Nagoya University G30 Preparatory Lecture Mathematics

Course I: Functions and Equations Course II: Calculus Course III: Linear Algebra

Course I: Functions and Equations

Flow of This Lecture Video

1. Lecture A (About 20 min.)

- Listen to a lecture.

2. Exercise A

- Practice solving related problems.
- Pause the video and solve the problem by yourself.
- If you cannot, see the preceding lecture repeatedly.

3. Explanation of the answers (About 5 min.)
4. Lecture B (About 20 min.)
5. Exercise B
6. Explanation of the answers

Contents

Lesson 01 Polynomials and Factoring
Lesson 02 Algebraic Equations and Functions
Lesson 03 Linear and Quadratic Inequalities
Lesson 04 Trigonometric Functions (I)
Lesson 05 Trigonometric Functions (II)
Lesson 06 Trigonometric Functions (III)
Lesson 07 Complex Numbers
Lesson 08 Exponential Functions
Lesson 09 Fractional Functions and Irrational Functions
Lesson 10 Inverse Functions
Lesson 11 Common Logarithms
Lesson 12 Law of Sines and Law of Cosines
Lesson 13 Applications of Trigonometric Functions
Lesson 14 Graphs and Equations (I)
Lesson 15 Graphs and Equations (II)

Lesson 1 Polynomials and Factoring

1A
-Polynomials
-Addition, Subtraction, and Multiplication

Polynomials

Q. What is the area of a circle with radius $r \mathrm{~cm}$?
A. $\quad \pi r^{2}\left(\mathrm{~cm}^{2}\right):$ Monomial
Q. What is the price for 5 shortcakes of x yen and 2 cream puffs of y yen?
A. $5 x+2 y$ (yen): Polynomial

Polynomial is an expression of finite length constructed from variables and constant, using only the operation of addition, subtraction and multiplication.

Some terminologies

Coefficient
Degree of x
Degree of y

Some Notes

Note 1: Degree of a polynomial is the largest degree of any one term. (Ex: Degree of $2 x^{3}+2 x+1$ is 3 .)

Note 2 : The following terms are not polynomials.

$$
3 x^{\frac{1}{2}}+1(=3 \sqrt{x}+1) \quad 2 x^{-2}\left(=1 / x^{2}\right)
$$

Note 3 : Simplify by combining like terms.

$$
5 x^{3}+2 x+1-2 x^{2}+x \rightarrow 3 x^{3}-2 x^{2}+3 x+1
$$

Note 4 : Write in the descending order of the degree

$$
2 x^{3}+2 x+1-x^{2} \rightarrow 2 x^{3}-x^{2}+2 x+1
$$

Basic Process of Multiplication

(two-term) \times (two-term)

(1)
(2)
(3)
(4)
$(a x+b)(c x+d)=a c x^{2}+a d x+b c x+b d$
(3)
$=a c x^{2}+(a d+b c) x+b d$

Steps

(1) First terms
(2) Outer terms
(3) Inner terms
(4) Last terms

In general
Use the distribution property and combine.
Example 1. Find the product $\left(2 x^{2}+x-3\right)(x+2)$

Ans. <Method 1>

$$
\begin{aligned}
& \left(2 x^{2}+x-3\right)(x+2) \\
& =\left(2 x^{2}+x-3\right) x+\left(2 x^{2}+x-3\right) \cdot 2 \\
& =2 x^{3}+x^{2}-3 x+4 x^{2}+2 x-6 \\
& =2 x^{3}+5 x^{2}-x-6
\end{aligned}
$$

<Method 2> $2 x^{2}+x-3$

$$
\times \lcm{x+2}
$$

$$
2 x^{3}+x^{2}-3 x
$$

$$
\frac{4 x^{2}+2 x-6}{2 x^{3}+5 x^{2}-x-6}
$$

Some Formulas

Memorize the following formulas for quick calculation.

