efforts one can show

that these elements define in fact all elements of K1

(
C(S)

)
, and indeed one has

K1

(
C(S)

) ∼= Z.

Note that this isomorphism is implemented by the winding number Wind(·), which
is roughly defined for any continuous function on S with values in T as the number
of times this function turns around 0 along the path from 0 to 2π. Clearly, for any
m ∈ Z one has Wind(ζm) = m. More generally, if det denotes the determinant
on Mn(C) then the mentioned isomorphism is given by Wind ◦ det on Un

(
C(S)

)
.

(ii) Let K(H) denote the C∗-algebra of all compact operators on a infinite dimen-
sional and separable Hilbert space H. For any n one can consider the orthogonal
projections on subspaces of dimension n of H, and these finite dimensional pro-
jections belong to K(H). It is then not too difficult to show that two projections of
the same dimension are Murray-von Neumann equivalent, while projections corre-
sponding to two different values of n are not. With some more efforts, one shows
that the dimension of these projections plays the crucial role for the definition of
K0

(
K(H)

)
, and one has again

K0

(
K(H)

) ∼= Z.
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In this case, the isomorphism is provided by the usual trace Tr on finite dimen-
sional projections, and by the tensor product of this trace with the trace tr on
Mn(C). More precisely, on any element of Pn

(
K(H)

)
the mentioned isomorphism

is provided by Tr ◦ tr.

Let us now add the different pieces of information we have presented so far, and get
an abstract version of our Levinson’s theorem. For that purpose, we consider an arbi-
trary separable Hilbert space H and a unital C∗-subalgebra C of B(H) which contains
the ideal of K(H) of compact operators. We can thus look at the short exact sequence
of C∗-algebras

0→ K(H) ↪→ C q→ C/K(H)→ 0.

Let us assume in addition that C/K(H) is isomorphic to C(S). Then, if we take the
results presented in the previous example into account, one infers that

Z ∼= K1

(
C(S)

) ind−→ K0

(
K(H)

) ∼= Z

with the first isomorphism realized by the winding number and the second isomorphism
realized by the trace. As a consequence, one infers from this together with Proposition
10.3.1 that there exists n ∈ Z such that for any partial isometry W ∈ C with unitary
Γ := q(W ) ∈ C(S) the following equality holds:

Wind(Γ) = nTr
(
[1−W ∗W ]− [1−WW ∗]

)
. (10.12)

We emphasize once again that the interest in this equality is that the left hand side is
independent of the choice of any special representative in [Γ]1. On the other hand, in
the context of scattering theory the r.h.s. of (10.12) is well understood, see the next
statement. Let us also mention that the number n depends on the choice of the extension
of K(H) by C(S), see [W-O93, Chap. 3.2], but also on the convention chosen for the
computation of the winding number.

If we summarize all this in a single statement, one gets:

Theorem 10.3.3 (Abstract topological Levinson’s theorem). Let H be a separable
Hilbert space, and let C ⊂ B(H) be a unital C∗-algebra such that K(H) ⊂ C and
C/K(H) ∼= C(S) (with quotient morphism denoted by q). Then there exists n ∈ Z
such that for any partial isometry W ∈ C with unitary Γ := q(W ) ∈ C(S) the following
equality holds:

Wind(Γ) = nTr
(
[1−W ∗W ]− [1−WW ∗]

)
. (10.13)

In particular if W = W− = s − limt→−∞ eitHe−itH0 for some suitable scattering pair
(H,H0), then the previous equality reads

Wind
(
q(W−)

)
= −n

(
number of eigenvalues of H − number of eigenvalues of H0

)
.

Note that in applications, the factor n is determined by computing both sides of
the equality on an explicit example.



108 CHAPTER 10. APPLICATION: LEVINSON’S THEOREM

Let us finally show that the example presented in Section 10.2 can be recast in the
previous framework. We consider the Hilbert space L2(R+) and the unital C∗-algebra
C(HD,A) introduced in (10.7). As already mentioned, the wave operatorWα

− is an isometry
which clearly belongs to the C∗-algebra C(HD,A) ⊂ B

(
L2(R+)

)
. In addition, the image

of Wα
− in the quotient algebra C(HD,A)/K

(
L2(R+)

) ∼= C(�) is precisely the function Γα� ,
defined in (10.9) for α ̸= 0 and in (10.10) for α = 0, which are unitary elements of C(�).
Finally, since C(�) and C(S) are clearly isomorphic, the winding number Wind(Γα�) of
Γα� can be computed, and in fact this has been performed and recorded in the table of
Section 10.2.

If one sets Ep(H
α) for the orthogonal projection on the subspace generated by the

bound states of the operator Hα, then one has

Tr
(
[1− (Wα

−)
∗Wα

−]− [1−Wα
−(W

α
−)

∗]
)
= −Tr

(
Ep(H

α)
)
=

{
−1 if α < 0 ,
0 if α ≥ 0 .

(10.14)

Thus, this example fits in the framework of Theorem 10.3.3, and in addition both sides of
(10.13) have been computed explicitly. By comparing (10.14) with the results obtained
for Wind(Γα�), one gets that the factor n mentioned in (10.13) is equal to −1 for these
algebras. Finally, since Ep(H

α) is related to the point spectrum of Hα, the content of
Proposition 10.2.2 can be rewritten as

Wind(Γα�) = ♯σp(H
α).

This equality corresponds to a topological version of Levinson’s theorem for the ele-
mentary model. Obviously, this result was already obtained in Section 10.2 and all the
above framework was not necessary for its derivation. However, we have now in our
hands a very robust framework which can be applied to several other situations, see
[Ric15] and the references therein.

Remark 10.3.4. As a concluding remark, let us mention how the algebraic framework
could still be extended. For that purpose, consider a short exact sequence

0 −→ J −→ C −→ Q −→ 0

and the corresponding index map ind : K1(Q) → K0(J ). Assume that η is an even n-
trace on J which can be paired with K0(J ), see Theorem 9.5.8. Then one can wonder if
there exists a map on higher traces which is dual to the index map, i.e. a map # which
assigns to an even trace η an odd trace #η such that the equality⟨

[ind(Γ)]0, [η]
⟩
=

⟨
[Γ]1, [#η]

⟩
(10.15)

holds, for any Γ ∈ Un(Q̃) ? Except for some special cases (like in Theorem 10.3.3 for a
0-trace and a 1-trace), the answer to this question is apparently not known.
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