$$
\begin{aligned}
& \text { 1. }(a+b)^{2}=a^{2}+2 a b+b^{2} \square b \rightarrow(-b) \\
& (a-b)^{2}=a^{2}-2 a b+b^{2} \\
& \text { 2. }(a+b)(a-b)=a^{2}-b^{2} \\
& \text { 3. }(x+a)(x+b)=x^{2}+(a+b) x+a b \\
& \text { 4. }(a x+b)(c x+d)=a c x^{2}+(a d+b c) x+b d \\
& \text { 5. }(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
& (a-b)^{2}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}
\end{aligned}
$$

Exercise

Exercise 1. Perform the indicated operation for the following polynomials.

$$
A=2 x^{3}-x^{2}-1, \quad B=-x^{2}+2 x+1
$$

(1) Add A and B.
(2) Subtract B from A.
(3) Multiply A and B.

Pause the video and solve the problem by yourself.

Answer to the Exercise

Exercise 1. Perform the indicated operation for the following polynomials.

$$
A=2 x^{3}-x^{2}-1, \quad B=-x^{2}+2 x+1
$$

(1) Add A and B. (2) Subtract B from A. (3) Multiply A and B

Ans.
(1)

$$
\begin{array}{r}
\begin{array}{r}
2 x^{3}-x^{2} \quad-1 \\
+\quad-x^{2}+2 x+1
\end{array} \tag{2}\\
\hline 2 x^{3}-2 x^{2}+2 x
\end{array}
$$

(3)

$$
\begin{aligned}
& 2 x^{3}-x^{2} \quad-1 \\
& \text { ×) }-x^{2}+2 x+1 \\
& -2 x^{5}+x^{4}+x^{2} \\
& +4 x^{4}-2 x^{3} \quad-2 x \\
& \frac{+2 x^{3}-x^{2}-1}{-2 x^{5}+5 x^{4}-2 x-1} \\
& \frac{+2 x^{3}-x^{2}-1}{-2 x^{5}+5 x^{4}-2 x-1}
\end{aligned}
$$

$$
\begin{array}{r}
\begin{array}{r}
2 x^{3}-x^{2} \\
-\quad-1 \\
-x^{2}+2 x+1 \\
\hline 2 x^{3} \quad-2 x-2
\end{array}, ~
\end{array}
$$

Lesson 1
 Polynomials and Factoring

1B

-Factoring Polynomials
-How to factor polynomials
-Factor theorem

What is Factoring ?

Factoring a polynomial is the opposite process of multiplying polynomials.

Factoring
Factoring a number

$$
\begin{aligned}
& \text { a number } \\
& 12=2 \times 6 \quad 12=\frac{1}{2} \times 24 \quad 12=\frac{\text { Prime numbers }}{\text { Completely factored }}
\end{aligned}
$$

Factoring a polynomial

$$
x^{4}-16=\left(x^{2}+4\right)\left(x^{2}-4\right)=\frac{\left(x^{2}+4\right)(x+2)(x-2)}{\text { Completely factored }}
$$

How to Factor Polynomials

There is no perfect method to succeed factoring. Sometimes insight will help. However, there are several useful rules as follows.

1. Factor out the largest common factor.

$$
\text { [Ex.] } 2 x^{3}+10 x^{2}+12 x=2 x\left(x^{2}+5 x+6\right)(a+b) \quad \leftarrow \text { Rule } 1
$$

2. Use a formula of factoring.

$$
\text { [Ex.] } \begin{aligned}
2 x^{3}+10 x^{2}+12 x & =2 x\left(x^{2}+5 x+6\right) \\
& =2 x(x+2)(x+3) \leftarrow \text { Rule } 2
\end{aligned}
$$

3. Rearrange by the variable with the lowest degree.

$$
\text { [Ex.] } \begin{array}{rlrl}
x^{3}+3 x^{2}+2 x y+6 y & =(2 x+6) y+\left(x^{3}+3 x^{2}\right) & \leftarrow \text { Rule } 3 \\
& =2 y(x+3)+x^{2}(x+3) & \leftarrow \text { Rule } 1 \\
& =\left(x^{2}+2 y\right)(x+3) & & \leftarrow \text { Rule } 1
\end{array}
$$

4. Use "Factor Theorem"

To be discussed later.

Several Advanced Examples

Example 2. Factor the following polynomials.
(1) $2 x^{2}+5 x y+3 y^{2}-3 x-5 y-2$
(2) $x^{4}-10 x^{2}+9$

Ans.
(1) Every valuable has the same degree. In such a case, rearrange by any one of them.

$$
\begin{aligned}
& 2 x^{2}+5 x y+3 y^{2}-3 x-5 y-2 \\
& =2 x^{2}+(5 y-3) x+\left(3 y^{2}-5 y-2\right) \\
& =2 x^{2}+(5 y-3) x+(y-2)(3 y+1) \\
& =\{x+(y-2)\} 2 x+(3 y+1)\} \\
& =(x+y-2)(2 x+3 y+1)
\end{aligned}
$$

(2) The polynomial has $4^{\text {th }}$ degree. In such a case, observe the form
carefully and use the similarity to the polynomial with a lower degree.

$$
\begin{array}{ll}
\text { Put } & X=x^{2} \\
\text { Then } & x^{4}-10 x^{2}+9=X^{2}-10 X+9=(X-1)(X-9) \\
& =\left(x^{2}-1\right)\left(x^{2}-9\right)=(x+1)(x-1)(x+3)(x-3)
\end{array}
$$

Factor Theorem

Factor Theorem

A polynomial $f(x)$ has a factor $(x-k)$ if and only if $f(k)=0$.

This theorem is commonly applied to the problems of factoring a polynomial and finding the roots of a polynomial equation (this will be explained later.)

Steps of application:

1. Guess a number k and confirm $f(k)=0$.
2. Divide $f(x)$ by $(x-k)$ and obtain $g(x)=f(x) /(x-k)$.
3. Then, $f(x)$ is factored to $f(x)=(x-k) g(x)$.
4. It is easier to find factors of $g(x)$ than that of $f(x)$.

Example 3. Factor the polynomial $f(x)=x^{3}+4 x^{2}+x-6$.
Ans. $f(1)=0$ Therefore

$$
\begin{aligned}
x^{3}+4 x^{2}+x-6 & =(x-1)\left(x^{2}+5 x+6\right) \\
& =(x-1)(x-2)(x-3)
\end{aligned}
$$

$$
\begin{array}{r}
x-1 \frac{x^{2}+5 x+6}{x^{3}+4 x^{2}+x-6} \\
\frac{x^{3}-x^{2}}{5 x^{2}+x-6} \\
\frac{5 x^{2}-5 x}{6 x-6} \\
\frac{6 x-6}{0}
\end{array}
$$

Exercise

Exercise 2. Factor the following polynomials.
(1) $4 x^{2}+8 x-21$
(2) $x^{3}+7 x^{2}+8 x+2$

Pause the video and solve the problem by yourself.

Answer to the Exercise

Exercise 2. Factor the following polynomials.
(1) $4 x^{2}+8 x-21$
(2) $x^{3}+7 x^{2}+8 x+2$

Ans.
(1) Remember the formula $(a x+b)(c x+d)=a c x^{2}+(a d+b c) x+b d$ By trials, we find that $a=2, b=-3, c=2, d=7$ satisfy the condition. (Refer to the right-side calculation)
Therefore $4 x^{2}+8 x-21=(2 x-3)(2 x+7)$
2

2 | -3 | \rightarrow | -6 |
| ---: | ---: | ---: |
| 7 | \rightarrow | 14 |
| 4 | -21 | 8 |

(2) We use Factor Theorem.

By trials, we find $x=-1$ satisfy $f(-1)=0$.
By dividing $x^{3}+7 x^{2}+8 x+2$ by $x+1$, we have

$$
\frac{x^{3}+7 x^{2}+8 x+2}{x+1}=x^{2}+6 x+2
$$

Therefore

$$
x^{3}+7 x^{2}+8 x+2=\left(x^{2}+6 x+2\right)(x+1)
$$

